The fate of organic carbon in marine sediments - New insights from recent data and analysis

LaRowe DE, S. Arndt, J.A. Bradley, E.R. Estes, A. Hoarfrost, S.Q. Lang, K.G. Lloyd, N. Mahmoudi, W.D. Orsi, S.R. Shah Walter, A.D. Steen, R. Zhao

PII: S0012-8252(19)30572-0

DOI: https://doi.org/10.1016/j.earscirev.2020.103146

Reference: EARTH 103146

To appear in: Earth-Science Reviews

Received date: 24 August 2019

Revised date: 28 February 2020

Accepted date: 28 February 2020

Please cite this article as: L. DE, S. Arndt, J.A. Bradley, et al., The fate of organic carbon in marine sediments - New insights from recent data and analysis, *Earth-Science Reviews*(2019), https://doi.org/10.1016/j.earscirev.2020.103146

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.

The fate of organic carbon in marine sediments - new insights from recent data and analysis

LaRowe, D.E.^{1*}, Arndt, S.², Bradley, J.A.^{3,4}, Estes, E. R.⁵, Hoarfrost, A.⁶, Lang, S.Q.⁷, Lloyd, K.G.⁸, Mahmoudi, N.⁹, Orsi, W.D.^{10,11}, Shah Walter, S. R.¹², Steen, A.D.^{8,13}, Zhao, R.¹⁴

*Corresponding author

- 1. Department of Earth Sciences, University of Southern California, Los Angeles, CA, 90089 USA, phone:615-438-8646, fax: 213-740-8801, email: larowe@usc.edu
- 2. BGeosys, Department of Geosciences, Environment and Society, Université libre de Bruxelles, Ave F.D. Roosevelt 50 CP160/02, 1050 Brussels, Belgium, phone: +32 (2) 650 22 17, email: Sandra.Arndt@ulb.ac.be
- 3. School of Geography, Queen Mary University of London, Mily Ena Road, London E1 4NS, United Kingdom, phone: +44 (0)20 7882 8417, fax: +44 (0)20 7882 /032, email: james.bradley@qmul.ac.uk
- 4. Interface Geochemistry, GFZ German Research Centre for Gosciences, 14473 Potsdam, Germany.email: james.bradley@gfz-potsdam.de phone: +-59.31 288-28971
- 5. International Ocean Discovery Program, Texas A&M University, 1000 Discovery Drive, College Station, TX, 77845, USA; estes@iodp.tamu.ed.a, Office phone: 979-458-2730, Fax: 979-845-4857
- 6. Department of Biochemistry and Microbiolog. Rutgers University, School of Environmental and Biological Sciences, 76 Lipman Drive Sure 218, New Brunswick, NJ 08901, ahoarfrost@bromberglab.org
- 7. School of the Earth, Ocean, and Environment, University of South Carolina, 701 Sumter St., Columbia, SC, 29208, USA, Phone: (%33),77-8832, Fax: (803)777-6610, slang@geol.sc.edu 8. Microbiology Department, University of Tennessee, 1311 Cumberland Avenue 307 Ken and Blaire Mossman Bldc. K. Soxville TN 37996-1937 Phone: 865-974-4224, Email: klloyd@utk.edu, Fax: 865-974-00.
- 9. Department of Earth & Planc'ary Sciences, McGill University, 3450 University Street, Montreal, Quebec, Canada h. A DE8, Tel: 514-398-2722, Fax: 514-398-4680, email: nagissa.mahmoudi@mcgi l.ca
- 10. Department of Ea.th and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität Nünchen, 80333 Munich, Germany.
- 11. GeoBio-Center^{LMU}, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- 12. School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA, phone: 302-645-4262, email: suni@udel.edu
- 13. Department of Earth and Planetary Sciences, University of Tennessee, 1412 Circle Drive Knoxville, TN 37996-1410, Phone: (865) 974-4014, Email: asteen1@utk.edu
- 14. School of Marine Science and Policy, University of Delaware, Lewes, DE 19958, USA Tel: +1 302-727-2918, Fax: 645-4007, Email: ruizhao@udel.edu

Organic carbon in marine sediments is a critical component of the global carbon cycle, and its degradation influences a wide range of phenomena, including the magnitude of carbon sequestration over geologic timescales, the recycling of inorganic carbon and nutrients, the dissolution and precipitation of carbonates, the production of methane and the nature of the seafloor biosphere. Although much has been learned about the factors that promote and hinder rates of organic carbon degradation in natural systems, the controls on the distribution of organic carbon in modern and ancient sediments are still not fully understood. In this review, we summarize how recent findings are changing entrenched perspectives on organic matter degradation in marine sediments: a shift from a structurally-based chemical reactivity viewpoint towards an emerging acceptance of the role of the ecosystem in organic matter degradation rates. That is, organic carbon has a range of reactivities determined by not only the nature of the organic compounds, but by the biological, geochemical, and physical attributes of its environment. This shift in mindset has gradually come about due to a greater diversity of sample sites, the molecular revolution in biology, discoveries concerning the extent and limits of life, advances in quantitative modeling, investigations of ocean carbon cycling under a variety of extreme paleo-conditions (e.g. greenhouse environments, eu inic anoxic oceans), the application of novel analytical techniques and interdisciplinary efforts. Adopting this view across scientific disciplines will enable additional progress in understarding how marine sediments influence the global carbon cycle.

Keywords: organic carbon; marine sediments; randing y; microorganisms; deep biosphere

1. Introduction

To contextualize the recent biogeoche rical breakthroughs that have been made regarding the fate of organic carbon in marine and diments, the first section of this review consists of a summary of its role in the global carbon cycle and how this has varied over space and time. Secondly, we describe the sources of new data that are shaping the transformation in how we think about organic carbon in the name system. This is followed by a section on organic carbon in adjacent environments such as hyperothermal systems and the ocean basement, and then a brief overview of modelling advances. The topics covered in this communication are summarized in the schematic shown in Figure 1.

1.1 Sedimentary organic and the global carbon cycle

Organic carbon (OC) degradation in marine sediments is a critical component of the global carbon cycle and is intricately linked to Earth's climate (Berner and Canfield, 1989; Berner, 1990; Siegenthaler and Sarmiento, 1993; Archer and Maier-Reimer, 1994; Mackenzie et al., 2004; Ridgwell and Zeebe, 2005; Ridgwell and Hargreaves, 2007; Hülse et al., 2017). The specific consequences of this process on biogeochemical cycles vary considerably depending on location as well as the temporal and spatial scales of concern. In the upper few meters of relatively recently deposited sediment, the oxidation of organic carbon controls the fluxes of oxygen and nutrients across the sediment-water interface (SWI), ultimately impacting primary productivity in the water column (Van Cappellen and Ingall, 1994; Lenton and Watson, 2000). As organic carbon is aerobically oxidized, pore water pH is decreased, potentially leading to dissolution of calcium carbonate and amplifying the direct effect of OC oxidation on the carbon cycle (Emerson and Bender, 1981; Hales and Emerson, 1996). Deeper in sediments, organic carbon that escapes oxidation can still be microbially reduced to CH₄, and under some

conditions, fuel the slow build-up of methane hydrates (e.g. Wallmann et al., 2012). Although hydrates represent a relatively small carbon reservoir, perturbations in temperature and/or pressure can render hydrates unstable, potentially leading to sudden transfers of carbon back into the ocean-atmosphere system that would have important consequences for global carbon cycling and climate (Ruppel and Kessler, 2017). The small fraction of photosynthetically produced organic carbon that entirely escapes degradation and thus is buried over longer timescales in sediments helps to modulate the long-term evolution of atmospheric CO₂, has enabled oxygen to accumulate in the atmosphere (e.g. Berner, 2003) and has led to the formation of large reservoirs of hydrocarbons that provide most of the energy that humans use. Whether marine sediment organic carbon contributes to water column anoxia, becomes trapped in a clathrate, is transformed into petroleum or ends up as atmospheric CO₂ is ultimately based on the flux of particulate organic carbon (POC) to sediments and the many factors that dictate its rate of degradation.

1.2 POC fluxes and degradation rates

The concentrations of POC shown in Figure 2 illustrate that the flux of organic carbon to and through sediments vary tremendously (Seiter et al., 2004; Wallmann et al., 2012; LaRowe et al., 2020). In this figure, it can be seen that POC concentrations are highest in recently deposited sediment underlying northern high-latitude and south ast Asian coastal regions and the Humboldt and South Equatorial currents to the west of Peru. They are generally lowest in abyssal regions far from land, and in older and approximately. This span of concentrations is due to variable depositional fluxes and degretation rates.

Field observations have revealed 'nat rates of POC degradation are not constant (e.g. (Canfield et al., 2005), leading to burial rates that vary significantly in space (e.g. Canfield, 1994; Blair and Aller, 2012) and time (e.g. Arthur et al., 1985). In fact, first-order rate constants for POC degradation rates derived are reliefled and laboratory data span over eight orders of magnitude, with older sediments havin, the smallest values (Middelburg, 1989). Many different factors have been invoked to explain this variability. They include, but are not limited to, organic matter composition (e.g. Westric's and Berner, 1984; Hedges et al., 1988; Tegelaar et al., 1989; Cowie et al., 1992; Canfield, 1994; Hedges and Keil, 1995), electron acceptor (EA) availability (e.g. Demaison and Moorn 1980; Emerson, 1985; Canfield, 1994; Hedges and Keil, 1995; Dauwe et al., 2001) bynthis microbial community composition and functional capacities (e.g. Canfield, 1994; Arnosti, 2011; Steen et al., 2019), microbial inhibition by specific metabolites (e.g. Aller and Aller, 1905), priming (e.g. Stevenson, 1986; Graf, 1992; Aller et al., 1996; Sun et al., 2002a; van Nugteren et al., 2009), physical and physicochemical protection (e.g. Keil and Kirchman, 1994; Mayer, 1994; Kennedy et al., 2002; Estes et al., 2019; Hemingway et al., 2019), sediment deposition rate (e.g. Müller and Suess, 1979; Calvert and Pedersen, 1992b; Tromp et al., 1995) and macrobenthic activity (e.g. Aller, 1982; Aller and Cochran, 2019; Middelburg, 2019).

The rates of POC degradation in marine sediments are first and foremost controlled by the source and transport of organic carbon. A higher lateral and/or vertical (i.e. sedimentation) transport rate not only increases the deposition flux but also influences the quality of the organic carbon deposited, since the degree of pelagic degradation during transport through the water column - and thus the nutritive value of POC - is reduced with extended sinking times. A compilation of deep sediment trap data reveals large regional variations in vertical export efficiency (Lutz et al., 2002; Henson et al., 2012a; Wilson et al., 2012). For instance, the fraction

of the organic carbon export flux that reaches water depths greater than 1.5 km varies between 0.28 and 30% (5.7% average) of the POC that escapes the photic zone (Lutz et al., 2002). Although differences in export efficiencies are most likely not attributable to a single process, factors invoked to explain variations in export efficiency include sinking rates and ballast (e.g. Armstrong et al., 2002; François et al., 2002; Klaas and Archer, 2002; Lutz et al., 2002), the seasonality of export production (Antia et al., 2001) and ecosystem structure (Buesseler et al., 2008; Lam et al., 2011; Henson et al., 2012a; Mayor et al., 2012). And while export of large particles from surface waters has been extensively investigated, it has also been shown that very small particles (< 1 µm) contribute to the chemical composition of exported POC (Close et al., 2013). In addition to the vertical transport of POC from the euphotic zone, the efficient lateral transport of POC in nepheloid layers, benthic storms, mud waves, strong (bottom) water currents or mass wasting events can support an important fraction of the POC deposition flux to continental slope and abyssal sediments in the vicinity of dynanic continental margins (e.g. Ohkouchi et al., 2002; Levin and Gooday, 2003; Mollenhauer e. al., 2003; Inthorn et al., 2006b; Mollenhauer et al., 2007; Kusch et al., 2010; Henson et al., 2012b; Bao et al., 2019). The efficiency of terrestrial organic matter export from land is even more difficult to predict, given variable controls on residence times in soils, followed by widely varying degrees of alteration during transport through the riverine/estuarine/deltaic sysum and across the continental shelf (Hedges et al., 1997; Schlünz and Schneider, 2000; Bian in, 2011; Blair and Aller, 2011; Bauer et al., 2013a; Regnier et al., 2013; Canuel and Hadison, 2016; Kandasamy and Nagender Nath, 2016). Organic carbon is also produced in stainents, by phototrophs in shallow waters (Middelburg, 2018, 2019) and chemoauto phically (Veuger et al., 2012; Sweetman et al., 2017). Although the exact mechanisms controlling the high variability in POC degradation are not well understood, the variety of environments that have been sampled and examined in recent years has provided new insights to constrain which variables are most important in particular settings.

1.3 Observations: Increased diversity of sample sites and data types

Over the last several decades, scientific drilling of the seafloor by the International Ocean Discovery Program (IODP) and its precursors, the Integrated Ocean Drilling Program (IODP), the Ocean Drilling Program (CDP) and the Deep Sea Drilling Program (DSDP), have enabled critical expansion of an pled environments and new data that have dramatically increased our knowledge of the distrib tion of organic carbon in marine sediments. The sample sites targeted by most of these expeditions were motivated by scientific questions about the structure of ocean crust, past climate, and tectonics, leading to drilling locations and sampling methods that were optimized for study of these topics. Although total organic carbon was regularly measured on these samples, tools to study the agents of their transformation, i.e. microorganisms, were relatively rudimentary until culture-independent methods (e.g. DNA and RNA sequencing) became widely available in the early 2000's. Much of the new understanding of controls on organic carbon degradation in marine sediments has to do with recent insight into the role of microorganisms. As pointed out in the ODP Leg 201 summary (D'Hondt et al., 2003), this is despite the fact that deep-sea drilling had revealed indirect evidence of microbial activity as early as the 1980s (Oremland et al., 1982; Whelan et al., 1986; Tarafa et al., 1987) and, by the 1990s, microbial abundances (see Parkes et al., 2014)) for a review). Remarkably, ODP Leg 201, the first ODP cruise dedicated to studying microorganisms, did not sail until 2002. Since this time, a number of IODP expeditions have been focused on studying the limits to life: Expeditions 329

(South Pacific Gyre Subseafloor Life), 331 (Deep Hot Biosphere), 336 (Mid-Atlantic Ridge Microbiology), 337 (Deep Coalbed Biosphere off Shimokita), 357 (Atlantis Massif Seafloor Processes: Serpentinization and Life), 370 (Temperature Limit of the Deep Biosphere off Muroto), and 385 (Guaymas Basin Tectonics and Biosphere). This explicit exploration of microbial communities further informs the perspective that the reactivity of organic carbon in marine sediments is an ecosystem property (Middelburg, 2018).

2. Ecosystem nature of the problem

Organic carbon in natural systems is often referred to as being either labile or recalcitrant (e.g. Hedges et al., 2000). Some have expended considerable effort expanding this classification to intermediate states such as semi-labile and semi-recalcitrant (Hansell, 2013). This reductionist classification system implies that the degradation rate of organic compounds is determined from specific attributes of the chemical compounds themselves. While the reactivity of organic compounds is certainly related to their chemical composition and structure, numerous factors have been invoked to explain the reactivity of organic carbon, that are not intrinsic to the compounds, but rather the properties of the surrounding e virc ament (e.g. see Hedges et al., 2000; Burdige, 2007b; Arndt et al., 2013; Middelburg, 2018, 2019 and references therein). Examples include temperature, microbial community truc ure and benthic ecosystem, mineral types and surface area, redox state, light, nutrie, availability, pH, salinity, porosity, permeability, water content and oxygen expure time. Because these variables are biophysiochemical properties of the environment, the reactivity of organic matter is determined by the interaction between the compound and accessivem, not just the chemical nature of the organic compounds. Indeed, a particula c.ganic compound can be extremely resistant to degradation under certain conditions, and controlly degraded in a different physiochemical context. For example, aerobic heterotrop'ic bacteria in incubation experiments have been shown to oxidize and incorporate ¹⁴C-free organic carbon preserved in marine black shales for millions of years (Petsch et al., 2001). This item of ecosystem properties governing organic compound reactivity is not a new one (Midd burg et al., 1993; Canfield, 1994; Harvey et al., 1995; Mayer, 1995), but it is only recently becoming the new paradigm in the soil science community (Marschner et al., 2008a; Klebe, and Johnson, 2010; Schmidt et al., 2011; Lehmann and Kleber, 2015), and there are indication that it should prevail among sediment scientists as well (Eglington and Repeta 2014; Middelburg, 2018, 2019). In fact, we suggest that the terms labile and recalcitrant be retaid and replaced with the single term reactivity. Similarly, since the fate of organic carbon in non-ral systems can include oxidation to CO₂, hydrolysis and fermentation into smaller organics, reduction to methane, adsorption to surfaces, incorporation into biomass and conversion to petroleum products and complex organic compounds, we recommend that the more inclusive term transformation be used to refer to the fate of organic carbon rather than the relatively restrictive term *mineralization*. In the following sections, we highlight some of the recent research that seeks to determine how a variety of ecosystem properties influence the rates of organic carbon degradation.

2.1 Source and transit path

A large fraction of the organic carbon that is buried in marine sediments originates from photosynthetic activity in the terrestrial (net primary productivity (NPP) = 56 Pg C yr^{-1}) or marine biosphere (NPP = 49 Pg C yr^{-1}) (Field et al., 1998). In addition, organic carbon can be transported to sediments by other means including the weathering of ancient organic carbon in

rocks (Blair et al., 2003), the remobilization of organic matter from thawing permafrost (Mann et al., 2015) and resuspension of already-deposited carbon (see below). Autotrophic and Chemoautotrophic production as well as secondary production by microorganisms and animals can also contribute to the organic carbon deposition flux (Eglinton and Repeta, 2010; Middelburg, 2011: Lengger et al., 2019). Approximately two-thirds of terrestrially produced OC is rapidly degraded within soils or glacial environments. The remainder that escapes immediate degradation is either partially degraded or temporarily stored before being transported downstream with old, weathered OC within lakes, streams, rivers, estuaries, deltas, fjords, and ultimately, the oceans (Regnier et al., 2013). An estimated 1.9 Pg C yr⁻¹ ±1.0 Pg C yr⁻¹ of total soil carbon (mostly POC and dissolved organic carbon, DOC, but also dissolved inorganic carbon, DIC) is exported to inland waters. Only 0.45 Pg C yr⁻¹ of the terrestrial-derived OC reaches the coastal ocean and 0.1-0.35 Pg C yr⁻¹ makes it to the open ocean (Bauer et al., 2013b; Regnier et al., 2013). Thus, the land-ocean transition zone acts as a important modulator of OC fluxes that not only further degrades and transforms terrestrial CC h puts, but also stores OC on short and long timescales (Canuel and Hardison, 2016). However, the exact amounts of OC that are degraded and temporarily or permanently preserved during transit from land to ocean remain unknown (Regnier et al., 2013).

Similar to terrestrially-derived organic carbon, a large fraction (80-90%) of the OC produced in the surface ocean is rapidly oxidized (Du. e et al., 2007; Hansell and Carlson, 2015). Just over one-quarter (27%) of OC produced in the marine photic zone is DOC that can be transported to the deep ocean by convection and mixing. While most of the exported DOC is degraded at mid-depths, an estimated 0.1 Pg C yr⁻¹ is contributed to the large, apparently unreactive, deep ocean DOC reservoir (6.0 Pg) that persists through multiple ocean mixing cycles (Hansell and Carlson, 2015). As FOC sinks to the ocean floor, it can be laterally transported by ocean currents (Eglinton and Repeta, 2004) as it is further degraded. Degradation during burial further reduces this flux such that < 0.3% of the original exported flux is ultimately sequestered in deep marine sediments (Hedges and Keil, 1995; Eglinton and Repeta, 2004; Burdige, 2007b; Dunne et al., 2007; Maldelburg and Meysman, 2007; Honjo et al., 2008).

In addition to the vertical transport from the photic zone to sediments, POC can also be transported after deposition on the seafloor via bioturbation and lateral motion following the resuspension of sediments in the water column. Bioturbation, the biological reworking of sediments near the SVI by nacrofauna such as polychaetes and bivalves (Rhoads, 1974a; Aller, 1982), can exert an important influence of organic carbon transformation (Meysman et al., 2006; Middelburg, 2018) in the upper 20 cm of sediments (Boudreau, 1994, 1998). These animals can have a complex impact on sediment POC - in some cases accelerating POC degradation through grazing, the redistribution of particles and reintroduction of electron acceptors and DOC, (Kristensen, 1985; Rice, 1986; Kemp, 1988; Aller, 1994; Aller and Aller, 1998; Kristensen and Holmer, 2001a; Kristensen et al., 2011) and, in other cases, depositing organics in the form of tube casings that can inhibit organic transformation (Kristensen et al., 1992; Kristensen, 2001). Generally, it seems that bioturbation accelerates POC degradation (Rhoads, 1974b; Findlay and Tenore, 1982; Aller and Aller, 1986; Herman et al., 1999; Aller et al., 2001; Kristensen and Holmer, 2001b; Kristensen and Kostka, 2005; Aller and Cochran, 2019). Furthermore, benthic macrofauna, in addition to being a source of OC, can affect sediment resuspension (Aller and Cochran, 2019) by altering the bulk properties of sediments (Eckman et al., 1981; Rhoads et al., 1984), which in turn influences their lateral transport.

Sediments, and the POC within, on continental shelves and slopes can also be mobilized after initial deposition and redeposited under open-ocean waters. Not only does this process move organic carbon laterally to parts of the seafloor that typically have low POC deposition rates (Jahnke et al., 1990; Walsh, 1991; Bauer and Druffel, 1998; Ransom et al., 1998a; Thomsen and van Weering, 1998; Jahnke and Jahnke, 2000; Romankevich et al., 2009; Hwang et al., 2010), but it has the effect of accelerating the oxidation of POC that was buried in margin sediments (see Section 2.5 for a discussion) (de Lange et al., 1987; Prahl et al., 1989; Cowie et al., 1995; Prahl et al., 1997; Cowie et al., 1998; Hoefs et al., 1998; Prahl et al., 2003). However, the scale of this phenomenon, as well as its impact on the global distribution of organic matter reactivity, remains unclear (Eglinton and Repeta, 2014) due to large uncertainties in lateral particle fluxes (Jahnke et al., 1990; Reimers et al., 1992; Inthorn et al., 2006a; Thullner et al., 2009).

2.2 Organic carbon structure and composition

Although the majority of organic carbon inputs to marine sediments originate as POC. these sources can be transformed and contribute to the DOC pool through microbial activities as well as sorption/desorption from mineral surfaces. Chemica, both POC and DOC range in size and complexity from simple monomers to mixtures of large complex polymers as well as humic substances (de Leeuw and Largeau, 1993; Hedges et al., 2000), the last of which is an ill-defined molecular group of varying sizes that are solely different by the extraction procedure used to isolate them. Most POC and DOC in marine securing nets cannot be chemically identified at the structural level, leading to terms such as "aple uncharacterizable carbon, MUC" (Cowie et al., 1995; Prahl et al., 1997; Wakeham 't a'., 1997; Burdige and Gardner, 1998; Hedges et al., 2000; Burdige, 2007b; Burdige and Komada, 2015). Depending on the sample, anywhere from 50-90 wt% of OC in marine sediments 's referred to as MUC. Approximately 60-90% of pore water DOC has a molecular weight cross than 3 kDa, and the compounds that can be identified tend to be short-chain organic acids, uch as acetate, amino acids, and carbohydrates (Burdige and Komada, 2015). High-res lution techniques have shown that thousands of organic compounds are found in pore w. ter (e.g. Repeta et al., 2002; Koch et al., 2005; Schmidt et al., 2009; Fox et al., 2018), but hany fall into a rather unsatisfactory category known as CRAM, carboxyl-rich alicyclic molecules - a poorly defined pool of organics thought to be less reactive than other DOC compounts (Jertkorn et al., 2006).

As with DOC, the bulk of organic compounds in the particulate fraction of marine sediments (i.e. POC) is arely identified and often said to be 'uncharacterizable', at least with respect to partitioning it into compound classes such as amino acids, carbohydrates, lignin or lipids (Cowie et al., 1995; Prahl et al., 1997; Wakeham et al., 1997; Hedges et al., 2000; Benner, 2002; Koch et al., 2005; Burdige, 2007a; Mao et al., 2011; Ball and Aluwihare, 2014; Estes et al., 2019). Although it is not clear why this is the case, one of the explanatory hypotheses, that organics attach to mineral surfaces and condense into large macromolecules that are less accessible by exoenzymes, e.g. (Hedges et al., 1988; Keil and Kirchman, 1994; Hedges et al., 2000), no longer holds in the soil science community. Briefly, it was long thought that complex macromolecular carbon compounds form in soils through abiotic processes and that these large compounds were especially resistant to biological degradation. More recently, however, there is a growing consensus that these larger compounds are an artifact of extraction procedures and there is no evidence for their presence *in situ* (Kelleher and Simpson, 2006; Lehmann and Kleber, 2015).

The structure and composition of organic matter serves as the first guidepost to determining its reactivity. For instance, relatively weak bonds between monomers render a biopolymer more reactive over a wide range of environmental conditions, than aliphatic moieties cross-linked by ether bonds (Tegelaar et al., 1989; de Leeuw and Largeau, 1993). At the most fundamental level, this structural heterogeneity is responsible for the higher reactivities of most algal organic carbon over most terrestrial organic matter (Canuel and Martens, 1996; Hedges and Oades, 1997; Dauwe and Middelburg, 1998; Camacho-Ibar et al., 2003; Burdige, 2005; Dai and Sun, 2007), the selective preservation of certain compounds in the geological record and the widely observed decrease of organic carbon with depth and or transport/burial time (Goth et al., 1988; Tegelaar et al., 1989). However, the relative importance of organic structure and composition in controlling overall preservation/degradation remains unclear (see de Leeuw et al., 2006; Gupta et al., 2007; Gupta, 2015). In addition, because of the extremely limited availability of compound-specific kinetic data (e.g. Ming-Yi et al., 1993; Harvey and Macko, 1997; Sun et al., 2002b), a comprehensive knowledge of organic structure and composition does not help in quantifying organic matter reactivity. Ultimately, linking the Elentity of individual organic compounds to their reactivity would require knowledge of hov many other biophysiochemical variables impact it as well.

2.3 Sediment matrix

Mineral surfaces are thought to slow or present the degradation of organic carbon, largely based on observations that there is a positive correlation between mineral surface area and the amount of organic matter in sediments (e.g. Mayor et al., 1985; Keil et al., 1994; Mayer, 1994). Most hypotheses explaining this phenom nor rest upon the notion that extracellular enzymes cannot access mineral-associated organic compounds. Compounds can associate with minerals via a number of mechanisms, both physical and chemical, including 1) physisorption (physical adsorption) in surface irregularities, 2) strong mineral surface bonding, 3) insertion into clay interlayers, 4) formation of mineral OC (ggregates, 5) co-precipitation with Fe-oxides and other authigenic minerals, 6) seclusion by exopolymeric substances (EPS) and 7) protection within biogenic minerals such as diaton frustules (Keil and Hedges, 1993; Keil et al., 1994; Mayer, 1994; Hedges and Keil, 1995, kansom et al., 1997; Ransom et al., 1998b; Mayer, 1999; Arnarson and Keil, 2001: Mayer and Xing, 2001; Kennedy et al., 2002; Ingalls et al., 2003; Pacton et al., 2007a; Parton et al., 2007b; Kennedy and Wagner, 2011; Lalonde et al., 2012; Hemingway et al., 2019, Chemical preservation mechanisms, in particular, are likely important, since OC concentration often correlates more strongly with the abundance of specific mineral classes such as smectite clays (Ransom et al., 1998a), metal oxides (Lalonde et al., 2012; Roy et al., 2013; Barber et al., 2017) or tephra (Longman et al., 2019) rather than total mineral surface area, suggesting that the specific chemical bonds formed by these minerals with organic compounds are essential to decreased reactivity.

