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Abstract

Covariate-adjusted response-adaptive (CARA) randomization designs use the avail-

able responses to skew treatment allocation proportions towards the better performing

treatment, for a given patient’s covariate profile. Such designs have previously been

developed for two treatments assuming exponentially distributed survival responses.

Designs are obtained here considering Weibull distributed survival responses. The op-

timal treatment allocation proportions are targeted using biased coin procedures. These

sequentially estimated allocation proportions converge to the expected target values,

which are functions of the Weibull regression coefficients. CARA designs for Weibull

survival model are also studied using the distribution function of a Gumbel model as

a link between patient information history and the present allocation. Results show

that the proposed designs are a suitable alternative to balanced randomization designs

according to their powers and type I error rates.

To make CARA designs more applicable, they are developed assuming proportional

hazards of an event at a given time point. Optimal allocation proportions are derived

that are targeted similarly. The estimates of these proportions converge to the expected

target values, which are functions of the Cox regression coefficients. Other non-optimal

CARA designs are also investigated which compete in different characteristics with

the optimal CARA ones and the balanced designs. Simulation results show that the

optimal CARA designs outperform the other designs based on their powers and type I

error rates.

For the application of CARA designs in clinical trials with events due to multiple

causes, they are developed assuming proportional sub-distribution hazards at a given

time point. Optimal allocation proportions for the primary cause of interest are derived

that are targeted similarly. The sequentially estimated allocation proportions for these
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designs converge to the expected target values, which are functions of the Fine and

Gray model coefficients. Simulation results reveal the need of a theoretical procedure

for more complicated semi-parametric survival response models.
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Chapter 1

Introduction

1.1 Introduction

Clinical research is a branch of healthcare science that determines the safety

and efficacy of new interventions intended for human use. It is different from clinical

practice in the way that it collects evidence to establish a treatment, whereas in clinical

practice established treatments are used. A clinical research refers to any test article

from its inception in the lab to its introduction to the consumer market and beyond.

Clinical trials are experiments done in clinical research involving human partici-

pants, and are designed to answer specific questions about biomedical or behavioural

interventions, including new treatments. A clinical trial study can be categorized into

two broad categories:

Interventional study: This is a type of clinical study in which participants are

assigned to groups that receive one or more interventions so that researchers can eval-

uate the effects of the interventions on biomedical or health-related outcomes.

Non-Interventional study: Non-interventional studies refer to studies where the

medical products are prescribed in the usual manner in accordance with the terms of
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the marketing authorisation. The assignment of the patient to a particular therapeutic

strategy is not decided in advance by a trial protocol but falls within current practice

and the prescription of the medicine is clearly separated from the decision to include

the patient in the study. No additional diagnostic or monitoring procedures are applied

to the patients and epidemiological methods are used for the analysis of collected data.

The main focus of the entire thesis would be on developing advanced strategies in

order to aid healthcare industries design a Phase III interventional study where two

competing treatments are being compared in terms of its efficacy on human patients’

survival responses which are sequentially available during the course of the trial.

1.2 Journey of a test article during the process of

a Clinical Trial

After the discovery of a test article or a molecule in the laboratory, it goes through

different stages of experiments before being established as a final marketing product for

human well-being. Once the molecule is identified in the laboratory, it is subjected to

pre-clinical studies or animal studies where different aspects of the test article, including

its safety, toxicity if applicable, and efficacy if possible at this early stage, are studied.

Results obtained from the pre-clinical studies or other supporting evidence, are submit-

ted in support of an Investigational New Drug (IND) application to the Food and Drug

Administration (FDA) for review prior to conducting clinical studies that involve hu-

mans. A clinical research may require the approval of Institutional Review Board (IRB)

or Research Ethics Board (REB) and possibly other institutional committee reviews,

about prior submission of the research to the FDA. Clinical research review criteria

will depend on which federal regulations the research is subject to and will depend

on which regulations the institutions subscribe to, in addition to any more stringent

criteria added by the institution possibly in response to state or local laws/policies or

accreditation entity recommendations. This additional layer of review (IRB/REB in

particular) is critical to the protection of human subjects especially when one considers
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that often research subject to the FDA regulation for prior submission is allowed to

proceed, by those same FDA regulations, 30 days after submission to the FDA unless

specifically notified by the FDA not to initiate the study. Therefore ethics plays a very

significant role behind the sucess of any clinical research.

After the pre-clinical approval, the molecule enters the clinical phases of the re-

search. Clinical trials involving new drugs are commonly classified into five phases.

Each phase of the drug approval process is treated as a separate clinical trial. The drug-

development process will normally proceed through all the phases over many years. If

the drug successfully passes through phases 0, 1, 2, and 3, it will usually be approved by

the national regulatory authority for use in the general population. Each phase has a

different purpose and helps scientists answer a different question in relation developing

the new intervention. The phases of clinical trials are defined below. Each of the phases

definitions is a functional one and the terms are not defined on a strict chronological

basis.

Phase 0: Phase 0 is a recent designation for optional exploratory trials conducted in

accordance with the United States Food and Drug Administration’s (FDA) 2006 Guid-

ance on Exploratory Investigational New Drug (IND) Studies.This is the FDA(2006)

document often refered to by the clinicians and the biostatisticians. Phase 0 trials

are also known as human microdosing studies and are designed to speed up the de-

velopment of promising drugs by establishing very early on whether the drug behaves

in human subjects as was expected from preclinical studies. Distinctive features of

Phase 0 trials include the administration of single subtherapeutic doses of the study

drug to a small number of subjects (10 to 15) to gather preliminary data on the drug’s

pharmacokinetics (what the body does to the drugs).

A Phase 0 study gives no information on safety or efficacy, being by definition a

dose too low to cause any therapeutic effect. Drug development companies carry out

Phase 0 studies to rank drug candidates in order to decide which has the best phar-

macokinetic parameters in humans to take forward into further development. They

enable go/no-go decisions to be based on relevant human models instead of relying on
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sometimes inconsistent animal data.

Phase I: Formerly referred to as “first-in-man studies”, this phase comprises of

initial safety trials, side effects, best dose, and formulation method for a new medicine.

Since 1990s this phase of clinical research is being referred to as “first-in-human stud-

ies”. An attempt is made here to establish the dose range tolerated by volunteers for

single and for multiple doses. In order to achieve the objectives, a small group of 20 to

100 healthy volunteers are recruited in this phase of clinical trials. These trials are often

conducted in a clinical trial clinic, where the subject can be observed by full-time staff.

The subject who receives the drug is usually observed until several half-lives of the drug

have passed. Phase I trials are also sometimes conducted in severely ill patients (e.g.,

for patients with terminal cancer) or in less ill patients when pharmacokinetic issues are

addressed (e.g. metabolism of a new antiepileptic medicine in stable epileptic patients

whose microsomal liver enzymes have been induced by other antiepileptic medicines).

Pharmacokinetic and pharmacodynamics trials are usually considered Phase I trials re-

gardless of when they are conducted during a medicine’s development. These trials are

usually conducted in tightly controlled clinics called CPUs (Central Pharmacological

Units), where participants receive 24-hour medical attention and oversight.

Phase IIa: This is also referred to as ‘proof of concept’ studies. It involves pilot

clinical trials to evaluate efficacy ( and safety) in selected populations of patients with

the disease or condition to be treated, diagnosed, or prevented. Objectives here may

focus on dose-response, type of patient, frequency of dosing, or numerous other char-

acteristics of safety and efficacy.

Phase IIb: This is also referred to as ‘definite dose-finding’ studies. These are well

controlled trials to evaluate efficacy ( and safety) in patients with the disease or condi-

tion to be treated, diagnosed, or prevented. These clinical trials usually represent the

most rigorous demonstration of a medicine’s optimum dose at which shows biological

activity with minimal side-effects . Sometimes referred to as pivotal trials.
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Phase IIIa: Trials conducted after efficacy of the medicine is demonstrated, but

prior to regulatory submission of a New Drug Application (NDA) or other dossier.

These clinical trials are conducted in patient populations for which the medicine is

eventually intended. Phase IIIa clinical trials generate additional data on both safety

and efficacy in relatively large numbers of patients in both controlled and uncontrolled

trials. Clinical trials are also conducted in special groups of patients (e.g., renal failure

patients) , or under special conditions dictated by the nature of the medicine and dis-

ease. These trials often provide much of the information needed for the package insert

and labeling of the medicine.

Phase IIIb: Clinical trials conducted after regulatory submission of an NDA or

other dossier, but prior to the medicine’s approval and launch. These trials may supple-

ment earlier trials, complete earlier trials, or may be directed toward new types of trials

(e.g., quality of life, marketing) or Phase IV evaluations. This is the period between

submission and approval of a regulatory dossier for marketing authorization.

Phase IV: Studies or trials conducted after a medicine is marketed to provide ad-

ditional details about the medicine’s efficacy or safety profile. Different formulations,

dosages, durations of treatment, medicine interactions, and other medicine comparisons

may be evaluated. New age groups, races, and other types of patients can be studied.

Detection and definition of previously unknown or inadequately quantified adverse re-

actions and related risk factors are an important aspect of many Phase IV studies. If

a marketed medicine is to be evaluated for another (i.e., new) indication, then those

clinical trials are considered Phase II clinical trials. The term post-marketing surveil-

lance is frequently used to describe those clinical studies in Phase IV (i.e., the period

following marketing) that are primarily observational or non-experimental in nature, to

distinguish them from well controlled Phase IV clinical trials or marketing studies.

The usual process of drug development is depicted in Figure 1.1 .The entire process
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Figure 1.1: The Usual Process of Drug Development

of developing a drug from preclinical research to marketing can take several years and

involves a huge amount of money. Therefore the intention of any clinical research is

primarily on making the trial as ethical as possible without compromising much on the

efficiancy of statistical evaluation. An ethical and efficient design can also attract more

patients to paticipate in the clinical trial which can solve the problem of lack of patient

participation in a clinical trial which the pharmaceutical industries often face mainly

for late phase clinical trials. Therefore the role of a statistician becomes very significant

in the whole process of the drug development.

1.3 Role of a Trial Statistician During the Process

of Clinical Research

While performing a clinical research, the team involved in the process of drug develop-

ment is called the clinical trial team (CTT). This team is responsible for the successful

planning, conducting and execution of the trial. The team consists of many functions

such as global trial leader, clinical managers, clinical scientist, data manager, trial

statistician and statistical programmer. The statistical representative on the CTT is

called the Trial Statistcian who would primarily be responsible for creating the Statisti-

cal Analysis Plan, protocol writing, concept sheet writing, inputs to data management
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documents, preparing the Trial Design module which outlines the inclusion and exclu-

sion criteria and also the visit schedule, as well as work on efficient dry run deliveries

and writing of the final clinical study report. When a clinical objective is presented to

a Trial Staitstician, he/she has to develop an appropriate trial design, decide on appro-

priate study endpoints and suggest a suitable analysis method to achieve the objectives.

It is also the responsiility of the trial statistician to calculate appropriate sample size in

the concept sheet to initiate the trial process. This is further documented in the sample

size documentation. This is then further developed in the Protocol and then detailed

in the Statistical Analysis Plan. For an interventional study, the Statistical Analysis

Plan needs to be prepared before the First Patient First Visit (FPFV) date. Based on

the Statistical Analysis Plan, the Trial Statistician then prepares the TFL shells which

outlines all the Tables, Figures and Listing based on the requirement of a medical lead.

The TFL shells play the pivotal role in the dry run delivery of the output and the final

delivery of the efficacy or safety related outputs prior to the database lock, because

the Trial Programmer programs the outputs based on the structure of the reports in

the TFL shell prepared by the Trial Statistician. The TFL shells need to be finalized

by the trial statistician no later than 6 months after the FPFV, whereas the dry run

analysis outputs need to be finally reviewed by the trial statistician atleast 2 months

prior to the Last Patient Last Visit (LPLV) date. In all these processes the design of

the clinical trial plays a very important role as this is the process that generates the

data which answers the primary and secondary objectives of a clinical research. While

preparing all these regulatory documents, the Trial Statistician needs to maintain the

Clinical Data Interchange Standards Consortium (CDISC) standards.

The CDISC is an open, multidisciplinary, neutral, non-profit standards developing

organization (SDO) that has been working through productive, consensus-based col-

laborative teams, since its formation in the year 1997, to develop global standards and

innovations to streamline medical research data and ensure a link with healthcare. The

CDISC vision is “informing patient care and safety through higher quality medical re-

search”. The CDISC suite of standards supports medical research of any type from

protocol through analysis and reporting of results in the clinical study report.
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In parallel to keeping the CDISC vision while preparing the regulatory documenta-

tion, the Trial Staitistician also tries to follow the statistical methods under research

according to the International Council for Harmonisation of Technical Requirements

for Pharmaceuticals for Human Use (ICH). The ICH is unique in bringing together the

regulatory authorities and pharmaceutical industries to discuss scientific and technical

aspects of drug registration. Since its inception in 1990, ICH has gradually evolved,

to respond to the increasingly global face of drug development. ICH’s mission is to

achieve greater harmonisation worldwide to ensure that safe, effective, and high qual-

ity medicines are developed and registered in the most resource-efficient manner. The

efficacy and safety of medicinal products should be demonstrated by clinical trials

which follow the guidance in ’Good Clinical Practice: Consolidated Guideline’ (ICH

E6) adopted by the ICH, 1 May 1996. The role of statistics in clinical trial design

and analysis is acknowledged as essential in that ICH guideline. The proliferation of

statistical research in the area of clinical trials coupled with the critical role of clinical

research in the drug approval process and health care in general necessitate a succinct

document on statistical issues related to clinical trials. The ICH E9 document gives

direction to sponsors in the design, conduct, analysis, and evaluation of clinical trials

of an investigational product in the context of its overall clinical development. The

document also assists scientific experts charged with preparing application summaries

or assessing evidence of efficacy and safety, principally from clinical trials in later phases

of development.

Recognizing the challenges for research and development and trends for productiv-

ity decline, in 2004 the US Food and Drug Administration (FDA) released the Critical

Path Initiative (CPI) and in 2006 they released the Critical Path Opportunities Report

(CPO) . These are two strategic documents that encourage innovation in drug devel-

opment. One aspect of innovation is adaptive designs which are clinical trial designs

that facilitate efficient learning from data in an ongoing trial and allow modification

of certain aspects of the study according to pre-specified criteria to achieve some pre-

determined experimental objectives. This is where the application of sequential and

adaptive randomization procedures has long been an area of active research. The FDA

are now looking forward to a suitable adaptive randomization procedure which can be
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fruitfully applied in real clinical trials as well as one which addresses the ethical objec-

tives of a clinical study without compromising on the statistical efficiency of treatment

comparison.

1.4 Adaptive Design in Clinical Trials

An adaptive design is defined as a clinical trial design that allows for prospectively

planned modifications to one or more aspects of the design based on accumulating data

from subjects in the trial. It can provide a variety of advantages over non-adaptive

designs. These advantages arise from the fundamental property of clinical trials with

an adaptive design: they allow the trial to adjust to information that was not available

when the trial began. The specific nature of the advantages depends on the scientific

context and types of adaptation considered, with potential advantages falling into the

following major categories:

• Statistical efficiency: In some cases, an adaptive design can provide a greater

chance to detect a true drug effect with greater statistical power than a com-

parable non-adaptive design.This is often true, for example, of group sequential

designs and designs with adaptive modifications to the sample size. Alternatively,

an adaptive design may provide the same statistical power with a smaller expected

sample size or shorter expected calendar time than a comparable non-adaptive

design.

• Ethical considerations:There are many ways in which an adaptive design can

provide ethical advantages over a non-adaptive design. For example, the ability

to stop a trial early if it becomes clear that the trial is unlikely to demonstrate

effectiveness can reduce the number of patients exposed to the unnecessary risk

of an ineffective investigational treatment and allow subjects the opportunity to

explore more promising therapeutic alternatives.
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• Advantages in generalizability and improved understanding of drug ef-

fects: An adaptive design can make it possible to answer broader questions than

would normally be feasible with a non-adaptive design. For example, an adaptive

enrichment design may make it possible to demonstrate effectiveness in either a

given population of patients or a targeted subgroup of that population, where a

non-adaptive alternative might require infeasibly large sample sizes. An adaptive

design can also yield improved understanding of the effect of the experimental

treatment. For example, a design with adaptive dose selection may yield better

estimates of the dose-response relationship, which may also lead to more efficient

subsequent trials.

• Acceptability to stakeholders: An adaptive design may be considered more

acceptable to stakeholders than a comparable non-adaptive design because of the

added flexibility. For example, sponsors may be more willing to commit to a

trial that allows planned design modifications based on accumulating informa-

tion. Patients may be more willing to enroll in trials that use response-adaptive

randomization because these trials can increase the probability that subjects will

be assigned to the more effective treatment.

Example: A clinical trial was conducted to evaluate Eliprodil for treatment of pa-

tients suffering from severe head injury (Bolland et al. 1998). The primary efficacy

endpoint was a three category outcome defining the functional status of the patient

after six months of treatment. There was considerable uncertainty at the design stage

about the proportions of patients in the placebo control group who would be expected

to experience each of the three different functional outcomes. An interim analysis was

prespecified to update estimates of these proportions based on pooled, non-comparative

data in order to potentially increase the sample size. This approach was chosen to avoid

a trial with inadequate statistical power and therefore helped ensure that the trial would

efficiently and reliably achieve its objective. The interim analysis ultimately led to a

sample size increase from 400 to 450 patients.
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Dragalin’s (2006) classification of adaptive designs distinguishes four major types of

adaptation:

• Adaptive allocation rule: change in the randomization procedure to modify

the allocation proportion or the number of treatment arms.

• Adaptive sampling rule: change in the number of study subjects or change in

study population.

• Adaptive stopping rule: early stopping due to efficacy, futility, or safety.

• Adaptive decision rule: change in the way decisions will be made about the

trial (e.g., change of endpoint, change of test statistics, etc.).

The current thesis deals with adaptive randomization designs, i.e, the designs that

fall in the first category of Dragalin’s (2006) classification. A general adaptive random-

ization procedure is defined by specifying conditional randomization probabilities of

treatment assignments as follows: Let X(m+1) be a treatment assignment indicator such

that X(m+1) = (1, 0) according to the assignment of the (m+ 1)th patient to treatment

k = (A,B). Let Dm be the data structure that forms the basis for design adaptations.

A general adaptive randomization procedure is defined by specifying conditional ran-

domization probabilities of assignments of patients to a particular treatment arm eg:

Arm A, as follows:

P(m+1),A = P{X(m+1) = 1|Dm}, (1.1)

Depending on the trial objectives, one can distinguish four types of adaptive ran-

domization designs:

• Restricted randomization:

This is the randomization procedure when Dm = {χ1, ..., χm}, the history of

previous patients’ treatment assignments. The goal is to prospectively balance

treatment numbers in the trial.

11



• Covariate-adaptive randomization:

This is the randomization procedure when Dm = {(χ1, z1), ..., (χ1, zm), zm+1},the

history of previous patients’ treatment assignments and covariates, and the covari-

ate vector of the current patient. The goal is to prospectively balance treatment

assignments overall in the trial and across selected covariates.

• Response-adaptive randomization:

This is the randomization procedure when Dm = {(χ1, υ1), ..., (χm, υm)}, the his-

tory of previous patients treatment assignments and responses. The most common

goal is to increase the chance for a patient to be assigned to a potentially better

treatment. Other possible goals may include increasing estimation efficiency of

the desired treatment effect or maximizing the power of a statistical test.

• Covariate-adjusted response-adaptive randomization

This is the randomization procedure whenDm = {(χ1, z1, υ1), ..., (χm, zm, υm), zm+1},

the history of previous patients treatment assignments, responses and covariates,

and the covariate vector of the current patient. The most common goal is to

increase the chance for a patient to be assigned to a potentially better treatment

given the patients covariate profile while maintaining the power of a statistical

test.

The class of adaptive randomization procedures can be extended further by including

adaptive designs with treatment selection for which randomization probabilities for

some treatment arms can be set to 0 throughout the trial.

This thesis is dedicated towards discussing the development of Covariate-adjusted

response-adaptive randomization designs when the response of patients to a particular

treatment arm follow a survival model. Very limited discussion can be found in the lit-

erature about the development of Covariate-adjusted response-adaptive randomization

procedures for survival trials. This is because considering survival responses does not

allow the priviledge of handling independent and identically distributed observations.
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1.5 Survival Responses

Survival responses are concerned with obsevations relating to times to some critical

event, starting from some specific time origin. For example, oncology studies are often

concerned with cancer survival from treatment to death. Here a major objective is to

compare the effectiveness of treatments allowing for the effects of explanatory variables

or factors. Random variables representing time to event outcomes do not always record

a random sample of completed observations. For example, when the survival of patients

following treatment for cancer is being measured, starting in each case with the date of

treatment, some patients who live for a long time, do not have their completed survival

times at the end of the study period. Omitting such observations from the analysis

would clearly introduce a serious bias into the estimation of how long such patients do

in fact survive. Such observations are said to be right-censored and their inclusion in

the analysis in appropriate form is crucial.

There are three different forms of censoring: right-censoring, left-censoring and

interval-censoring; truncation is a somewhat different phenomenon.

• Right-Censoring : This is the most frequently encountered type, at least in

medical applications. Some subjects leave the study before the event occurs, so

one only knows that their survival time X lies in an interval (t,∞). If X is the

survival time, and C is the time until the subject left the study, then in the case

of right-censoring for the ith subject, Ti = min(Xi;Ci) is only observed.

• Left-Censoring : This is much more rarely encountered. Sometimes some sub-

jects have experienced the event before detailed observation commences. Thus

their time to the event lies in the interval [0, T ). It is possible for both right and

left censoring to occur in the same dataset.

• Interval-Censoring :Interval-censoring occurs when it is not clear when the

event occurred. All that is known is that the time to event occurred within

some interval (t1, t2]. This form of censoring often arises when observations are

infrequent, and the event has occurred between two observation times.
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• Left-Truncation : In left-truncation subjects enter the study at times after the

origin for the events of interest and are followed up until the event of interest

occurs or they are lost to followup. Subjects only contribute to the likelihood

once they have entered the study, which will be at particular times greater than

zero, even on their personal time origin bases. If they experience the event before

their observation period starts they will not appear in the study.

• Right-Truncation : Right-truncation refers to studies where subjects are only

observed if they experience the event. Studies based on death records are an

example of this.

Throughout this thesis Covariate-adjusted response-adaptive (CARA) designs are

developed for survival responses which are right-censored, assuming independence be-

tween survival times and censored times. Numerous real-life clinical trials, specially in

the oncology theraputic area, deal with survival endpoints. However there has been very

limited discussion about developing CARA designs for such trials. Sverdlov, Rosen-

berger and Ryzenik (2013) discussed development of CARA designs for exponential

survival responses which are right-censored. Biswas, Bhattacharya and Park (2016)

considered informative random censoring while developing CARA designs for exponen-

tial survival responses. An attempt has been made throughout this thesis to develop

CARA designs further in order to enhance their applicability in real-life survival trials

when observations are right-censored.

1.6 Outline of the Thesis

Chapter 2 of this thesis enhances the scope of applications of CARA designs beyond ex-

ponential survival responses, by considering Weibull distributed survival responses. In

real clinical trials however the response of patients to a treatment infrequently follows

a paramertic model, the scope of application of CARA designs is enhanced further in

Chapter 3 by relaxing any parametric distributional assumption for survival responses
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but considering the hazard of patients at a given time-point to be proportional. Often

in clinical trials especially in the oncology therapeutic area, people are interested in

survival endproints where events occur due to multiple causes. Trial protocols consid-

ering progression free survival as the primary endpoint often encounters such scenario.

CARA designs are developed in Chapter 4 for such specific type of survival trials. This

is followed in Chapter 5 by detailing the summary of the research findings in this thesis

along with its critical evaluation and suggestion on few areas in which CARA designs

can be developed further considering survival responses of patients who are arriving

sequentially in the trial.
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Chapter 2

Covariate-Adjusted

Response-Adaptive Designs for

Weibull Survival Models

2.1 Introduction

There is great interest in the possibility that clinical trials can be designed with

adaptive features that may make the studies more efficient. An adaptively random-

ized clinical trial evaluates a treatment by observing patient responses on a prescribed

schedule and modifies the parameters of the trial protocol in accordance with those

observations. The adaptation process generally continues throughout the trial. Clinical

trials are often designed with adaptive features to force balance in the sequential allo-

cation of patients across two or more competing treatment arms. It is also used to force

imbalance by allocating a greater number of study subjects to the better-performing

treatment arm.

A clinical trial is a complex experiment on humans with multiple and often compet-

ing experimental objectives. Here, several treatments for a disease are compared with

the purpose of obtaining information on their performance. Since human patients are

involved, there is an ethical concern to treat as many patients as possible with the best
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treatment. At the same time, there must be some allocation of patients to the worse

treatment arm for making useful statistical inferences about treatment comparisons.

An increase in the number of patients receiving better treatments leads to sequential

experiments in which data are analysed and new allocations are made in the light of

the estimated parameters. However, the advocates of traditional balanced randomized

designs argue that having a balanced allocation of patients across the treatment arms

helps estimate treatment effects efficiently. Since clinical trials involve human patients,

balanced allocation can be a serious problem as one would be more inclined to be treated

with the better treatment and such balanced allocation leads to almost one half of the

patients on the worse treatment arm. To balance these competing goals of ethics and

statistical efficiency in a clinical trial, response-adaptive designs have been developed

and used. A response-adaptive design uses the available response and treatment alloca-

tion histories to skew the treatment allocation probabilities in favour of the treatment

arm found best at an interim stage in the trial. However, human patients are heteroge-

neous and therefore one needs to take into account such concomitant information when

allocating a particular patient to a treatment arm.

Covariate-adjusted response-adaptive designs balance the competing goals of as-

signing a greater number of study subjects to the better treatment and achieving high

statistical efficiency in estimating treatment effects. This is done in the presence of

covariates, while maintaining randomness in treatment assignments. Investigators are

often aware of important baseline covariates that may have a strong influence on patient

responses and they may wish to adjust the randomization procedure for these covariates.

Rosenberger and Sverdlov (2008) gave an overview of different techniques for handling

covariates in the design of clinical trials and distinguished between two main approaches.

These are covariate-adaptive randomization and covariate-adjusted response-adaptive

randomization (CARA) procedures. CARA randomization is applicable to clinical tri-

als where non-linear and heteroscedastic models determine the relationship between

responses, treatments and covariates, and when multiple experimental objectives are

pursued in the trial. The goal of a CARA procedure in a phaze III clinical trial may

be to skew allocation in the direction of the better performing treatment arm, for a
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given patient’s covariate profile, while maintaining the power of a statistical test for

treatment comparisons. These designs rely on correctly specified parametric models.

Although the exponential model for survival responses has been previously considered

by Sverdlov, Rosenberger and Ryzenik (2013) for developing CARA designs, to extend

the scope of application of such designs in real-life clinical trials, the Weibull survival

model has been considered here, which includes the exponential model as a special case.

The memoryless property of the exponential survival model due to its constant hazard

property limits its application in real-life clinical trials involving humans. Therefore

to enhance the scope of the application of such designs a step further, methods are

developed here considering survival responses following a Weibull model. The shape

parameter for the Weibull survival model determines the shape of the density function

as well as the hazard function of the responses. The exponential model is a special

case when the shape parameter is unity which makes the hazard function of the time

to an event a constant. A CARA design based on the Weibull model for the survival

responses of the patients therefore extends the scope of application of such designs to

scenarios beyond constant hazard. Extensive simulation study of the operating charac-

teristics suggest that the proposed CARA procedure can certainly be considered as a

suitable alternative to the traditional balanced randomization designs in survival trials,

provided that sufficient responses are available during the interim stage of the trial to

enable adaptations in the design.

The outline of this chapter is as follows. Section 2.2 explains the basic background

relating to the Weibull survival model . The discussion in Section 2.3 focuses on the

idea of obtaining parameter estimates using the maximum likelihood approach when

survival times conform to a Weibull model and the right-censored times are independent

of the event times. This is followed by Section 2.4 that proposes the various target

allocation proportions to a treatment arm, for Weibull distriuted survival times and

the CARA randomization procedures to achieve the derived allocation proportions.

The derivation of the asymptotic properties of the CARA designs using a Taylor series

expansion of the non-centrality parameter for the Wald test is detailed in Section 2.5.

The findings of Section 2.4 have been validated using extensive simulations in Section

2.6. In Section 2.7, the applicability of the proposed CARA designs is further explained
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through the results obtained from applying them to redesign a real-life clinical trial.

A critical evaluation of some of the derived CARA designs for Weibull distributed

survival responses is provided in Section 2.8. Section 2.9 concludes with a discussion of

the overall findings and an outline of some future research in this direction.

2.2 The Weibull Model

The exponential model used by Sverdlov, Rosenberger and Ryeznik (2013) to

develop CARA randomization procedures for survival trials is often referred to as a

purely random failure pattern. It is useful for its mathematical simplicity, but the fact

that the exponential distribution corresponds to a lack of memory model and that it

has only one parameter make it less likely to fit data in practice.

Let T be a non-negative random variable representing the time to a critical event.

The lack of memory property of the exponential distribution means that P (T > t +

z|T > t) = P (T > z), which leads to its mathematical tractability but also reduces

its applicability to many realistic applied situations. It is because of this distributional

property that E(T − t|T ≥ t) = E(T ) = µ; that is, the mean residual life or the

expected remaining lifetime for a patient is constant at any point in the study. This

shows that the time until the future occurrence of an event does not depend upon past

history, and therefore this property is sometimes called the “no-aging” property. This

property is also reflected in the exponential distribution’s constant hazard rate which

is independent of t. Although the exponential distribution has been historically very

popular, its constant hazard rate appears to make it too restrictive in both health and

industrial applications.

The Weibull distribution can be regarded as a generalization of the exponential, with

an extra shape parameter, γ > 0 . Being the only parametric survival distribution which

has both a proportional hazards representation and an accelerated life representation, it

is the most popular distribution used in reliability and survival analysis. Let xi denote

the treatment indicator for the ith patient such that xi = 1 if the patient is assigned

to treatment A, and xi = 0 if the patient is assigned to treatment B. Associated with
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patient i = 1, 2, ..., n is a vector of baseline covariates zi = (1, z1i, ...., zpi)
T . Let γk

be the shape parameter that determines the shape of the distribution of the responses

for treatment k as well as that of the hazard function, βk = (βk0, βk1, ...., βkp)
T be the

vector of unknown model parameters and µk(zi) = exp(βTk zi) > 0, the scale parameter

for treatment k given the ith covariate zi. Conditional on zi, patient’s survival time on

treatment k, Tik, follows a Weibull distribution with probability density function

fk(t|zi;βk, γk) =

{
γk

µk(zi)

}{
t

µk(zi)

}γk−1

exp

[
−
{

t

µk(zi)

}γk]
(2.1)

for t > 0.

Let Sk(t|zi) = Pk(T ≥t |zi) be the survivor function measuring the probability of

a patient with covariate zi at treatment k surviving beyond a given time point t. The

survivor function of the Weibull model is Sk(t|zi;βk, γk) = exp [−{t/µk(zi)}]γk . Let

hk(t|zi) = fk(t|zi)
Sk(t|zi) be the hazard function representing the instantaneous failure rate of

a subject with covariate zi at time t. Therefore, the hazard function for the Weibull

model can be expressed as hk(t|zi;βk, γk) = {γk/µk(zi)}{t/µk(zi)}γk−1. It is also known

that Sk(t|zi;βk, γk) = exp{−
∫ t

0
hk(u|zi;βk, γk)du} where,∫ t

0

hk(u|zi;βk, γk)du = Hk(t|zi;βk, γk) = − log{Sk(t|zi;βk, γk)}

is called the cumulative hazard or the integrated hazard. The cumulative hazard for the

Weibull distribution therefore is Hk(t|zi;βk, γk) = {t/µk(zi)}γk . The hazard function

for a Weibull model is always monotonic, but can be increasing if γk > 1, decreasing

if 0 < γk < 1 or constant if γk = 1. Therefore, the Weibull distribution with shape

parameter γ = 1 corresponds to the exponential distribution. The mean and the

median survival times for the Weibull model are λk(zi) = µk(zi)Γ{(γk + 1)/γk} and

φk(zi) = {log(2)}1/γkµk(zi) respectively, where Γ denotes the gamma function.

When comparing the survival experience of two arms, if an additional assumption is

made about the shape parameter γk being constant between the arms, then the hazard

at any given time for an individual in one treatment group is proportional to the hazard

at that time for an individual from the other treatment group. The hazard ratio ψ of

the two treatment groups satisfies

hA(t|zi;βA, γ) = ψhB(t|zi;βB, γ). (2.2)
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Here, ψ does not depend on t and the responses for the two treatment groups follow

Weibull distributions with the same shape parameter γ. The assumption of the response

following a Weibull model with equal shape parameter can be checked by plotting the

log cumulative hazard function marginalized over the covariate profile zi of the patients,

against the log time for both treatment arms. If the plot yields parallel lines then the

assumption of a constant γ between the treatment groups can be considered to have

been satisfied. The intercept of the log cumulative hazard plot for patients receiving

treatment k against the log time is −γ log(µk). If the survival times conform to a

Weibull distribution with a constant shape parameter, the hazard function for patients

at the two treatment arms will be

ψ =
hA(t|βA, γ)

hB(t|βB, γ)
=

{
µB
µA

}−γ
(2.3)

and

log(ψ) = −γ log

{
µB
µA

}
. (2.4)

This shows that the hazard ratio between the treatment arms is constant if the responses

of the patients to the treatments follow a Weibull distribution with the same shape

parameter. It can also be seen from (2.4) that a crude estimate of the hazard ratio

can be obtained by exponentiating the difference between the intercepts when the log

cumulative hazard function for each treatment arm is plotted against log time. This

model is called the Weibull proportional hazards model.

