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Abstract 

 CB1- and CB2- type cannabinoid receptors mediate effects of the endocannabinoids 2-

arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated 

synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via 

presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological 

studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the 

vertebrates, whilst system level studies point to conserved roles for endocannabinoid signalling in 

neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type 

receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona 

intestinalis a CB1/CB2-type receptor (CiCBR) is targeted to axons, indicative of an ancient role for 

cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors 

are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur 

throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of 

endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates 

retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating 

presynaptic TRPV-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a 

phylogenetically widespread phenomenon, and a variety of proteins may have evolved as 

presynaptic (or postsynaptic) receptors for endocannabinoids. 
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1. PREFACE 

 On March 29th 2001 a review titled “The Neurobiology and Evolution of Cannabinoid 

Signalling” was published in Philosophical Transactions of the Royal Society B (1).  It was the first 

review on cannabinoid signalling to be published in this journal. Since then the field of research on 

cannabinoid signalling has grown exponentially. Accordingly, the present article is one of fourteen 

reviews that collectively form an entire journal issue devoted to “Endocannabinoids in nervous 

system health and disease”. Writing of the 2001 review required a survey of approximately 3000 

articles, which was challenging but feasible. Ten years later, by the end of 2011, the PubMed 

database had over 11,000 articles that could be found using the search term “cannabinoid*”. Clearly, 

it is no longer feasible to comprehensively review this field of research in a journal article. Even a 

large book devoted to cannabinoid biology could not cover the range of papers on this topic. 

Therefore, it is necessary in a review such as this to focus on a specific aspect of cannabinoid 

biology and the theme here is “The Evolution and Comparative Neurobiology of Endocannabinoid 

Signalling”, focusing largely on articles that have been published since 2001. 

 In discussing the evolution and comparative neurobiology of endocannabinoid signalling, it 

is necessary to first provide an overview of current understanding of mechanisms of 

endocannabinoid signalling in the group of animals in which this system was discovered – the 

mammals. It is fitting therefore that on March 29th 2001, three landmark experimental papers were 

also published that transformed our understanding of endocannabinoid signalling in the mammalian 

nervous system. Independently, three research groups obtained evidence that postsynaptic 

depolarisation of principal neurons in the hippocampus or cerebellar cortex triggers postsynaptic 

synthesis of endocannabinoids, which then act presynaptically to cause CB1-mediated inhibition of 

neurotransmitter release (2-4) Thus, a mechanism of synaptic plasticity mediated by retrograde 

endocannabinoid signalling was discovered. The concept that endocannabinoids might act as 

retrograde synaptic signalling molecules had been proposed three years earlier based on our 

neuroanatomical observations (5) and a model of this putative signalling mechanism was presented 

Page 3 of 40

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

Evolution and Comparative Neurobiology  Maurice R. Elphick  
 

 4

in the 2001 review article (1). But it was the three other papers published on the 29th March 2001 

that converted a hypothesis into a textbook principle. Within a decade, the field of research on 

endocannabinoid signalling has moved from a marginal position to the centre stage of 21st century 

neuroscience. So looking back, the 29th March 2001 can be thought of as a turning point for 

cannabinoid research and indeed it has been referred to as a Dies Mirabilis for the field (6). 

 

2. INTRODUCTION TO ENDOCANNABINOID SIGNALLING 

 

(a) Discovery of CB1 and CB2 cannabinoid receptors    

 The existence of cannabinoid receptors in the brain was first inferred from the stereoselective 

pharmacological actions of ∆9-tetrahydrocannabinol (∆9-THC), the psychoactive constituent of 

cannabis, and other cannabinoid-type compounds (7). However, demonstration of the existence of 

specific cannabinoid binding sites in the brain using the radiolabelled cannabinoid 3H-CP-55,940 

provided the first solid evidence that cannabinoid receptors exist in the brain (8). Molecular 

characterisation of a protein that confers cannabinoid binding-sites on rodent brain cell membranes 

provided the definitive proof of a receptor and revealed a 473-residue G-protein coupled receptor 

(9), which is now referred to as CB1. This nomenclature distinguishes CB1 from a related G-protein 

coupled receptor known as CB2, which is predominantly associated with immune cells (10). Thus, in 

humans and other mammals there are two G-protein coupled cannabinoid receptors, CB1 and CB2, 

and analysis of CB1-knockout mice and CB2-knockout mice indicates that these two receptors are 

largely responsible for mediating the pharmacological effects of ∆9-THC in mammals (11-13). 

 

(b) Endocannabinoids and enzymes involved in endocannabinoid biosynthesis and inactivation  

 The discovery of CB1 and CB2 pointed to the existence of endogenous ligands for these 

receptors and two such “endocannabinoids” have been identified – N-arachidonoylethanolamide 

(“anandamide”) and sn-2-arachidonoylglycerol (2-AG) (14-16).  
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2-AG is synthesized in the brain by the enzyme diacylglycerol lipase alpha (DAGLα), which 

catalyses cleavage of 2-AG from arachidonic acid containing diacylglycerols (DAGs) (17-19). A 

second diacylglycerol lipase that is related to DAGLα based on sequence similarity has been 

identified and is known as DAGLβ (17). However, whilst DAGLβ can catalyse formation of 2-AG 

in vitro (17), comparative analysis of the brain content of 2-AG in DAGLα- and DAGLβ-knockout 

mice indicates that the contribution of DAGLβ to 2-AG biosynthesis in adult brain is much less 

significant compared to DAGLα (18, 19). 2-AG is inactivated by the enzyme monoacylglycerol 

lipase (MAGL), which cleaves 2-AG into arachidonic acid and glycerol (20-22). Approximately 

85% of brain 2-AG hydrolase activity is attributable to MAGL, whilst the remaining 15% is largely 

attributed to the α/β hydrolases ABH6 and ABH12 (23). 

The mechanisms by which anandamide is synthesized in the brain are not yet fully 

characterised. In vitro studies suggested that anandamide may be synthesized by a two-step 

enzymatic pathway wherein a Ca2+-activated N-acyltransferase transfers a sn-1 arachidonoyl acyl 

group of a phospholipid onto the amine of phosphatidylethanolamine (PE) to generate N-acyl PE 

(NAPE) and then NAPE is converted by a phospholipase D (NAPE-PLD) into anandamide and 

phosphatidic acid (24-27). However, the levels of anandamide in brains from NAPE-PLD-knockout 

mice are not significantly different from wild-type mice, arguing against a role for NAPE-PLD in 

anandamide biosynthesis in the brain. The levels of long-chain saturated N-acylethanolamines are 

substantially reduced in NAPE-PLD knockout mice though, indicating that the primary function of 

NAPE-PLD in the brain may be in biosynthesis of these molecules (28). The physiological roles of 

long-chain saturated N-acylethanolamines in the brain are unknown, but localisation of NAPE-PLD 

in the axons and axon terminals of sub-populations of neurons in the brain has provided a 

neuroanatomical framework for further investigation of this issue (29). 

Other enzymatic pathways have also been implicated in biosynthesis of anandamide (30-35) 

but, as yet, definite proof that these are involved in in vivo production of anandamide in the brain has 
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not been forthcoming. It is possible that multiple and potentially interacting pathways are involved, 

which may make it difficult to pinpoint roles for particular enzymes.   

