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There is a theory which states that if ever anyone discovers exactly

what the Universe is for and why it is here, it will instantly disappear

and be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

– Douglas Adams, The Restaurant at the End of the Universe



Abstract

In this work we study supersymmetric quantum field theories across dimensions by using

various non-perturbative techniques. These quantum field theories arise naturally in

the context of stacks of branes in string and M-theory.

The first chapter is a brief, non-technical invitation to the topic including some

historical background for a wider context.

The second chapter is a lightning quick exposition of the techniques that we will use

in the thesis, both directly and indirectly. It includes some background on conformal

field theories, the superconformal index, supersymmetric localisation and the refined

topological vertex.

The third chapter provides a systematic analysis of the superconformal algebras in

5d and 6d. This includes a level-by-level analysis of the states permitted by the allowed

superconformal multiplets and their corresponding superconformal indices. Where pos-

sible, we also discuss any definitive statements about the theories that we can make

based on a purely algebraic line of reasoning. We also include an introduction to a

python package that can be used to reproduce all our results as one of the appendices.

The fourth and fifth chapters explore the theme of dimensional deconstruction.

That is, we start with lower dimensional supersymmetric theories that dynamically

generate an additional circular dimension and test these proposals using some of the

exact techniques that were briefly introduced in the earlier chapters. The fourth chap-

ter involves the deconstruction of 6d theories and the fifth chapter includes various

supersymmetric defects when going from 3d to 4d.
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in [2]; with Rodolfo Panerai in [3]; and with Vasilis Niarchos in [4]. Where other sources

have been used, they are cited in the bibliography.

5



Contents

1 Introduction 8

2 Review 14

2.1 Conformal Field Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 The Conformal Group . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Superconformal Symmetry . . . . . . . . . . . . . . . . . . . . . 18

2.2 The Superconformal Index . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 The 4d N = 2 Index . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Localisation in 3d . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 The Refined Topological Vertex . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Deriving the 4d Partition Function . . . . . . . . . . . . . . . . . 36

3 Algebraic Techniques for the Superconformal Index 46

3.1 Introduction and Summary . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Multiplets and Superconformal Indices for 5d N = 1 . . . . . . . . . . . 48

3.2.1 UIR Building with Auxiliary Verma Modules . . . . . . . . . . . 48

3.2.2 5d N = 1 Multiplet Recombination Rules . . . . . . . . . . . . . 54

3.2.3 The 5d N = 1 Superconformal Index . . . . . . . . . . . . . . . . 54

3.2.4 5d N = 1 Multiplets . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.5 Index Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Multiplets and Superconformal Indices for 6d (1,0) . . . . . . . . . . . . 68

3.3.1 UIR Building with Auxiliary Verma Modules . . . . . . . . . . . 68

3.3.2 6d (1,0) Recombination Rules . . . . . . . . . . . . . . . . . . . . 70

3.3.3 The 6d (1,0) Superconformal Index . . . . . . . . . . . . . . . . . 70

3.3.4 6d (1,0) Multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.5 Supersymmetry Enhancement of 6d (1, 0) Multiplets . . . . . . . 90

3.4 Multiplets and Superconformal Indices for 6d (2,0) . . . . . . . . . . . . 91

3.4.1 UIR Building with Auxiliary Verma Modules . . . . . . . . . . . 91

3.4.2 6d (2,0) Recombination Rules . . . . . . . . . . . . . . . . . . . . 93

3.4.3 The 6d (2,0) Superconformal Index . . . . . . . . . . . . . . . . . 93

6



CONTENTS

3.4.4 6d (2,0) Multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.5 Index Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 From Supercharacters to Indices . . . . . . . . . . . . . . . . . . . . . . 109

3.5.1 Characters of 5d N = 1 Multiplets . . . . . . . . . . . . . . . . . 110

3.5.2 Characters of 6d (N , 0) Multiplets . . . . . . . . . . . . . . . . . 115

4 Deconstructing Six Dimensional Theories 119

4.1 The (2,0) Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.1.1 4d/6d Matching: Higgs-Branch Hilbert Series and the (2,0) Index 125

4.1.2 4d/6d Matching: Partition Functions . . . . . . . . . . . . . . . . 132

4.2 Little String Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.2.1 4d N = 1 Ellipsoid Partition Functions . . . . . . . . . . . . . . 142

4.2.2 Deconstructing Little String Theory . . . . . . . . . . . . . . . . 147

5 Deconstructing Defects 152

5.1 Pure Three Dimensional Deconstruction . . . . . . . . . . . . . . . . . . 153

5.1.1 Brane Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.1.2 4d Indices from S3 Partition Functions . . . . . . . . . . . . . . . 156

5.2 4d Surface Defects from 3d Vortex Loops . . . . . . . . . . . . . . . . . 162

5.2.1 Indices of Defect Systems . . . . . . . . . . . . . . . . . . . . . . 164

5.3 4d Surface Defects from 3d Wilson Loops . . . . . . . . . . . . . . . . . 172

5.4 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6 Conclusions and Outlook 179

A An Exegesis on Special Functions 184

A.1 Rational Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.2 Trigonometric and Elliptic Functions . . . . . . . . . . . . . . . . . . . . 187

A.3 The Plethystic Exponential . . . . . . . . . . . . . . . . . . . . . . . . . 191

