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Abstract

With the development of cloud computing, radio access networks (RAN) is

migrating to fully or partially centralised architecture, such as Cloud RAN (C-

RAN) or Fog RAN (F-RAN). The novel architectures are able to support new

applications with the higher throughput, the higher energy efficiency and the better

spectral efficiency performance. However, the more complex energy consumption

features brought by these new architectures are challenging. In addition, the usage

of Energy Harvesting (EH) technology and the computation offloading in novel

architectures requires novel resource allocation designs.

This thesis focuses on the energy efficient resource allocation for Cloud and

Fog RAN networks.

Firstly, a joint user association (UA) and power allocation scheme is proposed

for the Heterogeneous Cloud Radio Access Networks with hybrid energy sources

where Energy Harvesting technology is utilised. The optimisation problem is de-

signed to maximise the utilisation of the renewable energy source. Through solv-

ing the proposed optimisation problem, the user association and power allocation

policies are derived together to minimise the grid power consumption. Compared

to the conventional UAs adopted in RANs, green power harvested by renewable

energy source can be better utilised so that the grid power consumption can be

greatly reduced with the proposed scheme.

Secondly, a delay-aware energy efficient computation offloading scheme is pro-

posed for the EH enabled F-RANs, where for access points (F-APs) are supported

by renewable energy sources. The uneven distribution of the harvested energy

brings in dynamics of the offloading design and affects the delay experienced by

users. The grid power minimisation problem is formulated. Based on the solutions
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derived, an energy efficient offloading decision algorithm is designed. Compared

to SINR-based offloading scheme, the total grid power consumption of all F-APs

can be reduced significantly with the proposed offloading decision algorithm while

meeting the latency constraint.

Thirdly, an energy-efficient computation offloading for mobile applications with

shared data is investigated in a multi-user fog computing network. Taking the ad-

vantage of shared data property of latency-critical applications such as virtual real-

ity (VR) and augmented reality (AR) into consideration, the energy minimisation

problem is formulated. Then the optimal computation offloading and communica-

tions resources allocation policy is proposed which is able to minimise the overall

energy consumption of mobile users and cloudlet server. Performance analysis in-

dicates that the proposed policy outperforms other offloading schemes in terms of

energy efficiency.

The research works conducted in this thesis and the thorough performance

analysis have revealed some insights on energy efficient resource allocation design

in Cloud and Fog RANs.
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Chapter 1

Introduction

1.1 Background

Wireless mobile data traffic volume has been experiencing continuously rapid

growth, and it is estimated that there will be a thousand-fold increase over

the next decade [OBB+14]. From the environmental aspects, Information

and Communication Technology (ICT) represents nearly 2% of global car-

bon emissions, where cellular networks account for 0.2% [HBB11]. As it has

stepped into the 5G era, there is no sign of slowing down in terms of data

traffic increase and the huge energy supply requirement as a result. The

future networks with even higher data rate will require more power saving

techniques to maximise the the energy efficiency of the upcoming systems

[AJ16], hence reduce the OPEX of mobile networks operators. In addition

to the data traffic increase, the proliferation of computation-intensive appli-

cations in new era such as Virtual Reality(VR) and Augmented Reality(AR)

brings in the new power consumption challenges which shorten the mobile

users’ battery life span. Under this circumstance, mobile cloud computing

(MCC) and/or mobile edge computing (MEC) are thought to be the energy-

efficient solutions in further cellular networks. While the power saving algo-

rithms are not yet fully explored both in the industry and academia.
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To meet the exponentially increased traffic demand, future radio access

networks are envisioned to be deployed with novel system architecture. Small

cells are envisioned to be densely deployed in given areas to leverage the sys-

tem throughput by maximising the utilisation of existing spectrum, filling

up the coverage holes, and bringing the small base stations closer to mobile

users [HSS13]. The above-mentioned concept has been defined as Hetero-

geneous Networks (HetNets), which will be deployed as a multi-tier archi-

tecture. Small cell low power nodes (LPNs) are deployed in dense traffic

area with high traffic demands to serve high data-rate packet traffic, while

powerful high power nodes (HPNs) are responsible for providing ubiquitous

coverage [PLJ+14]. Such densified network architecture has been identified

as the dominant deployment scenario for the new generation cellular net-

works [BLM+14]. As proclaimed in [AJ16], small cells deployment reduces

the transmit power required to overcome the pathloss since it shortens the

distance between mobile users and base stations, which enables better energy

efficiency in both downlink and uplink.

Based on the advancement of cloud computing technologies, Centralised

processing, Cooperative radio, Cloud-based infrastructure: Radio Access

Network (C-RAN) is presented as the candidate for the next generation radio

access networks. The C-RAN brings baseband units (BBUs) form multiple

BSs to a central pool location to perform baseband processing, while only the

radio units are deployed in remote locations [IRH+14]. Such access points

are called remote radio heads (RRHs), which are essentially BSs with re-

duced functionalities. The centralised processing and operation control is

enabled by the signalling between BBU pools and RRHs via the fronthaul

links [PWLP15a]. In this context, flexible power control and user associa-

tion techniques are applicable to further enhance the energy saving of the
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new systems.

By going step further on incorporating the cloud computing into the het-

erogeneity of future radio access networks architecture, the Heterogeneous

Cloud Radio Access Networks (H-CRANs) was proposed [PLJ+14]. It pro-

vides the heterogeneous networks with the possibility of implementing coop-

erative interference mitigation schemes through its centralised control. BBU

pool and scattered RRHs can be regarded as a virtual BS with distributed

antennas, enabling smooth handover between small cells with the aid of co-

ordinated control. All control signalling and system broadcast are handled

by high power nodes, which alleviates the fronthaul requirements in terms

of the capacity and time delay constraints, while the high data packet traffic

is mainly served by RRHs. H-CRANs provide an open, simple, control-

lable, and flexible paradigm for resource allocation [DDD+15]. With the

help of some other enabling technologies, large scale resource sharing in H-

CRAN is made possible, which can potentially reduce CAPEX and OPEX

[MKGM+15].

Except for the above mentioned cloud-computing based scenarios, system

architecture based on fog-computing is also proposed as the fog-computing-

based radio access network (F-RAN) [PYZW16]. It brings the storage, man-

agement and computation to the edge of the network, closer to mobile users

to alleviate the potential traffic congestion in the fronthul that causes the

long transmission delay [PWLP15b]. Then the heavy burden on the fron-

thaul networks can be alleviated without having to establish links to the

centralised cloud storage and computing. In addition, the transmission delay

can be reduced as well [KLL+17].
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1.2 Research Motivation

The network densification in the next generation RANs will introduce stag-

gering rise in energy consumption. In order to decrease energy consumption

and further save operational cost, energy harvesting is anticipated in next

generation systems [PLZW15]. In H-CRAN architecture, small cell trans-

mission points require relatively lower amount of power supply comparing to

their macrocell counterparts, which is able to be partly or even fully empow-

ered by renewable energy sources. Unlike conventional grid power supply,

the availability of renewable energy suffers high level of uncertainty and fluc-

tuation. Traditional resource management methods are far from enough to

address new challenges. Novel schemes are needed so that the renewable en-

ergy supply can be better utilised to support the energy efficient operation

of future RANs.

The mobile-cloud-computing or mobile-edge-computing enabled by the

next generation system architectures bring in applications’ computation of-

floading scenarios, which offloads the computation data from mobile users to

the external computing nodes. The computations of mobile applications are

offloaded either for saving energy of mobile user or reducing latency of com-

putation execution with the help of external computing nodes. Conventional

offloading decision and communications resource allocations cannot be read-

ily applied to the new architectures. As a result, researches on developing

novel joint optimisation of offloading decision and resource allocations algo-

rithms are required to achieve the full potentials of new system architecture.
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1.3 Research Contributions

In this thesis, the focus is given to the energy-efficient resource allocation for

novel RAN architectures. It is aimed to minimise the energy consumption of

novel cellular networks architecture in different scenarios, especially the con-

sumption of non-renewable energy that supplied by traditional power grid.

In Chapter 3, the non-renewable grid power consumption is aimed to be min-

imised by proposing an energy efficient user association and power allocation

scheme in H-CRAN which maximises the usage of green energy provided

by energy harvesting technology. In addition, it is aimed to maximise the

grid energy efficiency through proposing an iterative optimisation algorithm

in Chapter 3 as well. In Chapter 4, a delay-aware computation offloading

scheme for F-RAN is presented, aiming to reduce the non-renewable energy

consumption under the hybrid energy supply scenario. In Chapter 5, the

energy consumption of the MEC system is minimised through proposed joint

computation offloading and communications resources allocation scheme.

The contributions of the thesis are summarised as follows.

• An extensive overview of the state-of-the-art user association, com-

putation offloading, and resource allocation schemes for system archi-

tectures of next generation radio access networks is carried out. In

addition, open challenges of joint optimisation of the above-mentioned

aspects are highlighted, which clarifies the research motivation.

• In the two-tier H-CRAN where macro cells are empowered by grid

power and remote radio heads are empowered by renewable energy

sources, an energy efficient radio resource optimisation algorithm is

proposed to maximise the utilisation of the green power collected by

energy harvesters for the RRHs. It leads to the reduction of grid power
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consumption for an improved energy efficiency of the whole network.

Through applying the joint user association and power allocation algo-

rithms constantly, the instability of power supply from energy harvester

can be addressed.

• In the fog-computing-based radio access networks architectures, a novel

computation offloading strategy in F-RAN where all access points are

equipped with renewable energy sources is proposed. The computation

offloading can be implemented to all neighboring access points. The al-

gorithm coordinates the computation offloading according to the avail-

abilities of renewable energy to minimise the grid power consumption.

Additionally, the characteristics of fog-computing with multiple choice

of offloading paths from the serving F-AP to neighbouring F-APs are

reflected in the investigated scenario.

• In the multi-user fog computing system, a scenario where multiple

single-antenna mobile users running applications featuring shared data

is considered. Mobile users’ overall energy consumption is minimised

via joint optimisation of computation offloading and communications

resource allocation. The optimal solution for the energy minimisation

problem of shared-data featured offloading is found, which provides

in-depth understanding of the shared-data featured offloading in MEC

systems.

• Through mathematical analysis is presented in the design of all pro-

posed algorithms. The effectiveness in energy saving of all investigated

scenarios is validated through comprehensive simulations.
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1.4 Author’s Publication

1. Xiangyu He, Hong Xing, Yue Chen, Arumugam Nallanathan, “Energy-

Efficient Computations and Communications Resource Allocation for

Mobile Applications Featuring Shared Data”, submitted to IEEE Trans-

actions on Communications.

2. Xiangyu He, Anqi He, Yue Chen, Kok Keong Chai and Tiankui

Zhang, “Energy Efficient Resource Allocation in Heterogeneous Cloud

Radio Access Networks,” 2017 IEEE Wireless Communications and

Networking Conference (WCNC), pp. 1-6, Mar. 2017.

3. Xiangyu He, Yue Chen and Kok Keong Chai, “Delay-Aware Energy

Efficient Computation Offloading for Energy Harvesting Enabled Fog

Radio Access Networks,” 2018 IEEE 87th Vehicular Technology Con-

ference (VTC-Spring), pp. 1-6, June 2018.

4. Xiangyu He, Hong Xing, Yue Chen, Arumugam Nallanathan, “Energy-

Efficient Mobile-Edge Computation Offloading for Applications with

Shared Data”, 2018 IEEE Global Communications Conference (Globe-

com), pp. 1-6, Dec. 2018.

1.5 Thesis Organisation

Chapter 2 introduces the fundamentals of all related system architecture

concepts, such as H-CRAN and F-RAN. The state-of-the-art user associa-

tion, computation offloading and communication resources allocation algo-

rithms are summarised as well. Open challenges of joint optimisation of the

above-mentioned aspects are highlighted. In addition, the main methodology

Convex Optimisation is briefly introduced in Chapter 2.
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Chapter 3 presents an energy efficient radio resource optimisation algo-

rithm in the two-tier H-CRAN where macro cells are empowered by grid

power and remote radio heads are empowered by renewable energy sources.

The theoretical analysis and performance evaluation are carried out to prove

that proposed algorithm achieve better energy saving performance compared

to conventional ones. Then an iterative resource allocation algorithm in

H-CRAN is proposed to maximise the energy efficiency of the grid power

supply.

Chapter 4 introduces a novel computation offloading strategy in the fog-

computing-based radio access networks architectures, where all access points

are equipped with renewable energy sources. Theoretical analysis is presented

to illustrate how to coordinates the computation offloading according to the

availabilities of renewable energy to minimise the grid power consumption.

Chapter 5 investigates the joint optimisation of computation offloading

and communications resource allocation in the multi-user fog computing sys-

tem, where multiple single-antenna mobile users running applications featur-

ing shared data. The detailed analysis on how the shared data property can

be utilised to reduce mobile users’ energy consumption is presented. More-

over, the performance evaluation is carried out to prove the effectiveness in

energy saving compared to all other offloading scenarios.

Chapter 6 summarises the conclusions drawn from current researches and

future work.
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Chapter 2

Fundamental Concepts and
State-of-the-Art

This chapter introduces the fundamentals of next generation system archi-

tectures, such as H-CRAN and F-RAN. The state-of-the-art user association,

computation offloading and communication resources allocation algorithms

are summarised as well. In addition, the main methodology Convex Optimi-

sation is briefly introduced.

2.1 Energy Efficient Radio Access Networks

2.1.1 Power Control in Conventional Cellular Networks

Among all generations of mobile networks, energy efficiency is consistently

regraded as one of the most important performance indicators. In GSM sys-

tem, frequency division multiple access (FDMA) and time division multiple

access (TDMA) are applied as the multiplexing schemes [Sch04]. In this

case, power control is relatively simple since different mobile users occupy

orthogonal channels. The base stations control the power level not too high

to avoid energy waste, but sufficient to maintain a good signal to noise ratio.

In the 3G mobile communications system, code division multiple access

(CDMA) techniques are applied as the multiplexing scheme [Sch04], where
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multiple mobile users share the same frequency band when communicating

between user equipments and base stations. In this scenario, the system is

vulnerable to ”near-far“ problem, the open-loop and the closed-loop power

control techniques are designed as the solution [YCL09]. Notably, the pri-

mary purpose of these power control schemes is to increase the capacity of all

users, while saving the energy consumption is just of secondary importance

[KMM95].

Before launching the commercial 4G LTE operations, power allocation

algorithms aiming to maximise the energy efficiency in OFDMA-based sys-

tems have been investigated [KH00], [KGH03], [MHLB08]. Due to more

advanced and complex implementations of 4G networks compared to that of

the previous generations, novel energy efficient power allocation researches

are continuously proposed to further improve the system’s energy saving

performance, even after the practical deployment of 4G systems has been

completed.

In future mobile networks generations, the envisioned RANs architecture

evolution will bring in more complexities in their operation, which calls for

novel power allocation and power control designs.

2.1.2 Energy Harvesting Technologies

As a consensus, small cell deployment is envisioned to be the candidate RAN

architecture of future cellular networks. However, it is not cost-effective to

provide all small cell BSs with grid power supply [MLZL15]. Due to the

difficulty in supplying the small cells deployment with grid power and the

environmental concern on the consumption of non-renewable energy, energy

harvesting can be utilised to improve energy efficiency of the cellular networks

[HA13]. [BHZ15] reveals that the hybrid solar-wind energy harvester is the

10



ideal candidate of renewable energy supply.

However, the utilisation of EH in cellular networks brings design chal-

lenges because of the fluctuation and uncertainty of the renewable energy

supply. The availability of harvested energy differs in varied environmental

circumstances, which makes the networks’ reliability very hard to guarantee

[OTUY15]. In this context, the novel communication protocols, resource al-

location and user association schemes are needed to improve the applicability

of EH in future cellular networks.

2.2 Next-Generation RANs Architectures

2.2.1 Heterogeneous Networks

Heterogeneous networks is a new mobile networks paradigm as illustrated in

Figure 2.1, which is the multi-tiered deployment of small cells access points

within the coverage of macrocells. These small cells access points are also

described as low-power nodes because of their relatively low level of trans-

mit power. Through densely deploying these low-power nodes, which is also

referred as spatial densification, HetNets are expected to be the dominant

approach to boost system capacity [HSS13].

The improvement of system capacity is achieved through several aspects.

Firstly, for some environments, there are high level of fading and penetration

loss which weaken the signal from macrocell base stations. As a consequence,

there exist coverage holes within the coverage of the macrocell. The deploy-

ment of small cells is able to fill up the coverage holes. Secondly, data traffic

can be offloaded from macrocell transmission points, reducing the possibility

of traffic congestion. Most importantly, higher degree of resource reuse is en-
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Figure 2.1: Heterogeneous networks (HetNet) with the mix of high power BS and low
power BSs [DMW+11].

abled by dense deployment of small cells where each low-power node serves

only a small number of mobile users.

2.2.2 Cloud Radio Access Network

C-RAN is proposed as a future radio access networks architecture so as to

provide mobile broadband Internet access to wireless customers with low bit-

cost, high spectral and energy efficiency. It is a natural evolution toward the

distributed Base Transceiver Station (BTS), which is composed of the base-

band unit, remote radio heads, backhaul and fronthaul links connecting each

components [Chi11]. Thanks to the development of cloud-computing tech-

nologies, there implements virtualised BBU Pool in C-RAN where baseband

resources of different access point are aggregated under centralised control

as depicted in Figure 2.2. In traditional radio access networks, baseband

processing capacity is exclusively occupied by each base stations, which im-

pedes the system from operating in an adjustive manner. RRHs are basically
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Figure 2.2: Cloud radio access networks with RRHs and centralised BBU pool [CCY+15].

base stations with reduced functionalities, which are only responsible for dig-

ital processing, analogue-digital conversion, power amplification and filtering

[CCY+15]. Fronthaul capacity is recognised as a critical aspect since the

effectiveness of the collaborative operation relies heavily on it.

Many of the conventional operating schemes for resource allocation and

interference coordination are envisioned to be enhanced by being adopted in

the C-RAN system.

2.2.3 Cloud-assisted Implementation of HetNets

Network densification is regarded as the dominant approach to meet the ex-

ponential data traffic increase. However such deployment introduces high

level of operational complexity in terms of increased difficulties in manage-

ment and system control. Additionally, advanced cooperative schemes are

needed for the inter-cell interference mitigation in HetNets. As a result,
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Figure 2.3: System diagram of H-CRAN with different types of APs merging into the
united architecture [PLJ+14].

small cell access points are envisioned to be connected to the cloud for cen-

tralised management and control [ZCG+15]. This is made possible by incor-

porating HetNets into C-RAN. It gives rise to a novel architecture known

as heterogeneous cloud radio access networks (H-CRAN), which is proposed

as a cost-effective potential solution to alleviate inter-tier interference and

improve cooperative precessing gains in HetNets through combination with

cloud computing [PLJ+14].

The fundamental difference between C-RAN and H-CRAN is the het-

erogeneity. H-CRAN is a multi-tiered architecture where high-power nodes

and low-power nodes coexist. BBU pool in H-CRAN is interfaced with HPN

to mitigate inter-tier interference via interference collaboration and beam-

forming [PXC+15]. The control signalling and system broadcasting are de-

livered to UEs by HPN, which alleviated the burden of fronthaul link for
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signalling exchange. The control signalling and data delivery are decoupled

in H-CRANs.

2.2.4 Fog-computing-based Radio Access Networks

It is recognised that the major problems in the centralised architectures is the

potential traffic congestion in the fronthul that causes the long transmission

delay [PWLP15b]. The fog-computing-based radio access network is intro-

duced by bringing the storage, management and computation to the edge of

the network. As indicated in Figure 2.4, in the F-RAN architecture, content

servers provide large-scale caching capability, and the controller is used for

network control like resource management. In addition, the cloud contains

multiple processors of heterogeneous computing capabilities which are con-

nected with each other to achieve computing resource sharing [SPM19]. The

heavy burden on the fronthaul networks can be alleviated without having to

establish links to the centralised cloud storage and computing. Additionally,

the transmission delay can be reduced as well [KLL+17].

The access points equipped with caching, radio signal processing and

radio resource management capabilities are referred as the fog-computing-

based access points (F-APs). F-APs are evolved from traditional remote

radio heads in cloud-assisted platform, support the mobile edge computing.
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Figure 2.4: The fog-computing based radio access networks [SPM19].

