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Abstract

Formyl peptide receptors (FPR) belong to a family of sensors of the immune system

that detect microbe-associated molecules and inform various cellular and sensorial

mechanisms to the presence of pathogens in the host. Here we demonstrate that

Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced

anxiety in the marble burying and light-dark box paradigms, increased exploratory

behaviour in an open-field, together with superior performance on a novel object

recognition test. Pharmacological blockade with a formyl peptide receptor

antagonist, Boc2, in wild type mice reproduced most of the behavioural changes

observed in the Fpr2/3-/- mice, including a significant improvement in novel object

discrimination and reduced anxiety in a light/dark shuttle test. These effects were

associated with reduced FPR signalling in the gut as shown by the significant

reduction in the levels of p-p38. Collectively, these findings suggest that

homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours.

These findings thus suggest that therapies targeting FPRs may be a novel

approach to ameliorate behavioural abnormalities present in neuropsychiatric

disorders at the cognitive-emotional interface.
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Introduction

The immune system is equipped with a vast variety of biological weapons to sense

the presence of pathogens via the recognition of pathogen-associated molecular

patterns (PAMPs) [1, 2]; these elicit a complex series of events leading to the

specialization and differentiation of the immune cells, B and T lymphocytes [3].

Formyl peptide receptors (FPRs) are G protein-coupled receptors whose main

function is to sense the presence of harmful or noxious molecules such as

formylated peptides and guide cells to the site where pathogen-associated

molecules have been released [4]. This sensing function of FPRs is not limited to a

particular pathogen and is extended to a wide range of endogenous ligands

including classical biomarkers of inflammation and immune activation such as

serum amyloid A (SAA) [5], formylated peptides released by mithochondria of

damaged cells and tissue [6], the antimicrobial peptide LL-37 [7] and the dual

pro- and anti-inflammatory protein Annexin-A1 [8].

There are currently three functional FPRs in humans as well as in mouse -

FPR1, FPR2 and FPR3- which all recognise to different degrees a wide range of

endogenous and exogenous ligands [6, 9, 10]. Activation of these receptors causes

their homo- or hetero-dimerization which in turn depends on the precise ligand

they bind to [11, 12]. In this way FPRs are able to exert both pro- and anti-

inflammatory effects on immune cells [4, 8, 10].

The expression of FPRs is highest in sentinel innate cells with phagocytic or

chemotactic activity such as neutrophils [13, 14], monocytes [13, 15], macro-

phages[15, 16] and dendritic cells [15, 17]. However, FPR are also expressed in

non-phagocytic and ‘‘immobile’’ sentinel cells such as mucosal epithelial cells

[18, 19], endothelial cells [20–22] and glia [23–25]. In these cells, FPRs exert a

genuine ‘‘sentinel role’’ by sensing pathogens present in the microenvironment as

well as by favouring repair upon damage and inflammation. Recent findings show

that FPRs are expressed in the vomeronasal system, where they are postulated to

detect the presence of infection in the ‘‘macro environment’’ through volatile FPR

ligands present in the faeces of pathogen-infected animals [26–29]. Thus, FPRs

exert a unique role in the response of the host to pathogens because they signal at

two levels; firstly at the level of the central nervous system to alert the host of

impeding dangers and secondly at the level of the immune system by initiating a

protective inflammatory response.

Recent findings indicate that the centrally regulated behaviours of anxiety and

fear-elicited responses are strongly modulated by FPR1 [30]. These data suggest

that FPRs may play a permissive role in the pathophysiology of various psychiatric

disorders, which increasingly implicate immunological mechanisms in their

aetiology [31–33]. In the present study we investigated various anxiety-related

behaviours in Fpr2/3-/- mice [34], including responses to novelty and aversive

contextual stimuli, and compared the selectivity of these responses with low

anxiety-provoking behaviours. We report that Fpr2/3-/- mice show increased

explorative behaviour and reduced fear compared with wild type littermates.