B The Racah–Speiser Algorithm and Its Implementation 193

B.1 Racah–Speiser and Operator Constraints . . . . . . . . . . . . . . . . . . 193

B.1.1 The Racah–Speiser Algorithm . . . . . . . . . . . . . . . . . . . . 193

B.1.2 Operator Constraints Through Racah–Speiser . . . . . . . . . . . 197

B.1.3 Relation to Momentum-Null States . . . . . . . . . . . . . . . . . 198

B.2 Supersymmetry Module Building in python3 . . . . . . . . . . . . . . . 200

B.2.1 Introduction to reptheory . . . . . . . . . . . . . . . . . . . . . 200

B.2.2 Superconformal Module Building . . . . . . . . . . . . . . . . . . 204

Bibliography 207

7



Chapter 1

Introduction

The two crowning achievements of twentieth century theoretical physics are quantum

field theory (QFT) and general relativity (GR). Quantum field theory has led to a

profound understanding of subatomic particles and eventually developed into the Stan-

dard Model (SM) of particle physics. That is, a core set of fundamental particles and

rules governing their possible interactions. The SM is very successful and has been

probed at extremely high energies in particle accelerators. Indeed the Standard Model

is responsible for one of the most accurate predictions in all of science: the anomalous

magnetic moment of the electron, which is correct up to a staggering eleven decimal

places of accuracy. Put into context, this is akin to measuring the width of the Atlantic

ocean and only being wrong by the thickness of a hair.

General relativity, on the other hand, is on the opposite side of the spectrum in

terms of the length scales of physics that it describes. It is a set of mathematical laws

governing the motion of planets in orbits, galactic formation and the evolution of the

cosmos. Like QFT, this theory has been experimentally verified to astounding levels of

precision, for example in the recent LIGO experiments for gravitational waves.

However, these theories are not without their shortcomings. For example, quantum

field theory in general suffers from divergences arising at very high energies. This

manifests itself in the Standard Model as a series of infinities in the calculations that

add quantum corrections to the mass of the Higgs Boson due to the top-quark loops.

This pathology is due to our incomplete understand of both QFT and the SM. Various

extensions to the SM have been proposed, one of which being supersymmetry (SUSY),

which postulates that for every bosonic/fermionic particle there is a particle with the

same mass and charge but with the opposite spin statistic. This helps to counteract

the infinities that appear in the calculations since the contributions of bosonic particles

come with an opposite sign to fermionic particles. With all other parameters fixed, this

should roughly equate to being able to cancel out each divergence as and when they

appear.
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CHAPTER 1. INTRODUCTION

There are problems in GR, too. We still lack an understanding of dark matter, dark

energy, and our description of nature breaks down entirely when we try to describe

black hole spacetime singularities. These core issues with our theories of nature are

seemingly distinct but, as we will see, they suffer from the same problem: our models

are incomplete.

The notion of a grand theory of everything is a tantalising prospect. It is the idea

that, one day, we might be able to write the complete set of laws governing our universe

and explain our place in the cosmos simply by evolving a system in time with specified

boundary conditions. This holy grail of science would be a phenomenal achievement and

would lead to a host of philosophical questions. At the moment this goal is incredibly

far away. The reason is that QFT and GR are seemingly incompatible.

The Standard Model of particle physics makes no mention of gravity and general

relativity does not pretend to be quantum. Quantum field theory postulates that the

fundamental forces in nature are in fact mediated by subatomic particles themselves.

For quantum electrodynamics (QED) this is the photon; the nuclear force has the W

and Z bosons; and for quantum chromodynamics (QCD) it is the gluon. The logi-

cal next step is to do the analogous thing for the gravitational force and introduce

the so-called graviton. While nice in principle, it remains incredibly hard to extract

meaningful information out this quantum theory of gravity due to the appearance of

many (an infinite number of) divergences which one cannot get rid of using standard

renormalisation techniques. Moreover, there are an infinite number of vertices that

one needs to consider in the interacting theory, so the number of possible Feynman

diagrams grows at an alarming rate for each loop order.

Supersymmetry can be combined with gravity to form supergravity (SUGRA) in

which the divergences coming from the graviton are countered by its corresponding

fermionic partner, the gravitino. However, it seems that the theory is ill-defined at

very high energies. Only with such an enormous degree of SUSY do we see promising

results. That is, as of today, 4d N = 8 SUGRA has no known UV divergences, though

there is no reason a priori for this to be the case.

This is a problem because we do not observe supersymmetry in nature. Therefore

supersymmetry needs to ‘break’ at lower energies, so a minimal amount of SUSY is

desirable for realistic theories. To circumvent this issue, a supplementary approach can

be used which revisits the common lore that particles are points.

String theory postulates that, when one goes to small enough length scales, sub-

atomic particles are actually the result of a one-dimensional string. These strings

vibrate at different frequencies, and each vibrational mode corresponds to its own sub-

atomic particle. In this picture we see two types of strings: closed strings, which

mediate gravitational interactions, and open strings which mediate the other forces.

The reason why string theory is helpful in obtaining a consistent theory of everything
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CHAPTER 1. INTRODUCTION

is that strings have an infinite number of vibrational modes which we can excite. This

means that, once we reach an energy level where our original description of physics

breaks down, the higher energy modes of the string come to the rescue. String theory

is exciting because it provides a theory of quantum gravity and particle physics which

is seemingly free from UV divergences.