2.3 Resource Allocation in Next-Generation

RAN architectures

2.3.1 Radio Resource Management for Next-Generation

RANs

Thanks to the cloudification and virtualisation of network functionalities,

resource sharing is being extensively applied to realise the H-CRAN’s full

potential. In [MKGM+15], the resource sharing were investigated in three

levels: spectrum sharing, infrastructure sharing and network sharing. Spec-

trum sharing among operators is regarded as a choice of enlarging the avail-

able pool of resources to improve the spectral efficiency, it can be performed

through different allocation units, such as RF channels on WLAN and re-

source blocks of LTE frames [MOP+14]. It is pointed out that the H-CRAN
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enables the sharing at the level of symbols through joint processing, while

in LTE sharing can only occur in a resource block. Since an H-CRAN can

be viewed as a large-scale, highly capable cognitive radio where several dis-

tributed radios are connected to a central processing element, it enables the

application of cognitive radio. Infrastructure sharing among network oper-

ators is discussed in four scenarios, which is envisioned to massively reduce

CAPEX and OPEX. With the concept of software defined networks (SDN)

and network function virtualisation (NFV), the orchestration of networks

can be improved [BdlOS+14]. Network sharing solutions are based on the

abstraction of network functionalities of physical level and others.

2.3.1.1 User Association in Cloud-based RAN architectures

With the resource sharing enabled by the system’s new characteristics, the

H-CRAN is identified as an open, simple, controllable and flexible paradigm

for resource allocation [DDD+15]. User association strategies, which is the

decision of which user roams to which BS, influence the performance of wire-

less networks to some extent. The H-CRAN moves the networks toward

user-centric architectures where every user can communicate with more than

one heterogeneous nodes at the same time. Finding the optimal user as-

sociation strategy becomes a combinatorial optimisation problem with high

complexity.

In [SY14], the optimal joint BS association with power control and beam-

forming was considered for the downlink HetNets. It followed a pricing-based

strategy in which the users are associated with the BS according to the value

of a utility at the lowest cost, and showed that the proposed pricing-based

distributed user association can significantly improve the conventional max-

SINR association. In [ZQL13], the user association in coordinated multipoint
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(CoMP) downlink transmission was addressed involving the joint design of

transmit beamformers and user data allocation at BSs to minimise the user

data transfer from the data center to the BSs in the backhaul. It is notable

that the cloud-based architecture will replace the conventional powerful base

stations by low-cost low-power RRHs, forming a green and low-cost infras-

tructure. However, the necessary connections between all the RRHs and the

BBU pool require significant power consumption for the transport network.

To address this issue, there proposed a novel framework to design a green

Cloud-RAN, which is formulated as a joint RRH selection and power minimi-

sation beamforming problem [SZL14]. In both references [ZQL13] [SZL14],

the user association problem involves solving a sparse beamforming problem

that returns which user should be served by which BSs. It can be noticed

that the majority of the research outcomes are for the single-cloud scenario

where the whole network is connected to the same cloud. At present, there

have already been some research works about the multi-cloud scenario. For

example, authors of [DANA15] studied the user-to-cloud-assignment problem

by maximizing a network-wide utility subject to practical cloud connectiv-

ity constraints, which made an effort toward devising a distributed cloud

association strategy via an auction-based iterative approach. In addition,

[AAA+19] proposed the framework for the resource allocation in multi-cloud

C-RAN industrial Internet of Things scenario, and a low complexity heuristic

algorithm to solve the constraint resource allocation problem in linear time.

The energy efficiency-based user association problem in massive MIMO

empowered C-RAN was investigated in [ZZY+16]. Three UA algorithms

were proposed for different scenarios, which achieved higher energy efficiency

than the baseline nearest RRH association scheme. Specifically, the proposed

multi-candidate RRHs user association algorithm achieved a good balance
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between spectral and energy efficiency, and the performance gain is more

significant when the number of users is large. The user association strat-

egy in massive MIMO enabled HetNets was also studied in [LWC+15]. A

low complexity distributed UA algorithm was developed for energy efficient

fair user association while considering quality of service provision for users,

which improves the energy efficiency and user fairness compared to other

user association algorithms. A joint downlink and uplink user association

and beamforming design to coordinate interference in the C-RAN for en-

ergy minimisation was proposed in [LZL15], which is to address the severe

interference and also insufficient energy consumption due to the high den-

sity of active access points and more stringent uplink requirements in future

RANs. This paper was the first attempt to unify the downlink and uplink

user association and beamforming design into one general framework. The

effectiveness of the proposed algorithms in ensuring the feasibility of both

DL and UL transmissions, achieving optimal network energy saving, flexi-

bly adjusting various power consumption trade-offs between active APs and

mobile users is verified via extensive simulations. [YA18] took user QoS into

consideration when designing user association and BBU-RRH mapping strat-

egy. It minimised the system cost incurred by the energy bill from RRHs

and VB rentals. The baseband unit in the system model can be actualised

by a virtual machine, making it virtual BBU that can be initiated or shut

down as needed to server clusters of RRHs.

2.3.1.2 Energy Efficient Resource Allocation in Next-Generation

RANs

The H-CRAN is envisaged to implement a separation between the control

plane and the data plane [MKGM+15]. Different to conventional HetNets,
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the computation burden of control signalling is carried out by the proces-

sors in the central cloud in H-CRANs. According to this new character-

istics, [DDD+15] outlined some promising resource allocation strategies in

H-CRAN, which are coordinated scheduling, hybrid backhauling, and mul-

ticloud association. Scheduling, in the resource allocation context, is the

decision on which each user is active at every resource block. With inter-

BS coordination in a user-centric architectural model, classical proportional

fairness scheduling is no more valid for H-CRANs. In [DDANA15], the au-

thors presented an efficient graph-theoretical-based approach for solving the

complicated coordinated scheduling problem in H-CRANs. The heuristic

algorithms with low computational complexity were proposed to maximise

a network-wide utility under the practical constraint. Simulation results

suggested that the proposed algorithms perform near optimal in low shad-

owing environments. It provided a generic framework that can be used in

other resource allocation problems in H-CRANs including power control, user

association, and channel assignment. Joint precoding and backhaul com-

pression are studied in both single-cloud [PSSS13] and multi-cloud scenarios

[PSSS14]. Additionally, several compression techniques are proposed in an

uplink single-cloud framework [ZY14].

By saying H-CRANs user-centric, the guarantee of Quality of Service

(QoS) is very important. There is one thing in common for both researches

that is the QoS guarantee is the paramount constraint required as a prior

condition before any system performance metric to be optimised. In a more

recent research, a dynamic resource allocation scheme with three consecutive

steps is proposed for H-CRAN in TDD mode, which enhances the bidirec-

tional data rate with low complexity [YWJ+16]. Authors in [PZJ+15] pro-

posed an energy efficient resource allocation scheme for H-CRAN by enhanc-

20



ing traditional soft fractional frequency reuse. The UEs are grouped into two

categorises with high QoS and low QoS requirement, respectively. Then the

resource sharing techniques are deigned to meet the data rate requirement

of the users, with high priority, while mitigating the inter-tier interference

in H-CRAN. Simulation results proved the improvement in energy efficiency

when applying enhanced frequency reuse scheme if the resource allocation

strategy is designed properly in H-CRAN architecture.

The excessive power usage in heterogeneous architecture is a critical issue

to be resolved in future mobile networks. Moreover, future wireless networks

are expected to meet the diverse QoS requirements imposed by current and

envisioned services apart from achieving higher data rate. [TSA+15] ad-

dressed the above-mentioned issues by jointly considering transmit beam-

forming design and power allocation policies for a heterogeneous real-time

and non-real-time traffic to optimise the system’s energy efficiency. The pro-

posed algorithm was proved that it can efficiently approach the optimal EE.

Additionally, because of the strong intracell and intercell interference due

to dense deployment and spectrum reuse, EE and QoS are consequently de-

graded in future networks if there is no novel solutions towards such issue.

The proposed algorithm in [ZDO+16] utilised joint channel selection and

power allocation design to improve the QoS performance. In this scenario,

the centralised BBU pool is responsible for carrying out interference cancel-

lation and transmission power optimisation. The effectiveness is validated

by simulation results achieving a nearly ”zero“ infeasibility ratio. The infea-

sibility ratio is defined as the probability of not satisfying QoS requirement.

The EE performance is improved by 300% for cellular UEs.
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2.3.1.3 Utilisation of Renewable Energy in Next-Generation RANs

Among ideas aiming at improving H-CRAN’s performance, utilising renew-

able energy supply by energy harvesting is a hot research topic [PLZW15]. As

a new energy supply option for wireless communication systems, energy har-

vesting has attracted a lot of attention from industry and academia. Utilising

the green power harvested from the renewable energy sources, i.e. solar or

wind power, instead of the conventional electricity grid power can effectively

reduce OPEX for network operators. However, the inherent intermittent na-

ture of harvested green power challenges the reliable QoS provision in wireless

systems [OTUY15]. Hence in practical networks, only the low power base

stations (BS) or wireless access points are usually empowered with renew-

able energy sources, while the high power BSs, i.e. macrocell BSs, are still

powered with the steady grid power.

Optimisation of green power base station deployment is investigated in

[PE13], covering three aspects that are heterogeneous deployment of base

stations, using of renewable base stations and adjustment of transmission

powers. The results show that power consumption decrease significantly

without sacrificing other performance factor like spectral efficiency and cov-

erage. Moreover, the proposed scheme does not only reduce carbon emission

rates, but also decrease the operational cost of the cellular network opera-

tors. An user association scheme with the assumption that all BSs are solely

empowered with green power harvested from renewable energy sources in

developed in [XCE+16], which proves that its proposed algorithm achieves

higher throughput than conventional UAs. In [ZXL+15], user association

algorithm for HetNets with renewable energy supply is studied, which is

proved to be effective in achieving load-balancing and making the best use

of renewable energy. The proposed algorithm is proved to converge to the
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global optimum of the formulated optimisation problem, which is to max-

imise the BS utility proportional fairness. The two-dimensional optimisation

to lexicographically minimise the on-grid energy consumption in heteroge-

neous networks with hybrid energy sources is presented in [LCC+15], which

involved the optimisation in both the space and time dimensions. An optimal

offline algorithm with low complexity was proposed, serving as performance

upper bound for evaluating practical online algorithms. Some heuristic on-

line algorithms were further developed. Both offline and online algorithms

designed in this paper outperform other algorithms in terms of total and peak

on-grid energy consumption reductions. None of these papers has considered

the possibility that in H-CRAN small cell serving nodes are solely empowered

with green power source while macrocell base stations are still connected to

power grid to guarantee the smooth operation. A suitable algorithm for this

new consideration is yet to be investigated.

2.3.2 Computation Offloading in F-RANs and MEC

Systems

With the advent of the era of IoT, the unprecedented growth of latency-

critical applications are nevertheless hardly satisfied by MCC alone. To cater

for the low-latency requirements while alleviating the burden over backhaul

networks, Mobile Edge Computing, also interchangeably known as fog com-

puting has aroused a paradigm shift by extending cloud capabilities to the

very edge within the radio access network [MYZ+17]. Both industry and

academia have devoted constant effort to fully exploit the potential brought

by fog-computing-based architecture. Among pioneering industrialisation on

fog computing, Cisco has proposed fog computing as a promising candidate

for IoT architecture [BMZA12]. In recent researches, [ZWG+13], [KKLC15],

23



[YHC16], [LCLH15] focused on one-to-one offloading scheme where there

is one mobile user and one corresponding cloudlet, [KNWH13], [CSBC16]

presented multiple-user cases where there are multiple edge servers, while

[Che15] related to multiple-to-one scenarios where multiple mobile users of-

fload computing to one edge server. In [OSSB15], the authors proposed

an AP clustering strategy for distributed fog computing applications based

on the minimisation of the transmit power. The proposed approach allows

adaptive sizing and resources management of computation clusters, and in

the mean time establishes computation clusters for all active requests for bet-

ter exploitation of available resources, targeting a higher QoE. In [LMZL16]

,the computation task scheduling was researched for MEC systems in terms

of shortening the execution delay. The computation tasks are scheduled

based on the queueing state of the task buffer, the execution state of the

local processing unit, as well as the state of the transmission unit. A power-

constrained delay minimisation problem was formulated, and an efficient one-

dimensional search algorithm was proposed to find the optimal task schedul-

ing policy that succeeded in achieving a shorter average execution delay. A

comprehensive computation offloading solution that uses the multiple radio

links available for associated data transfer was provided in [MSS15]. The

research presented in [SML+18] examined the computation offloading sce-

nario in mobile wireless sensor networks. An optimal partition is proposed

to minimise the total energy consumption in cooperative computing. Go-

ing one step further by utilising the optimal results, the authors proposed

energy efficient cooperation node selection strategies to achieve fairness and

maximal energy saving in a multi-node environment.
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2.3.2.1 Joint Design of Computation Offloading and Communica-

tion Resources Allocation

The joint optimisation of computation offloading with communications re-

sources (such as power, bandwidth, and rate) proves to improve the perfor-

mance of fog computing by explicitly taking channel conditions and com-

munications constraints into account. In an early research [WGKN08], the

offloading decision making was examined through the estimation of data

bandwidth without considering the allocation of communication resources

and channel conditions. For communications-aware computation offloading,

[XLXN18] minimised the local user’s computation latency in a multi-user

cooperative scenario, while [WXWC18] minimised the energy consumption

of remote fog computing nodes. A game theoretic approach is applied in

[GZQL12] for the minimisation of overall energy consumption in MCC sys-

tem. It is declared to be the first paper that aims to reduce the overall

energy consumption of a MCC system under computation offloading con-

text. In [TL17], the authors investigated the joint computation offloading

and resource allocation problem exploiting computing resources from both

cloud offloading and D2D cases. The proposed scheme achieves high energy

saving gains compared with the local computation strategy and cloud of-

floading strategy. In an MIMO multicell system where multiple mobile users

asking for computation offloading to a common cloud server, joint optimi-

sation of radio resources and computational resources is formulated in order

to minimise the users’ overall energy consumption [SSB15]. The algorithmic

framework presented was show that it naturally leads to a distributed and

parallel implementation across the radio access points, while only a limited

coordination/signalling with the cloud is required. Numerical results show

that the proposed schemes outperform disjoint optimisation algorithms.
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The authors in [BSD13] propose a method that jointly optimises the

transmit power, the number of bits per symbol and the CPU (central process-

ing unit) cycles assigned to each application in order to minimise the power

consumption of the mobile users. A one-to-one relation between the power

allocated on each channel and the percentage of CPU cycles assigned to the

corresponding user was found, and the performance of a scheduler aimed

at stabilising the computation queues accumulating on each mobile handset

was presented as well. The research scope of [ZWG+13] is divided into two

independent sections, one for the scenario of local mobile execution, and the

other for the cloud execution where task data are offloaded to edge server

for execution. In mobile execution case, the CPU frequency of the mobile

user is reconfigured optimally to obtain the least energy consumption. In

cloud execution scenario, the transmission rate is optimised in response to

the stochastic channel condition to minimise the transmission energy. After

that, the optimal application execution policy is designed to choose between

mobile execution and cloud execution that consume less energy on the mo-

bile device. A general MEC system with multiple users and one MEC server

with limited computation capability is considered in [MZSL17]. The perfor-

mance metric adopted is the average weighted sum power consumption of the

mobile devices and the MEC server. The available radio and computational

resources are jointly managed to optimise the MEC system, including the

CPU-cycle frequencies for the mobile and server CPUs, the transmit power

and bandwidth allocation for computation offloading, as well as the task

scheduling decision at the MEC server. It proposes the algorithms that are

able to balance the weighted sum power consumption and execution delay

performance. However, these line of work have not taken the recently noticed

shared data feature into account, thus failing to fully reap the advantage of
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fog computing. The resource allocation for a multiuser MEC system based

on CDMA/OFDMA accounting for both the cases of infinite and finite cloud

computation capacities was researched in [YHCK17]. Algorithms with low

complexity that are able to achieve close-to-optimal performance were pro-

posed for all scenarios in this paper, which reduce the weighted sum mobile

energy consumption significantly.

2.3.2.2 Computation Offloading for Applications featuring Shared

Data

Recently, the intrinsic collaborative properties of the input data for computa-

tion offloading was investigated for augmented reality in [ASS17]. Compared

to conventional independent offloading across mobile users, the novel resource

allocation approach utilising shared data feature presents considerable gains

in energy saving performance. In fact, in many mobile applications such as

augmented reality and virtual reality, multiple mobile devices share parts of

computing input/output in common. The shared-data aware MEC in the

emerging 5G applications helps to further improve the system performance

(low latency and/or energy). In [PPS18], some important insights on the

interplay among the social interactions in the VR mobile social network was

revealed, and a significant reduce on the end-to-end latency was achieved

through stochastic optimisation technique. [CSYD17] investigated poten-

tial spatial data correlation for VR applications to minimise the delay of

accomplishing computation. The proposed algorithm can intelligently trans-

fer information on the learned utility across time, and allow adaptation to

environmental dynamics due to factors such as changes in the users’ data

correlation. [WXD17] studied computation offloading in a multi-antenna

non-orthogonal multiple access (NOMA)-based system. The users partition
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the tasks for local processing and offloading according to the proposed al-

gorithm to minimise the energy consumption of all users. Excpet for the

cellular networks, the research on the cooperative energy efficient computa-

tion offloading in WLAN networks utilising the similarity of the computation

tasks is also presented, where an online task scheduling algorithm is designed

to achieve a desirable trade-off between the energy consumption and Internet

data traffic by appropriately setting the trade-off coefficient [JYM+14].

2.4 Convex Optimisation

Mathematical modelling is of great importance in designing and optimisation

of mobile networks. The optimal algorithms design in terms of energy con-

sumption minimisation relies heavily on obtaining the analytical solutions of

the formulated optimisation problem. In this thesis, the main methodology

applied in reaching mathematical solutions for theoretical analysis is Convex

Optimisation.

The theory of Convex Optimisation has been developed for more than a

century. As a special category of mathematical optimisation problems, the

global optimum of such problems can be obtained very efficiently. There ex-

ists well-developed problem-solving techniques for convex optimisation such

as ellipsoid methods and sub-gradient methods [Boy]. Then by recognising

or formulating a problem as a convex optimisation problem, it can be solved

through these techniques very reliably and efficiently. Generally, a typical

convex optimisation problem in the following form:

minimise
x

f0(x) (2.1)

subject to fi(x) ≤ bi, i = 1, ...,m, (2.2)
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where the functions f0, ..., fm : Rn → R are convex, and satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.3)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

f0(x) is the objective function of the problem, the vector x = (x1, ..., xn)

is the optimisation variables of the problem. As for the functions fi,Rn →

R, i = 1, ...,m, they are the inequality constraint functions. The objective

function and the constraints functions are all required to be convex so that

the problem is in the convex form. Then it is able to find the optimal solution

x∗, which gives the objective function the smallest value among all vectors

that satisfy the constraint.

A widely used techniques in solving resource allocation problems in wire-

less networks is Lagrange Duality theory. It is applied in all our investigated

problems to obtain the optimal solutions, which in turn generates the energy

efficient resource allocation design. However, the problems encountered in

this thesis may not be readily formulated as standard convex optimisation

problems. For example in the User Association problems, the existence of

binary variables put the problem into the category of mixed-integer non-

linear programming (MINLP) problems, which are non-convex. In addition,

the complexity of target functions or optimisation constraints can also hinder

the applicabilities of standard convex optimisation methods. Fortunately, the

ways of reformulating original problems can always be found based on some

realistic assumptions, which transformed the original problems into traceable

ones where standard convex optimisation methods are applicable.

The widely known water-filling algorithm in information theory is a typ-

ical application of convex optimisation in the area of communication re-
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searches. It originates from the following optimisation problem:

minimise −
n∑
i=1

log(αi + xi)

subject to x � 0,1ᵀ = 1.

The variable xi represents the transmitter power allocated to the i-th chan-

nel, and log(αi+xi) gives the capacity or communication rate of the channel,

so the problem is to allocate a total power of one to the channels, in order

to maximise the total communication rate. The water-filling algorithm is

derived through the process of getting the solution of this optimisation prob-

lem.
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Chapter 3

Resource Allocation
Optimisation in H-CRAN with
Hybrid Energy Sources

This chapter presents an energy efficient radio resource optimisation al-

gorithm in the two-tier H-CRAN where macrocell HPNs are empowered by

grid power and RRHs are empowered by renewable energy sources. The

proposed algorithm achieves better energy saving performance compared to

conventional ones. Moreover, an iterative resource allocation algorithm in

H-CRAN is proposed to maximise the energy efficiency of the grid power

supply.

3.1 System Model

The scenario considered is a two-tier H-CRAN deployment as illustrated in

Figure 3.1. One tier of it is the macrocells tier whose coverage is served by

electricity gird powered macrocell HPNs, and the other one is made up of

picocells served by picocell RRHs with energy harvesting power resources

(EH-RRH). Grid power minimisation within a single macrocell is consid-

ered since the analysis result can be readily extended to other macrocells.