Notably, the behavioural profile of Fpr2/3-/- mice was partially mimicked by
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intraperitoneal injection of the pan-FPR inhibitor Boc2 [35, 36], which was

accompanied by a decreased activation of downstream FPR signalling pathways in

the gut. Together these results support the hypothesis that FPRs may have an

important role to play in the regulation of aversive emotional responses. Thus

targeting FPRs might provide new avenues of treatment for a range of brain

disorders linked to anxiety.

Materials And Methods

Mice

Four to six week old male mice were used for all experiments. Fpr2/3-/- mice have

been previously described [34] and were backcrossed onto C57BL/6 for more than

8 generations. Animals were housed in groups of 4–5 under specific-pathogen-free

conditions, with free access to food and water and in a room under a 12 h light/

dark cycle (light on at 7:00 am). C57BL/6 mice were purchased from Charles River

(Margate, UK) and housed for at least 10 days in the same room as the Fpr2/3-/-

prior to testing to allow acclimatization. Fpr2/3+/+ littermate controls and C57BL/

6 mice were used in equal number and are collectively referred to as wild-type

controls since they showed no significant differences in all the preliminary tests.

All animal studies were conducted with ethical approval from the Local Ethical

Review Committee. This research was carried out in accordance with the UK

Animals (Scientific Procedures) Act, 1986 and under the UK Home Office project

license number 70/6994.

Behavioural tests and pharmacological treatment

If not otherwise stated, tests were performed double-blind every other day during

the light phase of the light-dark cycle, as previously described and recommended

[37]. All the efforts were made to minimize mouse discomfort in these behavioral

experiments. Mice were brought to the testing room at least 30 minutes before the

start of the test session to allow habituation to the testing environment. Unless

otherwise specified, standard lighting (about 50 lux) and quiet conditions were

maintained throughout each experiment. FPR antagonist studies were performed

with male C57BL/6 mice receiving an intraperitoneal injection of the FPR2

antagonist Boc2 (t-Boc-FLFLF; at a previously validated dose of 10 mg/animal

[38, 39] or an equal volume of phosphate-buffered saline (PBS) as a control

solution (200 ml), 30 minutes before the behavioural tests. This research was

carried out in accordance with the UK Animals (Scientific Procedures) Act, 1986.

Open field activity test

The open field test (OFT) is an ethologically based paradigm that provides

objective measures of exploratory behaviour as well as a valid initial screen for

anxiety-related behaviour in rodents and was carried out as previously described

with some modifications [40]. The apparatus consisted of a white PVC arena
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(50 cm630 cm620 cm) divided into 10 cm610 cm squares (n515). The 3

central squares defined the ‘‘centre’’ region (see Fig. 1). Each mouse was placed in

a corner square, facing the wall, and observed and recorded for 3 minutes. The

total number of squares crossed (all four paws in), total number of rears (defined

as both front paws off the ground, but not as a part of grooming) and number of

centre crossings was recorded. The walls and floor of the arena were thoroughly

cleaned between each trial.

Climbing activity test

The climbing test is used to assess vertical activity and exploratory behaviour. The

test was performed as previously described but with some modifications [41, 42].

Briefly, mice were placed, one at a time, on a thin layer of fresh wood chip

bedding on a laboratory bench and covered with a cylindrical climbing mesh

(60 cm630 cm base diameter) (see Fig. 2). They were each observed and

recorded for 5 minutes. The number of climbing events and total duration of

climbing activity was assessed. The criterion for climbing was for a mouse to have

all 4 feet on the wire mesh while a climb terminated as soon as one foot touched

the bench. This test was conducted in the late afternoon, when mice are known to

be more active [43].