Given the large variety of organic compounds and minerals found in marine sediments, it is probable that all of the mechanistic hypotheses noted above contribute to the long-term preservation of OC. The array of explanations is likely due to the fact that the samples used to generate them have come from different places and therefore are characterized by a variety of different biogeochemical conditions and timescales of preservation. Although there is a growing appreciation of the complexity of mineral-organic reactions, disentangling which mechanism operates under what set of environmental conditions is complicated by a lack of data that more fully contextualizes mineralogical observations such as oxygen exposure times (OETs). For

example a study examining how OETs affect mineral-organic associations in northeast Pacific sediments (Arnarson and Keil, 2007) found that for OETs shorter than a year, OC was mostly in a mineral-free state. For sediments with OETs ranging from years to decades, OC was largely in mineral-organic aggregates. For longer OETs (centuries to millennia), the aggregates broke down and most OC was found sorbed to mineral surfaces or protected inside biogenic diatom frustules (see Section 2.5 for a discussion on electron acceptor availability).

The exposure to a variety of geochemical conditions over varying timescales also impacts how solid phases can control organic carbon reactivity. For instance, microorganisms use Feand Mn-oxide minerals to oxidize organic carbon in marine sediments (Ehrlich, 1971; Aller, 1980; Berner, 1981; Jones, 1983; Burdige and Nealson, 1986; Lovley, 1991; Thamdrup, 2000; Hyun et al., 2017), especially where manganese- and iron-oxides are abundant or rapidly recycled due to fluctuating redox conditions (Sørensen and Jeørgensen, 1987; Aller et al., 1990; Canfield et al., 1993). In fact, it has been estimated that 3% of the OC degraded in the top 50 cm of global marine sediments is coupled to Fe-oxide reduction (Thullner et al., 2009), though this is spatially quite variable (Burdige, 2012; Dale et al., 2015) Yet, these same mineral phases provide protection and stabilization of organic matter (Lalord, et al., 2012; Johnson et al., 2015; Barber et al., 2017). Substantially more OC is associated with Fe oxides via inner-sphere complexation in coastal environments with short OF's han in low OC, deep-sea sediment (Barber et al., 2017). Experimental evidence additional, demonstrates that the composition of OC matters in determining the balance between in gradation and preservation by minerals: the presence of disaccharides inhibits the abiotic de, adution of protein by the manganese oxide mineral birnessite (Reardon et al., 2018). Firsten ore, carbon compounds can serve as templates for mineral nucleation, and co-precipitate with minerals during mineral growth and aggregation (Mann et al., 1993; Moreau et al., 2007; Klaber et al., 2015 and references therein). Beyond redox chemistry, (Taylor, 1995) showed that under some conditions sorbed proteins are hydrolyzed much faster than dissolver proteins, indicating that surface sorption can in fact enhance organic carbon degradation

Generalizations about or nic-mineral interactions are further complicated by the fact that sediment types may vary on the centimeter scale and might be dominated by an array of mineral types that have distinct physiochemical properties. Common sediment lithologies include chert, siliceous coze, carbonate, clay, silt and sand in the form of turbidites, volcaniclastics and limestone (Plank and Langmuir, 1998). Sediments made of these various constituents respond durrently to increasing pressures and temperatures during diagenesis, leading to dissolution, precipitation, and solid-phase reordering reactions (Prothero and Schwab, 2004) that will certainly impact organic-mineral associations. How specific mineral-organic associations change across environmental gradients is not well known, but potentially crucial to understanding the fate of OC in marine sediments. The common clay mineral smectite provides an illustrative example since it has been shown to preferentially sequester organics, relative to chlorite-rich clays (Ransom et al., 1998a). With as little as 1.3 MPa pressure (Hüpers and Kopf, 2012), the interlayer in smectite begins to dewater and collapse, a process that also depends on temperature, the identities of interlayer cations and the concentrations of cations present in solution (Ransom and Helgeson, 1995). If organics are sequestered in this interlayer, they could be expelled during this transition and transported into other parts of the sediment. Likewise, the reductive dissolution of metal oxides may liberate chemically or physically adsorbed organics (Coppola et al., 2007). Other recent work suggests that the salinity gradient experienced by smectite during transport from the terrestrial to marine environments induces cation exchange

reactions and the removal of associated pedogenic organic carbon, followed by repopulation of the mineral surface with marine OC (Blattmann et al., 2019). On the other end of the size spectrum, sandy sediments - half of continental shelf seafloor - allow for water column POC to be pumped biologically or tidally into the subsurface. This reactive DOC stimulates organisms (Huettel et al., 2014) to consume it and more of the particulate organic fraction, contributing to low POC in sandy sediments (Boudreau et al., 2001).

2.4 Hydrolysis and Fermentation

When free oxygen has been exhausted in sediments, OC is thought to be transformed through a series of steps that include the extracellular enzymatic hydrolysis of large, complex organic compounds into smaller ones that are then fermented into volatile fatty acids, H₂ and other simple chemical species, some of which are then oxidized by microorganisms using electron acceptors such as nitrate, metal-oxides and sulfate, or reduced to methane (Schulz, 2006). Thought to be the rate limiting step in organic matter degracation, extracellular enzymes produced by microorganisms are known to break large and/or complex organic compounds to supply microorganisms with energy and nutrients such as nitragen and phosphorous (Arnosti, 2011). Extracellular enzymes are diverse and present in two concentrations in marine sediments (Steen et al., 2019). Although temperature and pH are continuant controls on rates of enzymecatalyzed reactions, patterns of activity across ecosystem types do not necessarily correlate with such physio-chemical variables (Mahmoudi et al., 2029). It seems that the functional diversity of microbial communities, nutrient availability and organic matter reactivity are likely to better explain patterns of extracellular enzyme activities with a notably strong correlation with particle composition, size and abundance (Arnosti et al., 2014).

It is difficult to locate fermenting ma roorganisms in sediment columns since they do not leave a distinct chemical trace of their activity (Nealson, 1997). A near-limitless number of organic compounds can serve as reactants and products, and a considerable number of inorganic species can be produced and consumed by both fermentative and non-fermentative processes (LaRowe and Amend, 2019). In addition, many organisms can switch between fermentation and other catabolic strategies, and mach fauna can also leave signatures reminiscent of fermentative pathways as they partially digner organic matter during gut passage (McInerney et al., 2008; Jochum et al., 2017). Consequently, the specific forms of fermentation and diversity of fermentative mechanisms in parine sediments remain largely unknown.

Recent analyses of piomolecular data (see Section 2.6) from sediments confirm that fermentation generally appears to be a widespread survival strategy for many cosmopolitan groups of microorganisms in anoxic sediments. For example, Bathyarchaeota, Hadesarchaea, and the Atribacteria that are common in marine sediments all utilize fermentative strategies – using peptides, aldehydes, sugars and lignin as substrates (Lloyd et al., 2013; Baker et al., 2016; Nobu et al., 2016; Orsi, 2018; Yu et al., 2018a). As has been often presumed, fermenting bacteria have now been found throughout the anoxic sediment column across multiple geochemical zones (Orsi et al., 2017; Beulig et al., 2018). Many bacteria with the capability to ferment (in particular alpha- and gamma-proteobacteria) have also been found in oxic marine sediment such as deepsea red clay, though they respire oxygen in these settings (Vuillemin et al., 2019). Eukaryotic microorganisms are also involved in fermentation processes in sediments. For example, the majority of H₂ produced in anoxic permeable sediments results from fermentation by eukaryotic algae (Bourke et al., 2016). In deeper sediments down to at least 2,000 meters below the seafloor (mbsf), fermenting fungal cells can still persist (Ciobanu et al., 2014), suggesting that they have the ability to contribute to H₂ production since this can be a product of their

fermentative pathway (Orsi, 2018). Finally, metagenomic and proteomic data taken from terrestrial settings suggest that fermenting organisms constitute a large fraction of the Candidate Phyla Radiation, an uncultured but geographically widespread and genetically diverse group of bacteria (Wrighton et al., 2012; Wrighton et al., 2014; Anantharaman et al., 2016; Danczak et al., 2017).

2.5 Electron acceptors

Most sedimentary POC – and its hydrolysis and fermentation products – are consumed by microorganisms using an array of electron acceptors. The identities and concentrations of EAs are in turn determined by the composition of the overlying seawater and the types of mineral phases that are deposited along with organic compounds. The principal EAs encountered in marine sediments, O₂, NO₃, Mn(IV), Fe(III), SO₄² and CO₂, are traditionally thought to be consumed in the order listed based on the idea that this sequence ic lows the order of decreasing Gibbs energy yield of the corresponding organic matter ox data in reactions (Claypool and Kaplan, 1974; Froelich et al., 1979; Stumm and Morgan, 1995, Gough it should be noted that the range of Gibbs energies for reactions involving these As can overlap depending on the environmental conditions (LaRowe and Van Cappellen, 2011; LaRowe and Amend, 2014, 2015a). This hierarchy leads to redox zonation in marine sidiments – oxic sediments nearest the SWI, followed by so-called sub-oxic zones where N₃ and Mn(IV) reduction occurs, a ferrigenous layer if Fe(III)-bearing minerals are propent, then a sulfidic layer where the bulk of SO₄² reduction takes place and finally a methatogenic zone at the bottom of the sediment column. Not all of these redox zones will recessarily be present in any given sediment column. The thickness of the zones can vary dram tic? y (Glud, 2008; D'Hondt et al., 2015; Egger et al., 2018) and the order of them can exhibit complex patterns (see Jørgensen et al., 2019). For instance, in many coastal sediments where POC fluxes are high, the oxic zone might be vanishingly thin (Glud, 2008), while the oxic layer in sediments underlying ocean gyres can penetrate tens of meters to the basement since POC fluxes are so low (Røy et al., 2012; D'Hondt et al., 2015). In fact, D'Hondt et 1. (2015) estimate that 9-37% of the global sediment-basement interface is oxic (Figure 3a).

In an undetermined volume of the ocean crust, deep sediment layers can exhibit higher concentrations of dissolved oxygen than in upper or middle layers due to the penetration and circulation of deep, oxygenated seawater into unsedimented adjacent basaltic outcrops (Orcutt et al., 2013b; Mewes et al. 2016; Kuhn et al., 2017). This subsediment, rapid movement of low-temperature seawater allows oxygen to diffuse upward from basement basalt into sediments, thus creating a C-shaped O₂ curve in these sediments. An example of this is shown in Figure 4 for a sediment pond near the mid-Atlantic Ridge, though it should be noted that these kinds of oxygen profiles have also been observed in the North Pacific near a fracture zone (Mewes et al., 2016; Kuhn et al., 2017). The upward transport of such microbial energy sources could be common globally due to the vast number of seamounts that jut above the sediment-water interface (Wheat et al., 2019 and references therein).

Other chemical compounds that can provide energy for microorganisms have been found to be transported upward in sediments. In one such case near the Peru Margin, sulfate diffused upward from a brine in the oceanic basement (D'Hondt et al., 2004; Parkes et al., 2005; Engelen et al., 2008). In another, Cretaceous-aged organic-rich horizons support methane production that seem to, in turn, provide energy for microbial communities in and above it, driving unexpected distributions of EAs that differ from classical expectations (Arndt et al., 2006). In many anoxic

sedimentary settings, the reduced products of POC oxidation, compounds such as Fe^{2+} , H_2S and NH_4^+ , diffuse upwards to be oxidized by chemolithotrophic microorganisms for energy. If redox conditions oscillate, this process can cycle, creating the impression that POC is being transformed more rapidly than it is (Thullner et al., 2009), though OC oxidation rates can be accelerated due to these oscillations (Sun et al., 1993; Aller, 1994; Sun et al., 2002a; Caradec et al., 2004).

The deepest extent of the sulfate-reducing zone and thus the beginning of the methanogenic zone (sulfate-methane transition, SMT) varies widely on a global scale, and has been shown to strongly depend on sedimentation rates and associated organic matter burial fluxes (Berner, 1978; Borowski et al., 1999; Egger et al., 2018). In fact, Egger et al. (2018) recently used a compilation of 1,704 observations to correlate sedimentation rates with SMT depth to map the extent of the SMT globally (Figure 3b). It can be seen in this figure that SMT depth is spatially highly variable: in many shallow continental such formal slope settings, SMT depth is < 1 mbsf, and up to 10 mbsf. In deeper sediments, particularly water depths >2,000 m, SMT depth is at least 10 mbsf and in many instances, hundred of meters deep. The majority of sediments in the abyssal plain (>66%) exhibit no SMT.

The preservation of POC in sediments is sometines attributed to anoxia, and therefore ascribed to the identities of the electron acceptors present (e.g. Demaison and Moore, 1980; Emerson, 1985; Calvert and Pedersen, 1992a; Lee, 1992. Aller, 1994; Canfield, 1994; Wignall, 1994), and to some extent the types of organic compounds deposited (Harvey et al., 1995; Harvey and Macko, 1997; Sun et al., 1997; Birn 'a et al., 2000; Grossi et al., 2001; Sun et al., 2002a). Though there are many datasets and against the idea that the presence of free oxygen plays a decisive ole in POC reactivity (see Hulthe et al., 1998), there seems to be a growing consensus that the presence O₂ typically enhances organic carbon reactivity in many marine sediments (Harrett et al., 1998; Hedges et al., 1999; Keil and Cowie, 1999; Keil et al., 2004; Moodley et al., 2005; Cowie et al., 2009; Middelburg and Levin, 2009; Aller, 2014; Eglington and Repeta 1014; Keil et al., 2016). Notable exceptions to these observations include studies that sow that rates of POC degradation in anoxic sediments have been observed to be nearly equal to (e.g. Henrichs and Reeburgh, 1987; Lee, 1992a; Kristensen and Holmer, 2001b) or far exceeding those in oxic settings (Røy et al., 2012; D'Hondt et al., 2015). On a molecular level factor acids can be degraded at similar rates independently of their degree of saturation in the presence of oxygen, whereas unsaturated acids are preferentially degraded under anoxic conditions (Harvey and Macko, 1997; Sun et al., 1997; Grossi et al., 2001). In sediments dominated by sulfate reduction, measured cell specific sulfate-reduction rates vary by 10 orders of magnitude (Jørgensen et al., 2019). Furthermore, recent incubation experiments have built on other studies (e.g. Lee 1992) showing that the identity of the electron acceptors used during POC transformation processes has little to no influence on the overall rate of organic carbon degradation (Beulig et al., 2018). Taken together, these studies suggest that the identity of the oxidant/reductant does not necessarily determine the reactivity of organic carbon, but that O₂ has a special role among EAs in evaluating the reactivity of POC.

2.6 Microorganisms

Although many factors influence the reactivity of organic carbon in sediments, one of the most unifying is microorganisms. The extent to which organic carbon reactivity is influenced by the taxonomic and functional distribution of microorganisms is only beginning to be explored, after an era in which little attention was paid to microbial life in sediments (see Section 1.3). In

the last decade or so, there has been a revolution in understanding the number, identity, functional capabilities and extent of life in marine sediments, and their role in OC degradation.

2.6.1 Abundance

Microbial cell numbers correlate with mean sedimentation rate and distance from continental landmasses (Kallmeyer et al., 2012), as well as with the amount of organic matter in sediments (Jørgensen and Marshall, 2016). For surface sediments, those on continental margins contain $10^8 - 10^{10}$ cells cm⁻³, whereas those underlying oligotrophic gyres contain $10^5 - 10^7$ cells cm⁻³ (Kallmeyer et al., 2012) (Figure 5). In most sediments, cell concentrations decrease with increasing depth below the seafloor, according to a power law. In OC-poor, oxic sediments, cell concentrations drop below ~ 10^2 cells cm⁻³ between 10 and 15 mbsf (Kallmeyer et al., 2012; Vuillemin et al., 2019). Cell abundance in OC-rich, anoxic sediments on continental shelves remain relatively high at great depths in the sediment, and only fan to ~ 10^2 cells cm⁻³ between 1,000 - 2,500 mbsf (Kallmeyer et al., 2012).

2.6.2 Identity

Rapid progress in high-throughput DNA sequence of and analytical tools over the last decade has completely revised our understanding of the tree of life (Hug et al., 2016). Many of the phylogenetic groups found in sediments are candidate phyla that are not yet cultivated, so their role in organic matter transformation is not entirely clear (Lloyd et al., 2018). Though common types of fungi, bacteria, and archaea here been found in sediments (Richards et al., 2012; Orsi et al., 2013), many new groups of netroorganisms reside in the subsurface that appear to be endemic to this environment. These entemic groups are repeatedly found to be relatively abundant in subsurface settings (Anantharanen et al., 2016; Orsi, 2018), with widely differing diversity in oxic and anoxic sediments (Orsi, 2018). In addition, sediments of varying redox state reveal evidence of viruses (Englithand et al., 2015; Tully and Heidelberg, 2016; Bäckström et al., 2019; Cai et al., 2019), which may contribute to organic processing via lysis of microbial biomass (Danovaro et al., 2008, Orsi, 2018), with archaea potentially being disproportionally lysed in surface sediments under deep waters (Danovaro et al., 2016).

2.6.3 Functional capabilities

Before the molecula: biology revolution, the functional capabilities of microbial communities in sediment were inferred from pore water profiles, with little to no direct biological information. For example, decreases in sulfate and increases in sulfide suggested microbial sulfate reduction and amendment experiments revealed that the addition of fermentation end products (H₂, acetate) stimulated rates of sulfate reduction (Goldhaber et al., 1977; Iverson and Jørgensen, 1985). The ability to sequence and identify genes with known functions, and determine their expression levels, allowed for the discovery of new types of microorganisms as well as new functional capabilities (Biddle et al., 2006; Biddle et al., 2008), which could then be correlated to geochemical profiles.

Knowledge of microbial functionality from environmental 'omics data (the term 'omics is commonly used to refer to the analysis of DNA, RNA, metabolite and protein sequences extracted from samples) can be inferred from a close similarity of protein encoding genes from environmental samples to those found in genomes of cultured microbes that have been assigned a function based on biochemical experiments (de Bruijn, 2010). Marine sediment communities are dominated by microorganisms that are not closely related to any current pure culture (Parkes et

al., 2005; Biddle et al., 2006; Inagaki et al., 2006; Lloyd et al., 2018). Therefore, it is speculative to assume that distant genetic similarities from the *in situ* microorganisms to cultured strains imply that those genes are enabling microorganisms to perform the same function. A large number of genes encoding hypothetical proteins in marine metagenomes, which are digital libraries of all the DNA present from all the microorganisms in a natural sample, remain difficult to annotate with information about their identities or functions. For instance, in the large TARA Oceans metagenomic data set, only about 16% percent of DNA sequences that encoded a hypothetical protein had a statistically significant similarity to proteins with an experimentally determined function. Furthermore, 44% of the hypothetical proteins had no significant similarity to gene families that share general biochemical functions (Sunagawa et al., 2015a). This problem is difficult to solve using traditional bioinformatic approaches, which rely on comparing environmental sequences to genes whose function has been identified.

A further complicating factor is that databases of known gones are dominated by wellcharacterized microorganisms, particularly from a single phylogenetic group (Proteobacteria), whereas marine environments are dominated by uncultured organisms from diverse lineages (Lloyd et al., 2018). Physiologies from some of these uncertured microbes have been inferred whole genome reconstructions in marine s. diments (Lloyd et al., 2013), metatranscriptomics showing which genes were being transcribed at the time of sampling (Orsi et al., 2013), compositions of natural isotopes of biomass Biddle et al., 2006; Shah et al., 2008; Meador et al., 2015), stable isotope probing (Marono et al., 2011; Trembath-Reichert et al., 2017), direct measurement of metabolites (Bird et a., 2019) and tracking increases in a microbial group's cell abundance during laboratory exists ent of natural marine sediments (Kevorkian et al., 2018; Yu et al., 2018b). The limit for, of these approaches are that DNA and RNA sequences from environmental samples can only be given functional annotations based on their similarity to known cultures. Therefore truly novel functions cannot be determined from sequencing methods alone. Heterologius expression and characterization can be used to identify novel functions (Cottrell et al., 2005; Vichalska et al., 2015; Wrighton et al., 2016), but such methods have only been applied to enzymes with enough homology to a known protein to develop a hypothesis. Determining the functions of genes encoding truly novel "hypothetical" proteins will be very important for inferring functions of uncultured microorganisms in marine sediments.

It should be noted that genome representation in databases represents one of the largest issues for making correct assignments of protein encoding genes in environmental genomics datasets. For example, the number of genomes from archaea in databases that derive from subsurface environments has grown substantially in recent years (Lloyd et al., 2013; Spang et al., 2015; Anantharaman et al., 2016; Baker et al., 2016; Jungbluth et al., 2017; Dombrowski et al., 2018; Tully et al., 2018; Seitz et al., 2019). Before these genomes were available, protein encoding genes expressed by archaea in marine sediments were estimated to be about 1% to 2% of total genes expressed (Orsi et al., 2013). However, a re-analysis of that same data including these new archaeal genomes in the database showed that archaea actually express 25% of the total genes (Orsi, 2018), clearly demonstrating a database bias. Thus, we imagine that as more genomes from archaea are sequenced, their representation in environmental 'omics datasets will continue to increase. The archaea are thus likely to be critically important for subsurface carbon cycling, as predicted by earlier studies from the marine subsurface (Biddle et al., 2006; Lloyd et al., 2013).

2.6.4 OC Degradation potential based on biomolecular data

The advent of inexpensive nucleic acid sequencing technology combined with the availability of user-friendly bioinformatics processing platforms has made it possible for non-specialists in bioinformatics to substantiate biogeochemical work with 'omics data. 'Omics approaches that have proven valuable in sediment biogeochemistry include single-cell genomics, metagenomics and the related practice of "binning" metagenomic sequences into "metagenome-assembled genomes" (Albertsen et al., 2013), metaproteomics, and metabolomics (for a review see Gutleben et al., 2018). These approaches, especially when used in concert, have enabled insight into the mechanisms of organic matter degradation that would be impossible from purely geochemical techniques. For instance, in deep sediments of the Baltic Sea, it appears that Atribacteria have the potential to act as a keystone species, accessing a wide range of organic carbon using a broad spectrum of extracellular enzymes, and then exporting the resulting free amino acids, possibly supporting the rest of the microbial community (Bird et al., 2019).

Ideally, the integration of multiple molecular approaches vili yield information on the rates and potentials of organic matter oxidation by microbial communities. Progress along this path has been made in studies of the nitrogen cycle, for which the genomic pathways of important transformations (N₂ fixation, nitrification, etc.) are well-characterized and the relevant genes are highly conserved (Pachiadaki et al., 2017). This information has been used to construct a "gene-centric" model of the nitrogen cycle in the Arabian Sea oxygen minimum zone, revealing interactions between the cryptic sulfur cycle and the nitrogen cycle which would have been difficult to observe using purely biogeochemic 1 echniques (Reed et al., 2014).

The use of biomolecular data to better understand organic carbon cycling is a nascent area of inquiry that presents researchers vith many avenues of research to make sense of the tremendous diversity and complexity of organic structures, and therefore enzymes that catalyze organic matter transformations. One aspect of this complexity is illustrated in Figure 6, which shows that the phylogenetic diversity conjutative secreted organic-degrading enzymes in anoxic marine sediments spans the tree of life (Crsi, 2018). Peptidases provide a more specific example: even though all peptidases cataly, essentially the same reaction, breaking a peptide bond, this can be performed by 268 different structural families of proteins via eight separate catalytic mechanisms (Rawlings et al., 2016). Other categories of enzymes related to organic carbon degradation are similarly direct, obscuring relationships between enzyme structure and function (Michalska et al., 2015) Because many enzymes relevant to OC degradation can catalyze reactions beyond those including their "preferred" substrates, caution must be used when inferring degradation processes from genomic data or enzyme assays (Steen et al., 2015). It is also possible that novel uncultured clades harbor catalytic enzymes not identifiable by current annotation methods. Therefore, even if particular genes are present in an ecosystem, biomolecular data sets alone might not be sufficient for making specific predictions about the rate, quantity and type of organic carbon reacted in a given system. Lastly, recent experimental work using bioreactor incubations with marine sediments and different marine heterotrophs has directly demonstrated species-to-species differences in the rate, quantity, and type of organic matter oxidized, illustrating that the reactivity of organic carbon is also a function of the microorganisms that are present and active in a given environment (Mahmoudi et al., 2019).

2.6.5 Energetic and power constraints

Absent photosynthesis, all microbial energy is derived from catalyzing redox reactions, nearly all of which are ultimately driven by the degradation of organic carbon. The amount of

Gibbs energy available in a number of sedimentary settings has been determined (e.g. Schrum et al., 2009; Wang et al., 2010; LaRowe and Amend, 2014; Teske et al., 2014), as have the metabolic rates in a number of subsurface habitats (Orcutt et al., 2013a). However, the rate at which this energy is used, microbial power utilization, is less well constrained, despite being critical for understanding activity levels and growth state (Hoehler and Jørgensen, 2013; LaRowe and Amend, 2015a). In situ measurements of microbial power utilization are not yet feasible, but calorimetric measurements carried out in the laboratory have begun to assess low rates of heat production from small numbers of cells taken from the subsurface (Robador et al., 2016). However, a growing number of studies have computed power usage by combining geochemical data with modeling tools (e.g. LaRowe and Amend, 2015a, b; Bradley et al., 2018b). In these studies, data gathered by scientific drilling is used to inform POC degradation models (see Section 4) while the energetics of organic carbon degradation car be constrained by either using the total molecular composition of dead microbial cells (Bradley et al., 2018b) or by relating the nominal oxidation state of organic carbon to its energy contert (LaRowe and Van Cappellen, 2011).

The results of these power studies have shown that in low-energy sediments, such as those underlying the South Pacific Gyre (SPG), microbial activity is limited, more or less, to maintaining cellular integrity through biomolecular repair and replacement (Bradley et al., 2018a), a state akin to dormancy (see Section 4.3). Thus, maintenance activities (the sum of activities that do not produce growth) constitute a much greater fraction of total power utilization by microbial communities in habitats where growth is minimal. Indeed, bioenergetic modelling of the SPG sediments suggested that <0.1% at the power from organic carbon oxidation can be attributed to growth, with maintenance accounting for the rest (Bradley et al., 2019).

Power calculations have also been used to constrain the cell-specific power requirement of microorganisms in sediments. Assuming that all counted cells are involved in organic matter degradation, minimal cell-specific power requirement of microbial cells in SPG sediments have been estimated to be around 1.9×10^{-9} W cell-1 (LaRowe and Amend, 2015b). Assuming this value for the non-growing cells a SPG sediments, the degradation of cells that died in the sediments, necromass, was estimated to provide 2 to 13% of the power used by microbial communities in shallow and reactively young sediments (<10,000 years) from SPG (Bradley et al., 2018b). In a similar attraction, mean cell-specific metabolic rates of functional groups involved in nitrogen cycling in objects phic North Pond sediments (on the western flank of the Mid-Atlantic Ridge) showed that an increased power supply in transition zones between oxic and anoxic regimes may be responsible for the revival of organisms from a maintenance state, and even for growth (Zhao et al., 2019).