It is sometimes useful to work with the logarithm of the survival times. If Yik =

log(Tik), where Tik follows a Weibull distribution, then Yik has a Gumbel distribution

with density function given by

fk(y|zi;βk, γk) = γk exp ([y − log{µk(zi)}γk]) exp(−e[y−log{µk(zi)}γk]), (2.5)

for −∞ < y < ∞. This distribution will frequently be referred to in this chapter

while constructing the likelihood for the Weibull model and the CARA randomization

procedure.
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2.3 Construction of the Likelihood

In survival trials, observations are likely to be censored. Therefore in such trials one

cannot observe a random sample of complete independent and identically distributed

random variables. A critical assumption is that the survival times and the censoring

times are independent. For construction of a likelihood function for censored data,

one needs to carefully consider the information conveyed by each observation. Right

censoring is the most frequently encountered type of censoring, which could happen

when the patient followed does not experience the event or when the study is stopped

before the event occurred. For example, when the data are measured from different

start times, some patients who are recruited late to the study are likely to be alive at

the time of analyzing the data. Therefore, the survival times for these patients would be

unavailable. All that would be known about the survival times for these patients is that

they exceed a certain time.When some subjects are right censored, all that is known

is that their survival time lies in an interval (t,∞). Let Tik be the random variable

representing the survival time for the ith patient with treatment k and Cik be the one

representing the censoring time for that patient.The survival times are assumed to be

independently and identically distributed. For the ith patient, the observed outcome is

a bivariate random vector (Tik,δik), where Tik = min(Tik,Cik) and

δik =

0 if Tik is a right-censored time,

1 if an event occured at time Tik.
(2.6)

When subjects join a study at different times and are all observed until a fixed

moment in time, we have generalized type I right censoring. Here time is measured

from a different origin for each subject, who has an individual specific fixed censoring

time. Figure 2.1 shows this for five patients.

For right-censored observations, the event time is larger than the observed time.

So the information is the survivor function evaluated at the on study time. It can be

seen from Figure 2.1 above that each of the five patients in the trial enter the study at

different times but are observed for a predetermined study period. The blank circles
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Figure 2.1: Generalized type I right censoring

in the figure represents censoring observations and the dark squares represent patients

who have experienced the event. The patients who enter the study late are more likely

to be censored. Censoring in such cases may occur if the patients did not experience

the event until the end of the study period or if they have been lost to follow-up before

the end of the study period. It can be seen from Figure 2.1 that patients A survive

until the end of the study period and therefore their actual survival times Tik are not

known. All that is known is that they survive beyond a certain time period. Also

the time to event for patient B and patient D is censored as he/she has been lost to

follow-up before the end of the study period. Therefore, Tik = Cik for patients A,B and

D. However, for patients C and E, it can be seen that they have experienced the event

and therefore their actual event times Tik = Tik are known.

In this chapter, a CARA randomization procedure has been developed for survival

responses where the event times follow a Weibull model. Since patients arrive sequen-

tially in the clinical trial and are observed until the end of the trial, the type of censoring

considered here is generalized type I right censoring. With such a model, the outcome

for the ith patient is given by (tiA,δiA) if xi = 1 or (tiB,δiB) if xi = 0. Any of the com-

plications of the data such as censoring or truncation will affect the likelihood as this

leads to a data which is not indenpendent and identically distributed. The likelihood

may be written down by incorporating the exact event times through the density func-

tion fk(tik|zi;βk, γk) and the right censored observations through the survivor function

Sk(cik|zi;βk, γk). Here, cik is a realization of the random variable Cik and censoring is

assumed to be independent of the survival. Note that the functions are being adjusted

for the effects βk of the covariates zi and also for the shape parameter γk of the Weibull
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model which scales the theoretical errors of the accelerated life model.

For the survival times from the patients on treatment k, the likelihood function is,

Lk =
∏
δik=1

fk(tik|zi;βk, γk)
∏
δik=0

Sk(cik|zi;βk, γk) (2.7)

Now, it can be seen that, for δik = 0,

P (Tik = cik, δik = 0) = P (Tik = cik|δik = 0)P (δik = 0).

Therefore, this can also be written as

P (Tik = cik, δik = 0) = P (δik = 0) = P (Tik > cik),

which is the survivor function at time cik. Similarly for δik = 1,

P (Tik = tik, δik = 1) = P (Tik = tik|Tik < cik)P (Tik < cik),

which can also be written as

fk(tik|zi;βk, γk)
1− Sk(cik|zi;βk, γk)

{1− Sk(cik|zi;βk, γk)} = fk(tik|zi;βk, γk).

Thereofore, for a random sample of pairs (tik,δik) of nk patients, the likelihood function

is given by

Lk =

nk∏
i=1

{fk(tik|zi;βk, γk)}δik{Sk(tik|zi;βk, γk)}1−δik . (2.8)

It is well known from the distribution theory of survival analysis that fk(tik|zi;βk, γk) =

Sk(tik|zi;βk, γk)hk(tik|zi;βk, γk). Thus, (2.8) can be further simplified to be

Lk =

nk∏
i=1

{hk(tik|zi;βk, γk)}δikSk(tik|zi;βk, γk), (2.9)

so that the combined likelihood function is

L =
B∏
k=A

n∏
i=1

{hk(tik|zi;βk, γk)}δikSk(tik|zi;βk, γk).

For a random sample of observations (tik, δik), from the Weibull distribution with

independent right censoring, let yik = log(tik). It was seen earlier that the density of

Yik is given by (2.5). Therefore, the likelihood function in this case is

Lk =

nk∏
i=1

(γk e
[yik−log{µk(zi)})γk])δike− exp [yik−log{µk(zi)}γk]. (2.10)
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So the log-likelihood function here is given by

lk = − log(γk)

nk∑
i=1

δik +

nk∑
i=1

(δik[yik − log{µk(zi)}γk]− e[yik−log{µk(zi)}γk]). (2.11)

Maximising the log-likelihood in (2.11) separately for 1/γk and log{µk(zi)}, the

maximum likelihood estimators for these model parameters can be obtained, which in

turn give the maximum likelihood estimators of the regression parameters. This is

because, for the Weibull accelerated life model, the linear predictor βTk zi is considered

to be identical to log{µk(zi)} and not µk(zi). Also the theroretical errors follow a

two parameter Gumbel distribution that is scaled by the factor 1/γk. The first partial

derivatives of the log likelihood function (2.11) with respect to log{µk(zi)} and 1/γk

are
∂lk

∂ log{µk(zi))}
=

n∑
i=1

(
δik − e[yik−log{µk(zi)}γk]

)
(−γk), (2.12)

and,

∂lk
∂(1/γk)

= −

(
nk∑
i=1

δikγk +

nk∑
i=1

(δik − e[yik−log{µk(zi)}γk])

)
[yik − log{µk(zi)}]γ2

k. (2.13)

Equating the score functions in (2.12) and (2.13) to zero and solving for 1/γk and

log{µk(zi)} gives the maximum likelihood estimates for 1/γk and log{µk(zi)}. The

variances of the estimated parameters can be obtained by calculating the second patial

derivatives of the log-likelihood function (2.11) with respect to 1/γk and log{µk(zi)} .

The details are in Appendix A.

An important practical feature of Weibull accelerated life models is that they can be

fitted to data using an algorithm which is a form of iteratively re-weighted least squares.

The maximum likelihood estimate of βk is obtained by this method. The maximum

likelihood estimates of log{µk(zi)} and 1/γk are also obtained by equating (2.12) and

(2.13) to zero and numerically solving them using the method of iteratively re-weighted

least squares. McCullagh and Nelder (1989) proved that this algorithm is equivalent to

the Fisher scoring method and leads to the maximum likelihood estimates.

Given an initial trial estimate β̂k, the estimated linear predictor η̂ik = β̂Tk zi is cal-

culated. This is used to obtain µ̂k(zi) = r−1(η̂ik), where r(.) is the necessary one-to-one
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continuous link function selected on the basis of the distribution of the responses. In

the Weibull regression model, r(.) is the natural log link function. These quantities are

further used to calculate the working dependent variable

bi = η̂ik + {yik − µ̂k(zi)}
∂η̂ik

∂µ̂k(zi)
,

where the rightmost term is the derivative of the link function evaluated at the trial

estimate. Next, the iterative weights are calculated. The ith weight is inversely propor-

tional to the variance of the working dependent variable bi, given the current estimates

of the parameters. The iterative weights here are given by

εik(βk, γk, zi) = P (Tik ≤ Ci|zi;βk, γk), (2.14)

for i = 1, 2, ..., nk , and k = A, B.

For the ith patient, (2.14) is the probability of observing an event before censoring

conditional on βk, γk and the covariates for that patient.This quantity will depend on

the censoring mechanism in the trial. Finally, an improved estimate of βk is obtained

by regressing the working dependent variable bi on the covariates zi using the weights.

This means that a weighted least squares estimate is approximated using

β̂k = (ZT
nk
WkZnk)

−1ZT
nk
Wkb, (2.15)

where b is a response vector with entries given by the working dependent variable bi,

Znk is the model matrix for the patients on treatment k, Wk is an nk × nk diagonal

matrix with the ith diagonal element as εik(zi;βk, γk) given in (2.14) and ZT
nk
WkZnk is

the approximate Fisher Information matrix for βk which is scaled by γk. The procedure

is repeated until successive estimates change by less than a specified small amount.

2.4 The Proposed Allocation Designs

The main goal of a CARA procedure is to use the accumulated data to skew the

treatment allocation probabilities in favour of the treatment that is most efficacious
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for a given patient. This is done for ethical considerations and also for enhancing the

efficiency in estimating the treatment effects. This represents an advancement in the

field of personalized medicine or theranostics, which is a medical model that separates

people into different groups based on medical decisions, practices, interventions and/or

products being tailored to the individual patient after taking into account the informa-

tion related to their predicted response or risk of disease. The CARA randomization

procedure is applicable when the responses of the patients to the treatment follow a

non-linear and heteroscedastic model and when multiple experimental objectives are

being pursued in the clinical trial. It relies on correctly specified parametric models.

The censoring scheme assumed throughout this chapter is a combination of uniform

and generalized type I censoring. This has been described as administrative censoring

in Latta (1981). Patient arrival times follow an independent uniform distribution on

(0,R). The clinical trial has a recruitment period of length R > 0. The survival times of

the patients follow a Weibull distribution with parameters µk(zi) and γk, and the right

censored times, Cik, are uniformly distributed over (0,D), where D is the duration of the

clinical trial. At time D, the subjects who have not experienced an event or have not

yet been lost to follow-up are considered to be generalized right censored of type I. Such

assumptions can be considered to be reasonable in a real-life clinical trial. In the subset

of survival trials where the recruitment phase is long enough to accumulate a substantial

amount of response data, the CARA randomization procedure is applicable.

The βA and the βB are population characteristics representing the covariate adjusted

treatment effects of A and B, respectively. During the initial phase of the trial, one

uses some balanced randomization procedure to allocate the initial 2m0 patients equally

among treatments A and B, where m0 is a positive integer. This ensures that at least

m0 patients are allocated to each treatment arm, and m0 is chosen so that estimates of

the parameters (βA , βB) can be obtained from this initial sample. At stage m = 2m0,

one computes the maximum likelihood estimates (β̂A,m, β̂B,m) based on the responses

of the first 2m0 patients, eliminating the effects of the prognostic factors. At stage m ≥

2m0 + 1, when the (m+ 1)th patient enters the clinical trial with covariate vector zm+1,

this patient is randomized to treatment A with probability c(β̂A,m, β̂B,m,γ̂, zm+1) where
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0 ≤ c(.) ≤ 1 is an allocation function which bridges the past allocation pattern, response

histories and the covariate vectors of the m patients through the sufficient statistics

which the fittel model is a function of, to the (m + 1)th allocation with the covariate

vector zm+1. This allocation is chosen with the intention of skewing the treatment

allocation probability in favour of the better treatment arm. This section discusses

the method of derivation of this allocation function using two different approaches.

One of these uses two different types of allocation function to target a derived optimal

allocation proportion with the aim of achieving the ethical objective in a clinical trial

while keeping the asymptotic variance of the treatment difference to be constant, and

the other one uses a link function to skew the treatment allocation probabilities in favour

of the better treatment arm after adjusting for the effects of the covariate profiles of

the patients.

2.4.1 CARA Design using the Optimal Allocation Approach

One of the approaches to develop CARA randomization procedures is to derive

the optimal allocation proportion for a model without covariates and use its covariate-

adjusted version for the sequential allocation of patients (Zhang et al., 2007). For a

clinical trial, where the survival times of the patients are right censored and follow a

Weibull distribution, the optimal allocation proportion can be found using the maxi-

mum likelihood approach presented in Section 2.3. Now, the variance of the logarithm

of the estimated Weibull scale parameter is shown, in Appendix A to be

σ2
k = var[log{µ̂k(z)}] =

Gk

nkγ2
k

for k = A,B, where Gk is defined in (2.16) and nk denotes the number of patients on

treatment k. Let ςk = γk[Yk − log{µk(z)}] and εk(z;βk, γk) be the probability of an

event, where Yk = log(Tk) is the logarithm of the survival time on treatment k. Then

Gk =
εk(z;βk, γk) + E(ς2

ke
ςk)

ε2k(z;βk, γk) + εk(z;βk, γk)E(ς2
ke

ςk)− {E(ςkeςk)}2
(2.16)

where εk(z;βk, γk) = P (Tk ≤ C|z;βk, γk). The derivation of a formal analytical form

for εk(z;βk, γk) is shown in Appendix B.
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Zhang and Rosenberger (2007) derived an optimal allocation proportion by mini-

mizing the average hazard in the trial subject to the constraint that the asymptotic

variance of the difference in the estimated scale parameters is a constant. This would

ensure that for any choice of the number of patients allocated to each treatment arm,

the power for testing the significance of the difference in the treatment effects would

remain fixed. For a survival trial with two treatment arms of overall duration D, if

µk > 0 is the scale parameter and γk > 0 is the shape parameter of a Weibull distribu-

tion, then the cumulative hazard at time D will be (D/µk)
γk . Therefore, minimizing

the total cumulative hazard nA(D/µA)γA +nB(D/µB)γB for the two treatments subject

to the constraint that the asymptotic variance GA/(nAγ
2
A)} + GB/(nBγ

2
B) is constant,

the optimal allocation proportion for treatment A is given by

%A0 =
γB
√
{D/(µB)}γBGA

γB
√
{D/(µB)}γBGA + γA

√
{D/(µA)}γAGB

. (2.17)

The corresponding covariate-adjusted target allocation proportion is therefore ex-

pressed as

πWA0
(βA,βB, γA, γB, z) =

γB
√
{D/µB(z)}γBGA

γB
√
{D/µB(z)}γBGA + γA

√
{D/µA(z)}γAGB

. (2.18)

Its derivation is detailed in Appendix D. An important feature of (2.18) is that, irre-

spective of the value of z, the allocations are skewed towards the better treatment arm,

but the degree of skewing is dependent on the parameters of the Weibull distribution.

Other functions could also be minimized to obtain different optimal allocation pro-

portions. For instance, one could use the relationship between the expected survival

time and the hazard in the exponential distribution case, and obtain an average haz-

ard for the Weibull distribution. Maximizing the total expected survival time for the

Weibull distribution, subject to a constraint on the asymptotic variance of the treat-

ment difference similarly gives the optimal allocation for treatment A as

%A1 =
γB
√
µAΓ{(γA + 1)/γA}GA

γB
√
µAΓ{(γA + 1)/γA}GA + γA

√
µBΓ{(γB + 1)/γB}GB

. (2.19)

The corresponding covariate-adjusted target allocation proportion is therefore;

πWA1(βA,βB, γA, γB, z) =
γB
√
µA(z)Γ{(γA + 1)/γA}GA

γB
√
µA(z)Γ{(γA + 1)/γA}GA + γA

√
µB(z)Γ{(γB + 1)/γB}GB

.

(2.20)
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This approach does not take into account the fact that the hazard of a Weibull distri-

bution depends on the survival times. It would be more appropriate when patients do

not have a common follow-up time.

Apart from minimizing the total average hazard, one can consider other metrics

to optimize and obtain a different allocation function when the survival times fol-

low a Weibull distribution. For instance, minimizing the overall trial size subject to

the asymptotic variance of the covariate-adjusted treatment difference remaining fixed,

produces the Neyman allocation function. This allocation proportion is directly propor-

tional to the standard deviation of the logarithm of the estimated scale parameter. The

Neyman allocation function results in the maximum power of the CARA procedure for

a given randomization function. The allocation proportions πWA2(βA,βB, γA, γB, z) and

πWA3(βA,βB, γA, γB, z) given below are considered here as an alternative to (2.18) and

(2.20). The first is the Neyman allocation that maximizes the power of the Wald test

for treatment comparisons, for a given sample of size n. Minimizing the overall trial

size subject to the asymptotic variance of the covariate-adjusted treatment difference

remaining fixed, the Neyman allocation is obtained as,

πWA2(βA,βB, γA, γB, z) =
γB
√
GA

γA
√
GB + γB

√
GA

. (2.21)

For ethical considerations in CARA randomization procedures, it is desired to target

an allocation proportion which is optimal in some sense. Biswas and Mandal (2004)

proposed a procedure that results in an allocation which is a generalization of opti-

mal allocation for normal responses. They generalized the binary optimal allocation

for normal responses in terms of failures. Zhang and Rosenberger (2007) applied their

approach in the case of exponentially distributed survival times to develop the response

adaptive randomization (RAR) approach. This approach can also be applied to develop

the CARA randomization procedure when the survival times conform to a Weibull dis-

tribution. The survivor function for Weibull distributed survival times can be obtained

from (2.1). If the survival times are dichotomized based on some threshold constant κ,

that is, a survival time less than the threshold κ is considered a failure, and otherwise

a success, then the function

nA[1− e−{κ/µA(z)}γA ] + nB[1− e−{κ/µB(z)}γB ],
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can be minimized subject to the contraint on the asymptotic variance ;

GA

nAγ2
A

+
GB

nBγ2
B

= k,

where k > 0 is a constant, to obtiain the allocation proportion

πWA3(βA,βB, γA, γB, z) =
γB
√
GA[1− e−{κ/µB(z)}γB ]

γB
√
GA[1− e−{κ/µB(z)}γB ] + γA

√
GB[1− e−{κ/µA(z)}γA ]

.

(2.22)

As pointed out earlier, the CARA designs are desirable for ethical and efficiency

reasons, without undermining the validity of the trial results and maintaining the ran-

domized nature of the experiment. Rosenberger and Hu (2004) showed that, in the

case of binary responses, using the doubly-adaptive biased coin design (DBCD) to ran-

domize an incoming patient to a particular treatment arm, results in a very useful

randomization procedure in terms of maintaining power while targeting any specific

allocation proportion which considers only the responses and the treatment allocation

history. Zhang and Rosenberger (2006) further established this in the same settings

in the case of continuous outcomes using the normal responses as the special case.

A suitable randomization procedure is therefore needed to target the derived CARA

allocation proportions based on the Weibull accelerated life model.

2.4.2 Targeting the Derived Allocation Proportion

Various randomiation procedures can be used to target a specific derived allocation

proportion. Each of the randomization procedures consists of a probability allocation

function whose arguments approach the derived allocation proportion. A response-

adaptive design is said to be efficient of the first-order if it attains a lower bound on

the asymptotic variance of the observed allocation proportion. The DBCD procedure

along with most of the other randomization procedures in the literature are not first

order efficient. One of the exceptions is the drop-the-loser rule of Ivanova (2003). This

rule considers balls of three types : type A, type B, and type 0. A ball is drawn at

random. If it is type A or type B, then the corresponding treatment is assigned, and

the patient’s response is observed. If it is a suc-cess, then the ball is replaced and the
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urn remains unchanged. If it is a failure, then the ball is not replaced. If a type 0 ball is

drawn, then no subject is treated, and the ball is returned to the urn together with one

ball of type A and one ball of type B. Even though this rule is asymptotically efficient

of the first order, its applications are limited to urn allocation proportions and binary

responses.

Hu, Zhang and He (2009) proposed a family of randomization procedures that attain

the Cramer-Rao lower bound on the allocation variances for any allocation proportion

but the allocation function for this procedure is discontinuous. The asymptotic theory

for adaptive designs that relies on a Taylor series expansion for the allocation func-

tions, is not applicable to non-differentiable cases. This family of efficient randomized-

adaptive designs (ERADEs) can adapt to any desired allocation proportion and is easy

to implement in practice for both discrete and continuous responses. Under certain

mild conditions, the asymptotic normality and strong consistency of both the alloca-

tion proportions and the estimators of the population parameters have been obtained

by Hu, Zhang and He (2009). However, their work ignores the fact that the patients in

clinical trials are heterogeneous and therefore does not take into account the informa-

tion related to the covariate profiles of the patients. Now, when the allocation function

is disccrete, the commonly used techniques do not work anymore. The allocation prob-

abilities of the ERADE randomization procedures are discrete functions. Introducing

a stopping time of a martingale process as shown in Hu, Zhang and He (2009), one can

overcome the difficulties arising out of discontinuity.

After the allocation of the two treatments to m patients and observing their re-

sponses, let NA(m) and NB(m) = m−NA(m) denote the numbers of patients assigned

to each of the two treatments. When the (m+ 1)th patient enters the clinical trial with

covariate vector zm+1, let π̂m = π̂WA (β̂A,m, β̂B,m, γ̂Am, γ̂Bm, zm+1) represent the estimate

of πWA (βA,βB, γA, γB, z) based on the responses observed from the m patients, adjusted

for the covariate zm+1 of the incoming patient. Using the covariate-adjusted ERADE

(CAERADE) procedure, the (m+1)th patient can be assigned to treatment A with prob-

ability jm+1{NA(m)/m, π̂m, ρ̂Am}. Let ρ̂Am =
∑m

i=1{π̂WA (β̂A,m, β̂B,m, γ̂Am, γ̂Bm, zi)}/m

be an estimate of the average target allocation for treatment A based on the data for
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the first m patients. Therefore, the mathematical form of the allocation rule for the

(m + 1)th patient entering the clinical trial with covariate vector zm+1 to be assigned

to treatment A is

jm+1

{
NA(m)

m
, π̂m, ρ̂Am

}
=



α′π̂m if NA(m)
m

> ρ̂Am,

π̂m if NA(m)
m

= ρ̂Am,

1− α′(1− π̂m) if NA(m)
m

< ρ̂Am,

(2.23)

where 0 ≤ α′ < 1 is a constant that reflects the degree of randomization. Hu, Zhang and

He (2009) recommended a value of α′ to be between 0.4 and 0.7. This gives a family of

CARA designs that are fully randomized and also asymptotically efficient as it attains

the Cramer-Rao lower bound on the asymptotic variance of the observed allocation

proportion. The ERADE can be viewed as a generalization of Efron’s biased coin design,

an asymptotically efficient restricted randomizaton procedure, for any desired allocation

function, which may depend on the unknown parameters. If the response distribution

belongs to the exponential family, the CAERADE for any α′ ∈ [0,1) is efficient of

the first-order. When the survival outcomes conform to a Weibull distribution, the

CAERADE also generates a first-order efficient allocation design for patients.

When the allocation probability function is a continuous and differentiable function

of ρ̂Am, π̂m and the current sample proportion, the asymptotic properties of adaptive

designs are obtained using a Taylor series expansion. In such cases, the expected sample

proportions cannot be efficiently approximated by ρ̂km. Therefore, the variances of the

allocation proportions do not attain the Cramer-Rao lower bound.

The covariate-adjusted doubly-adaptive biased coin design (CADBCD) procedure

(Zhang and Hu, 2009) can also be used to construct CARA randomization procedures.

The CADBCD is a randomization procedure which is used to target the allocation

proportions. This is a randomization procedure with low variability and follows in

the path of Efron’s biased coin design. It applies to cases where the desired allo-

cation proportions are unknown, but estimated sequentially. The key component of
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this procedure is an allocation function jm+1{NA(m)/m, π̂m, ρ̂m}, which is defined on

[0,1]×[0,1]×[0,1]. If NA(m) and NB(m) = m - NA(m) represent the numbers of pa-

tients assigned to treatments A and B, respectively, after m allocations and π̂m =

πWA (β̂A,m, β̂B,m, γ̂Am, γBm, zm+1) denotes an estimate of the derived target allocation

proportion based on the data from those m patients, adjusted for the covariate zm+1,

then, according to the CADBCD allocation rule, the probability of the (m+1)th patient

with covariate vector zm+1 being assigned to treatment A is given by

jm+1

{
NA(m)

m
, π̂m, ρ̂Am

}
=



π̂m{ρ̂Am/
NA(m)

m
}α

π̂m{ρ̂Am/
NA(m)

m
}α+(1−π̂m)[(1−ρ̂Am)/{1−NA(m)

m
}]α

if 0 < NA(m)
m

< 1,

1− NA(m)
m

if NA(m)
m

= 0 or 1.

(2.24)

Here α is a non-negative parameter controlling the degree of randomness of the

CADBCD procedure. A value of α = 0 corresponds to the procedure being most ran-

dom and a value of α = ∞ corresponds to it being most deterministic. The allocation

function jm+1{NA(m)/m, π̂m, ρ̂m} is strictly decreasing in {NA(m)/m} and strictly in-

creasing in (π̂m, ρ̂m) on [0,1]×[0,1].

The allocation function given in equation (2.24) is the probablity of an incoming pa-

tient, being assigned to treatment A. Following Theorem 3.1 of Zhang and Hu (2009),

under mild conditions, NA(m)/m and π̂m are strongly consistent and follow an asymp-

totic bivariate normal distribution with the asymptotic means being the expected value

of the target alloation proportion. Also,
√
m(β̂k,m−βk) is asymptotically multivariate

normal with zero mean vector and asymptotic covariance matrix I−1
k (βk, γk). How-

ever, since the survival times conform to a Weibull distribution and there is no closed

form for the maximum likelihood estimators of the scale and shape parameters, an

explicit asymptotic variance for the CADBCD procedure cannot be obtained. If some

knowledge about the shape parameter is available, then the derivation of the asymp-

totic variance of the procedure can proceed as in the exponential case as described in

Zhang and Rosenberger (2007). When α → ∞, the allocation function is the most
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deterministic and thus achieves the Cramer-Rao lower bound in terms of its asymptotic

variance.

2.4.3 The Effect of Delay in Survival Responses

Survival time or censoring time cannot be observed until an event or censoring has

happened. Therefore, there is an inherent delay in measuring the survival responses

which in turn delays the estimation process of the model parameters. Zhang and Rosen-

berger (2006) demonstrated by using extensive simulation that a moderate delay has a

marginal effect on the asymptotic properties of response-adaptive randomization pro-

cedures. Zhang and Rosenberger (2007) provided a theoretical treatment for handling

the problem of delay in survival responses. They showed that, if τm is the delay in the

response of the mth patient and η′m his/her arrival time, then, under the assumption

P{τm > η′(n+m) − η′(m)} = o(n−c), (2.25)

for some constant c > 0, the asymptotic results of the DBCD procedure still hold. Note

that (2.25) implies that the probability that a patient will respond before n additional

patients arrive is of the order n−c. The delay in response in this case is exactly the sur-

vival time or censoring time of the patient. The asymptotic properties of the CADBCD

procedure when the survival times conform to a Weibull distribution, can be justified

if the assumption in (2.25) holds.

2.4.4 Using a Link Function to Develop a Suitable Alternative

An alternative approach presented by Bandyopadhyay and Biswas (2001) used a suit-

able probit link function to develop adaptive designs in clinical trials which take into

account the heterogeneity of patients due to the presence of concomitant information.

In their approach, they assumed that the response from each patient to a treatment

is a continuous random variable and follows a normal linear model but does not ac-

count for the covariate information of the incoming patient while doing the adaptation.

The method provided is further developed in this chapter in the context of Weibull
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distributed survival outcomes of patients which take the information of right censoring

into account.

If m patients have been enrolled in a clinical trial and NA(m) patients have been

allocated to treatment A, the observed treatment allocation proportions for m patients

are given by NA(m)/m for treatment A and NB(m)/m = 1−NA(m)/m for treatment B.

A suitable link function bridges the past history about treatment allocation, responses

and the covariates of the patients to the (m + 1)th allocation. Bandyopadhyay and

Biswas (2001) suggested this to be a suitable cumulative distribution function F (.)

which is symmetric about zero. This means that F (0) = 1/2 and F (−x) = 1- F (x).

Since they assumed that the responses of the patients conform to a normal linear model,

a natural choice for F was the probit link function Φ(.), which is the quantile function

associated with the standard normal distribution. In the context of survival models,

where the survival times of the patients to a treatment are right censored and conform

to a Weibull distribution, there are other link functions which can address the ethical

criteria of a clinical trial more effectively. An alternative link function considered here

for the purpose of developing the CARA randomization procedure is

F (x) = g

{
x

ŜE(X) + ĤR(z)

}
,

where g(.) is the cumulative distribution function of a random variable following the

Gumbel distribution, x represents the value of a random variable X,

ĤR(z) = {ĥA(t|z)/ĥB(t|z)}

is the ratio of the estimated hazards of the two treatment groups at the time t after

adjusting for the effects of the other significant covariates and ŜE(X) is the estimated

standard error of X . The quantity {ŜE(X) + ĤR(z)} is used as a scaling factor to

control the variability of the design. In this case, ŜE(X) is based on the magnitude and

the direction of the treatment difference, depending on the observed covariate values of

the patients.

Bandyopadhyay and Biswas (2001), had used an arbitrary tuning parameter T to

scale the estimated covariate-adjusted treatment difference and showed that the power

of the design as well as its variability and the degree of skewness depends on the value

36



of T which is chosen by the experimenter. However, because of the arbitrariness of

the user defined value of T on which the variability of the design solely depends on,

this design has been widely criticised over the past decade, and, therefore, even though

the design is ethically attractive, it has hardly been used in practice. To address this

arbitrariness, Bandyopadhyay and Biswas (2001) stated a rule for selecting the value

of this tuning parameter. They explained that one can start with a large value of T

at the intial stage of the trial and then switch to progressively smaller values at later

stages. The link function g(.) is referred to as the glink function. Here, instead of using

an arbitrary value of the tuning parameter T, scaling the value x by a more defined

quantity, {ŜE(X) + ĤR(z)}, makes the design less arbitrary and also addresses the

issue of statistical efficiency more consistently. Moreover, the Gumbel cumulative dis-

tribution function being light tailed and steeper compared to that of a standard normal

distribution increases the chance of assigning more patients to the better-performing

treatment thus far in the clinical trial.

At the beginning of the trial, one uses some restricted randomization procedure to

randomize the initial 2m0 patients, where m0 is a small positive integer, equally be-

tween treatment arms A and B. This is performed in order to collect initial data at

beginning of the trial to estimate the unknown model parameters. In any survival trial,

outcomes are inherently delayed. Therefore, it will take a significant amount of time

until the model parameters can be accurately estimated. Let ∆Am = log{µA(m)
(z)} −

log{µB(m)
(z)} represent the difference between the log transformed Weibull scale pa-

rameters for the two treatments upto the mth patient after adjusting for the effect of the

covariates. . After m allocations to the two treatment arms, the rule for each incoming

patient is that they would be allocated to treatment A with probability

πWA4{µ̂A(m)
(z), µ̂B(m)

(z), γ̂, z} = F (∆̂Am) = g

{
∆̂Am

ŜE(∆̂Am) + ĤR(zm)

}
, (2.26)

and to treatment B with probability

F [∆̂Bm = log{µ̂B(m)
(z)} − log{µ̂A(m)

(z)}] = g

{
∆̂Bm

ŜE(∆̂Bm) + ĤR(zm)

}
, (2.27)

Unlike Bandyopadhyay and Biswas (2001) who used the cumulative distribution

function of a standard normal distribution, the cumulative distribution function of

37



the Gumbel model is based on a location parameter and a non-zero scale parameter.

The scale considered here for the glink function is (1/γ) and the location parameter

depends on the covariates of the incoming patients. The proportional hazard Weibull

accelerated life model assumes equal shape parameter for the two treatment groups. Let

γ̂m be the common shape parameter which is estimated from the Weibull accelerated

life model fitted based on the information related to the previous m patients. Therefore

(1/γ̂m) is used here as the scale parameter for the glink function at every step of the

adaptation process. It has been seen using simulated trial and error method that

using {1/µ̂(zm+1)} as the location parameter for the glink function where zm+1 are the

covariate information of the incoming patients, gives an ethical design.

This allocation rule favours the better-performing treatment at a given stage of the

trial after accounting for the concomitant information of the previous patients as well as

that of the incoming patient. If ∆ = log{µA(z)} − log{µB(z)}, using (2.26) and (2.27)

the probability of allocating an incoming patient to treatment A is being forced towards

F (∆), an increasing function of ∆, provided that the estimators of the treatment effects

are consistent.

Let Xm, Ym , Zm denote, respectively, the sigma fields for the past treatment allo-

cation history, the response history, the prognostic factors for the first m patients and

let zm+1 be the covariates of the incoming patient. Based on the glink, the conditional

probability that the (m + 1)th patient with covariate vector zm+1, will be assigned to

treatment A is given by

P (X(m+1) = 1|Xm,Ym,Zm, zm+1) = g

{
∆̂Am

ŜE(∆̂Am) + ĤR(zm)

}
. (2.28)

where, conditional on Xm,

∆̂Am
d−→ N(∆Am, σ

2)

as m → ∞. The variance σ2 is calculated by inverting the Fisher information matrix

obtained from the log likelihood function (2.11) as shown in Appendix A. Let ζ(m) =

P (X(m+1)= 1). Then the sequence {ζ(m) : m ≥ 2m0 + 1} converges to g

{
∆Am

HR(zm)

}
.