Whilst our knowledge of mechanisms of anandamide biosynthesis in the brain remains 

incomplete, enzymes that catalyse inactivation of anandamide have been identified. In 1996 Cravatt 

et al. identified an enzyme known as fatty acid amide hydrolase (FAAH), which converts 

anandamide to arachidonic acid and ethanolamine (36) and subsequent analysis of FAAH knockout-

mice and mice treated with selective FAAH inhibitors have demonstrated that FAAH has a major 

role in regulation of anandamide levels in the brain (37, 38). In humans, but not rodents, there is a 

second FAAH-like enzyme, which is known as FAAH-2 (39). Analysis of the biochemical properties 

of FAAH-2 reveals that it associated with lipid droplets in cells and hydrolyses anandamide at rates 

30-40% of those of FAAH (40). Furthermore, cyclooxygenase-2 (COX-2) also contributes to the 

metabolism of anandamide in neurons and other cell types (41, 42). 

Lastly, evidence for and against the existence of proteins involved in transport of 

endocannabinoids has been reported (43, 44) and recently it was proposed that a catalytically silent 

isoform of FAAH (FAAH-like anandamide transporter or FLAT) may drive anandamide transport 

into neurons (45). 

 

(c) Putative regulators of cannabinoid receptor signalling  

The existence of proteins that regulate the activity of G-protein coupled receptors (GPCRs) is 

well established. These include proteins such as G-protein coupled receptor kinases (GRKs), which 

phosphorylate serine and threonine residues in GPCR C-terminal of tails following G-protein 

dissociation, and arrestins, which bind to C-terminally phosphorylated GPCRs and then block 

interaction with G-proteins and mediate receptor internalisation (46). However, these are generic 

GPCR-interacting proteins that regulate the activity of many GPCRs. In addition to these generic 

GPCR-interacting proteins, other proteins that only interact with specific GPCRs have been 
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identified. For example, the melanocortin receptor accessory protein MRAP mediates targeting of 

MC2-type melanocortin receptors to the cell surface in adrenal cells (47-49). 

 The first report of candidate cannabinoid receptor interacting proteins (CRIPs) was published 

in 2007 (50). Deletion of the C-terminal region of the CB1 receptor had been found to alter CB1 

signalling (51) and it was postulated that accessory proteins binding to this region of the receptor 

may modulate CB1 activity. Using a polypeptide corresponding to the C-terminal 55 residues of the 

CB1 receptor as bait, a yeast two-hybrid screen was employed to identify potential interacting partner 

proteins expressed in human brain. A 128 residue protein was identified as a positive hit and analysis 

of its sequence revealed that it is encoded by a gene containing four exons (1, 2, 3a and 3b) that is 

subject to alternative splicing, with exons 1, 2 and 3b encoding the 128 residue protein and exons 1, 

2 and 3a encoding a 164 residue protein (50). Biochemical evidence that both the 164-residue 

protein and the 128-residue protein interact with the C-terminal tail of CB1 was obtained and 

accordingly these two proteins were named cannabinoid receptor interacting protein 1a (CRIP1a) 

and cannabinoid receptor interacting protein 1b (CRIP1b), respectively. Furthermore, co-expression 

of CRIP1a or CRIP1b with CB1 in superior cervical ganglion neurons revealed that CRIP1a, but not 

CRIP1b, suppresses CB1-mediated tonic inhibition of voltage-gated Ca2+ channels, providing 

evidence of a role for CRIP1a in regulation of CB1 signalling (50). More recently, it has been 

reported that co-expression of CRIP1a with CB1 receptors in cultured cortical neurons alters the 

actions of cannabinoids in a neuroprotection assay, inhibiting the neuroprotective effect of a CB1 

agonist (WIN55,212-2) and conferring responsiveness to the CB1 antagonist SR141716 as a 

neuroprotective agent (52). These data provide further evidence that CRIP1a may regulate CB1 

signalling. However, as yet, evidence that CRIP1a regulates CB1 signalling in vivo has not been 

reported and for this we may have to await the characterisation of CRIP1a gene-knockout mice. 

 

(d) Endocannabinoid signalling as a mediator of synaptic plasticity in the nervous system  
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 Thus far, a catalogue of proteins that act as cannabinoid receptors or regulators of 

cannabinoid receptor signalling or catalyse biosynthesis/inactivation of endocannabinoids has been 

presented. However, from a neurobiological perspective our interest is in understanding how these 

proteins work together at the cellular level to enable neurophysiological mechanisms to operate. The 

term “cannabinoid or endocannabinoid signalling” first appears in the literature in 1998 (53, 54) but 

prior to this much was already known about the distribution of the CB1 receptor in the brain and the 

effects of cannabinoids on neurotransmitter release. Based on an analysis of the distribution 

cannabinoid binding sites (using 3H-CP-55,940 autoradiography) combined with lesion studies and 

analysis of patterns of CB1 gene expression (using mRNA in situ hybridisation) it was concluded 

that the CB1 receptor is targeted to the axons and axon terminals of neurons in the brain (55-58). 

This was then confirmed by a series of immunocytochemical studies published in 1998 (5, 59, 60). 

This presynaptic targeting of CB1 receptors in neurons was consistent with electrophysiological 

studies demonstrating that cannabinoids cause inhibition of neurotransmitter release (61). 

Furthermore, evidence that endocannabinoids are released in response to neuronal stimulation was 

reported (62), which suggested that endocannabinoids act as intercellular (not intracellular) 

signalling molecules. A logical extrapolation of these anatomical and physiological observations was 

that endocannabinoids are synthesized postsynaptically and act as retrograde synaptic signalling 

molecules (5), which was subsequently proven to be correct. 

Depolarisation of principal neurons in several brain regions causes CB1-mediated inhibition 

of presynaptic release of the excitatory neurotransmitter glutamate (depolarisation-induced 

suppression of excitation or DSE) and/or CB1-mediated inhibition of presynaptic release of the 

inhibitory neurotransmitter GABA (depolarisation-induced suppression of inhibition or DSI) (2-4). 

DSE and DSI are not observed in DAGLα-knockout mice, indicating that 2-AG mediates these 

mechanisms of synaptic plasticity (18, 19). DAGLα is concentrated postsynaptically in dendritic 

spines that are apposed to CB1-expressing axon terminals (63), which is consistent with the notion 

that 2-AG is synthesized postsynaptically but acts presynaptically. The 2-AG degrading enzyme 
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MAGL is localised presynaptically in the axons of neurons, most notably in glutamatergic neurons 

(20, 64) and the duration of DSI and DSE in MAGL-knockout mice is prolonged when compared to 

wild-type mice, indicating that MAGL controls the temporal dynamics of 2-AG/CB1-mediated 

retrograde synaptic signalling (65, 66). Accordingly, the MAGL inhibitor JZL184 also prolongs the 

duration of DSI and DSE in mice (67).  

  Endocannabinoid signalling also mediates long-term depression (LTD) of synaptic 

transmission. For example, stimulation of cortical glutamatergic input to the striatum causes 

activation of postsynaptic metabotropic glutamate receptors, leading to endocannabioid/CB1-

mediated long-term depression of transmission at excitatory cortico-striatal synapses (68). 

Endocannabioid/CB1–mediated LTD has subsequently been reported in other brain regions and there 

is evidence that, as with DSE and DSI, it is postsynaptic formation of 2-AG that mediates this 

particular form of long-term synaptic plasticity (69). 