Unfortunately, for string theory to be internally consistent, it needs to exist in ten-

dimensional spacetime. A natural question to then ask is how do we recover the four-

dimensional spacetime that we observe. One splits spacetime into M10 = R1,3 ×M6

where M6 compact six-dimensional manifold. This manifold is then shrunk to zero

volume and the geometric data of the shrunken space becomes field theoretic data in

the remaining 4d theory. Therefore, for a unified theory of everything, we simply need

to find such a space that results in the minimally supersymmetric extension of the

standard model coupled to gravity. It turns out that there are approximately 10272,000

vacua that one can choose from [5]. Indeed it is not even clear if there should be a

vacuum that reproduces what we desire.

In spite of this impasse string theory remains an intrinsically interesting theory to

study. It is very rich mathematically and has led to many interesting discoveries on

this front. It has uncovered some hidden symmetries and structures in supersymmetric

quantum field theories that have helped further our understanding of QFT as a whole.

Notably in the context of strongly coupled gauge theories and strong-weak duality.

Moreover it has lead to some new techniques that we can use to probe QFTs, even in

the case where they do not posses a Lagrangian description.

This is largely due to the other extended objects that exist in string theory. While

a string only has one intrinsic dimension, a “brane” is a higher dimensional analogue

upon which strings can end. Strings ending on stacks of these branes have a low energy

effective description in terms of supersymmetric quantum field theories. In some cases,

the theory is also conformal, like the prototypical 4d N = 4 super Yang-Mills (sYM)

which arises as the low energy limit of a stack of D3 branes in type IIB string theory.

Another example closer to the heart of this thesis comes from M-theory, the strong-

coupling limit of type IIA string theory. It is defined in eleven dimensions and, instead

of strings as the fundamental objects, it has two and five dimensional membranes,

respectively denoted as M2 and M5 branes. Both of these stacks of branes lead to

superconformal field theories, with the former being related to the three-dimensional

ABJM theory [6] and the latter giving the six-dimensional (2,0) theory [7].

M-theory is notoriously difficult to describe due to the fact that it is purely non-

perturbative, though it gives rise to all five possible models of string theory when one

dimension is compactified [8]. A fruitful avenue to study the inner-workings of M-

theory is to study the dynamics of both the M2 and M5 branes. The M2 dynamics are

relatively well understood, first through Bagger–Lambert–Gustavsson theory [9,10] and
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CHAPTER 1. INTRODUCTION

then through ABJM by Aharony, Bergman, Jafferis and Maldacena [6], leading to a

tractable Lagrangian description. No such success has been found, despite an attempt

at replicating the Lie 3-algebra technique used in [9] for the (2,0) theory [11].

While we cannot write down an action for the non-Abelian 6d (2,0) theory, we can

appeal to other techniques that were developed to probe it. For example, since this

theory is conformal, we can use the power of conformal symmetry to infer information

about this mysterious entity. A conformal field theory (CFT) does not have any length

scale and does not need to make any reference to a Lagrangian. It needs only what is

known as the “conformal data” of the theory, which is the set of scaling dimensions and

structure constants of the operator product algebra. This is touched upon in Section 2.1.

This, alongside the heavy constraints imposed by conformal symmetry and unitarity

has lead to the conformal bootstrap program [12], which provides precision calculations

for the spectrum of a theory. Notably it has been used to derive bounds on the scaling

dimensions of operators in the 3d Ising model at the critical temperature [13] which

have been measured in a lab.

A similar procedure was developed for superconformal field theories in [14] for 4d

N = 4 sYM. It was later applied precisely to the 6d (2,0) theory in [15] leading to a

very non-trivial exploration of the interacting theory and its operator content.

Another approach to tackling mysterious higher dimensional theories is to appeal

to their lower dimensional daughter theories. In [16] it was shown that the (2,0) theory

reduced on a Riemann surface leads to a 4d N = 2 SCFT whose operator content is

specified by the geometric data of the surface. Through studying these (possibly non-

Lagrangian) theories we have managed to uncover small pieces of information about

their higher dimensional origin; along with a hidden symmetry known as the Alday–

Gaiotto–Tachikawa (AGT) conjecture [17]. The idea is that one puts the (2,0) theory

on the space M4 × Σ2. When one shrinks either the compact manifold M4 or the

Riemann surface Σ2 one finds a relationship between observables in the resulting 2d

and 4d theories.

This is mostly conjectural and so far lacks any counter example, though it has been

proven when M4 = M3 × S1 for a subclass of manifolds [18]. This is because, when

defined on a circle, the (2,0) theory can be reduced to 5d N = 2 sYM, where there is

a Lagrangian description.

The relationship between the (2,0) theory and 5d N = 2 sYM may yet be even

more special than a simple dimensional reduction. It has been conjectured that, once

one includes all the instanton contributions to the theory, the 5d N = 2 sYM is the

(2,0) theory on a circle [19, 20]. An interpretation is that the instanton levels are in

one-to-one correspondence with the Kaluza–Klein modes of the (2,0) fields on a circle,

with some evidence for this provided in [21].