Fig. 1. Reduced anxiety-like behaviour of Fpr2/3-/- mice in the open field test. The bar graphs and images show total number of squares crossed, rears
and centre crossings during a 5-minute session. Values are expressed as median ¡ S.E.M. and representative of four experiments, each involving 6–9 mice
per group. * P,0.05 indicate significant values compared with wild-type (WT) control mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g001
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Light-dark shuttle box

In this test exploratory activity reflects the combination of hazard and risk

avoidance [44]. The apparatus consisted of a 45 cm620 cm621 cm box, divided

into two distinct compartments: one third (15 cm long) painted black, with a

black lid on top, the remaining two thirds painted white and uncovered (see

Fig. 3). A 2.5 cm62.5 cm opening joined the two compartments. One side of the

bright box was transparent to enable behavioural assessment and the averseness of

this compartment was increased by additional illumination supplied by a 50 W

lamp placed 45 cm above the centre of the box floor. The test was performed in

accordance with a previous published protocol [45]. Each mouse was placed in

the bright compartment, facing away from the opening and allowed to explore the

box for 5 minutes. Dependent variables included the time spent in the light area,

latency to cross to the dark area (all four paws in) and the total number of

transitions between compartments. The apparatus was cleaned after each trial.

Marble burying test

The marble-burying test (MBT) is thought to reflect repetitive and perseverative

behaviour, possibly related to compulsions and/or anxiety disorders [46]. The test

was carried out as described by Deacon and colleagues [47] with some

modifications. Briefly, mice were individually placed in a clear plastic box

(14 cm610 cm611 cm) filled with approximately 5 cm depth of wood chip

bedding lightly pressed to give a flat surface (see Fig. 4). Fifteen 1.5 cm diameter

glass marbles were placed on the surface, evenly spaced, each about 4 cm apart, so

to form 5 rows of 3. The latency to start digging (defined as the mouse digging the

bedding with front and hind paws for more than 1 second), the total number of

digging bouts and the number of buried marbles (to 2/3 of their depth) were

manually recorded during the 10 minute-test.

Fig. 2. Increased exploratory behaviour of Fpr2/3-/- mice in the climbing test. The bar graphs show the number of climbing events and total time
(seconds) spent on the climbing mesh during a 5-minute trial. Values are expressed as median ¡ S.E.M. and representative of three different experiments,
each involving 6–9 mice per group. * P,0.05 indicate significant values compared with wild-type (WT) control mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g002
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Fig. 3. Reduced anxiety-like behaviour of Fpr2/3-/- mice in the light and dark box test. The bar graphs and images show the total time (seconds) spent
in the lit area, latency (seconds) to first cross to the dark chamber and total number of transition during a 5-minute trial. Values are expressed as median ¡

S.E.M. and representative of four different experiments involving 6–9 mice per group. * P,0.05 and ** P,0.05 indicate significant values compared with
wild-type (WT) control mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g003

Fig. 4. Reduced digging and marble burying behaviour of Fpr2/3-/- mice in the marble burying test. The bar graphs and relative pictures show the total
number of buried marbles, total duration (seconds) of digging and the latency (seconds) to the first digging bout during a 10-minute trial. Values are
expressed as median ¡ S.E.M. and representative of four different experiments involving 6–9 mice per group. * P,0.05 and ** P,0.05 indicate significant
values compared with wild-type (WT) control mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g004
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Novel object recognition test (NORT)

The novel object recognition test has been widely used to assess the mouse’s ability

to discriminate between a previously encountered and a novel object [48]. The test

relies on the idea that mice approach more frequently and spend more time

exploring a novel object when previously exposed to a familiar one that they

recognize as already encountered. The test was carried out as previously described

[49, 50]. On day one mice were firstly habituated to the open-field box for

10 minutes. On day two, mice were placed in the same arena for a 10 minute

acquisition period, during which time they were exposed to two identical toys

(3 cm3 non-toxic red wooden cubes (object A and B). Objects were glued to the

floor 10 cm apart from each other, 8 cm away from both box edges. After being

returned in their home cage, mice were given a one-hour inter-trial interval. Each

subject was then placed back into the arena, where everything was the same as

during the acquisition phase except that object A was replaced with a wooden,

green, cylinder (4 cm height, 1 cm base diameter) (novel object). During this test

phase, mice were allowed to explore both of the objects for 5 minutes. Acquisition

and test phases were recorded with a video camera and time spent visiting each

object (visit defined as when the animal’s nose touched the object or was pointed

towards it within 1 cm radius) was manually assessed in both phases. Results were

expressed as percentage of object discrimination [(Time spent exploring novel

object/total time spent exploring during testing phase) 6100]. After each trial

both the arena and the objects were cleaned with 70% ethanol, in order to

eliminate olfactory traces.