Within one macrocell, m ∈ M denotes m-th EH-RRH in it. For the ref-
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Figure 3.1: The overview of energy harvesting powered H-CRAN.

erence macrocell, there are 12 EH-RRHs uniformly-distributed around the

high power node. u ∈ U denotes u-th User Equipment connecting to the

system, with total number of U. For every UE requesting service, the sys-

tem will decide whether to associate it with nearest picocell RRH or HPN.

Then Resource Blocks (RBs) are allocated to the UE from corresponding

transmission points. The system bandwidth of 20MHz containing 100 RBs

available.

3.1.1 Energy Harvesting Model

The Energy Harvesters providing picocell RRHs with power supply are con-

sidered to be undergoing a stationary stochastic process with the probability

density function fm(zm) = 1/(bm− am),∀zm ∈ [am, bm] where am and bm are

the lowest and highest power harvesting level of m-th RRH. Within one time

slot with the duration of 20 ms, the harvesting power is thought to be con-

stant, but may vary in different time slots. In practical scenario, the energy
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harvesting rate may remain at the same level for several seconds.

3.1.2 Energy Consumption Model

In real systems deployment case, there is a static circuit power consumption

for each RRH denoted as Psc, with the fronthaul power consumption Pfh be

taken into consideration as well. According to the power consumption model

provided by [AGD+11], the amount of available power for data transmit of

RRH is given by

PR
avail = κR[pEH − Psc − Pfh, 0]+ (3.1)

where [x]+ = max{x, 0}, and ηR = 1/κR is the efficiency of power amplifier.

This expression tells us that the energy harvesting rate should be larger than

that of overall static power consumption of each RRH. Otherwise, it cannot

support any data service requests from user equipments.

3.1.3 Downlink transmission model

A important feature of Cloud Radio Access Network is the cooperative op-

eration which enables coordinated allocation of radio resources, avoiding the

intra-tier interference among RRHs [PZJ+15]. Moreover, thanks to the rel-

atively low level of transmission power of picocell RRHs, UEs connecting to

them can be regarded as suffering no interference from other cells when apply-

ing proper frequency reuse schemes. The Carrier-to-Interference-plus-Noise

Ratio (CINR) for the the u-th UE to m-th off-grid EH-RRH is expressed as

gu,m = hRu,m(du,m)/B0N0 (3.2)
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N0 is the power spectral density of thermal noise. hRu,m is the path loss as a

function of propagation distance between u-th UE and m-th RRH [PZJ+15]

hRu,m(d) = 31.5 + 40 log10(du,m) (3.3)

As for the HPN, due to the much higher level of transmitting power,

intra-tier interference among HPNs should be taken into consideration. Ac-

cordingly, advanced radio resource reuse scheme is applied for this heteroge-

neous scenario so that inter-tier interference is negligible. Then the CINR

for the u-th UE connected to HPN is given as

gu = hMu (du)/(B0N0 + PM
h hMu,h(d

M
u,h)) (3.4)

PM
h , hMu,h(d

M
u,h) denote the total transmission power of h-th neighbouring

HPNs and path loss from h-th neighbouring HPNs to u-th UEs, respectively.

hMu (du) is expressed as

hMu (du) = 15.3 + 37.6 log10(du) (3.5)

Given all afore-mentioned expressions, the sum data rate of all RRHs in the

macrocell is written as:

R(a,p) =
∑
u∈U

∑
m∈M

au,mB0 log2(1 + pu,mgu,m) (3.6)

and the sum data rate of HPN is

RM(aM ,pM) =
∑
u∈U

aMu B0 log2(1 + pMu gu) (3.7)

In above functions, two U×M matrices a = [au,m]U×M and p = [pu,m]U×M ,
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two U×1 matrices aM = [aM1 , . . . , a
M
U ]T and pM = [pM1 , . . . , p

M
U ]T are intro-

duced, which represent the user association and power allocation policies

of RRHs and HPN, respectively. au,m and aHu are binary user association

indicator whose value can either be 0 or 1, indicating whether u-th UE is

associated to m-th RRH or HPN. pu,m and pMu represent the transmission

power of m-th RRH and HPN to u-th user equipment.

The energy consumed by HPN to transmit data is expressed by

P (aM ,pM) =
∑
u∈U

aMu p
M
u + PM

c + PM
bh (3.8)

where PM
c and PM

bh are static circuit power consumption and power consump-

tion for backhaul signalling.

3.2 Energy Efficient Resource Allocation in

H-CRAN with Hybrid Energy Sources

3.2.1 Motivation

With the anticipation of mass deployment of small cell networks, it is dif-

ficult to provide grid power supply to all of them in a cost-effective way.

Energy harvesting provides a suitable solution to this problem. However,

new challenges brought by the uncertainty and fluctuation of renewable en-

ergy supply need to be addressed. Moreover, because of the disparity of

transmit power among transmission points of different tiers, simple user as-

sociation algorithms such as Reference Signal Receiving Power (RSRP)-based

user association cannot achieve best system performance. In order to fully
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exploit the utility of harvested energy, this research is conducted to find a

good solution on saving grid power.

3.2.2 Problem Formulation

The user association and power allocation algorithms is formulated as an

optimisation problem whose target is to minimise the grid power consumed

by HPN achieved by offloading the data traffic form HPN to RRH as much as

possible. Rate-constrained QoS requirement is introduced, a minimum date

rate threshold Rmin should be achieved as the prerequisite for grid power

minimisation.

The objective function together with the constraints are give as below:

min
{aM ,pM}

P (aM ,pM) =
∑
u∈U

aMu p
M
u + PM

c + PM
bh (3.9)

s.t. ∑
m∈M

au,m + aMu = 1, au,m ∈ {0, 1}, aMu ∈ {0, 1},∀u (3.10)

pu,m ≥ 0, pMu ≥ 0,∀u,∀m (3.11)∑
m∈M

Ru,m +RM
u ≥ Rmin, ∀u (3.12)

∑
u∈U

au,mpu,m ≤ PR
avail,∀m (3.13)

where Ru,m = au,mB0 log2(1+pu,mgu,m) and RM
u = aMu B0 log2(1+pMu gu). The

first constraint indicates that each UE can only be connected to one node,

either the selected RRH or HPN. The second one specifies the minimum

data-rate requirement for each users, with Rmin is the data-rate threshold.

The third constraint puts the limitation on the overall transmit power of
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EH-RRHs, defined by their harvested power.

It is clear that the originally formulated optimisation problem is an non-

convex optimisation problem due to the existence of binary variables in the

objective function and the user association constraint. More precisely, it is a

mixed integer programming problem. Classical convex optimisation methods

cannot be applied directly to solve it. Hence, it has to be reformulated in

order to obtain the optimal user association policy a∗ and the optimal power

allocation policy p∗ for EH-RRHs with corresponding constraint.

In addition to the non-convexity, the difficulties in solving it is also due

to the co-existence of optimal resource allocation policy pairs aH , pH and a,

p. The optimisation problem will be definitely simpler to solve by reducing

it to a form where the all expressions contain only one resource allocation

policy pair of the two.

A conclusion can be readily drawn that the minimisation of grid power

consumption is correspondent to the maximisation of green power supported

throughput. Therefore the algorithm is formulated to a green power maximi-

sation problem which is solely related to a, p. After solving such reformulated

problem, through the relationship given by the first constraint of previous

optimisation problem, the overall solution of the original problem can be

obtained. The green power throughput maximisation problem is propose as

below:

max
{a,p}

R(a,p) =
∑
u∈U

∑
m∈M

Ru,m (3.14)

s.t.

au,m ∈ {0, 1}, pu,m ≥ 0,∀u ∈ U ,∀m ∈M, (3.15)
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∑
m∈M

Ru,m ≥ Rmin,∀u ∈ U , (3.16)

∑
u∈U

au,mpu,m ≤ PR
avail,∀m ∈M. (3.17)

where Ru,m = au,mW0 log2(1 + pu,mgu,m). The first constraint describes the

user association constraint that each UE can only be associated with one AP,

either the selected RRH or HPN. It is assumed that each UE can connected

to only one BS. The second constraint specifies the minimum data-rate re-

quirement for each UE, with Rmin is the data-rate threshold; being lower

than that is considered to be unacceptable. The third one puts the limita-

tion on the overall transmit power of each RRH.

3.2.3 Energy efficient joint user association and power

allocation algorithm

To obtain the solutions of the formulated optimisation problem, we should

firstly have the Lagrangian of the primal objective function [Boy]:

L(a,p,λ,ν) =
∑
u∈U

∑
m∈M

au,mW0 log2(1 + pu,mgu,m)

+
∑
u∈U

λu(
∑
m∈M

au,mW0 log2(1 + pu,mgu,m)−Rmin)

+
∑
m∈M

νm(PR
avail −

∑
u∈U

au,mpu,m),

(3.18)

where λ = (λ1, λ2, ..., λU) � 0 is the Lagrange multiplier vector correspond-
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ing to the required minimum date rate constraint (3.16). ν = (ν1, ν2, ..., νM) �

0 is the Lagrange multiplier vector associated with the remote radio head

transmission power constraint (3.17). The elements of the vectors are all

non-negative.

Then the Lagrangian dual function is given as:

g(λ,ν) = max
{a,p}

L(a,p,λ,ν)

max
{a,p}

{
∑
u∈U

∑
m∈M

[(λu + 1)au,mW0log2(1 + pu,mgu,m)

− νmau,mpu,m]−
∑
u∈U

λuRmin +
∑
m∈M

νmP
R
avail}

(3.19)

and then the dual optimisation problem is reformulated as:

min
{λ,ν}

g(λ,ν) (3.20)

s.t. λ � 0, ν � 0

Obviously, the dual optimisation problem is convex. With fixed au,m

and pu,m, the Lagrangian function L(a,p,λ,ν) is linear with λu and νm,

and the dual function g(β,ν) is the maximum of these linear functions.

Applying dual decomposition method to solve this dual problem, then firstly
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it is decomposed into U independent problem:

g(λ,ν) =
∑
u∈U

gu(λ,ν)−
∑
u∈U

λuRmin +
∑
m∈M

νmP
R
avail (3.21)

where

gu(λ,ν) = max
{a,p}

{
∑
m∈M

(λu + 1)au,mW0log2(1 + pu,mgu,m)

− νmau,mpu,m}
(3.22)

Assuming that the m-th RRH is associated to the u-th UE, i.e., au,m = 1,

then apparently (3.21) is concave in terms of pu,m. Apply the Karush-Kuhn-

Tucker (KKT) condition, the optimal power allocation is derived by setting

∂gu/∂pu,m = 0, which is:

p∗u,m = [ω∗u,m −
1

gu,m
]+ (3.23)

the optimal water-filling level ω∗u,m is given as:

ω∗u,m =
(λu + 1)W0

ln2νm
(3.24)

By substituting the optimal power allocation obtained by (3.23) and the

water-filling level (3.24) into the decomposed problem (3.21), it becomes
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gu(λ,ν)

= max
1≤m≤M

{(λu + 1)W0[log2(ω∗u,mgu,m)]+

− νm[ω∗u,m −
1

gu,m
]+}

(3.25)

Then the optimal user association indicator is determined by

a∗u,m =

 1, m = arg max
1≤u≤U

Du,m,

0, otherwise,
(3.26)

where

Du,m = (λu + 1)[log2(ω∗u,mgu,m)]+

− (λu + 1)

ln2
[1− 1

ω∗u,mgu,m
]+

(3.27)

Making use of the sub-gradient method to solve the dual problem, the

sub-gradient of the dual function is written as

∇λ(i+1)
u =

∑
m∈M

R(i)
u,m −Rmin (3.28)

∇ν(i+1)
m = PR

avail −
∑
u∈U

a(i)
u,mp

(i)
u,m (3.29)
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where a
(i)
u,m and p

(i)
u,m is the user association and power allocation policy

derived by the dual variables of the i-th iteration, respectively. R
(i)
u,m =

a
(i)
u,mB0log2(1+p

(i)
u,mgu,m). ∇λ(i+1)

u , ∇ν(i+1)
m represent the sub-gradient utilised

in the (i + 1)-th iteration. Accordingly, the update equations for the dual

variables in the (i+ 1)-th iteration are expressed as:

λ(i+1)
u = [λ(i)

u − α
(i+1)
λ ×∇λ(i+1)

u ]+ (3.30)

ν(i+1)
m = [ν(i)

m − α(i+1)
ν ×∇ν(i+1)

m ]+ (3.31)

with α
(i+1)
λ and α

(i+1)
ν are the positive step sizes.

3.2.4 Simulation Results and Performance Evaluation

The H-CRAN architecture is comprised of macrocells within each there is

one HPN in the center and 12 EH-RRHs uniformly distributed around it.

Each resource block occupies a bandwidth of 180kHz and one resource is

allocated to one UE at a time. The UEs are randomly located inside the

macrocell. The simulation of RB and power allocation is repeated based

on the time slot of 1ms, which is the minimum time unit in OFDMA sys-

tems. During each time slot, the energy harvesting rates remain constant.

According to [AGD+11], the power amplifier efficiency of macrocell HPN is

ηRPA = 31.1%. It it assumed the static circuit power consumption of HPN to

be PM
c = 10.3W and that of picocell RRH is 0.1W ;as for the fronthaul link

and the backhaul link power consumption PM
bh and Pfh, they are both as-

sumed to be 0.2W [PZJ+15]. The maximum transmit power of MBS is 20W

(43dBm). The lowest and highest power harvesting level are 22dBm and

48dBm respectively. The thermal noise level is -174dBm/Hz. With 20MHz

42



Figure 3.2: Grid power consumption with different number of UEs connecting to the
system, Rmin = 384kbps.

as the overall system bandwidth, there are totally 100 Resource Blocks avail-

able to be assigned to the UEs.

The single tier HPN-only system is presented as the baseline architecture,

where there is only one HPN in the cell center taking on all connection re-

quests. This scenario does not need to consider any specific user association

or RB allocation algorithm since the only option for all users is to be associ-

ated to the center HPN. The power consumption model is the same as that

of the H-CRAN HPN described in the system model section.

Reference signal receiving power (RSRP) is used as the baseline user as-

sociation algorithm. In RSRP algorithm, a UE is associated to the BS with

the strongest received reference signal. If there is not enough power available

to satisfy the minimum data rate requirement, the UE would be redirected
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Figure 3.3: Normalised grid power consumption, Rmin = 384kbps.

to the BS with the second highest RSRP, and then so on and so forth. In-

tuitively, such scheme cannot achieve the best traffic offloading because of

the inherent transmit power gap between those of HPN and picocell RRHs.

Hence this transmitted signal strength gap needs to be compensated by ap-

plying signal bias, as proposed as cell range extension (CRE) in [KBTV10].

The signal bias is the extent to which one response is more probable than

another in signal detection.

As shown in Figure 3.2, under the date rate constraint of 384kbps, hetero-

geneous architecture with RSRP mechanism improves the grid power saving,

by offloading mobile data traffic from the macrocell tier to picocell RRHs.

Figure 3.3 shows how much grid power can be saved by applying the pro-

posed algorithm in comparison to the baseline single tier system architecture.
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The grid power consumption of the base line system is normalised to one.

For RSRP and RSRP-plus-bias schemes, the higher the bias value, the lower

the grid power consumption. For example, when 40 users are served, around

8%, 15% and 25% of grid power are saved with RSRP, RSRP-plus-10dB,

and RSRP-plus-20dB bias respectively. While around 35% grid power can

be saved with the proposed algorithm compared to the baseline algorithm.

The grid power saving is down to the improved green power utilisation. It is

interesting to observe that the percentage of the grid power saving, in another

word, the reduction in grid power consumption is related to the number of

users in the system. Under the scenario set in this chapter, the grid power

saving performance improves as the number of UEs increases as higher per-

centages of grid power is saved compared to reference HPN-only architecture,

for all algorithms between 0 to 80 UEs. The decreasing speed of the nor-

malised grid power consumption for the proposed optimisation scheme is

slowing down as the number of users gets larger, revealing that high density

of users diminishes the grid power saving. It is also found that the best grid

power saving performance is achieved around 80 users connecting to the sys-

tem. Note that this peak point for grid power saving is related to the system

set up, i.e. number of resource blocks and number of RRHs in each macrocell.

Figure 3.4 presents the green power utilisation and grid power consump-

tion percentage of the proposed optimisation scheme. Percentage results for

grid power consumption is obtained from the assumption that 20W is the

maximum transmit power level for HPN. The green power utilisation rate

increases as the number of connecting users gets higher, and approaches to

around 70 percent when there are 100 users being served. It is clear from

Figure 3.4 that not all green power gets utilised. This is down to the UE
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Figure 3.4: Green power and grid power utilisation.

data rate requirments. There might be some residual green power in some

RRHs, but it is not enough to support the required date rate. How to utilise

this part of residual green power is an interesting direction for future work as

an extention of the contribution. More advanced mechanisms are needed to

take full advantage of available green power supply. Multipoint transmission

where multiple RRHs transmits signal to one single user in a cooperative

way if none of the RRHs have enough green power to serve the user by it-

self, might be an effective mechanism which could further reduce grid power

consumption in H-CRAN.
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3.3 Iterative Resource Allocation Algorithm

for Green Energy Aware H-CRAN

3.3.1 Motivation

In previous sections, we propose an energy efficient resource allocation and

user association algorithm based on the formulated optimisation problem

that aims to minimise the grid energy consumption of the radio access net-

works. However, the proposed algorithm cannot guarantee a high transmis-

sion rate as a result of taking energy minimisation as the objective. In another

word, the proposed algorithm in previous section is suitable for the system

whose ultimate concern is the sustainability reflected by non-renewable en-

ergy consumption. However, it can still investigate the radio access networks

that not only regard the energy consumption as the main performance in-

dicator, but also take the data throughput into account. In this chapter,

we present a framework that considers both the energy consumption and

the data throughput, which maximises the defined grid energy utility by the

proposed iterative resource allocation algorithm.

3.3.2 Problem Formulation

The grid power consumption of m-th AP is given as:

P grid
m = [Pm,0 + κm

∑
u∈U

au,mpu,m − P g
m]+, ∀m ∈M (3.32)

where κm is the inverse of the power amplifier efficiency of AP m, and Pm,0 is

the static power consumption, P g
m is the harvested sustainable energy from

the green power supply.
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The Signal-to-Interference-plus-Noise-Ratio (SINR) between UE u and

AP m is

γu,m =
pu,mGu,m

Iu,m + σ2
(3.33)

where Iu,m is the average interference to the downlink transmission from m-

th AP to u-th UE [XH12].

Then given the expression of the SINR, the expression of the sum data

rate for the whole system based on the Shannon’s equation is given by:

R(a,p) =
∑
u∈U

∑
m∈M

au,mW0 log2(1 + γu,m), (3.34)

and the fronthaul capacity requirement of m-th AP is the sum throughput

of all the UEs associated with it:

Zm =
∑
u∈U

au,mW0 log2(1 + γu,m),∀m ∈M. (3.35)

The overall amount of grid power consumption is written in the following

equation:

G(a,p) =
∑
m∈M

P grid
m =

∑
m∈M

[Pm,0 + κm
∑
u∈U

au,mpu,m − P g
m]+ (3.36)

which is the overall static power consumptions and transmitting power sub-

tracting the energy harvesting rates for all picocell remote radio heads and

high power node.
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Here the grid power utility of the system is introduced, which is defined as

the ratio of the overall system throughput over the grid power consumption:

ϕ =
R(a,p)

G(a,p)
(3.37)

The optimisation is considered to increase the system throughput with-

out adding too much grid power consumption. Then the objective function

is given, expressed as the maximisation of the defined grid power utility:

max
{a,p}

R(a,p)

G(a,p)
=

∑
u∈U

∑
m∈M au,mW0 log2(1 + γu,m)∑

m∈M P grid
m

(3.38)

s.t.

au,m ∈ {0, 1},
∑
m∈M

au,m = 1,∀u ∈ U , (3.39)

Zm ≤ Bm,∀m ∈M, (3.40)∑
u∈U

au,mpu,m ≤ Pmax
m ,∀m ∈M, (3.41)

∑
m∈M

au,mW0 log2(1 + γu,m) ≥ δu, ∀u ∈ U . (3.42)

where constraint (3.39) defines that each user equipment can only be associ-

ated with one AP. The constraint (3.40) puts the limitation on the fronthaul

capacity of each AP, while (3.41) corresponds to the maximum transmit

power of every RRH and HPN. δu in (3.42) denotes the minimum data rate

of u-th UE, which describes of rate-constrained QoS requirement of the user

association.
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3.3.3 Iterative Resource Allocation Algorithm Proposal

According to the proof of [PZJ+15], the optimal grid power utility ϕ∗ is

achieved if and only if

max
{a,p}

R(a,p)− ϕ∗G(a,p) = R(a∗,p∗)− ϕ∗G(a∗,p∗) (3.43)

Moreover, for all feasible a, p, and ϕ, F (ϕ) = R(a,p)−ϕG(a,p) is a strictly

monotonic decreasing function about ϕ, and F (ϕ) ≥ 0. Hence, the update

algorithm is proposed to find the optimal value of ϕ:

Algorithm 1 Outer Loop Algorithm

1: Set the maximum number of iterations Imax, convergence condition εϕ
and the initial value ϕ(1) = 0

2: Set the outer loop iteration index i = 1 and begin the outer loop iteration

3: for 1 ≤ i ≤ Imax do
4: Solve the user association and power allocation problem with ϕ(i)

5: Obtain a(i), p(i), R(a(i), p(i)) and G(a(i), p(i))
6: if R(a(i), p(i))− ϕ(i)G(a(i), p(i)) < εϕ then
7: Set {a∗, p∗} = {a(i), p(i)} and ϕ∗ = ϕ(i)

8: break;
9: else

10: i = i+ 1, ϕ(i+1) =
R(a(i), p(i))

G(a(i), p(i))
11: end if
12: end for

Based on the analysis above, the optimisation problem is reformulated

into a more tractable form:

max
{a,p}

R(a,p)− ϕ(i)G(a,p) (3.44)

s.t.(3.39)− (3.42),

50



where ϕ(i) is the obtained utility after i-th update.