The lack of quantitative data accurately describing the distribution of various functional groups of microorganisms in marine sediments has impeded the calculation of cell-specific power requirements for particular catabolic groups. This has led to sometimes-untested assumptions about the fraction of a community catalyzing a particular reaction (e.g. that ~10% of the total cells in organic-rich sediments are sulfate reducers (Hoehler and Jørgensen, 2013)). Quantification methods like marker-gene-based qPCR and FISH are useful means to measure the abundances of various functional groups in marine sediments (Schippers and Neretin, 2006; Lever, 2013; Buongiorno et al., 2017), though their application is limited by primer and probe biases.

One of the goals motivating calculation of cell-specific power requirements for different types of functional groups (e.g. Zhao et al., 2019) under a wide range of natural conditions is to

determine the limits that the environment imposes on basal power requirements (Hoehler and Jørgensen, 2013). Knowing what the ultimate limits are would greatly facilitate the prediction of the standing stock of biomass of different functional groups in marine sediments on a global scale using geochemical and physical data (e.g. Bowles et al., 2014; Egger et al., 2018) and without the requirement for the collection, analysis and assembly of biological samples on such a vast scale.

2.6.6 Microbial turnover rates

Most early studies focusing on microorganisms in marine sediments were largely conducted in the upper tens of centimeters of sediment, which are both younger and often more carbon-rich than deeper sediments (see Figure 2). While some studies measured microbial activities in subsurface sediments as deep as 1.5 mbsf at the Pera Margin (Parkes et al., 1990), these studies generally depended on laboratory incubations to necesure metabolic rates, which tend to overestimate the *in situ* rate.

In recent years, new approaches that are incubation independent and sensitive to low activities have revealed that a large, active, yet slow-growing nicrobial community inhabits the deep subsurface. These microbes subsist on low power levels and have been ascribed some of the slowest turnover times ever documented. Amino acid race mization modelling has been used to estimate that some marine sediment microorganisms require hundreds to thousands of years to grow or replace all of their biomass (Lomstein et al., 2012), though these estimates have been adjusted to span years to hundreds of years (Brann et al., 2017). It should be noted that this work was carried out in relatively young, organication sediments, (especially when compared to ancient sediments, e.g. from SPG). A different and perhaps more sensitive method, deuterium incorporation into lipids, has been used to estimate microbial community turnover times from tens to hundreds of years in relatively similow (< 1 mbsf) subsurface sediments from the Baltic Sea (Wegener et al., 2012), as well as an every deep (up to 2,000 mbsf) sediments from offshore Japan (Trembath-Reichert et al., 2017, an all cases, these turnover times are several orders of magnitude slower than the doubling times of laboratory cultures, which are typically on the order of hours to days.

With such slow rep. ation rates, it is unlikely that subsurface sedimentary microorganisms have experienced a sufficient number of generations for specific adaptations to have evolved and spreac through the community (Starnawski et al., 2017), calling into question whether these organism s an be considered endemic (see Section 2.6.2). Under this scenario, it is more likely that a community that is able to tolerate this increasing energy limitation is selected for as it is buried deeper in the sediment column (Marshall et al., 2019). This idea is substantiated by evidence that the microbial taxa that dominate deep subsurface sediments are common across a wide range of locations (Petro et al., 2017) and are often found in surficial sediments (Walsh et al., 2015; Starnawski et al., 2017), while the converse is not the case surficial sediments contain microbial taxa that are not found deeper in the sediment column. In fact, it has recently been shown that at sites as diverse as the Indian Ocean and the Bering Sea. the operational taxonomic units that are most abundant at depth are a subset of the local seafloor community (Kirkpatrick et al., 2019). That is, net replication was not required to produce the microbial population observed in deep sediment, which could instead have been produced by differential mortality rates. These lines of evidence suggest that microbial community members with a slow-metabolizing survival strategy are selected for in the energy-limited deep subsurface environment, though it is unclear that these traits are passed on as in Darwinian selection. As

noted above, the importance of energetic efficiency as a selective advantage for long-term microbial survival has been supported by modelling (Bradley et al., 2019) and experimental (Vuillemin et al., 2019) work. Metabolomic and transcriptional evidence has identified some specific mechanisms that likely underlie the slow-metabolizing survival strategy – for example, the use of chemical protectants to stabilize nucleic acids and proteins, and metabolic interdependencies among members of the microbial community (Bird et al., 2019). However, many of these mechanisms – and the impact of these slow metabolizers on the long-term carbon cycle – remain underexplored.

2.7 Sulfurization

Sulfurization is one of the mechanisms thought to be responsible for the preservation of organic carbon in marine sediments (for reviews see Sinninghe Damsté and De Leeuw, 1990; Werne et al., 2004; Amrani, 2014). Sulfurization is the process whereby sulfur atoms ultimately replace carbon atoms in organic compounds, producing organic sun r compounds (OSC). OSCs are thought to be less accessible to microbial degradation size 3 replaces reactive functional groups that tend to be the easiest parts for microorganism an /or their exoenzymes to access (Kohnen and Sinninghe Damsté, 1989). Sulfur has been found in a wide variety of organic compound types in sediments (Werne et al., 2004), occur ying the full range of sulfur oxidation states (-2 to +6) (Amrani, 2014). The preservation potent of OSCs is based on a) observations that the S:C in POC increases with depth in sedimatary systems (Francois, 1987; Eglinton et al., 1994; Hetzel et al., 2009; Amrani, 2014), b) the isotopic composition of organically bound S Jurassic deposits (van Kaam-Peters et al. 1997; Sinninghe Damsté et al., 1998; Van Kaam-Peters et al., 1998; Kolonic et al., 2002; Kolonic et al., 2005; Böttcher et al., 2006; van Dongen et al., 2006; Hetzel et al., 2009; Raven et al., 2018; Raven et al., 2019) d) observations that many fossil fuels and their precursors hav: I'm levels of OSCs (Sinninghe Damsté et al., 1989a; Sinninghe Damsté et al., 1989b) and e. Loratory studies (Krein and Aizenshtat, 1994; Schouten et al., 1994).

Sulfurization is thought to proceed in anoxic environments in which sufficiently high concentrations of POC and H₂C coexist in the absence of metals such as reactive Fe (Gransch and Posthuma, 1974; Werre C al., 2004; Amrani, 2014), although there is some evidence that sulfurization can happen in the presence of reactive iron species since it can lead to the formation of polysulfides which in turn seem to enhance the incorporation of S atoms into organic structures (Kohnen and Ginninghe Damsté, 1989; Werne et al., 2004; Heitmann and Blodau, 2006). Somewhat paradoxically, sulfurization is thought to be an abiotic process, yet the requisite sulfide is attributed to microbial sulfate reduction, leading to the observation that high organic content is sometimes required for its preservation (Quijada et al., 2016).

Sulfurization takes place in a variety of environments on a range of timescales. Although it was traditionally thought to be a relatively slow process taking place in sediments and petroleum reservoirs (Sinninghe Damsté and De Leeuw, 1990; Werne et al., 2004), more recent research has shown that it can take place in hydrothermal systems (Gomez-Saez et al., 2016), in sinking marine particles on a timescale of hours (Raven et al., 2016; Raven et al., 2019), and surface sediments subjected to oscillating redox conditions (Jessen et al., 2017). It has been shown that such rapid sulfurization of organic carbon likely exerted an important feedback on ocean redox geochemistry and climate during the end of a major Cretaceous extinction event

(OAE2), ultimately terminating the extreme environmental conditions that caused it (Raven et al., 2019, Huelse et al., 2019).

2.8 Terrestrial studies

Investigations on the cycling of organic carbon in terrestrial settings offer valuable insights to analogous processes within the marine subsurface. Moreover, terrestrial settings are easier to access than deep marine environments, and thus they are more amenable to long term observations and manipulation for field and laboratory-based experiments. Through such studies, the stability of organic carbon has been found to be largely dependent on the complex interplay of the physicochemical (e.g. OC-mineral interaction and aggregation, temperature, moisture, salinity, etc.) and biological (e.g. microbial community composition, nutrient availability, extracellular enzyme production, etc.) properties of the environment rather than on the molecular properties of the OC itself (e.g. elemental composition, presence of functional groups, molecular conformation, etc.). Given that a substantial fraction of POC build in marine sediments is of terrestrial origin (Burdige, 2007a), understanding the factors go arm of OC stability in terrestrial ecosystems provides valuable insight into the marine carbon cycle

Within soils, certain organic compounds such as ignm have classically been viewed as resistant to biodegradation due to their large and completed molecular structures. However, lignin and lignocellulose compounds are no more likely to persist in soils than other organics given the proper conditions (Marschner et al., 2008b; Klotzbiicher et al., 2011; Schmidt et al., 2011). This is largely due to the activity of fungi, who play a critical role in the degradation of poorly reactive organic substrates on land (Treseder and Lennon, 2015) and thus may also play a similar role in marine sediments containing soil-derived organics. In fact, new experiments show that fungi living in coastal marine sediments play a role in degrading lignocellulose at the land-sea interface (Ortega-Arbulú et al., 2019).

The ability of microorganisms a a grade soil OC may, at times, also be restricted by nutrient or energy limitations. This is (specially pronounced in deep soil layers where turnover times are on the order of thousan's to tens of thousands of years (Schmidt et al., 2011). Recent studies suggest that this long transver time cannot be solely attributed to the chemical structure of OC as there is not always a significant change in composition with depth (e.g. Fontaine et al., 2007). However, amendment vith fresh OC to subsoil via root exudates or decomposition (often called priming) has been shown to stimulate increased degradation of the old OC, indicating that the fresh GC may provide a needed energy source to promote the activity of existing microbial degrade's (Fontaine et al., 2007; Marschner et al., 2008b; Kuzyakov, 2010). This mechanism has also been shown to occur to marine OC as well (Steen et al., 2016). The mechanism behind priming effects, however, is unclear. Common root exudates such as oxalic acid may enhance organic carbon degradation by removing organic carbon from mineral surfaces, thereby increasing its reactivity (Keiluweit et al., 2015). In the case of permafrost, which is also primarily composed of old organic carbon, temperature has been found to be a dominant factor governing its degradation. While frozen, decreased water availability and microbial and enzymatic activity lead to an increase in OC stability. With rising temperatures, these limitations are largely erased and OC degradation rates increase (Schuur et al., 2009; Schmidt et al., 2011) and references therein).

Molecular biological tools have revealed that anoxic freshwater sediments contain similar microbial groups that exist in their marine counterparts (Vuillemin et al., 2018). The presence of the common phylum, Bathyarchaeota, in deep terrestrial sediments that contain high amounts of unreactive plant derived organic matter (e.g. lignocellulose) is thought to be due to their ability

to use lignin as an energy source (Yu et al., 2018b). Bathyarchaeota might also be involved in the turnover of terrestrially derived organic matter, such as lignin, in marine sediments in coastal settings where land-derived OC is commonly deposited. Other bacterial "dark matter" groups that are present in marine sediments such as the candidatus groups Latescibacteria, Omnitrophica, and Parcubacteria have been shown to have similar rates of organic carbon turnover in freshwater sediments relative to more well-studied groups such as the Proteobacteria (Coskun et al., 2018). Given their transcriptional activities in marine sediments (Orsi, 2018), these groups could also be important for benthic carbon cycling in the ocean.

3. Old, hot and deep organic carbon

Most studies concerning the rates of POC degradation in marine sediments focus on the shallowest, most recently deposited material. However, it is becoming clear that deeply-buried organic carbon is actively being consumed and that fluid circulation in the ocean basement can impact OC reactivity through the modification of organic compound, as well as the composition of sediment pore water.

3.1 Ancient sediments

Throughout Earth's history there have been numerous periods of time when the deposition flux of organic carbon into sediments has then much higher than the present day (Pedersen and Calvert, 1990). A fraction of this arcient OC persists in modern marine sediments within layers of elevated OC concentrations (Cora's et al., 2001; Jenkyns, 2010; Ohkouchi et al., 2015). Although the details vary depending on the time period, there is evidence that large-scale tectonic processes and volcanism are ulti-var v responsible for the relatively high concentrations of OC deposited in the past (Berry and Vilde, 1978; Condie et al., 2001; Jenkyns, 2010; Trabucho-Alexandre et al., 2012; Ohkurchi et al., 2015). One such example is a section of Cretaceous-aged sediments located in a ratea of the equatorial Atlantic known as the Demerara Rise, where drill cores from ODP 1 eg 21/17 have revealed shales that typically contain between 2 and 15 wt% POC in layers rangin, from 56 to 94 meters thick (ShipboardScientificParty, 2004). Biogeochemical reaction transport modelling has revealed that deep Demerara organic-rich strata likely host organisms that convert the POC in these shales into CH4 which is subsequently consumed by anaerobic methanic oxidizing microbial consortia using SO_4^{2-} as the oxidant (Arndt et al., 2006). Although (ata on microbial abundance are not available, it is likely that biomass concentration is higher in POC-rich sediment layers as well as the adjacent sulfate-reducing zone than in the hundreds of theters of sediment separating these layers from the SWI, in which the POC content is far lower. Supporting this notion, cell abundances in core sections 1,500 to 2,500 mbsf near the Shimokita Peninsula, Japan, are orders of magnitude higher in organic-rich lignite layers than surrounding, organic-poor sediments (Inagaki et al., 2015). Although much of this deeply-buried organic matter looks to have escaped microbial degradation, it seems as if it is actually hosting a very slowly metabolizing community. Observations and diagenetic modeling results show that the organic matter in ancient, deeply buried organic carbon-rich strata still provides a suitable substrate for ongoing microbial respiration (Krumholz et al., 1997; Coolen et al., 2002; Krumholz et al., 2002; Moodley et al., 2005; Arndt et al., 2006; Arndt et al., 2009). Microbial biomass and cell activity have also been shown to peak at redox transition zones, including at oxic-anoxic transition zones in North Pond sediments (Zhao et al., 2019), and in deep (~90 m below the SWI) Peru Margin sediments associated with ODP Leg 201 (site 1229)

where there is a convergence of methane and sulfate, the latter of which is diffusing upwards from a brine (Jørgensen et al., 2003).

The rate at which old, deeply buried organic carbon is metabolized by microorganisms in marine sediments becomes extremely slow with depth (Middelburg, 1989), but as these organics are exposed to sufficient pressure and temperature, they can be converted abiotically into petroleum through a process known as catagenesis. Although it is thought that the principle zone of oil formation in organic-bearing sediments occurs from ~ 50 - 160° C, with pressure playing a lesser role, hydrocarbons and methane can be generated abiotically from complex organic matter at lower temperatures (Tissot and Welte, 1984; Hunt, 1996). As noted by LaRowe et al. (2017a), nearly 35% of the volume of marine sediments are above 60°C, and even if sediments do not contain enough OC to be commercial sources of petroleum (TOC > 0.5% by weight), the remaining organic carbon in them can still be converted to microbially accessible hydrocarbons through abiotic processes. Some fraction of small-molecular weight hydrocarbons and CH₄ produced abiotically in sedimentary basins could be expelled and migrate to regions that are more conducive for life. Both petroleum and natural gas car migrate hundreds of kilometers from source rocks (Selley, 1998), and there are certainly the mophilic anaerobes capable of oxidizing common products of catagenesis such as alkanes and benzyl-compounds (Teske et al., 2014). In addition, water, CO₂ and H₂S can also be produced in large amounts during the catagenesis of Type II kerogens (Tissot and Welte 1784), fueling microbial activities with carbon and electron acceptors and donors. Furthermere, it has been estimated that more CH₄ has been produced by methanogens degrading petroleum reservoirs than there is primary CH₄ produced from catagenesis (Milkov, 2011). It tow 1 1.97 -3.94×10^{13} kg of free CH₄ generated from the microbial degradation of petroleum; estimated to exist in sedimentary basins (Milkov, 2011). Taken together, catagenesis could be fueling microbial communities deep in marine sediments of unknown size.

3.2 Hydrothermal sediments

Sediments that are deposited in regions near spreading centers or volcanic hot spots are subjected to advecting hot fluid that transform organic molecules. The effects are particularly pronounced near continental serings, such as the Guaymas Basin in the Gulf of California (Simoneit and Lonsdale, 1002), and at Middle Valley on the Juan de Fuca Ridge, off the coast of Washington State (Crus and Seewald, 2006). The transformations that occur have been compared to the formation of petroleum on geologic time scales (Simoneit and Lonsdale, 1982), but with important differences due to the presence of water (Seewald, 2001). In laboratory experiments, sediments heated in the presence of water typically release a large pulse of organic matter into the fluids, followed by a slow decline in overall organic concentrations, presumably due to the formation of degradation products such as CO₂ and CH₄ (Seewald et al., 1990; Lin et al., 2017). Organic acids, acetate in particular, are some of the most abundant degradation products (Eglinton et al., 1987; Fisher, 1987; Lundegard and Kharaka, 1994; Kawamura et al., 1996; Shebl and Surdam, 1996; Seewald, 2001), although reactive amino acids, polysaccharides, and small peptides have also been found to be released from Guaymas Basin sediments by heating (Martens, 1990; Lin et al., 2017). These ancient petroleum-derived substrates are further catalyzed by subsurface microbes (Pearson et al., 2005). Acetate and other low molecular weight organic compounds including formate, lactate, methanol and ethanol have been identified in Guaymas Basin sediments and were found to have a microbial rather than thermal source (Zhuang et al., 2019). Hydrothermal alteration of DOC begins at temperatures as low as 68 °C

(Hawkes et al., 2016), suggesting that the hydrothermal influence may be widespread (LaRowe et al., 2017a).

3.3 Ocean basement fluids

Scientific drilling into the seafloor has revealed that the chemical constituents of fluids circulating in the ocean crust basement, such as oxygen, diffuse into overlying sediments (Orcutt et al., 2013b; Wheat et al., 2013) (see Figure 4). The implications of this for POC degradation in sediments is only just being explored. The oceanic basement is generally considered a net sink for marine OC (Lang et al., 2006; Shah Walter et al., 2018) with both microbiological and abiotic removal mechanisms. In addition to the sediment column, deep-ocean DOC, POC and sedimentary particles enter the crust with oceanic bottom water through exposed outcrops. Most of this fluid flux occurs away from active ridge axes in older, coolar crust and is equivalent to about one fifth of the global riverine flux into the ocean (Johnson and Pruis, 2003).

Recent studies have described the concentration and includic composition of DIC and DOC in ocean basement fluids from naturally outflowing fluids from the Dorado Outcrop (McManus et al., 2019) and fluids recovered from IODP CORK observatories on the flank of the Juan de Fuca Ridge (Lin et al., 2019) and North Pond (S ah Walter et al., 2018) - all relatively cool settings away from mid-ocean ridge spreading centers. Although fluid chemistry is variable on the flanks of ridges, ranging from warm, anoxi, quids recovered from near the Juan de Fuca Ridge (Lang et al., 2006; Lin et al., 2019) to oxygen ted fluids that resemble bottom seawater at North Pond (Meyer et al., 2016), fluid to recruit atures are low enough to allow for microbial activity to influence the OC reservoir, McLarthy et al., 2011; Shah Walter et al., 2018; McManus et al., 2019). Heterotrophic activity has been identified in these environments (e.g. Furnes et al., 2001; Lin et al., 2015; Pobador et al., 2015; Russell et al., 2016) and DOC concentrations in circulating basement fluids are lower than in overlying bottom water. Compared to 35-45 µM in deep caavater, cool hydrothermal DOC concentrations can be <15 uM (Lang et al., 2006; Lin et al., 2012; Shah Walter et al., 2018; Lin et al., 2019). This DOC removal has been attributed to s. lective oxidation on the basis of a concurrent loss of oxygen, the ¹⁴C content of the remaining coganic matter and characterization by NMR and FT-ICR-MS (LaRowe et al., 2017b; Shah Walter et al., 2018; Lin et al., 2019). The DOC removed in the crustal subsurface has a ¹⁴C; ge of up to 4,300 years at North Pond, indicating a long residence time in the open oce, n before oxidation by basement microorganisms, underscoring the importance of treating CC degradation as an ecosystem property. Chemoautotrophic DOC, isotopically and molecularly distinct from deep-ocean DOC, has also been identified in cool hydrothermal fluids, although their concentrations are lower than DOC in bottom water, implying a slow production rate (McCarthy et al., 2011; Shah Walter et al., 2018).

Fluids that pass through high temperature black smoker hydrothermal systems have DOC concentrations that are approximately one-third that of deep seawater (Lang et al., 2006). Abiotic removal pathways are dominant in regions of active hydrothermal venting where fluids are intensely heated and can reach temperatures of 400°C. Thermal decomposition of OC to volatile gases, CO₂, H₂ and CH₄, has been demonstrated experimentally (Siskin and Katritzky, 1991; Seewald, 2001; McCollom and Seewald, 2003b, a) and is known to be an important loss mechanism that "scrubs" fluids of deep-ocean DOC in high temperature reaction zones (Lang et al., 2006; Hawkes et al., 2015), although DOC sorption to crustal surfaces is also possible (Schwarzenbach et al., 2005). In subseafloor regions adjacent to high temperature venting,

oxygenated seawater can mix with reduced hydrothermal fluids, creating chemical disequilibria that autotrophic microorganism can use to fuel primary production (McCollom and Shock, 1997). These regions can be hot spots of organic matter production both within the fluids and within the surrounding sediments (Karl et al., 1980; Lang et al., 2006; Wankel et al., 2011). DOC is seemingly produced abiotically at vents hosted on ultramafic rocks, with elevated concentrations compared to overlying bottom water (Lang et al., 2010). Most of this increase is thought to be due to the abiotic formation of small organic acids (Lang et al., 2010; McDermott et al., 2015). A combination of microbial, abiotic and sedimentary sources likely contributes to subseafloor DOC pools, which if circulated in the basement from the ridges, could diffuse into overlying sediments, potentially fueling communities.

4. Computational models

A theoretical understanding of the carbon cycle in marine rediments underpins much of the present knowledge and constraints on the burial and transfermation of organic carbon in this setting, both in the present day and throughout Earth's history Numerical models have been used for decades within this framework to quantify how POC drives sediment diagenesis at particular locations (Berner, 1964; Lerman, 1971; Berner, 1980; Loudreau, 1997). These models can include the role of particular electron acceptors, secondary redox reactions, sorption and desorption, and microbial dynamics while simultaneous accounting for transport processes such a sedimentation, bioturbation, bioturbation and their use a marine sediments is provided in (Arndt et al., 2013), covering the formulation of various accounting transport networks, their application to natural and engineered systems across a wine range of temporal and spatial scales, and the challenges and limitations of implementing these models. The following sections highlight recent modeling advances with respect to makine sediments and new research directions that could further improve them.

4.1 Representing pools of organic molecules

It is both infeasible and ineffectual to explicitly resolve the true complexity of organic carbon in marine sediments in numerical models. Rather, owing to its complexity and heterogeneity, OC is usuging characterized by its apparent bulk reactivity. Therefore, numerical models for OC transformations in marine sediments must account for changes in both (1) concentration and (2) reactivity of the bulk substrate. If more specific information describing how the proportions of compound types are changing were available, ideally, this would be quantified as well. The concentration of organic carbon is usually defined in absolute terms as the sum of all of the various reactive fractions, and corresponds directly to conventional laboratory measurements of POC. Models of organic carbon reactivity can be broadly divided into two classes: discrete and continuum. Within discrete models, OC is attributed to either a single pool of concentration G (one-G) with a constant first-order degradation rate (Berner, 1980), or divided across a discrete number of pools representing various classes of reactivity (multi-G), where the apparent reactivity of the bulk organic matter is related to the reactivity of each class (Jørgensen, 1978). Continuum models, alternatively, assume a continuous distribution of organic matter compounds across an infinite spectrum of reactivities (Aris, 1968; Ho and Aris, 1987; Boudreau and Ruddick, 1991). The choice of model formulation is generally governed by the overarching research question, the relevant spatial- and timescales, data availability, and mathematical expedience. Since these numerical formulations are abstracted from measurements,

it can be challenging to constrain reaction rate constants based on experimental data. Consequently, organic matter reactivity is traditionally constrained by inverse modeling of comprehensive sets of sediment depth profiles.

4.2 Organic molecular data

There are very few models describing the degradation of OC in sediments that use information about the molecular character of organic compounds. This is primarily because there are relatively few reports describing the chemical formulas and structures of marine sedimentary organic compounds in a way that could be parameterized in a model (see Section 2.2). The modeling studies that have used molecular information have only tangentially addressed how this information impacts rates of marine OC degradation. Reaction transport modeling (Niggemann et al., 2007; Freitas et al., 2017) and kinetic modeling studies (Schouten et al., 2010) have explored how different degradation rates of specific biomarker compounds could influence the interpretation of past sea surface temperatures. The abundance and roportion of certain types of amino acids in marine sediments has been used as an index for the degradation state of POC (Dauwe et al., 1999). In another study that evaluated the abundance of particular organic compounds, the Gibbs energy associated with the degradation of organic compounds was used to explain patterns of biomarker degradation in sedim nts from the Southeast Atlantic ocean (Hernández-Sánchez et al., 2014). The Gibbs energies n. unis study are estimated based on the oxidation state of the carbon in organic compounds, which is in turn calculated from the stoichiometry of the compounds (see LaRowe and Van Cappellen, 2011). LaRowe and Van Cappellen used this approach to argue that the rate of organic carbon degradation in anoxic marine sediments is retarded by the mole vlar character of the organic compounds. The rationale for this is based on the idea that the rate of microbial catabolism is proportional to the Gibbs energy of that metabolism: less exergenic reactions are catalyzed more slowly than more exergonic reactions (see Jin and Bethle, 2003; LaRowe et al., 2012).

4.3. Microorganisms in models

Although the actions of microorganisms are implicitly accounted for within models of OC degradation in marine sedn ents, they are rarely explicitly resolved within the mathematical formulae, i.e. as a separate such variable. This is mostly due to (a) model applications that are focused on geochemistry or Diogeochemistry rather than microbiology, and (b) the uncertainties concerning microbial gre vth, maintenance, death, and dormancy in marine sediments which must be resolved in order to accurately simulate microbial dynamics (Hoehler and Jørgensen, 2013; Jørgensen and Marshall, 2016; Kempes et al., 2017; Bradley et al., 2018a). Nevertheless, (Boudreau, 1999) was the first to couple microbial processes to organic carbon diagenesis, and derive a mathematical basis between previously observed microbial biomass and organic carbon concentrations in sediments (Bird and Duarte, 1989). Later work incorporated explicit mathematical representation of microbial processes into reactive transport frameworks linking sediment redox gradients and reaction rates to microbial processes (Wirtz, 2003; Thullner et al., 2005), the competition of different microbial groups for a common substrate (Thullner et al., 2007) and to assess the impact of transport processes on transient biomass distributions, anaerobic oxidation of methane rates and methane release fluxes from the sea floor (Dale et al., 2006; Regnier et al., 2011; Puglini et al., 2019). Formulations of microbial processes in sediment models have been developed further to account for the relative importance of growth versus maintenance, and variable physiological states (i.e. dormancy) (Bradley et al., 2018a, 2019).