Y-Maze spontaneous alternation test

The Y maze was made of three enclosed transparent plastic arms (A, B, C)

29 cm68 cm619 cm each, set at an angle of 120˚ to each other in the shape of a

Y. It was fixed on a white wooden board and placed on the floor of a room

containing several large immovable objects to use as spatial cues. In this test for

spatial memory mice tend to enter the maze arm that was explored most recently

and remember the order of the arm entry, thanks to their ability to allocate the

arm’s positions through spatial clues surrounding the testing apparatus. Mice

were allowed to freely explore the arena for 5 minutes, during which time the total

number of arm entries was recorded, along with the entering sequence, not

including the initial arm. A spontaneous alternation occurred when the animal

entered into all three arms of the maze on consecutive choices in overlapping

triplet sets (e.g. CBABCABCBACB 58 alternations) [51]. Spontaneous alternation

percentage was calculated as: [Total number of actual alternations/(total arm

entries –2)] 6100. The maze was thoroughly cleaned after each test.

Colon whole mount preparation

Colon biopsies were washed with PBS and fixed in 4% paraformaldehyde (PFA).

Samples were washed 2 times with PBS and then permeabilised with PBS
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containing 0.1% Triton X-100 for 5 minutes. Thereafter, samples were washed

again, then blocked in PBS containing 5% foetal bovine serum (FBS) for 1 hour.

Samples were incubated alternatively with mouse monoclonal anti-phospho-p38

(#sc-7973, Santa Cruz Biotechnology) (1:100 dilutions) for 90 minutes and then

all with Alexa Fluor 488 goat polyclonal anti-mouse IgG (H+L) (ab150113,

Abcam) 1:100 for 1 hour. Rinsed samples were finally mounted in Optimum

Cutting Temperature (O.C.T.; Tissue-Tek) and frozen at 280 C̊. Five mm thick

sections were mounted on slides and visualized by fluorescence microscopy [52].

Plasma corticosterone and cytokine measurement

Blood was collected from untested mice by intracardiac puncture performed

under anaesthesia, and all efforts were made to minimize suffering. Plasma was

obtained from the clotted blood by centrifugation (8000 rpm, 5 min) and stored

at 280 C̊ before the assay. Corticosterone concentrations were measured in

diluted (1:32) plasma by Enzymatic Immuno Essay (EIA) assay following the

manufacturer’s instructions (Enzo Life Sciences, Exeter, UK). Cytokine levels in

the same samples were measured (dil. 1:500) using mouse Th1/Th2/Th17/Th22

16 plex Kit FlowCytomix and according to the manufacturer’s instructions

(eBioscience).

Statistical analysis

Results were analysed as previously described [53–55] using GraphPad. Unpaired

Student’s t test was performed for experiments where differences between two

groups needed to be analysed. For non-parametric data, the Mann–Whitney U-

test was applied and results were expressed as medians (interquartile range).

Statistical significance was determined at p,0.05. The results were expressed as

mean ¡ S.E.M.

Results

Reduced anxiety in Fpr2/3 null mice

Although we found no statistically significant difference between Fpr2/3-/- mice

and wild-type control mice with respect to ambulation and rearing (Fig. 1, left

and middle panels, respectively), Fpr2/3-/- mice showed reduced thigmotaxis

(walking along the edges) and significantly increased centre crossings (Fig. 1, right

panel) indicating a reduced level of anxiety [56, 57].

We further tested anxiety-related behaviour using the climbing test where

vertical exploratory behaviour is assessed [41, 42]. As shown in Fig. 2, Fpr2/3-/-

mice performed a greater number of climbing acts compared with wild-type

(p,0.05) and spent on average more time climbing than control animals

(p,0.05).