Considering all the constraints given above, the Lagrangian expression of

the objective function is given as:

L(a,p,λ,β,ν) =
∑
u∈U

∑
m∈M

au,mW0 log2(1 + γu,m)

− ϕ(i)
∑
m∈M

(
Pm,0 + κm

∑
u∈U

au,mpu,m − P g
m

)

+
∑
m∈M

λm

[
Bm −

∑
u∈U

au,mW0 log2(1 + γu,m)

]

+
∑
m∈M

βm

(
Pmax
m −

∑
u∈U

au,mpu,m

)
,

+
∑
u∈U

νu

[ ∑
m∈M

au,mW0 log2(1 + γu,m)− δu
]

(3.45)

where λ = (λ1, λ2, ..., λM) is the Lagrange multiplier vector corresponding to

the fronthaul constraints (3.40). β = (β1, β2, ..., βM) is the Lagrange multi-

plier vector concerned with the transmit power constraint. ν = (ν1, ν2, ..., νU)

is the vector corresponding to the minimum data rate constraint for each user

equipment.

By going one step further into the Lagrangian dual analysis, the dual
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function of the above Lagrangian expression is:

g(λ,β,ν)

= max
{a,p}

L(a,p,λ,β,ν)

= max
{a,p}

{∑
u∈U

∑
m∈M

[
(1− λm + νu)au,mW0log2(1 + γu,m)

− (ϕ(i)κm + βm)au,mpu,m

]
+
∑
m∈M

[
λmBm + βmP

max
m

− ϕ(i)(Pm,0 − P g
m)

]
−
∑
u∈U

νuδu

}
(3.46)

Then by using dual decomposition method, the dual problem is decom-

posed into K independent sub-problems as

g(λ,β,ν)

=
∑
m∈M

gm(λ,β,ν)

+
∑
m∈M

[
λmBm + βmP

max
m − ϕ(i)(Pm,0 − P g

m)

]
−
∑
u∈U

νuδu

(3.47)

where

gm(λ,β,ν)

= max
{a,p}

{∑
u∈U

[
(1− λm + νu)au,mW0log2(1 + γu,m)

− (ϕ(i)κm + βm)au,mpu,m

]} (3.48)

Assuming the u-th UE is associated withm-th AP, it is obvious that (3.47)

is concave in terms of pu,m. Then applying Karush-Kuhn-Tucker condition,
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the expression of optimal power allocation can be obtained:

p∗u,m = [ω∗u,m −
Iu,m + σ2

gu,m
]+ (3.49)

and the optimal water-filling level ω∗u,m is derived as:

ω∗u,m =
(1− λm + νu)W0

ln2(ϕ(i)κm + βm)
(3.50)

By substituting the derived optimal power allocation into the decomposed

problem (3.47), it gives the following expression:

gm(λ,β,ν)

= max
1≤u≤U

{
(1− λm + νu)W0

[
log2(ω∗u,m

gu,m
Iu,m + σ2

)

]+

− (ϕ(i)κm + βm)

[
ω∗u,m −

Iu,m + σ2

gu,m

]+} (3.51)

Then with (3.49) and (3.50), the optimal user association indicator is

derived as:

a∗u,m =

 1, u = arg max
1≤u≤U

Du,m,

0, otherwise,
(3.52)

where

Du,m = (1− λm + νu)W0

[
log2(ω∗u,m

gu,m
Iu,m + σ2

)

]+

− (1− λm + νu)

ln2

[
1− Iu,m + σ2

gu,mω∗u,m

]+ (3.53)

The sub-gradient based method is used to update the dual variables λm,

βm and νu to generate the power allocation and user association policies. The

update equations for the dual variables in the (l+1)-th iteration are given by
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Figure 3.5: Convergence performance of the grid power utility.

λ(l+1)
m = [λ(l)

m − α
(l+1)
λ (Bm −

∑
u∈U

R(l)
u,m)]+, ∀m ∈M, (3.54)

β(l+1)
m = [β(l)

m − α
(l+1)
β (Pmax

m −
∑
u∈U

au,mpu,m)]+,∀m ∈M, (3.55)

ν(l+1)
u = [ν(l)

u − α(l+1)
ν (

∑
m∈M

R(l)
u,m − δu)]+, ∀u ∈ U , (3.56)

where R
(l)
u,m = a

(l)
u,mW0log2(1 +

p
(l)
u,mgu,m

Iu,m + σ2
), and α

(l+1)
λ , α

(l+1)
β , α

(l+1)
ν are the

positive step sizes.
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3.3.4 Simulation Results and Conclusions

In this section, the numerical results for the system model and algorithm

presented in previous sections are presented. There is one HPN in the cell

center and 12 EH-RRHs uniformly distributed around it. Each resource

block occupies a bandwidth of 180kHz, and one resource block is allocated

to one UE at a time. The UEs are randomly distributed inside the macrocell.

The simulation of RB and power allocation is repeated based on the time

slot of 1ms, which is the minimum time unit in OFDMA systems. During

each time slot, the energy harvesting rates remain constant. According to

[AGD+11], the power amplifier efficiencies of macrocell HPN and picocell

RRHs are η = 31.1% and ηR = 6.7% respectively. It is assumed that the

static circuit power consumption of HPN to be PM
c = 10.3W and that of

picocell RRH is 0.1W. As for the fronthaul link and the backhaul link power

consumption PM
bh and Pfh, they are both assumed to be 0.2W [PZJ+15]. The

maximum transmit power of HPN is 20W (43dBm). Energy harvesting rate

P g
k is assumed to be undergoing a stochastic process [XCE+16]. The low-

est and highest power harvesting level are 22dBm and 48dBm respectively.

The thermal noise level is -174dBm/Hz. With 20MHz as the overall system

bandwidth, there are 100 resource blocks available to be assigned to the UEs.

Figure 3.5 demonstrates the convergence performance of the proposed

algorithm. The convergence of the baseline algorithm – Maximum Energy

Efficiency which is similar with that of [PZJ+15] is presented as well for the

comparison. The curves representing the convergence of 50 and 100 UEs in

the system for the two algorithms are presented respectively. In the first

few iterations, the algorithm improves the grid power utility approaching the

convergence level. As shown in the Figure 3.5, with different scenarios and
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Figure 3.6: Grid power utility versus different numbers of UEs.

UE numbers, they have different tempos towards the convergence value, but

all converge after five updates of the outer loop iteration. The change of

optimality target from energy efficiency to grid power utility do not sacrifice

the convergence speed of such iterative algorithm. For the proposed algo-

rithm, system with 50 UEs outperforms the system with 100 UEs in terms of

grid power utility. As for the maximum energy efficiency algorithm, although

system with 50 UEs has slightly better utility performance, they almost have

the same value. Then it turns to the detailed grid power utility performance

versus different number of UEs.

The grid power utilities versus UE numbers for different scenarios are

depicted in the Figure 3.6. The curve as the highest level represents the

obtained utility of proposed algorithm. The value goes an apparent rise as

56



10 20 30 40 50 60 70 80 90 100

UE numbers

0

10

20

30

40

50

60
G

ri
d

 P
o

w
e

r 
C

o
n

s
u

m
p

ti
o

n
 (

W
)

Optimal Grid Power Utility

Maximum Energy Efficiency

Figure 3.7: Grid power consumption for different scenarios.

the number of UEs increases from 10 to 30. The reason behind is that before

the number of connected users reaches 30, there is much harvested renew-

able remained unused; then as more and more users connected to the system,

that part of renewable which is not utilised would be allocated to the newly

connected UEs. Under such condition, data rate requirement can be satis-

fied without consuming much more grid power. Then the value remains at a

relatively stable level for UE numbers from 30 to 70, which means that the

utility optimality algorithm reassigns the radio resource according to the new

system characteristics to satisfy the service requirement without degrading

the utility. After that, the utility decreases because much higher grid energy

consumption is needed to overcome the increased interference level.

Another three scenarios are added as the benchmarks. The blue line is
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the maximum energy efficiency algorithm. After the go-up for the UE num-

bers from 10 to 30, the curve reaches the stable level, and the position of this

curve is completely under that of the proposed algorithm. The lines of RSRP

and biased RSRP occupy the lowest positions in the plot. In addition, both

two curves show a straight up-and-down with a peak and without a stability

level. That is because as a simple algorithm without considering other sys-

tem parameters except for the receiving power of the UEs, RSRP does not

collect system information for centralised control. Under such scenario, the

system just allocates the remained green energy to the newly added UEs un-

til it is exhausted. That in turns provides the proof of the superiority of the

advanced centralised control. In summary, the proposed algorithm gives the

best performance both in terms of the grid power utility and the efficiency

of resource allocation.

Figure 3.7 compares the grid power consumption for two different scenar-

ios. The curve representing proposed algorithm is always under that of the

baseline energy efficiency maximisation algorithm, meaning that proposed

algorithm always consumes less grid power for whatever the number of user

equipments. The amount of grid power saved by applying our algorithm

may not be very large for UE numbers from 10 to 30, but as the number of

user equipments gets larger, the grid power saving becomes more obvious.

There are almost 20 to 30 percent of grid power saving compared to baseline

scenario for UE numbers larger than 30, which is quite considerable when it

comes to the absolute value for hundreds of macrocells adding together.

The highest energy harvesting level for renewable energy source is also

an important factor influencing the grid power utility performance. This
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Figure 3.8: Grid power utility comparisons under different upper bounds of the energy
harvesting rate.

parameter itself is decided by the condition of ambient environment. Fig-

ure 3.8 compares the utility as the maximum energy harvesting rate ranges

from 24dBm to 46dBm. At the first 3 points, the grid power utility increases

slowly, because most of the harvested renewable energy can just compensate

the static power consumption of the APs. This restricts the growth of the

green power supported service rate. Then there goes a rapid increase for

range from 28dBm to 40dBm. As most of the static power consumption has

already been satisfied by the energy harvester, excess green energy is able to

be allocated accordingly to the served UEs, which makes the throughput rise

up without consuming extra grid power. After 40dBm, the increase slows

down. That is because the energy harvesting rate excesses the maximum

allowed transmitting power for most of the APs most of the time, only a por-

tion of the renewable will be used for signal transmission. Compared with
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the grid power utility maximisation algorithm, energy efficiency optimisation

algorithm undergoes a linear increase. The reason is that EE optimisation

obtains the optimal resource allocation without considering the green power

supply, so the grid power utility just increases as the portion of green energy

usage goes higher.

3.4 Summary

In this chapter, the heterogeneous cloud radio access network with hybrid en-

ergy sources is investigated. Firstly, the joint user association and power al-

location scheme for hybrid energy source powered H-CRAN is proposed. The

optimisation problem is formulated as on-grid energy minimisation problem.

Applying Lagrange dual decomposition method, the user association and

power allocation policy is obtained, generating the numerical results of grid

power consumption by macrocell high power node. Numerical results reveal

that the proposed algorithm is able to introduce considerably large amount

of on-grid energy saving comparing to baseline algorithms. The power saving

performance is improved by the optimal algorithm comparing to traditional

RSRP schemes. Afterwards, an iterative optimisation algorithm is proposed

to maximise the grid power utility. Numerical results demonstrate that the

grid power utility of the proposed optimisation scheme outperforms all other

baseline schemes to a large extent. In terms of the grid power saving perfor-

mance, 20 to 30 percent of grid power consumption can be reduced compared

to baseline algorithm.

60



Chapter 4

Delay-aware Energy Efficient
Computation Offloading for
Energy Harvesting Enabled Fog
Radio Access Networks

This chapter introduces a novel computation offloading strategy in the fog-

computing-based radio access networks architectures, where all access points

are equipped with renewable energy sources. Theoretical analysis is presented

to illustrate how to coordinates the computation offloading according to the

availabilities of renewable energy to minimise the grid power consumption.

4.1 Motivation

Although there are existing literatures on resource allocation strategy of F-

RANs’ offloading, there is no existing work on how to coordinate the compu-

tation offloading according to the availabilities of renewable energy to min-

imise the grid power consumption. In addition, many researches on F-RAN

and mobile edge computing do not fully reflect the characteristics of fog-

computing by examining the computation offloading strategies with multiple

choice of offloading paths. In this chapter, a energy efficient computation
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offloading design for energy harvesting enabled F-RAN is presented, which

is to fill in the above-mentioned research gaps.

4.2 System Model

This chapter focuses on a multi-user scenarios where the set U of U mobile

user equipments (UEs) are served by F-APs. The F-APs are denoted as set

N = {1, ..., N}. For specific F-AP n ∈ N , Un represents the set of UEs

associated with it, while Un ∩ Un′ = ∅,∀n, n′ ∈ N , n 6= n′ and
⋃
n∈N Un = U .

Nu is defined as the serving small cell of u. The service request for each

UE is represented as (Din
u , D

out
u , Lu), where Din

u is the number of input data

bits for computation, Dout
u is the output bits of the computation results

returned, and Lu denotes how many instructions are needed to complete

the computation. In theory, the computational load Lu can be offloaded

to the cloud center instead of going to the neighbouring F-APs. However,

this contradicts the intention of alleviating the traffic burden and eliminating

transmission delay of the fronthaul network. Moreover, the high level of static

power consumption in the cloud center hinders the applicability of renewable

power supply.

4.2.1 Transmission Model

For all F-APs n ∈ N , aunk = 1 if they decides to offload the computation

task of u ∈ Un to the neighbouring F-AP k ∈ N /Nu, and aunk = 0 oth-

erwise. Since there would be excessive signalling overhead if the offloading

is implemented among multiple F-APs, it is assumed that if aunk = 1, then∑
k∈N/Nu

∑
u∈Un a

u
nk = 1, ∀n ∈ N since the computation for specific u in

its serving F-AP n ∈ Nu can only be offloaded to one of the neighbouring
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Figure 4.1: System diagram for F-RAN offloading.

F-APs.

Given the channel between two access points hnk ,the channel-to-interference-

plus-noise ratio (CINR) is expressed as:

ωnk =
|hnk|2

N0

, (4.1)

where N0 is the noise power spectral density. By assuming that effective

resource reuse scheme is applied, the interference from other transmission

can be ignored [PZJ+15]. Then the achievable data transmission rate for the

n-th F-AP to transmit Du to neighbouring F-AP k can be given as

Ru
nk = B0log2(1 + punkωnk), (4.2)

where B0 is the bandwidth occupied for data transmission, punk is the transmit

power level. Hence, the latency introduced by the data transmit from serving
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F-AP to the neighbouring access point can be expressed as

T unk =
Din
u

B0log2(1 + punkωnk)
. (4.3)

Similarly, given the transmit power for returning the computation results as

p̂ukn and the CINR ω̂kn, the transmit delay for returning computation result

is given as:

T̂ ukn =
Dout
u

B0log2(1 + p̂uknω̂kn)
, (4.4)

and the total transmission latency be written as

T Tu =
∑
n∈Nu

∑
k∈N/Nu

aunk

(
T unk + T̂ ukn

)
. (4.5)

Based on the transmit power and the latency, the energy consumption

for the wireless transmission of forward offloading is represented by Eu
nk =

1
η0
punkT

u
nk, and for returning computation results Êu

kn = 1
η0
p̂uknT̂

u
kn where η0

is the power amplifier efficiency of F-APs. Then the total transmit energy

consumed by n-th F-AP is given as:

ET
n =

∑
k∈N/Nu

(∑
u∈Un

aunkE
u
nk +

∑
u∈U/Un

auknÊ
u
kn

)
, (4.6)

and the total transmit power as:

P T
n =

∑
k∈N/Nu

(∑
u∈Un

aunkp
u
nk +

∑
u∈U/Un

auknp̂
u
kn

)
. (4.7)

4.2.2 Computation Model

It is assumed that the overall computation capability, which is characterised

as the CPU cycles per second, is fixed for each access point denoted by
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Fmax
n . Therefore, by scheduling fun as the computation capability for the

u-th UE’s service requests, the constraint should be satisfied as the sum

capability allocated should not excess Fmax
n . Denoting mu as the number

of CPU cycles required for each instruction, the latency of completing the

computing task for u-th UE is

TCu =
∑
n∈Nu

[
(1−

∑
k∈N/Nu

aunk)
muLu
fun

+
∑

k∈N/Nu

aunk
muLu
fuk

]

=
∑
n∈Nu

[ ∑
k∈N/Nu

aunk(
muLu
fuk

− muLu
fun

) +
muLu
fun

] (4.8)

According to [WZL12], the energy consumption per CPU cycle is propor-

tional to the square of the clock frequency of the chip. Then denoting

εn = κ0(Fn)2 as the energy consumption per CPU cycle of the n-th F-AP,

with

Fn =
∑

k∈N/Nu

[ ∑
u∈Un

(1− aunk)fun +
∑

u∈U/Un

auknfun

]
(4.9)

Hence, given the total computation load of n-th fog-computing access point

as:

Cn =
∑

k∈N/Nu

[ ∑
u∈Un

(1− aunk)Lu +
∑

u∈U/Un

auknLu

]
(4.10)

the total energy consumption for completing the computation in n-th access

point can be written as:

EC
n = εnCn = κ0(Fn)2Cn,∀n ∈ N (4.11)

where κ0 = 10−8 according to realistic measurement [Che15].
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4.2.3 Energy Harvesting Model

It is assumed that the energy harvested by green energy source cannot be

stored in the access points because of the disadvantage of doing so [GLN+12].

Energy collected from ambient environment should be utilised in time, other-

wise it will dissipated after next time slot. This means that the green energy

should be fully utilised to serve the computation and offloading transmission

in a short time slot. The available renewable energy for F-AP n is denoted

as Eg
n, which is i.i.d between 0 and Emax

H uniformly for each access point.

The energy consumed from the power grid is:

Gn = [ET
n + EC

n − Eg
n]+, ∀n ∈ N (4.12)

where [x]+ = max{x, 0}.

4.3 Problem Formulation

4.3.1 Original Problem

The grid energy consumption minimisation problem is formulated in this sec-

tion. The delay requirement of mobile UEs should not excess the maximum

allowed delay Tmax. The total latency including the transmission delay and

computation execution delay is

tu = T Tu + TCu (4.13)

The maximum overall latency for finishing the computation is imposed

as Tmax. Given the computational capabilities for each F-AP Fmax
n , and the
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maximum transmission power level Pmax
n , the network grid energy minimi-

sation problem is formulated as:

min
{a,p,p̂,f}

∑
n∈N

Gn (4.14)

s.t.

P T
n ≤ Pmax

n ,∀n ∈ N (4.15)

tu ≤ Tmax,∀u ∈ U (4.16)

Fn ≤ Fmax
n , ∀n ∈ N (4.17)

where a , (aunk)∀n∈Nu,∀k∈N/Nu,∀u∈U , is defined as the computation offloading

indicator, aunk = 1 if the computation task of u ∈ Un is offloaded to the neigh-

bouring F-AP k ∈ N /Nu, and aunk = 0, otherwise; p , (punk)∀n∈Nu,∀k∈N/Nu,∀u∈U

is the forward offloading power allocation policies, p̂ , (p̂ukn)∀n∈Nu,∀k∈N/Nu,∀u∈U

is the backward computation result returning power allocation policies; f ,

(fun)∀u,n is the computation capability allocation policy.