4.4 Application scale

Despite marine sediments comprising a significant volume of the Earth's surface (LaRowe et al., 2017a), playing a dominant role in the global carbon budget on long time scales (Arndt et al., 2013), and hosting a significant fraction of Earth's living biomass (Kallmever et al., 2012), their treatment in global-scale models of the Earth's climate and biogeochemistry may often be little more than a simple closure term for mass conservation (Soetaert et al., 2000; Hülse et al., 2017; Lessin et al., 2018). In case they are explicitly resolved, the interactions between marine sediments and the overlying water column, i.e. benthic-pelagic coupling, are often neglected or crudely implemented in such global-scale models (Soetaert et al., 2000; Gehlen et al., 2006; Munhoven, 2007; Hülse et al., 2017). Even relatively simple reaction-transport models are more typically applied to regional scales (Ruardij and Van Raaphorst, 1995; Luff and Moll, 2004; Arndt and Regnier, 2007) over idealized global ocean hypsc metric transects or provinces (e.g. Soetaert et al., 1996; Thullner et al., 2009; Krumins et al., 2013) and over time-spans of thousands to millions of years (e.g. Arndt et al., 2009; Kruming et al., 2013; Orcutt et al., 2013b). Only a very small number of global scale biogeochemical or Furth System models employ an explicit, vertically resolved, multi-component description of diagenetic dynamics (e.g. Heinze et al., 1999; Munhoven, 2007; Shaffer et al., 2008; Palastanga et al., 2011; Ilyina et al., 2013; Tiputra et al., 2013; Hülse et al., 2018a). Yet, due to it need to find computationally efficient analytical solutions to the diagenetic equations the diagenetic equations the diagenetic equations are descriptions generally rely on simplifying assumptions and/or are restricted to the upper ev centimeters of the sediment. However, coupled models can provide important insights into ocean biogeochemical cycling and climate feedbacks. For instance, the recent coupling of a vertically resolved benthic model to the threedimensional Earth System Model CGENIE (17:1se et al., 2018b) has revealed that organic matter sulfurization reduces the extent and intentity of toxic euxinic conditions, and accelerates climate cooling on a scale that is globally significant during ocean anoxic event recovery (Hülse et al., 2019). Alternatively, large ensemble 1 in s of complex one-dimensional diagenetic models have also been used to derive transfer functions for specific target outputs such as benthic fluxes or benthic methane gas hydrates that have then been applied on a regional and global scale (Gypens et al., 2008; Dale et al., 2015; Capet et al., 2016). In another large-scale effort, (LaRowe et al., 2020) have developed a gatal-scale model based on the analytical solution of the onedimensional conservation equition for benthic organic carbon dynamics that reveals the 3-D distribution of marine seciment POC for Quaternary-aged sediments (< 2.6 Ma) as well as rates of its degradation. Bradby et al. (in revision) have built on this model to quantitatively estimate the cell-specific power utilization of microorganisms transforming POC in global aerobic, sulfogenic and methanogenic sediment horizons.

5. Outlook

Although it is well known that human activity is responsible for a rapid rise of atmospheric CO₂, it is unclear how this disturbance will impact the natural fluxes of carbon among major global reservoirs. In particular, it is still an open question how human-induced climate change will alter the strength of the marine sedimentary carbon sink, and therefore control of atmospheric CO₂. Recent observations and model projections suggest that the impact of climate change on marine POC is likely going to be regionally heterogeneous (Passow and Carlson, 2012), and will include warming waters, disappearing sea ice, increased DIC content, lowered pH and altered fluxes of organic carbon into and through the water column (Levin and

Le Bris, 2015; Sweetman et al., 2017), particularly from terrestrial sources (Bauer et al., 2013b; Regnier et al., 2013). Each of these factors have potential implications for how organic carbon is delivered to and processed within sediments. Yet, because benthic carbon dynamics are first and foremost controlled by the quantity and quality of OC that settles onto the seafloor, perhaps the most important factor in controlling the response of deep ocean (< 200 m) benthic carbon dynamics to projected environmental change is the biological carbon pump, the process by which organic carbon produced in the euphotic zone is exported into the deep ocean. In addition, coastal benthic carbon cycling, in particular in nearshore depositional environments in the vicinity of large rivers such as, among others, the Arctic shelf, the Amazon shelf or the South China Sea, will also be affected by changes in terrestrial inputs.

The geologic record includes numerous examples of such climate change induced perturbations in the functioning of the biological carbon pump (Arthur et al., 1985; Kohfeld et al., 2005; Ridgwell, 2011; John et al., 2014; Hülse et al., 2019). For instance, abundant black shales in the sedimentary record speak to periods when much of all of the world's bottom ocean waters were devoid of free O₂ (Jenkyns, 2010), likely that to a warmer climate, the paleogeography, enhanced nutrient supply and elevated market rimary productivity that in turn might have been maintained by benthic nutrient cycles perturbed by this bottom water anoxia (Ingall and Jahnke, 1994; Van Cappellen and Ingall, 1994). Ultimately, the widespread anoxic and euxinic depositional conditions enhanced organic call on preservation such that atmospheric CO₂ and, therefore, temperatures decreased and O₂ eventually returned to bottom waters, a process lasting tens to hundreds of thousands of years (Arthur et al., 1988; Kolonic et al., 2005; Jarvis et al., 2011; Hülse et al., 2019; Raver, et al., 2019). Though there is a consensus that it is not currently possible to gauge how the biological pump will be altered in the next several decades (Pörtner et al., 2014), a number of Andies are hinting at how climate change will impact the flux of carbon to marine sediments.

As a master variable for bicge shemical reactions, temperature will have likely have a significant impact on the reactivity of viganic carbon in marine sediments. Ocean warming has already led to the expansion of xygen minimum zones in the water column over the last 50 years (Schmidtko et al., 2017; Pertagnolli and Stewart, 2018; Breitburg et al., 2018), disrupting the role of bioturbation on POC reactivity. Warmer water seems to select for smaller plankton altering the export flux of POC to the seafloor (Morán et al., 2010) since smaller particles tend to have longer transit times to the seafloor. In high latitudes, the disappearance of sea ice, an increase in the length of the growing season, fundamental changes to regional circulation (e.g. Atlantification) resulting in changing salinity, temperature and nutrient conditions will exert important, yet poorly known impacts on ecosystem structure. In general, temperature changes are known to influence the structure and function of marine microbial communities (Sunagawa et al., 2015b), and, in addition to other environmental forces, virus-host relationships (Danovaro et al., 2008; Danovaro et al., 2011), which in turn can alter patterns of carbon sequestration (Guidi et al., 2016) in sediments. The combination of warming, acidification, eutrophication and human activities such as bottom trawling (Hiddink et al., 2017) and seafloor mining (Orcutt et al., 2020) might lead to ecosystem destruction and/or many areas of the seafloor to become covered in microbial mats (de Bakker et al., 2017; Ford et al., 2018), rather than bioturbated sediments. In addition, lower than normal pH cause some marine bacterioplankton to express genes for maintenance rather than growth (Bunse et al., 2016), thus slowing the flux of C to sediments. Although it is difficult to predict how it will impact the reactivity of organic carbon in sediments, e.g. (Isla and DeMaster, 2018), it is clear that climate change is altering the physiochemical

variables that govern microbial behavior. Therefore, attempts to better understand how carbon fluxes will respond to projected climate change and also how carbon fluxes have responded to past extreme climate and carbon cycle perturbations will require an ecosystem approach that includes the role of microorganisms (Cavicchioli et al., 2019).

The information summarized in this contribution supports the emerging view that organic matter reactivity in marine sediments is a complex function of biological, geochemical and physical forces that vary from one part of the seafloor to another. Given the large variety of organic compounds, minerals, organisms, and environmental conditions found in marine sediments, it is undoubtedly true that all of the mechanistic hypotheses described in this review contribute in some way to the long-term preservation of organic carbon, with the relative importance of each changing with both time and space. Going forward, it will be critical that studies examining sedimentary organic carbon account for the whole array of biophysiochemical factors that impact reactivity, thus providing the much needed intercisciplinary data sets required to advance our quantitative understanding and predictive apabilities. Disentangling which mechanism operates under what set of environmental conditions is a complicated task requiring integration of measurements, laboratory experiments, quarticitive modelling and an open mind. A community effort will be required to understand not only what determines organic carbon reactivity in marine sediments now, but how this will change in the future. Moreover, integrated approaches considering marine sediments in relation to the terrestrial and water column settings is needed to gain a truly global and comprehensive anderstanding of the carbon cycle.

Acknowledgements

This review grew out of a workshop orga. 'zec' by DEL and ADS and funded by a grant from the Center for Dark Energy Biosphere Investig, tions (C-DEBI), an NSF-sponsored Science and Technology Center, under grant OCE0539564. In addition to C-DEBI we would like to thank Café 4 for providing meeting space in inoxville, TN as well as the Departments of Earth and Planetary Sciences and Microbiology and the College of Arts and Sciences at the University of Tennessee for providing addition, funds. This work benefited from discussions with the other attendees at the workshop: Amanda Achberger, Lihini Aluwihare, Markus Kleber, Mario Muscarella, Brook Nunn, and San Schaeffer. We also thank Jens Kallmeyer (German Research Centre for Geosciences, CLZ, Robert Pockalny (University of Rhode Island) and Matthias Egger (The Ocean Cle. nup Foundation, Rotterdam) for sharing published datasets on cell abundance, oxygen, and SMT depth in global sediments. Additional financial support was provided by the NASA Astrobiology Institute — Life Underground (NAI-LU) grant NNA13AA92A (DEL) and NASA Astrobiology Postdoctoral Fellowship (AH); the USC Zumberge Fund Individual Grant (DEL); the NASA-NSF Origins of Life Ideas Lab program under grant NNN13D466T (DEL); the Alfred P. Sloan Foundation through the Deep Carbon Observatory (DEL, KGL, JAB), the SImons Foundation grant 404586; (KGL); NSF OCE-1536702 (SQL); the Alexander von Humboldt Foundation (JAB); NERC NE/T010967/1 (JAB); NSF OCE- 1431598 (ADS); the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 643052 (SA). This is C-DEBI contribution X and NAI-LU contribution Y (to be assigned if accepted for publication). We would like to thank Jack Middelburg and three anonymous reviewers for providing comments that greatly improved the manuscript.

Figure captions:

- Figure 1. Schematic of topics discussed in this review: ecosystem factors that influence the reactivity of particulate organic carbon, POC, in marine sediments. The bulleted processes/variables and four categories are not necessarily independent of one another.
- Figure 2. Concentration of particular organic carbon (POC) at a) the sea floor, b) 1 meter below the sea floor and c) 10 meters below the seafloor, based on calculations by LaRowe et al. (2020) and data summarized in Wallmann et al (2012), which, for Holocene sediments, is taken from a compilation by (Seiter et al., 2004). Grey areas in c) indicate regions where Quaternary sediments (i.e. sediments deposited throughout the last 2.59 million years) are less than 10 m thick. The Quaternary cutoff is the temporal limit for the model used by LaRowe et al. (2020).
- Figure 3. Estimated a) regions of the seafloor where dissolved C is modeled to be present throughout the sediment to the underlying oceanic basement and b) depth of the sulfate-methane transition (SMT) zone. The dark shading in a) refers to the name extent of modeled O2-penetrating regions while the light shading, together with the dark shading, indicate the maximum extent, based on D'Hondt et al (2015). The with regions in b) denote regions where there is no SMT. All data for b) from Egger et al (2018)
- Figure 4. Oxygen concentration profiles as a function of depth in marine sediments and ocean basement crust from three IODP drill cores locate? or ~ 8 Ma flank of the mid-Atlantic Ridge (also known as North Pond see Orcutt et .1, 2013). The bottom panel contains a cross section schematic of what is thought to be the neck-nism of O₂ delivery to basal sediments upward diffusion from oxygenated fluid flowing rapelly in the basement. This fluid is chemically very similar to local bottom seawater and is likely introduced to the subsurface from locally outcropping basalt (see Meyer et al. 2016). Oxygen loss in flowing fluids is thought to result from both diffusion into sediments and accusumption during microbial oxidation of DOC.
- Figure 5. Calculated cell concertations in marine sediment at a) the seafloor, b) 1 meter below the sea floor and c) 10 meter below the seafloor using the data compilation and approach described by Kallmeyer et al. (2012).
- Figure 6. Phylogenetic 'ree showing microbial groups containing genes encoding putatively secreted enzymes capable of degrading proteins and carbohydrates in anoxic marine sediments (modified from Orsi et al., 2018). The term CAZymes refers to carbohydrate-active enzymes (Lombard et al., 2013).

References

- Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K.L., Tyson, G.W. and Nielsen, P.H. (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. *Nature Biotechnology* **31**, 533.
- Aller, J.Y. and Aller, R.C. (1986) Evidence for localized enhancement of biological associated with tube and burrow structures in deep-sea sediments at the HEEBLE site, western North Atlantic. *Deep Sea Research Part A. Oceanographic Research Papers* 33, 755-790.

- Aller, R., Aller, J. and Kemp, P. (2001) Effects of Particle and Solute Transport on Rates and Extent of Remineralization in Bioturbated Sediments, pp. 315-333.
- Aller, R.C. (1980) Diagenetic Processes Near the Sediment-Water Interface of Long Island Sound. II. Fe and Mn, in: Saltzman, B. (Ed.), *Advances in Geophysics*. Elsevier, pp. 351-415.
- Aller, R.C. (1982) Carbonate dissolution in nearshore terrigeneous muds—the role of physical and biological reworking. *Journal of Geology* **90**, 79-95.
- Aller, R.C. (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. *Chemical Geology* **114**, 331-345.
- Aller, R.C. (2014) 8.11 Sedimentary Diagenesis, Depositional Environments, and Benthic Fluxes, in: Holland, H.D., Turekian, K.K. (Eds.), *Treatise on Geochemistry (Second Edition)*. Elsevier, Oxford, pp. 293-334.
- Aller, R.C. and Aller, J.Y. (1998) The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. *Journal of Marine Research* **56**, 905-936.
- Aller, R.C., Blair, N.E., Xia, Q. and Rude, P.D. (1996) Per neralization rates, recycling, and storage of carbon in Amazon shelf sediments. *Convental Shelf Research* **16**, 753-786.
- Aller, R.C., Charnock, H., Edmond, J.M., McCave, I.V., Pice, A.L. and Wilson, T.R.S. (1990) Bioturbation and manganese cycling in renipelagic sediments. *Philosophical Transactions of the Royal Society of Levelon. Series A, Mathematical and Physical Sciences* **331**, 51-68.
- Aller, R.C. and Cochran, J.K. (2019) The Craical Role of Bioturbation for Particle Dynamics, Priming Potential, and Organic Cemineralization in Marine Sediments: Local and Basin Scales. Frontiers in Earth Science 7.
- Amrani, A. (2014) Organosulfur compounds: Molecular and isotopic evolution from biota to oil and gas. *Annual Review of Ea trand Planetary Sciences* **42**, 733-768.
- Anantharaman, K., Brown, C.T., Hug, L.A., Sharon, I., Castelle, C.J., Probst, A.J., Thomas, B.C., Singh, A., Wilkins, M.J., Karaoz, U., Brodie, E.L., Williams, K.H., Hubbard, S.S. Banfield, J.F. (2016) Thousands of micorbial genomes shed light on biog ochemical processes aquifer interconneecacted in an system. Nature Communications 7, An. 13219.
- Antia, A., Koeve, W. F. scher, G., Blanz, T., Schulz-Bull, D., Scholten, J., Neuer, S., Kremling, K.K., J., Peinert, R., Hebbeln, D., Bathmann, U., Conte, M., Fehner, U. and Zeitzschel, B. (2001) Basin wide particulate carbon flux in the Atlantic Ocean: regional export patterns and potential for atmospheric carbon sequestration. *Global Biogeochemical Cycles* 15, 845-862.
- Archer, D. and Maier-Reimer, E. (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. *Nature* **367**, 260-263.
- Aris, R. (1968) Prolegomena to the rational analysis of systems of chemical reactions, II. Some adenda. *Arch. Rational Mech. Analysis* **27**, 356-364.
- Armstrong, R.A., Lee, C., Hedges, J.I., Honjo, S. and Wakeham, S.G. (2002) A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. *Deep-Sea Research Part II* **49**, 219-236.
- Arnarson, T.S. and Keil, R.G. (2001) Organic-mineral interactions in marine sediments studied using density fractionation and X-ray photoelectron spectroscopy. *Organic Geochemistry* **32**, 1401-1415.

- Arnarson, T.S. and Keil, R.G. (2007) Changes in organic matter-mineral interactions for marine sediments with varying oxygen exposure times. *Geochimica et Cosmochimica Acta* **71**, 3545-3556.
- Arndt, S., Brumsack, H.-J. and Wirtz, K.W. (2006) Cretaceous black shales as active bioreactors: A biogeochemical model for the deep biosphere encountered during ODP Leg 207 (Demerara Rise). *Geochim. Cosmochim. Acta* **70**, 408-425.
- Arndt, S., Hetzel, A. and Brumsack, H.-J. (2009) Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: A reaction-transport model. *Geochim. Cosmochim. Acta* **73**, 2000-2022.
- Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.B.M., Pancost, R.D. and Regnier, P. (2013) Quantifying the degradation of organic matter in marine sediments: A review and synthesis. *Earth Sci. Rev.* **123**, 53-86.
- Arndt, S. and Regnier, P. (2007) A model for the benthic-pelagic coupling of silica in estuarine ecosystems: sensitivity analysis and system scale simulation. *Biogeosciences* **4**, 331-352.
- Arnosti, C. (2011) Microbial extracellular enzymes and the marine carbon cycle. *Annual Review of Marine Science* **3**, 401-425.
- Arnosti, C., Bell, C., Moorhead, D.L., Sinsabaugh, K. T., Steen, A.D., Stromberger, M., Wallenstein, M. and Weintraub, M.N. (20´4) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspective, on system variability and common research needs. *Biogechemistry* 117, 5-21.
- Arthur, M.A., Dean, W.E., Pollastro, R., Scholle, F.A and Claypool, G.E. (1985) A comparative geochemical study of two transgranic pelagic limestone units, Cretaceous western interior basin, U.S., in: Pratt, L.M. (F.J.), Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway. Evidence of Cyclic Sedimentary Processes. Soc. For Sediment. Geol., Tulsa, OK, USA, pp. 16-27.
- Arthur, M.A., Dean, W.E. and Pratt 1.1. (1988) Geochemical and climatic effects of increased marine organic carbon burial a the Cenomanian/Turonian boundary. *Nature* 335, 714-717.
- Bäckström, D., Yutin, N., Jørgensen, S.L., Dharamshi, J., Homa, F., Zaremba-Niedwiedzka, K., Spang, A., Wolf, Y.I., Koonin, E.V. and Ettema, T.J.G. (2019) Virus Genomes from Deep Sea Sedimento E. pand the Ocean Megavirome and Support Independent Origins of Viral Gigantism. *nBic* 10, e02497-02418.
- Baker, B.J., Saw, J.H., Lind, A.E., Lazar, C.S., Hinrichs, K.-U., Teske, A.P. and Ettema, T.J.G. (2016) Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. *Nature Microbiology* 1, 16002.
- Ball, G.I. and Aluwihare, L.I. (2014) CuO-oxidized dissolved organic matter (DOM) investigated with comprehensive two dimensional gas chromatography-time of flight-mass spectrometry (GC × GC-TOF-MS). *Org. Geochem.* **75**, 87-98.
- Bao, R., Zhao, M., McNichol, A., Wu, Y., Guo, X., Haghipour, N. and Eglinton, T.I. (2019) On the Origin of Aged Sedimentary Organic Matter Along a River-Shelf-Deep Ocean Transect. *Journal of Geophysical Research: Biogeosciences* **124**, 2582-2594.
- Barber, A., Brandes, J., Leri, A., Lalonde, K., Balind, K., Wirick, S., Wang, J. and Gélinas, Y. (2017) Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. *Scientific Reports* 7, DOI:10.1038/s41598-41017-00494-41590.
- Bauer, J.E., Cai, W.-J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S. and Regnier, P.A.G. (2013a) The changing carbon cycle of the coastal ocean. *Nature* **504**, 61-70.

- Bauer, J.E., Cai, W.-J., Raymond, P.A., Bianchi, T.S., Hopkinson, C.S. and Regnier, P.A.G. (2013b) The changing carbon cycle of the coastal ocean. *Nature* **504**, 61.
- Bauer, J.E. and Druffel, E.R.M. (1998) Ocean margins as a significant source of organic matter to the deep open ocean. *Nature* **392**, 482-485.
- Benner, R. (2002) Chemical Composition and Reactivity, in: Hansell, D.A., Carlson, C.A. (Eds.), *Biogeochemistry of Marine Dissolved Organic Matter*. Academic Press, San Diego, pp. 59-90.
- Berner, R.A. (1964) An idealized model of dissolved sulfate distribution in recent sediments. *Geochimica et Cosmochimica Acta* **28**, 1497-1503.
- Berner, R.A. (1978) Sulfate reduction and the rate of deposition of marine sediments. *Earth and Planetary Science Letters* **37**, 492-498.
- Berner, R.A. (1980) Early Diagenesis: A Theoretical Approach Princeton Univ. Press, Princeton, N.J.
- Berner, R.A. (1981) Authigenic mineral formation resulting from reganic matter decomposition in modern sediments. *Fortschritte der Mineralogie* **59** 117 135.
- Berner, R.A. (1990) Atmospheric Carbon Dioxide Levels C ver Phanerozoic Time. Science **249**, 1382-1386.
- Berner, R.A. (2003) The long-term carbon cycle, fissin fuels and atmospheric composition. *Nature* **426**, 323-326.
- Berner, R.A. and Canfield, D.E. (1989) A new radel for atmospheric oxygen over Phanerozoic time. *Amer. J. Sci.* **289**, 333-361.
- Berry, W.B.N. and Wilde, P. (1978) Progressive ventilation of the oceans an explanation for the distribution of the lower paled pic black shales. *American Journal of Science* **278**, 257-275.
- Bertagnolli, A.D. and Stewart, F.J. (2018) Microbial niches in marine oxygen minimum zones. *Nature Reviews Microbiology* 11, 723-729.
- Beulig, F., Røy, H., Glombitza, C. and ørgensen, B.B. (2018) Control on rate and pathway of anaerobic organic carbon degradation in the seabed. *PNAS* doi/10.1073/pnas.17157.09113, 6.
- Bianchi, T.S. (2011) The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect. *Proceedings of the National Academy of Sciences* **108**, 19473.
- Bianchi, T.S., Johansson, B. and Elmgren, R. (2000) Breakdown of phytoplankton pigments in Baltic sediments: ffects of anoxia and loss of deposit-feeding macrofauna. *Journal of Experimental Marine Biology and Ecology* **251**, 161-183.
- Biddle, J.F., Fitz-Gibbon, S., Schuster, S.C., Brenchley, J.E. and House, C.H. (2008) Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. *Proceedings of the National Academy of Sciences* **105**, 10583-10588.
- Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørenen, K.B., Anderson, R., Fredricks, H.F., Elvert, M., Kelly, T.J., Schrag, D.P., Sogin, M.L., Brenchley, J.E., Teske, A., House, C.H. and Hinrichs, K.-U. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. *PNAS* **103**, 3846-3851.
- Bird, D.F. and Duarte, C.M. (1989) Bacteria-Organic Matter Relationship in Sediments: A Case of Spurious Correlation. *Canadian Journal of Fisheries and Aquatic Sciences* **46**, 904-908.

- Bird, J.T., Tague, E.D., Zinke, L., Schmidt, J.M., Steen, A.D., Reese, B., Marshall, I.P.G., Webster, G., Weightman, A., Castro, H.F., Campagna, S.R. and Lloyd, K.G. (2019) Uncultured Microbial Phyla Suggest Mechanisms for Multi-Thousand-Year Subsistence in Baltic Sea Sediments. *mBio* **10**, e02376-02318.
- Blair, N.E. and Aller, R.C. (2011) The Fate of Terrestrial Organic Carbon in the Marine Environment. *Annual Review of Marine Science* **4**, 401-423.
- Blair, N.E. and Aller, R.C. (2012) The Fate of Terrestrial Organic Carbon in the Marine Environment. *Annual Review of Marine Science* **4**, 401-423.
- Blair, N.E., Leithold, E.L., Ford, S.T., Peeler, K.A., Holmes, J.C. and Perkey, D.W. (2003) The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system. *Geochimica et Cosmochimica Acta* **67**, 63-73.
- Blattmann, T.M., Liu, Z., Zhang, Y., Zhao, Y., Haghipour, N., Montluçon, D.B., Plötze, M. and Eglinton, T.I. (2019) Mineralogical control on the fate or continentally derived organic matter in the ocean. *Science* **366**, 742.
- Borowski, W.S., Paull, C.K. and Ussler, W. (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sed nents: Sensitivity to underlying methane and gas hydrates. *Marine Geology* **159**, 131-154.
- Böttcher, M.E., Hetzel, A., Brumsack, H.-J. and schapper, A. (2006) Sulfur-iron carbon geochemistry in sediments of the Demerara Rise COP Scientific Results 207, 12.
- Boudreau, B.P. (1994) Is burial velocity a master parameter for bioturbation? *Geochimica et Cosmochimica Acta* **58**, 1243-1249.
- Boudreau, B.P. (1997) Diagenetic models and vein implementation: Modelling transport and reactions in aquatic sediments. Sp. ngc., Berlin.
- Boudreau, B.P. (1998) Mean mixed depth of sediments: The wherefore and the why. *Limnology* and *Oceanography* **43**, 524-526.
- Boudreau, B.P. (1999) A theoretical investigation of the organic carbon-microbial biomass relation in muddy sediments Actuatic Microbial Ecology 17, 181-189.
- Boudreau, B.P., Huettel, M., Fors et, S., Jahnke, R.A., McLachlan, A., Middelburg, J.J., Nielsen, P., Sansone, F., Taghon, G., Van Raaphorst, W., Webster, I., Weslawski, J.M., Wiberg, P. and Sundby, B. (2011) Permeable marine sediments: Overturning an old paradigm. *Eos, Transactions American Geophysical Union* 82, 133-136.
- Boudreau, B.P. and Rucdick, B.R. (1991) On a reactive continuum representation of organic matter diagenesis. *Amer. J. Sci.* **291**, 507-538.
- Bourke, M.F., Marriott, P.J., Glud, R.N., Hasler-Sheetal, H., Kamalanathan, M., Beardall, J., Greening, C. and Cook, P.L.M. (2016) Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. *Nature Geoscience* **10**, 30.
- Bowles, M.W., Mogollón, J.M., Kasten, S., Zabel, M. and Hinrichs, K.-U. (2014) Global rates of marine sulfate reduction and implication for sub-sea-floor metabolic activities. *Science* **334**, 889-891.
- Bradley, J.A., Amend, J.P. and LaRowe, D.E. (2018a) Bioenergetic controls on micorbial ecophysiology in marine sediments. *Frontiers in Microbiology* **9**, Article 180.
- Bradley, J.A., Amend, J.P. and LaRowe, D.E. (2018b) Necromass as a limited source of energy for microorganisms in marine sediments *Journal of Geophysical Research:* Biogeosciences 123, 577-590.