This notion of a lower dimensional theory being identified as a higher dimensional
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CHAPTER 1. INTRODUCTION

one actually pre-dates the above conjecture. In [22] it was shown that a 4d quiver

gauge theory in a certain limit of parameters can dynamically generate an additional

dimension. Thus the 4d theory becomes five dimensional, albeit with the circular

dimension being latticised. The continuum limit for the lattice spacing going to zero was

later proposed in [23] for 4d superconformal theories where there is no issue with taking

the lattice spacing to zero. There were two 4d theories which ended up dynamically

generating two dimensions, giving the 6d (2,0) theory and the 6d (1,1) little string

theory (LST). One of the goals of this current work is to study these mysterious higher

dimensional theories by appealing to both the high degree of symmetry present and to

this idea of dimensional deconstruction.

In Chapter 2 we review the relevant background material that we use liberally

throughout the thesis. First we introduce conformal symmetry across various dimen-

sions in Sec. 2.1, along with its implications about how we describe states and operators

in these theories. This is then extended to superconformal symmetry, where we discuss

the resulting algebras specifically in 5d and 6d. We move on to describing how the

states of a conformal theory can be counted in a way that is insensitive to continuous

deformations of the theory via the superconformal index in Sec. 2.2, along with an

example for 4d N = 2 SQCD.

The superconformal index for an interacting SCFT is not always easy to calculate.

One can use a technique known as supersymmetric localisation to compute this quan-

tity; along with various partition functions and observables on compact manifolds for

generic theories (supersymmetry permitting). This is covered in Sec. 2.3.1 along with

a 3d N = 2 example on an S3. A complementary, albeit more restricted, technique

for extracting partition functions in d ≥ 4 is known as the refined topological vertex.

This is particularly useful when calculating partition functions of non-Lagrangian field

theories, and is reviewed in Sec. 2.4, along with an example calculating the partition

function of the 4d N = 2 circular quiver theory that we later use.

Equipped with the basics of the superconformal algebra and the superconformal

index, we move onto Chapter 3. We perform level-by-level constructions of all unitary

multiplets that one can construct in SCFTs with dimension greater than four. The

most general superconformal index is provided for the theories with eight supercharges,

whereas we only provide a refined limit of the index in the sixteen supercharge case. For

the latter to be fully refined, we refer the reader to the accompanying Mathematica

notebook of the paper upon which this chapter is based [1]. Section 3.4.5 provides

some unpublished work with the aim of helping elucidate the multiplet structure of

the interacting (2,0) theories. Lastly, we extend the discussion in [24] to the eight

supercharge theories and describe the procedure of moving from the supercharacter to

the index in Section 3.5.

Chapter 4 revisits the idea of dimensionally deconstructing six dimensional theories
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proposed in [23]. Section 4.1 deals with the (2,0) theory which starts with a 4d N = 2

circular quiver theory and then applies a limit of the parameters of the theory to recover

the additional dimensions. The proposal is tested using some exact methods such as the

Hilbert series, superconformal index and topological strings; where we find agreement

between 4d and 6d quantities in the specified limit. The following Section 4.2 focuses on

the second proposal for 6d Little String Theory. We start with a 4d N = 1 S4 partition

function which is subsequently generalised from [25] to be on the squashed four-sphere.

We then compare the deconstruction limit for the 4d toroidal quiver theory partition

function to that of LST, again finding agreement.

The process of dimensional deconstruction is then extended to include defects that

couple to the bulk theory in Chapter 5. The aim is to extend the dictionary of observ-

ables that we can compute through dimensional deconstruction to lend credibility to

the novel predictions we make through it. This chapter is based on [4] and focuses on

two cases in that paper. Namely the deconstruction of 4d theories with 2d (2,2) and

(4,0) supersymmetric defects.

Since the exact computations require manipulations of special functions, we provide

a technical Appendix A that details our conventions for these functions. It also contains

various identities that are used liberally throughout the thesis.

The last Appendix B is an introduction to a python package that goes alongside

Chapter 3. It also contains information about a key technique that we use in that

chapter, the Racah–Speiser algorithm and its relation to momentum null states in

conformal field theory.
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Chapter 2

Review

This chapter will review some core concepts that will be central to this thesis. This

includes an overview of conformal field theories (CFTs), along with some techniques

developed to study these theories. While there is a veritable smorgasbord of methods

to choose from, we will focus specifically on the following non-perturbative techniques:

the superconformal index, localisation and the refined topological vertex. This survey

is mostly for exposition, with a more detailed treatment deferred to later chapters when

required.

2.1 Conformal Field Theories

A quantum field theory (QFT) is said to be a conformal field theory if it invariant under

conformal transformations. That is, the physics is unaffected by the transformations

x→ x′ such that the metric transforms according to

gµν(x)→ g′µν(x′) = Ω2(x)gµν(x) , (2.1)

where Ω(x) is some position dependent scaling factor. The set of these conformal

transformations forms a group, whose transformations we will now explore. Consider

the infinitesimal transformation xµ → x′µ = xµ + εµ(x). The metric changes as gµν →
gµν − (∂µεν + ∂νεµ), which implies that

∂µεν + ∂νεµ = C(x)gµν (2.2)

It then follows that C(x) = 2
d∂ρε

ρ after taking the trace of both sides. Equation (2.2)

can be further manipulated by applying one more derivative and taking a linear com-

bination. We then arrive at

2∂µ∂νερ = gµρ∂νC(x) + gνρ∂µC(x)− gµν∂ρC(x)

14



CHAPTER 2. REVIEW

=⇒ (2−D)∂µ∂νC(x) = gµν∂
2C(x) . (2.3)

Note that a further contraction with the metric leads to

(d− 1)∂2C(x) = 0 . (2.4)

These equations have some interesting implications for the explicit form of conformal

transformations in d dimensions.