Because of the non-convexity of constraint (4.16) and the objective func-

tion itself, and the binary offloading indicator a , (aunk)∀n∈Nu,∀k∈N/Nu,∀u∈U ,

the formulated optimisation problem falls into the category of mixed integer

non-linear programming (MINLP) which is NP-hard [CSBC16]. The problem

is reformulated into the convex form in the following subsection.

4.3.2 Convex Reformulation

This section addresses the non-convexity of the optimisation problem. Firstly,

the non-convex term in the objective function is investigated. In the objective

function, the term representing the total transmit energy, ET
n , is non-convex

in terms of punk and p̂ukn. However, from the rough calculation according to
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eq. (11), the energy consumed for transmitting input and output bits of

computation is less than one tenth of the corresponding computation. As

a result, the non-convex term of ET
n can be eliminated from the objective

function with negligible impact on the solution obtained.

Secondly, the constraint (4.16) is transformed into its convex equivalence.

By separating the forward offloading and backward computation result re-

turning into two independent power allocation policies, the signalling and

decision making process may get complicated and therefore degrade the

system performance in practical applications. Hence, by assuming that

punk = p̂ukn, ∀u ∈ U ,∀n ∈ Nu,∀k ∈ N /Nu, the forward and backward trans-

mit power can be determined together with equal level. Assuming that the

channel condition between two access points remains unchanged within the

service time for specific u, i.e. ωnk = ω̂kn,∀n ∈ Nu,∀k ∈ N /Nu, the con-

straint (4.16) is rewritten as

∑
n∈Nu

∑
k∈N/Nu

aunk

[
Din
u +Dout

n

B0log2(1 + punkωnk)
+ (

muLu
fuk

− muLu
fun

)

]
+
∑
n∈Nu

muLu
fun

≤ Tmax,∀u ∈ U
(4.18)

The latency constraint (4.18) is still non-convex, further transformation is

required. Supposing that for specific u, if there exists the offloading from its

serving F-AP Nu to one of the neighbouring access points k ∈ N /Nn, i.e.∑
n∈Nu

∑
k∈N/Nu

aunk = 1, the expression (4.18) is reduced to

(Din
u +Dout

u )

B0log2(1 + punkωnk)
+
muLu
fuk

≤ Tmax (4.19)
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otherwise, i.e.
∑

n∈Nu

∑
k∈N/Nu

aunk = 0, the expression would be reduced to

muLu
fun

≤ Tmax (4.20)

Under the feasibility condition Tmaxfuk > muLu [OSSB15], the reduced delay

constraint (4.19) can be rewritten as

(Din
u +Dout

u )fuk
Tmaxfuk −muLu

−B0log2(1 + punkωnk) ≤ 0 (4.21)

which is convex in term of both fuk and punk. Then the simplified latency

constraint (4.16) can be replaced with the three following constraints equiv-

alently

∑
n∈Nu

∑
k∈N/Nu

aunk

[
(Din

u +Dout
u )fuk

Tmaxfuk −muLu

−B0log2(1 + punkωnk)

]
≤ 0

(4.22)

(1−
∑
n∈Nu

∑
k∈N/Nu

aunk)(muLu − funTmax) ≤ 0 (4.23)

muLu − Tmaxfuk < 0,∀u ∈ U , k ∈ N /Nu (4.24)

4.4 Offloading Decision Algorithm

Although the objective function and non-convex constraints have been trans-

formed into convex form, the reformulated problem is still a mix-integer pro-

gramming with binary variables. If the exhaustive search method is applied,
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the computational complexity would increase exponentially as the network

size grows, which hinders the applicability on the scenario of large scale.

Here the reformulated optimisation is denoted as the function of offloading

decision a , (aunk)∀n∈Nu,∀k∈N/Nu,∀u∈U as

P(a) : min
{p,f}

∑
n∈N

G′n =
∑
n∈N

[EC
n − Eg

n]+

(4.25)

s.t. (4.15) & (4.17), (4.22)-(4.24)

The following offloading decision algorithm is proposed to determine the

value of each aunk ∈ a. The algorithm goes iteratively to find the set of F-AP

with unused green energy and find the specific F-AP with largest grid energy

consumption. Then the offloading decision index is updated each iteration

by trying to find the possible offloading which can reduce the total network

grid power consumption.

At the beginning of the decision making process, the energy consumption

for each F-AP under no-offloading scenario would be estimated based on the

collected parameters, e.g. latency constraints and required CUP cycles. If

all access points have sufficient renewable energy or all access points have no

spare renewable energy, the algorithm stops since there is no meaning making

offloading. Usually it will not be the case, so from the access point which

consumes the highest level of non-renewable energy, the computation task

is assumed to be offloaded from its serving UEs set in turn. By finding the

offloading which makes the non-renewable energy consumption the lowest,

the iteration updates the offloading indicator accordingly. The algorithms

iterates until it is found that further iterations will not obtain lower non-

renewable energy consumption.
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Algorithm 2 Offloading Decision Algorithm

1: Calculate the grid energy consumption of each F-AP under the scenario of
no offloading, find the access point set with surplus green energyM[0] =
{n|G[0]

n = 0}
2: if M[0] = ∅ or M[0] = N then
3: go to End
4: end if
5: Initialisation r = 0, a[r] = 0
6: repeat
7: Set r = r + 1, i = 1 and j = 1
8: ñ= argmaxn∈N/MG

[r−1]
n

9: for i ≤ |Uñ| do
10: for j ≤ |M[r−1]| do
11: Update a[r] by setting aũñm̃ = 1, where ũ = ui ∈ Uñ, m̃ = mj ∈

M[r−1]

12: Solve the problem P(a[r])

13: if it is feasible and
∑

n∈N G
[r]
n <

∑
n∈N G

[r−1]
n then

14: Update G
[r]
n for each n ∈ N , M[r] = {n|G[r]

n = 0}
15: break
16: else
17: a[r] = a[r−1], G

[r]
n = G

[r−1]
n ,∀n ∈ N

18: end if
19: end for
20: end for
21: untilM[r] = ∅ or M[r] = N or

∑
n∈N G

[r]
n =

∑
n∈N G

[r−1]
n

22: End

4.5 Simulation Results and Performance Anal-

ysis

This section elaborates the choosing of the system parameters and presents

the numerical results produced.
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4.5.1 System Parameters

Referencing the given channel gain between two access points [CSBC16]:

hnk = 10−
L(dnk)

20
√
φnkθnkgnk (4.26)

where L(dnk) = 15.3 + 37.6log10dnk is the pathloss between serving F-AP n

and computing F-AP k as the function of distance dnk ∈ R in meters. In ad-

dition, φnk represents the log-normal shadowing with the standard deviation

as 8 dB, θnk is defined as the antenna gain with value 15dBi, and gnk is used

to denote the small scale fading coefficient.

It is assumed that the F-APs with coverage radius of 200m and mobile

users are geographically distributed in the 600 × 600m2 area, so that there

are N = 9 F-APs in total and the number of mobile users varies from 10 to

50. Referencing the face recognition applications[Che15], the computation

tasks are with input and output data size Din
u and Dout

u as 420KB, and

the operations required is 500 Mega operations. The CPU cycles required

for each operation is mu = 2. The computational capabilities for each F-

AP is Fmax = 10GHz. Maximum allowed transmit power of access points

Pmax
n = 43dBm.

4.5.2 Numerical Results

Figure 4.2 represents the average grid energy consumption for completing

each UE’s computation. It worth mentioning that as the allocated compu-

tational capacity for each F-AP increases, energy consumption of each CPU

cycle gets higher. The “SINR-based Offloading” scheme is presented as a

benchmark. The F-APs which lack of sufficient renewable energy will try to

offload the computation to the access point with the best channel condition.
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Figure 4.2: Average non-renewable energy consumption for each served UE in dependence
on different user numbers, Tmax = 0.2s

Compared to no-offloading scenario, this channel condition based offloading

scheme does reduce the grid energy consumption. The proposed offloading

scheme gives even lower grid energy consumption. That is because good

channel condition is not directly related to the most important influencing

factor, namely the availability of harvested energy. For specific offloading F-

AP, the transmit of data can take more time if it offloads computation tasks

to one of its neighbouring access points that are not with the best channel

condition. However, the access point can be with higher availability of re-

newable energy, so that even the total energy consumption increases since

the time window for completing computation is shorter, the less grid energy

would consumed.

Figure 4.3 depicts the percentage of computation tasks completed by ac-

cess points within the imposed latency constraints. This ratio is obtained
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Figure 4.3: The percentage of computation tasks completed within imposed latency con-
straint in dependence on different user numbers, Tmax = 0.2s

by removing the user from most task-intensive cell upon failing to reach a

solution of the optimisation. The completing percentage are presented in

dependence on the number of distributed mobile users from 10 to 50. As

long as some offloading scheme is implemented, the satisfaction ratio would

be improved compared to no offloading scheme. Still, the proposed offloading

scheme gives better performance, namely higher percentage of satisfied com-

putation, compared to channel condition based offloading. That is because

of the richer choice of offloading paths for the proposed schemes.

Figure 4.4 represents how the latency for finishing computation tasks

varies for different scenarios. The proposed offloading scheme takes more

time to finish the computation than non-offloading scenario, because offload-

ing takes time for data transmission between access points. For this perfor-

mance indicator, “SINR-based offloading” gives better results than proposed
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Figure 4.4: The average delay for completing computation in dependence on mobile user
numbers, Tmax = 0.2s

scheme. The reason behind is that channel condition based offloading takes

less time for data exchange. However as the trade-off, this come at the cost

of dropping more users’ computation request. This also applies for the no

offloading scenario, and this scenario can gives quicker average completion

time but with the lowest percentage of computation task completion as show

in Figure 4.3. It is possible for some APs with sufficient renewable energy to

finish some mobile users’ computation quicker than the imposed constraint,

especially in low user numbers. As for the higher densities, average latencies

of all scenarios tend to approach the imposed delay constraint.
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4.6 Summary

In this chapter, a novel offloading design in energy harvesting enable F-

RAN is proposed to achieve energy efficient computation offloading. A green

energy aware offloading decision algorithm is proposed to determine the of-

floading strategy, then the power and computation capabilities allocations

are obtained through solving the optimisation problem. The proposed of-

floading design has successfully minimised the grid power consumption with

the help of renewable energy sources. Numerical results show that the of-

floading scheme can save the average grid power consumption for completing

the computing task of each UE. Moreover, the percentage of computation

request served by fog-computing also increases.
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Chapter 5

Mobile-Edge Computation
Offloading for Applications
Featuring Shared Data

This chapter investigates the joint optimisation of computation offloading

and communications resource allocation in the multi-user MEC system, where

multiple single-antenna mobile users running applications featuring shared

data. The detailed analysis on how the shared data property can be utilised

to reduce mobile users’ energy consumption is presented. Moreover, the per-

formance evaluation is carried out to prove the effectiveness in energy saving.

5.1 System Model

A mobile-edge system is considered consisting of U mobile users running

AR/VR applications, denoted as U = {1, ..., U}, and one access point (AP)

equipped with computing facilities working as a cloudlet server. All of the

mobile users and the AP are assumed to be equipped with single antenna.

The input data size for user u is denoted by DI
u, ∀u ∈ U , in which one

fraction data size of DI
S bits are the shared data that is the same across

all U mobile users. The rest DI
u − DI

S bits are held individually that are
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Figure 5.1: The system diagram of the investigated multi-user MEC system.

exclusive among different users. The computation data go through a partial

offloading scheme, where both the shared data and the exclusively individual

data are transmitted from each user partially. The shared data transmitted

from each user is denoted by DI
u,S, ∀u ∈ U , such that

∑U
u=1 D

I
u,S = DI

S. The

amount of input data that is exclusively transmitted by u is thus given by

D̄I
u = DI

u − DI
S − DL

u ,∀u ∈ U , where the DL
u bits are remained for local

execution by user u. For every bit of input data, there requires λ0 CPU

cycles to finish to computation. The proportion of the shared data in the

input data bits is denoted as εu = DI
S/D

I
u, ∀u ∈ U .

It can be seen from Figure 5.2 that there are two consecutive sub-phases

for both input data offloading and the results downloading phases: the shared

data transmission and the individual data transmission. The data are trans-

mitted between mobile users and the cloudlet server via frequency division

multiple access (FDMA). The uploading and downloading of all mobile users

are conducted simultaneously occupying different frequency bands. The over-

all bandwidth are averagely allocated to all mobile users. The transmission

duration for offloading the shared input data is denoted by tulu,S, ∀u ∈ U ; the
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Figure 5.2: The data transmission protocol of the investigated multi-user MEC system.

offloading duration for the individual data is denoted as tulu , ∀u ∈ U ; and

the durations for downloading the shared and the individual output data

are tdlu,S, tdlu , ∀u ∈ U respectively. The remote computation times are also

illustrated in Figure 5.2, where tCS and tCu , ∀u ∈ U denote the computation of

the shared input data and that of the offloaded individual data, respectively.

Correspondingly, F and fu, ∀u ∈ U , denote the computational frequency

(in cycles/s) allocated to process the shared and the individual tasks by

the cloudlet server respectively. In addition, the local computation time is

denoted by tCu,L, ∀u ∈ U .

5.1.1 Task Data Transmission

As observed from the timing diagram Figure 5.2, there are two consecutive

offloading transmission sub-phases: the shared data and the individual data

offloading [ASS17]. Each mobile user occupying different frequency bands via
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FDMA, and offloads their computation tasks to the cloudlet server simulta-

neously. The forward link channel coefficient of user u is given by hu,∀u ∈ U ,

which is assumed to remain unchanged during the offloading transmission.

With the transmission power given by pulu,S, the achievable individual data

rate for offloading the shared data is expressed as:

Rul
u,S = W ul

u log2(1 +
pulu,S|hu|2

N0

),∀u ∈ U , (5.1)

where W ul
u = Wul

U
, W ul denoting the overall bandwidth available for the input

data offloading, U is the number of active mobile users. N0 is the additive

white Gaussian noise (AWGN) power. Accordingly, tulu,S = DI
u,S/R

ul
u,S, and

the energy consumed by the u-th user in the shared data offloading sub-phase

is given as

Eul
u,S = tulu,Sp

ul
u,S =

tulu,S
|hu|2

f(
DI
u,S

tulu,S
),∀u ∈ U , (5.2)

where f(x) is defined as f(x) = N0(2
x

Wul
u − 1) [XLXN19].

Recalling the same derivation process, denoting the transmission power

applied for individual data offloading as pulu , the energy consumption for the

u-th user in the individual data offloading sub-phase is expressed as:

Eul
u = tulu p

ul
u =

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
), ∀u ∈ U . (5.3)

Similar to the offloading transmission, the downloading transmission is

separated into two sub-phases: the shared output data and the individual

results downloading. The shared output data are multicasted to the mobile

users via the whole available frequency band W dl. The backward link channel

coefficient for user u is given by gu,∀u ∈ U , which calculates the signal fading

when transmitted from the cloudlet server to the mobile user. It is assumed
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that gu,∀u ∈ U remain constant during the results downloading. Given the

transmission time of the shared data computation results as tdlu,S,∀u ∈ U , the

energy expended to return the shared data computation results to mobile

user u is

Edl
u,S =

tdlu,S
|gu|2

Γ(
a0D

I
S

tdlu,S
), ∀u ∈ U , (5.4)

where Γ(x) = N0(2
x

W dl −1) [XLXN19], W dl is the overall available frequency

bands available. a0 is the coefficient representing the number of output bits

for executing one bit of input data.

Similarly, the amount of energy expended for transmitting individual out-

put results back to user u is:

Edl
u =

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
), ∀u ∈ U . (5.5)

In the mobile users side, the energy consumption for receiving and decod-

ing downloaded data from the cloudlet server is proportional to the length

of downloading time. According to the model given by [ASS17], the energy

consumed at the u-th mobile user for the whole downloading phase is written

as:

Edown
u = (tdlu,S + tdlu )ρdlu ,∀u ∈ U , (5.6)

where ρdlu (in Joules/second) captures the energy expenditure per second.

5.1.2 Computation Model

The computation in the cloudlet server is divided into two different sub-

phases. Firstly, after the DI
S bits of shared data are received by the cloudlet

server, it is processed by the allocated computing capability. In this sub-

phase, the part of computing capability allocated by the cloudlet server is
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denoted as fs. Given that the CPU cycles needed to finish the computation

of shared input-bits is λ0D
I
S, the computation latency induced by processing

shared data is:

tCS = λ0D
I
S/fs, (5.7)

According to the energy model in [Che15], the energy expended per CPU

cycle is proportional to the square of the clock frequency of the chip. Given

the allocated computing frequency fs, the energy consumption is given as:

EC
S = κ0fs

2λ0D
I
S, (5.8)

where κ0 is the energy consumption capacitance coefficient.

After the completion of the shared data computation, the computing

capability is released to handle the computation of exclusive data offloaded

by each user individually. In this sub-phase, the computing capability is

divided into different fractions fu for tasks from different users u. The latency

induced is then given as:

tCu = λ0D̄
I
u/fu,∀u ∈ U , (5.9)

and the energy consumption for finishing the computation of u-th mobile

user’s individual data bits is

EC
u = κ0fu

2λ0D̄
I
u,∀u ∈ U . (5.10)

Given the local computation time as tCu,L, ∀u ∈ U , and the local computing

bits DL
u , then the local clock frequency of u-th mobile user is given as fLu =

λ0D
L
u/t

C
u,L. Recalling the energy consumption model in [Che15], the energy

expended per CPU cycle is proportional to the square of the clock frequency
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fLu
2
. Since the CPU cycles needed to complete the local computation is

λ0D
L
u , the energy consumption for executing local computing in terms of

computational time is expressed as:

EL
u = κ0

(λ0D
L
u )3

tCu,L
2 ,∀u ∈ U , (5.11)

5.1.3 Total Latency

For the purpose of introducing the expression of total latency, a point needs

to be understood firstly that some phases of computing or transmitting can

only start after the end of some other specific progresses. For example, the

uploaded shared data in the cloudlet server cannot start being processed and

computed until the transmission of it completes. Given that all mobile users

upload the shared input data cooperatively taking the time length as tulu,S, the

induced latency until the end of shared input data computation is tulS + tCS ,

where tulS = max{tulu,S}. The individual offloaded data can only set out to

be computed both after the completion of its transmission and the end of

shared data computation which means the release of computing capability.

Hence, denoting the latency from the beginning of the data offloading until

the end of individual input data computation as τ1,u, it is expressed as

τ1,u = max{tulu,S + tulu ,max{tulu,S + tCS }}+ tCu (5.12)

Moreover, by looking at the output data downloading, the shared output

data transmission begins after the end of all offloading transmission since in

our design the multicasting needs to occupy the whole bandwidth. More im-

portantly, the transmission is only possible by the time that the computation

results are available. Denoting the latency from the beginning of the data
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offloading until the end of shared data output multicasting as τ2, it is given

as:

τ2 = max

{
max
u∈U
{tulu,S + tulu },max

u∈U
{tulu,S}+ tCS

}
+ max

u∈U
{tdlu,S} (5.13)

Note that there is no subtitle u for the denotation of τ2 since it is irrelevant

with specific mobile user u.

Finally, it comes to the individual output data transmission. As the

last phase of the data transmission, it should wait for the idle state of the

transmission channels, which means that the shared output data multicasting

needs to come to the end before the transmission of the individual output

data. Similar to the shared output data transmission, another aspect should

be met except for the idle channels, which is the availability of the computing

results. As a result, the latency from the beginning of input data offloading

to the end of individual output data downloading for each mobile user u is:

τu = max{τ1,u, τ2}+ tdlu (5.14)

Combining the above facts, the expanded total latency expression is fi-

nally given as follows:

τu = max

{
max{tulu,S + tulu ,max

u∈U
{tulu,S}+ tCS }+ tCu ,

max

{
max
u∈U
{tulu,S}+ tCS ,max

u∈U
{tulu,S + tulu }

}
+ max

u∈U
{tdlu,S}

}
+ tdlu ,∀u ∈ U .

(5.15)
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5.2 Energy Efficient Computation Offloading

and Communications Resources Alloca-

tion for Applications Featuring Shared Data

5.2.1 Motivation

The joint optimisation of computation offloading with communications re-

sources (such as power, bandwidth, and rate) proves to improve the perfor-

mance of fog computing by explicitly taking channel conditions and commu-

nications constraints into account. The intrinsic collaborative properties of

the input data for computation offloading was investigated for augmented

reality in [ASS17]. However the authors of [ASS17] fail to find the optimal

solutions of the proposed energy minimisation problem. In order to provide

the in-depth understanding of the shared-data featured offloading in MEC

systems and fully reap the advantage of fog computing, this research is con-

ducted.

5.2.2 Problem Formulation

The overall energy consumption at the mobile users consists of three parts:

data offloading over the uplink (c.f. (5.2) and (5.3)), results retrieving (c.f.