- Bradley, J.A., Amend, J.P. and LaRowe, D.E. (2019) Survival of the fewest: Microbial dormancy and maintenance in marine sediments through deep time. *Geobiology* **17**, 43-59.
- Bradley, J.A., Arndt, S., Amend, J.P., Burwicz, E., Dale, A.W., Egger, M. and LaRowe, D.E. (in revision) Widespread energy limitation to life in global subseafloor sediments. *Science Advances*.
- Braun, S., Mhatre, S.S., Jaussi, M., Røy, H., Kjeldsen, K.U., Pearce, C., Seidenkrantz, M.-S., Jørgensen, B.B. and Lomstein, B.A. (2017) Microbial turnover times in the deep seabed studied by amino acid racemization modelling. *Scientific Reports* 7, 5680.
- Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I., Naqvi, S.W.A., Pitcher, G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A., Telszewski, M., Yasuhara, M. and Zhang, J. (2018) Declinate oxygen in the global ocean and coastal waters. *Science* **359**, eaam7240.
- Buesseler, K.O., Trull, T.W., Steinberg, D.K., Silver, M.W., Singel, D.A., Saitoh, S.I., Lamborg, C.H., Lam, P.J., Karl, D.M., Jiao, N.Z., Honda, M.C., Elskens, M., Dehairs, F., Brown, S.L., Boyd, P.W., Bishop, J.K.B. and Bidigare, R.R. (2008) VERTIGO (VERtical Transport In The Global Ocean): a study of particle sources and flux attenuation in the North Pacific. *Deep-Sea Research Part II* 55, 1522-1539.
- Bunse, C., Lundin, D., Karlsson, C.M.G., Akram M., Vila-Costa, M., Palovaara, J., Svensson, L., Holmfeldt, K., González, J.M., Calvo, E. Pelejero, C., Marrasé, C., Dopson, M., Gasol, J.M. and Pinhassi, J. (2016) Posponse of marine bacterioplankton pH homeostasis gene expression to elevated CO2. *Latt re Climate Change* **6**, 483-487.
- Buongiorno, J., Turner, S., Webster, G., Asi, M., Shumaker, A.K., Roy, T., Weightman, A., Schippers, A. and Lloyd, K.G. (2017) Interlaboratory quantification of Bacteria and Archaea in deeply buried seasons of the Baltic Sea (IODP Expedition 347). *FEMS Microbiology Ecology* **93**.
- Burdige, D.J. (2005) Burial of the resultail organic matter in marine sediments: A re-assessment. Global Biogeochemical Tycles 19.
- Burdige, D.J. (2007a) Geochem, try of Marine Sediments. Princeton University Press, Princeton.
- Burdige, D.J. (2007b) Preservation of organic matter in marine sediments: Controls, mechanisms and an imbalance in sediment organic carbon budgets? *Chem. Rev.* **107**, 467-485.
- Burdige, D.J. (2012) Letuarine and coastal sediments coupled biogeochemical cycling, in: Laane, R., Middon urg, J.J. (Eds.), *Treatise on Estuarine and Coastal Science*. Academic Press, pp. 279-316.
- Burdige, D.J. and Gardner, K.G. (1998) Molecular weight distribution of dissolved organic carbon in marine sediment pore waters. *Marine Chemistry* **62**, 45-64.
- Burdige, D.J. and Komada, T. (2015) Sediment Pore Waters, in: Hansell, D.A., Carlson, C.A. (Eds.), *Biogeochemistry of Marine Dissolved Organic Matter* 2ed. Academic Press, London, pp. 535-577.
- Burdige, D.J. and Nealson, K.H. (1986) Chemical and microbiological studies of sulfide-mediated manganese reduction. *Geomicrobiology Journal* **4**, 361-387.
- Cai, L., Jørgensen, B.B., Suttle, C.A., He, M., Cragg, B.A., Jiao, N. and Zhang, R. (2019) Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. *The ISME Journal* **13**, 1857-1864.

- Calvert, S.E. and Pedersen, T.F. (1992a) Organic carbon accumulation and preservation in marine sediments: how important is anoxia, in: Whelan, J., Farrington, J.W. (Eds.), *Organic Matter: Productivity, Accumulation, and Preservation in Recent and Ancient Sediments* Columbia University Press, New York, pp. 231-293.
- Calvert, S.E. and Pedersen, T.F. (1992b) Organic carbon accumulation and preservation in marine sediments: How important is anoxia?, in: Whelan, J.K., Farrington, J.W. (Eds.), *Productivity, accumulation and preservation of organic matter in recent and ancient sediments*. Columbia University Press, New York, pp. 231-263.
- Camacho-Ibar, V.c.F., Aveytua-Alcázar, L. and Carriquiry, J.D. (2003) Fatty acid reactivities in sediment cores from the northern Gulf of California. *Organic Geochemistry* **34**, 425-439.
- Canfield, D.E. (1994) Factors influencing organic carbon preservation in marine sediments. *Chem. Geol.* **114**, 315-329.
- Canfield, D.E., Jørgensen, B.B., Fossing, H., Glud, R., Gundersen, J. Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P. and Hall, P.O.J. (1973) Pathways of organic carbon oxidation in three continental margin sediments. *Marir* Goology **113**, 27-40.
- Canfield, D.E., Kristensen, E. and Thamdrup, B. (2005) Aa vances in Marine Biology: Aquatic Geomicrobiology. Elsevier Academic Press, San Die 70.
- Canuel, E.A. and Hardison, A.K. (2016) Sources, A ses, and Alteration of Organic Matter in Estuaries. *Annual Review of Marine Science* **8**, 40,7-434.
- Canuel, E.A. and Martens, C.S. (1996) Reactivity of recently deposited organic matter: Degradation of lipid compounds near the sediment-water interface. *Geochim. Cosmochim. Acta* **60**, 1793-1806.
- Capet, A., Meysman, F.J.R., Akoumianak I, Soetaert, K. and Grégoire, M. (2016) Integrating sediment biogeochemistry into 3D ocranic models: A study of benthic-pelagic coupling in the Black Sea. *Ocean Modellin*, **101**, 83-100.
- Caradec, S., Grossi, V., Gilbert, F., Gugue, C. and Goutx, M. (2004) Influence of various redox conditions on the degradation of microalgal triacylglycerols and fatty acids in marine sediments. *Organic Geoch mistry* **35**, 277-287.
- Cavicchioli, R., Ripple, W.J., Timms, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boya, P.W., Classen, A.T., Crowther, T.W., Danovaro, R., Foreman, C.M., Huisman, J. Hudhans, D.A., Jansson, J.K., Karl, D.M., Koskella, B., Mark Welch, D.B., Martiny, J.I. H., Moran, M.A., Orphan, V.J., Reay, D.S., Remais, J.V., Rich, V.I., Singh, B.K., Steil, L.Y., Stewart, F.J., Sullivan, M.B., van Oppen, M.J.H., Weaver, S.C., Webb, E.A. and Webster, N.S. (2019) Scientists' warning to humanity: microorganisms and climate change. *Nature Reviews Microbiology* 17, 569-586.
- Ciobanu, M.-C., Burgaud, G., Dufresne, A., Breuker, A., Rédou, V., Ben Maamar, S., Gaboyer, F., Vandenabeele-Trambouze, O., Lipp, J.S., Schippers, A., Vandenkoornhuyse, P., Barbier, G., Jebbar, M., Godfroy, A. and Alain, K. (2014) Microorganisms persist at record depths in the subseafloor of the Canterbury Basin. *ISME J.*, doi:10.1038/ismej.2013.1250.
- Claypool, G.E. and Kaplan, I.R. (1974) The origin and distribution of methane in marine sediments, in: I.R.Kaplan (Ed.), *Natural Gases in Marine Sediments*. Plenum Press, New York, pp. 99-139.
- Close, H.G., Shah, S.R., Ingalls, A.E., Diefendorf, A.F., Brodie, E.L., Hansman, R.L., Freeman, K.H., Aluwihare, L.I. and Pearson, A. (2013) Export of submicron particulate organic matter to mesopelagic depth in an oligotrophic gyre. *PNAS* **110**, 12565-12570.

- Condie, K.C., Des Marais, D.J. and Abbott, D. (2001) Precambrian superplumes and supercontinents: a record in black shales, carbon isotopes, and paleoclimates? *Precambrian Research* **106**, 239-260.
- Coolen, M.J.L., Cypionka, H., Sass, A.M., Sass, H. and Overmann, J. (2002) Ongoing modification of Mediteerranean Pleistocene sapropels mediated by prokaryotes. *Science* **296**, 2407-2410.
- Coppola, L., Gustafsson, Ö., Andersson, P., Eglinton, T.I., Uchida, M. and Dickens, A.F. (2007)

 The importance of ultrafine particles as a control on the distribution of organic carbon in Washington Margin and Cascadia Basin sediments. *Chemical Geology* **243**, 142-156.
- Coskun, Ö.K., Pichler, M., Vargas, S., Gilder, S. and Orsi, W.D. (2018) Linking uncultivated microbial populations and benthic carbon turnover by using quantitative stable isotope probing. *Applied and Environmental Microbiology* **84**, e01083-01018.
- Cottrell, M.T., Yu, L. and Kirchman, D.L. (2005) Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenorus Thrary and the Sargasso Sea. *Applied and environmental microbiology* **71**, 8506-8512
- Cowie, G., Calvert, S., De Lange, G.J., Keil, R. and Hedge, J. (1998) Extents and implications of organic matter alteration at oxidation fronts in turbidites from the Madeira Abyssal Plain. *Proceedings of the Ocean Drilling Progrem Science Results* **157**, 581-589.
- Cowie, G.L., Hedges, J.I. and Calvert, S.E. (1992) Scaces and relative reactivities of amino acids, neutral sugars, and lignin in an intermittently anoxic marine environment. *Geochimica et Cosmochimica Acta* **56**, 1907-1978.
- Cowie, G.L., Hedges, J.I., Prahl, F.G. and de Lange, G.J. (1995) Elemental and major biochemical changes across an oride ion front in a relict turbidite: An oxygen effect. *Geochimica et Cosmochimica Acta* 5>, 33-46.
- Cowie, G.L., Mowbray, S., Lewis, M., Matheson, H. and McKenzie, R. (2009) Carbon and nitrogen elemental and stable cotopic compositions of surficial sediments from the Pakistan margin of the Arabia. Sea. Deep Sea Research Part II: Topical Studies in Oceanography 56, 271-28.
- Cruse, A.M. and Seewald, J.S. (2006) Geochemistry of low-molecular weight hydrocarbons in hydrothermal fluids from Middle Valley, northern Juan de Fuca Ridge. *Geochimica et Cosmochimica Acta* 70, 2073-2092.
- D'Hondt, S., Inagaki, F., Za ikian, C.A., Abrams, L.J., Dubois, N., Engelhardt, T., Evans, H., Ferdelman, T., G. bsholt, B., Harris, R., Hoppie, B.W., Hyun, J.-H., Kallmeyer, J., Kim, J., Lynch, J.E., M. Kinley, C.C., Mitsunobu, S., Morono, Y., Murray, R.W., Pockalny, R., Sauvage, J., Shimono, T., Shiraishi, F., Smith, D.C., Smith-Duque, C.E., Spivack, A.J., Steinsbu, B.O., Suzuki, Y., Szpak, M., Toffin, L., Uramoto, G., Yamaguchi, Y.T., Zhang, G., Zhang, X.-H. and Ziebis, W. (2015) Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. *Nat. Geosci.* **8**, 299-304.
- D'Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G.Z., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guerin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Padilla, C.N. and Acosta, J.L.S. (2004) Distributions of microbial activities in deep subseafloor sediments. *Science* 306, 2216 2221.

- D'Hondt, S., Jorgensen, B.B., Miller, D.J. and Expedition 329 Scientists (2003) Leg 201 Summary. *Proc. ODP* **201**.
- Dai, J. and Sun, M.-Y. (2007) Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods. *Organic Geochemistry* **38**, 1-15.
- Dale, A.W., Nickelsen, L., Scholz, F., Hensen, C., Oschlies, A. and Wallmann, K. (2015) A revised global estimate of dissolved iron fluxes from marine sediments. *Global Biogeochemical Cycles* **29**, 691-707.
- Dale, A.W., Regnier, P. and Van Cappellen, P. (2006) Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis. *American Journal of Science* **306**, 246-294.
- Danczak, R.E., Johnston, M.D., Kenah, C., Wrighton, K.C. and Wilkins, M.J. (2017) Members of the Candidate Phyla Radiation are functionally differentiated by carbon- and nitrogencycling capabilities. *Microbiome* 5, 112.
- Danovaro, R., Corinaldesi, C., Dell'Anno, A., Fuhrman, J.A. McLelburg, J.J., Noble, R.T. and Suttle, C.A. (2011) Marine viruses and global climate change. *FEMS Microbiology Reviews* **35**, 993-1034.
- Danovaro, R., Dell'Anno, A., Corinaldesi, C., Magarnini, M., Noble, R., Tamburini, C. and Weinbauer, M. (2008) Major viral impact on the functioning of benthic deep-sea ecosystems. *Nature* **454**, 1084-1087.
- Danovaro, R., Dell'Anno, A., Corinaldesi, C., Parelli E., Cavicchioli, R., Krupovic, M., Noble, R.T., Nunoura, T. and Prangishvili, D. (2016) Virus-mediated archaeal hecatomb in the deep seafloor. *Science Advances* 2, e1630492.
- Dauwe, B. and Middelburg, J.J. (1998) Anino acids and hexosamines as indicators or organic matter degradation state in North Sea sediments. *Limnol. Oceanog.* **43**, 782-798.
- Dauwe, B., Middelburg, J.J. and Her na., F.M.J. (2001) Effect of oxygen on the degradability of organic matter in subtidal and in tertidal sediments of the North Sea area. *Marine Ecology Progress Series* 215, 13–22.
- Dauwe, B., Middelburg, J.J., Yerman, P.M.J. and Heip, C.H.R. (1999) Linking diagenetic alteration of amino a ids and bulk organic matter reactivity. *Limnology and Oceanography* 44. 1802 1814.
- de Bakker, D.M., van Lingl, F.C., Bak, R.P.M., Nugues, M.M., Nieuwland, G. and Meesters, E.H. (2017) 40 Years of benthic community change on the Caribbean reefs of Curação and Bonaire: the tile of slimy cyanobacterial mats. *Coral Reefs* **36**, 355-367.
- de Bruijn, F.J. (2010) Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches. Wiley Blackwell, Hoboken, New Jersey.
- de Lange, G.J., Jarvis, I. and Kuijpers, A. (1987) Geochemical characteristics and provenance of late Quaternary sediments from the Madeira Abyssal Plain, N Atlantic. *Geological Society, London, Special Publications* **31**, 147-165.
- de Leeuw, J.W. and Largeau, C. (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation, in: Engel, M.H., Macko, S.A. (Eds.), *Organic geochemistry: Principles and applications*. Plenum Press, New York.
- de Leeuw, J.W., Versteegh, G.J.M. and van Bergen, P.F. (2006) Biomacromolecules of algae and plants and their fossil analogues, in: Rozema, J., Aerts, R., Cornelissen, H. (Eds.), *Plants and Climate Change*. Springer Netherlands, Dordrecht, pp. 209-233.

- Demaison, G.J. and Moore, G.T. (1980) Anoxic environments and oil source bed genesis. *American Association of Petroleum Geologists Bulletin 64*, 1179–1209.
- Dombrowski, N., Teske, A.P. and Baker, B.J. (2018) Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. *Nature Communications* **9**, 4999.
- Dunne, J.P., Sarmiento, J.L. and Gnanadesikan, A. (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. *Global Biogeochem. Cycles* **21**, GB4006, doi:4010.1029/2006GB002907.
- Eckman, J.E., Nowell, A.R.M. and Jumars, P.A. (1981) Sediment destabilization by animal tubes (burrows). *Journal of Marine Research* **39**, 361-374.
- Egger, M., Riedinger, N., Mogollon, J.M. and Jorgensen, B.B. (2018) Global diffusive fluxes of methane in marine sediments. *Nature Geoscience* **11**, 421-425.
- Eglington, T.I. and Repeta, D.J. (2014) Organic matter in the common morary ocean, in: Turekian, K.K., Holland, H.D. (Eds.), *Treatise on Geochemistry* 2 a. Elsevier, Amsterdam, pp. 151-189.
- Eglinton, T.I., Curtis, C.D. and Rowland, S.J. (1987) Generation of water-soluble organic-acids from kerogen during hydrous pyrolysis im_t ications for porosity development. *Mineralogical Magazine* **51**, 495-503.
- Eglinton, T.I., Irvine, J.E., Vairavamurthy, A., Zhou, W and Manowitz, B. (1994) Formation and diagenesis of macromolecular organic sulfur in Peru margin sediments. *Organic Geochemistry* **22**, 781-799.
- Eglinton, T.I. and Repeta, D.J. (2004) Organic Matter in the Contemporary Ocean, in: Holland, H.D., Turekian, K.K. (Eds.), *Treat seen Geochemistry*. Elsevier, Amsterdam.
- Eglinton, T.I. and Repeta, D.J. (2010) Organ: Matter in the Contemporary Ocean, in: Holland, H.D., Turekian, K.K. (Eds.), Geochemistry of Earth Surface Systems: A derivative of the Treatise on Geochemistry. Els. vi.: Science & Technology, London, pp. 389-424.
- Eglinton, T.I. and Repeta, D.J. (2014, 5.6 Organic Matter in the Contemporary Ocean, in: Holland, H.D., Turekian K.K. (Eds.), *Treatise on Geochemistry (Second Edition)*. Elsevier, Oxford, pp. 15. 185.
- Ehrlich, H.L. (1971) Bacteriology of manganese nodules. V. Effect of hydrostatic pressure on bacterial oxidation of Managanese nodules. V. Effect of hydrostatic pressure on bacterial oxidation of Managanese nodules. V. Effect of hydrostatic pressure on bacterial oxidation of Managanese nodules.
- Emerson, S. (1985) Or rank carbon preservation in marine sediments., in: Sundquist, E.T., Broecker, W.S. (Fds.), *The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Preserv.* AGU, Washington, D.C., pp. 78-87.
- Emerson, S. and Bender, M. (1981) Carbon fluxes at the sediment-water interface of the deep-sea calcium carbonate preservation. *J. Mar. Res.* **39**, 139-162.
- Engelen, B., Ziegelmüller, K., Wolf, L., Köpke, B., Gittel, A., Cypionka, H., Treude, T., Nakagawa, S., Inagaki, F., Lever, M.A. and Steinsbu, B.r.O. (2008) Fluids from the Oceanic Crust Support Microbial Activities within the Deep Biosphere. *Geomicrobiology Journal* **25**, 56-66.
- Engelhardt, T., Orsi, W. and Jørgensen, B.B. (2015) Viral activities and life cycles in deep subseafloor sediments. *Environmental Microbiology Reports* **7**, 868-873.
- Estes, E.R., Pockalny, R., D'Hondt, S., Inagaki, F., Morono, Y., Murray, R.W., Nordlund, D., Spivack, A.J., Wankel, S.D., Xiao, N. and Hansel, C.M. (2019) Persistent organic matter in oxic subseafloor sediment. *Nature Geoscience* **12**, 126-131.

- Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. *Science* **281**, 237-240.
- Findlay, S. and Tenore, K.E.N. (1982) Nitrogen Source for a Detritivore: Detritus Substrate Versus Associated Microbes. *Science* **218**, 371.
- Fisher, J.B. (1987) Distribution and occurrence of aliphatic acid anions in deep subsurface waters. *Geochimica et Cosmochimica Acta* **51**, 2459-2468.
- Fontaine, S., Barré, P., Bdioui, N., Mary, B. and Rumpel, C. (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. *Nature* **450**, 277.
- Ford, A.K., Bejarano, S., Nugues, M.M., Visser, P.M., Albert, S. and Ferse, S.C.A. (2018) Reefs under Siege—the Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats. *Frontiers in Marine Science* 5.
- Fox, C.A., Abdulla, H.A., Burdige, D.J., Lewicki, J.P. and Komada, T. (2018) Composition of Dissolved Organic Matter in Pore Waters of Anoxic Marine Sediments Analyzed by 1H Nuclear Magnetic Resonance Spectroscopy. *Frontiers in Ma. ine Science* 5.
- Francois, R. (1987) A study of sulphur enrichment in the limit fraction of marine sediments during early diagenesis. *Geochimica et Cosmochimica Ac a* **51**, 17-27.
- Francois, R., Honjo, S., Krishfield, R. and Manganini, S. (2002) Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean. *Global Biogeochemical Cycles* 16, GB001722.
- Freitas, F.S., Pancost, R.D. and Arndt, S. (2017) The impact of alkeone degradation on U^{K'37} paleothermometry: A model-derived assessment. *Paleoceanography* **32**, 648-672.
- Froelich, P.N., Klinkhammer, G.P., Bender, N. L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Harmar, B. and Maynard, V. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. *Geochim. Cosmochim. Acta* 43, 1975-1090.
- Furnes, H., Muehlenbachs, K., Torsvik, '1., Thorseth, I.H. and Tumyr, O. (2001) Microbial fractionation of carbon isotope. In altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. *Chemical Geology* **173**, 313-330.
- Gehlen, M., Bopp, L., Empri. N., Aumont, O., Heinze, C. and Ragueneau, O. (2006) Reconciling surface oce. n productivity, export fluxes and sediment composition in a global biogeochemical scean model. *Biogeosciences* 3, 521-537.
- Glud, R.N. (2008) Oxygen dynamics of marine sediments. Marine Biology Research 4, 243-289.
- Goldhaber, M.B., Aller, P.C., Cochran, J.K., Rosenfeld, K.K., Martens, C.S. and Berner, R.A. (1977) Sulfate muction, diffusion and bioturbation in Long Island Sound sediments: Report of the FOAM group. *American Journal of Science* **277**, 193-237.
- Gomez-Saez, G.V., Niggemann, J., Dittmar, T., Pohlabeln, A.M., Lang, S.Q., Noowong, A., Pichler, T., Wörmer, L. and Bühring, S.I. (2016) Molecular evidence for abiotic sulfurization of dissolved organic matter in marine shallow hydrothermal systems. *Geochimica et Cosmochimica Acta* **190**, 35-52.
- Goth, K., de Leeuw, J.W., Püttmann, W. and Tegelaar, E.W. (1988) Origin of Messel Oil Shale kerogen. *Nature* **336**, 759-761.
- Graf, G. (1992) Benthic-pelagic coupling: a benthic view. . *Oceanography and Marine Biology* **30**, 149-190.
- Gransch, J.A. and Posthuma, J. (1974) On the origin of sulphur in crudes, in: Tissot, B., Bienner, F. (Eds.), *Advances in Organic Geochemistry* 1973, Paris, pp. 727-739.

- Grossi, V., Blokker, P. and Sinninghe Damsté, J.S. (2001) Anaerobic biodegradation of lipids of the marine microalga Nannochloropsis salina. *Organic Geochemistry* **32**, 795-808.
- Guidi, L., Chaffron, S., Bittner, L., Eveillard, D., Larhlimi, A., Roux, S., Darzi, Y., Audic, S., Berline, L., Brum, J.R., Coelho, L.P., Espinoza, J.C.I., Malviya, S., Sunagawa, S., Dimier, C., Kandels-Lewis, S., Picheral, M., Poulain, J., Searson, S., Stemmann, L., Not, F., Hingamp, P., Speich, S., Follows, M., Karp-Boss, L., Boss, E., Ogata, H., Pesant, S., Weissenbach, J., Wincker, P., Acinas, S.G., Bork, P., de Vargas, C., Iudicone, D., Sullivan, M.B., Raes, J., Karsenti, E., Bowler, C., Gorsky, G. and Tara Oceans Consortium, C. (2016) Plankton networks driving carbon export in the oligotrophic ocean. *Nature* 532, 465-470.
- Gupta, N.S. (2015) Plant Biopolymer–Geopolymer: Organic Diagenesis and Kerogen Formation. *Frontiers in Materials* **2**.
- Gupta, N.S., Briggs, D.E.G., Collinson, M.E., Evershed, R.P., Nichels, R., Jack, K.S. and Pancost, R.D. (2007) Evidence for the in situ polymer sation of labile aliphatic organic compounds during the preservation of fossil leaves. http://ications.for.organic matter preservation. *Organic Geochemistry* 38, 499-522.
- Gutleben, J., Chaib De Mares, M., van Elsas, J.D., Smio, H., Overmann, J. and Sipkema, D. (2018) The multi-omics promise in context: from sequence to microbial isolate. *Critical Reviews in Microbiology* **44**, 212-229.
- Gypens, N., Lancelot, C. and Soetaert, K. (2008) Simple parameterisations for describing N and P diagenetic processes: Application in the Tort's Sea. *Progress in Oceanography* **76**, 89-110.
- Hales, B. and Emerson, S. (1996) Calcite discolution in sediments of the Ontong-Java Plateau: In situ measurements of pore water O2 and pH. *Global Biogeochemical Cycles* **10**, 527-541.
- Hansell, D.A. (2013) Recalcitrant dissorted organic carbon fractions. *Annu. Rev. Mar. Sci.* 5, 421-445.
- Hansell, D.A. and Carlson, C.A. (2015 Liogeochemistry of marine dissolved organic matter, 2 ed. Academic Press, London.
- Hartnett, H.E., Keil, R.G., Hedges, J.I. and Devol, A.H. (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. *Nature* **391**, 572-574.
- Harvey, H.R. and Macko, S.A. (1997) Kinetics of phytoplankton decay during simulated sedimentation: changes in lipids under oxic and anoxic conditions. *Org. Geochem.* 27, 129-140.
- Harvey, H.R., Tuttle, J.H. and Bell, J.T. (1995) Kinetics of phytoplankton decay during simulated sedimentation: Changes in biochemical composition and microbial activity under oxic and anoxic conditions. *Geochim. Cosmochim. Acta* **59**, 3367-3377.
- Hawkes, J.A., Hansen, C.T., Goldhammer, T., Bach, W. and Dittmar, T. (2016) Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions. *Geochimica et Cosmochimica Acta* **175**, 68-85.
- Hawkes, J.A., Rossel, P.E., Stubbins, A., Butterfield, D.A., Connelly, D.P., Achterberg, E.P., Koschinsky, A., Chavagnac, V., Hansen, C.T., Bach, W. and Dittmar, T. (2015) Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation. *Nature Geoscience* **8**, 856-860.
- Hedges, J.I., Clark, W.A. and Cowie, G.L. (1988) Fluxes and reactivities of organic matter in a coastal marine bay. *Limnology and Oceanography* **33**, 1137-1152.