We next investigated anxiety behaviour using the light/dark shuttle box and the

marble-burying test. Consistent with our earlier results, Fpr2/3-/- mice spent
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significantly more time in the aversive, brightly lit compartment compared with

wild-type controls (p,0.05) and waited longer to move to the less aversive, dark

side of the box (p,0.01) (Fig. 3, left and middle panels, respectively).

Fpr2/3-/- mice also buried less marbles and spent less time in this activity

compared with wild-type (Fig. 4 left and middle panels, respectively). The

latency to start this behaviour was also significantly increased in Fpr2/3-/- mice

(Fig. 4 right panel) consistent with reduced anxiety.

Improved novel object recognition in Fpr2/3-/-
mice

To investigate whether reduced anxiety of Fpr2/3-/- mice was linked to an

increased preference for novelty, indicative of low anxiety, we next assessed the

performance of animals on a novel object recognition task. This test has been

widely used as an explicit test of novel versus familiar object discrimination and

relies on the idea that animals tend to preferentially approach novel objects [48].

We found that Fpr2/3-/- mice and controls showed no difference in their

exploration of two identical objects (Fig. 5A, left panel). However, following the

introduction of the novel object, wild-type mice spent about 40% of their time

with the novel object as previously reported [49, 50] while Fpr2/3-/- mice spent a

significantly greater proportion (about 60%) (Fig. 5A, right panel).

Fpr2/3-/-
mice show no difference in the Y-maze test

We next tested the Fpr2/3-/- mice in the Y maze. In this test mice tend to enter the

maze arm that was explored most recently and recall the order of the arm entry.

As shown in Fig. 5B, there were no significant difference between wild types and

Fpr2/3-/- mice in the number of arm entries or percentages of alternations in this

maze. These data show that Fpr2/3-/- mice are not impaired on a spatial memory

task and imply that the effects reported earlier pertain mainly to diminished

anxiety and fear-related responses in this group of animals.

Higher basal corticosterone levels in Fpr2/3 null mice

To determine whether the apparent differences in behaviour we observed were

due to latent infection or inflammation, we performed a number of biochemical

tests on serum samples. We found no significant differences in 12 inflammatory

cytokines between wild-type and Fpr2/3-/- mice (data not shown). However, levels

of circulating corticosterone were markedly higher in Fpr2/3-/- mice compared

with controls (Fig. 6). These data are consistent with other findings showing a

positive correlation between high responsiveness in a novel environment and

hypothalamic-pituitary-adrenal axis activation [58–60].
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Fig. 5. Increased discriminatory activity of Fpr2/3-/- mice in the novel object recognition test. The bar graph in A shows the total time (seconds) spent
exploring the objects used in the test (shown in the top picture) during the 10-minute acquisition phase (left panel) and the % of time spent on the novel
object (shown in the bottom picture) in the subsequent 5-minute test phase (right panel). The bar graphs in B show the total number of arm entries and
spontaneous alternation percentage (calculated as described in material and Methods section) in the Y-maze during a 5-minute trial. Values are expressed
as median ¡ S.E.M. and representative of n54 different experiments involving 6–9 mice per group. ** P,0.05 indicates significant values compared with
wild-type (WT) control mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g005

Fig. 6. Increased level of corticosterone in Fpr2/3-/- mice. Levels of corticosterone in the plasma of WTand
Fpr2/3-/-. Values are expressed as ngml21 and are representative of three experiments with 6 mice.

doi:10.1371/journal.pone.0114626.g006
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Administration of an FPR antagonist reduces some anxiety

behaviours

We next investigated whether the reduced anxiety of Fpr2/3-/- mice could be

mimicked by administering the FPR inhibitor Boc2 in wild type animals. As

shown in Fig. 7, Boc2 had no significant effect on general locomotion or

explorative behaviour in the open field test (A) but did increase both the time in

the brightly lit aversive compartment and the latency to cross to the ‘safe’ dark

compartment (B). Moreover, Boc2-treated mice showed an increased preference

for the novel object on the object recognition task compared with vehicle-treated

wild-type animals (Fig. 8). These findings suggest FPR blockers may reduce some

anxiety-related behaviours, including neophobia

Reduced FPR signalling in the gut of Fpr2/3-/-
and Boc2-treated

mice

Since the behavioural phenotype of Fpr2/3-/- mice could be partly reproduced by

FPR antagonism we next investigated whether these effects were related to changes

in the local (peritoneal) microenvironment. Given previous findings showing a

key role of FPRs in regulating gut microbiota homeostasis we measured p-p38, a

widely recognised intracellular readout of FPR activation [61]. Fluorescence

microscopy of colonic tissue confirmed our prediction of increased staining for p-

p38 in wild-type mice compared with Fpr2/3-/- and Boc2-treated mice (Fig. 9).