• d = 1: Equation (2.4) does not impose any constraint on the function C(x); hence

any smooth transformation in one dimension is a conformal one. Intuitively this

makes sense since a conformal transformation can be thought of as one that

preserves the angle between two arbitrary curves. Given that there are no angles

in one dimension, it follows that there should be no restriction on C(x).

• d = 2: Equation (2.2) in two dimensions tells us that

∂1ε1 = ∂2ε2 , ∂1ε2 = −∂2ε1 . (2.5)

Once we rewrite these constraints in complex coordinates ε(z) = ε1(z) + iε2(z)

with z = x1 + ix2, then the aforementioned constraints are simply the Cauchy-

Riemann equations. Consequently ε can be any analytic function of z. Another

way to phrase this is that the conformal field theory in 2d is invariant under

z → f(z) , z̄ → f̄(z̄) . (2.6)

The local algebra described by these transformations is infinite dimensional, see

e.g. [12].

• d > 2: In other dimensions, the constraints imply that ∂µ∂νC(x) = 0, which is

simply the statement that C(x) is linear in x at most. This then implies that the

most general form for εµ is

εµ = aµ + bµνx
ν + cµνρx

νxρ . (2.7)

After some algebra, one discovers that the finite transformations to the above are:

Translations: x′µ = aµ + xµ ,

Rotations: x′µ = Mµ
νx

ν ,

Dilations: x′µ = λxµ ,

Special Conformal: x′µ =
xµ − bµx2

1− 2bνxν + bνbνxρxρ
. (2.8)
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Crucially, this algebra is finite dimensional. This is the set of transformations

that is most relevant for this thesis.

2.1.1 The Conformal Group

In dimensions greater than two, we observe the familiar subgroups. The first two

transformations form the Poincaré group, while the third is simply a scaling transfor-

mation. The fourth is slightly more subtle, but in essence it is three transformations:

an inversion xµ → xµ

x2 , followed by a translation bµ, followed by another inversion.

The generators of these transformations can be represented in the following way:

Translations: Pµ = −i∂µ ,

Rotations: Lµν = −i(xµ∂ν − xν∂µ) ,

Dilations: D = xµ∂µ ,

Special Conformal: Kµ = i(2xµx
ν∂ν − x2∂µ) , (2.9)

with the commutation relations

[D,Pµ] = Pµ ,

[D,Kµ] = −Kµ ,

[Kµ, Pν ] = 2(δµνD − iLµν) ,

[Kρ, Lµν ] = i(δρνKµ − δρµKν) ,

[Pρ, Lµν ] = i(δρνPµ − δρµPν) ,

[Lµν , Lρσ] = i(δµρLνσ + δνσLµρ − δνρLµσ − δµσLνρ) . (2.10)

The scaling dimension of an operator O is defined as the eigenvalue of the dilation

operator: DO = ∆O. This has two immediate implications for the operators Kµ and

Pµ

DKµO = ([D,Kµ] +KµD)O = (∆− 1)KµO ,

DPµO = ([D,Pµ] + PµD)O = (∆ + 1)PµO . (2.11)

These have a very natural interpretation in terms of the radial quantisation picture.

This is discussed at length in [26,27] so we will only summarise it here.

In QFT we canonically foliate spacetime with equal-time slices of R1,d−1, that is,

for each x0 we have a unique Rd−1, upon which we define the space of states. We

then impose equal-time canonical commutation relations to quantise the theory. The

states that are characterised by representations of the Poincaré group can then be

unitarily evolved in time. Instead of doing this for the operators of the CFT, we foliate
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spacetime with (d − 1)-dimensional spheres around the origin of Rd, each specified

by some constant-radius slice. The states defined on these spheres are characterised

by their SO(d) × SO(2) quantum numbers. The D operator then plays the role of a

Hamiltonian with the eigenvalues ∆ being the energies. Eigenstates of D are then in

one-to-one correspondence with local operators in the CFT inserted at the origin of the

sphere

|∆; ~̀ 〉 = O
∆,~̀

(0) |0〉 =⇒ D |∆; ~̀ 〉 = ∆ |∆; ~̀ 〉 , (2.12)

where ~̀ represents an arbitrary label of a representation of SO(d). The dilation operator

acts by scaling the radius of the sphere, with the Pµ operators progressing us from one

distinct slice to the next in a discrete jump. Likewise the Kµ operator moves us one

slice backwards. It therefore follows that, when we are at the origin:

KµO(0) = 0 , (2.13)

which we denote as a primary operator. Operators of higher dimension can be obtained

from primaries by acting with the ‘raising’ operators for dimension

O(0)→ Pµ1 · · ·PµnO(0) , (2.14)

with ∆ → ∆ + n. These operators are called descendant operators. It then follows

that O(x) = ex·PO(0) is a linear combination of one primary operator and an infinite

number of conformal descendants. It is through this definition of states defined on

Sd−1 that we can define some notion of a norm of a state, along side positivity for said

norms. This will be a central theme in the upcoming Chapter 3.