- Hedges, J.I., Eglington, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kögel-Knaber, I., De Leeuw, J.W., Littke, R., Michaelis, W. and Rullkötter, J. (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. *Organic Geochemistry* 31, 945-958.
- Hedges, J.I., Hu, F.S., Devol, A.H., Hartnett, H.E., Tsamakis, E. and Keil, R.G. (1999) Sedimentary organic matter preservation: A test for selective degradation under oxic conditions. *American Journal of Science* **299**, 529-555.
- Hedges, J.I. and Keil, R.G. (1995) Sedimentary organic matter preservation: an assessment and speculative hypothesis. *Mar. Chem.* **49**, 81-115.
- Hedges, J.I., Keil, R.G. and Benner, R. (1997) What happens to terrestrial organic matter in the ocean? *Org. Geochem.* **27**, 195-212.
- Hedges, J.I. and Oades, J.M. (1997) Comparative organic geochemistries of soils and marine sediments. *Org. Geochem.* 27, 319-361.
- Heinze, C., Maier-Reimer, E., Winguth, A.M.E. and Arche, L (1999) A global oceanic sediment model for long-term climate studies. *Global Respecthemical Cycles* **13**, 221-250.
- Heitmann, T. and Blodau, C. (2006) Oxidation and Corporation of hydrogen sulfide by dissolved organic matter. *Chemical Geology* **23**(1, 12-20).
- Hemingway, J.D., Rothman, D.H., Grant, K.E., Rosengal, S.Z., Eglington, T.I., Derry, L.A. and Galy, V.V. (2019) Mineral protection regain tes long-term global preservation of natural organic carbon. *Nature* **570**, 228-231.
- Henrichs, S.M. and Reeburgh, W.S. (1987) An erobic mineralization of marine sediment organic matter: rates and the role of a very bic processes in the oceanic carbon economy. *Geomicrobiology Journal* 5, 191-237.
- Henson, S., Sanders, R. and Madsen, E. (2012a) Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. *Global Biogeochemical Cycles* **26**, GB004099.
- Henson, S.A., Sanders, R. and Madsen, E. (2012b) Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. *Global Biogeochemical Cycles* **26**.
- Herman, P.M.J., Middelburg, J. and Van de Koppel, J. (1999) Ecology of estuarine macrobenthos. *Advances in Ecology Research* **29**, 195-240.
- Hernández-Sánchez, M.T. La Rowe, D.E., Deng, F., Homoky, W.B., Browning, T.J., Martin, P., Mills, R.A. and Pancost, R.D. (2014) Further insights into how sediment redox status controls the pregravation and compostion of sedimentary biomarkers. *Org. Geochem.* **76**, 220-234.
- Hertkorn, N., Benner, R., Frommberger, M., Shmitt-Kopplin, P., Witt, M., Kaiser, K., Kettrup, A. and Hedges, J.I. (2006) Characterization of a major refractory component of marine dissolved organic matter. *Geochimica et Cosmochimica Acta* **70**, 2990-3013.
- Hetzel, A., Böttcher, M.E., Wortmann, U.G. and Brumsack, H.-J. (2009) Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). *Palaeogeography, Palaeoclimatology, Palaeoecology* **273**, 302-328.
- Hiddink, J.G., Jennings, S., Sciberras, M., Szostek, C.L., Hughes, K.M., Ellis, N., Rijnsdorp, A.D., McConnaughey, R.A., Mazor, T., Hilborn, R., Collie, J.S., Pitcher, C.R., Amoroso, R.O., Parma, A.M., Suuronen, P. and Kaiser, M.J. (2017) Global analysis of depletion and recovery of seabed biota after bottom trawling disturbance. *Proc Natl Acad Sci U S A* 114, 8301-8306.

- Ho, T.C. and Aris, R. (1987) On apparent second-order kinetics *Amer. Inst. Chem. Eng. J.* 33, 1050-1051.
- Hoefs, M.J.L., Sinninghe Damsté, J.S., De Lange, G.J. and de Leeuw, J.W. (1998) Changes in kerogen composition across an oxidation front in Madeira Abyssal Plain turbidites as revealed by pyrolysis GC-MS. *Proceeding of the Ocean Drilling Program, Scientific Results* **157**, 591-607.
- Hoehler, T.M. and Jørgensen, B.B. (2013) Micorbial life under extreme energy limitation. *Nat. Rev. Microbiol.* **11**, 83-94.
- Honjo, S., Manganini, S.J., Krishfield, R.A. and Francois, R. (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. *Progress in Oceanography* **76**, 217-285.
- Huettel, M., Berg, P. and Kostka, J.E. (2014) Benthic Exchange and Biogeochemical Cycling in Permeable Sediments. *Annual Review of Marine Science* **6**, 23-51.
- Hug, L.A., Baker, B.J., Anantharaman, K., Brown, C.T., Probs, A.I., Castelle, C.J., Butterfield, C.N., Hernsdorf, A.W., Amano, Y., Ise, K., Suzulii, Y., Dudek, N., Relman, D.A., Finstad, K.M., Amundson, R., Thomas, B.C. and Baufield J.F. (2016) A new view of the tree of life. *Nature Microbiology* 1, 16048.
- Hülse, D., Arndt, S., Daines, S., Regnier, P. and Ridgwell, A. (2018a) OMEN-SED 1.0: a novel, numerically efficient organic matter sediment dual enesis module for coupling to Earth system models. *Geosci. Model Dev.* 11, 26/2 2689.
- Hülse, D., Arndt, S., Daines, S., Regnier, P. and N'dg vell, A. (2018b) OMEN-SED 1.0: a novel, numerically efficient organic matter real ment diagenesis module for coupling to Earth system models. *Geoscience Model Development* 11, 2649-2689.
- Hülse, D., Arndt, S. and Ridgwell, A. (2019) Mitigation of Extreme Ocean Anoxic Event Conditions by Organic Matter Sulfurization. *Paleoceanography and Paleoclimatology* **34**, 476-489.
- Hülse, D., Arndt, S., Wilson, J.D. Nurhoven, G. and Ridgwell, A. (2017) Understanding the causes and consequences of past marine carbon cycling variability through models. *Earth-Science Reviews* 171, 549-382.
- Hulthe, G., Hulth, S. and Hall, P.O.J. (1998) Effect of oxygen on degradation rate of refractory and labile organic matter in continental margin sediments. *Geochimica et Cosmochimica Acta* **62**, 1319 13.'8.
- Hunt, J.M. (1996) Petrow um Geochemistry and Geology, second ed. Freeman.
- Hüpers, A. and Kopf, A. (2012) Effect of smecetite dehydration on pore water geochemistry in the shallow subduction zone: An experimental approach. *Geochemistry, Geophysics, Geosystems* **13**, O0AD26.
- Hwang, J., Druffel, E.R.M. and Eglinton, T.I. (2010) Widespread influence of resuspended sediments on oceanic particulate organic carbon: Insights from radiocarbon and aluminum contents in sinking particles. *Global Biogeochemical Cycles* **24**.
- Hyun, J.H., Kim, S.H., Mok, J.S., Cho, H., Lee, T., Vandieken, V. and Thamdrup, B. (2017) Manganese and iron reduction dominate organic carbon oxidation in surface sediments of the deep Ulleung Basin, East Sea. *Biogeosciences* **14**, 941-958.
- Ilyina, T., Six, K.D., Segschneider, J., Maier-Reimer, E., Li, H. and Núñez-Riboni, I. (2013) Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. *Journal of Advances in Modeling Earth Systems* **5**, 287-315.

- Inagaki, F., Hinrichs, K.-U., Kubo, Y., Bowles, M.W., Heuer, V.B., Hong, W.-L., Hoshino, T., Ijiri, A., Imachi, H., Ito, M., Kaneko, M., Lever, M.A., Lin, Y.-S., Methé, B.A., Morita, S., Morono, Y., Tanikawa, W., Bihan, M., Bowden, S.A., Elvert, M., Glombitza, C., Gross, D., Harrington, G.J., Hori, T., Li, K., Limmer, D., Liu, C.-H., Murayama, M., Ohkouchi, N., Ono, S., Park, Y.-S., Phillips, S.C., Prieto-Mollar, X., Purkey, M., Riedinger, N., Sanada, Y., Sauvage, J., Snyder, G., Susilawati, R., Takano, Y., Tasumi, E., Terada, T., Tomaru, H., Trembath-Reichert, E., Wang, D.T. and Yamada, Y. (2015) Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. *Science* **349**, 420-424.
- Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M.A., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D'Hondt, S. and Jørgensen, B.B. (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the coific Ocean Margin. *PNAS* 103, 2815-2820.
- Ingall, E. and Jahnke, R. (1994) Evidence for enhanced pharmines regeneration from marine sediments overlain by oxygen depleted waters. *Geochim ca et Cosmochimica Acta* 58, 2571-2575.
- Ingalls, A.E., Lee, C., Wakeham, S.G. and Hedges, J.I. (2003) The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170°W. *Deep-Sea Research II* **50**, 713-738.
- Inthorn, M., Mohrholz, V. and Zabel, M. (2006) Nepheloid layer distribution in the Benguela upwelling area offshore Namibia. *De J. Sea Research Part I: Oceanographic Research Papers* **53**, 1423-1438.
- Inthorn, M., Wagner, T., Scheeder, G. and Zabel, M. (2006b) Lateral transport controls distribution, quality, and burial of organic matter along continental slopes in high-productivity areas. *Geology* 34, 25-208.
- Isla, E. and DeMaster, D.J. (2018) La vila organic carbon dynamics in continental shelf sediments after the recent collapse c. the Larsen ice shelves off the eastern Antarctic Peninsula: A radiochemical approach. Geochimica et Cosmochimica Acta 242, 34-50.
- Iverson, N. and Jørgensen, B.B. (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sectiments from Kattegat and Skagerrak (Denmark). *Limnology and Oceanography* 30 944-955.
- Jahnke, R.A. and Jahnke, D.B. (2000) Rates of C, N, P and Si recycling and denitrification at the US Mid-Atlantic continental slope depocenter. *Deep Sea Research Part I: Oceanographic Research Papers* 47, 1405-1428.
- Jahnke, R.A., Reimers, C.E. and Craven, D.B. (1990) Intensification of recycling of organic matter at the sea floor near ocean margins. *Nature* **348**, 50-54.
- Jarvis, I., Lignum, J.S., Gröcke, D.R., Jenkyns, H.C. and Pearce, M.A. (2011) Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event. *Paleoceanography* 26.
- Jenkyns, H.C. (2010) Geochemistry of oceanic anoxic events. *Geochem. Geophys. Geosys.* 11, Q03004 doi:03010.01029/02009GC002788.
- Jessen, G.L., Lichtschlag, A., Ramette, A., Pantoja, S., Rossel, P.E., Schubert, C.J., Struck, U. and Boetius, A. (2017) Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). *Science Advances* 3, e1601897.

- Jin, Q. and Bethke, C.M. (2003) A new rate law describing microbial respiration. *Appl. Environ. Microbiol.* **69**, 2340-2348.
- Jochum, L.M., Chen, X., Lever, M.A., Loy, A., Jørgensen, B.B., Schramm, A. and Kjeldsen, K.U. (2017) Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay. *Applied and Environmental Microbiology* **83**, e01547-01517.
- John, E.H., Wilson, J.D., Pearson, P.N. and Ridgwell, A. (2014) Temperature-dependent remineralization and carbon cycling in the warm Eocene oceans. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology* **413**, 158-166.
- Johnson, H.P. and Pruis, M.J. (2003) Fluxes of fluid and heat from the oceanic crustal reservoir. *Earth Planet. Sci. Lett.* **216**, 565-574.
- Johnson, K., Purvis, G., Lopez-Capel, E., Peacock, C., Gray, N., Wagner, T., März, C., Bowen, L., Ojeda, J., Finlay, N., Robertson, S., Worrall, F. and Greenwell, C. (2015) Towards a mechanistic understanding of carbon stabilization in manganese oxides. *Nature Communications* **6**, 7628.
- Jones, J.G. (1983) A note on the isolation and enumeration of by cteria which deposit and reduce ferric iron. *Journal of Applied Bacteriology* **54**, 305–310.
- Jørgensen, B.B. (1978) Comparison of Methods for the Quantification of Bacterial Sulfate Reduction in Coastal Marine-Sediments .2. Cuculation from Mathematical-Models. *Geomicrobiology Journal* 1, 29-47.
- Jørgensen, B.B., D'Hondt, S.L. and Miller, D.J. (2°03) Leg 201 Synthesis: Controls on micorbial communities in deeply buried sediments. *Proc. IODP, Scientific Results* **201**, 45.
- Jørgensen, B.B., Findlay, A.J. and Pelleri. A. (2019) The biogeochemical sulfur cycle of marine sediments. Frontiers in Microbiology 10, Article 849.
- Jørgensen, B.B. and Marshall, I.P.G. (2016) Slow microbial life in the seabed. *Annual Reviews in Marine Science* **8**, 311-332.
- Jungbluth, S.P., Amend, J.P. and Papp M.S. (2017) Metagenome sequencing and 98 microbial genomes from Juan de Fue Riege flank subsurface fluids. *Scientific Data* 4, 170037.
- Kallmeyer, J., Pockalny, R., Adhwari, R.R., Smith, D.C. and D'Hondt, S. (2012) Global distribution of microbian abundance and biomass in subseafloor sediment. *PNAS* **109**, 16213–16216.
- Kandasamy, S. and Nagender Nath, B. (2016) Perspectives on the Terrestrial Organic Matter Transport and Rurial along the Land-Deep Sea Continuum: Caveats in Our Understanding of Biogeochemical Processes and Future Needs. *Frontiers in Marine Science* 3.
- Karl, D.M., Wirsen, C.O. and Jannasch, H.W. (1980) Deep-sea primary production at the Galapagos hydrothermal vents. *Science* **207**, 1345-1347.
- Kawamura, K., Tannenbaum, E., Huizinga, B.J. and Kaplan, I.R. (1996) Volatile organic-acids generated from kerogen during laboratory heating. *Geochemical Journal* **20**, 51-59.
- Keil, R.G. and Cowie, G.L. (1999) Organic matter preservation through the oxygen-deficient zone of the NE Arabian Sea as discerned by organic carbon:mineral surface area ratios. *Marine Geology* **161**, 13-22.
- Keil, R.G., Dickens, A.F., Arnarson, T., Nunn, B.L. and Devol, A.H. (2004) What is the oxygen exposure time of laterally transported organic matter along the Washington margin? *Marine Chemistry* **92**, 157-165.

- Keil, R.G. and Hedges, J.I. (1993) Sorption of organic matter to mineral surfaces and the preservation of organic matter in coastal marine sediments. *Chemical Geology* **107**, 385-388.
- Keil, R.G. and Kirchman, D.L. (1994) Abiotic transformation of labile protein to refractory protein in sea water. *Marine Chemistry* **45**, 187-196.
- Keil, R.G., Montlucon, D.B., Prahl, F.G. and Hedges, J.I. (1994) Sorptive presevation of labile organic matter in marine sediments. *Nature* **370**, 549-552.
- Keil, R.G., Neibauer, J.A., Biladeau, C., van der Elst, K. and Devol, A.H. (2016) A multiproxy approach to understanding the "enhanced" flux of organic matter through the oxygen-deficient waters of the Arabian Sea. *Biogeosciences* **13**, 2077-2092.
- Keiluweit, M., Bougoure, J.J., Nico, P.S., Pett-Ridge, J., Weber, P.K. and Kleber, M. (2015) Mineral protection of soil carbon counteracted by root exv lates. *Nature Climate Change* 5, 588.
- Kelleher, B.P. and Simpson, A.J. (2006) Humic Substances in Soils: Are They Really Chemically Distinct? *Environmental Science & Technology*, 40, 4605-4611.
- Kemp, P.F. (1988) Bacterivory by benthic ciliates: significanc as a carbon source and impact on sediment bacteria. *Marine Ecology Progress Series* 19, 163-169.
- Kempes, C.P., van Bodegom, P.M., Wolpert, D., Libl y, F., Amend, J. and Hoehler, T. (2017) Drivers of Bacterial Maintenance and Minimal Energy Requirements. *Frontiers in Microbiology* **8**.
- Kennedy, M.J., Pevear, D.R. and Hill, R.J. (2001) Mineral surface control of organic carbon in black shale. *Science* **295**, 657-660.
- Kennedy, M.J. and Wagner, T. (2011) Cl-y mineral continental amplifier for marine carbon sequestion in a greenhouse ocean. PNA'S 108, 9776-9781.
- Kevorkian, R., Bird, J.T., Shumaker, A. and Lloyd, K.G. (2018) Estimating population turnover rates by relative quantification purphods reveals microbial dynamics in marine dediment. *Applied and Environmental Microbiology* **84**, e01443-01417.
- Kirkpatrick, J.B., Walsh, E.A. and D'Hondt, S. (2019) Microbial Selection and Survival in Subseafloor Sediment. Frontiers in Microbiology 10.
- Klaas, C. and Archer, D. (2002) Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. *Global Biogeochemical Cycles* **16**, GB 01765.
- Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R. and Nico, P.S. (2015) Mineral-organic associations: Formation, properties, and relevance in soil environments. *Advances in Agronomy* **130**, 1-140.
- Kleber, M. and Johnson, M.G. (2010) Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. *Adv. Agron.* **106**, 77-142.
- Klotzbücher, T., Kaiser, K., Guggenberger, G., Gatzek, C. and Kalbitz, K. (2011) A new conceptual model for the fate of lignin in decomposing plant litter. *Ecology* **92**, 1052-1062.
- Koch, B.P., Witt, M., Engbrodt, R., Dittmar, T. and Kattner, G. (2005) Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. *Geochim. Cosmochim. Acta* **69**, 3299-3308.

- Kohfeld, K.E., Quéré, C.L., Harrison, S.P. and Anderson, R.F. (2005) Role of Marine Biology in Glacial-Interglacial CO<sub>2</sub> Cycles. *Science* **308**, 74.
- Kohnen, M.E.L. and Sinninghe Damsté, J.S. (1989) Early incorporation of polysulfides in sedimentary organic matter. *Nature* **341**, 640-641.
- Kolonic, S., Damsté, J.S.S., Böttcher, M.E., Kuypers, M.M.M., Kuhnt, W., Beckmann, B. and Wagner, G.S.T. (2002) Geochemical characterization of Cenomanian/Turonian black shales from the Tarfaya Basin (SW Morocco): Relationships between paleoenvironmental conditions and early sulfurization of sedimentary organic matter. *Journal of Petroleum Geology* 25.
- Kolonic, S., Wagner, T., Forster, A., Sinninghe Damsté, J.S., Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H.-J., Chellai, E.H., Tsikos, H., Kuhnt, W. and Kuypers, M.M.M. (2005) Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: Climate coupling and global organic carbon burial. *Paleoceanography* 20.
- Krein, E.B. and Aizenshtat, Z. (1994) The formation of iscretion sulfur compounds during diagenesis: simulated sulfur incorporation and the mal transformation. *Organic Geochemistry* **21**, 1015-1025.
- Kristensen, E. (1985) Oxygen and Inorganic Nitrogen Exchange in a "Nereis virens" (Polychaeta) Bioturbated Sediment-Water System. *Journal of Coastal Research* 1, 109-116.
- Kristensen, E. (2001) Impact of polychaetes (Nore's spp. and Arenicola marina) on carbon biogeochemistry in coastal marine sections. The december of the decem
- Kristensen, E., Andersen, F.Ø. and Blackburn, T.H. (1992) Effects of benthic macrofauna and temperature on degradation of macrofaula detritus: The fate of organic carbon. *Limnology and Oceanography* 37, 1404-1412
- Kristensen, E. and Holmer, M. (2001). Decomposition of plant materials in marine sediment exposed to different electron (coeptors (O2, NO3-, and SO42-), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. *Geochimica et Cosmochimica Acta* 65, 119-433.
- Kristensen, E. and Holmer. M. (2001b) Decomposition of plant materials in marine sediment exposed to different alection acceptors (O₂, NO₃⁻, and SO₄²⁻), with emphasis on substrate origin, degradation kiretics, and the role of bioturbation *Geochimica et Cosmochimica Acta* **65**, 419-435.
- Kristensen, E. and Kos⁴¹.a, J.E. (2005) Macrofaunal burrows and irrigation in marine sediment: microbiological and biogeochemical interactions. *AGU Coast. Estuar. Studies* **60**, 125-157.
- Kristensen, E., Mangion, P., Tang, M., Flindt, M.R., Holmer, M. and Ulomi, S. (2011) Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. *Biogeochemistry* **103**, 143-158.
- Krumholz, L., Harris, R. and Suflita, J. (2002) Anaerobic microbial growth from components of Cretaceous shales. *Geomicrobiol. J.* **19**, 593-602.
- Krumholz, L., McKinley, J., Ulrich, G. and Suflita, J. (1997) Confined subsurface micorbial communities in Cretaceous rock. *Nature* **386**, 64-66.
- Krumins, V., Gehlen, M., Arndt, S.V.C., P. and Regnier, P. (2013) Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. *Biogeosciences* 10.

- Kuhn, T., Versteegh, G.J.M., Villinger, H., Dohrmann, I., Heller, C., Koschinsky, A., Kaul, N., Ritter, S., Wegorzewski, A.V. and Kasten, S. (2017) Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry. *Geology* **45**, 799-802.
- Kusch, S., Rethemeyer, J., Schefuß, E. and Mollenhauer, G. (2010) Controls on the age of vascular plant biomarkers in Black Sea sediments. *Geochimica et Cosmochimica Acta* **74**, 7031-7047.
- Kuzyakov, Y. (2010) Priming effects: Interactions between living and dead organic matter. *Soil Biology and Biochemistry* **42**, 1363-1371.
- Lalonde, K., Mucci, A., Ouellet, A. and Gelinas, Y. (2012) Preservation of organic matter in sediments by iron. *Nature* **483**, 198-200.
- Lam, P.J., Doney, S.C. and Bishop, J.K.B. (2011) The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. *Global Biogeochemical Cycle* 25, GB3009.
- Lang, S.Q., Butterfield, D.A., Lilley, D.A., Johnson, H.P. and Medges, J.I. (2006) Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. *Geochim. Cosmochim. Acta* 70, 3830-3842.
- Lang, S.Q., Butterfield, D.A., Schulte, M., Kelley, D.S. and Lilley, M.D. (2010) Elevated concentrations of formate, acetate and dissolvent aganic carbon found at the Lost City hydrothermal field. *Geochim. Cosmochim.* Acta 74, 941-952.
- LaRowe, D.E. and Amend, J.P. (2014) Energetic concraints on life in marine deep sediments, in: Kallmeyer, J., Wagner, K. (Eds.), Lift in Extreme Environments: Microbial Life in the Deep Biosphere. de Gruyter, Berlin, pr. 279-302.
- LaRowe, D.E. and Amend, J.P. (2015a) Catabolic rates, population sizes and doubling/replacement times of microorganisms in the natural settings. *Am. J. Sci.* 315, 167-203.
- LaRowe, D.E. and Amend, J.P. (2015) Power limits for microbial life. Front. Extr. Microbiol. 6, Article 718 doi: 710.3303/fm.cb.2015.00718
- LaRowe, D.E. and Amend, J.P. (2019) The energetics of fermentation in natural settings. *Geomicrobiology Journa* 36, 492-505.
- LaRowe, D.E., Arndt, S. Bredey, J.A., Burwicz, E.B., Dale, A.W. and Amend, J.P. (2020) Organic carbon and microbial activity in marine sediments on a global scale throughout the Quaternary. *EarthARXiv* https://doi.org/10.31223/osf.io/fj5tz.
- LaRowe, D.E., Burwicz, L.B., Arndt, S., Dale, A.W. and Amend, J.P. (2017a) The temperature and volume of global marine sediments. *Geology* **45**, 275-278.
- LaRowe, D.E., Dale, A.W., Amend, J.P. and Van Cappellen, P. (2012) Thermodynamic limitations on microbially catalyzed reaction rates. *Geochim. Cosmochim. Acta* **90**, 96-109.
- LaRowe, D.E., Koch, B.P., Robador, A., Witt, M., Ksionzek, K. and Amend, J.P. (2017b) Identification of organic compounds in ocean basement fluids. *Organic Geochemistry* **113**, 124-127.
- LaRowe, D.E. and Van Cappellen, P. (2011) Degradation of natural organic matter: A thermodynamic analysis. *Geochim. Cosmochim. Acta* **75**, 2030-2042.
- Lee, C. (1992a) Controls on organic carbon preservation: the use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. *Geochimica et Cosmochimica Acta* **56**, 3323-3335.

- Lee, C. (1992b) Controls on organic carbon preservation: The use of stratified water bodies to compare intrinsic rates of decomposition in oxic and anoxic systems. *Geochimica et Cosmochimica Acta* **56**, 3323-3335.
- Lehmann, J. and Kleber, M. (2015) The contentious nature of soil organic matter. *Nature* **528**, 60-68.
- Lengger, S.K., Rush, D., Mayser, J.P., Blewett, J., Schwartz-Narbonne, R., Talbot, H.M., Middelburg, J.J., Jetten, M.S.M., Schouten, S., Sinninghe Damsté, J.S. and Pancost, R.D. (2019) Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM). *Global Biogeochemical Cycles* 33, 1715-1732.
- Lenton, T.M. and Watson, A.J. (2000) Redfield revisited 1. Regulation of nitrate, phosphate, and oxygen in the ocaen. *Global Biogeochem. Cycles* **14**, 225-248.
- Lerman, A. (1971) Time to Chemical Steady-States in Lakes and Ocean, *Nonequilibrium Systems in Natural Water Chemistry*. AMERICAN CHEMICAL SOCIETY, pp. 30-76.
- Lessin, G., Artioli, Y., Almroth-Rosell, E., Blackford, J.C., Dale, A.W., Glud, R.N., Middelburg, J.J., Pastres, R., Queirós, A.M., Rabouille, C., Regriz P., Soetaert, K., Solidoro, C., Stephens, N. and Yakushev, E. (2018) Modelling Marine Sediment Biogeochemistry: Current Knowledge Gaps, Challenges, and Some Methodological Advice for Advancement. Frontiers in Marine Science 5.
- Lever, M.A. (2013) Functional gene surveys from occur drilling expeditions a review and perspective. FEMS Microbiology Ecology 9.4. 1-23.
- Levin, L.A. and Gooday, A.J. (2003) The deep A antic Ocean, in: Tyler, P.A. (Ed.), *Ecosystems of the deep oceans*. Elsevier, Amsterdam, pp. 111-178.
- Levin, L.A. and Le Bris, N. (2015) The de vo cean under climate change. Science 350, 766-768.
- Lin, H.-T., Amend, J.P., LaRowe, D.E., Bing am, J.-P. and Cowen, J.P. (2015) Dissolved amino acids in oceanic basaltic basement fluids. *Geochim. Cosmochim. Acta* **164**, 175-190.
- Lin, H.-T., Cowen, J.P., Olson, E.J. F., rend, J.P. and Lilley, M.D. (2012) Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca I idge flanks. *Geochim. Cosmochim. Acta* 85, 213-227.
- Lin, H.-T., Repeta, D.J., Xu, 1 and Rappé, M.S. (2019) Dissolved organic carbon in basalt-hosted deep subseafloor fluids of the Juan de Fuca Ridge flank. *Earth and Planetary Science Letters* **51**², 135 165.
- Lin, Y.-S., Koch, B.P., Feseker, T., Ziervogel, K., Goldhammer, T., Schmidt, F., Witt, M., Kellermann, M.Y. Zabel, M., Teske, A. and Hinrichs, K.-U. (2017) Near-surface Heating of Yourg Rift Sediment Causes Mass Production and Discharge of Reactive Dissolved Organic Matter. *Scientific Reports* 7, 44864.
- Lloyd, K.G., Schreiber, L., Petersen, D.G., Kjeldsen, K.U., Lever, M.A., Steen, A.D., Stepanauskas, R., Richter, M., Kleindienst, S., Lenk, S., Schramm, A. and Jørgensen, B.B. (2013) Predominant archaea in marine sediments degrade detrital proteins. *Nature* **496**, 215.
- Lloyd, K.G., Steen, A.D., Ladau, J., Yin, J. and Crosby, L. (2018) Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. *mSystems* 3, e00055-00018.
- Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M. and Henrissat, B. (2013) The carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Research* **42**, D490-D495.