Discussion

The results of this study suggest that genetic deletion of Fpr2/3 in mice causes

significant changes in anxiety-related behaviour. Our experiments expand on

previous observations made by Gao et al. on the behaviour of Fpr1-/- mice [30] in

terms of exploratory activity, anxiety, and fear-associated memory. The present

study confirms and extends these findings by revealing reduced anxiety of Fpr2/

3-/- mice on a range of tests of anxiety, including open-field and climbing

exploratory behaviour, choice preference for aversive versus non-aversive

contexts, and novel versus familiar objects. However, loss of Fpr2/3function did

not affect species-specific activities such as burrowing or nest construction (data

not shown). We also found a significant increase in the level of corticosterone in

Fpr2/3-/- mice compared with controls. This is consistent with previous studies

suggesting that altered baseline concentrations of cortisol in blood plasma is one

of the features of anxiety disorders [62]. Often considered a biomarker of stress

[63–65], the level of corticosterone does not always correlate with the level of

anxiety. Indeed, studies for instance on the anxiolytic effects of enriched

environment or voluntary exercise in experimental animals have reported

conflicting data including no changes in corticosterone [66, 67] or an initial

increase followed by a decrease to basal levels [68] or, as in our case, a significant

increase [69–71]. We were very intrigued by the results of these studies since, as

Formyl Peptide Receptor2/3 and Behaviour

PLOS ONE | DOI:10.1371/journal.pone.0114626 December 17, 2014 11 / 19



Fig. 7. Boc2-treatment reduces anxiety-like behaviour in C57BL/6 mice. The bar graphs in A show the
total number of squares crossed, rears and centre crossings of Boc2-treated mice compared to PBS vehicle-
treated during a 5-minute trial in the open field test. The bar graph in B shows the total time (seconds) spent in
the lit area and the latency (seconds) to first cross to the dark chamber of Boc2-treated mice compared to PBS
vehicle-treated mice during a 5-minute trial. Values are expressed as median ¡ S.E.M. and representative of
four different experiments involving 6 mice per group. * P,0.05 and ** P,0.01 indicate significant values
compared to PBS-vehicle treated mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g007

Fig. 8. Boc2-treatment increases the recognition of a novel object in C57BL/6 mice. The bar graphs
show the total time (seconds) spent exploring the objects used in the test during the 10-minute acquisition
phase (left panel) and the % of time spent on the novel object in the subsequent 5-minute test phase (right
panel) of Boc2-treated mice compared to PBS vehicle-treated mice. Values are expressed as median ¡

S.E.M. and representative of four different experiments involving 6 mice per group. ** P,0.01 indicates
significant values compared to PBS-vehicle treated mice (Mann–Whitney U-test).

doi:10.1371/journal.pone.0114626.g008
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for the enriched or ‘exercised’ mice, the Fpr2/3-/-mice show both increased level of

corticosterone and an overall increase in exploratory and locomotory activity as

shown by the open field (Fig. 1) and climbing test (Fig. 2). In light of these

findings it is tempting to speculate that the increased corticosterone levels in Fpr2/

3-/- mice might be the results of their increased ‘engagement’ with the external and

social environment. Interestingly, these data contrast with those observed in

Fpr1-/- mice [30] suggesting orthogonal regulation of corticosterone levels by

FPR2/3 and FPR1 receptors.