Lastly, one can show that there is an isomorphism between the conformal group in

d dimensions and SO(d, 2) with the following redefinitions:

Mµν = Lµν , M−1,µ = − i
2

(Pµ −Kµ) ,

M−1,0 = D , M0,µ =
1

2
(Pµ +Kµ) , (2.15)

which now obey the SO(d, 2) commutation relations

[MIJ ,MKL] = i(δIKMJL + ηJLMIK − ηJKMIL − ηILMJK) , (2.16)

with I = −1, 0, . . . , d and ηIJ = diag(−1,−1, 1, . . . , 1).
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2.1.2 Superconformal Symmetry

Extending the conformal algebra to include supersymmetry is achieved by adding the

generators of supertranslations Q and superconformal translations S to our existing

set of conformal generators. This is collectively known as the superconformal algebra

(SCA). An additional global symmetry is present, known as the R-symmetry, which is

an additional symmetry that rotates the supercharges.

Superconformal field theories (SCFTs) exhibit such a high degree of symmetry that

they are somewhat simpler arenas in which we can test and understand general ideas

in quantum field theory; such as duality [16,28–32] or emergent symmetry [33].

In his pioneering work, Nahm showed that these algebras admit a simple classifica-

tion [34]. These are

d = 3 osp(N|4) ⊃ so(3, 2)× so(N )R ,

d = 4

su(2, 2|N ) ⊃ so(4, 2)× u(N )R , N 6= 4 ,

psu(2, 2|4) ⊃ so(4, 2)× su(4)R ,

d = 5 f(4) ⊃ so(5, 2)× su(2)R , N = 1 ,

d = 6 osp(8∗|N ) ⊃ so(6, 2)× sp(2N )R , (2.17)

where we have indicated the splitting of the SCA into the conformal algebra and the

R-symmetry piece. Consequently, all states in an SCFT can be classified by their

quantum numbers |∆ ; ~̀ ;~r 〉.
Note that, with the exception of five dimensions, we have a parameter N through

which we can dictate the level of supersymmetry present. It was shown in [35] that

interacting SCFTs can only exist for N ≤ 8, 4, 2 in d = 3, 4, 6 respectively.

Since each dimension needs to be treated differently, we will focus on the two dimen-

sions that are pertinent for this thesis. Namely, five and six dimensions. For detailed

accounts of three and four dimensions we refer the reader to [36–38].

Five dimensions

Extending the 5d conformal algebra to include supersymmetry is achieved by adding

to our existing set (now with d = 5) the generators of supertranslations QAa and

superconformal translations SAa. These are equipped with a Lorentz spinor index a =

1, . . . , 4 and an su(2)R index A = 1, 2. Their associated Clifford algebras are generated

by Γµ and Γ̃µ, respectively. The collection of bosonic and fermionic generators build
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the f(4) superconformal algebra, the bosonic part of which is so(5, 2)⊕ su(2)R.

First, it will be useful to relate Lµν to the Lorentz raising (lowering) operators

M±i , associated with the positive (negative) simple roots, and the Cartans Hi (the

eigenvalues of which are li), where i = 1, 2. We do so using the relations

M±1 = L13 ± iL23 ∓ iL14 + L24 ,

M±2 = L35 ± iL45 ,

Hi = L2i−1 2i , such that [Hi,Hj ] = 0 . (2.18)

The algebra is now extended to include the following commutation relations— see

e.g. [36]:

[Lµν ,QAa] =
i

4
[Γµ,Γν ] ba QAb , [Lµν ,SAa] =

i

4
[Γ̃µ, Γ̃ν ] ba SAb ,

[D,QAa] =
1

2
QAa , [D,SAa] = −1

2
SAa ,

[Pµ,QAa] = 0 , [Pµ,SAa] = i(Γ̃µΓ̃5) b
a QAb ,

[Kµ,QAa] = i(ΓµΓ5) b
a SAb , [Kµ,SAa] = 0 . (2.19)

The generators of the su(2)R algebra are denoted Tm for m = 1, 2, 3. They act on the

supercharges according to

[Tm,QAa] =
(σm

2

) B

A
QBa ,

[Tm,SAa] =
(σm

2

) B

A
SBa , (2.20)

where σm are the Pauli matrices. In fact we may compactly write these R-symmetry

generators as

[R B
A ] =

[
(Tmσm) B

A

]
=

(
R̂ R+

R− −R̂

)
, (2.21)

with the algebra

[R B
A , R D

C ] = δBCR
D

A − δDAR B
C . (2.22)

From the above, we may infer that

[R+,Q1a] = 0 , [R−,Q1a] = Q2a , [R̂,Q1a] =
1

2
Q1a ,

[R+,S1a] = 0 , [R−,S1a] = S2a , [R̂,S1a] =
1

2
S1a . (2.23)
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We denote the eigenvalue of R̂ in the orthogonal basis to be k. The odd elements of

the 5d superconformal algebra satisfy

{QAa,QBb} = (ΓµPµC)abεAB ,

{SAa,SBb} = (Γ̃µKµC)abεAB ,

{QAa,SCc} =
[
δBAL

b
a + δBAδ

b
aD − 3R B

A δba

]
(iεBCΓ5C)bc , (2.24)

where C is the charge-conjugation matrix and εAB is the antisymmetric 2 × 2 matrix

such that ε12 = 1. It is straightforward to check that these matrices are given by

[
(ΓµPµC)ab

]
=


0 P1 iP2 −P3

−P1 0 −P3 iP4

−iP2 P3 0 P5

P3 −iP4 −P5 0

 ,

[
(Γ̃µKµC)ab

]
=


0 K1 iK2 K3

−K1 0 K3 iK4

−iK2 −K3 0 K5

−K3 −iK4 −K5 0

 . (2.25)

We have also used the matrix L b
a , which is defined by

[L b
a ] =

i

4
[Γµ,Γν ] ba Lµν

=


H1 +H2 M+

2 −1
2 [M+

1 ,M
+
2 ] −1

2 [[M+
1 ,M

+
2 ],M+

2 ]

M−2 H1 −H2 M+
1

1
2 [M+

1 ,M
+
2 ]

1
2 [M−1 ,M

−
2 ] M−1 −H1 +H2 M+

2

−1
2 [[M−1 ,M

−
2 ],M−2 ] −1

2 [M−1 ,M
−
2 ] M−2 −H1 −H2

 .