- Lomstein, B.A., Langerhuus, A.T., D'Hondt, S., Jørgensen, B.B. and Spivack, A.J. (2012) Endospore abundance, micorbial growth and necromass turnover in deep sub-seafloor sediment. *Nature* **484**, 101-104.
- Longman, J., Palmer, M.R., Gernon, T.M. and Manners, H.R. (2019) The role of tephra in enhancing organic carbon preservation in marine sediments. *Earth-Science Reviews* **192**, 480-490.
- Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. *Microbiological Reviews* **55**, 259-287.
- Luff, R. and Moll, A. (2004) Seasonal dynamics of the North Sea sediments using a three-dimensional coupled sediment—water model system. *Continental Shelf Research* **24**, 1099-1127.
- Lundegard, P.D. and Kharaka, Y.K. (1994) Distribution and Occurrence of Organic Acids in Subsurface Waters. Springer, Berlin.
- Lutz, M., Dunbar, R. and Caldeira, K. (2002) Regional variavility in the vertical flux of particulate organic carbon in the ocean interior. *G!v hai Biogeochemical Cycles* **16**, GB001383.
- Mackenzie, F.T., Lerman, A. and Andersson, A.J. (200-1) Past and present of sediment and carbon biogeochemical cycling models *Biogeosciences* 1, 11-32.
- Mahmoudi, N., Enke, T.N., Beaupré, S.R., Teske, A.P., Cordero, O.X. and Pearson, A. (2019) Illuminating microbial species-specific effects on organic matter remineralization in marine sediments. *bioRxiv*, 705087.
- Mahmoudi, N., Hagen, S.M., Hazen, T.C. and Steen, A.D. (2020) Patterns in extracellular enzyme activity and microbial diversity in deep-sea Mediterranean sediments. *Deep Sea Research Part I: Oceanographic Research Papers*, 103231.
- Mann, P.J., Eglinton, T.I., McIntyre, C.i. Zimov, N., Davydova, A., Vonk, J.E., Holmes, R.M. and Spencer, R.G.M. (2015) Unitation of ancient permafrost carbon in headwaters of Arctic fluvial networks. *Nature Communications* **6**, 7856.
- Mann, S., Archibald, D.D., Didynus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C. and Reeves, N.J. (1993) Crystallization at inorganic-organic interfaces: Biominerals and biomometic synthesis. Science **261**, 1286-1292.
- Mao, J., Tremblay, L. and Gogné, J.-P. (2011) Structural changes of humic acids from sinking organic matter and su face sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components. *Geochimica et Cosmochimica Aca* **75**, 7864-7880.
- Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P.M., Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethemeyer, J., Schäffer, A., Schmidt, M.W.I., Schwark, L. and Wiesenberg, G.L.B. (2008a) How relevant is recalcitrance for the stabilization of organic matter in soils? *J. Plant Nutr. Soil Sci.* 171, 91-110.
- Marschner, B., Brodowski, S., Dreves, A., Gleixner, G., Gude, A., Grootes, P.M., Hamer, U., Heim, A., Jandl, G., Ji, R., Kaiser, K., Kalbitz, K., Kramer, C., Leinweber, P., Rethmeyer, J., Schäffer, A., Schmidt, M.W.I., Schwark, L. and Wlesenberg, G.L.B. (2008b) How relevant is recalcitrance for the stabilization of organic matter in soils? *J. Plant Nutr. Soil Sci.* **171**, 91-110.
- Marshall, I.P.G., Ren, G., Jaussi, M., Lomstein, B.A., Jørgensen, B.B., Røy, H. and Kjeldsen, K.U. (2019) Environmental filtering determines family-level structure of sulfate-reducing

- microbial communities in subsurface marine sediments. *The ISME Journal* **13**, 1920-1932.
- Martens, C.S. (1990) Generation of short chain organic acid anions in hydrothermally altered sediments of the Guaymas Basin, Gulf of California. *Applied Geochemistry* **5**, 71-76.
- Mayer, L.M. (1994) Surface area control of organic carbon accumulation in continental shelf sediments. *Geochim. Cosmochim. Acta* **58**, 1271-1284.
- Mayer, L.M. (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis—a comment. *Marine Chemistry* **49**, 123-126.
- Mayer, L.M. (1999) Extent of coverage of mineral surfaces by organic mattre in marine sediments. *Geochimica et Cosmochimica Acta* **63**, 207-215.
- Mayer, L.M., Rahaim, P., Guerin, P., Macko, S.A., Watling, L. and Anderson, F.E. (1985) Biological and granulometric controls on organic matter of an intertidal mudflat. *Estuarine, Coastal and Shelf Science* **20**, 491-503.
- Mayer, L.M. and Xing, B. (2001) Organic carbon-surface are a-c₁ y relationships in acid soils. Soil Science Society of America Journal 65, 250-258.
- Mayor, D.J., Thornton, B., Hay, S., Zuur, A.F., Nicol, G.W., Mc Villiam, J.M. and Witte, U.F.M. (2012) Resource quality affects carbon cycling in devo-sea sediments. *The ISME Journal* **6.** 1740-1748.
- McCarthy, M.D., Beaupré, S.R., Walker, B.D., Voparil, J., Guilderson, T.P. and Druffel, E.R.M. (2011) Chemosynthetic origin of ¹⁴C-depland dissolved organic matter in a ridge-flank hydrothermal system. *Nat. Geosci.* **4**, 32-35
- McCollom, T.M. and Seewald, J.S. (2003a) Experimental constraints on the hydrothermal reactivity or organic acids and a id anions: I. Acetic acid, acetate, and valeric acid. *Geochim. Cosmochim. Acta* 67, 3645-3664.
- McCollom, T.M. and Seewald, J.S. (2003b) Experimental constraints on the hydrothermal reactivity or organic acids and anions: I. Formic acid and formate. *Geochim. Cosmochim. Acta* 67, 3625-3641
- McCollom, T.M. and Shock, E.L. (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. *Geochim. Cosmochim. Acta* **61**, 4375 4391.
- McDermott, J.M., Seewald J.S., German, C.R. and Sylva, S.P. (2015) Pathways for abiotic organic synthesis at submarine hydrothermal fields. *Proceedings of the National Academy of Sciences* **112**, 7668-7672.
- McInerney, M.J., Struchtemeyer, C.G., Sieber, J., Mouttaki, H., Stams, A.J.M., Schink, B., Rohlin, L. and Gunsalus, R.P. (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. *Annals of New York Academy of Science* **1125**, 58-72.
- McManus, J., Wheat, C.G. and Bach, W. (2019) Carbon cycling in low-temperature hydrothermal systems: The Dorado Outcrop. *Geochimica et Cosmochimica Acta* **264**, 1-12.
- Meador, T.B., Bowles, M., Lazar, C.S., Zhu, C., Teske, A. and Hinrichs, K.-U. (2015) The archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous Crenarchaeotal Group. *Environmental Microbiology* 17, 2441-2458.
- Mewes, K., Mogollón, J.M., Picard, A., Rühlemann, C., Eisenhauer, A., Kuhn, T., Ziebis, W. and Kasten, S. (2016) Diffusive transfer of oxygen from seamount basaltic crust into

- overlying sediments: An example from the Clarion-Clipperton Fracture Zone. *Earth and Planetary Science Letters* **433**, 215-225.
- Meyer, J.L., Jaekel, U., Tully, B.J., Glazer, B.T., Wheat, C.G., Lin, H.-T., Hsieh, C.-C., Cowen, J.P., Hulme, S.M., Girguis, P.R. and Huber, J.A. (2016) A distinct and active bacterial community in cold oxygenated fludis circulating beneath the western flank of the Mid-Atlantic Ridge. *Scientific Reports* 6, doi: 10.1038/srep22541.
- Meysman, F.J.R., Middelburg, J.J. and Heip, C.H.R. (2006) Bioturbation: a fresh look at Darwin's last idea. *Trends in Ecology & Evolution* **21**, 688-695.
- Michalska, K., Steen, A.D., Chhor, G., Endres, M., Webber, A.T., Bird, J., Lloyd, K.G. and Joachimiak, A. (2015) New aminopeptidase from "microbial dark matter" archaeon. *The FASEB Journal* **29**, 4071-4079.
- Middelburg, J.J. (1989) A simple rate model for organic matter decomposition in marine sediments. *Geochem. Cosmochim. Acta* **53**, 1577-1581.
- Middelburg, J.J. (2011) Chemoautotrophy in the ocean. Geophy ical Research Letters 38.
- Middelburg, J.J. (2018) Reviews and syntheses: to the bottom of carbon processing at the seafloor. *Biogeosciences* **15**, 413-427.
- Middelburg, J.J. (2019) Marine Carbon Biogeochemistry: A Primer for Earth System Scientists, in: Lohmann, G., Mysak, L.A., Notholt, J., Rabassa, J., Unnithan, V. (Eds.). SpringerOpen, Cham, Switzerland, p. 118.
- Middelburg, J.J. and Levin, L.A. (2009) Cocard hypoxia and sediment biogeochemistry. *Biogeosciences* **6**, 1273-1293.
- Middelburg, J.J. and Meysman, F.J.R. (2007) Bu. at sea. Science 316, 1294-1295.
- Middelburg, J.J., Vlug, T., Jaco, F. and vin Ger Nat, W.A. (1993) Organic matter mineralization in marine systems. *Global and Planetery Change* **8**, 47-58.
- Milkov, A.V. (2011) Worldwide distriction and significane of secondary microbial methane formed during petroleum biocega dation in conventional reservoirs. *Org. Geochem.* **42**, 184-207.
- Ming-Yi, S., Lee, C. and Aller, R.C. (1993) Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Is. and Sound sediments. *Geochimica et Cosmochimica Acta* 57, 147-157.
- Mollenhauer, G., Eglinton. T., Ohkouchi, N., Schneider, R.R., Müller, P.J., Grootes, P.M. and Rullkötter, J. (20(3) Asynchronous alkenone and foraminifera records from the Benguela Upwelling System. *Geochimica et Cosmochimica Acta* 67, 2157-2171.
- Mollenhauer, G., Inthorn M., Vogt, T., Zabel, M., Sinninghe Damsté, J.S. and Eglinton, T.I. (2007) Aging of marine organic matter during cross-shelf lateral transport in the Benguela upwelling system revealed by compound-specific radiocarbon dating. *Geochemistry, Geophysics, Geosystems* 8.
- Moodley, L., Middelburg, J.J., Herman, P.M.J., Soetaert, K. and de Lange, G.J. (2005) Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon-rich deposits *Geology* **33**, 889-892.
- Morán, X.A.G., López-Urrutia, Á., Calvo-Díaz, A. and Li, W.K.W. (2010) Increasing importance of small phytoplankton in a warmer ocean. *Global Change Biology* **16**, 1137-1144.
- Moreau, J.W., Weber, P.K., Martin, M.C., Gilbert, B., Hutcheon, I.D. and Banfield, J.F. (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. *Science* **316**, 1600-1603.

- Morono, Y., Terada, T., Nishizawa, M., Ito, M., Hillion, F., Takahata, N., Sano, Y. and Inagaki, F. (2011) Carbon and nitrogen assimilation in deep subseafloor micorbial cells. *PNAS* **108**, 18295-18300.
- Mossmann, J.-R., Aplin, A.C., Curtis, C.D. and Coleman, M.L. (1991) Geochemistry of inorganic and organic sulphur in organic-rich sediments from the Peru Margin. *Geochimica et Cosmochimica Acta* **55**, 3581-3595.
- Müller, P.J. and Suess, E. (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation. *Deep-Sea Research Part A* **26**, 1347-1362.
- Munhoven, G. (2007) Glacial-interglacial rain ratio changes: Implications for atmospheric CO2 and ocean-sediment interaction. *Deep Sea Research Part II: Topical Studies in Oceanography* **54**, 722-746.
- Nealson, K.H. (1997) Sediment bacteria: Who's there, what are 'bey doing, and what's new? *Annual Review of Earth and Planetary Sciences* **25**, 403-434
- Niggemann, J., Ferdelman, T.G., Lomstein, B.A., Kallmeyer, J. and Schubert, C.J. (2007) How depositional conditions control input, composition, and degradation of organic matter in sediments from the Chilean coastal upwelling region. *Geochimica et Cosmochimica Acta* 71, 1513-1527.
- Nobu, M.K., Dodsworth, J.A., Murugapiran, S.K., Pinke, C., Gies, E.A., Webster, G., Schwientek, P., Kille, P., Parkes, R.J., Sass, H., Jørgensen, B.B., Weightman, A.J., Liu, W.-T., Hallam, S.J., Tsiamis, G., Woyke, f. and Hedlund, B.P. (2016) Phylogeny and physiology of candidate phylum 'Atricacteria' (OP9/JS1) inferred from cultivation-independent genomics. *The ISME sour val* **10**, 273-286.
- Ohkouchi, N., Eglinton, T.I., Keigwin, L.L. and Hayes, J.M. (2002) Spatial and Temporal Offsets Between Proxy Records n. a Sediment Drift. *Science* **298**, 1224.
- Ohkouchi, N., Kuroda, J. and Taira, A. (2015) The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers. *Proceedings of the Japan Academy, Series B* **91**, 273-291.
- Orcutt, B.N., Bradley, J.A., Brazelton, W.J., Estes, E.R., Goordial, J.M., Huber, J.A., Jones, R.M., Mahmoudi, N., Mariow, J.J., Murdock, S. and Pachiadaki, M. (2020) Impacts of deep-sea mining or muchoial ecosystem services. *Limnology and Oceanography* n/a.
- Orcutt, B.N., LaRow I.E., Biddle, J.F., Cowell, F., Kirkpatrick, J.B., Lapham, L., Mills, H., Reese, B., Sylva. J. and Wankel, S.D. (2013a) Microbial activity in the deep marine biosphere: Progress and prospects. *Front. Extr. Microbiol.* **4:189**, doi: 10.3389/fmicb.2013.00189.
- Orcutt, B.N., Wheat, C.G., Rouxel, O., Hulme, S., Edwards, K.J. and Bach, W. (2013b) Oxygen consumption rates in a subseafloor basaltic crust derived from a reaction transport model. *Nat. Comm.* **4**, Article 2539.
- Oremland, R.S., Culbertson, C. and Simoneit, B.R.T. (1982) Methanogenic activity in sediment from Leg 64, Gulf of California. *Initial reports of the DSDP* **64**, 759-762.
- Orsi, W. (2018) Ecology and evolution of seafloor and subseafloor microbial communities. *Nature Reveiws Microbiology*.
- Orsi, W., Biddle, J.F. and Edgcomb, V. (2013) Deep Sequencing of Subseafloor Eukaryotic rRNA Reveals Active Fungi across Marine Subsurface Provinces. *PLOS ONE* **8**, e56335.

- Orsi, W.D., Coolen, M.J.L., Wuchter, C., He, L., More, K.D., Irigoien, X., Chust, G., Johnson, C., Hemingway, J.D., Lee, M., Galy, V. and Giosan, L. (2017) Climate oscillations reflected within the microbiome of Arabian Sea sediments. *Scientific Reports* 7, 6040.
- Ortega-Arbulú, A.-S., Pichler, M., Vuillemin, A. and Orsi, W.D. (2019) Effects of organic matter and low oxygen on the mycobenthos in a coastal lagoon. *Environmental Microbiology* **21**, 374-388.
- Pachiadaki, M.G., Sintes, E., Bergauer, K., Brown, J.M., Record, N.R., Swan, B.K., Mathyer, M.E., Hallam, S.J., Lopez-Garcia, P., Takaki, Y., Nunoura, T., Woyke, T., Herndl, G.J. and Stepanauskas, R. (2017) Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. *Science* **358**, 1046-1051.
- Pacton, M., Fiet, N. and Gorin, G. (2007a) Bacterial activity and sedimentary organic matter: the role of exopolymeric substances. *Geomicrobiology Journal* **24**, 571-581.
- Pacton, M., Fiet, N., Gorin, G. and Spangenberg, J.E. (2007b) Lower Cretaceous oceanic anoxic event OAE1b: organic matter accumulation mediated by by cterial activity. *Geophysical Research* **9**, 09956.
- Palastanga, V., Slomp, C.P. and Heinze, C. (2011) Long-term controls on ocean phosphorus and oxygen in a global biogeochemical model. *Global Lingeochemical Cycles* **25**.
- Parkes, R.J., Cragg, B., Roussel, E., Webster, G., Weighth an, A. and Sass, H. (2014) A review of prokaryotic populations and processes sub-seafloor sediments, including biosphere: geosphere interactions. *Mar. Geri.* **352**, 409-425.
- Parkes, R.J., Cragg, B.A., Fry, J.C., Herbert, R A Wimpenny, J.W.T., Allen, J.A. and Whitfield, M. (1990) Bacterial biomass and activity in deep sediment layers from the Peru Margin. *Phil. Trans. R. Soc. Lond. A* **331**, 149-153.
- Parkes, R.J., Webster, G., Cragg, B.A., Vaightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J. and Jørgensen, B.R. (2005) Deep sub-seafloor prokaryotes stimulate at interfaces over geological time. *Nature* **436**, 390-394.
- Passow, U. and Carlson, C.A. (2012) ' be biological pump in a high CO₂ world. *Marine Ecology Progress Series* **470**, 249-171.
- Pearson, A., Seewald, J.S. and Eganton, T.I. (2005) Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. *Geochimica et Cosmochimica Acta* **69**, 5477-5486.
- Pedersen, T.F. and Calvert, M.E. (1990) Anoxia vs. productivity: What controls the formation of organic-carbon-ric. sediments and sedimentary rocks? *The American Association of Petroleum Geology, sts Bulletin* 74, 454-466.
- Petro, C., Starnawski, P., Schramm, A. and Kjeldsen, K.U. (2017) Microbial community assembly in marine sediments. *Aquatic Microbial Ecology* **79**, 177-195.
- Petsch, S.T., Eglinton, T.I. and Edwards, K.J. (2001) ¹⁴C Dead Living Biomass: Evidence for Microbial Assimilation of Ancient Organic Carbon During Shale Weathering. *Science* **292**, 1127-1131.
- Plank, T. and Langmuir, C.H. (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. *Chemical Geology* **145**, 325-394.
- Pörtner, H.-O., Karl, D.M., Boyd, P.W., Cheung, W., Lluch-Cota, S.E., Nojiri, Y., Schmidt, D.N. and Zavialov, P.O. (2014) Ocean systems, in: Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L. (Eds.), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part

- A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp. 411-484.
- Prahl, F.G., Cowie, G.L., De Lange, G.J. and Sparrow, M.A. (2003) Selective organic matter preservation in "burn-down" turbidites on the Madeira Abyssal Plain. *Paleoceanography* 18
- Prahl, F.G., de Lange, G.J., Lyle, M. and Sparrow, M.A. (1989) Post-depositional stability of long-chain alkenones under contrasting redox conditions. *Nature* **341**, 434-437.
- Prahl, F.G., De Lange, G.J., Scholten, S. and Cowie, G.L. (1997) A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain. *Organic Geochemistry* **27**, 141-152.
- Prothero, D.R. and Schwab, F. (2004) *Sedimentary Geology: An Introduction to Sedimentary Rocks and Straigraphy, 2nd Ed.* W.H. Freeman and Company New York.
- Puglini, M., Brovkin, V., Regnier, P. and Arndt, S. (2019) Assessing the potential for non-turbulent methane escape from the East Siberian Arctic Chelf. *Biogeosciences Discuss*. **2019**, 1-44.
- Quijada, M., Riboulleau, A., Faure, P., Michels, R. and Yibovillard, N. (2016) Organic matter sulfurization on protracted diagenetic timescales: The possible role OF anaerobic oxidation of methane. *Marine Geology* **381**, 54-60
- Ransom, B., Bennett, R.H. and Baerwald, R. (1927) TEM study of in situ organic matter on continental margins: occurrence and the 'mx iol yer' hypothesis. *Marine Geology* **138**, 1-9.
- Ransom, B. and Helgeson, H.C. (1995) A hemical and thermodynamic model of dioctahedral 2:1 layer clay minerals in diagenetic processes: Dehydration of dioctahedral aluminous smectite as a function of temperature and depth in sedimentary basins. *Am. J. Sci.* 295, 245-281.
- Ransom, B., Kim, D., Kastner, M and Wainwright, S. (1998a) Organic matter preservation on continental slopes: Importance of mineralogy and surface area. *Geochimica et Cosmochimica Acta* **62**, .329-1345.
- Ransom, B., Shea, K.F., Burke, P.J., Bennett, R.H. and Baerwald, R. (1998b) Comparison of pelagic and nephology as a marine snow: implication for carbon cycling. *Marine Geology* **150**, 39-, 0.
- Raven, M.R., Fike, D.A. Bradley, A.S., Gomes, M.L., Owens, J.D. and Webb, S.A. (2019) Paired organic nm. μer and pyrite δ34S records reveal mechanisms of carbon, sulfur, and iron cycle disruption during Ocean Anoxic Event 2. *Earth and Planetary Science Letters* **512**, 27-38.
- Raven, M.R., Fike, D.A., Gomes, M.L., Webb, S.M., Bradley, A.S. and McClelland, H.-L.O. (2018) Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. *Nature Communications* **9**, ART. 3409.
- Raven, M.R., Sessions, A.L., Adkins, J.F. and Thunell, R.C. (2016) Rapid organic matter sulfurization in sinking particles from the Cariaco Basin water column. *Geochimica et Cosmochimica Acta* **190**, 175-190.
- Reardon, P.N., Walter, E.D., Marean-Reardon, C.L., Lawrence, C.W., Kleber, M. and Washton, N.M. (2018) Carbohydrates protect protein against abiotic fragmentation by soil minerals. *Scientific Reports* **8**, 813.

- Reed, D.C., Algar, C.K., Huber, J.A. and Dick, G.J. (2014) Gene-centric approach to integrating environmental genomics and biogeochemical models. *Proceedings of the National Academy of Sciences* **111**, 1879-1884.
- Regnier, P., Dale, A.W., Arndt, S., LaRowe, D.E., Mogollón, J.M. and Van Cappellen, P. (2011) Quantitative analysis of anaeorbic oxidation of methane (AOM) in marine sediments: A modeling perspective. *Earth-Science Reviews* **106**, 105-130.
- Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., Arnosti, C., Borges, A.V., Dale, A.W., Gallego-Sala, A., Godderis, Y., Goossens, N., Hartmann, J., Heinze, C., Ilyina, T., Joos, F., LaRowe, D.E., Leifeld, J., Meysman, F.J.R., Munhoven, G., Raymond, P.A., Spahni, R., Suntharalingam, P. and Thullner, M. (2013) Anthropogenic perturbation of carbon fluxes from land to ocean. *Nature Ceosci* 6, 597-607.
- Reimers, C.E., Jahnke, R.A. and McCorkle, D.C. (1992) Carbon haves and burial rates over the continental slope and rise off central California with ir plactions for the global carbon cycle. *Global Biogeochemical Cycles* **6**, 199-224.
- Repeta, D.J., Quan, T.M., Aluwihare, L.I. and Accardi, A. (2012) Chemical characterization of high molecular weight dissolved organic matter in Fesh and marine waters. *Geochimica et Cosmochimica Acta* **66**, 955-962.
- Rhoads, D.C. (1974a) Organism-sediment relations on "e muddy sea floor. *Oceanogr. Mar. Biol. Ann. Rev.* 12, 263-300.
- Rhoads, D.C. (1974b) Organism-sediment relations or the muddy sea floor. *Oceanography and Marine Biology Annual Reviews* 12. 253-300.
- Rhoads, D.C., Boyer, L.F., Welsh, B.L. ar J. Hampson, G.R. (1984) Seasonal Dynamics of Detritus in the Benthic Turbidity Zon. (BTZ); Implications for Bottom-Rack Molluscan Mariculture. *Bulletin of Marine Science* **35**, 536-549.
- Rice, D.L. (1986) Early diagenes's in bioadvective sediments: Relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. *Journal of Marine Research* **44**, 149-184.
- Richards, T.A., Jones, M.D.M., Leonard, G. and Bass, D. (2012) Marine Fungi: Their Ecology and Molecular Diversity. *Annual Review of Marine Science* **4**, 495-522.
- Ridgwell, A. (2011) Evolution of the ocean's "biological pump". *Proceedings of the National Academy of Viciences* **108**, 16485.
- Ridgwell, A. and Harg saves, J.C. (2007) Regulation of athmospheric CO₂ by deep-sea sediments in 5. Earth system model. *Global Biogeochemical Cycles* **21**, 10.1029/2006GB002764.
- Ridgwell, A. and Zeebe, R.E. (2005) The role of the global carbonate cycle in the regulation and evolution of the Earth system. *Earth and Planetary Science Letters* **234**, 299-315.
- Robador, A., Jungbluth, S.P., LaRowe, D.E., Bowers, R.M., Rappé, M.S., Amend, J.P. and Cowen, J.P. (2015) Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust. *Front. Extr. Microbiol.* **5**, Article 748 doi: 710.3389/fmicb.2014.00748
- Robador, A., LaRowe, D.E., Jungbluth, S.P., Lin, H.-T., Rappé, M.S., Nealson, K.H. and Amend, J.P. (2016) Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids. *Front. Extr. Microbiol.* 7.
- Romankevich, E.A., Vetrov, A.A. and Peresypkin, V.I. (2009) Organic matter of the world ocean. *Russ. Geol. Geophys.* **50**, 299-307.

- Røy, H., Kallmeyer, J., Adhikari, R.R., Pockalny, R., Jørgensen, B.B. and D'Hondt, S. (2012) Aerobic microbial respiration in 86-million-year-old deep-sea red clay. *Science* **336**, 922-925
- Roy, M., McManus, J., Goñi, M.A., Chase, Z., Borgeld, J.C., Wheatcroft, R.A., Muratli, J.M., Megowan, M.R. and Mix, A. (2013) Reactive iron and manganese distributions in seabed sediments near small mountainous rivers off Oregon and California (USA). *Continental Shelf Research* **54**, 67-79.
- Ruardij, P. and Van Raaphorst, W. (1995) Benthic nutrient regeneration in the ERSEM ecosystem model of the North Sea. *Netherlands Journal of Sea Research* **33**, 453-483.
- Ruppel, C.D. and Kessler, J.D. (2017) The interaction of climate change and methane hydrates. *Reviews of Geophysics* **55**, 126-168.
- Russell, J.A., León-Zayas, R., Wrighton, K. and Biddle, J.F. (2016) Deep Subsurface Life from North Pond: Enrichment, Isolation, Characterization and Genomes of Heterotrophic Bacteria. *Frontiers in Microbiology* 7.
- Schippers, A. and Neretin, L.N. (2006) Quantification of microcial communities in near-surface and deeply buried marine sediments on the Peru confinertal margin using real-time PCR. *Environmental Microbiology* **8**, 1251-1260.
- Schlünz, B. and Schneider, R.R. (2000) Transport of terre trial organic carbon to the oceans by rivers: re-estimating flux- and burial rates. *International Journal of Earth Sciences* **88**, 599-606.
- Schmidt, F., Elvert, M., Koch, B.P., Witt M. and Hinrichs, K.-U. (2009) Molecular characterization of dissolved organic matter in pore watter of continental shelf sediments. *Geochim. Cosmochim. Acta* 73, 3337-3358.
- Schmidt, M.W.I., Torn, M.S., Abiven, S., Damar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehman, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S. and Trumbore, S.F. 2011) Persistence of soil organic matter as an ecosystem property. *Nature* 478, 49-56
- Schmidtko, S., Stramma, L. and Visbeck, M. (2017) Decline in global oceanic oxygen content during the past five decacles. *Nature* **542**, 335-339.
- Schouten, S., de Graaf, W., Smringhe Damsté, J.S., van Driel, G.B. and de Leeuw, J.W. (1994)

 Laboratory simulation of natural sulphurization: II. Reaction of multi-functionalized lipids with inorganic polysulphides at low temperatures. *Organic Geochemistry* 22, 825-IN814
- Schouten, S., Middelburg, J.J., Hopmans, E.C. and Sinninghe Damsté, J.S. (2010) Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach. *Geochimica et Cosmochimica Acta* **74**, 3806-3814.
- Schrum, H.N., Spivack, A.J., Kastner, M. and D'Hondt, S. (2009) Sulfate-reducing ammonium oxidation: A thermodynamically feasible metabolic pathway in subseafloor sediment. *Geology* 37, 939-942.
- Schulz, H.D. (2006) Quantification of early diagenesis: Dissolved constituents in marine pore water in: Schulz, H.D., Zabel, M. (Eds.), *Marine Geochemistry*, 2nd ed. Springer Verlag, Heidelberg, p. 574.
- Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O. and Osterkamp, T.E. (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. *Nature* **459**, 556.