Further exploration of the inquisitive and fearless nature of Fpr2/3-/- mice using

the novel object test showed an almost 50% increase their discriminatory activity

and no difference in spatial memory. These results suggest that the absence of

homeostatic FPR2/3 signalling might induce a state of behavioural disinhibition

and reduced anxiety. This conclusion is consistent with the widely recognised

sensing/alerting function of FPRs in the olfactory system [29] and thus provides a

further example of behavioural modulation by FPR signalling.

To support this hypothesis and to explore the therapeutic potential of our

findings we investigated the effects of a FPR blocker on behaviour. Our findings

reveal that administration of the pan-FPR antagonist Boc2 induced a behavioural

profile that resembled, at least in part, what we observed in the Fpr2/3-/- mice. We

think that this is most likely due to the metabolism of this inhibitor and hence to

its transient effect as previously shown [72, 73]. Thus, we observed a significant

increase in the number of center crossings in the open field and a significant

Fig. 9. Reduced p-p38 staining in the colon of Boc2-treated C57BL/6 and Fpr2/3-/- mice. Immunofluorescence (top panel) of phospho-p38 of intestinal
whole mount preparations (as described in Material and Methods) in either PBS-vehicle treated, Boc2 treated or Fpr2/3-/- intestinal mucosa. The middle and
bottom panel show the bright field and the overlay pictures of the same samples.

doi:10.1371/journal.pone.0114626.g009
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increase in the time spent in the lit area of the light and dark box, both

observations that are indicative of reduced anxiety. We also observed a marked

improvement in the ability of wild-type animals to discriminate the novel object.

We found that these differences (readily detectable after as little as 2 hour post

treatment) were present only after intraperitoneal but not intravenous admin-

istration of Boc2 (data not shown). The lack of effect of intravenous

administration of Boc2 led us to test whether Boc2 inhibited FPR signalling in the

gut or intestinal mucosa.

A number of studies have shown that the intestinal mucosa expresses receptors

for formylated peptides produced by the gut microbiota [18]. These commensal

bacteria are known to play important and non-detrimental roles for the host [74–

76] and have provided a perfect example of consensual interaction between

microbes and immune sentinels present throughout the gut. These immune-

microbiome interactions are known to be an important part of a dual circuit that

controls behaviour and overall emotional wellbeing [77–79]. Indeed, one of the

best examples of this system are the germ-free mice that are known to show signs

of increased anxiety and reduced neurogenesis [80–83].

Our findings also show that both Fpr2/3-/- mice and Boc2-treated mice have a

reduced immunostaining for p-p38 – a key FPR signalling pathway [4, 11, 84, 85].

Similar findings have been previously reported in other studies where it has been

shown that commensal bacteria such as the Lactobacillus species stimulated these

pathways in gut epithelial cells [19, 52, 74, 76]. It was recently suggested that the

expression of FPR2 on the apical and lateral membrane of mouse colonic

epithelial cells may have important biological significance, as it enables the

epithelial cells to respond to both locally and systemically available ligands under

various pathophysiological conditions [86]. Although we have not systematically

explored this idea using a wider range of doses and other FPR antagonists our

results show that the effects of Boc2 on behaviour occurs in parallel with a

modulation of microbiota-induced FPR signalling in the gut. More specifically,

the homeostatic and protective inflammatory state of the gut sustained by the

commensal microbiota might contribute to a ‘‘homeostatic’’ status of focus and

alertness that feature what we know as physical and mental wellbeing. Conversely,

in the absence of this physiological loop a state of alertness and reduced anxiety

might help the host to ‘‘focus’’ on the possible origin of ‘‘internal conflicts and

dangers’’ (Fig. 10).

The validation of this model would have a significant translational impact for a

variety of disorders that express impaired levels of attention and focus and a

strong anxiety component, including obsessive compulsive disorder (OCD).

Indeed, a number of recent studies have shown that dysfunctions of the

gastrointestinal and immune systems are common comorbidities of anxiety

related disorders [87–90]. Therefore, modulation of the microbiota through

administration of FPR antagonists or genetically-engineered probiotic bacteria

releasing Boc2-like peptides might represent a novel strategy for the treatment of a

number of cognitive and anxiety-related brain disorders.
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