(2.26)

The supercharges have the following conjugation relations [36]

QAa = iεAB(CΓT5 )abS†
Bb
, SAa = −iεAB(CΓ̃T5 )abQ†

Bb
, (2.27)

which allows us to rewrite the {Q,S} anticommutator as

{QAa,Q†
Bb} = δBAL

b
a + δBAδ

b
a D − 3R B

A δ b
a . (2.28)

Our Gamma matrix conventions in five dimensions are

Γ1 =

(
0 I2×2

I2×2 0

)
, Γ2 =

(
0 i I2×2

−i I2×2 0

)
, Γ3 =

(
σ2 0

0 −σ2

)
,
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Γ4 =

(
σ1 0

0 −σ1

)
, Γ5 =

(
−σ3 0

0 σ3

)
. (2.29)

These are supplemented by the charge conjugation matrix

C =

(
0 iσ2

iσ2 0

)
. (2.30)

Note that Γ̃1,2,3,4 = Γ1,2,3,4, while Γ̃5 = −Γ5. Each set generates the Euclidean Clifford

algebra in five dimensions, that is they satisfy the relations

{Γµ,Γν} = 2δµν , (Γµ)† = Γµ , Γ1Γ2 Γ3Γ4Γ5 = I4×4 , (CΓµ)T = −CΓµ (2.31)

and similarly for the Γ̃ matrices.

Six dimensions

The superconformal algebra in 6d is osp(8∗|2N ), the bosonic part of which is so(6, 2)⊕
sp(N )R. The set of conformal generators is extended to include the generators of

supersymmetry QAa and superconformal translations SAȧ. The Lorentz spinor index

ranges from a, ȧ = 1, . . . , 4 (the dotted spinor index refers to the fact that it is in a

conjugate spinor representation), while the sp(N )R index ranges from A = 1, . . . , 2N .

Their associated Clifford algebras are generated by Γµ and Γ̃µ respectively, which will

be provided later on.

Since their algebras are very similar, we first list the features that are shared by

both N = 1 and N = 2 cases. Due to the fact that spinors in 6d are pseudo-real, they

satisfy the reality conditions

QAa = iΩAB(CΓT6 )aḃS
†Bḃ , SAȧ = −iΩAB(CΓ̃T6 )ȧbQ†

Bb
, (2.32)

where ΩAB is the appropriate antisymmetric matrix in 2N dimensions.1 The commu-

tation relations of the Q and S with the 6d conformal algebra are given by

[Lµν ,QAa] =
i

4
[Γµ,Γν ] ba QAb , [Lµν ,SAȧ] =

i

4
[Γ̃µ, Γ̃ν ] ḃȧ SAḃ ,

[D,QAa] =
1

2
QAa , [D,SAȧ] = −1

2
SAȧ ,

[Pµ,QAa] = 0 , [Pµ,SAȧ] = i(Γ̃µΓ̃6) b
ȧ QAb ,

[Kµ,QAa] = i(ΓµΓ6) ḃ
a SAḃ , [Kµ,SAȧ] = 0 . (2.33)

1For N = 1 one has ΩAB = εAB, the 2d antisymmetric matrix. For N = 2, ΩAB is the 4d symplectic
matrix with Ω14 = −Ω41 = Ω23 = −Ω32 = 1 and all other components vanishing.
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It is helpful to define the Lorentz raising/lowering operatorsM±i and Cartans Hi—the

eigenvalues of which are hi in the orthogonal basis of so(6)—in terms of Lµν . The

relations are provided below:

M±1 = L13 ± iL23 ∓ iL14 + L24 ,

M±2 = L35 ± iL45 ∓ iL36 + L46 ,

M±3 = L35 ± iL45 ± iL36 − L46 ,

Hi = L2i−1 2i , such that [Hi,Hj ] = 0 . (2.34)

For a superconformal algebra in six dimensions, all supercharges must have the same

chirality [36], which we choose to be positive. Therefore we define the projector P+ =
1
2(1 + Γ7) and have that

{QAa,QBb} = (P+ΓµPµC)abΩAB ,{
SAȧ,SBḃ

}
= (P+Γ̃µKµC)ȧḃΩAB . (2.35)

We may also use the projector P+ to define M b
a as

[L b
a ] = − i

4
(P+) c

a Γµ,Γν ] bc Lµν

=


H1 +H2 +H3 iM−3 −1

2 [M−1 ,M
−
3 ] 1

4 [M−1 , [M
−
2 ,M

−
3 ]]

−iM+
3 H1 −H2 −H3 iM−1 1

2 [M−1 ,M
−
2 ]

1
2 [M+

1 ,M
+
3 ] −iM+

1 −H1 +H2 −H3 iM−2
1
4 [M+

1 , [M
+
2 ,M

+
3 ]] −1

2 [M+
1 ,M

+
2 ] −iM+

2 −H1 −H2 +H3

 .