The limiting proportion of the allocation of patients to treatment A is also g

{
∆Am

HR(zm)

}
.
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The glink function puts more weight on the available data to develop the CARA

randomization procedure. The cumulative distribution function of a Gumbel random

variable is light-tailed, and therefore gives more weight to the available data compared

to its heavy-tailed counterparts like the Cauchy. The main advantage of using the glink

function for developing the CARA randomization procedure is that it tends to allocate

more patients to the better treatment arm as compared to the design based on the

probit model. Thus, it fulfils the ethical considerations of adaptive designs more than

that of Bandyopadhyay and Biswas (2001).

2.5 Asymptotic Properties of CARA Designs

An important aspect of the design of phase III clinical trials is the use of appro-

priate methods of randomization. The previous section gave a detailed explanation

about various target allocation proportions and the discrete and continuous CARA

randomization procedures targeting these allocation proportions in the design of phase

III clinical trials. It would, however, be useful to compare the performance of these

target allocations and the CARA randomization procedures to find out which random-

ization procedure targeting a specific allocation proportion outperforms the others. Hu

and Rosenberger (2003) provided a theoretical template for the comparison of different

response-adaptive randomization procedures and different target allocations in terms

of power and expected failure rates when the response of the patients to a treatment

is binary. Zhang and Rosenberger (2006) further developed this idea for continuous re-

sponses following a normal distribution. In this section a theoretical template is given

for the comparison of different CARA designs and different target allocation proportions

when the survival responses conform to a Weibull distribution.

The optimal allocation proportions are largely dependent on the choice of measure

of difference between the treatment. In this chapter, the focus has been on the simple

difference [∆ = log{µA(z)}− log{µB(z)}]. The entire theory behind covariate-adjusted

response-adaptive designs for phase III clinical trials rely on asymptotic approximation

of the observed allocation proportion and the estimated target allocation proportion.
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Asymptotically the Wald test, score (Rao) test, and the likelihood ratio test are equiv-

alent in the sense that the probability limit of the test statistic for all the three tests

are equal. Moreover in real clinical trials the Wald tests are frequently used for treat-

ment comparison. Thus the Wald test is used here to test for the significance of this

difference, ∆, between the treatment effects.

Using a Taylor series expansion of the non-centrality parameter of the usual chi-

squared test for testing the effect of the treatments, an explicit relationship can be

derived between the target allocation proportion, the bias of the randomization pro-

cedure from the target and the variability induced by the randomization procedure

for any allocation proportion. When there are random samples (tik,δik), (k = A,B)

from Gumbel distributions with parameters [log{µk(z)}, 1/γk], the Wald test statistic

is given by

Tn =
log{µ̂A(z)} − log{µ̂B(z)}√

GA
nAγ̂

2
A

+ GB
nB γ̂

2
B

, where Tn
d−→ N(0,1),

as n→∞, for testing the hypothesis

H0 : ∆ = 0

against,

HA : ∆ 6= 0

For a design with nA and nB fixed and the times to events independent Weibull

survival outcomes, T 2
n is asymptotically chi-squared with one degree of freedom. Under

the alternative hypothesis, power can be expressed as an increasing function of the

non-centrality parameter of the chi-squared distribution for a fixed target allocation

proportion π. Using the simple difference measure, the non-centrality parameter can

be expressed as

Λ =
[log{µA(z)} − log{µB(z)}]2

GA
nAγ

2
A

+ GB
nBγ

2
B

,

which can be re-written as,

Λ(x)

n
=

[log{µA(z)} − log{µB(z)}]2
GA

(π+x)γ2A
+ GB

(1−π−x)γ2B

,
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where x = (nA/n) - π, and π is the target allocation proportion on treatment A.

Expanding Λ(x)
n

in a Taylor series about π yields

Λ(na/n)

n
=

[log{µA(z)} − log{µB(z)}]2
GA
πγ2A

+ GB
(1−π)γ2B

+[log{µA(z)} − log{µB(z)}]2
(1− π)2GA

γ2A
− π2GB

γ2B

{(1− π)GA
γ2A

+ πGB
γ2B
}2

(
nA
n
− π

)

−[log{µA(z)} − log{µB(z)}]2
(GA
γ2A

GB
γ2B

)

{(1− π)GA
γ2A

+ πGB
γ2B
}3

(
nA
n
− π

)2

+ o

{(
nA
n
− π

)2}

or,
Λ(na/n)

n
= (I) + (II) + (III) + o

{(
nA
n
− π

)2}
(2.29)

The first term (I) is determined by π and represents the non-centrality parameter for

a fixed design. The Neyman allocation for patients with a given set of covariates z

as in (2.21) maximizes this term. This term can be used to compare different target

allocation proportions in terms of their powers. The second term (II) represents the

bias of the actual allocation from the target allocation. With the design shifting to

different sides from the target allocation proportion π, the non-centrality parameter

will increase or decrease according to the coefficient

[log{µA(z)} − log{µB(z)}]2
(1− π)2GA

γ2A
− π2GB

γ2B

{(1− π)GA
γ2A

+ πGB
γ2B
}2
,

and this coefficient equals 0 if and only if (1− π)2GA
γ2A
− π2GB

γ2B
= 0 , that is

π = πWA2(βA, βB, γA, γB, z) =
γB
√
GA

γA
√
GB + γB

√
GA

,

the Neyman allocation given in (2.21).

In a real-life scenario, especially in the field of personalized medicine, people may

be interested to know the proportion of patients on a particular treatment for a given

set of covariates z. CARA randomization procedures involve, NA|z(m), the number

of patients with covariate z allocated to treatment A after m allocations. Given a

covariate z, the proportion of patients allocated to treatment A is NA|z(m)/Nz(m),∑n
m=1XA(m)I{zm=z}∑n

m=1 I{zm=z}
=
NA|z(m)

Nz(m)
,
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where Nz(m) is the total number of patients with covariate z . Replacing nA/n and

nB/n with NA|z(m)/Nz(m) and NB|z(m)/Nz(m) in (2.31), the test statistic T 2
n still has

an asymptotic chi-squared distribution. The specific procedures for which the asymp-

totic properties hold and the necessary conditions are well described in the response-

adaptive randomization literature. The justification for the asymptotic chi-squared

distribution of the test statistic can be deduced from Hu and Zhang (2004). A very

general form of the asymptotic variance of the observed allocation proportion was given

by Eisele and Woodroofe (1995) and Hu and Zhang (2004); actual computation depends

on specific values of the target allocation proportion and the allocation rule, which is

straightforwarward but tedious. The critical condition to ensure the chi-squared limit

is that the covariate-adjusted allocation proportion on each treatment converges almost

surely to a constant between 0 and 1 for the specific procedure. This substitution makes

Λ{NA|z(m)/Nz(m)} a random non-centrality parameter, and therefore its expectation

can be considered. For example, since NA|z(m)/Nz(m) is asymptotically unbiased for

π, E[{NA|z(m)/Nz(m)} - π ] → 0. Therefore, the average power of the test directly

relates to the variance E[{NA|z(m)/Nz(m)} − π]2 of the CARA procedure. It is this

explicit relationship that would be mostly used to evaluate the power performances of

different CARA randomization procedures.

2.6 Simulation Study

2.6.1 Choice of Design Parameters

In the experimental setup to compare the different CARA randomization procedures,

a two-arm survival trial with 400 patients has been considered. A patient’s arrival time

here is simulated from a uniform (0,365) distribution. The response time of a patient

is added to the recruitment time of the patient and those whose outcomes have not

been observed by specified time D > R are said to be generalized type I right censored.

The length of the recruitment period is considered to be R = 365 days and the overall

trial duration is taken to be D = 581.66 days. The censoring time of the patients is
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simulated from a uniform (0,581.66) distribution.

Following Rosenberger, Vidyashankar and Agarwal (2001), a covariate structure

of three independent covariates has been generated. These are gender (Bernoulli, p =

0.5), age (Uniform(30,75)) and cholestrol level (Normal (200,400)). Treatment-covariate

interactions are not considered during the simulation stage, as the covariate-adjusted

treatment effects can be quite effective as compared to the individual treatment effects,

even in the absence of such interaction terms. The survival time of a patient with

covariate vector z = (1, z1, z2, z3)T in treatment group k is simulated from the Weibull

distribution with scale parameter µk(z) =exp(βTk z) and shape parameter γk = 2.07527

when assessing the situation for a monotonic increassing hazard and γk = 0.57527

when assessing for a monotonic decreasing hazard. The values of shape parameters were

chosen by trial and error, taking into account the three covariate structures with known

distributions, Weibull distributed time to event outcomes, and to have approximate

values of hazard ratio in the population as per the model parameters given in Table

2.1. The values of hazard ratio will vary across individual patients depending on their

covariate values. Three choices of the treatment effects vector have been considered in

this case, which are neutral effect of either treatment, positive effect of treatment A

and negative effect of treatment A. The effects of the corresponding covariates for the

simulation model µk(z) =exp(βTk z) are summarized in Table 2.1.

Model Treatment Covariate Effects

β0 β1 β2 β3

Neutral A 1.896 0.810 0.038 0.001

B 1.896 0.810 0.038 0.001

Positive A 5.5042 0.810 0.038 0.001

B 1.896 0.810 0.038 0.001

Negative A -1.7112 0.810 0.038 0.001

B 1.896 0.810 0.038 0.001

Table 2.1: Values of model parameters
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In Table 2.1, the neutral treatment effect refers to the hypothetical experimental sce-

nario where treatments A and B are equally effective. In the case of comparing a new

treatment with a control, this scenario refers to the situation where the new treatment

is as good as the existing control. The positive treatment effect refers to the hypotheti-

cal experimental scenario where treatment A is more effective than treatment B, or the

new treatment performs better than the control. The negative treatment effect refers

to the hypothetical experimental scenario where treatment B is more effective than

treatment A, or in the case of comparing a new treatment with a control, this means

that the new treatment is not as effective as the control. The procedure used here is a

fully sequential one that recalculates the randomization probabilities after the arrival of

each patient and there are 5000 such simulation runs. Since there are three predictive

covariates in the model, the direction and magnitude of the treatment difference will

vary for the patients, depending on their observed covariate values.

In order to compare the different competing designs, two response adaptive rules

have also been considered for which the covariates are ignored at the design stage,

but the final estimates of the treatment effects can be adjusted for all covariates. The

competing randomization procedures and the corresponding design numbers are listed

in Table 2.2.

In survival trials, the delay time for a patient is the patients’ survival or censoring

time. To facilitate CARA designs with delayed responses, it is required that, at the

ith patient′s randomization time, only data from those patients who have responded

before the ith patient’s arrival are used in computing the randomization probability for

the ith patient. In practice, the assumption of immediate responses is not feasible due

to the inherent delay in time-to-event outcomes. For the implementation of the CARA

and the response adaptive designs given in Table 2.2 above, initially 2m0 patients have

been equally allocated to the two treatment arms using Efron’s biased coin design.

This is a restricted randomization procedure which allocates a patient to a treatment

arm based on the history of the treatment assignment with the aim of achieving balance
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Design Competing Randomization Procedures

I Completely randomized design

II Efron’s biased coin design with p = 2/3

III Pocock and Simon design with p = 3/4

IV CARA CADBCD with (2.18) as the target

V CARA CADBCD with (2.22) as the target

VI CARA CADBCD with (2.21) as the target

VII CARA CADBCD with (2.20) as the target

VIII CARA CAERADE with (2.18) as the target

IX CARA CAERADE with (2.22) as the target

X CARA CAERADE with (2.21) as the target

XI CARA CAERADE with (2.20) as the target

XII Response Adaptive DBCD with (2.17) as the target

XIII Response Adaptive ERADE with (2.17) as the target

XIV CARA design based on the g-link function

Table 2.2: List of the Competing Designs

without introducing biases which are usually avoided by using a completely randomized

design. At a given stage, one computes the treatment imbalance and with probability

2/3 an incoming patient is assigned to the underrepresented treatment arm to reduce

the overall imbalance. This design represents a class of biased coin procedures for

the comparison of two treatments in which allocation of the treatment is determined

probabilistically, but with a bias towards the underrepresented one. Permuted block

design is another restricted randomization approach which is commonly used in practice

and also achieves balance across treatment arms. This randomization scheme consists of

a sequence of blocks such that each block contains a pre-specified number of treatment

assignments in random order. The purpose of this is so that the randomization scheme

is balanced at the completion of each block. Permuted blocks can be quite effective

in achieving balanced designs but they suffer from the disadvantage that at certain

points in the experiment, the experimenter knows for certain whether the next subject

will be assigned as a treatment or as a control. For example, if the block size is
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5, the probability is 1/6 that the experimenter will know for certain the assignment

of units 8, 9 and 10, and 4/9 that he will know for certain the assignment of units

9 and 10. Efron’s biased coin design is asymptotically the most efficient restricted

randomization procedure and therefore enables one to achieve an allocation procedure

with high power for treatment comparison. Here, m0 is a positive number and using

Sverdlov, Rosenberger and Ryeznik (2013) as a guidance, 2m0 is chosen to be 110 for the

CARA designs and 80 for the response-adaptive designs, which are sufficiently large for

accurate estimation of the model parameters. It must be noted that unlike the designs

based exponential regression model, the designs here needs a longer time to start the

adaptation process. This is because of having the number of patients to efficiently

estimate models parameters which includes the extra shape parameter in this case.

At a given step, the Newton-Raphson method for fitting the Weibull regression

model to the data may not converge and maximum likelihood estimate are not attain-

able. In that case, the treatment assignment for the patient is determined using an

Efron’s biased coin design. After the model parameters are estimated from the initial

stage of the design, a randomization probability is calculated after each new patient

who arrives sequentially into the trial. This randomization probability can be based

on any one of the derived allocation functions. A pseudo random number generator

(PRNG) is then used to draw a random number between 0 and 1. If the derived ran-

domization probability is greater than or equal to this generated random number, the

patient is assigned to treatment A or else the patient is assigned to treatment B. The

procedure described is repeated for the subjects entering the trial in the future. The

randomization procedures which are being compared with the derived CARA designs

are as follows :

• A completely randomized design, for which every patient is randomized to treat-

ment A or B with probability 0.5.

• Efron’s (1971) biased coin design in which allocation of the treatment is deter-

mined with a probability of 2/3 towards the underrepresented treatment.

• Pocock and Simon’s (1975) covariate-adaptive randomization procedure. For its

46



implementation, all covariates must be categorical. Therefore, the continuous

covariate age has been dichotomized according to age < 53 years and age ≥ 53

years, whereas the covariate cholestrol level has been dichotomized to level < 200

and level ≥ 200. For an incoming patient, one computes the treatment imbalance

at each level of the patient’s covariates and with probability 3/4 the patient is

assigned to the treatment arm that reduces the overall covariate imbalance. If

the imbalance is zero, the patient is randomized to treatment A or B with equal

probability.

• A response-adaptive rule with (2.17) as its target, for which only the covariates

are ignored at the design stage but the final estimates of the treatment effects

can be adjusted for all covariates. The response-adaptive rule is implemented by

means of the doubly adaptive biased coin design with α = 2 (Hu and Zhang,

2004).

• A response-adaptive strategy with (2.17) as its target, which is implemented by

means of the efficient randomized adaptive design with α′ = 0.55 (Hu, Zhang and

He, 2009).

The observed allocation proportion {NA(m)/m} for the optimal designs at the mth

stage of a clinical trial converges to its target allocation proportion π at the rate of

n−1/2. The asymptotic results of the CADBCD and the CAERADE do not depend

on its randomization parameter α and α′ respectively. This is because the first order

approximation of the allocation probability function do not depend on the randomiza-

tion parameter. In practice, one need to choose a suitable value of the randomization

parameter to implement the proposed designs. For the DBCD and the CADBCD de-

signs in Table 2.2 above, it must be noted that following Zhang and Hu (2009), Hu and

Zhang (2004) and Rosenberger and Hu (2004), the trade-off parameter for randomness

is taken to be α = 2. Similarly, Burman (1996) introduced the expected p-value defi-

ciency to evaluate the performance of a particular design. Based on Burman’s studies,

Hu, Zhang and He (2009) recommended that, for appropriate implementation of the

ERADE designs, it is reasonable to choose α′ between 0.4 to 0.7. The parameter α′

controls the degree of randomness of the design. When α′ is smaller, the ERADE is
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more deterministic and has a smaller variability. Here, α′ for CAERADE and ERADE

is chosen to be 0.55.

Similation of 5000 runs were considered for sensitivity analysis of the effect of α′

on the variability of a CAERADE design. It has been seen that α′ is related to the

randomness of the design. When α′ is smaller, the CAERADE is more determined and

could have a smaller variance. Following Hu,Zhang and He (2009) a simulation study

was conducted with α′ = 0.125, α′ = 0.25, α′ = 0.50, α′ = 0.67 and α′ = 0.75. Overall

sample sizes of 50, 100 and 200 were considered. It has been found that the simulated

results of α′ = 0.125 and α′ = 0.25 are very similar to the results of α′ = 0.50 in terms of

obtaining the target allocation proportion and its variability. However, the CAERADE

with α′ = 0.75 has slightly higher variability than others. Therefore, it is reasonable to

choose α′ in between 0.4 to 0.7 which agrees with the findings of Burman (1996) based

on biased coin designs.

A similar simulation study was also conducted to assess the sensitivity of the ran-

domization parameter α on the CADBCD. With α = 0, the CADBCD becomes the

adaptive randomized design proposed by Melfi, Page and Geraldes (2001). One disad-

vantage of the adaptive randomized design is that, for small experiments, the allocation

at times could be far from the target proportion. This was shown by Efron (1971) with

π = 1/2 . Such designs with α = 0 also has the highest asymptotic variability and thus

low power for treatment comparison. The CADBCD with α > 0 always has smaller

asymptotic variance than the adaptive randomized design. If α = 1, the variance of

CADBCD is half of the variance of the adaptive randomized design. Therefore, one can

force a small-sized experiment to efficiently target a derived allocation proportion by

choosing a value of α for the proposed designs. As α tends to ∞, the CADBCD proce-

dure assigns the incoming patient to treatment A with probability one if NA(m)/m < π,

and to treatment B with probability 1 if NA(m)/m > π. This procedure is entirely

deterministic (except when NA(m)/m = π). It turns out that the deterministic pro-

cedure has the smallest variability that can be attained by any procedure targeting

the optimal allocation proportion. However, one loses the benefit of randomization.

As α becomes smaller, we have more randomization, but also more variability. The
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CADBCD with α = 2 tends to have very good convergence for moderate sample sizes.

Simulation results on the sensitivity analyses on the value of α show that α = 2 is a

good tradeoff that yields almost the same results as α = ∞, but is slightly better than

the adaptive randomized design. Results have also been simulated for α = 5 and it was

nearly identical to α = 2. In every case, the CADBCD with α = 2 works better than

complete randomization, in terms of reducing the number of events in a clinical trial.

2.6.2 Comparing CARA Designs for No Difference Between

the Treatment Effects

To visualize the performances of the various competing designs in Table 2.2 when the

survival response of the patients follows a Weibull distribution, it is always useful to

start with the simplest case, that is, when under the null hypothesis H0 that there is

no difference between the covariate-adjusted treatment effects is true. All simulations

were carried out using the R statistical software. For each experimental procedure, a

trial with n = 400 patients was simulated 5,000 times and the significance level of the

Wald test for testing the difference between the covariate-adjusted treatment effects

has been set to 0.05. Table 2.3 presents operating characteristics of the randomization

designs in Table 2.2 in the case of the neutral model.

Table 2.3 consists of seven columns and it gives the summary results for the 14

different competing designs for the neutral model. The third column gives the observed

allocation proportion of patients assigned to treatment A and its standard error over

5000 simulation runs. The first column represents the two scenarios in which the shape

parameter is less than or greater than 1, whereas the fourth and fifth columns provide

the average numbers of patients categorized by their gender, allocated to each of the

two treatments. The sixth column shows the average total number of events in a trial.

The final column presents the type I error rate of the Wald test, which is used to test for

the covariate-adjusted treatment difference. It is essential that the randomization pro-
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Hazard Design NA
n

(SE) NAM -NBM NAF -NBF Event Type I Error

Decreasing I 0.50 (0.025) 100-100 100-100 325 0.05

II 0.50 (0.003) 100-100 100-100 325 0.05

III 0.50 (0.012) 100-100 100-100 325 0.06

IV 0.50 (0.038) 100-100 100-100 325 0.03

V 0.50 (0.033) 100-100 100-100 325 0.03

VI 0.50 (0.027) 100-100 100-100 325 0.03

VII 0.50 (0.025) 100-100 100-100 325 0.04

VIII 0.50 (0.026) 100-100 100-100 325 0.03

IX 0.50 (0.021) 100-100 100-100 325 0.04

X 0.50 ( 0.016) 100-100 100-100 325 0.04

XI 0.50 (0.006) 100-100 100-100 325 0.04

XII 0.50 (0.037) 100-100 100-100 325 0.05

XIII 0.50 (0.030) 100-100 100-100 325 0.05

XIV 0.40 (0.047) 80-121 80-119 325 0.02

Increasing I 0.50 (0.025) 100-100 100-100 306 0.05

II 0.50 (0.003) 100-100 100-100 306 0.05

III 0.50 (0.012) 100-100 100-100 306 0.06

IV 0.50 (0.038) 100-100 100-100 306 0.04

V 0.50 (0.034) 100-100 100-100 306 0.04

VI 0.50 (0.029) 100-100 100-100 306 0.05

VII 0.50 (0.026) 100-100 100-100 306 0.05

VIII 0.50 (0.033) 100-100 100-100 306 0.05

IX 0.50 (0.028) 100-100 100-100 306 0.05

X 0.50 ( 0.020) 100-100 100-100 306 0.04

XI 0.50 (0.009) 100-100 100-100 306 0.05

XII 0.50 (0.055) 100-100 100-100 306 0.05

XIII 0.50 (0.049) 100-100 100-100 306 0.05

XIV 0.40 (0.047) 80-120 80-120 306 0.03

Table 2.3: Performances of the competing designs in the case of the neutral model
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cedure maintains the nominal type I error rate and has high power to detect treatment

differences.

Table 2.3 shows that under the neutral model, irrespective of the value of the shape

parameter, almost all of the randomization designs result in an equal allocation of pa-

tients to treatments A and B. The CARA design using the glink function on average

allocates significantly more patients to treatment B even though the difference between

the covariate adjusted effects for the two treatments is zero. On the other hand, all

of the CAERADE and the ERADE randomization procedures are less variable than

the corresponding CADBCD and the DBCD procedures. This reflects the theoreti-

cal phenomenon explained earlier that the ERADE being the most efficient adaptive

randomization design makes it the least variable, as the asymptotic variance of the

observed allocation proportion attains the Cramer-Rao lower bound. The column in

Table 2.3 showing the average total number of events in a trial suggests that, even

after a slight under allocation in the CARA design based on the glink function, it does

not result in any ethical gain or loss. This phenomenon of the CARA design with the

glink function may be due to the fact that the cumulative distribution function of a

Gumbel model is not symmetric about zero. All of the other competing designs result

in an equal number of events on an average from 5000 different trials. Therefore when

the difference between the covariate-adjusted effects for the two treatments is zero, the

CARA designs ethically performs as well as the traditional balanced randomization

procedures or the response-adaptive randomization procedures.

While maintaining the type I error rate of the Wald test for testing the covariate-

adjusted treatment difference, it can be seen that Efron’s biased coin design and the

response-adaptive designs perform the best compared to the other traditional balanced

randomization procedures when the value of the shape parameter is less than 1. When

the value of the shape parameter is greater than 1, most of the competing designs have

a type I error rate closer to the nominal value. The Pocock-Simon design, however, in

both the cases gives a slightly inflated error rate. With n = 400 patients, most of the

type I error rates for the designs when the shape parameter is less than 1, are slightly

conservative. This is improved in the case when the shape parameter for the Weibull
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model is greater than 1. This behaviour was further explored by simulation for larger

sample sizes and other values of the shape parameter. The simulated type I error for

adaptive designs continued to be conservative for shape parameter is less than 1. This

may be because of the fact that the density function of the Weibull model is closer to

normality when the hazard function is increasing compared to when the hazard function

is decreasing. The CARA design with the glink function being a non-optimal design

gives a very conservative type I error rate. The standard errors of the type I error rates

are found to be between 0.002 and 0.004. All of the standard errors of the average

number of events in a trial are found to be 8 in the case of an increasing hazard and

9 in the case of a decreasing hazard apart from the CARA design based on the glink

function whose standard error for the events is 8.

2.6.3 Comparing CARA Designs for Differences in Treatment

Effects

The usefulness of a CARA design is appreciated when the covariate-adjusted effects

differ between the two treatment arms. Table 2.4 presents the operating characteristics

of the competing randomization designs in Table 2.2 in the case of the positive model

where the covariate-adjusted treatment effect has a positive impact on the survival

experience of the patients having treatment A. Similar to Table 2.3, this also lists two

scenarios according to the shape parameter of the Weibull model being less than 1 or

greater than 1.

Unlike the neutral model, most of the designs apart from the traditional balanced

randomization designs result in a skewed treatment allocation towards the better-

performing treatment arm, which in this case is A. It can again be seen from column

3 of Table 2.4 that the CAERADE or the ERADE is less variable than the CADBCD

or the DBCD respectively. If the variability of the randomization procedure is the only

criterion for assessing the performance of a design, then the CAERADE proivide the
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Hazard Design NA
n

(SE) NAM -NBM NAF -NBF Event Power

Decreasing I 0.50 (0.025) 100-100 100-100 168 0.98

II 0.50 (0.003) 100-100 100-100 168 0.99

III 0.50 (0.012) 100-100 100-100 168 0.99

IV 0.54 (0.035) 106-94 111-89 166 0.95

V 0.53 (0.031) 104-97 106-93 166 0.94

VI 0.39 (0.028) 77-123 80-120 168 0.97

VII 0.57 (0.027) 113-87 113-87 165 0.96

VIII 0.57 (0.029) 107-93 121-79 166 0.97

IX 0.53 (0.028) 106-94 107-93 165 0.97

X 0.38 (0.025) 74-126 80-120 168 0.98

XI 0.58 (0.020) 116-84 116-84 166 0.98

XII 0.55 (0.034) 110-90 110-90 165 0.96

XIII 0.55 (0.029) 110-90 110-90 166 0.97

XIV 0.68 (0.049) 136-65 135-64 152 0.92

Increasing I 0.50 (0.025) 100-100 100-100 194 0.99

II 0.50 (0.003) 100-100 100-100 194 0.99

III 0.50 (0.012) 100-100 100-100 194 0.99

IV 0.55 (0.027) 111-91 108-90 192 0.96

V 0.54 (0.027) 109-88 111-92 192 0.96

VI 0.44 (0.030) 88-112 90-110 194 0.96

VII 0.55 (0.028) 110-90 110-90 192 0.96

VIII 0.55 (0.024) 110-90 110-90 192 0.99

IX 0.53 (0.023) 105-95 107-93 192 0.98

X 0.44 (0.024) 85-115 91-119 195 0.98

XI 0.56 (0.020) 113-87 113-87 192 0.97

XII 0.54 (0.038) 108-92 108-92 192 0.96

XIII 0.53 (0.029) 105-95 106-94 192 0.97

XIV 0.65 (0.052) 130-70 131-69 183 0.93

Table 2.4: Performances of the competing designs in the case of the positive model
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most suitable design. It can be seen that almost all of the CARA designs result in a

skewed allocation of patients to the better treatment arm, but the degree of skewness

varies between the different designs. With n=400 patients, the powers of the balanced

designs are the highest compared to the other ones. However, they result in more

events, and are therefore ethically not as attractive as the CARA or the response-

adaptive designs. The CARA design with the glink function provides the most skewed

design towards the better treatment arm. This, in turn, results in considerably fewer

events without compromising much on the power of the Wald test for testing the dif-

ference in the covariate-adjusted treatment effects. This design is not based on any

formal optimization procedure, but sequentially takes into account the hazard ratio of

the patients between the two treatment arms and uses it as a scaling factor . It has an

ethical advantage over the other designs because the cumulative distribution function

of a Gumbel model is a steep increasing function and the probability of allocation to A

is being forced towards F[log{µA(m)
(z)}− log{µB(m)

(z)}], a steep increasing function of

[log{µA(m)
(z)} − log{µB(m)

(z)}] provided the estimators are consistent. It can be seen

that using the adaptive designs results in slightly fewer events compared to the tradi-

tional balanced randomization designs. The average number of events is quite similar

across the competing designs. The standard error of these for all of the designs is 10

except for the CARA design based on the glink function whose standard error is 9 for

the decreasing hazard scenario.

The final column of Table 2.4 shows the power of the Wald test. It can be seen that,

when treatment A has a more positive effect on the survival experience of the patients,

using a CARA randomization procedure addresses the ethical criterion of a clinical trial

of treating more patients wiith the better treatment without compromising much on

the power of the Wald test, compared to that of the traditional balanced designs. In

case both hazard scenarios, the response-adaptive designs and the CARA design with

the glink function have the most variable power, whereas the balanced randomization

designs have the least variable power. For the case of decreasing hazard, the variability

of the power for design VIII is similar to that of the balanced randomization designs. In

the case of increasing hazard the variability of the power for design V is similar to that

of the response-adaptive procedures. All of the standard errors for the power ranged
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from 0.001 to 0.004.

Unlike the case of the exponential survival responses, when comparing CARA and

response adaptive designs with targets, the CARA designs perform slightly better when

the Weibull distributed responses with an increasing hazard rate are delayed and the

effect of treatment A is better on the survival experience of the patients compared to

that of treatment B. In contrast to the response adaptive designs, the CARA designs

also cater for situations when there exists a need to allocate a treatment based on the

individual’s covariate profile. The CARA designs allocate more patients to the better

treatment arm at each of the patient subgroup levels. It can also be seen that CARA

designs targeting the Neyman allocation proportion results in more events compared

to the other CARA designs. This is mainly because the Neyman allocation proportion

does not account for any ethical criteria, but it minimizes the overall sample size for a

fixed variance of the treatment difference.

Sometimes an experimenter can face situations where treatment B performs better

than treatment A, or, in situations when comparing a new treatment to a control, the

control performs better than the new treatment. The operating characteristics in Table

2.5 show the performance of the competing designs in such a situation.

It can be seen from Table 2.5 that all of the competing designs are fairly powerful in

the case of the negative model. Similar to the Positive model, both the CARA and the

response adaptive designs result in slightly fewer events compared to the traditional

balanced randomization procedures. The average number of events is quite similar

across the competing designs. The standard error of the average number of events

for almost all of the designs for the increasing hazard scenario is 6, apart from that

of design I whose standard error is 7 and that of design XIV whose standard error is

8. For the decreasing hazard scenario, almost all of the designs have a standard error

for the average number of events of 7 apart from those of design III and XI whose

standard error is 6 and that of design XIV whose standard error is 8. The negative

model also shows that, irrespective of the shape of the hazard function, using a CARA
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Hazard Design NA
n

(SE) NAM -NBM NAF -NBF Event Power

Decreasing I 0.50 (0.025) 100-100 100-100 361 0.99

II 0.50 (0.003) 100-100 100-100 361 0.99

III 0.50 (0.012) 100-100 100-100 360 0.99

IV 0.44 (0.034) 88-112 89-111 358 0.93

V 0.46 (0.030) 90-109 93-108 359 0.94

VI 0.47 (0.028) 94-106 95-105 360 0.95

VII 0.49 (0.027) 96-104 97-103 359 0.95

VIII 0.46 (0.025) 90-110 94-106 358 0.95

IX 0.48 (0.018) 92-106 99-103 359 0.96

X 0.48 (0.014) 94-106 99-101 360 0.96

XI 0.49 (0.007) 98-102 98-102 358 0.97

XII 0.45 (0.033) 89-111 89-111 359 0.93

XIII 0.46 (0.024) 92-108 92-108 359 0.94

XIV 0.33 (0.029) 67-135 66-132 328 0.90

Increasing I 0.50 (0.025) 100-100 100-100 351 0.99

II 0.50 (0.003) 100-100 100-100 351 0.99

III 0.50 (0.012) 100-100 100-100 351 0.99

IV 0.44 (0.036) 87-113 88-112 348 0.96

V 0.45 (0.031) 90-111 91-109 348 0.93

VI 0.47 (0.029) 93-117 94-116 348 0.98

VII 0.48 (0.026) 96-107 93-104 348 0.95

VIII 0.46 (0.029) 89-111 94-106 348 0.97

IX 0.47 (0.023) 90-110 96-114 348 0.96

X 0.48 ( 0.016) 93-107 99-101 349 0.99

XI 0.49 (0.009) 98-102 98-102 348 0.96

XII 0.44 (0.034) 89-111 89-111 348 0.94

XIII 0.46 (0.027) 92-108 91-109 348 0.94

XIV 0.33 (0.029) 65-135 65-135 315 0.90

Table 2.5: Performances of the competing designs in the case of the negative model
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randomization procedure results in a skewing of the treatment allocation probabilities

in favour of the better treament arm while maintaining a high statistical power of the

Wald test. This further shows that even when the response of the patients follow a

non-linear Weibull model, using a CARA randomization procedure is ethically more

attractive compared to the traditional balanced randomization designs, while it also

maintains high statistical efficiency in estimating treatment effects in the presence of

covariates. The inverse proportionality between the average power of the Wald test for

the covariate-adjusted treatment difference, and the variance of the CARA designs was

established theoretically in section 2.5 using a Taylor series expansion of the random

non-centrality paramenter of the test. Comparing the CARA designs, it can be seen

that the CAERADE or ERADE designs a much less variable than the CACBCD or

DBCD counterparts respectively. This is also true for the response-adaptive designs.