(5.6)), and local computing (c.f. (5.11)), which is thus given by

Em =
∑
u∈U

κ0
(λ0D

L
u )3

tCu,L
2 +

∑
u∈U

tulu,S
|hu|2

f(
DI
u,S

tulu,S
)

+
∑
u∈U

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
) +

∑
u∈U

(tdlu,S + tdlu )ρdlu .

(5.16)

The objective is to minimise the mobile users’ energy consumption given
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by Em, subject to the computing latency constraints, the maximum local

computing frequencies, and the total energy consumption on the individual

data at the BS. Specifically, the optimisation problem is formulated as below:

(P1) : min
{tulu,S ,tulu ,t

C
u,L,t

dl
u ,D

L
u ,D

I
u,S}
Em

s.t.

τu ≤ Tmax,∀u ∈ U , (5.17a)∑
u∈U

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
) ≤ Emax, (5.17b)

0 ≤ tCu,L ≤ Tmax,∀u ∈ U , (5.17c)

λ0D
L
u ≤ tCu,Lfu,max, (5.17d)

0 ≤ DL
u ≤ DI

u −DI
S,∀u ∈ U , (5.17e)∑

u∈U

DI
u,S = DI

S, D
I
u,S ≥ 0, (5.17f)

tulu,S ≥ 0, tulu ≥ 0, tCu,L ≥ 0, tdlu ≥ 0,∀u ∈ U . (5.17g)

Constraint (5.17a) and (5.17c) gives the latency constraints that the time

taken for accomplishing computing tasks cannot excess the maximum al-

lowed length, both for offloading and local computing. (5.17b) tells that the

available energy for downlink transmission of remote computing node should

be lower than a maximum level. (5.17d) restricts the number of allowable

local computing bits imposed by local computing capabilities. In addition,

(5.17f) puts that adding all the shared data bits offloaded by all mobile users

respectively, the value should be equal to the exact amount of shared bits

existing in the same user group.

Although the latency expression (5.15) looks complex in its from, (5.17a)
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is still a convex constraint. For the ease of exposition, it is assumed herein

that the cloudlet executes the shared and the individual computing within the

duration of the individual data offloading and the shared results downloading,

respectively, i.e., tCS � tulu , and tCu � tdlu,S, ∀u ∈ U1. As a result, (5.17a) can

be simplified as below:

max{tulu,S + tulu }+ tdlS + tdlu ≤ Tmax, ∀u ∈ U . (5.18)

by introducing the auxiliary variable tdl, which satisfies tdlu ≤ tdl, ∀u ∈ U ,

(5.18) reduces to

tulu,S + tulu ≤ Tmax − tdlS − tdl, ∀u ∈ U . (5.19)

Notice that EC
u ’s (c.f. (5.10)) is monotonically decreases with respect to

the local computing time tCu,L for each mobile user. To obtain the minimal

energy consumption, it is obvious that tCu,L = Tmax,∀u ∈ U . Then the

optimisation problem to be solved is reformulated as:

(P1′) : min
{tulu,S ,tulu ,tdlu ,tdl,DL

u ,D
I
u,S}
Em (5.20a)

s.t.

(5.17b)− (5.17g), (5.19). (5.20b)

tdlu ≤ tdl,∀u ∈ U . (5.20c)

1It is assumed herein that the computation capacities at the cloudlet is relatively much
higher than those at the mobile users, and thus the computing time taken is much shorter
than the data transmission time.
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5.2.3 Joint offloading and communication resource al-

location

Introducing dual variables β,ω,σ, ν, the Lagrangian of problem (P1′) is

presented as:

L(β,ω,σ, ν, tulu,S, t
ul
u , t

dl
u , t

dl, DL
u , D

I
u,S) =∑

u∈U

tulu,S
|hu|2

f(
DI
u,S

tulu,S
) +

∑
u∈U

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
)

+
∑
u∈U

κ0
(λ0D

L
u )3

tCu,L
2 +

∑
u∈U

(tdlu,S + tdlu )ρdlu +
∑
u∈U

βu(t
ul
u,S

+ tulu − Tmax + tdlS + tdl) +
∑
u∈U

ωu(λ0D
L
u

− tCu,Lfu,max) +
∑
u∈U

σu(t
dl
u − tdl)

+ ν[
∑
u∈U

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
)− Emax],

(5.21)

where β = {β1, ..., βU} are dual variables associated with the latency con-

straint (5.19), ω = {ω1, ..., ωU} are associated with local computing bits

constraint (5.17d)), σ = {σ1, ..., σU} are connected with the constraint for

auxiliary variable tdl, and ν catches the downlink transmission energy con-

straint (5.17b). Hence, the Lagrangian dual function expressed as:

g(β,ω,σ, ν)

= min
{tulu,S ,tulu ,tdlu ,tdl,DL

u ,D
I
u,S}

L(β,ω,σ, ν, tulu,S, t
ul
u , t

dl
u , t

dl,

DL
u , D

I
u,S),

(5.22)

s.t. (5.17e)-(5.17g).
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Consequently, the corresponding dual problem is formulated as:

max
{β,ω,σ,ν}

g(β,ω,σ, ν) (5.23)

s.t.

β � 0,ω � 0,σ � 0, ν ≥ 0.

Proposition 1. Given a determined set of dual variables β,ω,σ, ν, the op-

timal solution to the Lagrangian dual problem (5.23) can be determined as

follows.

The optimal primal variables tulu,S, tulu , and tdlu , are given by

t̂ulu,S =
D̂I
u,S

W ul
u

ln2
[W0(

1

e
(
βu|hu|2

N0

− 1)) + 1]

,∀u ∈ U . (5.24)

t̂ulu =
DI
u −DI

S − D̂L
u

W ul
u

ln2
[W0(

1

e
(
βu|hu|2

N0

− 1)) + 1]

,∀u ∈ U . (5.25)

t̂dlu =
a0(DI

u −DI
S − D̂L

u )

W dl
u

a0ln2
[W0(

1

e
(
(ρdlu + σu)|gu|2

νN0

− 1)) + 1]

,∀u ∈ U . (5.26)

where W0(x) is the principle branch of the Lambert W function defined as

the solution for W0(x)eW0(x) = x [WXWC18], e is the base of the natural

logarithm; the optimal auxiliary variable tdl is given by:

t̂dl =


0,

∑
u∈U

βu −
∑
u∈U

σu > 0,

Tmax − tdlS , otherwise;

(5.27)
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and the optimal local computing data size is given by

D̂L
u =

min

{
Tmax

√√√√[N0ln2

3κ0λ0
3 (

2
r̂ulu

Wul
u

W ul
u |hu|2

+
νa0 · 2

a0r̂dlu
W dl

u

W dl
u |gu|2

)− ωu
3κ0λ2

0

]+

,

DI
u −DI

S

}
,∀u ∈ U ,

where r̂ulu = Wul
u

ln2
[W0(1

e
(βu|hu|

2

N0
− 1)) + 1] and r̂dlu = W dl

u

a0ln2
[W0(1

e
( (ρdlu +σu)|gu|2

νN0
−

1)) + 1], ∀u ∈ U .

In fact, on one hand, r̂ulu ’s and r̂dlu ’s can be interpreted as the optimum

transmission rate for the shared/individual data offloading and the individual

data downloading, respectively, given the dual variables. On the other hand,

for each user u, the optimal transmission rate for the shared data is seen to

be identical to that of the individual data over the uplink, given that the

uplink channel gains remain unchanged during the whole offloading phase.

Next, to obtain the optimal offloading bits of the shared data for each

user, i.e., D̂I
u,S, the following lemma is needed.

Lemma 1. The optimal offloaded shared data for user u is expressed as,

D̂I
u,S =

DI
S, û = arg min

1≤u≤U
∆u,

0, otherwise,
(5.28)

where ∆u =
f(r̂ulu,S)

r̂ulu,S |hu|2
+ βu

r̂ulu,S
,∀u ∈ U .

Proof. To obtain how the shared input data offloading D̂I
u,S are distributed

among users, it needs to examine the partial Lagrangian regarding DI
u,S and

tulu,S. Replacing the shared data offloading time tulu,S with
DI

u,S

r̂ulu
, the partial
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Lagrangian is expressed as

min
{DI

u,S}
L =

∑
u∈U

[
tulu,S
|hu|2

f(
DI
u,S

tulu,S
) + βut

ul
u,S]

=
∑
u∈U

[
DI
u,S

r̂ulu,S|hu|2
f(r̂ulu,S) + βu

DI
u,S

r̂ulu,S
]

=
∑
u∈U

∆u ·DI
u,S

(5.29)

s.t. ∑
u∈U

DI
u,S = DI

S, D
I
u,S ≥ 0,∀u ∈ U , (5.30)

where it is defined that ∆u =
f(r̂ulu,S)

r̂ulu,S|hu|2
+

βu
r̂ulu,S

as a constant given the dual

variable βu’s. As a result, the optimal solution to the above linear program-

ming is easily obtained as shown in (5.46).

Notable, it is easily observed from Lemma 2 that the shared data is

optimally offloaded by one specific user instead of multiple ones.

Based on Proposition 1, the dual problem can thus be iteratively solved

according to ellipsoid method (with constraints), the detail of which can be

referred to [Boy]. The algorithm for solving (P1′) is summarised in Table

5.1.

5.2.4 Simulation Results and Performance Analysis

This section elaborates the set-up of the system parameters and presents the

generated simulation results. Except for the local computing only scheme

where users execute all the data bits locally, there are three other offloading

schemes presented as baseline algorithms: 1) Offloading without considering
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Table 5.1: Algorithm I for solving (P1′)

Require: (β(0),ω(0),σ(0), ν(0))
1: repeat
2: Solve (5.22) given (β(i),ω(i),σ(i), ν(i)) according to Proposition 1 and

obtain {t̂ulu,S, t̂ulu , t̂dlu , t̂dl, D̂L
u , D̂

I
u,S};

3: update the subgradient of β,ω,σ, ν respectively, i.e., tulu,S +

tulu − Tmax + max
u∈U
{tdlu,S} + tdl, λ0D

L
u − tCu,Lfu,max, tdlu − tdl,∑

u∈U
tdlu
|gu|2f(

a0(DI
u −DI

S −DL
u )

tdlu
)− Emax in accordance with the ellip-

soid method [Boy];
4: until the predefined accuracy threshold is satisfied.

Ensure: The optimal dual variables to the dual problem (5.23)
(β∗,ω∗,σ∗, ν∗)

5: Solve (5.22) again with (β∗,ω∗,σ∗, ν∗)
Ensure: {tul∗u,S, tul∗u , tdl∗u , tdl∗, DL∗

u , D
∗
u,S}

the shared data: the collaborative properties are ignored, every user makes the

offloading decision without coordination among other users; 2) Full offloading

only: the shared data is taken into consideration, but the whole chunks of

input data of every user are forced to be offloaded to the edge computing

node, excluding the local computing capability from participating in the

computation tasks; 3) Offloading with equal time length: taking the correlated

data into consideration, the data offloading and downloading are performed

for each user with equal time length, with optimal solutions obtained through

CVX.

In the simulation, the bandwidth avaialble is assumed to be W ul =

W dl=10MHz, the maximum downlink transmit power Pmax = 1W , and the

input data size DI
u = 10kbits for all users. The spectral density of the AWGN

power is -169 dBm/Hz. The mobile energy expenditure per second in the

downlink is ρdlu =0.625 J/s [ASS17], the maximum local computing capability

fu,max = 1GHz. In addition, λ0 = 1 × 103 cycle/bit, a0 = 1, κ0 = 10−26.

The pathloss model is PL = 128.1 + 37.6log10(du), where du represents the
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Figure 5.3: Energy consumption versus different latency constraints.

distance between user u and edge computing node in kilometers.

Figure 5.3 depicts how the energy consumption changes with different la-

tency constraints. The energy consumption are becoming lower as the latency

requirement gets longer for all listed offloading algorithms. Only the pro-

posed offloading scheme can give the lowest energy consuming performance.

The best energy saving improvement can only be achieved through the joint

participation of local computing and shared data coordination. Moreover,

even though the equal time length offloading has lower complexity than the

proposed algorithm, it cannot compete with the proposed one in terms of

energy saving. Recalling the conclusion that the best way to achieve the

energy saving is to let these correlated bits transmitted by one specific user,

the reason is that forcing offloading time duration to be equal makes the

shared data to be transmitted by all users simultaneously.

The energy consumed for computing one data bit increases exponentially
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Figure 5.4: Energy consumption versus different percentage of shared data.

as the latency constraint diminishes. Hence for the local computing only

scheme, when latency constraint comes to 0.01 second the energy taken to

finish the computation tasks, which is 1000 mJoules, can reach up to nearly

100 times more than those of all the offloading algorithms. Then it drops

exponentially to 10 mJoules when the latency constraint goes to 0.1 second.

As a result, the curve representing local computing only is not added in

Figure 5.3, otherwise the comparison of the offloading schemes will not be

clear.

In Figure 5.4, the energy consumption changes with the percentage of

shared data is demonstrated. Evidently, as long as the shared data is taken

into consideration when making offloading decisions, the lower overall energy

consumption is achieved when the proportion of shared data gets higher.

More energy will be saved when the percentage of shared data gets higher

for proposed offloading scheme compared to the scheme without consider-

94



ing the existence of shared data. This trend applies to the full offloading

only algorithm as well, because it also cares about the existence of shared

data when making offloading decisions. The energy consumptions for full

offloading only do not always go under that of offloading without considering

shared data. That is because when given specific latency constraint, the im-

portance of local computing capabilities diminishes in saving mobile users’

energy consumption as the share of common data increases. Since most of

the data will be offloaded to the edge node, few input bits would remain

local for computing. Then the energy consumption of the full offloading only

scenario represents that it get closer to that of the proposed algorithm when

the percentage of shared data increases. Similar trend applies to the equal

time length offloading as well.

5.3 Joint Energy-Efficient Computation Of-

floading, Communications and Computa-

tional Resources Design

5.3.1 Motivation

In the previous section, the energy efficient communications resource allocation

design is presented to minimise the mobile user’s overall energy consumption. In

this section, I am going to investigate the impact of computational resources in

edge computing node on the energy efficient computation offloading design and

the allocation of communications resources.

5.3.2 Problem Formulation

The overall energy consumption of the system consists of that from mobile

users side and that of the cloudlet server side. The amount of energy expensed
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at the mobile users side includes three parts: data offloading over the uplink

(c.f. (5.2) and (5.3)), results retrieving (c.f. (5.6)), and local computing (c.f.

(5.11)), which is thus given by

Em =
∑
u∈U

κ
(λ0D

L
u )3

tCu,L
2 +

∑
u∈U

tulu,S
|hu|2

f(
DI
u,S

tulu,S
)

+
∑
u∈U

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
) +

∑
u∈U

(tdlu,S + tdlu )ρdlu .

(5.31)

As for the energy depleted in the cloudlet server and AP side, taking

computation and transmission energy consumption into consideration gives

the expression as:

Ee = κ0

∑
u∈U

[fu
2λ0(DI

u −DI
S −DL

u ) + κ0fs
2λ0D

I
S

+
∑
u∈U

tdlu,S
|gu|2

Γ(
a0D

I
S

tdlu,S
) +

∑
u∈U

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
)].

(5.32)

Upon considering the energy consumption of the whole system, different

weights may be put on the energy consumption in the mobile users side and

that in the cloudlet server side. By introducing the weights Ω1 and Ω2 which

satisfies Ω1 + Ω2 = 1, the weighted sum energy consumption is:

Etotal = Ω1Em + Ω2Ee. (5.33)

In this section, it aims to minimise the weighted sum of the energy con-

sumption for completing the VR/AR computation tasks which include task

offloading, local/edge computing and edge computing results downloading by

optimizing the transmission and computation time, computational capacity

of both mobile users and cloudlet server sides, and the offloaded input-bits.
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Specially, we are interested in the following problem:

(P1) : Minimise
{tulu,S ,tulu ,t

C
u,L,t

dl
u,S ,t

dl
u ,D

I
u,S ,D

L
u ,fs,fu}

Ω1Em(tulu,S, t
ul
u , t

C
u,L, t

dl
u , t

dl
u,S, D

L
u , D

I
u,S)

+ Ω2Ee(t
dl
u,S, t

dl
u , D

L
u , fs, fu)

Subject to

τu(t
ul
u,S, t

ul
u , t

C
u,L, t

dl
u , t

dl
u,S, D

L
u , D

I
u,S, fs, fu) ≤ Tmax,∀u ∈ U , (5.34a)

0 ≤ tCu,L ≤ Tmax,∀u ∈ U , (5.34b)

λ0D
L
u/t

C
u,L ≤ fu,max,∀u ∈ U , (5.34c)

0 ≤ DL
u ≤ DI

u −DI
S,∀u ∈ U , (5.34d)∑

u∈U

DI
u,S = DI

S, D
I
u,S ≥ 0,∀u ∈ U , (5.34e)

fs ≤ F, (5.34f)∑
u∈U

fu ≤ F, fu ≥ 0,∀u ∈ U , (5.34g)

tulu,S ≥ 0, tulu ≥ 0, tCu,L ≥ 0, tdlu ≥ 0, tdlu,S ≥ 0,∀u ∈ U . (5.34h)

In the formulated problem above, the objective function is the weighted

sum of the system’s energy consumption, where Em (c.f. (5.31)) and Ee

(c.f. (5.32)) are energy consumptions of mobile users side and edge server

side in terms of optimisation variables. The latency constraint (5.34a) guar-

antees that the overall latency induced by transmission and computation

will not exceed specific unified deadline Tmax. The local computing latency

constraint (5.34b) states that the local computation conducted in the mo-

bile users side should be finished within latency deadline Tmax, just as those

task bits undergo offloading, remote computing and downloading returning

to the mobile user end. In (5.34c), the application tasks bits remained for

local computing is constrained by the maximum local computing capabilities

fu,max,∀u ∈ U . The maximum amount of local computation bits are the
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overall tasks bits subtracted by the shared data bits according to our design,

which is reflected in constraint (5.34d). The shared input-bits (5.34e) reflects

that the sum of the cooperatively offloaded shared input-bits DI
u,S from all

mobile users add up to its total length DI
S. The CPU computation frequency

fs allocated for shared data computation in the cloudlet server cannot ex-

ceed the maximum available CPU capabilities F (c.f. (5.34f)). Moreover,

the sum of the edge server’s allocated capabilities fu’s for each mobile user’s

individual input data is constrained by F as well (c.f. (5.34g)).