The physiological roles of anandamide as an endogenous agonist for CB1 receptors in the 

central nervous system are currently less well characterised when compared to 2-AG. Evidence that 

anandamide may also mediate retrograde signalling at synapses has also been reported (70) and it 

has been suggested that anandamide may mediate tonic endocannabinoid signalling, thereby 

performing a role that is distinct from the transient stimulated release of 2-AG (71). Furthermore, 

there is evidence that anandamide may mediate mechanisms of synaptic plasticity via CB1-

independent molecular pathways. Thus, postsynaptic elevation of intracellular anandamide levels is 

thought to cause LTD via a mechanism mediated by the cation channel TRPV1, which results in 

internalisation of postsynaptic AMPA-type glutamate receptors (6, 70, 72).  

 Whilst our knowledge and understanding of the roles of endocannabinoid signalling at the 

synaptic level have improved dramatically over the last decade, there is still much work to be done 

in linking processes at this level to the systems level. The CB1 receptor is widely distributed in the 

brain but not all neurons express CB1, so why do particular neural pathways in the brain utilise 

endocannabinoid signalling to regulate synaptic transmission, whilst others don’t. Proximate answers 
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to this question will surely emerge as we learn more about the patterns of electrical activity that 

trigger synthesis of endocannabinoids in different regions of the brain and the net behavioural 

consequences of this. However, ultimate answers will only be obtained by comparative analysis of 

the physiological roles of the endocannabinoid system, which may shed light on how over 

evolutionary timescales the endocannabinoid system has been recruited as a regulator of neural 

processes in different lineages. Some roles of the endocannabinoid system in brain function may be 

ancient and highly conserved; other roles may have evolved more recently as neural adaptations that 

are unique to particular lineages. If we are to understand endocannabinoid signalling it will be 

necessary to explore the physiological roles of this system throughout the animal kingdom, and 

already important insights are beginning to emerge from comparative studies on non-mammalian 

animals, as discussed below. 

 

3. THE PHYLOGENETIC DISTRIBUTION AND EVOLUTION OF ENDOCANNABINOID 

SIGNALLING  

 

 Canonical endocannabinoid signalling in the mammalian nervous system, as it is currently 

understood, could be characterised as a process in which postsynaptic formation of 2-AG by 

DAGLα in response to depolarisation-induced Ca2+ elevation or activation of metabotropic receptors 

coupled via G-proteins to PLC causes inhibition of neurotransmitter release when 2-AG binds to 

presynaptic CB1 receptors, with the spatial and temporal dynamics of this signalling mechanism 

being controlled by presynaptic degradation of 2-AG by MAGL. Thus, in investigating the 

evolutionary origins of endocannabinoid signalling, one could specifically investigate the 

phylogenetic distribution DAGLα, MAGL and CB1-type receptors. However, this would be a rather 

narrowly defined view of endocannabinoid signalling in the nervous system. It is true to say that at 

present our understanding of the physiological role of anandamide as an endogenous ligand for CB1   

receptors is incomplete by comparison with 2-AG. Nevertheless, the phylogenetic distribution of 
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enzymes involved or implicated in anandamide biosynthesis or inactivation is of interest. Likewise, 

it is important to investigate the phylogenetic distribution of proteins implicated as regulators of CB1   

signalling such as CRIP1a and CRIP1b, because this may inform understanding of their proposed 

functions. Whilst CB1 is by far the most abundant cannabinoid receptor in the mammalian nervous 

system, there is evidence that CB2 may have important roles in neural functions (73) and therefore 

the phylogenetic distribution of CB2 receptors is also of interest from a neurobiological perspective. 

 

(a) The phylogenetic distribution of CB1/CB2-type cannabinoid receptors  

 As mediators of the pharmacological effects of ∆9-THC and the physiological actions of 

endocannbinoids, the G-protein coupled cannabinoid receptors CB1 and CB2 are the focal points for 

a phylogenetic survey of endocannabinoid signalling. CB1 and CB2 share more sequence similarity 

with each other (~44%) than with any other mammalian G-protein coupled receptors, indicating that 

they originated by duplication of a common ancestral gene (i.e. they are paralogs). Furthermore, the 

relatively low level of sequence similarity shared by CB1 and CB2 receptors in mammals is 

suggestive of an evolutionarily ancient gene duplication. Analysis of the phylogenetic distribution of 

CB1 and CB2 receptors indicates that the gene duplication that gave rise to these two receptors 

occurred in a common ancestor of extant vertebrates, probably concurrently with a whole-genome 

duplication event. Thus, CB1 and CB2 receptor genes can be found in the genomes of non-

mammalian tetrapod vertebrates (amphibians e.g. Xenopus tropicalis; birds e.g. Gallus gallus) and in 

bony fish (e.g. the zebrafish Danio rerio) (74, 75). Interestingly, in teleosts duplicate copies of CB1 

or CB2 genes are found, attributable to a genome-duplication in a common ancestor of teleosts 

followed by subsequent lineage-specific retention/loss of duplicate genes. Thus, in the zebrafish 

Danio rerio there is one CB1 gene and two CB2 genes, whereas in the puffer fish Fugu rubripes there 

are two CB1 genes and one CB2 gene. However, the functional significance of the differential 

retention of duplicate CB1 or CB2 genes in different teleost lineages is currently unknown (74, 75). 
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 To date there are no published reports of CB1 and CB2 genes in the most basal of the extant 

vertebrate orders – the chondrichthyes (e.g. sharks and rays) and the agnathans (e.g. lampreys and 

hagfish). However, unpublished genome sequence data are available for the elephant shark 

Callorhinchus milii (http://esharkgenome.imcb.a-star.edu.sg/) and the sea lamprey Petromyzon 

marinus (http://genome.wustl.edu/genomes/view/petromyzon_marinus) and in both species a gene 

encoding a CB1-type receptor can be found. Interestingly, a CB2-type receptor gene is not evident in 

the currently available genome sequence data, which may simply reflect incomplete sequence data or 

perhaps more interestingly may reflect loss of CB2 receptor genes in these basal vertebrates. 

 Genes encoding CB1/CB2-type receptors have been found in the invertebrate groups that are 

most closely related to the vertebrates (urochordates, e.g. CiCBR in Ciona intestinalis; 

cephalochordates, e.g. BfCBR in Branchiostoma floridae) but not in the non-chordate invertebrate 

phyla (74, 76-79). Thus, it appears that CB1/CB2-type receptors are unique to the phylum Chordata 

and as such they have a rather restricted phylogenetic distribution in the animal kingdom.  

 

(b) The phylogenetic distribution of DAG lipases 

 The antiquity of DAG lipases is evident in the strategy that led to the discovery of the 

mammalian enzymes DAGLα and DAGLβ - the sequence of a DAG lipase originally identified in 

the bacterium Penicillium was used to identify related proteins in BLAST searches of the human 

genome sequence (17). This indicates that DAG lipases are an ancient enzyme family that originated 

in prokaryotes. Submission of human DAGLα and human DAGLβ as query sequences in BLAST 

searches of the GenBank protein database reveals orthologs of both isoforms in deuterostomian 

invertebrates and protostomian invertebrates. Thus, the gene duplication that gave rise to DAGLα or 

DAGLβ dates back at least as far as the common ancestor of extant bilaterian animals.  