The variance of the CARA design based on the glink function also depends on the

difference between the two treatment effects. It can be seen in Table 2.5 that this

design has a relatively small variance, and thus a fairly high power of the Wald test

for detecting the difference in the covariate-adjusted treatment effects. Since all of the

CARA designs result in a skewing of the treatment allocation probabilities towards the

better treatment and achieving high statistical efficiency in estimating treatment effects

in the presence of covariates, they can be considered to be suitable alternatives to the

traditional balanced designs. Similar to the positive model, for both increasing and

decreasing hazard scenarios, the response-adaptive designs and the CARA design with

the glink function have the most variable powers whereas the balanced randomization

designs have the least variable power. For the case of decreasing hazard, the variability

of the power for design X is similar to those of the balanced randomization designs. In

the case of the increasing hazard, the variability of the power for design IV is similar

to that of the response-adaptive procedures. All of the standard errors for the powers

ranged from 0.001 to 0.004.
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2.6.4 Distribution of the Allocation Proportions

Apart from observing the performances of the designs on an average level over 5000

simulation runs, it is useful sometimes to learn about the performance of the individual

trials. The overall performance in the individual trials for the competing designs in

Table 2.2 when the shape parameter of the Weibull model is less than 1 is shown in

Figure 2.2.

Figure 2.2: Effect Size usually skews CARA allocation proportions towards better treatment

The boxplots in Figure 2.2 depict the observed allocation proportions of the com-

peting randomization procedures for n = 400 patients sequentially arriving in the trials.

The distributions of the observed allocation proportions appear to be very close to a

symmetric distribution, but with different means and with different variability. With
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the response-adaptive procedures, the adaptive allocation started somewhat earlier in

the trial as compared to the CARA designs, because the former estimate the main

treatment effects only, and the latter involves estimation of the full vector of treatment

effects. It can be seen that, for all three models, Efron’s biased coin design and the

Pocock and Simon covariate adaptive randomization procedure are least variable among

the competing designs. However, they along with the completely randomized design

allocate patients equally between the two treatment arms irrespective of their perfor-

mance based on patient responses. Therefore, these traditional balanced designs suffer

from the disadvantage of allocating more patients to the worse treatment arm during

the course of the trial. On the other hand, the CARA as well as the response-adaptive

designs skew the patient allocation on an average towards the better-performing treat-

ment arm. The boxplots also confirm the finding that the CAERADE and the ERADE

designs are more efficient than the corresponding CADBCD and the DBCD procedures

respectively.

The simulation results in this section clearly suggest that, when the survival response

of the patients to a treatment has a Weibull distribution, using the CARA designs would

significantly skew the allocation probabilities away from balance, but the degree and

the direction of the skewness may vary depending on the target allocation proportions

that the CARA designs converge to. The variabilities of the designs may also vary. It

has been seen that the CAERADE designs are the most efficient and that the CARA

design with the glink function is the most ethical among all the other CARA designs.

Therefore, when balancing the competing goals of statistical efficiency and of treating

more patients with the better performing treatment, the CARA designs outperform the

balanced randomization designs.

It was seen in Sverdlov, Rosenberger and Ryeznik (2013) that building the CARA

designs assuming exponential regression model for the survival responses, the type I

error rates of the Wald test for treatment comparison were slightly inflated. However it

is seen from the simulation results here that using the designs of section 2.4 when the

responses of the patients follow a Weibull regression model, gives slightly conservative

type 1 error rates of the Wald test for treatment difference when the hazard is decreasing
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over times. When the hazard rate is increasing over time the they are closer to the

nominal value of 0.05 for most of the optimal allocation proportions. This may be

because of the fact that when the hazard rate is increasing over time, the density

function for the Weibull model is closer to the shape of normality as compared to the

exponential density function. Therefore using the correct model for Weibull distributed

survival responses helps controlling the type 1 error rate of the Wald test for treatment

comparison which is a primary concern in any clinical trial.

This section dealt with simulation studies to validate the performance of the derived

CARA designs for patients with Weibull distributed survival responses. It is therefore

now worth applying these derived methodologies to a clinical trial in order to observe

their performance in the trial. The next section gives an applied outlook to this detailed

framework by using a real-life clinical trial.

2.7 Real-Life Example of the Proposed Methodol-

ogy

To assess the performance of the derived methodologies in a real-life clinical trial, a

survival trial in pulmonary adenocarcinoma has been re-designed. The study has been

previously explored in Sverdlov, Rosenberger and Ryeznik (2013) in terms of CARA de-

signs based on exponential models. Here, the study is re-designed based on the derived

methodologies for Weibull distributed survival responses. In this phase 3 open-label

study, during a 20-month period, 1217 adult patients from East Asia between the age

18 to 50 were randomly assigned in a 1:1 ratio between gefitinib (treatment A) and pa-

clitaxel (treatment B). The study excluded all patients who were former smokers. The

patients were followed up for a period of 12 months after the treatment phase. The pri-

mary objective of this trial was to test if treating patients with gefitinib would increase

the time to relapse from pulmonary adenocarcinoma, as compared to those patients

who are being treated with paclitaxel . The primary endpoint was progression-free

survival which considered relapse from pulmonary adenocarcinoma to be the event of

interest, whereas patients who do not experience the relapse until the end of the study
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period or if they are lost to follow-up during the study or if they die to to other events

are considered to be censored . Epidermal growth factor receptor (EGFR) gene muta-

tion was considered to be one of the significant factor affecting the patients’ response.

The study showed that there was a significant interaction between the treatments and

EGFR. Treatment A was superior to treatment B in the EGFR+ subgroup (hazard rate

for progression 0.48) and inferior in the EGFR− subgroup (hazard rate for progression

2.85).

Patient survival times for treatment k were simulated from an exponential distribu-

tion with mean exp(βk0 + βk1z), for k = A,B and z = 0,1. Following Sverdlov, Rosen-

berger and Ryeznik (2013), the parameters were chosen as follows: R = 20 months and

D = 26.5 months; z = 0 (EGFR+) with probability 0.6 and z = 1 (EGFR−) with

probability 0.4; βA0 = 1.62, βA1 = 0.98, βB0 = 2.35, and βB1 = 0.80. For appropri-

ate implementation of the derived CARA designs, 315 patients were initially equally

randomized to the two treatment arms using Efron’s biased coin design before the adap-

tive randomization process started. The results for the performances of the designs are

presented in Table 2.6.

Designs NA
n

(SE) NA−-NB− NA+-NB+ Events Power

I 0.50 ( 0.014) 243-243 365-365 1208 0.99

II 0.50 (0.001) 244-244 365-365 1208 0.99

IV 0.46 (0.019) 229-499 333-156 1196 0.98

VIII 0.45 (0.018) 241-489 305-182 1197 0.99

XII 0.46 (0.017) 335-358 229-295 1205 0.97

XIII 0.47 (0.016) 320-356 251-290 1205 0.98

Table 2.6: CARA Designs Outperforms other Designs for treating individual patients

Table 2.6 summarizes the performances of some of the competing designs in Table

2.2. It can be seen that irrespective of the performance of the treatment arms, the com-

pletely randomized design and the Efron’s biased coin design allocte patients equally

between the two treatment arms, resulting in more events. They also do not take into
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account the difference betweens the covariate-adjusted treatment effects within the lev-

els of EGFR. Thus, they allocate equal numbers of patients within both the EGFR

subgroups. Due to delayed responses, the convergence to the target allocation propor-

tions was dampened. The average allocation proportions for both the CARA and the

response-adaptive designs are similar. This is because of the different direction of the

treatment effect in the EGFR+ and EGFR− subgroups. The overall allocation pro-

portion is therefore close to 0.5 for both the CARA and the response-adaptive designs.

However the CARA designs IV and VIII, unlike the response-adaptive designs XII and

XIII, account for the difference in the direction of the treatment effect in the EGFR

subgroups.

One of the primary reasons for developing CARA designs is that, in some clinical

trials, the degree and direction of the treatment effect differ for patient subgroups

within a treatment arm and the research design should account for such covariate-

specific treatment effects. Therefore, within each of the EGFR subgroups, the CARA

procedure allocates more patients to the better treatment arm and has, on average,

fewer events than each of the response-adaptive randomization procedures and the two

balanced designs. The response-adaptive designs also result in a skewed allocation

towards treatment B, but the degree of skewing is similar across the EGFR subgroups.

It can be seen that design VIII is less variable than design IV. Thus, if the sole criterion

is to have an ethical design with minimum variability, the CAERADE design is the

preferable one. The simulated type I error rates for the designs were between 0.03 and

0.05. All the randomization procedures have similar powers and the standard errors of

the averge number of events were no more than 10.

2.8 Critical Evaluation

The main objective of the present thesis has been to explore the likely ways of widening

the scope of applicability of CARA designs. The procedure of Bandyopadhyay and

Biswas (2001) used probit link function for normally distributed responses to relate

the past allocation, and covariate and response histories of the patients to the present
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allocation. Here, the design was scaled by using an arbitrary tuning parameter to

control the variability. This design has all of the major features of CARA randomization

designs, except for the fact that, unlike the optimal allocation designs, it does not

involve any adjustment for the covariates of the incoming patients. The concomitant

information of the incoming patients can be crucial in many cases. For instance, if

it relates to the gender of the patients and the patients are being treated with two

competing treatments, if males and females react very differently to treatments A and

B, whether the next patient is male or female is an important element in making the

treatment assignment to the incoming patient. It is because of this that the probit link

based design cannot be categorized as a CARA design.

The design based on the glink function, however, is a CARA design, as its treat-

ment allocation probabilities are sequentially modified based on the history of previous

patients’ treatment assignments, responses and covariates, and the covariates of the

incoming patient. The scale parameter of the cumulative distribution function of the

Gumbel model here is the reciprocal of the Weibull shape parameter obtained from

the information about the previous allocation, covariate and response histories of the

patients. On the other hand, the location parameter of this cumulative distribution

function is the reciprocal of the covariate-adjusted scale parameter obtained from the

Weibull regression accelerated life model based on the covariates of the incoming patient.

Another important feature of the present CARA design based on the glink function is

that, unlike the probit link based design of Bandyopadhyay and Biswas (2001), it does

not rely on an arbitrary tuning parameter T as a scaling factor.

The rationale behind the inclusion of the glink based CARA design has been its

close affinity to the other CARA designs in one very significant respect, namely that

they are all ethically oriented and are aimed at skewing the patient allocation in favour

of the better of the two competing treatments. Although the concept of skewing the

treatment allocation arose from ethical considerations such designs are also conducive

to minimization of outlay of resources in clinical trials. However, some care is needed

from the experimenter before using the CARA design based on the glink function. Since

the design is based on the cumulative distribution function of a Gumbel model which
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is a light tailed, steeply increasing function, it is ethically very attractive in terms of

treating a greater number of patients with the better treatment and achieving fewer

events in the trial. Moreover, it gives more weight to the available data than the designs

based on the probit link function or the Cauchy distribution function.

Figure 2.3 shows the probabilities of allocation to the better treatment arm for

different estimates of the covariate adjusted treatment difference when treatment A

performs better treatment B and the survival response follows a Weibull distribution.

Here, 110 patients were initially equally randomized between the two treatment arms

using Efron’s biased coin design, and then adaptive allocation was used separately with

each of the four link functions in Table 2.7. The scale parameter for each of these link

functions is σ̂m = 1/γ̂m and the location parameter is µ = 1/µ̂(zm+1), where γ̂m is

the estimate of the Weibull model shape parameter from the previous m allocations

and µ̂(zm+1) is the estimate of the Weibull model scale parameter as a function of the

concomitant information of the incoming patient. The covariates considered are the

same as those in section 2.6 .

It can be seen from Figure 2.3 that using a light-tailed cumulative distribution func-

tion such as the glink leads to a faster increase in the allocation proportions with the

covariate-adjusted treatment difference compared to a heavy-tailed counterpart such

as the Cauchy distribution. An abrupt-tailed one like the uniform distribution would

give over-optimistic skewed allocation because of its abrupt increase in the allocation

proportion for every increase in the treatment difference. It can also be seen that the in-

crease in the observed allocation proportions for the design based on the glink is slightly

steeper than that for the probit link function and that the cumulative distribution func-

tion of the Gumbel model tends to assign slightly more patients to the better-performing

treatment arm. The estimated rate of change of the allocation proportions with the

covariate-adjusted treatment difference and the proportion of explained variability is

summarized in Table 2.7:

The residual degrees of freedom when regressing the allocation proportions against
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Figure 2.3: Rate of change of the Observed Allocation Proportions

Link F(x) Estimated Slope Residual SE R2

Cauchy 1
π
arctan

(
x−µ
σ

)
+ 1

2
0.41 0.025 0.61

Gumbel exp{−e(x−µ)/σ} 0.57 0.029 0.68

Probit 1
2

{
1 + erf

(
x−µ
σ
√

2

)}
0.55 0.027 0.73

Uniform x−σ
µ−σ 1.05 0.048 0.71

Table 2.7: Behaviour of the different link function-based designs

the covariate-adjusted treatment difference for each of the designs based on the link

functions in Table 2.7 is 4998. Although the design based on the glink function tends

to allocate more patients to the better treatment arm than those based on the other link

functions, it has a serious drawback. In the initial stages, one should not rely heavily

on the available data. If the first few observations happen to be outliers, more patients
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might be allocated to the worse treatment arm than is desirable. It is therefore advisable

that, to use the CARA design based on the glink function, the experimenter needs to

choose a sufficiently large sample size for the interim stage of the trial during which

the patients are balanced across the treatment arms using restricted randomization in

order to calculate the maximum likelihood estimates to initiate the adaptation. As

suggested by Bandyopadhyay and Biswas (2001), in practice, one may also decide to

choose a design based on a heavy-tailed distribution in the initial stages and then switch

to a light-tailed one. This is technically a good suggestion, but switching between two

different designs for the same trial is less likely to be acceptable. Therefore, it is

suggested that, if an experimenter wishes to conduct a clinical trial which is ethically

very attractive, he might want to choose a sufficiently large sample size for the interim

stage of the trial during which the patients are balanced across the treatment arms with

the help of some balanced randomization procedure.

2.9 Discussion

The CARA designs here are based on two distinct approaches, the covariate-adjusted

doubly adaptive biased coin design (Zhang and Hu 2009) and the covariate-adjusted

version of the efficient randomized adaptive design (Hu, Zhang and He 2009) on the

one hand, and the glink function. The approach based on the glink function bridges the

past allocation and response histories and the present allocation pattern after allowing

for the incorporation of prognostic factors. The glink is developed using the cumulative

distribution function of a Gumbel model whose location parameter is the reciprocal of

the scale parameter of the Weibull accelerated life model calculated from the covari-

ate information of the incoming patient and its scale parameter is the reciprocal of

the shape parameter calculated from the Weibull accelerated life model based on the

information about the previous patients. The Gumbel model being asymmetric and

light-tailed, gives more weight to the available data and tends to allocate more patients

to the better treatment. Moreover, when the responses of the patients follow a Weibull

distribution, the design based on the Gumbel model is more appropriate compared to
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other continuous models because the theoretical errors in the Weibull accelerated life

regression model follow a Gumbel distribution. The arbitrariness of choosing a value

for the tuning parameter T present in the design based on the probit link function of

Bandyopadhyay and Biswas (2001) is not present in the one based on the glink function.

Scaling the estimated covariate-adjusted treatment difference by its standard error plus

the estimated hazard ratio makes this design more applicable.

The operating characteristics of the proposed adaptive designs as well as the bal-

anced randomization designs have been compared through simulation for a two-arm

survival trial with three predictive covariates and right-censored data. It has been

found that almost all of the proposed CARA designs generate skewed allocations to-

wards the better treatment according to covariate-specific treatment effects, and thus

result in fewer events in the trial, without compromising much on the statistical effi-

ciency compared to the balanced randomization designs. The only exceptions to this

are the CARA designs targeting the Neyman allocation proportion. This is because

the objective function for the Neyman allocation does not address any ethical criteria.

Its objective is to minimize the trial size. The degree of skewness also varies according

to the background model that the design is based on. A slight delay in the response

does affect the convergence of the CARA designs to their target allocation proportions.

The skewness in the treatment allocation proportions in favour of the better treatment

establishes the ethical gain of using the CARA designs compared to the traditional

balanced randomization procedures. It has been established by simulation that such

ethical gain is achieved most with the CARA design based on the glink function without

compromising much on the power of the Wald test for the covariate-adjusted treatment

difference. Using the correct model for adaptation when the responses of the patients

follow a Weibull model helps to control the type 1 error rate which was slightly inflated

while using the designs based on exponential accelerated life model.

A family of CARA designs has also been proposed here that are fully randomized

and asymptotically efficient of the first order. The CAERADE can be regarded as a

generalization of the Efron’s biased coin design for any desired allocation proportion,

which may depend on the unknown parameters. Delayed responses, which are very
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common in the case of survival trials, present no logistical difficulty in their incorpo-

ration in the CAERADE. It has been established that, when the new treatment has a

better effect on the survival experience of the patients than the existing control or when

treatment A performs better than treatment B, the CARA designs based on the Ney-

man allocation proportion assignsmore patients to the worse treatment and therefore

are not ethically attactive compared to the other competing designs.

A relationship between the non-centrality parameter and the variance of the CARA

designs has been arrived at using a Taylor series expansion of the non-centrality param-

eter of the Wald test for the difference between the covariate-adjusted treatment effects.

It is known that the power is an increasing function of the non-centrality parameter of

the Wald test and therefore it has been shown that the variance of the CARA designs is

inversely proportional to the power of the Wald test for the difference between the treat-

ment effects in the presence of covariates. The CAERADE being the asymptotically

most efficient CARA design increases the power compared to the corresponding CAD-

BCD. In the situation where efficiency is critically important, in theory, the CAERADE

should be the best choice among all of the CARA randomization procedures. However,

sometimes the CAERADE does not converge to the target allocation proportion as

fast as the CADBCD does, although its finite-sample variances are always small. This

is mainly because the allocation probabilities for the CAERADE are not stable. The

allocation function being discrete, they always jump from one value to another. A

continuous allocation function like the CADBCD can make the allocation probabilities

stable and speed up the convergence of the sample allocation proportions. Since in a

clinical trial the subjects are human beings, it would be insensitive for a statistician

not to take into serious consideration the need for minimization as far as possible of the

proportion of patients receiving the inferior treatment. Ethical considerations would

therefore appear to be quite unavoidable. Despite the marginal loss of statistical power

of the Wald test, a CARA design would irrefutably outperform any traditional balanced

randomization design in terms of ethical considerations, while achieving reasonably high

efficiency in estimating covariate adjusted treatment differences.
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Chapter 3

Covariate-Adjusted

Response-Adaptive Designs for

Semi-Parametric Survival Models

3.1 Introduction

Clinical trials are designed to answer specific questions about biomedical interven-

tions, including new treatments and known interventions that justify further study and

comparison. Treatment comparisons for a particular disease are often performed in

a clinical trial to obtain information about the efficacy of the competing treatments.

However, the involvement of human patients gives rise to an ethical concern of treat-

ing as many as possible with the best treatment found so far during the course of

the experiment. Patients arrive sequentially and are assigned to one of the competing

treatments. In order to make use of this sequential arrival of patients, designs are de-

veloped in stages, after each of which a decision is made. Adaptive allocation schemes

are sequential designs in which the method of allocation of treatments to patients is

modified based on the results obtained in the previous stage until a particular treatment

is declared to be a clear winner over the others. There has long been an interest in

developing methods that use the accrued information in the course of a clinical trial.
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Quite often there exists a trial protocol and a statistical analysis plan (SAP) which is set

before the clinical trial begins. The protocol as well as the SAP pre-specifies the adap-

tation schedule and procedure. The adaptation process generally continues throughout

the trial as prescribed in the trial protocol and the SAP. The aim of an adaptive trial

is to more quickly and cost-effectively identify drugs or devices that have a therapeutic

effect, and to zero in on patient populations for whom the drug is appropriate.

Over the past several decades, there has been an enormous amount of work on devel-

oping adaptive designs in clinical trials. Traditionally, interest mainly lay in balancing

the patient allocation between the treatment arms while incorporating randomization

in the method of allocation. The motivation behind this was to develop a method of

experimentation which would retain the maximum power for testing the difference be-

tween the treatment effects. However, forcing a sequential experiment to be balanced

leads to the problem of its results incurring several forms of bias. These includes selec-

tion and accidental bias. Kalish and Harrington (1988) found optimal designs for the

special case when two treatments are available. They investigate empirically the loss

of efficiency when equal numbers of patients are allocated to each treatment. Efron

(1971), as a remedy to this problem, introduced biased coin designs for comparing two

treatments in which allocation of the treatment is determined probabilistically, but

with a bias towards the underrepresented treatment. Such a method of experimenta-

tion which decides on the next treatment allocation based on the information about

the allocation history only is widely classified as restricted randomization.

One property of human patients not shared by inbred laboratory animals is that they

are heterogeneous, that is, they can differ greatly in their responses to treatment. Such

heterogeneity can be accounted for during the course of the clinical trial by considering

the covariate information of the incoming patients. One of the disadvantages of Efron’s

scheme is that it does not include balance over covariates or prognostic factors which

may affect the response of the patient to the treatment. This has led to the development

of a method called the covariate-adaptive randomization where the current patient is

randomized to a treatment arm based on the history of previous treatment assignments,

the covariate vectors of past patients and the current patient’s covariate vector. The
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goal of covariate-adaptive randomization is to adaptively balance the covariate profiles

of patients randomized to each of the competing treatments.

Clinical trials involve experimentation on human patients, there is a large regula-

tory presence in the running of trials. Therefore, it is quite often that, from ethical

considerations, the goal of an adaptive design may be to allocate a large number of

patients to the treatment performing better thus far in the trial. Designs that adapt

to the responses of the previous allocated patients as well as the previous allocation

history are termed to be response-adaptive designs.

In contrast, for CARA designs, the treatment allocation probabilities are sequen-

tially modified based on the history of previous patients’ treatment assignments, re-

sponses and covariates, and the covariates of the incoming patient. Information related

to the covariate of the incoming patient is crucial in many cases when deciding on the

treatment allocation for this patient. For instance, if males and females react very dif-

ferently to the two treatment arms, then the information about the incoming patient

being a male or a female is an important element in the assignment of a treatment to

that patient.

Most of the CARA designs developed so far have dealt with clinical trials where the

response of the patients to a particular treatment is considered to be a binary random

variable. Hu, Zu and Hu (2015) developed unified family of CARA designs that balances

the efficiency and ethical criterias of a clinical trial, using a tuning parameter as the

power of the D-optimality criterion. Thier proposed family unifies several well-known

randomization methods such as the covariate-adjusted doubly-adaptive biased coin de-

sign as given in (2.26) and the optimal biased coin design of Atkinson (1982). There has

also been some work carried out with survival outcomes following a certain paramet-

ric model. Sverdlov, Rosenberger and Ryeznik (2013) used the exponential parametric

model to develop CARA designs for survival trials with administrative right censoring

for patients who are sequentially arriving in the trial. Biswas, Bhattacharya and Park

(2016) introduced a class of covariate-adjusted response-adaptive designs for phase III

clinical trials when the treatment response follows a parametric survival model and

there is random censoring. They developed optimal allocation designs for parametric
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survival responses based on the Koziol-Green (1976) model of random censoring, where

the survivor function of the censoring variable is a positive power of that of the lifetime

variable, and hence allows for the risk of experiencing the event of interest to depend on

the censoring mechanism. Such a kind of random censoring is referred to as informative

censoring.

While using a parametric form for the survival responses results in robust parame-

ter estimates from the fitted statistical models, it is rare in real-life clinical trials that

the survival responses conform closely to a certain parametric model. Therefore, an

attempt is made in this chapter to develop a CARA design whch is more applicable in

real-life situations, and, at the same time, is based on methods which yield sufficiently

robust parameter estimates from the fitted statistical model. The CARA designs de-

veloped are based on the lighter assumption that the hazard functions of the patients

at any given time point are proportional and time independent. It is because of this

reason that the approach is termed semi-parametric. To handle such situations, Fidalgo

and Lopez (2014) developed a partial information matrix and compared their derived

optimal designs with the optimal designs based on the full likelihood information, and

Konstantinou, Biedermann and Kimber (2015) obtained optimal designs by finding a

closed-form expression for the asymptotic covariance matrix for the Cox model. These

do not fit the definition of a CARA design which incorporates the covariate informa-

tion of the incoming patient. In this chapter, various CARA designs are developed

based on a semi-paramtric approach and the performance of the designs is validated by

simulation.

The outline of this chapter is as follows. Section 3.2 explains the background mate-

rial relating to the Cox proportional hazards model. The method of obtaining parameter

estimates for the model is discussed in Section 3.3. This is followed by Section 3.4 that

proposes the various CARA randomization procedures for a survival trial without any

parametric assumptions on the survival responses, which are then validated in Sec-

tion 3.5 using extensive simulation. The results obtained from applying the proposed

CARA designs to re-design a real-life clinical trial are detailed in Section 3.6. Section

3.7 concludes with a discussion and an outline of some future research in this direction.
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3.2 Background on Proportional Hazards

As mentioned earlier, Sverdlov, Rosenberger and Ryeznik (2013) used the exponen-

tial parametric model to develop CARA randomization procedures for survival trials.

These have been generalized in Chapter 2 to the Weibull case citing the limitations

of the applicability of the exponential model in real-life clinical trials. The methods

discussed in this chapter extend the applicability of CARA designs even further by en-

compassing situations where the designs are suitable for survival responses conforming

to any distribution, provided that the hazards of the event considered at any given time

point are proportional and time-independent for any two patients in the trial.

In a medical context, the hazard rate is also known as the force of mortality and it

represents a continuous version of a death rate per unit time. It is always convenient

in survival analysis to describe the distribution of the survival responses in various

different but inter-related ways. For a continuously distributed survival time T , let f(t)

be the density function and F (t) be the distribution function. In addition, let:

• the survivor function be S(t) = P(T ≥t), where S(t) gives the probability for a

patient to survive beyond a given time point t;

• the hazard function be h(t) = f(t)
S(t)

, where h(t) can be interpreted as the instan-

taneous failure rate;

• the risk function be h(t)δt, which gives the risk of an event in the time interval

[t, t+δt), given survival up to time t.

The survivor function can also be written as

S(t) = e−
∫ t
0 h(u)du = e−H(t), (3.1)

where H(t) is known as the integrated hazard or the cumulative hazard. It can therefore

be seen that, for the distribution of T to be proper, that is, for its density to integrate

to one, H(t)→∞ as t→∞. If this is not true, the implication is that the individual

may never die, though in some contexts this may not be an unreasonable approximating
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assumption. For example, when measuring progression-free survival, children may be

cured of a childhood tumour and live indefinitely in relation to the time scale of the

study. Normally, statisticians would want to insist on the distribution of T being

proper.

The hazard function gives the event rate at a given time t, conditional on having

survived to time t. The actual value of the hazard function is not usually of any

practical importance. It is mainly used to calculate risk ratios or to compare the risks

at different time points in a clinical trial. It is also useful for comparing death or

failure rates over time. The hazard function can be used as a means of identifying an

appropriate parametric model for the data or ruling out models that are not appropriate.

For example, the exponential distribution has a constant hazard function. Therefore,

if there is knowledge about the systems that they do not age with time, then the

exponential distribution can be used to model the survival times. If the hazard rate

is increasing, the risk of death or failure is also increasing with time because the ratio

of the hazard rates will be the same as the ratio of the risk functions. This ratio is

known as the risk ratio because over a small interval around time t when comparing

two treatments A and B, we have

hA(t)

hB(t)
=
hA(t)δt

hB(t)δt
. (3.2)

The concept of a risk ratio is used extensively in survival modelling when emphasis lies

in comparing different groups. This gives rise to the Lehmann family.

This family, also known as the proportional hazards family, is an important family

of distributions in modelling survival times. If ψk is an arbitrary constant with respect

to time at treatment k, the form of the Lehmann-family can be generated by;

Sk(t;ψk) = {S(t)}ψk , fk(t;ψk) = ψk{S(t)}ψk−1f(t), hk(t;ψk) = ψkh(t) (3.3)

for k = A,B. It can be used to model the log hazard and is the basis for the important

proportional hazards model, where the covariates act additively on the logarithm of the

hazard function. In such cases, ψk is a function of the model covariates. The exponential

distribution and the Weibull distribution with constant shape parameter belong to the

Lehmann family. From (2.3) it can be seen that, for the exponential model, the hazard
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ratio ψk can be obtained by taking the ratio of the covariate-adjusted means for the

two treatment arms. For Weibull distributed survival responses with constant shape

parameter γ, the value of ψk is estimated as in (2.3). In both these cases, ψk is time

independent and is just a function of the model covariates.

Cox (1972) had used this concept to provide a semi-parametric approach to model

time to event data where the survival experiences of patients in different groups can

be compared after adjusting for the effects of other variables which have an effect on

the patients’ responses. Unlike the accelerated life models which assume a particular

parametric distribution for the survival time of the patients, the Cox proportional

hazards model does not make any strong assumption about the functional form of the

survival times but a lighter assumption about the hazard ratio between two individuals

at a particular time point being constant. Since the model makes no assumption about

the functional form of the survival time distribution, the parameter estimates are not

based on the probability of the observed outcomes given the parameter values. Instead

of attempting to construct a full likelihood, Cox (1972) considered the conditional

probability that, given that exactly one individual in the risk set Ri with covariate

vector zm dies at time ti, it is the mth individual that does so. Associated with patient

m = 1, 2, ...., n is a vector of baseline covariates zm = (z1m, ........, zpm)T , the vector of

unknown model parameters βk = (βk1, ...., βkp)
T for treatment k = A,B, and a risk set

Ri, which is defined as the set of individuals still at risk at time ti, where ti is the ith

ordered event time.

Let the hazard for the mth individual in the trial with treatment k and covariate

vector zm be hk(t|zm) = h(t|z = 0) eβ
T
k zm , where h(t|z = 0) denotes the baseline hazard

function. Throughout this chapter, it is assumed that the survival responses follow a

continuous time model, so that only one event occurs at any one time. Therefore, the

conditional probability is given by

P ( individual m dies in[ti, ti + δt]|one death at ti) =
hk(ti|zm)δt∑
l∈Ri hk(ti|zl)δt

or, P ( individual m dies in[ti, ti + δt]|one death at ti) =
h(ti|z = 0)eβ

T
k zm∑

l∈Ri h(ti|z = 0)eβ
T
k zl
,
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which yields

P ( individual m dies in[ti, ti + δt]|one death at ti) =
eβ

T
k zm∑

l∈Ri e
βTk zl

.

Thus, the baseline hazard cancels out from the expression. This is the essence of the

analysis to evaluate the conditional probability, the hazard at the event times ti only

needs to be considered. The product of these conditional probabilities over all of the

ordered event times ti is termed the partial likelihood, and is given by

PL =
B∏
k=A

nk∏
i=1

eβ
T
k zm(i)∑

l∈Ri e
βTk zl

. (3.4)

It can be seen from (3.4) that the individual times ti do not appear in the expression

for the partial likelihood. This can be justified by the argument that, in the absence

of a parametric form for the hazard, there is no information about its value between

successive ti: it could quite possibly be zero. It follows that the partial likelihood is a

function of only the ranks of the times and it would be unchanged if the time scale were

transformed by any monotonic transformation. The partial likelihood can be thought

of as the joint density function of the subjects’ ranks in terms of event order if there

were no censoring and no tied event times. This means that the functional form of

the baseline hazard function is not required. The censoring times do not enter the

expression for PL except to the extent that they help to determine the risk set. This

is also reasonable: knowing where in an interval an individual was censored conveys no

information about the hazard, provided that there exists independent censoring.

This intuitive justification, first proposed by Cox (1972) disguises the fact that PL is

not actually a likelihood. Indeed he originally described PL as a conditional likelihood.

Subsequent discussion led to a changed perception of the nature of the expression, which

is closer to being a marginal likelihood. Cox (1975) was able to recast his method of

estimation through what he called partial likelihood.

Ignoring the times at which the events occur leads to a loss of information. There-

fore, using partial likelihood for estimation of parameters leads to a little loss of in-

formation because it suppresses the actual event times, even though they are known.

Cox (1975) studied the properties of partial likelihood and showed that it does indeed
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have asymptotic properties that justify treating it as if it were a likelihood. He showed

that, even with the loss of information compared with a fully parametric analysis, the

partial likelihood acts in a similar manner to the likelihood and has all of the usual

properties.This approach is based on sound inferential principles and rigorous proofs

showing the consistency and asymptotic normality of the partial likelihood estimator.

Tsiatis (1981) demonstrated these large-sample properties. Anderson and Gill (1982)

simplified and generalized these results through the use of counting processes. The

amount of information lost by ignoring the actual event times is less than what one

might expect if the Cox proportional hazards model fits the data well.

Another useful distinction between the accelerated life model and the Cox propor-

tional hazards model is that the intercept is non-identifiable in the latter. The effect

of the covariates in a proportional hazards model is to increase or decrease the hazard

function by a constant proportion relative to the baseline hazard function. If two treat-

ments are being compared, from (3.3), putting log(ψk) =βTk zm, hk(t;ψk) = hk(t|zm)

and h(t) = h(t|z = 0) the logarithm of the hazard function for treatment k at any time

can be modelled as

log{hk(t|zm)} = log{h(t|z = 0)}+ βTk zm, hk(t|zm) = eβ
T
k zmh(t|z = 0). (3.5)

Therefore, using this model leads to the estimation of the relative risk between subjects

and not the absolute risk when the model parameters are estimated.

Although the values of the partial likelihood parameter estimates are interpretable

by themselves, the overall survival behaviour of the model cannot be understood without

knowing the baseline hazard function. One way to understand the baseline hazard

function is to specify it. However, in practice clinicians seldom specify a parametric

form for the baseline hazard function, because they seldom have even the faintest idea

as to what it might look like. The Cox proportional hazards model offers a neat way to

overcome this problem. When calculating the survival probabilities, one would estimate

the cumulative baseline hazard using an adaptation of the Nelson estimator attributed

to Breslow(1972).

Ĥk(t|z = 0) =
∑
ti≤t

dik∑
l∈Ri e

βTk zl
, (3.6)
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where dik represents the total number of events on treatment k at time ti, for k =

A,B. This is precisely what is expected from a discrete distribution with ĥk(t|z =

0) =
∑

ti≤t
1∑

l∈Ri
e
βT
k

zl
. From this, the baseline survivor function can be estimated by

Ŝk(t|z = 0) = e−Ĥk(t|z=0).