- Schwarzenbach, R.P., Gschwend, P.M. and Imboden, D.M. (2005) Sorption I: General Introduction and Sorption Processes Involving Organic Matter, in: Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M. (Eds.), *Environmental Organic Chemistry*, 2nd ed, pp. 275-330.
- Seewald, J.S. (2001) Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: constraints from mineral buffered laboratory experiments. *Geochimica et Cosmochimica Acta* **65**, 1641-1664.
- Seewald, J.S., Seyfried, W.E. and Thornton, E.C. (1990) Organic-rich sediment alteration: an experimental and theoretical study at elevated temperatures and pressures. *Applied Geochemistry* **5**, 193-209.
- Seiter, K., Hensen, C., Schroter, J. and Zabel, M. (2004) Organic carbon content in surface sediments defining regional provinces. *Deep-Sea Res. I* 51, 2001-2026.
- Seitz, K.W., Dombrowski, N., Eme, L., Spang, A., Lombard, J. Sieber, J.R., Teske, A.P., Ettema, T.J.G. and Baker, B.J. (2019) Asgard archaea capacle of anaerobic hydrocarbon cycling. *Nature Communications* **10**, 1822.
- Selley, R.C. (1998) Elements of Petroleum Geology, 2nd Ed. Academic Press, San Diego, CA.
- Shaffer, G., Malskær Olsen, S. and Pepke Pedersen, J.C. (2008) Presentation, calibration and validation of the low-order, DCESS Earth System. Model (Version 1). *Geosci. Model Dev.* 1, 17-51.
- Shah, S.R., Mollenhauer, G., Ohkouchi, N., Egliran, T.I. and Pearson, A. (2008) Origins of archaeal tetraether lipids in sediments: Irsighas from radiocarbon analysis. *Geochimica et Cosmochimica Acta* 72, 4577-4594.
- Shah Walter, S.R., Jaekel, U., Osterholz, J., Fisher, A.T., Huber, J.A., Pearson, A., Dittmar, T. and Girguis, P.R. (2018) Microbial Composition of marine dissolved organic matter in cool oceanic crust. *Nature Geoscience* 11, 334-339.
- Shebl, M.A. and Surdam, R.C. (1915) Redox reactions in hydrocarbon clastic reservoirs: experimental validation of this rechanism for porosity enhancement. *Chemical Geology* 132, 103-117.
- ShipboardScientificParty (2004, Leg 207 Summary. Proc. IODP 207, 1-89.
- Siegenthaler, U. and Sarmiento, ¹L. (1993) Atmospheric carbon dioxide and the ocean. *Nature* **365**, 119-125.
- Simoneit, B.R.T. and Lonsdale, P.F. (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guarmas Basin. *Nature* **295**, 198-202.
- Sinninghe Damsté, J.S. and De Leeuw, J.W. (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: State of the art and future research. *Organic Geochemistry* **16**, 1077-1101.
- Sinninghe Damsté, J.S., Eglinton, T.I., De Leeuw, J.W. and Schenck, P.A. (1989a) Organic sulphur in macromolecular sedimentary organic matter: I. Structure and origin of sulphur-containing moieties in kerogen, asphaltenes and coal as revealed by flash pyrolysis. *Geochimica et Cosmochimica Acta* **53**, 873-889.
- Sinninghe Damsté, J.S., Kok, M.D., Köster, J. and Schouten, S. (1998) Sulfurized carbohydrates: an important sedimentary sink for organic carbon? *Earth and Planetary Science Letters* **164**, 7-13.
- Sinninghe Damsté, J.S., Rijpstra, W.I.C., De Leeuw, J.W. and Schenck, P.A. (1989b) The occurrence and identification of series of organic sulphur compounds in oils and sediment extracts: II. Their presence in samples from hypersaline and non-hypersaline

- palaeoenvironments and possible application as source, palaeoenvironmental and maturity indicators. *Geochimica et Cosmochimica Acta* **53**, 1323-1341.
- Siskin, M. and Katritzky, A.R. (1991) Reactivity of Organic Compounds in Hot Water: Geochemical and Technological Implications. *Science* **254**, 231-237.
- Soetaert, K., Herman, P.M.J. and Middelburg, J.J. (1996) A model of early diagenetic processes from the shelf to abyssal depths. *Geochim. Cosmochim. Acta* **60**, 1019-1040.
- Soetaert, K., Middelburg, J.J., Herman, P.M.J. and Buis, K. (2000) On the coupling of benthic and pelagic biogeochemical models. *Earth-Science Reviews* **51**, 173-201.
- Sørensen, J. and Jeørgensen, B.B. (1987) Early diagenesis in sediments from Danish coastal waters: Microbial activity and Mn-Fe-S geochemistry. *Geochimica et Cosmochimica Acta* **51**, 1583-1590.
- Spang, A., Saw, J.H., Jørgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., van Eijk, R., Schleper, C., Guy, L. and Ettema, T.J.G. (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. *Nature* **521**, 173.
- Starnawski, P., Bataillon, T., Ettema, T.J.G., Jochum, L.M., Schreiber, L., Chen, X., Lever, M.A., Polz, M.F., Jørgensen, B.B., Schramm, A. and Kjeldsen, K.U. (2017) Microbial community assembly and evolution in subseafloor schiment. *Proceedings of the National Academy of Sciences* **114**, 2940-2945.
- Steen, A.D., Kevorkian, R.T., Bird, J.T., Dombrowski Y., Baker, B.J., Hagen, S.M., Mulligan, K.H., Schmidt, J.M., Webber, A.T., Royalty, T.M. and Alperin, M.J. (2019) Kinetics and Identities of Extracellular Peptidases in S. strate Sediments of the White Oak River Estuary, North Carolina. *Applied and Environmental Microbiology* **85**, e00102-00119.
- Steen, A.D., Quigley, L.N.M. and Buck n, A. (2016) Evidence for the Priming Effect in a Planktonic Estuarine Microbial Companity. Frontiers in Marine Science 3.
- Steen, A.D., Vazin, J.P., Hagen, S.M., Mulligan, K.H. and Wilhelm, S.W. (2015) Substrate specificity of aquatic extrace up. peptidases assessed by competitive inhibition assays using synthetic substrates. *Aquati Microbial Ecology* **75**, 271-281.
- Stevenson, F.J. (1986) Cycles of Svil. Wiley & Sons, New York.
- Stumm, W. and Morgan, J.J. (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed. John Wiley & Sons, New York.
- Sun, M.-Y., Aller, R.C., Tec, C. and Wakeham, S.G. (2002a) Effect of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments. *Geochimica et Cormochimica Acta* **66**, 2003–2012.
- Sun, M.-Y., Cai, W.-J., Jye, S.B., Ding, H., Dai, J. and Hollibaugh, J.T. (2002b) Degradation of algal lipids in microcosm sediments with different mixing regimes. *Organic Geochemistry* **33**, 445-459.
- Sun, M.-Y., Lee, C. and Aller, R.C. (1993) Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. *Geochimica et Cosmochimica Acta* 57, 147-157.
- Sun, M.-Y., Wakeham, S.G. and Lee, C. (1997) Rates and mechanisms of fatty acid degradation in oxic and anoxic coastal marine sediments of Long Island Sound, New York, USA. *Geochimica et Cosmochimica Acta* **61**, 341-355.
- Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., Cornejo-Castillo, F.M., Costea, P.I., Cruaud, C., d'Ovidio, F., Engelen, S., Ferrera, I., Gasol, J.M., Guidi, L., Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B.T., Royo-Llonch, M., Sarmento,

- H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., Sullivan, M.B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S.G. and Bork, P. (2015a) Structure and function of the global ocean microbiome. *Science* **348**, 1261359.
- Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., Cornejo-Castillo, F.M., Costea, P.I., Cruaud, C., Ovidio, F., Engelen, S., Ferrera, I., Gasol, J.M., Guidi, L., Hildebrand, F., Kokoszka, F., Lepoivre, C., Lima-Mendez, G., Poulain, J., Poulos, B.T., Royo-Llonch, M., Sarmento, H., Vieira-Silva, S., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Bowler, C., de Vargas, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Jaillon, O., Not, F., Ogata, H., Pesant, S., Speich, S., Stemmann, L., Su'livan, M.B., Weissenbach, J., Wincker, P., Karsenti, E., Raes, J., Acinas, S.G. and Box', P. (2015b) Structure and function of the global ocean microbiome. *Science* 348, 17.61259.
- Sweetman, A.K., Thurber, A.R., Smith, C.R., Levin, L.A., Mora, L.A., Wei, C., Gooday, A.J., Jones, D.O.B., Yasuhara, R.M., Ingels, M., Ruhl, H.A., Frieder, C.A., Danovaro, R., Würzberg, L., Baco, A., Grupe, B.M., Pasulka, A., Meyer, K.S., Dunlop, K.M., Henry, L. and Roberts, J.M. (2017) Major impacts of climate change on deep-sea benthic ecosystems *Elementa: Science of the Anthropocene* 5, https://doi.org/10.1525/elementa.1203.
- Tarafa, M.E., Whelan, J.K., Oremland, R.S. and Smirn, R.L. (1987) Evidence of microbiological activity in Leg 95 (New Jersey Transcot) ediments. *Initial reports of the DSDP* **95**, 635-640.
- Taylor, G.T. (1995) Microbial degradation of sorbed and dissolved protein in seawater. Limnology and Oceanography 40, 875-885.
- Tegelaar, E.W., de Leeuw, J.W., De er. S. and Largeau, C. (1989) A reappraisal of kerogen formation. *Geochimica et Cosmov himica Acta* **53**, 3103-3106.
- Teske, A., Callaghan, A.V. and Lakowe, D.E. (2014) Biosphere frontiers: Deep life in the sedimented hydrothermal system of Guaymas Basin. *Front. Extr. Microbiol.* 5, Art. 362.
- Thamdrup, B. (2000) Bacterial Manganese and Iron Reduction in Aquatic Sediments, in: Schink, B. (Ed.), *Advances in Microbial Ecology*. Springer US, Boston, MA, pp. 41-84.
- Thomsen, L. and van Veering, T.C.E. (1998) Spatial and temporal variability of particulate matter in the benchic boundary layer at the N.W. European Continental Margin (Goban Spur). *Progress in Oceanography* **42**, 61-76.
- Thullner, M., Dale, A.W. and Regnier, P. (2009) Global-scale quantification of mineralization pathways in marine sediments: A reaction-transport modeling approach. *Geochem. Geophys. Geosys.* **10**, 1-24.
- Thullner, M., Regnier, P. and Van Cappellen, P. (2007) Modeling microbially induced carbon degradation in redox-stratified subsurface environments: Concepts and open questions. *Geomicrobiol. J.* **24**, 139-155.
- Thullner, M., Van Cappellen, P. and Regnier, P. (2005) Modeling the impact of microbial activity on redox dynamics in porous media. *Geochim. Cosmochim. Acta* **69**, 5005-5019.
- Tissot, B.P. and Welte, D.H. (1984) *Petroleum Formation and Occurrence*, 2nd ed. Springer-Verlag, Berlin.

- Tjiputra, J.F., Roelandt, C., Bentsen, M., Lawrence, D.M., Lorentzen, T., Schwinger, J., Seland, Ø. and Heinze, C. (2013) Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). *Geosci. Model Dev.* **6**, 301-325.
- Trabucho-Alexandre, J., Hay, W.W. and de Boer, P.L. (2012) Phanerozoic environments of black shale deposition and the Wilson Cycle. *Solid Earth* **3**, 29-42.
- Trembath-Reichert, E., Morono, Y., Ijiri, A., Hoshino, T., Dawson, K., Inagaki, F. and Orphan, V.J. (2017) Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds *PNAS* **114**, E9206-E9215.
- Treseder, K.K. and Lennon, J.T. (2015) Fungal Traits That Drive Ecosystem Dynamics on Land. *Microbiology and Molecular Biology Reviews* **79**, 243-262.
- Tromp, T.K., Van Cappellen, P. and Key, R.M. (1995) A global model for the early diagenesis of organic carbon and organic phosphorous in marine sed ments. *Geochim. Cosmochim. Acta* **59**, 1259-1284.
- Tully, B.J., Graham, E.D. and Heidelberg, J.F. (2018) The reconstruction of 2,631 draft metagenome-assembled genomes from the global ocean Scientific Data 5, 170203.
- Tully, B.J. and Heidelberg, J.F. (2016) Potential mechanisms for microbial energy acquisition in oxic deep-sea sediments. *Applied and Environmental Microbiology* **82**, 4232-4243.
- Van Cappellen, P. and Ingall, E.D. (1994) Benth: phosphorus regeneration, net primary production, and ocean anoxia: A model of the capled marine biogeochemical cycles of carbon and phosphorus. *Palaeogeog. Palae at im. Palaeoecol.* **9**, 677-692.
- van Dongen, B.E., Schouten, S. and Sinningne Damsté, J.S. (2006) Preservation of carbohydrates through sulfurization in a Jurassic euxinic shelf sea: Examination of the Blackstone Band TOC cycle i. the Kimmeridge Clay Formation, UK. *Organic Geochemistry* 37, 1052-1073.
- van Kaam-Peters, H.M.E., Schouten, S., de Leeuw, J.W. and Sinninghe Damsté, J.S. (1997) A molecular and carbon isotope biogeochemical study of biomarkers and kerogen pyrolysates of the Kimmeridge Clay Facies: palaeoenvironmental implications. *Organic Geochemistry* 27, 399-422
- Van Kaam-Peters, H.M.E., Schuten, S., Köster, J. and Sinninghe Damstè, J.S. (1998) Controls on the molecular and arbon isotopic composition of organic matter deposited in a Kimmeridgian euximic chef sea: evidence for preservation of carbohydrates through sulfurisation. Geochin ica et Cosmochimica Acta 62, 3259-3283.
- van Nugteren, P., Hernan, P.M., Moodley, L., Middelburg, J.J. and Vos, M. (2009) Spatial distribution of defatal resources determines the outcome of competition between bacteria and a facultative detritivorous worm. *Limnology and Oceanography* **54**, 1414-1419.
- Veuger, B., van Oevelen, D. and Middelburg, J.J. (2012) Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment. *Geochimica et Cosmochimica Acta* **83**, 217-233.
- Vuillemin, A., Ariztegui, D., Horn, F., Kallmeyer, J., Orsi, W.D. and Team, t.P.S. (2018) Microbial community composition along a 50,000-year lacustrine sediment sequence. *FEMS Microbial Ecology* **94**, doi.org/10.1093/femsec/fiy1029.
- Vuillemin, A., Wankel, S.D., Coskun, Ö.K., Magritsch, T., Vargas, S., Estes, E.R., Spivack, A.J., Smith, D.C., Pockalny, R., Murray, R.W., D'Hondt, S. and Orsi, W.D. (2019) Archaea dominate oxic subseafloor communities over multimillion-year time scales. *Science Advances* 5, eaaw4108.

- Wakeham, S.G., Lee, C., Hedges, J.I., Hernes, P.J. and Peterson, M.J. (1997) Molecular indicators of diagenetic status in marine organic matter. *Geochimica et Cosmochimica Acta* **61**, 5363-5369.
- Wallmann, K., Pinero, E., Burwicz, E.B., Haeckel, M., Hensen, C., Dale, A.W. and Ruepke, L. (2012) The global inventory of methane hydrate in marine sediments: a theoretical approach. *Energies* 5, 2449-2498.
- Walsh, E.A., Kirkpatrick, J.B., Rutherford, S.D., Smith, D.C., Sogin, M. and D'Hondt, S. (2015) Bacterial diversity and community composition from seasurface to subseafloor. *The Isme Journal* **10**, 979.
- Walsh, J.J. (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. *Nature* **350**, 53-55.
- Wang, G., Spivack, A.J. and D'Hondt, S. (2010) Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226. *Geochim. Cosmochim. Acta* **74**, 3938-3947.
- Wankel, S.D., Germanovich, L.N., Lilley, M.D., Genc, G., P.Perman, C.J., Bradley, A.S., Olson, E.J. and Girguis, P.R. (2011) Influence of subsurface 1 iosphere on geochemical fluxes from diffuse hydrothermal fluids. *Nat. Geosci.* **4**, 40¹-468.
- Wegener, G., Bausch, M., Holler, T., Thang, N.M., Frieto Mollar, X., Kellermann, M.Y., Hinrichs, K.-U. and Boetius, A. (2012) Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. *Environmental Microbiology* **14**, 1517-1527.
- Werne, J.P., Hollander, D.J., Lyons, T.W and Sinninghe Damsté, J.S. (2004) Organic sulfur biogeochemistry: Recent advance. 2 d future research directions, in: Amend, J.P., Edwards, K., Lyons, T.W. (Eds.), Sugar biogeochemistry Past and Present. Geological Society of America Special Paper 379, Boulder, Colorado, pp. 135-150.
- Westrich, J.T. and Berner, R.A. (1985) The role of sedimentary organic matter in bacterial sulfate reduction: The G model exted. *Limnol. Oceanogr.* **29**, 236-249.
- Wheat, C.G., Hartwell, A.M., AcManus, J., Fisher, A.T., Orcutt, B.N., Schlicht, L.E.M., Niedenzu, S. and Bach, V. (2019) Geology and fluid discharge at Dorado outcrop, a low temperature ridge- flank hydrothermal system. *Geochemistry, Geophysics, Geosystems* **20**, 487-504.
- Wheat, C.G., Hulme, S.N., Fisher, A.T., Orcutt, B.N. and Becker, K. (2013) Seawater recharge into oceanic crust. IODP Exp. 327 Site U1363 Grizzly Bare outcrop. *Geochem. Geophys. Geosys.* **14**, 1957, 1972
- Whelan, J.K., Oremland, R.S., Tarafa, M.E., Smith, R., Howarth, R. and Lee, C. (1986) Evidence for sulfate-reducing and methane producing microorganisms in sediments from Sites 618, 619, and 622. *Initial reports of the DSDP* **96**, 767-775.
- Wignall, P.B. (1994) Black shales. Oxford University Press, Oxford.
- Wilson, J.D., Barker, S. and Ridgwell, A. (2012) Assessment of the spatial variability in particulate organic matter and mineral sinking fluxes in the ocean interior: implications for the ballast hypothesis. *Global Biogeochemical Cycles* **26**, GB004398.
- Wirtz, K.W. (2003) Control of biogeochemical cycling by mobility and metabolic strategies of microbes in the sediments: an integrated model study. *FEMS Microbiology Ecology* **46**, 295-306.
- Wrighton, K.C., Castelle, C.J., Varaljay, V.A., Satagopan, S., Brown, C.T., Wilkins, M.J., Thomas, B.C., Sharon, I., Williams, K.H., Tabita, F.R. and Banfield, J.F. (2016)

- RubisCO of a nucleoside pathway known from Archaea is found in diverse uncultivated phyla in bacteria. *The Isme Journal* **10**, 2702.
- Wrighton, K.C., Castelle, C.J., Wilkins, M.J., Hug, L.A., Sharon, I., Thomas, B.C., Handley, K.M., Mullin, S.W., Nicora, C.D., Singh, A., Lipton, M.S., Long, P.E., Williams, K.H. and Banfield, J.F. (2014) Metabolic interdependencies between phylogenetically novel fermentters and respiratory organisms in an unconfined aquifer. *ISME J.* 8, 1452-1463.
- Wrighton, K.C., Thomas, B.C., Sharon, I., Miller, C.S., Castelle, C.J., VerBerkmoes, N.C., Wilkins, M.J., Hettich, R.L., Lipton, M.S., Williams, K.H., Long, P.E. and Banfield, J.F. (2012) Fermentation, hydorgen, and sulfur metabolism on multiple uncultivated bacterial phyla. *Science* 337, 1661-1665.
- Yu, T., Wu, W., Liang, W., Lever, M.A., Hinrichs, K.-U. and Wang, F. (2018a) Growth of sedimentary Bathyarchaeota on lignin as an energy source. *Proceedings of the National Academy of Sciences* **115**, 6022-6027.
- Yu, T., Wu, W., Liang, W., Lever, M.A., Hinrichs, K.-U. and Vang, F. (2018b) Growth of sedimentary *Bathyarchaeota* on lignin as an energy source. *NAS* **115**, 3022-6027.
- Zhao, R., Hannisdal, B., Mogollon, J.M. and Jørgensen, L. (2019) Nitrifier abundance and diversity peak at deep redox transition zones. *Scientific Reports* **9**, 8633.
- Zhuang, G.-C., Montgomery, A., Samarkin, V.A., Song, M., Liu, J., Schubotz, F., Teske, A., Hinrichs, K.-U. and Joye, S.B. (2019) Generatio. and Utilization of Volatile Fatty Acids and Alcohols in Hydrothermally Altered Sediments in the Guaymas Basin, Gulf of California. *Geophysical Research Letters* 45, 2537-2646.

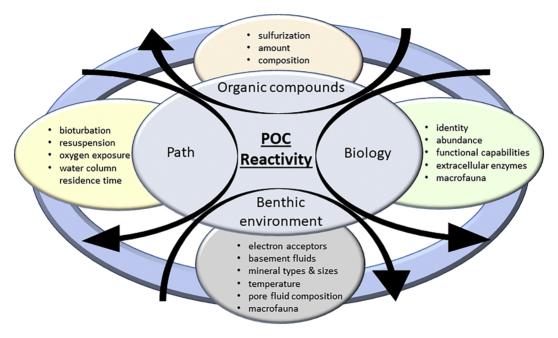


Figure 1

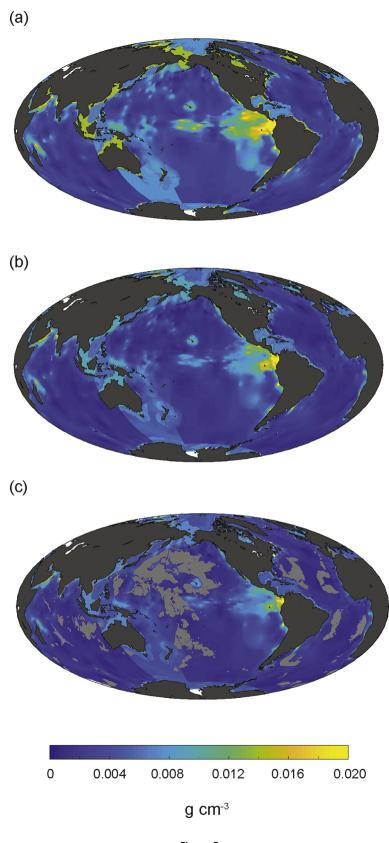
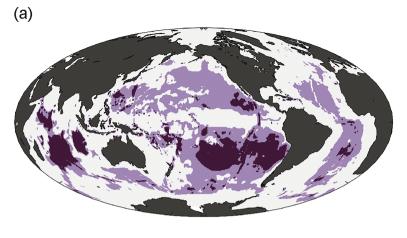



Figure 2

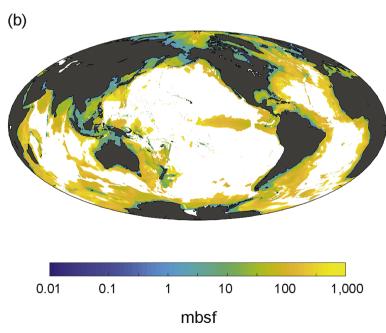


Figure 3

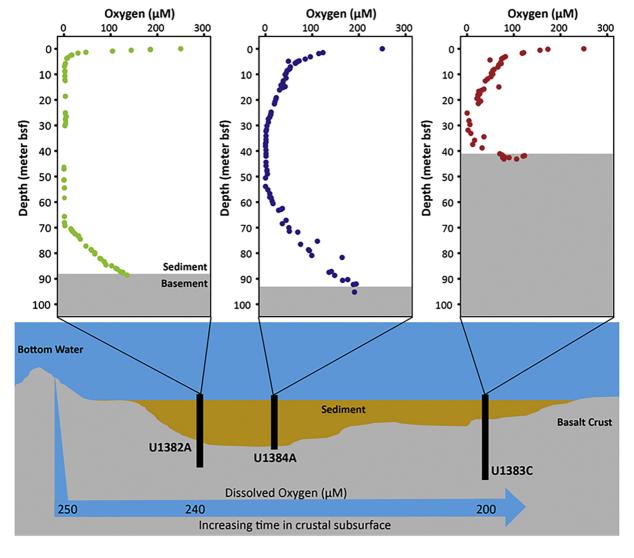
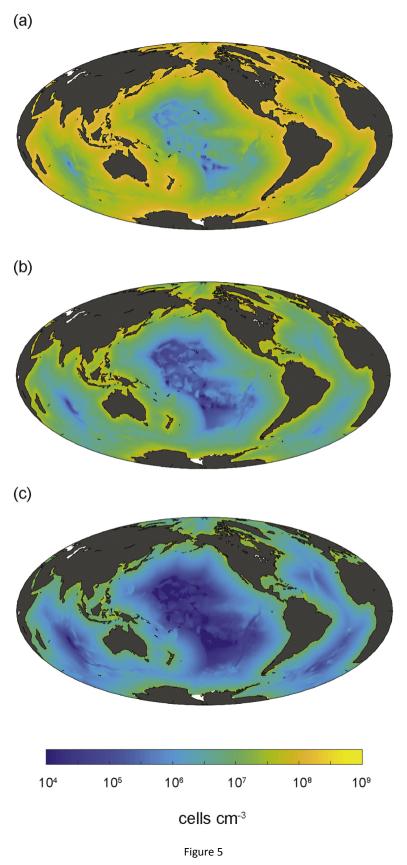



Figure 4

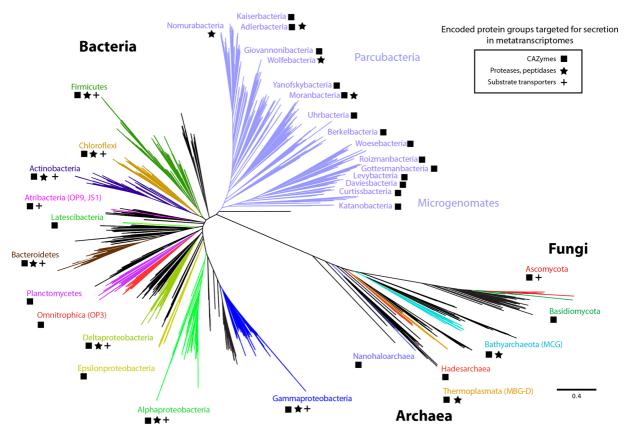


Figure 6