 

(c) The phylogenetic distribution of MAG lipase 
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 MAG lipase (MAGL) was originally discovered on account of its role in fat metabolism (80) 

and subsequently it was proposed that MAGL may regulate 2-AG levels in the brain (20). 

Submission of human MAGL as a query sequence in BLAST searches of the GenBank protein 

database reveals orthologs in a wide range of animal species, including deuterostomian invertebrates, 

protostomian invertebrate and basal invertebrates such as cnidarians (Nematostella vectensis) and 

placozoans (Trichoplax adhaerens). Therefore, MAGL was present in the common ancestor of 

extant animals. However, there has been loss of MAGL in some lineages; for example, in 

Drosophila and other insects. Interestingly, MAGL is also found in poxviruses, which is probably a 

consequence of horizontal gene transfer from host species (81). 

 

(d) The phylogenetic distribution of NAPE-PLD as an enzyme implicated in anandamide 

biosynthesis 

 Although analysis of NAPE-PLD knockout mice indicates that NAPE-PLD is not responsible 

for synthesis of the bulk of anandamide in the brain (28), this does not rule out the possibility that 

NAPE-PLD participates in anandamide biosynthesis in other organs and organisms. Therefore, it is 

of interest to determine the phylogenetic distribution of NAPE-PLD with respect to the evolution of 

endocannabinoid signalling. Orthologs of NAPE-PLD are found throughout the animal kingdom, in 

non-mammalian vertebrates, deuterostomian invertebrates (e.g. the sea urchin Strongylocentrotus 

purpuratus), protostomian invertebrates (e.g. the crustacean Daphnia pulex and the nematode C. 

elegans) and basal invertebrates such as the cnidarian Nematostella vectensis and the placozoan 

Trichoplax adhaerens. However, as with MAGL, there has been loss of NAPE-PLD in some 

lineages. For example, orthologs of NAPE-PLD are not present in Drosophila and other insects, the 

urochordate Ciona intestinalis and the cephalochordate Branchiostoma floridae. The functional 

significance of NAPE-PLD loss in some animal lineages is currently unknown. However, 

biochemical analysis of species that lack NAPE-PLD may provide useful new insights on NAPE-

PLD-independent mechanisms of N-acylethanolamine biosynthesis.     
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(e) The phylogenetic distribution of FAAH and FAAH-2 

 Analysis of the phylogenetic distribution of FAAH and FAAH2 indicates that the gene 

duplication that gave rise to these related proteins probably predates the origins of the first animals 

with nervous systems. However, in addition to the loss of FAAH2 in rodents (see above), there are 

other examples of lineage-specific loss of FAAH or FAAH2. For example, only a FAAH2 ortholog 

is found in Drosophila and other insects.  

  

(f) The phylogenetic distribution of CRIP1a and CRIP1b 

Analysis of the phylogenetic distribution of CRIP1a and CRIP1b in mammals reveals that, 

whilst CRIP1a is found throughout the mammals, CRIP1b may be unique to catarrhine primates. For 

example, orthologs of human CRIP1b can be found in the chimpanzee Pan troglodytes, the gibbon 

Nomascus leucogenys and the rhesus monkey Macaca mulatta. Thus, it appears that exon 3b of the 

human CRIP1 gene, which is unique to CRIP1b, may have originated relatively recently in 

mammalian evolution. The functional significance of this is unknown and it will be interesting to 

investigate the roles of CRIP1b in brain function. 

Unlike the restricted phylogenetic distribution of CRIP1b, CRIP1a has a much wider 

phylogenetic distribution that extends throughout much of the animal kingdom. Indeed orthologs of 

CRIP1a can be found in basal invertebrates such as the cnidarian Nematostella vectenses, indicating 

that CRIP1a is very ancient protein with origins dating back to the first animals with nervous 

systems. Accordingly, orthologs of human CRIP1a are found throughout the vertebrates and in 

deuterostomian invertebrates (e.g. in the cephalochordate Branchiostoma floridae and in the 

hemichordate Saccoglossus kowalevski) and protostomian invertebrates (e.g. in the insect Bombus 

impatiens and in the nematode Caenorhabditis elegans). This contrasts with the much more 

restricted phylogenetic distribution of CB1/CB2-type cannabinoid receptors, which, as highlighted 

above, are only found in vertebrates and invertebrate chordates. What this suggests is that CRIP1a is 
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evolutionarily much more ancient than the CB1 receptor protein that it is thought to interact with. We 

can infer from this that CRIP1a must have other physiological roles in cells in addition to its 

proposed interaction with CB1 receptors. 

 

 

4. COMPARATIVE NEUROBIOLOGY OF ENDOCANNABINOID SIGNALLING 

 

(a) Neurobiology of CB1/CB2-type endocannabinoid signalling in non-mammalian vertebrates

 Given that a great deal is now known about the role of endocannabinoid-CB1 signalling in 

mediating retrograde signalling at synapses in the mammalian brain, it is pertinent to pose the 

question: is there evidence that endocannabinoid-CB1 mediated retrograde signalling operates at 

synapses in the central nervous systems of non-mammalian vertebrates? Addressing this question 

may shed light on the evolutionary origin of this particular mechanism of synaptic plasticity. Not 

surprisingly, direct evidence from electrophysiological studies comparable to those carried out on 

rodent brain slices is sparse. The strongest evidence can be found in an impressive series of studies 

investigating the roles of endocannabinoid signalling in the spinal neuronal network that controls 

swimming in the lamprey Lampetra fluviatilis. Collectively, the data obtained indicate that 2-AG is 

synthesized postsynaptically by neurons in the spinal locomotor network and acts presynaptically to 

inhibit both excitatory and inhibitory neurotransmission via CB1-mediated mechanisms. 

Furthermore, nitric oxide and endocannabinoid signalling interact to regulate the 

frequency/amplitude of the locomotor rhythm by differentially modulating excitatory and inhibitory 

inputs to motoneurons (82-85). Thus, it appears that 2-AG/CB1-mediated regulation of excitatory 

and inhibitory neurotransmission is a highly conserved mechanism throughout the vertebrates. 

Consistent with this hypothesis, recent electrophysiological studies have demonstrated that 

endocannabinoid-CB1 signalling mediates DSE and metabotropic glutamate receptor - induced LTD 

in area X of the zebra finch brain (Thompson and Perkel, 2011). Furthermore, immunocytochemical 
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analysis of CB1   expression in the nervous systems of non-mammalian vertebrates reveals patterns 

of expression consistent with axonal targeting and presynaptic sites of action (86-89). 

Given the key role that DAGLα has in postsynaptic formation of 2-AG as a mediator of 

retrograde synaptic signalling in the mammalian CNS, it would be interesting to determine whether 

DAGLα is located in the somatodendritic compartment of neurons postsynaptic to CB1-expressing 

axons in non-mammalian vertebrates. However, whilst the existence of DAGLα in non-mammalian 

vertebrates is confirmed by comparative analysis of genome sequence data (see above), detailed 

neuroanatomical analyses of DAGLα expression in the CNS of non-mammalian vertebrates have not 

yet been conducted. 