Once the baseline survivor function is estimated, a survival curve can be constructed

as follows with covariates z:

Ŝk(t|z) = Ŝk(t|z = 0)exp(βTk z). (3.7)

In some sense, the discrete estimates ĥk(t|z = 0) can be thought of as similar to the

maximum likelihood estimate from the full likelihood, provided that it is assumed that

the hazard distribution is discrete. To estimate the average survival for a group of

subjects, either the individual survival estimates can be averaged or the survival for a

subject can be calculated using (3.7) with average covariates.

In this chapter, a survival trial is considered where patients enter the trial sequen-

tially and must be immediately randomized to either of the treatment arms. In survival

trials, it is not always possible to observe a random sample of completed observations.

This is because the observations are often censored in real-life clinical trials. It is as-

sumed that the survival time Tik is subject to an independent censoring time Cik , and

that the observed response on treatment k is a bivariate random vector (Tik, δik ), where

Tik = min(Tik, Cik) and

δik =

0 if Tik is a right-censored time,

1 if an event occured at time Tik.
(3.8)

With such a model, the ith patient’s observed response with treatment k = A,B is

represented by (tiA, δiA ) when xi = 1 and (tiB, δiB ) when xi = 0. Throughout this

chapter, the censoring scheme is assumed to be generalized type I right ceonsoring.

The trial has a limited recruitment period of length R > 0 and the trial duration

is fixed at D >R. At time D, patients who have not died or have not already been

censored are considered to be generalized type I right censored. It is possible to facilitate

CARA randomization only if the recruitment phase is relatively long and the number

of accumulating survival responses during the recruitment phase is substantial. The
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derivation of the parameter estimates using the partial likelihood function is considered

in the next section.

3.3 Deriving the Parameter Estimates from Partial

Likelihood

The partial likelihood function is a joint density function for the ranks of the patients in

terms of the event order. It is formed by taking a product of the conditional probabilities

that the mth patient, experiences the event in the interval [ti, ti + δt), given that there

is only one event at time ti, over all of the event times. Note that the censoring times

do not contribute towards the partial likelihood, as the values of probabilities are 1.

Therefore, the partial likelihood for treatment k expression can be written as

PLk =

nk∏
i=1

{
eβ

T
k zm(i)∑

l∈Ri e
βTk zl

}δik

. (3.9)

The essence of using the partial likelihood is that this function depends only on βk,

and is free of the baseline hazard function h(t|z = 0). Cox (1975) suggested treating

PLk as a regular likelihood function and making inferences about βk accordingly. This

means that the partial likelihood function can be maximized to obtain maximum partial

likelihood estimate (MPLE) of βk, and also the negative partial second derivative of

the log partial likelihood function can be used as the observed information matrix for

calculating the variance of the MPLE.

Survival trials are likely to involve censored observations. A critical assumption

made here is that the survival times and the censoring times are independent. The

generalized type I right censoring is considered here because the patients arrive sequen-

tially in the clinical trial and are observed until the end of the study. When subjects

join a study at different times and are all observed until a fixed time, generalized type

I right censoring. Here, time is measured from a different origin for each subject. This

is shown in Figure 2.1.
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Taking the logarithm of both sides of (3.9) yields

lk(βk) = log(PLk) =

nk∑
i=1

δik{βTk zm(i) − log(
∑
l∈Ri

eβ
T
k zl)}. (3.10)

This function can be maximized over βk to produce the maximum partial likelihood

estimates of the model parameters. Therefore, the partial score function is;

∇lk(βk) =

nk∑
i=1

δik

{
zm(i) −

∑
l∈Ri zle

βTk zl

(
∑

l∈Ri e
βTk zl)

}
. (3.11)

The Hessian matrix of the partial log-likelihood is given by

∇2lk(βk) = −
nk∑
i=1

δik

{∑
l∈Ri zlz

T
l e

βTk zl∑
l∈Ri e

βTk zl
−

(
∑

l∈Ri zle
βTk zl)(

∑
l∈Ri zle

βTk zl)T

(
∑

l∈Ri e
βTk zl)2

}
. (3.12)

Using the score function and the Hessian matrix, the partial likelihood function can be

maximized with the help of the Newton-Raphson algorithm. The negative inverse of the

Hessian matrix, evaluated at β̂k, the partial likelihood estimate of βk, can be used as

an approximate covariance matrix for the estimate, and used to produce approximate

standard errors for the estimated regression coefficients in the Cox proportional hazards

model.

Let

z̄(ti,βk) =

∑
l∈Ri zle

βTk zl∑
l∈Ri e

βTk zl
=
∑
l∈Ri

zlwl,

where wl = eβ
T
k zl/

∑
l∈Ri e

βTk zl is the weight that is proportional to the hazard of the

patient experiencing the event. Therefore, z̄(t,βk) can be interpreted as the weighted

average of the covariate vectors among those individuals still at risk at time t with

weights wl. Thus (3.12) can be written as

∇2lk(βk) = −
nk∑
i=1

δik[
∑
k∈Ri

zlz
T
l wl − z̄(ti,βk){(z̄(ti,βk)}T ], (3.13)

which can also be written as

∇2lk(βk) = −
nk∑
i=1

δik[
∑
l∈Ri

{zl − z̄(ti,βk)}{zl − z̄(ti,βk)}Twl]. (3.14)

The quantity V (ti,βk) =
∑

l∈Ri{zl− z̄(ti,βk)}{zl− z̄(ti,βk)}Twl can be interpreted

as the weighted covariance matrix of the covariates among those individuals still at risk
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at time t. If {Vss(ti,βk)}ps=1 are the diagonal entries of this covariance matrix then

Vss(ti,βk) ≥ 0 and ∂2lk
∂β2
ks
≤ 0. Therefore, the log partial likelihood function has a unique

maximizer which can be obtained by equating the score function to zero and solving

for βk.

Moreover,

Vst(ti,βk) =

[∑
l∈Ri zslztle

βTk zl∑
l∈Ri e

βTk zl
−

{
(
∑

l∈Ri zsle
βTk zl)(

∑
l∈Ri ztle

βTk zl)

(
∑

l∈Ri e
βTk zl)2

}]

can be interpreted as the weighted sample covariance between the sth and the tth ele-

ments of the covariate vector among those individuals at risk at time ti. So the weighted

covariance matrix of the covariates among those individuals at risk at time ti, which con-

sists of {Vss(ti,βk)}ps=1 as its diagonal entries and {Vst(ti,βk)}ps,p=1 as its off-diagonal

entries, is positive definite. Hence the observed information matrix for βk, given by

Jk(βk) =
∑nk

i=1 δikV (t(i), βk), is also positive definite. The Hessian matrix - Jk(βk) is

negative definite, which implies that the log partial likelihood is a concave function of

βk and hence has a unique maximum which can be obtained by setting ∇lk = 0 . The

maximizing estimate β̂k defines the MPLE of βk.

Using the martingale central limit theorem, Cox (1975) showed that

(β̂k − βk)
d−→ Np{0, J−1

k (βk)}.

In practice, since βk is unknown, β̂k is substituted for βk in J−1(βk) and J−1(β̂k) is used

as the estimated covariance matrix of β̂k. Since J(βk) is positive definite, its unique

inverse exists and is also positive definite.

To test the difference between the covariate-adjusted treatment effects, the Cox

proportional hazard model uses the score function in (3.11). Let uk(βks) = ∂lk
∂βks

and

let Uk(βk) = ∇lk be the score function for the kth treatment arm. If βks measures

the difference between the covariate adjusted treatment effects, then, under the null

hypothesis H0: βks = 0, we have uk(0)
d−→ N{0, Jkss(0)}. Equivalently,{

uk(0)√
Jkss(0)

}2

d−→ χ2
1.
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Under the global null hypothesis H0 : βk = 0, the score function Uk(0) converges to a

multivariate normality and Uk(0)
d−→ Np(0, Jk(0)). Equivalently,

[{Uk(0)}J−1
k (0){Uk(0)}T ]

d−→ χ2
p.

Here, uk(0) can be regarded as the difference between the sum over the survival times

of the observed number of events from treatment k and the expected number of events

under the null hypothesis, which is also the numerator of the log-rank test. However,

unlike the score function, the log rank test does not adjust for the effects of other

variables having an effect on the survival experience of the patients.

The partial likelihood ratio test can also be performed to test for the difference

between the covariate adjusted treatment effects. As in the ordinary likelihood theory,

the null hypothesis can be regarded as H0: βk = ξk, where ξk is an arbitrary known

constant vector of dimension p for treatment k. If H0 is true, then β̂k, should be close to

ξk. Hence, lk(β̂k) should be close to lk(ξk) . Since lk(β̂k) - lk(ξk) is always non-negative,

H0 should be rejected if this difference is large. The partial likelihood ratio test uses

the fact that, under H0,

2{lk(β̂k)− lk(ξk)}
d−→ χ2

p.

Therefore, for a given level of significance α, H0: βk = ξk is rejected if 2 {lk(β̂k) -

lk(ξk)} ≥ χ2
p,α, where χ2

p,α is the value of χ2
p distribution such that P(χ2

p > χ2
p,α) = α.

Taylor expanding lk(ξk) about β̂k gives

lk(ξk) ≈ lk(β̂k) +∇lk(β̂k)(ξk − β̂k) + 1
2!

(ξk − β̂k)T∇2lk(β̂k)(ξk − β̂k)

Since β̂k maximizes lk(βk) Uk(β̂k) = ∇lk(β̂k) = 0 and ∇2lk(β̂k) = - Jk(β̂k) we have,

2{lk(β̂k)− l(ξk)} ≈ (ξk − β̂k)TJk(β̂k)(ξk − β̂k).

Moreover, using the martingale central limit theorem, it can be shown that

(β̂k − ξk)
d−→ Np{0, J−1

k (β̂k)}.

Therefore under H0 : βk = ξk,

2{lk(β̂k)− lk(ξk)} = (β̂k − ξk)TJk(β̂k)(β̂k − ξk)
d−→ χ2

p.
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The score test is the most powerful test when the true value of βk is close to ξk.

The main advantage of the score test is that it does not require an estimate of the

information matrix under the alternative hypothesis or unconstrained maximum partial

likelihood. This constitutes a potential advantage in comparison to other tests, such as

the Wald test and the partial likelihood ratio test, and makes testing feasible when the

unconstrained MPLE is a boundary point in the parameter space. The score test based

on the partial likhelihood function and the Wald test are used in the following section

to develop CARA designs based on Cox propotional hazard model for comparing two

treatment arms.

3.4 The Proposed Semi-Parametric CARA Designs

Clinical trials are complex experiments on humans with multiple and often competing

expetimental objectives. Some of these objectives include maximizing the power to

detect clinically relevent differences in treatment outcomes, maximizing the patient’s

personal experience while being treated in the trial and making the trial economically

more effective. An optimal solution for allocating patients to the competing treatment

arms is a function of the unknown parameters. Unlike inbred laboratory animals,

the humans involved in clinical trials are heterogeneous. Therefore, the objective of

maximizing the patient’s personal experience while being treated in the trial needs to

be satisfied after taking such heterogeneity into account. A CARA design achieves most

of these objectives in a clinical trial after taking the between-patient heterogeneity into

account.

CARA randomization is applicable when the responses of the patients to the treat-

ments follow a non-linear and heteroscedastic model, and when multiple experimental

objectives are being pursued in the clinical trial. In this chapter, it is assumed that

the survival responses of the patients follow a semi-parametric survival model which in

this case is a Cox proportional hazard model. This means that there is no assumption

made about the underlying theoretical distribution of the responses. However it is as-
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sumed that the hazard of an event at any time in the clinical trial for a patient in one

treatment group is proportional to the hazard of the event at that particular point of

time in the trial for another patient in the opposite treatment group. Proportionality

here means that the ratio of the hazard functions for patients on the two treatment

arms at a given point of time in the trial is not dependent on time. The censoring

scheme assumed throughout is a generalized type I right censoring scheme, where the

recruitment period is of length R > 0 and D is the overall duration of the clinical trial.

At time D, the subjects who have not experienced the event or have not already been

right censored are considered to be generalized right censored of type I. When the re-

cruitment phase of the survival trial is long enough to accumulate a substantial number

of responses, CARA randomization is applicable. To allocate an incoming patient to a

particular treatment arm, apart from the covariate profile of this patient, this type of

randomization relies heavily on the response history, treatment allocation history and

the history of the covariate profiles of the patients.

When comparing two treatments, let βA and βB be the covariate-adjusted treatment

effects of treatments A and B, respectively. During the initial phase of the trial, some

restricted randomization procedure is used to randomize the initial 2m0 patients equally

among the two treatment arms, where m0 is a positive integer. This ensures that at least

m0 patients are allocated to each treatment arm, and that estimates of the parameters

(βA, βB) can be obtained from the observed responses of this initial sample. At a

general stage, one computes the partial likelihood estimates (β̂A,m, β̂B,m) of the model

parameters (βA , βB). When the (m+1)th patient enters the trial with covariate vector

zm+1, this patient is randomized to treatment A with probability c(β̂A,m, β̂B,m,zm+1),

where 0 ≤ c(.) ≤ 1 is an allocation function which bridges the past allocation pattern,

response histories and covariate vectors of the m patients to the (m + 1)th allocation

with the covariate vector zm+1. This allocation function skews the treatment allocation

probability in favour of the better treatment arm found thus far in the course of the

clinical trial, without compromising much on the power of the statistical test to detect

any covariate adjusted treatment differences.
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3.4.1 Deriving a Suitable Semi-Parametric Target Allocation

Proportion

Treating the baseline hazard as arbitrary makes the design more dependent on the

observed data compared to the designs based on parametric models. Such a design

therefore increases its applicability in real-life clinical trials. Let εk(z;βk) be the prob-

ability of an event before censoring for a patient on treatment k and with covariate

vector z. Then, εk(z;βk) = P(Tk ≤ Ci |z; βk). This probability can be estimated by

the proportion of patients facing events on each treatment.

One way to meet most of the multiple experimental objectives in a clinical trial

is to minimize the overall hazard for a patient with a given covariate subject to the

constraint of keeping the asymptotic variance of the difference between the estimated

hazard functions for the two treatment groups, constant. This is achieved by minimizing

nAhA(t|z) + nBhB(t|z),

subject to zT{zTJ−1
A (βA)z}ze2βTAz + zT{zTJ−1

B (βB)z}ze2βTBz = k > 0,

where k>0 is a constant and Jk(βk) is the observed information matrix of the Cox

regression coefficients βk for treatment k. If V ak{ĥk(t|z)} = zT{zT V̄ −1(t,βk)z}ze2βTk z

, the optimal allocation proportion for treatment A is given by

πSA1(βA,βB, z) =

√
εB(z;βB)hB(t|z)V aA{ĥA(t|z)}√

εB(z;βB)hB(t|z)V aA{ĥA(t|z)}+

√
εA(z;βA)hA(t|z)V aB{ĥB(t|z)}

.

(3.15)

One can use other metrics of treatment difference and obtain different optimal allo-

cations. For instance, minimizing the overall sample size subject to the constraint of

keeping the asymptotic variance of the difference between the estimated hazard func-

tions for the two treatment groups, constant, leads to the Neymann allocation given

by

πSA2(βA,βB, z) =

√
εB(z;βB)V aA{ĥA(t|z)}√

εB(z;βB)V aA{ĥA(t|z)}+

√
εA(z;βA)V aB{ĥB(t|z)}

. (3.16)
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The derivation of the allocation proportion in (3.16) is provided in Appendix E. The

variance of the estimated hazard for a particular treatment arm has been derived by

applying the delta method. This derivation is given in Appendix C.

Apart from using the formal optimization procedure, one can make use of the cu-

mulative distribution function of a normal model to obtain an allocation proportion.

This idea was first introduced by Bandyopadhayay and Biswas (2001), where they used

a probit model as a link function to bridge the past history to the present allocation

pattern for patients whose responses follow a normal linear model. However, that de-

sign did not fit the definition of a CARA design, as it did not take into account the

covariate information of the incoming patient. Moreover, the main criticism which

the design faced was of the arbitrariness of the user defined tuning parameter used to

control the variability of the design. In the results obtained in the previous chapter

it was seen that the increase in the allocation proportions with every increase in the

treatment difference did not significantly differ between the probit link function and

the glink function. Moreover unlike the Weibull accelerated failure time model whose

theoretical errors follow a Gumbel distribution, the baseline hazard function for the

Cox proportional hazard model is a nuisance parameter whose paramteric distribution

is not estimable. A similar design to Bandyopadhayay and Biswas (2001) is therefore

now developed for patients whose survival responses follow a semi-parametric model

and uses the partial likelihood estimators instead of the least squares estimators.

Let Φ(.) be the probit link function, which is the cumulative distribution function

of a normal model with mean zero and standard deviation determined by the covariates

of the incoming patient. Let β̂A(m)
and β̂B(m)

be the partial likelihood estimators of the

effects of the two treatments upto the mth stage of the clinical trial. Using Φ(.) it is

intended to seek for a suitable cumulative distribution function F (.) which can be used

as a link function such that after m allocations, the (m + 1)th patient is allocated to

treatment A with probability F [log{hA(t|zm)}−log{hB(t|zm)}] and to treatmentB with

probability 1- F [log{hA(t|zm)} − log{hB(t|zm)}] = Φ[log{hB(t|zm)} − log{hA(t|zm)}].

The probit link function being an increasing function of the treatment effect difference

make this allocation procedure favour the treatment performing better at each stage of
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the clinical trial. Let ĤR(zm) represent the estimated hazard ratio of the two treaments

at the mth stage of the clinical trial. The allocation function for treatment A for the

(m+ 1)th patient can therefore be written as :

πSA3(β̂A(m)
, β̂B(m)

, z) = Φ

{
log{ĥA(t|zm)} − log{ĥB(t|zm)}

SE[log{ĥA(t|zm)} − log{ĥB(t|zm)}] + ĤR(zm)

}
. (3.17)

This design scales the covariate adjusted treatment difference by the hazard ratio be-

tween the two treatment arms. This means that, if the hazard of an event for a par-

ticular treatment group is greater than that for the other, there would be less chance

of allocating the next patient to that particular treatment arm. Let β−k be the model

parameters ignoring the treatment effect. The probit link function in (3.17) has mean

zero and the standard deviation as h(t|zm+1) = exp(βT−kzm+1).

Let Xm, Ym,Zm and zm+1 denote, respectively, the past allocation history, responses

history, the prognostic factors for the first m patients and the covariates of the incoming

patient. Based on the probit link, the conditional probability that the (m+1)th patient

with covariate vector zm+1, will be assigned to treatment A is given by

P (X(m+1) = 1|Xm,Ym,Zm, zm+1) = Φ

{
log{ĥA(t|zm)} − log{ĥB(t|zm)}

SE[log{ĥA(t|zm)} − log{ĥB(t|zm)}] + ĤR(zm)

}
,

(3.18)

where, conditional on χm,

[log{ĥA(t|zm)} − log{ĥB(t|zm)}] d−→ N([log{hA(t|zm)} − log{hB(t|zm)}], σ2).

as m → ∞. The variance σ2 is calculated from inverting the observed information

matrix given by (3.14). Let ζ(m) = P (Xm+1= 1). Then the sequence {ζ(m) : m ≥

(2m0 + 1)} converges to Φ

[
log{hA(t|zm)}−log{hB(t|zm)}

HR(zm)

]
. The limiting proportion of the

allocation of patients on treatment A is also Φ

[
log{hA(t|zm)}−log{hB(t|zm)}

HR(zm)

]
.

Most phase III clinical trials of two treatments employ an equal allocation scheme.

Such schemes are often unattractive to clinicians and volunteers, as they assign almost

half of the patients to the less effective treatment even if a treatment effect exists. For

many years, adaptive designs have been proposed as a compromise. Apart from using a

link function or a formal optimization procedure, CARA designs for such scenario can
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also be developed by the method of treatment effect mappings similar to Rosenberger

and Sheshaiyer (1997). The score function uk(0) can be used to map the past histories

to the present allocation pattern. When a patient is ready for randomization, a function

of the current value of the score function from the fitted Cox regression model is used to

bias a coin, which is then used for randomization. As mentioned earlier, uA(0) measures

the difference between the sum over the survival times of the observed number of events

from treatment A and the expected number of events under the null hypothesis. In

general, the score function can be used to develop a mapping onto [0,1] that exceeds

0.5 if treatment A has been performing better thus far, and is less than 0.5 if treatment

B has been performing better. Let NA(m) and NB(m) be the numbers of patients

allocated to treatments A and B, respectively, up to stage m. Define

Qk =
uk(0)

{max(NA(m), NB(m)}hA(t|zm)
hB(t|zm)

∑dm
i=1( 1

N−i) + h(t|zm+1)

as the treatment effect mapping factor . Then the allocation function to treatment A

can be suggested with the following mapping :

P [X(m+1) = 1|Xm,Ym,Zm, zm+1] =
1

2
(1−QA) . (3.19)

It can be seen from (3.19) above that if the null hypothesis of the equality in the

covariate adjusted treatment effects is true, the treatment effect mapping factor Qk

is zero and therefore the probability of allocating the next patient to one of the two

treatment arms would be 0.5. If the null hypothesis is false, the allocation proportion to

treatment A drifts away from 0.5 according to the magnitude of Qk. This idea is similar

to that of Rosenberger (1993) in dealing with immediate continuous outcomes using a

nonparametric rank test. Most clinical trials in the United States use a fixed sample

design and interim monitoring. The design in (3.19) assumes a fixed sample size and

also skews the allocatio proportions according to the covariate-adjusted relative efficacy

of the treatments, making it fully randomized.

The allocation proportions obtained by using the formal optimization procedure can

be targeted using the covariate-adjusted doubly-adaptive biased coin design (CADBCD)

or the covariate-adjusted efficient-randomized adaptive design (CAERADE). The CAD-

BCD is a randomization procedure which is used to target the allocation proportions
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{πSAi(βA,βB, z)}2
i=1 and applies to the cases where the desired allocation proportions

are unknown, but estimated sequentially. When the (m+1)th patient enters the clinical

trial with covariate vector zm+1, let π̂m = πSA(β̂A,m, β̂B,m, zm+1) represent the estimate

of πSA(βA,βB, z) based on the responses observed from the m patients, adjusted for the

covariate zm+1 of the incoming patient. Let ρ̂Am = {
∑m

i=1 π
S
A(β̂A,m, β̂B,m, zi)/m} be an

estimate of the average target allocations for treatment A based on the data for the

first m patients. Using the CADBCD procedure, the (m+ 1)th patient can be assigned

to treatment A with probability jm+1[{NA(m)/m}, π̂m, ρ̂Am], where {NA(m)/m} is the

observed proportion of patients who have been assigned to treatment A after m alloca-

tions. Therefore, the mathematical form of the allocation rule for the (m+ 1)th patient

entering the clinical trial with covariate vector zm+1,to be assigned to treatment A is

jm+1

{
NA(m)

m
, π̂m, ρ̂Am

}
=



π̂m{ρ̂Am/
NA(m)

m
}α

π̂m{ρ̂Am/
NA(m)

m
}α+(1−π̂m){{1−ρ̂Am)/(1−NA(m)

m
)}α
, if 0 < NA(m)

m
< 1,

1− NA(m)
m

, if NA(m)
m

= 0 or NA(m)
m

= 1.

(3.20)

Here α is a non-negative parameter controlling the degree of randomness of the CAD-

BCD procedure. A value of α = 0 corresponds to the procedure being most random and

a value of α = ∞ corresponds to it being most deterministic. The allocation function

jm+1[{NA(m)/m}, π̂m, ρ̂m] is strictly decreasing in {NA(m)/m} and strictly increasing

in (π̂m, ρ̂m) on [0,1]×[0,1].

On the other hand the allocation function for the CAERADE is discrete. When

efficiency is the sole criterion for developing a CARA design, the CAERADE performs

the best compared to CADBCD. Let π̂m = πSA(β̂A,m, β̂B,m, zm+1) denote an estimate

of the target allocation proportion πA(βA,βB, z) based on the data from m patients,

adjusted for the covariate zm+1. Then, according to the CAERADE allocation rule,

the probability of the (m + 1)th patient with covariate vector zm+1 being assigned to
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treatment A is given by

jm+1

{
NA(m)

m
, π̂m, ρ̂Am

}
=



α′π̂m if NA(m)
m

> ρ̂Am,

π̂m if NA(m)
m

= ρ̂Am,

1− α′(1− π̂m) if NA(m)
m

< ρ̂Am,

(3.21)

where 0 ≤ α′ < 1 is a constant that reflects the degree of randomization. Hu,Zhang and

He (2009), following Burman (1996), recommended the value of α′ between 0.4 and 0.7.

This gives a family of CARA designs that are fully randomized and also asymptotically

efficient. The CAERADE with covariates ignored can be viewed as a generalization of

the Efron’s biased coin design for any desired allocation function, which may depend

on the unknown parameters. If the response distribution belong to the exponential

family, the CAERADE for any α ∈ [0,1) is fully efficient. However, this can also be

used to target the optimal allocation proportions when the survival responses follow a

semi-parametric survival model. Though there is hadrly a reference for the theoretical

asymptotic properties of the ERADE or the CAERADE for response distribution which

do not follow a parametric model, the performance of these randomization procedures

can be viewed using simulations.

Atkinson and Biswas (2005) proposed a class of CARA designs for which the ran-

domization probabilities are sequentially determined by maximizing a utility func-

tion that combines inferential and ethical criteria. The authors concentrated on nor-

mally distributed responses. However, their approach can be applied in the context

of a survival responses of a patient following a semi-parametric model between the

treatment arms. If m patients have been enrolled in the trial and NA(m) patients

have been assigned to treatment A and NB(m) = m - NA(m) have been allocated

to treatment B, a randomization probability for the (m + 1)th patient is determined

by optimizing a utility function that combines the inferential and ethical criteria of

a CARA design. The inferential criteria can be addressed by taking a convex crite-

rion based on the observed information matrix J(β) = diag{JA(βA), JB(βB)}, where
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Jk(βk) =
∑nk

i=1 δikV (ti,βk) for k = A,B. Since the main interest lies in maximizing the

information about the model parameters, let νk = log{1+d(k,βk, zm+1)}+ΣB
k=AJk(βk)

be some measure of information from applying treatment k to the (m + 1)th patient,

where d(k,βk, zm+1) is the directional derivative of the D-optimal criterion given by

d(k,βk, zm+1) = εk(z;βk)z
T
m+1J

−1
k (βk)zm+1. The (m + 1)th patient is assigned to

the treatment for which d(k,βk, zm+1) is the maximum. For an ethical criterion,

pA(βA,βB, zm+1) = hB(t|zm+1)/{hA(t|zm+1)+hB(t|zm+1)} can be considered as a map-

ping of the treatment effect, adjusted for the covariates of the new patient. The treat-

ment allocation probabilities, πSA and πSB = 1 − πSA, for the (m + 1)th patient are de-

termined by maximizing the utility function U =
∑B

k=A π
S
k νk − η

∑B
k=A π

S
k log(πSk /pk).

Using Lagrange multiplier optimization, the optimal solution is obtained as

πSA =
pA{1 + d(A,βA, zm+1)}1/η

pA{1 + d(A,βA, zm+1)}1/η + pB{1 + d(B,βB, zm+1)}1/η
. (3.22)

The optimal allocation probabilities in (3.22) depend on the model parameters,

which must be replaced by their partial likelihood estimates. When η → 0, the alloca-

tion function maximizes the efficiency of the study design, whereas, when η → ∞, it

satisfies the ethical standpoint of the trial.

3.5 Simulation Results

In order to compare the performances of the different derived CARA randomization

procedures, a two-arm survival trial with 800 patients has been considered. A patient’s

arrival time here is simulated from a uniform (0,365) distribution, whereas the response

time of a patient is added to the recruitment time of the patient and patients whose

outcomes have not been observed by the pre-specified study time, are said to be gen-

eralized type I right censored. The recruitment period has been considered to be 365

days, and the overall trial duration is taken to be 581.66 days.

Following Rosenberger, Vidyashankar and Agarwal (2001), a covariate structure of

three independent covariates has been generated. These are gender (Bernoulli, p =

0.5), age {Uniform(30,75)} and cholesterol level {Normal (200,400)}. The censoring
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time of the patients is simulated from a uniform (0,581.66) distribution. The survival

time of a patient with covariate vector z = (1, z1, z2, z3)T in treatment group k is

simulated from the Weibull distribution with scale parameter µk(z) =exp(βTk z) and

shape parameter γk = 2.07527. Three choices of the treatment effects vector have

been considered in this case, which are neutral effect of either treatment, positive effect

of treatment A and negative effect of treatment A. The effects of the corresponding

covariates for the simulation model µk(z) =exp(βTk z) are the same as summarized in

Table 2.1. The procedure used here is a fully sequential one that recalculates the

randomization probabilities over 5000 simulation runs. The competing randomization

procedures and the corresponding design numbers are listed in Table 3.1.

Design Competing Randomization Procedures

I Completely randomized design

II Efron’s biased coin design with p = 2/3

III Pocock and Simon design with p = 3/4

IV Taves minimization procedure with p = 1

V CARA CADBCD with(3.15) as the target

VI CARA CADBCD with(3.16) as the target

VII CARA CAERADE with(3.15) as the target

VIII CARA CAERADE with(3.16) as the target

IX CARA design based on the probit link function

X CARA design based on (3.19)

XI CARA design based on (3.22) with η = 1

XII CARA design based on (3.22) with η = ∞

Table 3.1: List of the competing designs

In survival trials, the delay time for a patient is the patient’s survival or censoring

time. To facilitate CARA designs with delayed responses, it is required that, at the ith

patient′s randomization time, only data from those patients who have responded before

the ith patient’s arrival are used in computing the randomization probability for the ith
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patient. For the implementation of the derived CARA designs, initially 2m0 patients

have been equally allocated to the two treatment arms using Efron’s biased coin design.

Here, m0 is a positive number and 2m0 is chosen to be 160. After the model parameters

are estimated from the initial stage of the design, new patients arrive sequentially

into the trial and the Cox proportional hazards model (3.5) is fitted to the available

responses and covariate information of the patients. Next, an allocation proportion is

calculated which is a functions of the partial likelihood estimates obtained from the

fitted Cox model. A randomization rule is then used to allocate the new patients to

a treatment arm. This randomization rule can be based on any one of the derived

allocation functions which target a specific allocation proportion. A pseudo-random

number generator is then used to draw a uniform random number between 0 and 1.

If the derived probability from the randomization rule is greater than or equal to this

random number, the patient is assigned to treatment A or else the patient is assigned

to treatment B. The procedure described is repeated for the subjects entering the trial

in the future.

For the CADBCD designs in Table 3.1 above, following Hu and Zhang (2004),

Zhang and Hu (2009), and Rosenberger and Hu (2004), the trade-off parameter for

randomness is taken to be α = 2. Based on Burman’s (1996) studies on the expected

p-value deficiency to evaluate the performance of a particular design, Hu, Zhang and

He (2009) recomended that for the appropriate implementation of the ERADE designs,

it is reasonable to choose α′ between 0.4 to 0.7. The parameter α′ controls the degree of

randomness of the design. When α′ is smaller, the CAERADE is more deterministic and

has a smaller variability. Here, for the appropriate implementation of the CAERADE

designs, α′ is chosen to be 0.55.

Among the balanced randomization procedures, apart from the completely random-

ized design, Efron’s biased coin design is a restricted randomization procedure, whereas

Pocock and Simon’s (1975) design and Taves’ (1974) design are covariate adaptive

randomization procedures. These covariate-adaptive randomization procedures are is

called minimization procedures, as they minimize treatment imbalances marginally on

important covariates. For their implementation, all covariates must be categorical. The
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covariate age has been dichotomized according to age < 53 and age≥ 53, whereas the

covariate cholesterol level has been dichotomized according to cholestrol level<200 and

cholestrol level ≥ 200. According to Pocock and Simon (1975), for an incoming pa-

tient, one computes the treatment imbalance at each observed levels of the patients

covariates, and with probability 3/4 the patient is assigned to the treatment arm that

reduces the overall covariate imbalance. If the imbalance is zero, the patient is ran-

domized to any competing treatment arms with equal probability. Taves (1974), on

the other hand, proposed a deterministic method to allocate treatments designed to

minimize the overall covariate imbalance marginally on important covariates.

The performances of the competing randomization procedures in Table 3.1 for semi-

parametric survival models, can be analysed from their operating characteristics in

Table 3.2 and Table 3.3. All simulations were carried out using the R statistical software.

For each experimental design, the significance level of the Wald test for testing the

treatment difference has been set to 0.05.

Design NA
n

(SE) NAM -NBM NAF -NBF Event Type I Error

I 0.50 (0.018) 200-200 200-200 650 0.05

II 0.50 (0.001) 200-200 200-200 650 0.04

III 0.50 (0.015) 200-200 200-200 649 0.05

IV 0.50 (0.004) 200-200 200-200 650 0.05

V 0.50 (0.014) 200-200 200-200 649 0.05

VI 0.51 (0.020) 202-198 204-196 650 0.05

VII 0.51 (0.015) 203-197 203-197 650 0.04

VIII 0.51 (0.019) 202-198 204-196 650 0.04

IX 0.50 (0.075) 200-200 200-200 650 0.07

X 0.49 (0.022) 196-204 196-204 650 0.05

XI 0.50 (0.026) 200-200 200-200 650 0.04

XII 0.50 (0.026) 200-200 200-200 650 0.04

Table 3.2: Simulation Results of the competing designs for neutral model
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Table 3.2 presents the operating characteristics of the various competing designs

when there is no difference in the effects of the two treatment arms. It compares the

derived semi-parametric CARA designs with the traditional balanced randomization

procedures, under the null model. It can be seen that, almost all designs result in

an equal allocation of patients to the two treatment arms. Efron’s biased coin design

achieves the lowest variability for the allocation proportions. This is because the asymp-

totic distribution of the allocation proportion for this design converges to a single point.