5.3.3 Joint Energy-Efficient Computation Offloading,

Communications and Computational Resources

Algorithm

Note that problem (P1) is not a convex problem due to the fractional form of

two primal variables DL
u ’s and fu’s in the expression of computational latency

tCu =
λ0(DI

u−DI
S−D

L
u )

fu
. It is found that by fixing one of these two variable at

one time, the optimisation problem goes to be convex. In the following sub-

sections, the original problem (P1) is divided into two sub-problems (P1.1)

and (P1.2) by fixing the value of DL
u ’s and fu’s in (P1) respectively. The

corresponding optimal solutions for the following two sub-problems are pre-

sented as well. Finally, the proposed alternating optimisation algorithm for

solving (P1) is introduced based on iteratively solving sub-problems (P1.1)

and (P1.2).
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5.3.3.1 Optimal Solutions for (P1.1)

The optimisation problem (P1.1) is formulated by fixing the edge computing

allocation fu as:

(P1.1) : Minimise
{tulu,S ,tulu ,t

C
u,L,t

dl
u,S ,t

dl
u ,D

I
u,S ,D

L
u ,fs}

Ω1Em(tulu,S, t
ul
u , t

C
u,L, t

dl
u , t

dl
u,S, D

L
u , D

I
u,S)

+ Ω2Ee(t
dl
u,S, t

dl
u , D

L
u , fs, fu)

Subject to

τu ≤ Tmax,∀u ∈ U , (5.35a)

0 ≤ tCu,L ≤ Tmax,∀u ∈ U , (5.35b)

λ0D
L
u/t

C
u,L ≤ fu,max, (5.35c)

0 ≤ DL
u ≤ DI

u −DI
S,∀u ∈ U , (5.35d)∑

u∈U

DI
u,S = DI

S, D
I
u,S ≥ 0, (5.35e)

fs ≤ F, (5.35f)

tulu,S ≥ 0, tulu ≥ 0, tCu,L ≥ 0, tdlu ≥ 0, tdlu,S ≥ 0,∀u ∈ U . (5.35g)

It can be seen from (5.11) that the minimal energy consumption is ob-

tained apparently by tCu,L = Tmax. In order to make the latency expression

(5.34a) with max{x, 0} continuous and derivable with respect to primal vari-

ables, it needs to introduce necessary auxiliary variables {a1, a2, a3, a4, t
ul
S , t

dl
S }.
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Then the optimisation problem is reformulated equivalently as:

(P1.1′) : Minimise
{tulu,S ,tulu ,tdlu ,t

dl
u,S ,D

L
u ,D

I
u,S ,fs,a1,u,a2,a3,a4,u,t

ul
S ,t

dl
S }

Ω1Em(tulu,S, t
ul
u , t

dl
u , t

dl
u,S, D

L
u , D

I
u,S)

+ Ω2Ee(t
dl
u,S, t

dl
u , D

L
u , fs, fu)

Subject to

(5.35c)− (5.35g),

tulu,S ≤ tulS , ∀u ∈ U , (5.36a)

tdlu,S ≤ tdlS ,∀u ∈ U , (5.36b)

tulu,S + tulu ≤ a1,u,∀u ∈ U , (5.36c)

tulS +
λ0D

I
S

fs
≤ a1,u,∀u ∈ U , (5.36d)

a1,u +
λ0(DI

u −DI
S −DL

u )

fu
≤ a4,u,∀u ∈ U , (5.36e)

tulu,S + tulu ≤ a2, (5.36f)

a2 ≤ a3, (5.36g)

tulS +
λ0D

I
S

fs
≤ a3, (5.36h)

a3 + tdlS ≤ a4,u,∀u ∈ U , (5.36i)

a4,u + tdlu ≤ Tmax, ∀u ∈ U . (5.36j)
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The Lagrangian is presented as:

L(β,ω,γ, δ,φ,$, ν, ψ,σ,θ, tulu,S, t
ul
u , t

dl
u,S, t

dl
u , D

L
u , D

I
u,S, fs, a1, a2, a3, a4, t

ul
S , t

dl
S ) =

Ω1

[∑
u∈U

tulu,S
|hu|2

f(
DI
u,S

tulu,S
) +

∑
u∈U

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
) +

∑
u∈U

κ
(λ0D

L
u )3

Tmax
2

+
∑
u∈U

(tdlu,S + tdlu )ρdlu

]
+ Ω2

[
κ0

∑
u∈U

[fu
2
λ0(DI

u −DI
S −DL

u ) + κ0fs
2λ0D

I
S

+
∑
u∈U

tdlu,S
|gu|2

f(
a0D

I
S

tdlu,S
) +

∑
u∈U

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
)]

]
+
∑
u∈U

βu(t
ul
u,S − tulS )

+
∑
u∈U

ωu(t
dl
u,S − tdlS ) +

∑
u∈U

γu(t
ul
u,S + tulu − a1,u) +

∑
u∈U

δu(t
ul
S +

λ0D
I
S

fs
− a1,u)

+
∑
u∈U

φu(a1,u +
λ0(DI

u −DI
S −DL

u )

fu
− a4,u) +

∑
u∈U

$u(t
ul
u,S + tulu − a2) + ν(a2 − a3)

+ ψ(tulS +
λ0D

I
S

fs
− a3) +

∑
u∈U

σu(a3 + tdlS − a4,u) +
∑
u∈U

θu(a4,u + tdlu − Tmax),

(5.37)

where β,ω,γ, δ,φ,$, ν, ψ,σ,θ are Lagrangian multipliers associated with

constraints (5.36a)-(5.36j), respectively. Hence, the dual function is ex-

pressed as:

g(β,ω,γ, δ,φ,$, ν, ψ,σ,θ) =

Minimise
{tulu,S ,tulu ,t

dl
u,S ,t

dl
u ,D

L
u ,D

I
u,S ,fs,a1,a2,a3,a4,tulS ,t

dl
S }
L(β,ω,γ, δ,φ,$, ν, ψ,σ,θ,

tulu,S, t
ul
u , t

dl
u,S, t

dl
u , D

L
u , D

I
u,S, fs, a1, a2, a3, a4, t

ul
S , t

dl
S )

(5.38)

s.t.

(5.35d)− (5.35g),

DL
u ≤ Tmaxfu,max/λ0.
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D̂L
u = min

{
Tmax

√√√√[N0ln2

3κ0λ0
3 (

2
r̂ulu

Wul
u

W ul
u |hu|2

+
Ω2a0 · 2

a0r̂dlu
W dl

u

Ω1W dl
u |gu|2

) +
φu

3fuκ0λ2
0Ω1

+
Ω2κ0λ0fu

2

Ω1

]+

,

min

{
Tmaxfu,max

λ0

, DI
u −DI

S

}}
,∀u ∈ U ,

(5.39)

Consequently, the corresponding dual problem is formulated as:

max
{β,ω,γ,δ,φ,$,ν,ψ,σ,θ}

g(β,γ, δ,φ,$, ν, ψ,σ,θ) (5.40)

s.t.

β � 0,ω � 0,γ � 0, δ � 0,φ � 0,

$ � 0, ν > 0, ψ > 0,σ � 0,θ � 0

Proposition 2. Given a determined set of dual variables β,ω,γ, δ,φ,$, ν, ψ,σ,θ,

the optimal solution to the problem (5.38) can be determined as follows:

The optimal primal variables tulu,S, tulu , tdlu,S and tdlu , are given by

t̂ulu,S =
D̂I
u,S

W

ln2

[
W0(1

e (
(βu + γu +$u)|hu|2

Ω1N0
− 1) + 1)

] ,∀u ∈ U , (5.41)

t̂ulu =
DI
u −DI

S − D̂L
u

W

ln2

[
W0(1

e (
(γu +$u)|hu|2

Ω1N0
− 1) + 1)

] ,∀u ∈ U , (5.42)

t̂dlu,S =
a0D

I
S

Wall

ln2

[
W0(1

e (
(Ω1ρ

dl
u + σu)|gu|2

Ω2N0
− 1) + 1)

] ,∀u ∈ U , (5.43)
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t̂dlu =
a0(DI

u −DI
S − D̂L

u )

W

ln2

[
W0(1

e (
(Ω1ρ

dl
u + θu)|gu|2

Ω2N0
− 1) + 1)

] , ∀u ∈ U , (5.44)

where W0(x) is the principle branch of the Lambert W function defined as the

solution for W0(x)eW0(x) = x [WXWC18], e is the base of the natural loga-

rithm; given dual variables, the denominators of the above-mentioned expression

in this proposition, which is denoted by r̂ulu,S’s(r̂ulu ’s) and r̂dlu,S’s(r̂dlu ’s), stand for

the optimum transmission rate for the shared(individual) data offloading and the

shared(individual) data downloading, respectively; notably, the optimal values of

r̂ulu,S’s should be obtained given D̂I
u,S ,∀u ∈ U , which is provided by Lemma 2; the

optimal solutions of the local computing bits are provided in (5.39); the optimal

auxiliary variables are given as:

â1,u =


Tmax, − γu − δu + φu < 0,

0, otherwise,

â2 =


Tmax, −

∑
u∈U

$u + ν < 0,

0, otherwise,

â3 =


Tmax, − ν − ψ +

∑
u∈U

σu < 0,

0, otherwise,

â4,u =


Tmax, − φu − σu + θu < 0,

0, otherwise,

t̂ulS =


Tmax, −

∑
u∈U

βu +
∑
u∈U

δu < 0,

0, otherwise,
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t̂dlS =


Tmax, −

∑
u∈U

ωu +
∑
u∈U

σu < 0,

0, otherwise,

and the optimal local computing data size is given by (5.39). The remote computing

rate for shared data, f̂s would be calculated by

f̂s = min

(
3

√∑
u∈U δu + ψ

2κ0
, F

)
. (5.45)

The following lemma gives the optimal offloaded input-bits of the shared

data for each user, i.e., D̂I
u,S.

Lemma 2. The optimal offloaded shared data for user u is expressed as,

D̂I
u,S =


DI
S , û = arg min

1≤u≤U
∆u,

0, otherwise,
(5.46)

where ∆u =
Ω1f(r̂ulu,S)

r̂ulu,S |hu|2
+ βu+γu+$u

r̂ulu,S

,∀u ∈ U .

It is concluded from the above Lemma that the shared data is optimally

offloaded by one specific user instead of multiple ones simultaneously. Re-

markably, the user with maximum r̂ulu,S is not necessarily the one that is

responsible for the shared input-bits offloading. It can be seen that the ex-

pression of ∆u,∀u ∈ U is also associated with some Lagrangian variables. For

example, among these Lagrangian variables γu’s and $u’s are related to the

transmission rate of individual input-bits and relevant auxiliary variables,

which may make their value large and therefore the user with maximum r̂ulu,S

not the one with minimum ∆u.

Based on Proposition 1, the dual problem can thus be iteratively solved

according to ellipsoid method (with constraints), the detail of which can be
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referred to [Boy]. The algorithm for solving (P1.1) is summarised in Table

5.2.

Table 5.2: Algorithm I for solving (P1.1′)

Require: (β(0),ω(0),γ(0), δ(0),φ(0),$(0), ν(0), ψ(0),σ(0),θ(0))
1: repeat
2: Solve (P1.1′) given (β(i),ω(i),γ(i), δ(i),φ(i),$(i), ν(i), ψ(i),σ(i),θ(i))

according to Proposition 2 and obtain
{t̂ulu,S, t̂ulu , t̂dlu,S, t̂dlu , D̂L

u , D̂
I
u,S, f̂s, â1,u, â2, â3, â4,u, t̂

ul
S , t̂

dl
S };

3: update the subgradient of β,ω,γ, δ,φ,$, ν, ψ,σ,θ respectively, i.e.,

tulu,S−tulS , tdlu,S−tdlS , tulu,S+tulu −a1,u, t
ul
S +

λ0DI
S

fs
−a1,u, a1,u+

λ0(DI
u−DI

S−D
L
u )

fu
−

a4,u, t
ul
u,S+tulu −a2, a2−a3, tulS +

λ0DI
S

fs
−a3, a3 +tdlS −a4,u, a4,u+tdlu −Tmax,

in accordance with the ellipsoid method [Boy];
4: until the predefined accuracy threshold is satisfied.

Ensure: The optimal dual variables to the dual problem (5.40)
(β∗,ω∗,γ∗, δ∗,φ∗,$∗, ν∗, ψ∗,σ∗,θ∗)

5: Solve (P1.1′) again with (β∗,ω∗,γ∗, δ∗,φ∗,$∗, ν∗, ψ∗,σ∗,θ∗), update
the primal variables

Ensure: {tul∗u,S, tul∗u , tdl∗u,S, t
dl∗
u , DL∗

u , D
I∗
u,S, f

∗
s , a

∗
1,u, a

∗
2, a
∗
3, a
∗
4,u, t

ul∗
S , tdl∗S }

5.3.3.2 Optimal Solutions for (P1.2)

Problem (P1.1) is given by fixing the primal variable fu in the original prob-

lem (P1). In this section, through fixing the primal variable DL
u , the optimi-
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sation problem (P1.2) is formulated as:

(P1.2) : Minimise
{tulu,S ,tulu ,t

C
u,L,t

dl
u,S ,t

dl
u ,D

I
u,S ,fs,fu}

Ω1Em(tulu,S, t
ul
u , t

dl
u , t

dl
u,S, D

L

u , D
I
u,S)

+ Ω2Ee(t
dl
u,S, t

dl
u , D

L
u , fs, fu)

Subject to

τu ≤ Tmax,∀u ∈ U , (5.47a)∑
u∈U

fu ≤ F, fu ≥ 0,∀u ∈ U , (5.47b)

0 ≤ tCu,L ≤ Tmax,∀u ∈ U , (5.47c)∑
u∈U

DI
u,S = DI

S, D
I
u,S ≥ 0, (5.47d)

fs ≤ F, (5.47e)

tulu,S ≥ 0, tulu ≥ 0, tCu,L ≥ 0, tdlu,S ≥ 0, tdlu ≥ 0,∀u ∈ U . (5.47f)

Given corresponding dual variables, the solutions of the primal variables

tulu,S, tulu , tdlu,S, tdlu , fs, and DI
u,S for the problem (P1.2) are similar to those in

equation (5.41), (5.42), (5.43), (5.44), (5.45), (5.46) for the problem (P1.1),

respectively. The solution for tCu,L is Tmax. The optimal solutions to the

primal variables fu is given by the solutions of the following formula:

2Ω2κ0λ0(DI
u −DI

S −D
L

u)fu
3 + ϕfu

2 − λ0φu(D
I
u −DI

S −D
L

u) = 0 (5.48)

Lemma 3. According to Vieta’s formulas that relate the coefficients of a poly-

nomial to sums and products of its roots, there exists a unique non-negative real

number that would be the value of f̂u.

Proof. Assuming that x1, x2 and x3 are the roots of the polynomial (5.48). Based
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on Vieta’s formulas, the relationships between the coefficients and the sums and

products of its roots are given as:

x1 + x2 + x3 = −ϕ/2Ω2κ0λ0(DI
u −DI

S −D
L
u ) ≤ 0,

x1x2 + x1x3 + x2x3 = 0,

x1x2x3 = φu/2Ω2κ0 ≥ 0.

According to their relationships with zero, if there are three real number roots,

except for the case that x1=x2=x3=0, there can only be one positive real number

and two negative real numbers that are the roots of (5.48). If there is one real

number root and two complex conjugates roots, the real number must be greater

than zero. To sum up, there always exists f̂u ≥ 0, ∀u ∈ U from the roots of

(5.48).

5.3.3.3 Alternating Optimisation for Solving P1

By fixing specific primal variable in problem (P1), it gives (P1.1) and (P1.2)

which are both convex and ready for obtaining optimal solutions, respectively.

It can be proved that through solving (P1.1) and (P1.2) in an iterative man-

ner, the local optimum of the original problem can be attained [BH03]. In

this section, the alternating optimisation algorithm is proposed for obtaining

the solution to achieve a local optimum of the formulated problem, which is

introduced and explained as follows

The algorithm starts in initializing the allocated edge computing capa-

bilities as f̂
(0)
u = F/U , which means that the cloudlet computing capabilities

are assumed to be equally allocated to process the offloaded input-bits of

every mobile user. Under this circumstance, the first set of optimal solu-

tions {t̂ul(i)u,S , t̂
ul(i)
u , t̂

dl(i)
u,S , t̂

dl(i)
u , D̂

L(i)
u , D̂

I(i)
u,S , f̂

(i)
s } is obtained for (P1.1). Among

all these obtained primal variables solutions, it takes the local computing
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Table 5.3: Alternating optimisation algorithm for obtaining the optimum of (P1)

Require: i = 0, Ê
(0)
m = 0, Ê

(0)
e = 0, f̂

(0)
u = F/U, ∀u ∈ U , and the stopping

criterion ε = 10−3.
1: repeat
2: i = i+ 1
3: solve (P1.1) given fu = f̂

(i−1)
u ,∀u ∈ U , obtain Ê

(i)
m , Ê

(i)
e , and

{t̂ul(i)u,S , t̂
ul(i)
u , t̂

dl(i)
u,S , t̂

dl(i)
u , D̂

L(i)
u , D̂

I(i)
u,S , f̂

(i)
s };

4: i = i+ 1
5: solve (P1.2) given D

L

u = D̂
L(i−1)
u , ∀u ∈ U , obtain Ê

(i)
m , Ê

(i)
e , and

{t̂ul(i)u,S , t̂
ul(i)
u , t̂

dl(i)
u,S , t̂

dl(i)
u , D̂

I(i)
u,S , f̂

(i)
s , f̂

(i)
u };

6: until
Ê

(i−1)
total −Ê

(i)
total

Ê
(i−1)
total

< ε, where Ê
(i)
total = Ω1Ê

(i)
m + Ω2Ê

(i)
e .

7: return E∗m⇐Ê
(i)
m , E∗e⇐Ê

(i)
e , {tul∗u,S, tul∗u , tdl∗u,S, t

dl∗
u , DL∗

u , D
I∗
u,S, f

∗
s , f

∗
u}⇐{t̂

ul(i)
u,S ,

t̂
ul(i)
u , t̂

dl(i)
u,S , t̂

dl(i)
u , D̂

L(i)
u , D̂

I(i)
u,S , f̂

(i)
s , f̂

(i)
u }

input-bits D̂
L(i)
u , ∀u ∈ U , as the fixed primal variables value D

L

u ,∀u ∈ U ,

for (P1.2). Then (P1.2) undergoes the same problem-solving process as that

of (P1.1), obtaining another set of optimal solutions including the allocated

cloudlet computing capabilities as f̂
(i)
u , ∀u ∈ U . Afterwards, fu for (P1,1) is

set to be equal to f̂
(i)
u obtained in the previous iteration, the optimal solu-

tions for (P1.1) is then solved again producing relevant solutions set. The

process repeats until the stopping criterion is met.

5.3.4 Special Case: Negligible Computational Latency

With limited cloudlet computing capabilities the edge-computing latency

is non-negligible, which will certainly impact on the overall latency, since

the downloading of output-bits cannot start until the computation results

are available in the cloudlet. In the previous non-negligible computational

latency case, the obtained solutions for the primal variables are the sub-

optimal.

If the edge computational latency is short enough that has no impact
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on the overall latency, it only needs to consider the transmission latency,

which greatly reduce the complexity of solving the optimisation problem and

the global optimum can be readily obtained as well. Recalling (5.12), the

negligible computation time reduce the expression of τ1 to τ ′1 = tulu,S + tulu .

After reducing the subsequent latency expressions based on the negligible

computational latency assumption, the expression (5.15) is finally reduced

to:

τ ′u = tulu,S + tulu + max
u∈U
{tdlu,S}+ tdlu (5.50)

In this case, the allocation of edge computing capability for shared and indi-

vidual input bits fs and fu is also excluded from the optimisation problem

of the special case. In this context, by replacing EC
S and EC

u in (5.33) with

pre-defined energy consumption EC , the energy consumption of mobile users’

and edge server’s sides are given as:

E ′m =
∑
u∈U

κ0
(λ0D

L
u )3

tCu,L
2 +

∑
u∈U

tulu,S
|hu|2

f(
DI
u,S

tulu,S
)

+
∑
u∈U

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
) +

∑
u∈U

(tdlu,S + tdlu )ρdlu ,

(5.51)

and

E ′e = EC +
∑
u∈U

tdlu,S
|gu|2

Γ(
a0D

I
S

tdlu,S
) +

∑
u∈U

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
)]. (5.52)

109



The optimisation problem associated with this special case as:

(P1′) : Minimise
{tulu,S ,tulu ,t

C
u,L,t

dl
u ,t

dl
u,S ,D

L
u ,D

I
u,S}

Ω1E
′
m(tulu,S, t

ul
u , t

C
u,L, t

dl
u , t

dl
u,S, D

L
u , D

I
u,S)

+ Ω2E
′
e(t

dl
u,S, t

dl
u , D

L
u )

Subject to

tulu,S + tulu + max
u∈U
{tdlu,S}+ tdlu ≤ Tmax,∀u ∈ U , (5.53a)

0 ≤ tCu,L ≤ Tmax, ∀u ∈ U , (5.53b)

λ0D
L
u/t

C
u,L ≤ fu,max,∀u ∈ U , (5.53c)

0 ≤ DL
u ≤ DI

u −DI
S,∀u ∈ U , (5.53d)∑

u∈U

DI
u,S = DI

S, D
I
u,S ≥ 0, (5.53e)

tulu,S ≥ 0, tulu ≥ 0, tCu,L ≥ 0, tdlu ≥ 0, tdlu,S ≥ 0,∀u ∈ U . (5.53f)

The given optimisation problem is in the strictly convex form, which can

be readily solved by classic convex optimisation methodology in a straight-

forward manner. The optimal solutions for tCu,L’s are tCu,L = Tmax,∀u ∈ U

according to (5.51), which is monotonically decreasing with respect to tCu,L’s.

For obtaining the optimal solutions for the rest primal variables in this case,

it needs to introduce one auxiliary variable tdlS , so that

tdlu,S ≤ tdlS ,∀u ∈ U , (5.54)

and

tulu,S + tulu + tdlS + tdlu ≤ Tmax,∀u ∈ U . (5.55)

There need two sets of Lagrangian variables ω = {ω1, ..., ωU} and θ =

{θ1, ..., θU}, which are associated to (5.54) and (5.55), respectively, to de-
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rive the dual function:

L(ω,θ, tulu,S, t
ul
u , t

dl
u,S, t

dl
u , D

L
u , D

I
u,S, t

dl
S ) =

Ω1

[∑
u∈U

tulu,S
|hu|2

f(
DI
u,S

tulu,S
) +

∑
u∈U

tulu
|hu|2

f(
DI
u −DI

S −DL
u

tulu
) +

∑
u∈U

κ
(λ0D

L
u )3

Tmax
2

+
∑
u∈U

(tdlu,S + tdlu )ρdlu

]
+ Ω2

[
κ0

∑
u∈U

[fu
2
λ0(DI

u −DI
S −DL

u ) + κ0fs
2λ0D

I
S

+
∑
u∈U

tdlu,S
|gu|2

f(
a0D

I
S

tdlu,S
) +

∑
u∈U

tdlu
|gu|2

f(
a0(DI

u −DI
S −DL

u )

tdlu
)]

]
+
∑
u∈U

ωu(t
dl
u,S − tdlS )

+
∑
u∈U

θu(t
ul
u,S + tulu + tdlS + tdlu − Tmax),

(5.56)

Through applying dual analysis to the derived Lagrangian function of (P1′),

the optimal solutions for the primal variables {tulu,S, tulu , tdlu,S, tdlu , DL
u , D

I
u,S} and

auxiliary variable tdlS are given.