 It is perhaps not surprising that the physiological roles of 2-AG/CB1-mediated 

endocannabinioid signalling at the sub-cellular/cellular level are conserved throughout the 

vertebrates. Are, however, the roles of endocannabinoid signalling also conserved at the system level 

e.g. with respect to the regions of the CNS where the CB1 receptor is expressed and the 

physiological/behavioural processes that the endocannabinoid signalling system regulates? To 

address this question, we must look to a currently rather limited number of neuroanatomical and 

behavioural studies of the cannabinoid system in non-mammalian vertebrates. 

 Developmental analysis of the zebrafish Danio rerio reveals CB1 mRNA expression in cells 

located in the presumptive preoptic area of the diencephalon at 24 hours post-fertilization (pf) and by 

48 hours expression is observed in the telencephalon, the hypothalamus, the tegmentum and the 

hindbrain (ventral to cerebellum). In adult zebrafish, CB1 mRNA expression is observed in the 

anterior region of the telencephalon and in the periventricular medial zone and central zone of the 

dorsal telencephalon. Expression is also evident in the hypothalamus and posterior tuberculum 

(diencephalon) and in the torus longitudinalis (mesencephalon) (90). Complementing the use of in 

situ hybridisation techniques by Lam et al. for analysis of CB1 mRNA expression in Danio rerio, 

Cottone et al. have used immunocytochemical techniques to investigate the distribution of the CB1 

protein in the cichlid Pelvicachromis pulcher (86, 91). Immunostained neurons and/or fibres were 
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observed in several brain regions including the telencephalon, the preventricular preoptic nucleus, 

the lateral infundibular lobes of the hypothalamus, the pretectal central nucleus and the posterior 

tuberculum. 

In amphibians, the distribution of CB1 mRNA in the brain of the rough skinned newt Taricha 

granulosa has been examined using mRNA in situ hybridisation methods, revealing a widespread 

pattern of expression with CB1 mRNA detected in the telencephalon (olfactory bulb, the pallium and 

amygdala), the diencephalon (preoptic area and thalamus), the mesencephalon (tegmentum and 

tectum) and the hindbrain (cerebellum and stratum griseum) (92). Complementing the use of in situ 

hybridisation techniques by Hollis et al. for analysis of CB1 mRNA expression in Taricha, Cesa et 

al. have used immunocytochemical techniques to investigate the distribution of CB1   in the brain of 

Xenopus leavis, revealing CB1-immunoreactive cells and/or fibres in the olfactory bulbs, dorsal and 

medial pallium, striatum, amygdala, thalamus, hypothalamus, mesencephalic tegmentum and 

cerebellum (87). CB1-immunoreactivity is also present in the dorsal and central fields of the Xenopus 

spinal cord, regions that correspond to laminae I-IV and X of the mammalian spinal cord (88). 

 In birds, CB1 expression has been analysed in the brain of the chick Gallus gallus (93), the 

zebra finch Taeniopygia guttata (89) and the budgerigar Melopsittacus undulates (94), revealing 

some patterns of expression that are strikingly similar to findings in mammals (57, 95). For example, 

high levels of CB1 expression are observed in the hippocampus and amygdala and, as in mammals, 

in the cerebellar cortex the CB1 gene is expressed in granule cells and the receptor protein is targeted 

to parallel fibres in the molecular layer. 

 Detailed descriptions of the distribution of CB1 receptor expression in the CNS provide 

valuable frameworks for further investigation of the roles of the endocannabinoid signalling system 

in non-mammalian vertebrates. However, the number of species analysed thus far are too few to 

enable any meaningful general conclusions on how the neuroarchitecture the cannabinoid signalling 

system has been shaped by lineage-specific changes in brain organisation over evolutionary time 

scales. Nevertheless, the expression of CB1 in so many different brain regions suggests that 
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endocannabinoid signalling has been a fundamental and widely employed mechanism of synaptic 

plasticity throughout more than 400 million years of vertebrate brain evolution. Moreover, there is 

evidence that at least some of the physiological/behavioural roles of endocannabinoid signalling that 

have been discovered in mammals are also applicable to non-mammalian vertebrates, suggesting 

evolutionarily ancient origins. 

Some of the most striking actions of CB1 cannabinoid receptor agonists in mammals are 

dose-dependent modulatory effects on locomotor activity (96). These behavioural effects are 

consistent with abundant expression of the CB1 receptor in brain regions involved in initiation (basal 

ganglia) and co-ordination (cerebellum) of movement (1). Furthermore, consistent with the notion 

that CB1 has an evolutionarily ancient role in neural pathways that control movement, Valenti et al. 

have reported that the CB1 receptor antagonist AM 251 (1µg/g body mass) causes a reduction in 

locomotor activity in the goldfish Carassius auratus (97). Behavioural effects of drugs that bind to 

the CB1 receptor have also been investigated in an amphibian species, the rough skinned newt 

Taricha granulosa, revealing an inhibitory effect on spontaneous locomotor activity and courtship 

clasping behaviour (98). Likewise, the cannabinoid WIN 55,212-2 causes inhibition of locomotor 

activity in the zebra finch (99). 

The brain endocannabinoid system is also involved in regulation of appetite and feeding in 

mammals (100), and again there is evidence that this role may be evolutionarily ancient. A study by 

Valenti et al. on the goldfish Carassius auratus found that food deprivation was accompanied by a 

significant increase in anandamide (but not 2-AG) in the telencephalic region of the brain and 

intraperitoneal injection of anandamide (1 pg/g body mass) caused an increase in food intake within 

2 h of administration (97). Soderstrom et al. report that in the zebra finch a reduction in food 

availability causes elevation of 2-AG in the caudal telecephalon and a CB1-mediated reduction in 

song-stimulated brain expression of the transcription factor ZENK and a CB1-mediated reduction in 

singing (101). Thus, the endocannabinoid system may have a fundamental role in linking 

behavioural activity with food availability.  
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The endocannabinoid signalling system is also involved in mechanisms of learning and 

memory and studies on rodent models have, for example, provided evidence of roles in mechanisms 

of synaptic plasticity in brain regions critical for declarative memory (hippocampus) and in neural 

mechanisms underlying extinction of aversive memories (102). In this aspect of endocannabinoid 

signalling, research on a non-mammalian vertebrate, the zebra finch Taeniopygia guttata, has been 

particularly significant. The zebra finch is an attractive model system for research on neural 

mechanisms of learning because, in a manner analogous to human language acquisition, male zebra 

finches learn a song pattern during juvenile development (103). Ken Soderstrom and colleagues have 

found that cannabinoid exposure during sensorimotor stages of vocal development alters song 

patterns produced later during adulthood (104) with distinct sub-periods of sensitivity (105). 

Consistent with these findings, the CB1 receptor is expressed in brain regions involved in song 

learning (89) and song production (106), with cannabinoid exposure during sensorimotor stages of 

vocal development leading to alterations in CB1 expression and 2-AG levels in the adult brain (107). 

Further investigation of mechanisms of action have revealed that cannabinoid exposure during 

sensorimotor stages of vocal development leads to increased basal expression of the transcription 

factor FoxP2 in the striatum of adult birds, including the area X song region (108) and increased 

dendritic spine densities (109). 

Analysis of the effects of cannabinoids on adult zebra finches reveals an inhibitory effect on 

song production (110) and an associated inhibition of expression of the transcription factor ZENK in 

a brain region that is involved in auditory perception (the caudomedial neostriatum) (111). Adult 

exposure to cannabinoids also causes dose-related inhibitory or stimulatory effects on neuronal 

activity (based on c-fos expression) in brain regions that control vocal motor output (112). 