However, all of the derived allocation proportions for the CARA randomization proce-

dures, apart from designs IV and IX, are similarly variable compared to the completely

randomized design. It has been shown by Cox (1972) that the asymptotic behaviour of

the partial likelihood estimator is similar to the maximum likelihood estimator. There-

fore, the Wald test can be used to compare the covariate-adjusted treatment effects

from the fitted Cox regression model after the patients arrive sequentially. With 800

patients, the type I error rates obtained from the Wald test for almost all of the com-

peting randomization procedures are close to the nominal significance level of 0.05,

whereas that of design IX is inflated. The diference in the standard errors for of the

type I error rates range from 0.001 to 0.004. The variabilities of the type I error rates

for the balanced randomization designs are the lowest and that for design IX is the

highest . This phenomenon was further explored by simulation for a range of sample

sizes and the simulated type I error rates revealed similar results. The average numbers

of events are almost the same for all the designs and their standard errors were no more

than 11.

Table 3.3 presents the operating characteristics of the various competing random-

ization procedures when the covariate adjusted effects of the two treatment arms differ.

From the negative model, it can be seen that all of the derived CARA designs result

in skewed allocation towards the better treatment arm, but the degree of skewness is

different. In this case, it is treatment B which is superior. Design IX is most skewed

towards the better treatment arm and thus result in the least number of events on

average. On the other hand, designs VII and X least skewed compared to the other
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Model Design NA
n

(SE) NAM -NBM NAF -NBF Event Power

Negative I 0.50 (0.018) 200-200 200-200 334 0.99

II 0.50 (0.001) 200-200 200-200 334 0.99

III 0.50 (0.016) 200-200 200-200 334 0.99

IV 0.50 (0.005) 200-200 200-200 334 0.99

V 0.45 (0.015) 180-220 181-219 332 0.99

VI 0.39 (0.020) 157-243 158-242 332 0.98

VII 0.48 (0.016) 192-208 197-203 332 0.99

VIII 0.38 (0.019) 150-250 152-248 332 0.98

IX 0.30 (0.070) 120-280 120-280 322 0.90

X 0.47 (0.080) 188-212 190-210 332 0.87

XI 0.43 (0.026) 172-228 172-228 329 0.97

XII 0.40 (0.028) 160-240 161-239 328 0.96

Positive I 0.50 (0.018) 200-200 200-200 726 0.99

II 0.50 (0.001) 200-200 200-200 726 0.99

III 0.50 (0.016) 200-200 200-200 725 0.99

IV 0.50 (0.005) 200-200 200-200 725 0.99

V 0.56 (0.014) 223-177 226-174 723 0.99

VI 0.62 (0.020) 248-152 249-151 720 0.98

VII 0.52 (0.015) 208-192 209-191 723 0.99

VIII 0.62 (0.019) 248-150 248-154 723 0.98

IX 0.71 (0.074) 299-101 272-128 710 0.89

X 0.52 (0.083) 122-118 122-118 725 0.84

XI 0.57 (0.025) 227-173 227-173 722 0.98

XII 0.60 (0.025) 228-172 228-172 721 0.97

Table 3.3: Performance of the competing designs when Treatment effects differ

competing CARA randomization procedures. All of the competing designs, apart from

IX and X, have similar powers for the Wald test, whereas skewing the patient allocation

towards the better treatment arm results in fewer of events on average during the trial.

The standard errors of the latter are no more than 14. Therefore, using the CARA
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designs instead of the balanced randomization procedures can result in more patients

being treated with the better-performing treatment arm. Apart from designs IX and

X, this ethical benefit is achieved without compromising much on the power of the test

for the covariate-adjusted treatment differences.

Similar results can be seen for the positive model in Table 3.3. All of the derived

CARA randomization procedures significantly skew the patient allocation towards the

better treatment arm, with the design based on the probit link function achieving

the highest skewness. Apart from designs IX and X, they have similar powers and the

skewness of the CARA designs towards the better treatment arm results in fewer events

compared to the balanced randomization procedures. This time, the average number

of events have standard errors no more than 10. Therefore, the optimal CARA designs

can be considered as suitable alternatives to the traditional balanced randomization

procedures.

The observed allocation proportions in Figure 3.1 depict the performances of the

derived CARA procedures compared to the traditional balanced designs. The distribu-

tions of the observed allocation proportions for the various designs appear to be very

close to a symmetric distribution, but with different means and with different variabil-

ity. It can be seen that the CARA designs allocate more patients in the trial to the

better performing treatment arm.

The impact of sample size on the type I error rates and powers for different designs

has been explored. Figure 3.2 shows the type I error rates and powers for sample sizes

between 200 to 800.

It can be seen from Figure 3.2 that the type I error rates are in the range 0.05 to

0.07 and that the power are very similar for a sample size of around 800 patients. This

means that, for the statistical power of the Wald test to be greater than 0.9, most of

the competing designs are equally efficient. However, if the the power for treatment

difference is relaxed slightly by the clinicians to greater than 0.8, which is often the

case in late phase clinical trials due to patient recruitment problems, then it can be

seen that most of the proposed CARA designs are more powerful than the traditional
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Figure 3.1: Effect Size for Semi-parametric models skews CARA allocation proportions

balanced designs. It must be noted that the simulations here considered a phase 3 trial

with n = 800 patients instead of n = 400 patients as in chapter 3. This is because such

a sample size is large enough to enable asymptotic properties of CARA procedures to

hold with power less than 1. This is reflected in Figure 3.2 above. More patients are

needed to achieve equivalent level of power in this scenario because chapter 3 assumed a

parametric model for the survival responses and therefore needed less number of patients

to achieve the desired power than the designs based on a semi-parametric model which

is more dependent on the observed data. For the Wald test, the significance level is set

to 0.05.
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Figure 3.2: Type I error rates and Powers for the semi-parametric Competing Designs

3.6 Re-designing a Real-Life Clinical Trial

In order to apply the derived methodologies to re-design a clinical trial, a randomized

trial in advanced colorectal cancer has been considered. The study was previously

explored by Sverdlov, Rosenberger and Ryeznik (2013), where they re-designed the

trial to establish the usefulness of CARA designs for exponentially distributed survival

responses. In this chapter, the trial is re-designed using the derived semi-parametric

CARA designs for survival responses. For a period of 21 months, 572 eligible patients
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were randomized in a 1:1 ratio cetuximab plus best supportive care (treatment A)

and best supportive care alone (treatment B). The primary endpoint of this study

was overall survival, defined as the time to death from any cause. The model-adjusted

median overall survival was 6.1 months for treatment A versus 4.6 months for treatment

B. However, the degree and the direction of the effect of cetuximab differed between

the levels of K−ras mutation status. Patients with wild-type K-ras tumours benefited

from cetuximab (median overall survival 9.5 versus. 4.8 months; hazard ratio for death

0.55), whereas patients with a colorectal tumour bearing mutated K-ras did not benefit

from cetuximab (median overall survival 4.6 versus. 4.5 months; hazard ratio for death

0.98).

A simulation study with 5,000 replications was conducted to compare the CARA

designs with the traditional balanced randomization procedures. The CARA designs

considered here are the ones derived by using an optimality criterion. For appropriate

implementation of the derived CARA designs, 110 patients were initially equally ran-

domized to the two treatment arms using Efron’s biased coin design before the adaptive

randomization process started. Following Karapetis etal. (2008), the parameters were

chosen as follows: R = 21 months; trial duration D = 27 months; : z = 0 (wild-type

K − ras tumour) with probability 0.59 and z = 1 (mutated K − ras tumour) with

probability 0.41. Patient survival times were simulated from an exponential distribu-

tion with mean exp(βk0 + βk1z), k = A,B and z = 0, 1. The model parameters were

set to βA0 = 2.62, βA1 = -0.68, βB0 = 1.87, and βB1 = 0.02.

Designs I II VI VIII XI XII

NA/n (SE) 0.50(0.02) 0.50(0.002) 0.65(0.02) 0.65(0.02) 0.62(0.02) 0.68(0.03)

NA−—NB− 171—171 146—146 248—102 242—104 233—110 257—102

NA+—NB+ 115—115 140—140 124—98 130—96 122—107 132—81

Events 377 377 357 356 361 355

Power 0.99 0.99 0.96 0.97 0.95 0.94

Table 3.4: Re-design of a survival trial in colorectal cancer
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Table 3.4 presents the simulation summary for six different designs in Table 3.1.

It can be seen that using the CARA designs instead of the traditional balanced de-

signs results in more patients being treated with the better treatment during the trial.

This is achieved without compromising much on the power of the Wald test for the of

treatment-biomarker interaction in the Cox regression model, which is fitted after pa-

tients arrive squentially in the trial. It can also be seen that the CARA designs account

the treatment-covariate interaction, whereas the balanced designs do not. The CARA

designs result in greater skewing to treatment A in the wild-type K−ras subgroup than

in the mutated K−ras subgroup. On the other hand, the balanced randomization pro-

cedures balances the treatment allocations in both the K − ras subgroups. Therefore,

the CARA designs on average result in many fewer events during the trial compared

to the balanced randomization procedures, the standard errors being no more than 3.

Since there is a significant interaction between the treatment effects and the K − ras

biomarker subgroup effects, the Wald test is testing the hypothesis of equality in the

treatment effects within each biomarker stratum. Unlike the exponential regression

model, the Cox regression model treats the baseline hazard as a nuisance parameter.

So it does not provide an estimate of the intercept. Simulations were also run for 572

patients assuming no differences between the covariate adjusted treatment effects for A

and B. The simulated type I error rates for the designs were between 0.04 and 0.05.

3.7 Discussion

A new CARA randomization procedure has been introduced in this chapter for two-

arm right censored survival trials. This is done to enhance the applicability of CARA

designs for treatment comparisons in real life clinical trials. The procedures in this

chapter obviate any parametric assumptions about the underlying distribution of the

survival responses of the patients. However, in order to preserve the robustness of

parameter estimation, a lighter assumption has been made about the hazard rate at

any given time-point for an individual in one treatment group being proportional to

the hazard rate at the same time-point for an individual in the other treatment group.
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The designs developed here are based on both formal optimization procedures as well

as non-optimal procedures. The approaches to optimality includes a covariate adjusted

optimal target approach (Zhang and Hu, 2009) and a weighted optimality approach

(Atkinson and Biswas, 2005). The non-optimal procedures such as the probit link

design and the score design are developed with the intention of addressing the ethical

issue of treating more patients with the better treatment during the trial. The operating

characteristics of the proposed CARA designs have been compared with the balanced

randomization designs through extensive simulation for a two-arm survival trial with

three predictive covariates, right-censored data and staggered entry. It has been found

that many of the proposed CARA randomization designs generate skewed allocations

according to covariate-specific treatment differences and result in fewer events in the

trial, while having similar powers for the Wald test for treatment differences compared

to the balanced randomization designs. An application of the proposed methodology

has been illustrated by redesigning a two-arm survival trial from the literature.

When comparing CARA designs based on covariate adjusted optimal targets, two

distinct approaches have been used: the covariate-adjusted doubly adaptive biased coin

design (Hu and Zhang, 2004) and the covariate-adjusted efficient randomized adaptive

design (CAERADE) which is motivated from Hu, Zhang and He (2009). The work of

Hu, Zhang and He (2009) can be regarded as a generalization of Efron’s biased coin

design for any desired allocation proportion, which may depend on the unknown param-

eters. Through simulations it is seen that the CAERADE has got lower variability as

compared to the corresponding covariate-adjusted doubly adaptive biased coin design

(CADBCD). Hu and Rosenberger (2003) established that optimality, variability and

power can be considered as the essential components for selecting a suitable adaptive

randomization procedure. In the situation where efficiency is critically important, the

CAERADE should be the best choice among all of the CARA randomization proce-

dures. However, sometimes the CAERADE does not converge to the target allocation

proportion as fast as the CADBCD does, although its finite-sample variances are al-

ways small. This is mainly because the allocation probabilities in the CAERADE are

not stable. The allocation function being discrete, they always jump from one value

to another. A continuous allocation function like the DBCD can make the allocation
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probabilities stable and speed up the convergence of the sample allocation proportions.

When comparing each class of CARA designs, it has been seen that the designs in

each class have their merits. CARA designs with targets have established asymptotic

properties. By appropriately choosing the trade-off parameter η, the weighted optimal-

ity CARA designs also give skewed allocations towards the better treatment arm and

balance the objectives of statistical efficiency and ethics. However, selecting the value

of the parameter η depends on the experimental criteria. The non-optimal designs also

work well compared to the balanced randomization procedures. If the sole criterion is

to treat more patients with the better performing treatment during the trial, the design

based on the probit link function works the best and also achieves the least number of

events on average. When there is no difference between the effects of the two treat-

ments, the design based on the score function achieves the nominal type I error rate.

On the other hand, when one of the treatment arms performs better than the other, this

design happens to be the least powerful. The merits of the developed methodologies

have also been elucidated by applying them to redesign an existing clinical trial.

The methodology described here is free from any distributional assumption on the

survival responses, but relies on a lighter assumption of the hazard rate at any given

time-point for an individual in one treatment group being proportional to the hazard

rate at the same time-point for an individual in the other treatment group. Conceptu-

ally, instead of considering the proportionality of the hazard rates of individuals from

the two treatment groups, one can also use the proportionality of the odds of survival

of patients from the two treatment groups as the basis for the development of CARA

randomization procedures. Another important area of potential application of CARA

randomization procedures is time-to-event trials with more than two treatment arms.

All of the CARA designs for survival trials developed so far in the literature concen-

trated on trials with events due to a single cause. However, in many real-life trials,

patients experience events due to multiple causes. Therefore, the information related

to the cause of the events is very important when developing a CARA design, which

would make such designs more applicable in real-life survival trials.

It should be acknowledged that the proposed methodology is only suitable for sur-
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vival trials with long recruitment periods. The amount of concomitant information

in the model impacts sequential estimation at the design stage. One should consider

implementing the proposed CARA designs only with a limited number of the most

predictive baseline covariates.
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Chapter 4

Covariate-Adjusted

Response-Adaptive Designs for

Competing Risk Survival Models

4.1 Introduction

A branch of healthcare science that determines the safety and efficacy of treatment

regimens is called clinical research. It involves any test article from its inception in the

laboratory to its introduction to the consumer market and beyond. Clinical trials are

complex experiments which are designed through clinical research to answer specific

questions about biomedical or behavioral interventions, including new treatments and

known interventions that warrant further study and comparison. A purpose of phase III

clinical trials is to obtain information on the performance of the competing treatments.

It involves large-scale trials in which a new treatment is compared with one or more

standard treatments in terms of its safety and efficacy .

Patients usually arrive sequentially in a clinical trial and are assigned to one of

the competing treatment arms. Information about the performance of the competing

treatments accrues sequentially as results become available on an increasing number of

patients. There has been extensive research in establishing the superiority of a treat-
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ment early in the trial. Adaptive designs play an important role in effectively utilizing

the sequential information and serving the purpose. Adaptive allocation procedures are

sequential designs in which the method of allocation of treatments to patients are mod-

ified based on the results obtained in the previous stage until a particular treatment is

declared to be a clear winner over the others.

The past several years have witnessed significant contributions on the development

adaptive designs for the effective comparison of treatments. These involve the devel-

opment of balanced allocation schemes such as restricted randomization or covariate-

adaptive randomization designs. Restricted randomization balances the patient alloca-

tion based on only the history of the previous allocations, whereas covariate-adaptive

randomization considers the patient heterogeniety as well while balancing the distri-

butions of the covariates across treatment arms. However, since clinical trials involve

human patients, there is an ethical concern to treat as many patients as possible in

the trial with the best treatment without compromising much on the power to test

for the treatment differences. Covariate-adjusted response-adaptive (CARA) designs

serves this purpose by allocating more subjects to the better-performing treatment arm

thus far in the trial, and, at the same time, estimate with high efficiency any differ-

ence in the covariate-adjusted treatment effects while maintaining the randomness in

treatment assignment. The patient allocation to a treatment arm for CARA designs is

based on the history of previous patient treatment assignments, the response history,

the covariate profiles of the previous patients and also the covariate information of the

incoming patient. Such designs are especially used when a non-linear, heteroscedastic

model determines the relationship between the covariate profiles of the patients and

their responses to a treatment. It is also useful when the effect of a treatment sig-

nificantly varies among the levels of the covariates of the patients and when multiple

experimental objectives such as the ones mentioned in Section 3.4 are being pursued.

There has been very little work on developing CARA designs for survival trials.

Those that have accounted for survival trials explored right-censored time-to-event re-

sponses with a single cause of failure. However, real-life clinical trials often face complex

situations where an individual may experience events from different causes. Competing
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risks arise in studies where the failure of an individual may be classified into one of the

various mutually exclusive causes of failure such as death from different causes. This

makes the usual survival analysis techniques inappropriate, as specialized methods are

needed to account for multiple causes of failures. Competing risks are events whose

occurrence either precludes the occurrence of another event or fundamentally alters the

probability of the occurrence of this other event. For example, while measuring the time

to relapse of chronic myeloid leukemia due to the increase of BCR-ABL1 oncopotein in

human bone marrow, patients may die due to cardiovascular disease. This is because

the interventions known to treat chronic myeloid leukemia are also known for QT pro-

longation and ventricular tachycardia. Therefore, monitoring such information could

be vital, not only for informing patients of the risks that they face in certain situations,

but also for making decisions about which treatment to assign a patient, how best to

allocate health resources and for understanding the longer-term outcomes of chronic

conditions. Handling such information during the design phase of a clinical trial along

with that about the patient heterogeneiety would make the design more applicable in

real-life clinical trials. In this chapter, CARA designs have been developed for survival

trials with competing risk scenarios without relying on any parametric distributional as-

sumptions about the survival responses of the patients. The various CARA designs for

survival trials with competing risks are developed and the performance of such designs

has been validated using simulation. An existing clinical trial has also been re-designed

using the derived methodologies.

An outline of the chapter is as follows. The background material relating to regres-

sion models for survival trials with competing risks is explained in Section 4.2. Section

4.3 proposes the various semi-parametric CARA randomization procedures for a sur-

vival trial with competing risks. The validation of the findings of Section 4.3 is detailed

in Section 4.4 using extensive simulation studies. The results obtained from applying

the proposed CARA designs to re-design a real-life clinical trial are presented in Section

4.5. The conclusions of the findings with a discussion and an outline of some future

research in this direction are discussed in Section 4.6.
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4.2 Regression Models for Competing Risk Prob-

lems

Often in real-life clinical trials, failure for a person may be due to several distinct

causes. It may be desirable to distinguish different kinds of events that may lead to

failure and treat the patients differently during the design phase of a clinical trial .

For example, to evaluate the efficacy of heart transplants, one would certainly want to

treat deaths due to heart failure differently from deaths due to other causes, such as

accidents and cancer. These different causes of failure are considered competing events,

which introduce competing risks. Thus, problems arising in a clinical trial with multiple

causes of failure are commonly referred to as competing risk problems. Treating failures

due to other causes as censored observations would not account for the fact that these

patients have already faced an event which is of a different cause. This would severely

bias the calculation of the risk set of the partial likelihood estimation of the model

parameters from the experiment. Therefore, it would result in biased estimates of the

model parameters. Figure 4.1 below simulates a cohort of competing events, where the

event of interest can be considered as cancer but its observations are made impossible

for patients 6 and 8 by a preceding competing event.

Figure 4.1: Scenario for competing risk

An approach to handling competing risk problems assumes the existence of c failure

times, one for each possible type of failure. In a clinical study, one then observes the

minimum of the latent failure times (T ) and the corresponding cause of failure (C). This
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means that, if the times to the events from c different causes are Tj for j = 1, ....c, then in

a clinical trial one observes T = min(Tj). The problem with this approach is that neither

the joint distribution of the failure times nor the correspondng marginal distributions

are identifiable from the observed data without additional assumptions, such as the

independence of the different latent failure times. Another approach focuses on using

the proportional hazards model to identify significant prognostic or risk factors when

competing risks are present. This approach considers the joint distribution of failure

time T and the cause of failure C for the covariate vector z. The jth cause-specific

hazard at time t is defined by

hj(t|z) = lim
∆t→0

P (t ≤ T < t+ ∆t, C = j|T ≥ t; z)

∆t
. (4.1)

This is the instantaneous failure rate of cause j at time t given z in the presence of

all other causes of failure. The overall hazard h(t|z) from any cause is the sum of the

cause-specific hazards over each failure type.

The cumulative incidence function (CIF) can also be used to handle competing risk

problems. Using the CIFs instead of the cause-specific hazards helps a clinician to have

a direct interpretation in terms of survival probabilities for the particular failure type.

This gives the marginal failure probabilities for a particular cause, which are intuitively

appealing and more easily explained to non-statisticians. The risk factors which have

a significant effect on the cause-specific hazards may not have an effect on the CIFs

for that cause. This is because as shown in (4.2) below, the CIF for each cause is a

function of the overall survivor function which considers a sum of the hazards for all

the different causes. The CIF is a function of the cause-specific hazards and is given by

Fj(t|z) = P (T ≤ t, C = j|z) =

∫ t

0

[
hj(u|z) exp

{
−
∫ t

0

c∑
i=1

hi(w|z)dw

}]
du. (4.2)

It represents the probability that an event of type j has occurred by time t for patients

with covariate z. In the presence of competing risks, the complement of the Kaplan-

Meier estimator overestimates the cumulative incidence function of cause j. That is, if
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Ŝj(t|z) is the estimator of the survivor function for events of cause j given covariates

z, then 1 − Ŝj(t|z) ≥ F̂j(t|z). It is possible that the sum of the complements of the

Kaplan-Meier estimators at time t over all possible causes of failure is greater than 1,

which is impossible, as this sum is the cumulative probability for failure from any cause.

Strategies for regression modelling in survival trials with competing risks can be

formed by modelling the cause-specific hazards or the cumulative incidence functions.

When the aim is to assess the effect of the risk factors on the risk of failure due to a

certain cause, the Cox proportional hazards model can be used for each cause-specific

hazard to analyse these seperately by treating individuals failing from other causes

as censored observations. However, when the failure times are dependent and when

interest lies in assessing the effect of the risk factors on the incidence of a given cause,

the cumulative incidence functions can be modelled using the Fine and Gray (Fine and

Gray, 1999) approach.

The classical regression analysis of competing risks establishes a Cox proportional

hazards model (Prentice et al., 1978) for each cause-specific hazard given by

hjk(t|z) = h0jk(t)e
βTjkz for j = 1, 2, ...., c, (4.3)

where z is a p× 1 vector of covariates and βjk is a p× 1 vector of regression coefficients

for cause j and treatment arm k = A,B. The effect of the covariates is assumed to act

multiplicatively on an unknown baseline hazard function h0j(t), which is considered to

be a nuisance parameter in the model. Estimation of the regression parameters βjk is

based on the partial likelihood approach. If Cik denotes the censoring time for the ith

patient on treatment arm k, then the partial likelihood function is defined only for the

event times, yielding

Lk(β1k,β2k, ........,βck) =

nk∏
i=1

c∏
j=1

(
eβ

T
jkzi∑

l∈Ri e
βTjkzl

)δijk

(4.4)
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for k = A,B, where the risk set is Ri = {l : tl ≥ ti} and δijk = I(Tijk < Cik, C = j). The

risk set can be diminished by the occurrence of an event from any cause. Maximizing

each factor of the partial likelihood function in (4.4) provides an estimator β̂jk which

is consistent and asymptotically normal under regularity conditions. Given β̂jk, the

generalized Nelson-Aalen estimates (Njamen-Njomen and Ngatchou-Wandji, 2014) for

the cause-specific baseline cumulative hazards are given by

Ĥ0jk(t) =
∑
i:ti≤t

(
δijk∑

l∈Ri e
β̂Tjkzl

)
, for j = 1, 2, ...., c, for k = A,B.

.

A drawback of modelling the cause-specific hazards is that, in order to estimate the

overall survival

S(t|z) = exp

{
−
∫ t

0

c∑
i=1

hi(w|z)dw

}
,

models need to be fitted for all types of events. The Fine and Gray model on the

other hand relates the cumulative incidence functions more directly to the covariates

and enables a clinician to assess the effects of the risk factors on the probability of an

event of a particular type. The method makes use of the sub-distribution hazard, which

is a function of the cumulative incidence for the corresponding cause of failure. The

sub-distribution hazard is defined as

hsubj (t|z) = lim
∆t→0

P{t ≤ T < t+ ∆t, C = j|T ≥ t ∪ (T < t, C 6= j); z}
∆t

. (4.5)

This would be the hazard obtained from the cumulative incidence function. Unlike

the Cox proportional hazards model for the cause-specific hazards, the Fine and Gray

model does not treat individuals failing from other causes as censored observations.

The risk set at time t for the latter model includes not only patients who have not yet

experienced the event of interest, but also those who have failed from other causes before

t. Fine and Gray (1999) pointed out that patients who have failed from causes other

than the event of interest remain at risk for the cause of interest. They established

a semi-parametric proportional hazards model for the sub-distribution hazard of the

event of interest given by
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hsubjk (t|z) = hsub0jk(t)e
βTjkz (4.6)

for j = 1, 2, ...., c, where hsub0jk(t) is the baseline sub-hazard and is treated as a nuisance

parameter in the model. This does not address the probability of failure from any cause.

However, it directly relates to the cumulative incidence function through

hsubjk (t|z) = − d

dt
log{1− Fjk(t|z)} (4.7)

for j = 1, 2, ...., c. Parameter estimation for the model depends on the right-censoring

mechanism. It has been assumed throughout that the patients experience generalized

type I right censoring, and therefore the censoring time is known, even for those who

fail for other causes before the administrative censoring time. The partial likelihood

approach is used to estimate the model parameters. For survival trials with right-

censored observations, Fine and Gray (1999) developed a weighted score function to

deal with dependent censoring. For a sample size of n patients, if δijk is the censoring

indicator as before for the ith patient on treatment k from cause j, the partial likelihood

is defined by

Lk(β1k,β2k, ........,βck) =

nk∏
i=1

c∏
j=1

(
eβ

T
jkzi∑

l∈Rsubi
wile

βTjkzl

)δijk

, (4.8)

where the risk set for cause j at time ti is Rsub
i = {l : {tl ≥ ti} ∪ {tl < ti, C 6= j}}.

Fine and Gray (1999) justified that the subjects experiencing a competing event before

ti remain at risk from the main cause of failure. The weights for the Fine and Gray

model can be calculated as

wil =

1 if tl ≥ ti

Ĝ(ti)

Ĝ(min(tl,ti))
if tl < ti, C 6= j,
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where Ĝ is an estimate of the survivor function for the censoring distribution, that is,

the cumulative probability of still being followed up at time ti. It can be estimated by

the usual product limit method by treating the censored observations as event times.

Taking the logarithm of the partial likelihood in (4.8), the Breslow log-likelihood

function for cause j is given by

l(βjk) =

nk∑
i=1

δijk{βTjkzi − log(
∑
l∈Rsubi

wile
βTjkzl)}.

Therefore, the partial score function for cause j and treatment k = A,B is given by;

∇l(βjk) =

nk∑
i=1

δijk

(
zi −

∑
l∈Rsubi

zlwile
βTjkzl∑

l∈Rsubi
wile

βTjkzl

)
.

The Hessian matrix of the partial log likelihood for patients with the jth cause of

failure from treatment k = A,B is

∇2l(βjk) = −
nk∑
i=1

δijk

{∑
l∈Rsubi

zlz
T
l wile

βTjkzl∑
l∈Rsubi

wile
βTjkzl

−
(
∑

l∈Rsubi
zlwile

βTjkzl)(
∑

l∈Rsubi
zlwile

βTjkzl)T

(
∑

l∈Rsubi
wile

βTjkzl)2

}
.

Let,

z̄(ti,β
T
jk) =

∑
l∈Rsubi

zlwile
βTjkzl∑

l∈Rsubi
wile

βTjkzl
=
∑
l∈Rsubi

zlwl,

where;

wl =
wile

βTjkzl∑
l∈Rsubi

wile
βTjkzl

is the weight that is proportional to the hazard of the patient experiencing the event

for a specific cause j due to treatment k. Therefore, z̄(ti,βjk) can be interpreted as

the weighted average of the covariate vectors among those individuals still at risk from

cause j at time ti from treatment k with weights wl. The quantity,

V sub(ti,βjk) =
∑
l∈Rsubi

{zl − z̄(ti,βjk)}{zl − z̄(ti,βjk)}Twl

can be interpreted as the weighted covariance matrix of the covariates among those

individuals still at risk from cause j at time point ti. If {V sub
ss (ti,βjk)}ps=1 are the di-

agonal entries of the matrix V sub(ti,βjk), then V sub
ss (ti,βjk) ≥ 0. Therefore the log
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partial likelihood function has a unique maximizer, which can be obtained by equat-

ing the score function to zero and solving for βjk. So the weighted covariance matrix

of the covariates among those individuals at risk from cause j and treatment k at

time ti is positive definite. Hence, the observed information matrix for βjk, given by

Jk(sub)(βjk) =
∑nk

i=1 δijkV
sub(ti,βjk), is also positive definite. When there are p covari-

ates, the p-dimensional vector β̂jk of the estimated regression coefficients converges to

a multivariate normal distribution with mean βjk and covariance matrix J−1
k(sub)(βjk).

Since Jk(sub)(βjk) is positive definite, its unique inverse exists and is also positive defi-

nite. This is the basis of the Wald test, which is used for treatment comparisons in the

presence of the concomitant information of the patients.

4.3 Proposed CARA Designs Based on Competing

Risk Models

Information on patients accrues sequentially in a clinical trial as they are assigned to

a treatment arm based on the design plan which the trial follows. Since clinical trials

handle human patients, there is always an ethical concern of treating more patients with

the better performing treatment arm during the trial phase. However, while comparing

different competing treatments, this skewness of patient allocation should not affect

the power of the Wald test for a treatment difference. Therefore, a design is needed

which balances these two requirements. The CARA designs serves this purpose quite

well. Now, often in survival trials patients do not fail due to a single cause. During

the design phase of the trial, ignoring the information about the causes of failures of

patients would severely bias the results of the experiment as well as the analysis. It is

therefore appropriate to develop a CARA design which accounts for such information.

The designs introduced in this section are semi-parametric in nature. This means

that they are free from any distributional assumption on the survival responses, but

a lighter assumption about the proportionality of the sub-distribution hazards or the

proportionality of the cumulative incidence functions between the two treatment arms

has been made. Proportionality here refers to the ratio of the sub-distribution hazard
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functions for patients or their cumulative incidence functions for a specific cause between

the two treatment arms at a given point of time in the trial not being dependent on

time. The censoring scheme assumed throughout this chapter is generalized type I

right censoring , where the recruitment period is of length R > 0 and D is the overall

duration of the clinical trial. At time D, the subjects who have not experienced the

event or have not already been right censored are considered to be generalized right

censored of type I.

At the beginning of the trial, patients are equally allocated between the treatment

arms using some kind of restricted randomization scheme. This is performed to collect

initial data to estimate the unknown model parameters. After the initial allocation, one

computes the partial likelihood estimates of the model parameters. From this stage,

onwards, when a new patient enters the trial with his/her covariate information, he/she

is randomly allocated to the better treatment arm found thus far in the trial in regards

to the events due to the primary cause of interest. This decision of allocating the

incoming patient to a particular treatment arm is based on the history of treatment

assignments, responses, and covariate vectors of the previous patients, and also the

covariate information of the incoming patient. Appropriate allocation functions are

thus derived here which skews the patient allocation towards the better treatment arm

for the main cause without compromising much on the power of the Wald test for a

treatment difference. If the recruitment phase is sufficiently long and the number of

accumulating responses during this phase is substantial, then it is possible to facilitate

CARA randomization.

4.3.1 Semi-Parametric CARA Designs with Target for Com-

peting Risks Models

One approach to derive CARA designs is to establish a suitable target allocation pro-

portion and then use a randomization procedure to target the derived alloccation pro-

portions. Survival trials are considered where patients experience the event due to

multiple causes. Therefore, the causes of failure needs to be considered when deriving
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the suitable target allocation proportions. These allocation proportions are functions of

the Fine and Gray model paramters, which are estimated sequentially using the partial

likelihood method with the arrival of every new patient in the clinical trial. Thus, it is

useful to construct a CARA design based on the sub-distribution hazard function.

Let εjk(z;βjk) be the probability of an event from the jth cause before censoring for

a patient on treatment k and with covariate vector z. Then,if Ci denotes the censoring

time for the ith patient, we have εjk(z;βjk) = P(Tik ≤ Ci | z; βjk , C = j).To meet

most of the multiple experimental objectives in a clinical trial, one can minimize the

overall sub-distribution hazard for a patient failing due to a specific cause and with

a given set of covariates subject to the constraint of keeping the asymptotic variance

of the difference between the estimated sub-distribution hazard functions for the two

treatment groups achieved constant. This is by minimizing

nAjh
sub
jA (t|z) + nBjh

sub
jB (t|z),

subject to : zT{zTJ−1
k(sub)(βjk)z}ze

2βTjkz + zT{zTJ−1
k(sub)(βjk)z}ze

2βTjkz = k > 0.

If V ajk{ĥjk(t|z)} = zT{zT V̄ −1sub(t,βjk)z}ze2βTjkz denotes the variability adjustment

factor for treatment k and cause j, and qjk(z;βjk) = εjk(z;βjk)h
sub
jk (t|z), the optimal

allocation proportion for treatment A is given by:

πGA1j(βAj,βBj, z) =

√
qjB(z;βjB)V ajA{ĥjA(t|z)}√

qjB(z;βjB)V ajA{ĥjA(t|z)}+
√
qjA(z;βjA)V ajB{ĥjB(t|z)}

.

(4.9)

For having a design with high power, the Neyman allocation function minimizes

nAj + nBj,

subject to : zT{zTJ−1
k(sub)(βjk)z}z

2βTjkz
e + zT{zTJ−1

k(sub)(βjk)z}ze
2βTjkz = k > 0.