Proposition 3. Given a determined set of dual variables ω,θ, the optimal solution

to the optimisation problem of the special case can be determined as follows.

The optimal primal variables tulu,S, tulu , tdlu,S and tdlu , are given by

t̂ulu,S =
D̂I
u,S

W

ln2

[
W0(1

e (
θu|hu|2

Ω1N0
− 1) + 1)

] ,∀u ∈ U . (5.57)

t̂ulu =
DI
u −DI

S − D̂L
u

W

ln2

[
W0(1

e (
θu|hu|2

Ω1N0
− 1) + 1)

] ,∀u ∈ U . (5.58)

t̂dlu,S =
a0D

I
S

Wall

ln2

[
W0(1

e (
(Ω1ρ

dl
u + ωu)|gu|2

Ω2N0
− 1) + 1)

] , ∀u ∈ U . (5.59)

t̂dlu =
a0(DI

u −DI
S − D̂L

u )

W

ln2

[
W0(1

e (
(Ω1ρ

dl
u + θu)|gu|2

Ω2N0
− 1) + 1)

] , ∀u ∈ U . (5.60)

111



where W0(x) is the principle branch of the Lambert W function defined as the

solution for W0(x)eW0(x) = x [WXWC18], e is the base of the natural logarithm.

The values of the optimal solutions of r̂ulu,S’s should be obtained given D̂I
u,S ,∀u ∈ U ,

which is provided by Lemma 4. The optimal values for local computing bits DL
u ’s

are given by:

D̂L
u = min

{
Tmax

√√√√√[ N0ln2

3κ0λ0
3 (

2
r̂ulu

Wul
u

W ul
u |hu|2

+
Ω2a0 · 2

a0r̂dlu
W dl

u

Ω1W dl
u |gu|2

)

]+

,min

{
Tmaxfu,max

λ0
, DI

u−DI
S

}}
,∀u ∈ U .

(5.61)

The optimal auxiliary variable tdlS is obtained as:

t̂dlS =


Tmax, −

∑
u∈U

ωu +
∑
u∈U

θu < 0,

0, otherwise,

Lemma 4. The optimal offloaded shared data for user u is expressed as,

D̂I
u,S =


DI
S , û = arg min

1≤u≤U
∆u,

0, otherwise,
(5.62)

where ∆u =
Ω1f(r̂ulu,S)

r̂ulu,S |hu|2
+ θu

r̂ulu,S

,∀u ∈ U .

The algorithm for obtaining the optimum of the special case is presented

in Table 5.4.

5.3.5 Simulation Results and Performance Analysis

In this section, the simulation results of the proposed algorithm together with

other baseline algorithms are presented. The effectiveness of the proposed

joint optimisation of cooperative shared task data offloading, wireless trans-

mit power allocation and computation resource allocation is validated by

the comparison against the fixed-frequency scheme, neglecting shared data
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Table 5.4: Algorithm for obtaining the optimum of the special case

Require: (β(0),θ(0))
1: repeat
2: Solve Lagrangian dual problem given (β(i),θ(i)) accord-

ing to the process according to Proposition 3 and obtain
{t̂ulu,S, t̂ulu , t̂dlu,S, t̂dlu , D̂L

u , D̂
I
u,S, t̂

dl
S };

3: update the subgradient of β,θ respectively, i.e., tdlu,S − tdlS , tulu,S + tulu +
tdlS + tdlu − Tmax, in accordance with the ellipsoid method [Boy];

4: until the predefined accuracy threshold is satisfied.
Ensure: The optimal dual variables to the dual problem (5.40) (β∗,θ∗)

5: Solve teh Lagrangian dual problem again with (β∗,θ∗)
Ensure: {tul∗u,S, tul∗u , tdl∗u,S, t

dl∗
u , DL∗

u , D
I∗
u,S, t

dl∗
S }

scheme, local execution scheme and full offloading scheme, which are de-

scribed in detail as follows.

• Fixed Frequency In order to address the non-convexity of the original

optimisation problem, it can be seen that the alternating optimisation

method is applied in the section 5.3.3.3 to find the solution that is

very near to the optimal solution. It is achieved by fixing one primal

variable, either DL
u or fu, at one time alternatively. The results of

this baseline algorithm is obtained by fixing the allocated computing

capabilities fu to each u in cloudlet server. It is assumed that the CPU

cycles are equally distributed to compute the allocated task bits from

every mobile user.

• Neglecting Shared Data In this scenario, the collaborative property

is ignored, every user makes the offloading decision without coordina-

tion among other users. The number of shared data bits is assumed

to be zero, which is DI
S = 0 in the optimisation problem. However,

this assumption does not deny the de facto existence of the shared

data. The shared data in different users are regarded as their exclusive
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data, causing repetitive allocation of communication and computation

resources for transmitting and computing the same data bits.

• Local Execution Local execution exploits the local computing capa-

bilities of all u in mobile users side. The shared data are still undergoing

cooperative offloading towards cloudlet server for remote computation.

But the individual task data DI
u−DI

S all remain at the mobile user to

which they are exclusive. The computing power of the local CPU chips

is exploited to complete the task execution within imposed time length

constraint.

• Full Offloading Contrary to the local execution scheme, full offloading

exploits that computing capabilities of the cloudlet server to the largest

extent. Except for the cooperative offloading of the shared data, the

individual task bits are not under optimisation in this case. Instead, it

is assumed that all of them would be offloaded for remote computing,

leaving the edge computing capabilities fu to be optimised to complete

the task execution within latency constraint.

In simulations, the mobile users are uniformly distributed in a geographi-

cal area over [0, 1000]m away from the BS with built-in cloudlet server, which

is located in the center. The bandwidth available for uplink and downlink

transmission are both set as W ul = W dl =10MHz. The input data size for

mobile users’ AR/VR application is DI
u = 10kbits,∀u ∈ U . The capacitance

coefficients are set to be κ0 = 10−26. The energy expenditure per second

in the downlink is ρdlu =0.625 J/s [BBV09]. The maximum local computing

capability is fu,max = 1GHz for all mobile users. The CPU cycles required

to process every bit of input data is λ0 = 1× 103 cycle/bit. For every bit of

input data, there is one bit of corresponding output data, which means that
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a0 = 1. The pathloss model related to the transmission distance is given

by 128.1 + 37.6log10(du) in dB, where du denotes the distance between the

mobile user u and the BS in kilometers. The spectral density of the Additive

White Gaussian Noise is -169 dBm/Hz.

5.3.5.1 Simulation Results for the General Case

1 2 3 4 5 6 7 8 9 10 11

Times of Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

Proposed Scheme, T
max

=20ms

Proposed Scheme, T
max

=32ms

Figure 5.5: The illustration of convergence of the proposed algorithm.

The convergence of the proposed algorithm based on the alternative op-

timisation scheme is examined firstly. Given specific stopping criterion, the

convergence speed under different latency constraints varies. As shown in

Figure 5.5, when Tmax =20ms. it takes 11 iterations to reach the stop-

ping criterion and converges. While it takes 9 iterations to converge when

Tmax =32ms. The dramatic decreases after the first iterations are obvious

in both cases, which proves that allocating cloudlet computing capabilities

equally to each mobile user’s offloaded computation task is not an energy
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efficient solution. Further optimisation on allocation of cloudlet computing

capabilities is necessary.
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Figure 5.6: The overall energy consumption versus varied latency constraints.

The impact of imposed latency constraints on the energy consumption

is presented in Figure 5.6, which shows the sum energy consumption versus

different latency constraints assuming equal weights on mobile users side and

BS side, Ω1 = Ω2 =0.5, and 20 percent of shared data as ε = 0.2. There

are 8 mobile users deployed in the simulation area. It is clear that although

all algorithms give less energy consumption with the relaxed longer latency

constraint ,the proposed energy efficient computation offloading and com-

munication resources allocation scheme considering collaborative property of

shared data outperforms all other baseline algorithms in terms of energy con-

sumption. “Fixed Frequency” is the scheme without optimizing the cloudlet

computing capabilities allocation. Except for the very stringent latency con-

straint such as 8ms, “Fixed Frequency” scheme gives the highest energy con-

sumption compared to all other algorithms, which indicates the importance of
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cloudlet computing capabilities allocation. Excluding the “Fixed Frequency”

scheme, “Full Offloading” and “Local Execution” schemes give highest and

second highest energy consumption. The result of “Full Offloading” mani-

fests that it is not an energy efficient solution to offloads all input data to

the cloudlet server for remote execution. Huge amount of offloaded data will

take longer transmission time in both uplink and downlink, in turn requiring

increased CPU frequencies for faster remote computation which introduces

higher energy expenditure. The “Local Execution” keeps all individual in-

put data locally in the mobile users. The local computing capabilities are

exploited to its highest extend, which is not a energy efficient solution as

well. “Neglecting Shared Data” wasted some energy because of repetitive al-

location of communication and computation resources as mention previously.

In a word, the best energy saving improvement can only be achieved through

the joint participation of local computation and remote computation, with

the shared data being offloaded by the coordination among mobile users.
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(a) The overall energy consumption ver-
sus different percentages of shared data.
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Figure 5.7: The energy consumption illustration versus different percentages of shared
data.

Figure 5.7a shows the energy consumption versus different percentage of
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shared data ranging from 0 to 100 percent. There are 8 mobile users in the

simulation, Ω1 = Ω2 =0.5, and the latency constraint is Tmax =20ms. The

best energy consumption performance of the proposed algorithm compared

to other baseline schemes is obvious in the first half of the figure. However,

The overall energy consumption of the proposed scheme is not monotonically

decreasing with higher proportion of shared data. In the algorithm design,

it is assumed that the shared data is always offloaded to the cloudlet server

for remote execution. Recalling the computation energy consumption model

(5.10), the energy consumption increases with the computing frequency to

the second power. In addition, more shared data bits requires longer trans-

mission time between mobile users and AP, which squeezes available time

for remote computation. Consequently, the overall energy consumption of

the proposed scheme undergoes an slight increasing at the last few points of

the line. It is presented that when the percentage approaches 60% onwards,

the “Local Execution” scheme almost overlaps with the proposed optimal

scheme. Higher proportion of shared data reduces the amount of the rest

input data subject to offloading optimisation. As a result, when the per-

centage of shared data exceeds certain point, keeping all the rest input data

for local computing becomes an energy efficient choice, which explains the

overlapping of the two lines after 60% of shared data in the figure. In the

extreme case where 100% of input data are shard among all users, there is no

individual data for local computing, all input data are fully offloaded to the

cloudlet server, and the cloudlet computing capabilities are not subject for

allocation to compute individual data bits. In this case, “Local Execution”,

“Full Offloading”, “Fixed Frequency” and the proposed scheme are equiv-

alent to each other. In Figure 5.7a, it can be observed that the four lines

merge into one point in this extreme case.
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Figure 5.8: Energy consumption versus different edge computing capacities.

The effect of edge computing capacity on the energy consumption is re-

vealed in Figure 5.8. Note that there is no “Full Offloading” scheme presented

in this figure. The reason is that under the given system parameters if all the

input data bits of every mobile user are offloaded, there requires more than

6GHz computing capabilities in the cloudlet server to satisfy the latency

constraint according to the simulation results. “Local Execution” scheme

gives flat line since all the individual data are remained in the mobile users

where edge computing capabilities exercise no effect. “Neglecting Shared

Data” scheme and the proposed scheme both give decreasing lines as the

capabilities enhanced. It is easy to understand that higher the CPU cycles

per second in the cloudlet server, the more computing capabilities the edge

nodes can lend to the mobiles users so that they can offload more input data

bits for remote computation to save energy consumption. There are two eye-
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catching features of the “Fixed Frequency” plot. In the points before 2.2GHz,

the energy consumption goer lower as the computing capacity increases, and

almost overlap the with the proposed scheme plot in 2.2GHz point. After

that, the trend turned adverse. In the simulation, the sum computing ca-

pability given by the proposed computing resource allocation algorithm for

processing individual data offloaded by all mobiles users is around 2.18GHz.

The edge computing capability less than this value would prevent the mo-

bile users from reaping the advantage of remote computing to the largest

extent by offloading their input data. Through the further optimisation of

remote computing resources allocation, the proposed scheme gives slightly

better energy consumption performance than “Fixed Frequency” scheme in

these points. After the turning point 2.2GHz, spare computing capability

exploited by “Fixed Frequency” scheme causes higher energy consumption,

which is reflected in the increasing curve in Figure 5.8.
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Figure 5.9: The energy consumption illustration versus different weights.

Both of the figures above illustrate the effects of different factors on the

energy consumption based on equal weight weights put on both sides, Ω1 =

Ω2 =0.5. It is natural to wonder what results would be obtained if the weights

put on mobile users side and the BS side are changed. Figure 5.9a depicts
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the energy consumptions of all algorithms with changed weights based on

Tmax =20ms, and 20% of shared data. “Local Execution” scheme gives a flat

line since there is no computing resources allocation needed in the cloudlet

server. The line representing the results of the proposed scheme gives an “U”

shape, decreasing with larger Ω1 in the first few points and then increasing

with more weight put on mobile users side. It is illustrated in Figure 5.9b

that put too much weight on either AP side or mobile users side would result

in huge amount of energy consumption of the other. The increased energy

consumption under unbalanced weight is very obvious when most weight is

put on mobile users side, which incurs large amount of energy consumption

in AP since the mobile users may extend the offloading transmission length

at the cost of more computing resources exploited in the cloudlet server to

meet the latency constraint.
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Figure 5.10: The total energy consumption versus the latency constraint in negligible
computation time.

121



5.3.5.2 Simulation Results for Negligible Computing Latency

Then it comes to the energy consumption of the negligible computation time,

it is assumed that the energy consumption in remote computing is constant

as 0.3J . The advantage of making this assumption is that the energy-efficient

offloading and resource allocation algorithm can give lower complexity since

there is no need for alternating optimisation any more. The results of “Local

Computing” scheme are given in a table above the plot since it is much

larger then other scenarios, especially in low latency constraint cases. This

proves the inefficiency of the “Local Computing” scheme in terms of energy

consumption. The proposed scheme considering shared data still gives the

lowest energy consumption.

Etotal
(10−3J)

500.0 446.0 402.7 369.1 343.9 325.9 313.8 306.6 303.0 301.8 301.7
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Figure 5.11: The total energy consumption versus the percentage of shared data in negli-
gible computation time.

Unlike the simulation results for the non-negligible computation time, the

energy consumption of all the presented schemes are monotonically decreas-
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ing as the percentage of the shared data increases. The reason lies in the fact

that through assuming constant remote computation energy, only the energy

expenses for data transmission in both mobile users and the AP sides are

subject to optimisation. In this context, higher percentage of shared data

means less amount of transmitted data, which results in lower overall energy

consumption.

5.4 Summary

In this chapter, a multi-user fog computing system was considered, in which

multiple single-antenna mobile users running applications featuring shared

data can partially offload their individual computation tasks to a nearby

single-antenna cloudlet and then download the results from it. The mobile

users’ energy consumption minimisation problem subject to the total latency,

the total downlink transmission energy and the local computing constraints

was formulated as a convex problem with the optimal solution obtained by

classical Lagrangian duality method. Based upon the semi-closed form so-

lution, it was proved that the shared data is optimally transmitted by only

one of the mobile users instead of multiple ones collaboratively. The pro-

posed joint computation offloading and communications resource allocation

was verified by simulations against other baseline algorithms that ignore the

shared data property or the mobile users’ own computing capabilities.
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Chapter 6

Conclusions and Future Work

This chapter summarises the conclusions drawn from this thesis and presents

the research directions of the future work.

6.1 Conclusions

This thesis is dedicated to the energy efficient resource allocation schemes

for different scenarios under novel radio access networks architectures.

In hybrid energy source powered heterogeneous cloud radio access net-

works, a joint user association and resource allocation scheme is proposed

in Chapter 3. The optimal user association and power allocation policy is

obtained via resolving the formulated optimisation problem. Based on the

numerical results analysis, the proposed algorithm can greatly reduce the

system’s overall grid power consumption with the help of energy harvesting

technology compared to other algorithms. In addition, another policy is de-

signed for maximising the grid power utility, which is defined as the ratio of

the overall data throughput over the consumed grid power.

In hybrid energy source powered F-RAN, a delay-aware energy-efficient

computation offloading algorithm is presented in Chapter 4. Through en-

abling the forwarding of the computation tasks offloaded by mobile users
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from their corresponding serving F-AP to its neighbouring F-APs, the pro-

posed algorithm can better improve the utilisation of renewable energy supply

compared to existing algorithms. Numerical results reveal that such energy

saving performance can be achieved without violating imposed latency con-

straint.

The computation offloading scheme where mobile users run applications

featuring intrinsic collaborative properties is investigated in Chapter 5. Un-

like conventional computation offloading schemes, the proposed algorithm

takes the shared input and output data into consideration. The shared input

data can be jointly offloaded and processed with the help of coordination

among mobile users. It is proved that with the help of mobile users’ local

computing capabilities, the fog-computing based system considering shared

input data can better save the energy consumption compared to all other

algorithms.

For all algorithms proposed in this thesis, great attention is given to

reduce the energy consumption on satisfying users’ service requirements. The

proposed schemes provide useful guidelines and potential solutions for future

greener mobile networks in terms of energy saving.

6.2 Future Work

In this section, extensions to current work and some future research directions

are proposed.
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6.2.1 Energy Efficient Resource Allocation Scheme for

Fronthaul-Constrained H-CRAN and F-RAN

In H-CRAN architectures, there are fronthaul connections between access

points (APs) to the cloud center [PCSD15]. Non-ideal wireless fronthaul or

capacity-constrained optical fiber are envisioned to be the prominent fron-

thaul solutions to enhance the feasibility of H-CRAN deployment [PWLP15b].

The deficient capacity of non-ideal fronthaul links hinders APs from making

full use of available radio resources in providing high data rate services. Re-

gardless of what is the theoretically achievable data rate supported by the air

interface, it is the fronthaul capacity that defines the practical service rate.

In the future work, the fronthaul-aware user association and resource

allocation will be investigated. The UA/RA algorithm suitable for RAN

with constrained fronthaul will be proposed, and the influence of the varied

fronthaul capacity on the supported data throughput will be presented.

6.2.2 MEC Computation Offloading for Applications

Featuring Shared Data in Multi-cell Scenario

In this thesis, the computation offloading for applications featuring shared

data in single-cell scenario is presented in Chapter 6. It was revealed that the

proposed algorithm achieves much improvement in terms of energy consump-

tion in that single-cell case. In the the previous Chapter, the investigation

on computation offloading for multi-cell MEC system with green energy sup-

ply reveals that in such scenario, the existence of multiple offloading path

enables the further reduction of non-renewable energy dissipation.

In the future work, computational resources will be allocated to the of-

floaded computation tasks from mobile users in a coordinated manner among
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cooperating edge computing nodes. The shared data in mobile users makes

the coordination not so straightforward as that in investigated case, since in-

tuitively the shared input-bits are better to be aggregated in one computing

node. Further conclusions need to be drew through deeper researches.

6.2.3 Computation Optimisation in Three-layer User-

Fog-Cloud Scenarios

The practical deployment of the computation offloading system may include

fog servers and cloud servers at that same time, which forms a three-layer

user-fog-cloud structure. In this case, the fog-computing server may act as an

intermediate layer between the mobile users and the cloud-computing servers.

The computation tasks offloaded from the mobile users to the fog-computing

nodes can be either executed by the fog server or be further offloaded to the

cloud-computing nodes. This strategy is of practical importance especially

for the case where there exists shared input-bits for the computation tasks

as that of Chapter 5.

The participation of cloud-computing nodes in processing shared input-

bits frees up the computing capabilities of fog-computing nodes so that the

shared input-bits and individual input-bits can be computed simultaneously.

However, imperfect interconnections and other factors may affect the per-

formance of this strategy. In the future work, the optimal computation of-

floading strategy to maximise the computation offloading performance under

specific constraints can be investigated.
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