Thus far, the zebra finch cannabinoid studies have focused primarily on the effects of 

exogenous cannabinoids (in particular WIN 55,212-2) on song learning and song production. This 

has provided insights on how developmental exposure to cannabinoids can lead to permanent 

alterations in brain function and behaviour, which may be highly relevant to an understanding of the 
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risks associated with cannabis use in adolescents (113). With the recent development of drugs that 

selectively inhibit degradation of endocannabinoids (e.g. the MAGL inhibitor JZL184 and the 

FAAH inhibitor PF-3845), it may now be possible to obtain more insights on the physiological roles 

of the endocannabinoid signalling system in learning using the zebra finch as a model system. 

 

(b) Neurobiology of CB1/CB2-type endocannabinoid signalling in invertebrate chordates 

 As highlighted above, the discovery of genes encoding co-orthologs of CB1 and CB2 in the 

urochordate Ciona intestinalis (CiCBR) (77) and in the cephalochordate Branchiostoma floridae 

(BfCBR) (76) revealed that the evolutionary origin of CB1/CB2-type cannabinoid receptors could be 

traced back beyond the vertebrates to the common ancestor of extant chordates. As of yet the 

pharmacological properties of CiCBR and BfCBR have not been determined and although these 

receptors are clearly CB1/CB2-type receptors based on sequence similarity, it should not be assumed 

that CiCBR and BfCBR are necessarily activated by the endocannabinoids 2-AG and anandamide in 

vivo. The G-protein coupled receptors in mammals that are most closely related CB1 and CB2 are 

activated by other lipid signalling molecules – the lysophosphoplipids (114). Therefore, whilst we 

cannot assume that CiCBR and BfCBR are activated by the endocannabinoids 2-AG and 

anandamide, it seems reasonable to assume that these receptors are activated in vivo by 

endocannabinoid/lysophospholipid-like lipid signalling molecules. Thus, determining the identity of 

endogenous ligands for CiCBR and BfCBR is of great interest because it may shed light on how and 

when CB1/CB2-type receptors acquired their property of binding 2-AG and anandamide. 

 Although the pharmacological properties of CiCBR and BfCBR are unknown, some insights 

into the physiological roles of CiCBR have been obtained by investigation of the distribution CiCBR 

expression in Ciona intestinalis using specific antibodies that bind to the C-terminal tail of the 

receptor. These immunocytochemical studies revealed that the ~46 kDa CiCBR protein is 

concentrated in the cerebral ganglion of Ciona, which is located between the inhalent and exhalent 

siphons that confer on this species and other sea squirts a filter-feeding lifestyle. Furthermore, 
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CiCBR-immunoreactivity is localised in a dense meshwork of neuronal processes in the neuropile of 

the cerebral ganglion. CiCBR-immunoreactivity is also present in the axons and axon terminals of 

neurons that project via peripheral nerves over and around the internal surfaces of the inhalent and 

exhalent siphons (115), a pattern of expression consistent with behavioural effects of cannabinoids 

on siphon activity in Ciona (116). 

The axonal targeting of CiCBR in Ciona is intriguing because of its similarity to CB1 

receptor localisation in mammalian CB1-expressing neurons. It suggests that CiCBR may have a 

similar role to CB1 receptors by acting as an axonal regulator of neurotransmitter release. 

Furthermore, it implies that the role of CB1 receptors as presynaptic regulators of neurotransmitter 

release may be very ancient, preceding the gene duplication that gave rise to CB1 and CB2 receptors 

and dating back at least as far as the common ancestor of vertebrates and urochordates. What isn’t 

yet known is the molecular identity of neurotransmitter(s) or neurohormone(s) that are released by 

CiCBR-expressing neurons in Ciona. Is CiCBR expressed in GABAergic and/or glutamatergic 

neurons, as in mammals, or is CiCBR expressed in other types of neurons such as aminergic or 

peptidergic neurons? These are questions that need to be addressed if we are to gain an 

understanding of the physiological roles of CiCBR in Ciona. It would also be interesting to 

determine if BfCBR is expressed by neurons and targeted to axon terminals in Branchiostoma 

floridae. If it is, then this would indicate that the axonal targeting of CB1-type receptors that is seen 

in vertebrates can be traced back to the common ancestor of all extant chordates. 

 It is important to note that because CiCBR and BfCBR are co-orthologs of CB1-type and 

CB2-type cannabinoid receptors, then these receptors in invertebrate chordates may have both CB1-

like and CB2-like functional properties. It is of interest, therefore, that CiCBR is not only expressed 

in neurons but is also present in hemocytes in Ciona (117), which may be indicative of an ancient 

CB2-like role in regulation of immunological processes. Thus, we can imagine a scenario where in 

the invertebrate chordate ancestor of vertebrates a CiCBR/BfCBR-like protein may have had both 

CB1-type and CB2-type functions and following duplication of the gene encoding a CiCBR/BfCBR-
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like protein the duplicated receptors diverged and acquired their more specific CB1-type and CB2-

type functions. Clearly this is speculative but it provides a rationale for further investigation of the 

physiological roles of CiCBR and BfCBR and the physiological roles of CB1-type and CB2-type 

cannabinoid receptors in non-mammalian vertebrates.       

 

(c) Neurobiology of non-CB1/CB2 mediated endocannabinoid signalling in invertebrates 

 

 Whilst CB1/CB2-type receptors do not occur in the majority of invertebrates, as highlighted 

above, the biochemical pathways for biosynthesis/inactivation of 2-AG and anandamide occur 

throughout the animal kingdom. Therefore, it is of interest to review evidence of non-CB1/CB2 

mediated endocannabinoid signalling in the nervous systems of invertebrates. 

 

(i) Non-chordate deuterostomes - echinoderms and hemichordates 

 Effects of cannabinoids and endocannabinoids on fertilisation in the sea urchin 

Strongylocentrotus purpuratus (118) and the occurrence of an endocannabinoid-like signalling 

system in embryonic and larval sea urchins (Buznikov et al. 2010) have been reported. Furthermore, 

opportunities to investigate the existence and functions of endocannabinoid-like signalling systems 

in echinoderms and hemichordates have been facilitated recently by sequencing of the 

transcriptomes/genomes of the sea urchin Strongylocentrotus purpuratus and the hemichordate 

Saccoglossus kowalevskii (119-121). 

 

(ii) Lophotrochozoan protostomian invertebrates – annelids 

 Investigation of a putative endocannabinoid-like signalling system in annelids has largely 

focussed on the medicinal leech Hirudo medicinalis, which is a well-established model system in 

neurobiology. In 1997, Stefano et al. reported the sequence of a putative leech cDNA encoding a 

partial (153 amino-acids) protein sequence sharing significant similarity with mammalian CB1   
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cannabinoid receptors (122). However, subsequent analysis of the sequence revealed that it was 

chimeric, with a central region sharing 98% identity with the bovine adrenocorticotropic hormone 

(ACTH) receptor and outer regions sharing 65-68% identity with mammalian CB1   receptors (123). 