The optimal allocation proportion for treatment A is given by:

πGA2j(βAj,βBj, z) =

√
εjB(z;βjB)V ajA{ĥjA(t|z)}√

εjB(z;βjB)V ajA{ĥjA(t|z)}+
√
εjA(z;βjA)V ajB{ĥjB(t|z)}

.

(4.10)
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In order to have a direct interpreation in terms of the probability of an event, one can

also minimize the overall cumulative incidence functions for each cause subject to the

asymptotic variance of the difference between the estimated cumulative incidence rates

for the two treatments being constant. It is shown in Appendix F by an application of

the delta method that

V ar{F̂jk(t|z)} = (tzT )V ar{ĥsubjk (t|z)}(tz)(exp[−2

∫ t

0

{hsubjk (u|z)}du]),

for k = A,B. Therefore minimize

nAjFjA(t|z) + nBjFjB(t|z),

subject to : V ar{F̂jA(t|z)}+ V ar{F̂jB(t|z)} = k > 0.

Let

V rjk(βjk, z) = (tzT )V ajk{ĥjk(t|z)}(tz)(exp[−2

∫ t

0

{hsubjk (u|z)}du]).

If q′jk(z;βjk) = εjk(z;βjk)Fjk(t|z). The optimal allocation proportion for treatment A

for cause j is given by

πGA3j(βAj,βBj, z) =

√
q′jB(z;βjB)V rjA(βjA, z)√

q′jB(z;βjB)V rjA(βjk, z) +
√
q′jA(βjA, z)V rjB(z;βjk)

. (4.11)

The derivation of (4.11) is detailed in Appendix G.

One can also minimize the overall sample size for events from a specific cause subject

to the asymptotic variance of the difference between the estimated cumulative incidence

rate for the two treatments being constant. This yields the Neyman allocation given

by

πGA4j(βAj,βBj, z) =

√
εjB(z;βjB)V rjA(z;βjA)√

εjB(z;βjB)V rjA(βjA, z) +
√
εjA(z;βjA)V rjA(βjA, z)

. (4.12)

4.3.2 Rules to Target the Derived Allocation Proportions

The dervied allocation proportions are functions of the competing risk model parameters

which are estimated sequentially using the partial likelihood method. As soon as a new

patient enters the trial, their covariate information is recorded. This is used along
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with the treatment allocation history, response history and the covariate profile history

to allocate the incoming patient to the better performing treatment arm for a given

cause of failure, using a randomization procedure with low variability . An appropriate

randomization procedure needs to be used which approaches the derived allocation

proportions in the long run.

The covariate-adjusted doubly-adaptive biased coin design (CADBCD) serves this

purpose well. This is a continuous allocation function that targets the derived allocation

proportions. After m patients are randomized, on the arrival of the (m + 1)th patient

with covariate vector zm+1, let π̂mj = πAj(β̂Aj,m, β̂Bj,m, zm+1) represent the estimate of

πAj(βAj,βBj, z) based on the responses observed from the m patients, adjusted for the

covariate zm+1 of the incoming patient. Let {ρ̂Amj =
∑m

i=1 πAj(β̂Aj,m, β̂Bj,m, zi)/m} be

an estimate of the average target allocations for treatment A based on the data for the

first m patients. Using the CADBCD procedure, the (m+ 1)th patient can be assigned

to treatment A with probability jm+1[{NAj(m)/m}, π̂mj, ρ̂Amj], where {NAj(m)/m} is

the proportion of patients with events from cause j who have been assigned to treatment

A after m allocations. Therefore, the mathematical form of the allocation rule for the

(m+ 1)th patient entering the clinical trial with covariate vector zm+1 is

jm+1

{
NAj(m)

m
, π̂mj, ρ̂Amj

}
=



π̂mj{ρ̂Amj/
NAj(m)

m
}α

π̂mj{ρ̂Amj/
NAj(m)

m
}α+(1−π̂mj){(1−ρ̂Amj)/(1−

NAj(m)

m
)}α
, if 0 <

NAj(m)

m
< 1,

1− NAj(m)

m
, if

NAj(m)

m
= 0 or

NAj(m)

m
= 1.

(4.13)

If the clinician decides to have an ethical design with minimum variability, then the

covariate-adjusted efficient randomized adaptive design (CAERADE) may be suitted

better than the CADBCD. This is a discrete allocation function and is given by

jm+1

{
NAj(m)

m
, π̂mj, ρ̂Amj

}
=



α′π̂mj if
NAj(m)

m
> ρ̂Amj,

π̂mj if
NAj(m)

m
= ρ̂Amj,

1− α′(1− π̂mj) if
NAj(m)

m
< ρ̂Amj,

(4.14)
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In the above allocation rules, for CAERADE, 0 ≤ α′ < 1 is a constant that reflects

the degree of randomization, whereas for CADBCD the degree of randomization is

determined by 0 ≤ α <∞. Both the CADBCD and the CAERADE helps the observed

allocation proportion approach the target allocation proportion for a given cause, in

the long run. However, the CAERADE is first-order efficient and therefore attains the

Cramer-Rao lower bound. Efron’s biased coin design with α′ = 2/3 is a special case

of it. For the CADBCD, α = 0 corresponds to the most random case of the allocation

rule, whereas α = ∞ is the most deterministic scenario. On the other hand, for the

CAERADE, it is considered that α′ = 0 is the most random scenario and α′ = 1 is the

most deterministic rule. Note that the theory of the CADBCD and the CAERADE

are based on parametric assumptions on the responses. There is currently no work on

semi-parametric case. These can however be checked using simulations.

4.4 Simulation Results

A comparison of the different derived CARA randomization procedures is made by

considering a two-arm survival trial with 800 patients who are failing due to two different

causes. A patient’s arrival time here is simulated from a uniform (0,365) distribution.

The response time of a patient is added to the recruitment time of the patient and

patients whose outcomes have not been observed by the pre-specified study time are

said to be generalized type I right censored. The recruitment period here has been

considered to be 365 days, and the overall trial duration is taken to be 581.66 days. A

covariate structure of two independent covariates has been generated, which are gender

(Bernoulli, p = 0.381) and age (Uniform(40,80)). The censoring time of the patients is

simulated from a uniform (0,581.66) distribution. The survival time of a patient with

covariate vector z = (1, z1, z2)T in treatment group k is simulated from the Weibull

distribution with scale parameter µk(z) =exp(βTk z) and shape parameter γk = 2.48 for

patients failing from cause 1 and γk = 0.53 for patients failing from cause 2. Three

choices of the treatment effects vector have been considered in this case, which are

neutral effect of either treatment, positive effect of treatment A and negative effect of
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treatment A. The effects of the corresponding covariates for the simulation model µk(z)

=exp(βTk z), are summarized in Table 4.1 below :-

Model Treatment Covariate Effects Covariate Effects

Cause 1 Cause 2

β0 β1 β2 β0 β1 β2

Neutral A 3.803 0.810 0.06 2.535 0.001 0.06

B 3.803 0.810 0.06 2.535 0.001 0.06

Negative A 0.429 0.810 0.06 - 1.024 0.001 0.06

B 3.803 0.810 0.06 2.535 0.001 0.06

Positive A 7.176 0.810 0.06 6.094 0.001 0.06

B 3.803 0.810 0.06 2.535 0.001 0.06

Table 4.1: Values of model parameters

In Table 4.1 the neutral treatment effect refers to the hypothetical experimental

scenario where treatments A and B are equally effective. In the case of comparing

a new treatment with a control, this scenario refers to the situation where the new

treatment is as good as the existing control. The positive treatment effect refers to the

hypothetical experimental scenario where treatment A is more effective than treatment

B, or the new treatment performs better than the control.The negative treatment effect

refers to the hypothetical experimental scenario where treatment B is more effective

than treatment A, or in the case of comparing a new treatment with a control,this means

that the new treatment is not as effective as the control. The procedure used here is

a fully sequential one that recalculates the treatment effects using the Fine and Gray

regression model after the arrival of every new patient and there are 5000 simulation

runs. The competing randomization procedures and the corresponding designs number

is listed in Table 4.2.
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Design Competing Randomization Procedures

I Completely randomized design

II Efron’s biased coin design with p = 2/3

III CARA DBCD with (4.9) as the target

IV CARA DBCD with (4.10) as the target

V CARA DBCD with (4.11) as the target

VI CARA DBCD with (4.12) as the target

VII CARA ERADE with (4.9) as the target

VIII CARA ERADE with (4.10) as the target

IX CARA ERADE with (4.11) as the target

X CARA ERADE with (4.12) as the target

Table 4.2: List of the Competing Designs

For the implementation of the designs in Table 4.2, for the ith patient′s randomiza-

tion, only data from those patients who have responded before the ith patient’s arrival

are used in computing the randomization probability for the ith patient. Initially 2m0

patients have been equally allocated to the two treatment arms using Efron’s biased coin

design. Here, m0 is a positive number and 2m0 is chosen to be 220, which is sufficiently

large for the restricted randomization procedure to accurately estimate the model pa-

rameters. After the model parameters are estimated from the initial stage of the design

using a Fine and Gray model, a randomization probability is calculated after each new

patient who arrives sequentially into the trial. This randomization probability can be

based on any one of the derived allocation functions. For the implementation of the

CARA designs, at each stage of the trial, the number of events from each causes from

the previous stages is recorded. The incoming patient is then assigned to a treatment

arm according to the derived allocation proportion of the primary cause of interest in

the clinical trial. A pseudo-random number generator is then used to draw a uniform

random number between 0 and 1. If the derived randomization probability is greater

than or equal to this random number, the patient is assigned to treatment A or else the

patient is assigned to treatment B. The procedure described is repeated for the sub-

jects entering the trial in the future. For the CADBCD designs in Table 4.2, it must
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be noted that following Zhang and Hu (2009) and Rosenberger and Hu (2004), the

trade-off parameter for randomness is taken to be α = 2, whereas, for the appropriate

implementation of the CAERADE designs, α′ is chosen to be 0.55. This number is a

balance between 0.4 and 0.7 which have been set as the boundaries by Burman(1996).

The completely randomized design and Efron’s biased coin design have been consid-

ered as the traditional balanced randomization procedures to be compared against the

derived CARA designs. The performances of the competing randomization procedures

in Table 4.2 for patients experiencing the event from cause 1, when the treatment effects

between the arms do not differ, can be analysed from their operating characteristics

in Table 4.3. For each experimental design, the significance level of the Wald test for

testing the treatment difference has been set to 0.05.

Model Design NA
n

(SE) Event Type I Error

Neutral I 0.500 ( 0.033) 0.60 0.05

II 0.50 ( 0.020) 0.60 0.05

III 0.50 (0.030) 0.60 0.04

IV 0.50 (0.040) 0.60 0.04

V 0.50 (0.030) 0.60 0.04

VI 0.50 (0.038) 0.60 0.04

VII 0.50 ( 0.037) 0.60 0.04

VIII 0.50 (0.022) 0.60 0.04

IX 0.50 (0.037) 0.60 0.05

X 0.50 (0.022) 0.60 0.04

Table 4.3: Performance of the Competing Designs for Cause 1 when Treatment Effects

are Similar

It can be seen from Table 4.3 that, when there is no differences between the treat-

ment effects, all of the procedures allocate equal numbers of patients to the treatment

arms. The proportion of patients experiencing events from the main cause of interest

is the same for all the designs. Since the trial consists of patients experiencing events
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due to multiple causes, and the main interest is in the primary cause, therefore the

proportion of patients experiencing events due to cause 1 has been considered here An

important observation here is that the simulated type I error rate is slightly conservative

for the derived CARA designs, apart from design IX. The standard errors for the type I

error rates of the Wald test for treatment comparisons for the proportion of events are

about 0.025. They are all around 0.003. The implementations of the integral function

for the designs V, VI, IX and X are taken as summation of the sub-hazard fucntion

upto time t. The performances of the competing designs for patients experiencing the

event from cause 1 when the treatment effects between the arms differ significantly, can

be analysed from their operating characteristics in Table 4.4.

On an average, the CARA designs with delayed responses result in a slight reduction

in the proportion of events from the main cause of interest when there is any difference

between the treatment effects, the standard errors being 0.025. This is because, unlike

the balanced randomization procedures, the CARA designs result in more patients

being allocated to the better treatment arm. This ethical gain is achieved by the

derived CARA designs without compromising much on the power of the Wald test for

treatment comparisons. The variability of the power is the lowest for Efron’s biased

coin design and CARA design X. Most of the powers for the CARA designs have the

standard errors of 0.004, but those for designs I, VII, VIII and IX are 0.002. It can

also be seen that, when targeting the Neyman allocation proportions, the CADBCD

procedures are more variable than the corresponding CAERADE ones but this is not

the case while targeting the other allocation proportions. This inconsistency in the

performance of the randomization procedures may arise because the CADBCD and the

CAERADE procedures are theoretically well defined for parametric resonses. Designs

VIII and X are the most powerful CARA designs considered

The boxplots given in Figure 4.2 depicts the performances of the competing designs

in the individual trials.
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Models Design NA
n

(SE) Event Power

Positive I 0.50 (0.031) 0.65 0.98

II 0.50 (0.019) 0.65 0.99

III 0.65 (0.031) 0.63 0.95

IV 0.69 (0.039) 0.63 0.92

V 0.61 (0.031) 0.63 0.96

VI 0.62 (0.037) 0.63 0.91

VII 0.64 (0.035) 0.63 0.93

VIII 0.68 (0.022) 0.63 0.96

IX 0.62 ( 0.032) 0.63 0.95

X 0.63 (0.022) 0.63 0.97

Negative I 0.50 (0.032) 0.62 0.98

II 0.50 ( 0.020) 0.62 0.99

III 0.34 (0.031) 0.59 0.93

IV 0.31 (0.041) 0.59 0.90

V 0.39 (0.031) 0.59 0.94

VI 0.39 (0.039) 0.59 0.90

VII 0.35 (0.037) 0.59 0.91

VIII 0.32 (0.022) 0.59 0.97

IX 0.40 (0.034) 0.59 0.92

X 0.37 (0.022) 0.59 0.97

Table 4.4: Performance of the Competing Designs from Cause 1 when Treatment Effects

Differ Significantly
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Figure 4.2: Performance of the Competing Designs based on the primary cause in the

Individual Trials

The distribution of the observed allocation proportions appear to be very close

to a symmetric distribution, but with different means and with different variability.

When there is no difference between the treatment effects, all of the competing designs

allocate equal numbers of patients on an average to the two treatment arms. On the

other hand when there is a difference in the treatment effects the derived CARA designs

allocate more patients to the better performing treatment in relation to the main cause

of interest. As expected, Efron’s biased coin design, which is a special case of the

CAERADE designs, is the most efficient. This is because the asymptotic variability
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of this design converges to zero. After taking care of the other risks due to competing

events, in the presence of a difference between the treatment effects, the CARA designs

allocate more patients to the better treatment arm for the main cause of interest. This

ethical objective of a clinical trial is achieved without compromising much on the power

of the Wald test for treatment differences.

4.5 Re-designing a Clinical Trial Using the Derived

Procedures

The performance of the derived methodologies can be assessed after applying them

to an existing clinical trial. Follicular cell lymphoma data from Pintilie (2007) can

be considered which consists of 541 patients with early disease stage follicular cell

lymphoma and treated in a 1:1 ratio with radiation alone (chemo = 0) or a combination

treatment of radiation and chemotherapy (chemo = 1). Disease relapse or no response

and death in remission are the two competing risks that are considered in this trial. The

concomitant information of the patients that was recorded is their age (age: mean = 57

and sd = 14) and haemoglobin levels (mean = 138 and sd = 15) recorded. The median

follow-up time was recorded to be 5.5 years. Out of the 541 patients, 272 experienced

events due to the disease, with 76 competing risk events (death without relapse) being

recorded and the rest were censored individuals.

A simulation study with 5,000 replications was conducted to compare four random-

ization designs: complete randomization, Efron’s biased coin design,the CADBCD with

target (4.9), and the CAERADE with target (4.9), have been considered. Based on data

from Pintilie (2007), the parameters were chosen as follows : R = 365 days, D = 2007.5

days, age is uniformly distributed between 31.752 and 81.248 and the haemoglobin lev-

els is uniformly distributed between 112.02 and 163.98. For each of these designs, the

aim is to assess their performance in terms of treatment allocation and efficiency. The

survival time of a patient with covariate vector z = (1, z1, z2)T in treatment group k is

simulated from the exponential distribution with mean µk(z) =exp(βTk z), for k = A,B

. Based on the reported overall median survival times, the covariate-adjusted treatment
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effects have been set to 2.79 for the main cause of interest and to 1.72 for death without

relapse the covariate adjusted haemoglobin effect has been set to 1.16 and the covariate

adjusted effect of age is 4.12 for the main cause of interest, and these are 0.0127 and

0.09, respectively, for death without relapse. The intercept term from the exponential

model is estimated to be 3.29 for the disease and 8.62 for the competing risk event.

For appropriate implementation of the derived CARA designs 140 patients have been

initially equally randomized to the two treatment arms using Efron’s biased coin design

before the adaptive randomization process started. The existing design has been com-

pared with Efron’s biased coin design and the CADBCD and CAERADE with target

(4.9). The results are given in Table 4.5.

Designs I II III VII

NA/n (SE) 0.50(0.035) 0.50(0.018) 0.66(0.032) 0.67(0.035)

Event Proportion 0.503 0.501 0.458 0.469

Power 0.95 0.96 0.91 0.89

Table 4.5: Comparison of the original study design with the derived CARA designs

It can be seen from Table 4.5 above that using the CARA designs instead of the

completely randomized design or the Efron’s biased coin design, results in more patients

being allocated on an average to the better performing treatment. The balanced designs

equalize the patient allocations between the two treatment arms. As a result, the CARA

design has, on average lesser proportion of events for relapse after accounting for the

other caues of events occuring in the trial, as compared to the balanced randomization

procedures. It can be seen that the average power using the CARA designs are not

significantly reduced as compared to the balanced randomization procedure. After

performing a simulation study with 541 patients assuming that the treatment effects to

be identical, the simulated type I error rates of the four procedures were between 0.04

and 0.05. Note that the standard errors for the proportions of events are no more than

0.06.
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4.6 Discussion

This chapter has proposed new CARA randomization procedures for two-arm survival

trials with competing risks. When patients are failing due to competing causes, an

appropriate design needs to consider the causes of failure while allocating a patient

to a particular treatment arm. Therefore, an attempt has been made here to develop

methods to allocate patients to a particular treatment arm based on the main cause of

failure after taking care of the other causes which exists in the trial.

CARA designs have been developed here based on on two distinct approaches to

optimality: the CADBCD and the CAERADE, which targets various derived allo-

cation proportions. These allocation proportions are derived by formal optimization

techniques to achieve the ethical criteria of a clinical trial, but not at the cost of com-

promising on the efficiency. The target allocation proportions are derived for a model

without covariates and their covariate-adjusted versions are used for the sequential

allocation of patients.

The operating characteristics of the proposed CARA designs have been compared

with two balanced randomization designs through simulation for a two-arm survival trial

with two predictive covariates, right-censored delayed responses and staggered entry. It

has been found that the proposed CARA designs generate skewed allocations according

to covariate-specific treatment differences and result in fewer events in the trial for

the main cause of failure, while having similar statistical properties to the balanced

randomization designs. The proposed CARA designs achieve modest reductions in the

proportion of events due to the main cause of interest in the study.

When comparing CARA designs based on the CADBCD and the CAERADE proce-

dures, it has been seen that, when targeting some of the derived allocation proportions,

the CADBCD gives the more efficient designs than the CAERADE. This is because

the theoretical properties of the DBCD and the ERADE procedures were derived based

on parametric assumptions on the responses. There is hardly any reference to their

theoretical properties for the semi-parametric case. Simulation results here shows that

when dealing with more complicated semi-parametric models such as the competing risk
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Fine and Gray models, the usual properties of these designs do not hold. Therefore,

an extended scope of this research work might be to develop the theoretical properties

of these designs when the parameter estimates are not based on maximum likelihood

procedures.

Another important area of potential application of CARA randomization procedures

is competing risk survival trials with more than two treatment arms. Noted that the

target allocation proportions derived here are based on optimal allocation for a model

without covariates and then using its covariate-adjusted version for the sequential allo-

cation of patients. Therefore, the information on the covariate history of the patients

already enrolled in the trial is not taken into account when deriving this allocation

proportion. It is only accounted for while calculating the Fine and Gray regression

coefficient estimates, which the estimated covariate-adjusted allocation proportions are

a function of. A useful alternative which can be explored in the future might be to

derive an allocation proportion using some information about the distribution of the

covariate profile of the previous patients and taking an integral function with respect to

the covariate history of the product of the joint density function of the covariate history

and the estimated covariate-adjusted version of the target allocation proportion.

It should be noted that our proposed designs are only appropriate for survival tri-

als with long recruitment periods where the majority of patients contribute towards

outcome data during the recruitment phase. The number of covariates in the model

impacts sequential estimation at the design stage. Implementation of CARA designs

should be considered only with a limited number of predictive baseline covariates.
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Chapter 5

Discussion

5.1 Summary of the Main Conclusions

The thesis presented herewith reflects an attempt made to develop covariate-adjusted

response-adaptive designs for phase III clinical trials for treatment comparison, with a

view towards enhancing its scope of applications beyond what has been already con-

sidered. The clinical trials considered here are the ones which records time to event

outcomes of patients who are administered to a particular treatment arm. This often

occurs in oncology trials where the primary endpoints considered are often duration of

remission, progression free survival, overall survival or event free survival of patients

following a treatment or complete remission (CR). In such cases reducing the number

of events during the trial phase becomes very important. This makes the clinical trial

more ethically attractive.

Addressing the ethical criteria of a clinical trial has become imperative in every

clinical trial experiments nowadays. The World Health Organization (WHO) has ap-

pealed to the pharmaceutical industries to adopt measures based on the ethical criteria

as appropriate as possible, and monitor and enforce their standards. They mentioned

that ethical criteria for drug promotion should lay the foundation for proper behaviour

concerning the promotion of medicinal drugs, consistent with the search for truthfulness

and righteousness. While the focus of ethical clinical trial conduct has been on proto-
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col review in advance of the research, there has been a huge emphasis on monitoring

subject welfare during the conduct of research.

Clinical research involving humans should be scientifically sound and conducted in

accordance with basic ethical principles, which have their origin in the Declaration of

Helsinki. The Good Clinical Practice (GCP) standard is followed by the FDA and the

clinical domain maintains an international ethical and scientific quality for standard

of designing, conducting, recording, and reporting reporting trials that involve the

participation of human subjects.This is the reason why the primary principle of the

WHO about GCP is to maintain ethical conduct during the process of a clinical trial.

They emphasized three basic ethical principles with equal importance, namely respect

for people, beneficence, and justice, that permeate all other GCP principles.

The clinical trials, specially conducted in the oncology theraputic area, which records

time to event of patients thus become very attractive if it reduces the number of events

during the process of clinical trial. This may be achieved by skewing the patient allo-

cation towards the better performing treatment arm, during the course of the trial, by

making use of the sequential arrival of patients. However, since clinical trials deal with

human patients, they differ based on their personal characteristics. Such heterogene-

ity needs to be accounted for while skewing the patient allocation towards the better

performing treatment arm.

The idea behind the traditional balanced randomization procedures has been to com-

pare treatments with highest statistical efficiency. However while tending to achieve the

balance, such designs allocates almost half the patients in the worse treatment arm, thus

making the clinical trial ethically not very attractive. Also when the responses of the

patients to a treatment arm follow a non-linear and heteroscedastic model, balanced

allocation may not always give optimum results. The covariate-adjusted response-

adaptive designs developed throughout this thesis balances these competing goals of

addressing the ethical objective of the trial by skewing the patient allocation towards

the better treatment arm, without compromising much on the statistical efficiency for

treatment comparison. Such designs are specifically useful when the responses of the pa-

tients follow a heteroskedastic non-linear model and when the degree and the direction
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of the treatment effect differs across patient subgroups. While allocating an incom-

ing patient in the clinical trials to a particular treatment arm the covariate-adjusted

response-adaptive designs considers the history of previous treatment assignments, re-

sponse history of patients during the trial phase, the history of covariate information

of patients already admitted in the trial, and also the covariate information of this in-

coming patient in the trial. Throughout the thesis the arrival of the patients has been

considered to be fully sequential. For the implementation of the derived covariate-

adjusted response-adaptive designs, initially certain number of patients are equally

allocated to the two competing treatment arms using a balanced randomization proce-

dure. After the superiority of a treatment arm is established in this interim stage of

the trial, patients who arrive sequentially in the trial are allocated to the better treate-

ment arm according to the derived covariate-adjusted response-adaptive randomization

procedure. This process continues until a treatment is declared to be a clear winner.

Throughout this thesis the overall sample size in the clinical trial is considered to be

fixed, while performing the adaptation process.

Very limited research work exists in the literature about developing covariate-adjusted

response-adaptive designs for surival trials. Sverdlov, Rosenberger and Ryznik (2013)

developed such designs considering the survival responses of the patients to be expo-

nentially distributed. The work in this thesis extends the applicability of such designs

beyond the boundary of exponential survival responses, making it more appealing in

real-life clinical trials. After pointing out the limitations of the applicability of the

designs based on exponential survival responses due to its constant hazard property,

covariate-adjusted response-adaptive designs have been developed for Weibull surival

responses. It is known that Weibull distribution is categorized with an extra shape

parameter which determines the shape of the hazard function. Exponential distriution

is a special case of the Weibull model when the shape parameter is unity. Thus con-

sidering the development of covariate-adjusted response-adaptive designs for Weibull

responses, enhances the scope of application of such designs in real-life clinical trials

when the hazard of the patients to an event is non-constant.

The covariate-adjusted response-adaptive designs for Weibull distributed survival
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responses are based on two distinct approaches to optimality: the covariate-adjusted

doubly adaptive biased coin design (Zhang and Hu 2009) and the covariate-adjusted

efficient randomized adaptive design (CAERADE) and also a non-optimality based

approach : the glink function. The design based on the glink function is derived based

on the cumulative distribution function of a Gumbel model whose location parameter

is calculated as the reciprocal of the scale paramenter of the Weibull accelerated life

model calculated from the covariate information of the incoming patient and its scale

parameter is calculated by the inverse of the shape parameter calculated from the

Weibull accelerated life model based on the information based on the previous patients.

This bridges the past allocation, response histories and the present allocation pattern

after allowing for the incorporation of prognostic factors. The Gumbel model being

asymmetric and light-tailed, provides more weight to the available data, and tends

to allocate more patients to the better treatment. Moreover, when the response of

the patients follow a Weibull distribution, the design based on Gumbel model is more

appropriate as compared to other continuous models because the theoretical errors

in the Weibull Aceelerated Life regression model follow a Gumbel distribution. The

arbitrariness of choosing a value for the tuning parameter T present in the design

based on the probit link function by Bandyopadhyay and Biswas (2001) is not present

in the design based on the glink function. Scaling the the estimated covariate adjusted

treatment difference by its standard error plus the estimated hazard ratio makes this

design more consistently applicable.

After comparing the operating characteristics of the derived designs along with the

response-adaptive and the traditional balanced randomization designs it is found that

all the proposed covariate-adjusted response-adaptive designs generate skewed alloca-

tions towards the better treatment, according to covariate-specific treatment effects and

thus result in fewer events in the trial, without compromising much on the statistical

efficiency as compared to the balanced randomization designs. The degree of skewness

also varies according to the background model the design is based on. It has been es-

tablished that the ethical gain of allocating more patients to the better treatment arm

persists for Weibull survival responses based designs, without heavily compromising on

the statistical power of the Wald test for the difference of covariate adjusted treatment
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effects. It has been established that when there is a significant treatment difference,

among all the derived allocation proportions, it is the Neyman allocation proportion

that assigns more patients to the worse treatment and therefore is not ethically quite

attactive as compared to the other competing designs. The Taylor series expansion

of the random non-centrality parameter of the asymptotic Wald test for the difference

of covariate adjusted treatment effects estalishes the inverse proportionality between

its power and the variance of the random observed allocation proportions. It is this

relation which has been heavily used for comparing the derived designs.

It has been seen that when the survival responses of the patients follow a Weibull dis-

tribution, the CAERADE being the asymptotically most efficient, increases the power

or treatment comparison as compared to the corresponding covariate-adjusted Doubly

Adaptive Biased Coin Design (CADBCD). However, sometimes the CAERADE does

not converge to the target allocation proportion as fast as the CADBCD does. This

is mainly because the allocation probabilities in the CAERADE are not stable. The

allocation function being discrete, they always jump from one value to another. A

continuous allocation function like the CADBCD can make the allocation probabilities

stable and speed up the convergence of the sample allocation proportions. Therefore if

the requirement of the clinician is to solely have an efficient CARA design, the CAER-

ADE should be the best choice among all the covariate-adjusted response-adaptive

randomization procedures. However in a real-life clinical trial, ethical considerations

would appear to be quite unavoidable. Thus the CADBCD is the best achievable bal-

ance between ethics and efficiency when the survival responses conform to a Weibull

model.

Often in real-life clinical trials the response of patients fail to conform to a parametric

model. However, parametric assumption enhances the robustness and efficiency of the

parameter estimates. Therefore to strike a balance between robustness and practicality,

attempt has also been made to develop covariate-adjusted response-adaptive designs

for survival responses following a semi-parametric model. Here designs are developed

obviating any parametric assumptions about survival responses of the patients but

only considering that the hazard of patients at any given time-point is proportional
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to each other. The underlying model used to develop such kind of covariate-adjusted

response-adaptive designs is the Cox proportional hazard model. Here the derived

designs are a function of the Cox regression coefficients which are used to obtain the

partial likelihood estimate of the treatment effect in order to allocate more patients to

the better performing treatment arm during this course of the trial. As in the case of

the derived covariate-adjusted response-adaptive designs for Weibull survival responses,

here the designs are derived optimally by fixing the asymptotic variance of the covariate

adjusted treatment difference to a constant value. This helps the statistical efficiency

of the design not to get compromised much while achieving the ethical objective of

skewing the patient allocation to the better performing treatment arm. Various optimal

allocation proportions are derived minimizing the overall hazard during the trial and

also by minimizing the overall trial size which gives the Neyman allocation. As with the

designs for Weibull distributed survival responses, the CADBCD and the CAERADE

are also used here to target the derived optimal allocation proportions.

Among the other optimality approach, the weighted optimality approach (Atkinson

and Biswas, 2005) has also been considered. By appropriately choosing the tradeoff pa-

rameter η, the weighted optimality CARA designs also gives skewed allocations towards

the better treatment arm and balances the objectives of statistical efficiency and ethics.

However judiciously selecting the parameter depends on the experimental crteria of the

clinician and the obejective of the clinical trial.

Apart from the optimal designs, the cumulative distribution function of the normal

model with mean zero and standard deviation determined by the covariates of the in-

coming patient, has also been used to derive the covariate-adjusted response-adaptive

designs for survival responses following a semi-parametric model. The design is devel-

oped making the cumulative distriution function of such a normal model depend on

the partial likelihood estimate of the covariate adjusted treatment difference obtained

from the sequentially fitted Cox regression model. The probit link function being an

increasing function of the covariate adjusted treatment difference make this allocation

procedure favour the treatment doing better at the particular stage of the clinical trial.

The design scales the covariate adjusted treatment differences according to the hazard
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ratio between the two treatments and the standard error of the treatment difference for

the mth patient. This means that if the hazard of an event for a particular treatment

group is greater than the other, there would be less chance of allocating the next pa-

tient to that particular treatment arm. The probit link function here thus bridges the

past history to the present allocation pattern for patients whose responses belong to

the Lehmann family.

Apart from using a link function or a formal optimization procedure, CARA designs

can also be developed by the method of treatment effect mapping similar to Rosenberger

and Sheshaiyer (1997). The score function of the sth covariate in the Cox regression

model has been used to develop a mapping onto [0,1] that exceeds 0.5 if treatment

A has been doing better thus far, and is less than 0.5 if treatment B has been doing

better. The idea is similar to that of Rosenberger (1993) in dealing with immediate

continuous outcomes using a nonparametric rank test.

When comparing CARA designs based on covariate adjusted optimal targets, the

results obtained were very similar to the ones obtained for Weibull distributed survival

responses. However the score based design tends to have the lowest power for treatment

comparison as compared to other designs and therefore is not recommended. The design

based on the probit link is ethically most attractive as it allocates more of the patients

to the better treatment arm. However, when there is no treatment difference it has a

over-inflated type I error rate. Therefore it is also not recommended. The covariate-

adjusted response-adaptive designs based on optimality approach thus stands out and

is a suitable alternative to the traditional balanced randomization procedures for semi-

parametric survival responses of the patients.

Often in medical research response to a treatment can be classified in terms of fail-

ure from disease processes and/or non-disease-related causes. In such cases, time to

the event of interest cannot be observed because of a preceding event i.e. a competing

event occuring before. An example can be of an event of interest being a specific cause

of death where death from any other cause can be called a competing event. Such

scenarios in survival analysis is termed as competing risk. When patients are failing

due to competing causes, an appropriate design needs to consider the causes of failure
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while allocating a patient to a particular treatment arm. The underlying model used to

develop such kind of covariate-adjusted response-adaptive designs is the Fine and Gray

sub-distribution hazard model. Here the derived designs are a function of the Fine

and Gray regression coefficients which are used to obtain the partial likelihood esti-

mate of the treatment effect in order to allocate more patients to the better performing

treatment during this course of the trial. New covariate-adjusted response-adaptive

randomization designs have been proposed for two-arm survival trials with competing

risks. CARA designs for competing risk scenario have been developed here based on on

two distinct approaches to optimality: the CADBCD and the CAERADE, which tar-

gets various derived allocation proportions. Operating characteristics of the proposed

CARA designs have been compared with two balanced randomization designs through

simulation, for a two-arm survival trial with two predictive covariates, right-censored

delayed responses, and staggered entry. It has been seen that the derived CARA designs

are a suitable alternative to the traditional balanced randomization designs. However

it has been seen that while targeting some of the derived allocation proportions, the

CADBCD gives the most efficient designs. This is because the theoretical properties

of the CADBCD and the CAERADE procedures were derived based on parametric

assumption of the responses. There is hardly any reference about the theoretical prop-

erties for semi-parametric alternative of these procedures. Simulation results reveals

that while moving to more complicated semi-parametric models than Cox regression

model, such as the competing risk models, the usual properties of these designs does

not hold. Therefore an extended scope of this research work might be to develop these

designs when the parameter estimates are not based on maximum likelihood procedures.