Horizontal transfer of bovine DNA to leeches that feed on bovine blood was offered as a possible 

explanation for this unusual sequence (123) but perhaps a more likely explanation is that the 

sequence is an artefact (1). More recently, the genome of the leech Hellobdella robusta has been 

sequenced (http://genome.jgi-psf.org/Helro1) and analysis of the genomic sequence data does not 

reveal the presence of any CB1-like genes, consistent with analysis of genomic sequence data from 

other protostomian invertebrates. However, there is evidence that an endocannabinoid-like system 

may exist in leeches and other annelids. 

 Detection of binding sites for 3H-anandamide in cell membranes derived from the CNS of 

Hirudo medicinalis suggested the presence of putative receptors for this molecule (122), whilst 

binding sites for the cannabinoid 3H-CP55,940 have been detected in the nervous system of another 

annelid species, the earthworm Lumbricus terrestris (79). Moreover, the detection of both 

anandamide and 2-AG and associated enzymatic activities in extracts of leech ganglia indicates that 

the biosynthetic machinery for synthesis of these molecules exists in annelids (124). 

 Building upon these biochemical studies are a recent series of papers by Brian Burrell and 

colleagues that have provided evidence that an endocannabinoid signalling system modulates 

synaptic transmission in the leech Hirudo medicinalis. Li and Burrell found that in the polysynaptic 

pathway from touch-sensitive mechanosensory neurons (T) to S interneurons in Hirudo, long-term 

depression (LTD) of synaptic transmission is observed following low frequency electrical 

stimulation (1 Hz) for 450 s or 900 s. LTD elicited by 450 s low frequency stimulation was blocked 

by NMDA receptor antagonists but LTD elicited by 900 s low frequency stimulation was unaffected 

by NMDA receptor antagonists. Interestingly, LTD elicited by 900 s low frequency stimulation was 

blocked by the cannabinoid receptor antagonist AM251 and by the DAG lipase inhibitor RHC80267, 

suggesting the involvement of an endocannabinoid-like signalling mechanism in this particular form 
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of synaptic plasticity. Importantly, application of 2-AG or the cannabinoid receptor agonist CP-

55,940 induced LTD of the T-S synaptic pathway, providing further evidence of an 

endocannabinoid-like mechanism of synaptic plasticity in the leech (125). 

Further characterisation of this system has revealed that LTD elicited by 900 s low frequency 

stimulation requires activation of metabotropic serotonin receptors and is dependent on Ca2+ 

elevation in the S interneuron, mediated by voltage-gated Ca2+ channels and intracellular inositol 

triphosphate receptors. Furthermore, this particular form of LTD also involves stimulation of nitric 

oxide synthase and a decrease in cAMP signalling (126). However, because synaptic plasticity is 

being examined here in the context of a polysynaptic pathway, mechanistic interpretation of these 

findings is complicated. Nevertheless, given that CB1/CB2-type cannabinoid receptors do not exist in 

annelids and other protostomian invertebrates, these findings raise intriguing questions concerning 

the molecular nature of the putative receptors that mediate effects of endogenous or exogenous 2-AG 

(and other related lipids) in the nervous system of the leech. 

 Research on mammalian models has provided evidence that transient receptor potential 

vanilloid (TRPV)-type receptors are activated by endocannabinoids in vitro and mediate in vivo 

effects of endocannabinoids (72, 127). Thus, Burrell and colleagues have investigated TRPV-type 

receptors as potential mediators of endocannabinoid-dependent LTD in the leech nervous system. In 

the leech there are three types of cutaneous mechanosensory neurons: low threshold touch (T), 

moderate threshold pressure (P) and high threshold nociceptive (N) neurons, all of which synapse 

onto the longitudinal motor neuron (L cell), which controls contraction during whole-body 

shortening. Low-frequency stimulation of the T neurons induces heterosynaptic LTD of 

glutamatergic transmission at the N-to-L synapse and, importantly, Yuan and Burrell found that this 

was blocked by DAG lipase inhibitors and the TRPV antagonists capsazepine and SB 366791. 

Furthermore, application of 2-AG and the TRPV agonist capsaicin mimicked LTD at the N-to-L 

synapses and these effects of 2-AG and capsaicin were blocked by capsazepine. Pre-treatment with 

2-AG or capsaicin occluded subsequent expression of LTD induced by low-frequency stimulation. 
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Finally, presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both low-

frequency stimulation-induced and 2-AG-induced LTD, indicating that presynaptic TRPV-type 

receptors mediate LTD at the N-to-L synapse. Collectively, these findings indicate that low-

frequency stimulation of T neurons stimulates postsynaptic synthesis of 2-AG or a 2-AG-like 

molecule in L neurons, which then acts in a retrograde manner to inhibit heterosynaptic 

neurotransmitter release by N neurons via a TRPV-type receptor mediated mechanism (128). 

Evidence that presynaptic TRPV-type receptor mediated LTD may be a widespread 

mechanism of synaptic plasticity in the leech nervous system has been obtained in a subsequent 

study using the leech T-S synaptic pathway as a model preparation (129). LTD is induced when a 

spike train is triggered in the S cell 1-10 s prior to stimulation of the T cell and this is blocked by 

perfusion of the preparation with the cannabinoid receptor antagonist AM251 or the DAG lipase 

inhibitor RHC80267 and by injection of the DAG lipase inhibitor tetrahydrolipstatin into the S cell. 

Perfusion with the TRPV anatagonist capsazepine also blocked LTD induced by a spike train in the 

S cell 1-10 s prior to stimulation of the T cell. This effect of capsazepine was observed when it was 

injected into the T cell but not when it was injected into the S cell. Thus, it appears that mechanisms 

of LTD involving postsynaptic synthesis of 2-AG or 2-AG-like molecules by DAG lipase and 

presynaptic activation of TRPV-type receptors occur widely in the leech nervous system. These 

findings raise interest in determination of the molecular identity of the putative TRPV-type receptors 

that mediate LTD in the leech nervous system. This would enable investigation of the cellular 

distribution of these receptors in the leech nervous system and comparison of their molecular 

properties with mammalian TRPV receptors. Likewise, it would be interesting to investigate the 

expression of DAG lipases in the leech nervous system at a cellular and sub-cellular level to assess 

DAG lipases as potential sources of 2-AG or 2-AG-like molecules that mediate LTD via retrograde 

synaptic signalling mechanisms.   

The discovery of LTD mediated by 2-AG or 2-AG-like molecules and TRPV-type receptors 

in the leech nervous system suggest that endocannabinoid-mediated retrograde synaptic signalling is 
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an evolutionarily ancient mechanism that predates the origins of CB1/CB2-type cannabinoid 

receptors in chordates. If this is correct, these mechanisms of synaptic plasticity may also operate in 

the nervous systems of other invertebrates (see below). Thus, the findings of Burrell and colleagues 

have paved the way for further investigation of the function of endocannabinoid-type signalling 

mechanisms in the nervous systems of all animals, extending the scope for research on the 

comparative neurobiology of endocannabinoid signalling well beyond the phylum Chordata. 

 

(iii) Lophotrochozoan protostomian invertebrates – molluscs 

 There has been relatively little investigation of endocannabinoid-like signalling systems in 

molluscs. This is perhaps surprising given the importance of molluscs as model systems in 

neurobiology, in particular the gastropod species Aplysia californica and Lymnaea stagnalis (130). 

The discovery that an endocannabinoid-type signalling system mediates synaptic plasticty in the 

leech Hirudo medicinalis, as highlighted above, may act as a stimulus for researchers to investigate 

if similar mechanisms operate in molluscan species. 

Importantly, biochemical studies on bivalve molluscan species have revealed the presence of 

N-acylethanolamines, including anandamide, putative binding sites for anandamide and a FAAH-

like enzymatic activity (131, 132). Furthermore, transcriptomic/genomic sequence data are available 

for molluscan species, including the gastropod Aplysia californica (133) and the bivalve Crassostrea 

gigas (134). Therefore, identification of genes encoding proteins implicated in endocannabinoid 

signalling (e.g. DAG lipases, MAGL, NAPE-PLD, FAAH) is now feasible for molluscan species, 

which will facilitate detailed investigation of endocannabinoid-like signalling systems in molluscan 

species. 

    

(iv) Ecdysozoan protostomian invertebrates – nematodes 

 The nematode Caenorhabditis elegans was the first animal species to have its genome 

sequenced and analysis of this sequence provided the first evidence that CB1/CB2-type cannabinoid 
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receptors do not occur throughout animal kingdom (1). A gene encoding a G-protein coupled 

receptor (C02H7.2) that shares sequence similarity with CB1/CB2-type cannabinoid receptors is 

present in Caenorhabditis elegans, but analysis of its sequence indicates that it is not an ortholog (1, 

78). Nevertheless, binding sites for the cannabinoid 3H-CP-55,940 have been detected in the 

nematode Panagrellus redivivus, suggesting the presence of other non-CB1/CB2-type cannabinoid 

receptors in nematodes (79) 

 The presence of the endocannabinoids anandamide and 2-AG has been specifically 

investigated in nematodes by analysis of three species, Caenorhabditis elegans, Caenorhabditis 

briggsae and Pelodera strongyloides and both anandamide and 2-AG were detected in all three 

species. However, anandamide and 2-AG were not detected in a mutant strain of Caenorhabditis 

elegans (fat-3) that lacks functional activity of the delta-6 desaturase enzyme required for synthesis 

of long chain polyunsaturated fatty acids (including arachidonic acid) (135).  

 Importantly, the physiological roles of anandamide and other N-acylethanolamines (NAEs) in 

C. elegans have recently been investigated, exploiting the use of techniques to manipulate expression 

of genes encoding enzymes involved in NAE metabolism. Suppression of FAAH using RNA 

interference (RNAi) or FAAH inhibitors (URB597) caused an increase in the levels of anandamide 

and other NAEs and overexpression of the faah-1 gene caused a decrease in levels of anandamide 

and other NAEs, demonstrating the importance of FAAH as a regulator NAEs in an invertebrate 

species (136). Furthermore, faah-1 overexpression caused a developmental delay that was rescued 

by faah-1 RNAi, indicating a role for NAEs in promotion of larval development in C. elegans. Peak 

levels of NAEs are detected during the second larval stage (L2) at which time animals are committed 

to reproductive growth, but NAE levels are reduced at L2 in animals committed to an alternative 

diapause stage (dauer) induced by dietary restriction. This suggested that NAEs may act as signals of 

an altered metabolic state and, consistent with this notion, exogenous application of the NAE 

eicosapentaenoyl ethanolamide (EPEA), and to a lesser extent anandamide, was found to rescue 

dauer formation. Worms overexpressing faah-1 also exhibited resistance to thermal stress and 
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increased adult lifespan, whereas application of EPEA caused a reduction in thermotolerance and 

lifespan, most strikingly in animals under dietary restriction. Collectively, the data reported by 

Lucanic et al. indicate that the effect of dietary restriction on lifespan extension is mediated, at least 

in part, by a reduction in NAE signaling. However, the mechanisms by which NAEs exert effects on 

lifespan in C. elegans are as yet unknown and therefore identification of NAE receptors in 

nematodes now represents a fascinating objective for the future. 

 

(v) Ecdysozoan protostomian invertebrates – arthropods 

 Sequencing of the genome of an arthropod species, the insect Drosophila melanogaster, 

provided key evidence that CB1/CB2-type cannabinoids receptors do not occur throughout the animal 

kingdom (1) and this has been supported by sequencing of other arthropod genomes. Nevertheless, 

binding studies using radiolabelled cannabinoids have revealed the presence of putative binding sites 

in a variety of arthropod species (79), although identification of membrane proteins that bind 

cannabinoids has yet to be accomplished for any arthropod species. Evidence that TRPV-type ion 

channels mediate effects of endocannabinoids in the nervous system of the leech Hirudo medicinalis 

(128) points to these proteins as potential endocannabinoid receptors in arthropods. It is noteworthy 

that the prototype for the TRP ion channel family was first discovered in Drosophila as a result of 

molecular analysis of the transient receptor potential (trp) mutant that has a defective 

phototransduction mechanism (137). Interestingly, analysis of phototransduction in Drosophila has 

revealed similarities with mechanisms of 2-AG biosynthesis. Thus, the photon-activated rhodopsin 

protein is coupled via G-proteins to stimulate activation of phospholipase C (PLC) and the 

diacylglycerols (DAGs) generated by PLC are substrates for a DAG lipase that is a homolog of the 

mammalian enzymes DAGLα and DAGLβ. The Drosophila DAG lipase mutant (inaE) is defective 

in photoreceptor responses to light and a DAG metabolite is thought to mediate phototransduction by 

activating TRP and/or TRP-like (TRPL) ion channels (138). However, the identity of the DAG 

metabolite that binds to and activates the TRP/TRPL phototransduction channels is not known, 
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although there is evidence that it may be a polyunsaturated fatty acid (PUFA) (137). This suggests 

the existence and activity of a MAG lipase in the phototransduction pathway, but one has yet to be 

identified. As highlighted above, Drosophila and other insects do not have an ortholog of the MAGL 

enzyme that has such a key role in 2-AG metabolism in mammals. Therefore other as yet 

uncharacterised enzymes may generate endogenous TRP/TRPL ligands from MAG substrates. 

 Interestingly, DAG lipase is not only expressed in Drosophila photoreceptors but is also 

expressed more widely in the brain (138). Therefore, investigation of the physiological roles of DAG 

lipase and its metabolites in the nervous system of Drosophila might be fruitful in revealing the 

existence of an endocannabinoid-like signalling system that regulates synaptic activity in insects and 

other arthropods.  

 

(vi) Cnidarians 

 Cnidarians are considered to be the most primitive animals with nervous systems and 

evidence of an endocannabinoid-like system in the hydrozoan Hydra viridis has been reported (139). 

Sequencing of the genomes Hydra magnipapillata and the anthozoan Nematostella vectensis (140, 

141) has presented new opportunities for molecular analysis of putative endocannabinoid signalling 

mechanisms in the simple nervous systems of these animals. 

 

 

5. CONCLUDING COMMENTS 

The value and importance of non-mammalian animals for cannabinoid research has been 

illustrated here with reference to studies on “model organisms” ranging from leeches to lampreys 

and from zebrafish to zebra finches. However, we should not look upon cannabinoid-related studies 

on non-mammalian animals solely from a utilitarian perspective. Research on the evolution and 

comparative neurobiology of endocannabinoid signalling is intrinsically interesting and there is great 
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potential to deepen our understanding of this aspect of nervous system function by revealing “the art 

of the possible” in the diverse branches of the tree of life. 
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