It should be noted that our proposed designs are only appropriate for survival trials

with long recruitment periods where majority patients contribute towards outcome

data during the recruitment phase. The number of covariates in the model impacts

sequential estimation at the design stage. Implementation of CARA designs should be

considered only with a limited number of the predictive baseline covariates.

The idea behind developing covariate-adjusted response-adaptive randomization de-

signs in this thesis has been to make such designs more fruitfully applicable in survival
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trials in industrial enterprise. Such trials are primarily conducted in oncology related

clinical trials. This studied inadequacy may be attributed to a desire to enable even

a non-expert in the field of adaptive designs, to have a fairly adequate understanding

about the development of this area of research.

5.2 Critical Evaluation

In recent years, the use of adaptive design methods in pharmaceutical research and

development has become popular due to its flexibility and efficiency for identifying po-

tential signals of clinical benefit of the treatment under investigation. The flexibility

and efficiency, however, increase the risk of operational biases, resulting in decrease in

the accuracy and reliability for assessing the treatment effect of the treatment under

investigation. This is because fully sequential strategies require outcomes from all pre-

vious allocations prior to the next allocation. This can prolong an experiment unduly.

Thus there has been a lot of research going on for establishing a suitable delayed re-

sponse model. Hardwick,Oehmke and Stout (2006) proposed a delayed rate response

bandit model where they showed that except when the delay rate is several orders of

magnitude different than the patient arrival rate, the delayed response bandit is nearly

as efficient as the immediate response bandit. However such model does not take care

of individual heterogeneity of patients.

The biggest challenge in applying such designs in real-life clinical trials is that it

faces a lot of logiistical issues. Specially in survival trials, one needs to wait until a

long period of time until they obseve an event or a censoring. Thus in fully sequential

trial we are not always in a position to observe the previous response when the next

patient arrives. This may have a disadvantage of dampening the convergence of the

randomization procedure to its target. A possible way out of this problem is to obtain

a surrogate endpoint in survival trial and build the design on the surrogate endpoint

instead of the real clinical enpoint.

In clinical trials, a surrogate endpoint is a measure of effect of a specific treat-

ment that may correlate with a real clinical endpoint but does not necessarily have
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a guaranteed relationship. Surrogate endpoints are used when the primary endpoint

is undesired, or when the number of events in the trial is very small, thus making it

impractical to conduct a clinical trial to gather a statistically significant number of end-

points. The FDA and other regulatory agencies will often accept evidence from clinical

trials that show a direct clinical benefit to surrogate endpoints. Surrogate endpoints

can be obtained from different modalities, such as, behavioural or cognitive scores, or

biochemical biomarkers. A correlation does not make a surrogate. It is a common

misconception that if an outcome is correlated with the true clinical outcome, it can be

used as a valid surrogate end point. However, proper justification for such replacement

requires that the effect of the intervention on the surrogate end point predicts the effect

on the clinical outcome. Progression Free Survival (PFS) is a prominent example of a

surrogate endpoint in oncology contexts. However there are examples of cancer drugs

(eg: Avastin) approved on the basis of progression-free survival, failed to show subse-

quent improvements in overall survival in subsequent studies. There have also been a

number of instances when studies using surrogate endpoints have been used to show

benefit from a particular treatment, but later, a repeat study looking at endpoints has

not shown a benefit, or has even shown harm.

As pointed out by Rosenberger and Lachin (2002), a common argument against

practically implementing response-adaptive designs or even covariate-adjusted response-

adaptive designs is that the ethical advantage gained using such experimental designs

are on an average over several trials. It does not guarantee such success rate in every

single experiment.

In order to make the derived covariate-adjusted response-adaptive designs more

applicable for implementation in real-life clinical trials, building these designs or more

complicated survival models makes the interim phase of the clinical trial significantly

long before the actual adaptation may start. These are the major issues for which

the Food and Drug Administration (FDA) has shown extremely reserved approach in

implementing adaptive randomization procedure in real-life clinical trials.
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5.3 Directions for Future Research

Despite various reservations from the FDA about implementing adaptive randomization

procedures, active research on developing covariate-adjusted response-adaptive designs

has continued to be a hot topic of discussion in variours symposiums and conferences

across the globe. The interest of researchers on developing such designs have signifi-

cantly grown in order to give it more applied look so that it eventually gets applied in

real-life clinical trials.

A significant step forward in developing covariate-adjusted response-adaptive de-

signs for real-life clinical trials would be on building a theoretical model for estimation

of the size of the interim stage given the theoretical model the design would be based

on when the adaptation would start. Till now very limited discussion exists in the

literature about this point and the ones which do, relies on simulation procedure to

determine the size of the interim stage for equal allocation of patients. Building a theo-

retical model for estimating the size of the interim stage for equal allocation of patients

to the competing treatment arms would enhance the stance of the statisticians to have

a more robust justification to the clinicians about the waiting period before the model

based adaptation process would start.

The exponential distribution is a special case of the Weibull model, but the Weibull

model belongs to a wider class of two-parameter location-scale survival distributions,

that encompasses distributions such as log-normal and log-logistic. When considering

the development of CARA designs for survival responses belonging to the parametric

family of distributions, the ambit of applications of the CARA designs can be enhanced

further if the derived CARA designs based on Weibull model can be developed to

include all models in the two-parameter location-scale class of distributions.

If the shape parameter of the Weibull distribution is known beforehand, the rela-

tionship between the exponential and the Weibull distribution can be used to simplify

the results in Chapter 2. The Weibull distributed random variable can be raised to the

power of the value of this known shape parameter and as a new patient sequentially

arrives in a clinical trial, the CARA designs based on the exponential distribution can
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be applied on the transformed response after considering all the information which a

CARA design conditions on while calculating the randomization probability.

Often in clinical trials hazards of an event are non-proportional. However often

the odds of surviving beyond a given time-point is proportional between treatment

groups. Conceptually, instead of considering the proportionality of the hazard rate of

individuals from the two treatment groups, one can also use the proportionality of the

odds of survival of patients from the two treatment groups as the basis for development

of CARA randomization procedures.

The essence of using CARA designs in real-life clinical trials becomes slightly more

prominent when more than two competing treatment arms are considered. Instead of

considering the overall sample size to be fixed, one can develop a suitable stopping

rule which would help dropping a treatment arm in the trial before all patients are

randomized. This would make the clinical research more cost effective.

Often in real-life clinical trials one observe patients dropping out due to efficacy

related causes of a treatment under consideration. Such cases are known as infor-

mative censoring. In this case, the survivor function of the event time is a power

function of that of the censoring time. Very little work has been done till date on devel-

oping covariate-adjusted response-adaptive designs for survival responses considering

informative censoring. A possible and fruitful area of exploration might be to develop

Covariate-adjusted response-adaptive designs for all the types of different survival mod-

els considered in this thesis but considering informative censoring instead of generalized

type I right censoring.

In all the CARA designs developed till date using a formal optimization method,

the derived target allocation proportions are based on optimal allocation for a model

without covariates. The covariate-adjusted version of these derived target allocation

proportion are then used for the sequential allocation of patients. Therefore the in-

formation of the covariate history of the patients already enrolled in the trial is not

taken into account while deriving this allocation proportion. An useful alternative

which can be explored in the future might be to derive an allocation proportion using
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some information about the distribution of the covariate profile of the previous patients

and marginalizing the distribution of this covariate profile over the covariate adjusted

version of the target allocation proportion. This would make the designs more ethi-

cal as well as it would fit the best within the actual definition of covariate-adjusted

response-adaptive designs.

Finally, more research has to be put into the development of a robust random-

ization procedure to target the derived allocation proportions when the distribution

of the survival responses move away from conforming to a parametric model. It has

been seen through simulation that while obviating any parametric assumption about

the distribution of the survival responses, when the underlying model becomes more

complex than the usual Cox proportional hazard model, the usual properties of the

CADBCD and the CAERADE does not hold true. As pointed out before, in real-life

clinical trials survival responses rarely follow a parametric form of distribution. More-

over non-proportionality of hazard is an active area of discussion in various industrial

research. Therefore the adequacy of a robust randomization procedure to target the

formally optimized target allocation proportion seem to be an important ingredient of

research for developing covariate-adjusted response-adaptive designs. In practice, ap-

plied researchers do not only want to be protected from adhering to a model based on

a parametric assumption on survival responses , but they also want to obtain a robust

randomization procedure which would be effficient in all practical scenario. Therefore

finding such semi-parametric or non-parametric randomization procedures which would

target the allocation proportions derived by formal optimization methods might be a

big step forward in the development of covariate-adjusted response-adaptive designs for

its future application in real-life clinical trials.
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Appendix A

Deriving the variance of the Weibull

distribution parameter estimates

Consider two random samples (tik,δik), (where k = A and B) from Weibull distribu-

tions with parameters {µA(z), γA} and {µB(z), γB}. Therefore two such distributions

corresponding to treatments A and B can be compared using the Wald test. To test

the hypotheses,

H0 : log{µA(z)} = log{µB(z)}

HA : log{µA(z)} 6= log{µB(z)},

the Wald test statistic

Tn =
log{µ̂A(z)} − log{µ̂B(z)}√

var[log{µ̂A(z)}] + var[log{µ̂B(z)}]

can be used, where Tn
d−→ N(0,1), and µ̂A(z) and µ̂B(z) are the maximum likelihood

estimators of µA(z) and µB(z) respectively. Let γ̂k be the maximum likelihood estimator

of γk . The MLE of log{µk(z)} and (1/γk) can be obtained by numerically solving the

equations (2.12) and (2.13). The Fisher information matrix is obtained by finding

the Hessian matrix from equations (2.12) and (2.13) and taking the expectations after

changing the sign of the entries in the Hessian matrix. The Fisher information matrix
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here is

I[log{µk(z)}, (1/γk)] =

nkεk(z;βk, γk)γ
2
k nkE(ςike

ςik)γ2
k

nkE(ςike
ςik)γ2

k nkεk(z;βk, γk)γ
2
k + nkE(ς2

ike
ςik)γ2

k

 ,
where, ςik = (γk)[yik − log{µk(z)}] , εk(z;βk, γk) is the probability of an event before

censoring, and nk is the number of patients in treatment k (k= A,B). The determinant

of the matrix I[log{µk(z)}, (1/γk)] is given by

det I[log{µk(z)}, (1/γk)] = n2
kγ

4
k{ε2k(z;βk, γk) + εk(z;βk, γk)E(ς2

ike
ςik)− E(ςike

ςik)2}.

Hence the variance-covariance matrix of log{µk(z)} and 1/γk can be obtained from

M = I−1[log{µk(z)}, 1/γk] which is given by

M =

 1
nkγ

2
k

εk(z;βk,γk)+E(ς2ike
ςik )

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E(ςike

ςik )2
− 1
nkγ

2
k

E(ςike
ςik )

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E(ςike

ςik )2

− 1
nkγ

2
k

E(ςike
ςik )

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E(ςike

ςik )2
1

nkγ
2
k

εk(z;βk,γk)

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E(ςike

ςik )2

 .
Now, equation (2.16) gives the mathematical form of Gk. Therefore, M can be written

as

M =

 Gk
nkγ

2
k

− 1
nkγ

2
k

E(ςike
ςik )

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E{ςikeςik}2

− 1
nkγ

2
k

E(ςike
ςik )

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E(ςike

ςik )2
1

nkγ
2
k

εk(z;βk,γk)

ε2k(z;βk,γk)+εk(z;βk,γk)E(ς2ike
ςik )−E(ςike

ςik )2

 .
Therefore,

σ̂2 = v̂ar[log{µ̂k(z)}] =
Gk

nkγ̂2
k

,

and,

v̂ar((1/γ̂k)) =
1

nkγ̂2
k

ε̂k(z;βk, γk)

ε̂2k(z;βk, γk) + ε̂k(z;βk, γk)E(ς2
ike

ςik)− E(ςikeςik)2

=
σ̂2ε̂k(z;βk, γk)

ε̂k(z;βk, γk) + E(ς2
ike

ςik)
.
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Appendix B

Derving the Analytical Form for

εk(z;βk, γk)

It is known that εk(z;βk, γk) = P ( Tik ≤ Cik |z;βk, γk) and Tik = min(Tik, Cik).

The survival outcomes are assumed to conform to a Weibull distribution with scale

parameter µk(z) and the shape parameter γk and the right censored times Cik are

assumed to follow uniform distribution with parameters 0 and D. D is considered to

be the trial duration. Let A be a set such that A = (tik : Tik ≤ Cik). Therefore,

εk(z;βk, γk) = P { (Tik, Cik),∈ A } or,

εk(z;βk, γk) =

∫ D

0

∫ cik

0

f(tik, Cik)dtikdCik,

substituting the joint density function of the event times and the censored times we

get,

εk(z;βk, γk) =

∫ D

0

1

D

∫ cik

0

γk
µk(z)

{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dtikdCik.

(Assuming that the survival times and the right censored times are independent);

Performing a change of coordinates in the set A,

εk(z;βk, γk) =

∫ D

0

1

D

∫ D

tik

γk
µk(z)

{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dCikdtik.
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Integrating with respect to Cik we get,

εk(z;βk, γk) =
1

D

∫ D

0

(D − tik)
γk

µk(z)
{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dtik.

Opening up the brackets,

εk(z;βk, γk) =
1

D

∫ D

0

D
γk

µk(z)
{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dtik

− 1

D

∫ D

0

tik
γk

µk(z)
{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dtik.

Cancelling out the contants in the numerator and the denominator,

εk(z;βk, γk) =

∫ D

0

γk
µk(z)

{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dtik

− 1

D

∫ D

0

tik
γk

µk(z)
{tik/µk(z)}(γk−1)e−{tik/µk(z)}(γk−1)

dtik.

Therefore,

εk(z;βk, γk) =

∫ D

0

f(tik)dtik −
1

D

∫ D

0

tikf(tik)dtik.

Therefore,

εk(z;βk, γk) = P (tik ≤ D)− 1

D
E{tikI(tik≤D)}.

This gives,

εk(z;βk, γk) = F (D)− 1

D
E{tikI(tik≤D)},

where F(D) is the distribution function of the Weibull model at D and I(tik≤D) is the

indicator function such that;

I{tik≤D} =

1; if tik ≤ D,

0; if tik > D.
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Now E{tikI(tik≤D)} can be approximated by the average of all the observed event time

for a particular treatment arm. Let’s call this x̄ik. Therefore, the estimate of εk(z; βk, γk)

can be written as;

ε̂k(z;βk, γk) = F (D)− 1

D
x̄ik.
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Appendix C

Deriving the Asymptotic Variance

of the Hazard Ratio

From the theory it is known that (β̂ − β)→ Np{0, J−1(β)}.

According to the Cox proportional hazard model,

log{h(t|z)} = log{h(t|z = 0)}+ βTz.

Here, h(t|z = 0) is the baseline hazard function and is treated as a nuisance parameter

in the model.

Therefore, to fit the Cox proportional hazard model to a set of survival data, the

fitted model can be written as

log{ĥ(t|z)} = β̂Tz.

this is because the baseline hazard function is treated as a nuisance parameter and

cannot be estimated in the Cox proportional hazard model.
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Therefore,

V ar[log{ĥ(t|z)}] = V ar(β̂Tz)

. Which means,

V ar[log{ĥ(t|z)}] = zTJ−1(β̂)z.

According to the multivariate version of the delta method, if (β̂−β)
d−→ N{0, J−1(β)},

then for f being a one-one continuous function of the estimator β̂,

{f(β̂)− f(β)} d−→ Np[0,∇{f(β)}TJ−1(β)∇f(β)].

Now, log{ĥ(t|z)} being the partial likelihood estimator of log{h(t|z)},

[log{ĥ(t|z)}] d−→ N(log{h(t|z)}, V ar[log{ĥ(t|z)}]).

Therefore,

V ar(exp{log[ĥ(t|z)]}) = ∇[exp(βTz)]TV ar[log{ĥ(t|z)}]∇[exp(βTz)].

Which means,

V ar{ĥ(t|z)} = zTV ar[log{ĥ(t|z)}]z exp(2βTz).

For each treatment arm k,

V ar{ĥk(t|z)} = zT{zTJ−1
k (βk)z}z exp(2βTk z).

Now, Jk(βk) =
∑nk

i=1 δikV (t(i),βk). The law of large numbers can be used to estimate

Jk(βk) in order to get the variance estimate of the hazard ratio. Therefore,

E{Jk(βk)} = E

{
nk∑
i=1

δikV (t(i),βk)

}
.
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This can also be written as

E{Jk(βk)} =

nk∑
i=1

E{δikV (t(i),βk)}.

This can also be written as

E{Jk(βk)} =

nk∑
i=1

E{δik]V (t(i),βk).

Which deduces to

E{Jk(βk)} =

nk∑
i=1

εk(z;βk)V (t(i),βk).

This can be written as

E{Jk(βk)} = nkεk(z;βk)V̄ (t,βk).

Thus,

V ar{ĥk(t|z)} = zT

{
zT

V̄ −1(t,βk)

εk(z;βk)nk
z

}
z exp(2βTk z),

where k = A,B.
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Appendix D

Deriving the Optimal Allocation

Proportion for minimizing the Total

Cumulative Hazard Function

The total cumulative hazard at time D > 0 can be minimized subject to the asymptotic

variance for the covariate adjusted treatment difference remaining fixed to a constant.

This yields the optimal allocation proportion of (2.18) as follows :

min: nA

{
DγA

µγAA (z)

}
+ nB

{
DγB

µγBB (z)

}

subject to :

{
GA

nAγ2
A

}
+

{
GB

nBγ2
B

}
= k > 0

Re-arranging the constraint we get

k−

{
GB

nBγ2
B

}
=

{
GA

nAγ2
A

}
,

Re-arranging the constraint further we get

knBγ
2
B −GB

nBγ2
B

=

{
GA

nAγ2
A

}
,
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Solving for nA we get;
GAnBγ

2
B

knBγ2
Bγ

2
A −GBγ2

A

= nA.

The ethical objective here is to minimize,

nA

{
DγA

µγAA (z)

}
+ nB

{
DγB

µγBB (z)

}
.

However
GAnBγ

2
B

knBγ2
Bγ

2
A −GBγ2

A

{
DγA

µγAA (z)

}
+ nB

{
DγB

µγBB (z)

}
can be minimized in order to achieve the ethical objective.

To achieve the minimum value of the objective function

∂

∂nB

[
GAnBγ

2
B

knBγ2
Bγ

2
A −GBγ2

A

{
DγA

µγAA (z)

}
+ nB

{
DγB

µγBB (z)

}]
= 0.

Differentiating with respect to nB we get

{
DγB

µγBB (z)

}
+

{
DγA

µγAA (z)

}
−GAGBγ

2
Aγ

2
B

(knBγ2
Bγ

2
A −GBγ2

A)2
= 0.

This can be further re-arranged to obtain{
DγA

µγAA (z)

}
GAGBγ

2
Aγ

2
B

(knBγ2
Bγ

2
A −GBγ2

A)2
=

{
DγB

µγBB (z)

}
.

This can be further re-arranged to obtain{
DγA

µγAA (z)

}
GAGBγ

2
Aγ

2
B = (knBγ

2
Bγ

2
A −GBγ

2
A)2

{
DγB

µγBB (z)

}
.
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Taking the positive square-root on both sides we get√√√√{ DγA

µγAA (z)

}
GAGBγ2

Aγ
2
B = (knBγ

2
Bγ

2
A −GBγ

2
A)

√√√√{ DγB

µγBB (z)

}
.

Substituting for k we get√√√√{ DγA

µγAA (z)

}
GAGBγ2

Aγ
2
B =

{
GAnBγ

2
B

nA
− GBnBγ

2
A

nB
−GBγ

2
A

}√√√√{ DγB

µγBB (z)

}
.

Simplifying we get

√√√√{ DγA

µγAA (z)

}
GAGBγ2

Aγ
2
B =

nB
nA

GAγ
2
B

√√√√{ DγB

µγBB (z)

}
.

Solving for nB
nA

we get

nB
nA

=

√√√√{ DγA

µ
γA
A (z)

}
GAGBγ2

Aγ
2
B√√√√{ DγB

µ
γB
B (z)

}
GAγ2

B

.

Now,

πWA0
(βA,βB, γk, z) =

nA
nA + nB

.

Dividing the numerator and the denominator in the right hand side of the equation

by nB we get

πWA0
(βA,βB, γk, z) =

nA/nB
1 + nA/nB

.

Substituting for nA
nB

we get
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πWA0
(βA,βB, γk, z) =

√√√√{ DγB

µ
γB
B (z)

}
GA
γ2A√√√√{ DγB

µ
γB
B (z)

}
GA
γ2A

+

√√√√{ DγA

µ
γA
A (z)

}
GB
γ2B

.

Re-arranging this we obtain

πWA0
(βA,βB, γk, z) =

γB
√
{1/(µB(z)}γBDγBGA

γB
√
{1/(µB(z)}γBDγBGA + γA

√
{1/(µA(z)}γADγAGB

.
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Appendix E

Deriving the Optimal Allocation

Proportion for minimizing the

Overall trial size for

Semi-parametric Survival Models

The overall trial size can be minimized subject to the asymptotic variance for the

difference in the covariate adjusted hazard ratios for the two treatment arms with the

baseline hazard to remain fixed to a constant. The variance of the covariate adjusted

hazard ratio for a treatment arm k with respect to the baseline hazard is;

V ar{ĥk(t|z)} = zT

{
zT

V̄ −1(t,βk)

εk(z;βk)nk
z

}
z exp(2βTk z),

where k = A,B.

Therefore the objective is to

min: nA + nB

subject to : V ar{ĥA(t|z)}+ V ar{ĥB(t|z)} = k > 0.
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Re-arranging the constraint we get,

k− zT

{
zT

V̄ −1(t,βB)

εB(z;βB)nB
z

}
z exp(2βTBz) =

zT

{
zT

V̄ −1(t,βA)

εA(z;βA)nA
z

}
z exp(2βTAz).

This can also be written as

kεB(z;βB)nB − zT{zT V̄ −1(t,βB)z}z exp(2βTBz)

εB(z;βB)nB
=

zT

{
zT

V̄ −1(t,βA)

εA(z;βA)nA
z

}
z exp(2βTAz).

Solving for nA we get

nA =
zT{zT V̄ −1(t,βA)z}z exp(2βTAz)εB(z;βB)nB

kεA(z;βA)εB(βB, z)nB − εA(βA, z)zT{zT V̄ −1(t,βB)z}z exp(2βTBz)
.

The objective here is to minimize nA + nB. Therefore,

min :
zT{zT V̄ −1(t,βA)z}z exp(2βTAz)εB(z;βB)nB

kεA(z;βA)εB(z;βB)nB − εA(z;βA)zT{zT V̄ −1(t,βB)z}z exp(2βTBz)
+ nB

is the objective.

Let V ak{ĥk(t|z)} = zT{zT V̄ −1(t,βk)z}z exp (2βTk z) denote the variability adjust-

ment factor for treatment k.

To achieve the minimum value of the objective function,

∂

∂nB

[
V aA{ĥA(t|z)}εB(z;βB)nB

kεA(z;βA)εB(z;βB)nB − εA(z;βA)V aB{ĥB(t|zm)}
+ nB

]
= 0.

Differentiating both sides with respect to nB and re-arranging we get,
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{V aA{ĥA(t|z)}εB(z;βB)}{kεA(z;βA)εB(z;βB)nB − εA(z;βA)V aB{ĥB(t|z)}}
{kεA(z;βA)εB(z;βB)nB − εA(z;βA)V aB{ĥB(t|z)}}2

−

{V aA{ĥA(t|z)}εB(z;βB)nB}{kεA(z;βA)εB(z;βB)}
{kεA(z;βA)εB(z;βB)nB − εA(z;βA)V aB{ĥB(t|z)}}2

= −1.

Simplifying the expression we get,

εA(z;βA)εB(z;βB)V aA{ĥA(t|z)}V aB{ĥB(t|z)} =

{kεA(z;βA)εB(z;βB)nB − εA(z;βA)V aB{ĥB(t|z)}}2.

Taking the positive square-root on both sides we get,√
εA(z;βA)εB(z;βB)V aA{ĥA(t|z)}V aB{ĥB(t|z)} =

kεA(z;βA)εB(z;βB)nB − εA(z;βA)V aB{ĥB(t|z)}.

Substituting for k we get,√
εA(z;βA)εB(z;βB)V aA{ĥA(t|z)}V aB{ĥB(t|z)} =

V aB{ĥB(t|z)}εA(z;βA) + V aA{ĥA(t|z)}εB(z;βB)
nB
nA
− εA(z;βA)V aB{ĥB(t|z)}.

Solving for nB
nA

we get,

nB
nA

=

√
εA(z;βA)εB(z;βB)V aA{ĥA(t|z)}V aB{ĥB(t|z)}

V aA{ĥA(t|z)}εB(z;βB)
.

Which can also be written as

nB
nA

=

√
εA(z;βA)V aB{ĥB(t|z)}√
V aA{ĥA(t|z)}εB(z;βB)

.

157



Now,

πSA2
(βA,βB, z) =

nA
nA + nB

.

Dividing the numerator and the denominator in the right hand side of the equation

by nB we get,

πSA2
(βA,βB, z) =

nA/nB
1 + nA/nB

.

Substituting for nA
nB

we get,

πSA2
(βA,βB, z) =

√
V aA{ĥA(t|z)}εB(z;βB/

√
εA(z;βA)V aB{ĥB(t|z)}

1 +

√
V aA{ĥA(t|z)}εB(z;βA)/

√
εA(z;βA)V aB{ĥB(t|z)}

.

This can be written as

πSA2
(βA,βB, z) =

√
V aA{ĥA(t|z)}εB(z;βB)√

εA(z;βA)V aB{ĥB(t|z)}+

√
V aA{ĥA(t|z)}εB(z;βB)

.

This can be further written as

πSA2
(βA,βB, z) =√

zT{zT V̄ −1(t,βA)z}ze2βTAzεB(z;βB)√
εA(z;βA)zT{zV̄ −1(t, βB)z}ze2βT z +

√
zT{zT V̄ −1(t,βA)z}ze2βTAzεB(z;βB)

.
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Appendix F

Deriving the Asymptotic Variance

of the Cause Specific Cumulative

Incidence Function

From (4.7) the relationship between the subdistribution hazard hsubjk (t|z) for cause j at

treatment k and the corresponding cumulative incidence function Fjk(t|z)) is given by

hsubjk (t|z) = − d

dt
log{1− Fjk(t|z)}, for j = 1, ...., c.

Therefore,

log{1− Fjk(t|z)} = −
∫ t

0

{hsubjk (u|z)}du, for j = 1, ...., c.

This can also be writted as

Fjk(t|z) = (1− exp[−
∫ t

0

{hsubjk (u|z)}du]), for j = 1, ...., c.

Now, ĥsubjk (t|zi) being the partial likelihood estimator of hsubjk (t|zi),

ĥsubjk (t|z)
d−→ Np[h

sub
jk (t|z), V ar{ĥsubjk (t|z)}].
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Also,

V ar{ĥsubjk (t|z)} = zT

{
zT

V̄ −1(t,βjk)

εk(z;βjk)nk
z

}
z exp(2βTjkz),

where k = A,B.

Therefore,

F̂jk(t|z)
d−→ Np[Fjk(t|z), V ar{F̂jk(t|z)}],

where

V ar{F̂jk(t|z)} = ∇(1−exp[−
∫ t

0

{hsubjk (u|z)}du])TV ar{ĥsubjk (t|z)}∇(1−exp[−
∫ t

0

{hsubjk (u|z)}du]).

This can be written as

V ar{F̂jk(t|z)} =

{∫ t

0

∇hsubjk (u|z)du

}T

V ar{ĥsubjk (t|z)}

{∫ t

0

∇hsubjk (u|z)du

}
(

exp

[
− 2

∫ t

0

{hsubjk (u|z)}du

])
,

which mean

V ar{F̂jk(t|z)} = (tzT )V ar{ĥsubjk (t|z)}(tz)(exp[−2

∫ t

0

{hsubjk (u|z)}du]),

for k = A,B.
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Appendix G

Deriving the Optimal Allocation

Proportion for minimizing the

Overall Cumulative Incidence

Function for a given Cause

The overall cumulative incidence function for cause j can be minimized subject to the

asymptotic variance for the difference in the covariate adjusted cumulative incidence

function for the two treatment arms to remain fixed to a constant. This means,

min : nAjFjA(t|z) + nBjFjB(t|z),

subject to : V ar{F̂jA(t|z)}+ V ar{F̂jB(t|z)} = k > 0

Re-arranging the constraint we get,

k−
(tzT )V ajB{ĥjB(t|z)}(tz)(exp[−2

∫ t
0
{hsubjB (u|z)}du])

εjB(z;βjB)nBj
=

(tzT )V ajA{ĥjA(t|z)}(tz)(exp[−2
∫ t

0
{hsubjA (u|z)}du])

εjA(z;βjA)nAj
.

161



This can also be written as

kεjB(z;βjB)nBj − (tzT )V ajB{ĥjB(t|z)}(tz)(exp[−2
∫ t

0
{hsubjB (u|z)}du])

εjB(z;βjB)nBj
=

(tzT )V ajA{ĥjA(t|z)}(tz)(exp[−2
∫ t

0
{hsubjA (u|z)}du])

εjA(z;βjA)nAj
.

Solving for nAj we get

nAj =
(tzT )V ajA{ĥjA(t|z)}(tz)(exp[−2

∫ t
0
{hsubjA (u|z)}du])εjB(z;βjB)nBj

kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)(tzT )V ajB{ĥjB(t|z)}(tz)(e[−2
∫ t
0 {h

sub
jB (u|z)}du])

.

The objective here is to minimize nAjFjA(t|z) + nBjFjB(t|z). Let

V rjA(βjA, z) = (tzT )V ajA{ĥjA(t|z)}(tz)(exp[−2

∫ t

0

{hsubjA (u|z)}du])

and

V rjB(βjB, z) = (tzT )V ajB{ĥjB(t|z)}(tz)(e[−2
∫ t
0 {h

sub
jB (u|z)}du]).

Therefore,

min :
V rjA(βjA, z)εjB(z;βjB)nBj

kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(βjB, z)
FjA(t|z) + nBjFjB(t|z)

is the objective.

To achieve the minimum value of the objective function,

∂

∂nBj

[
V rjA(βjA, zi)εjB(z;βjB)nBj

kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(βjB, zi)
FjA(t|zi)+nBjFjB(t|zi)

]
= 0.

Differentiating both sides with respect to nBj and re-arranging we get,

{V rjA(βjA, z)εjB(z;βjB)FjA(t|z)}{kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(betajB, z)}
{kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(βjB, z)}2

−

{V rjA(βjA, z)εjB(z;βjB)FjA(t|z)nBj}{kεjA(z;βjA)εjB(z;βjB)}
{kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(βjB, z)}2

= −FjB(t|z).
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Simplifying the expression we get,

εjA(z;βjA)εjB(z;βjB)FjA(t|z)V rjA(βjA, z)V rjB(βjB, z) =

FjB(t|z){kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(z;βjB)}2.

Taking the positive square-root on both sides we get,√
εjA(z;βjA)εjB(z;βjB)FjA(t|z)V rjA(βjA, z)V rjB(βjB, z) =√

FjB(t|z){kεjA(z;βjA)εjB(z;βjB)nBj − εjA(z;βjA)V rjB(βjB, z)}.

Substituting for k we get,√
εjA(z;βjA)εjB(z;βjB)FjA(t|z)V rjA(βjA, z)V rjB(βjB, z) =[√

FjB(t|z)V rjB(βjB, z)εjA(z;βjA)+

√
FjB(t|z)V rjA(βjA, z)εjB(z;βjB)

nBj
nAj
−
√
FjB(t|z)εjA(z;βjA)V rjB(βjB, z)

]
.

Solving for
nBj
nAj

we get,

nBj
nAj

=

√
εjA(z;βjA)εjB(z;βjB)FjA(t|z)V rjA(βjA, z)V rjB(βjB, z)√

FjB(t|z)V rjA(βjA, z)εjB(z;βjB)
.

Which can also be written as

nBj
nAj

=

√
εjA(z;βjA)FjA(t|z)V rjB(βjB, z)√
FjB(t|z)V rjA(βjA, z)εjB(z;βjB)

..

Now,

πGA3j
(βAj,βBj, z) =

nAj
nAj + nBj

.
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Dividing the numerator and the denominator in the right hand side of the equation

by nB we get,

πGA3j
(βAj,βBj, z) =

nAj/nBj
1 + nAj/nBj

.

Substituting for
nAj
nBj

we get,

πGA3j
(βAj,βBj, z) =

√
FjB(t|z)V rjA(βjA, z)εjB(z;βjB)/

√
εjA(z;βjA)FjA(t|z)V rjB(βjB, z)

1 +
√
FjB(t|z)V rjA(βjA, z)εjB(z;βjB)/

√
εjA(z;βjA)FjA(t|z)V rjB(z;βjB)

.

This can be written as

πGA3j
(βAj,βBj, z) =

√
FjB(t|z)V rjA(βjA, z)εjB(z;βjB)√

FjB(t|z)V rjA(βjA, z)εjB(βjB, z) +
√
εjA(z;βjA)FjA(t|z)V rjB(z;βjB)

.
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