(2.36)

N = 1

For this case, the R-symmetry algebra is sp(1)R ' su(2)R. Conveniently, all the infor-

mation we require about su(2)R has already been provided in the 5d N = 1 discussion,

specifically (2.20) onwards. We may therefore use the previously-defined RAB and

write the {Q,Q†} anticommutator as

{QAa,Q†
Bb} = δBAL

b
a + δBA(P+) b

a D − 4R B
A (P+) b

a . (2.37)
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N = 2

For this case, the R-symmetry algebra is sp(2)R ' so(5)R. The matrix R B
A for so(5)R

is

[R B
A ] =


J1 + J2 R+

2 −1
2 [R+

1 ,R
+
2 ] −1

2 [[R+
1 ,R

+
2 ],R+

2 ]

R−2 J1 − J2 R+
1

1
2 [R+

1 ,R
+
2 ]

1
2 [R−1 ,R

−
2 ] R−1 −J1 + J2 R+

2

−1
2 [[R−1 ,R

−
2 ],R−2 ] −1

2 [R−1 ,R
−
2 ] R−2 −J1 − J2

 ,

(2.38)

where the Ji are the Cartans of so(5)R—the eigenvalues of which are ji—and R±i are

the raising/lowering operators. This allows the {Q,Q†} anticommutator to be written

as [36]

{QAa,Q†
Bb} = δBAL

b
a + δBA(P+) b

a D − 2R B
A (P+) b

a . (2.39)

Finally we collect our gamma-matrix conventions. For Euclidean so(6) spinors we

have

Γ1 = σ1 ⊗ I2×2 ⊗ I2×2 , Γ2 = σ2 ⊗ I2×2 ⊗ I2×2 , Γ3 = σ3 ⊗ σ1 ⊗ I2×2 ,

Γ4 = σ3 ⊗ σ2 ⊗ I2×2 , Γ5 = σ3 ⊗ σ3 ⊗ σ1 , Γ6 = σ3 ⊗ σ3 ⊗ σ2 . (2.40)

We also have Γ7 = iΓ1Γ2Γ3Γ4Γ5Γ6, which can be equivalently defined as

Γ7 = σ3 ⊗ σ3 ⊗ σ3 . (2.41)

Since we are in even dimensions, we have a choice between which charge conjugation

matrices to use, C(±). These have the properties CT(±) = ∓C(±) and C2
(±) = ∓1. We

choose C(−), but to lighten the notation, we will omit the subscript. We define our

C(−) = C as

C = (−iσ2)⊗ σ1 ⊗ (−iσ2) , (2.42)

Note that Γ1,2,3,4,5 = Γ̃1,2,3,4,5, while Γ̃6 = −Γ6. They each generate the Euclidean

Clifford algebra in six dimensions. The Γs satisfy the relations

{Γµ,Γν} = 2δµν , (Γµ)† = Γµ , C(Γµ)TC−1 = −Γµ . (2.43)

and similarly for the Γ̃ matrices.
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2.2 The Superconformal Index

The superconformal index was introduced as a way to count the protected operator

spectrum of a given SCFT [39, 40]. It is insensitive to contributions from short mul-

tiplets that recombine into long multiplets under continuous changes in parameters,

and thus remains invariant along an RG flow. This is important as it allows one to

conduct non-trivial checks of certain dualities [41]. The index can be defined purely

algebraically as in [42], which will be explored in Chapter 3; and can also be used as a

calculational tool to extract information about a theory as in Chapters 4 and 5.

The index is defined through the trace formula

I(µi) = Tr(−1)F e−βδ
∏
i

xµii , (2.44)

where δ = {Q†,Q} is the Hamiltonian and µi is the set of mutually commuting charges

(which also commute with the chosen Poincaré supercharge Q and its conjugate) and

F is the fermion number. The trace is taken over the Hilbert space of the radially

quantised theory on Sd−1.

This index decomposes into the set of states where δ = 0 and where δ 6= 0. The

latter set of states can be constructed using the basis (φ,Qφ), and have the same

charges under {µi} but with the opposite sign. Thus this set of states cancel each other

out, along the lines of [43].2 The only states that are counted are when δ = 0, namely

those that are annihilated by both Q and Q†. One can also see that the index is free

from the coupling β, and only receives contributions from states that are annihilated

by some fraction of supersymmetry (i.e. those that are in short multiplets).

Another definition of the index is as a partition function on Sd−1× S1 with twisted

boundary conditions on the S1. This has the advantage of being able to be generalised to

non-conformal theories, although care must be taken when putting the desired theory on

this background à la [44]. One can calculate these partition functions via the technique

of localisation (for an example in 4d one has e.g. [45]) which we explore in the next

section, or by exploiting the free field realisation. That is, one can use the fact that

the index is independent of the coupling on this background to flow to free fixed point

in which one simply needs to use Gaussian integration; cf. [46, 47].

2.2.1 The 4d N = 2 Index

As a concrete example, we will study the superconformal index for general Lagrangian

4d N = 2 theories. These indices will feature in Chapter 5 in the context of defect

contributions to the bulk 4d index. There are many introductions and applications to

2Indeed this is essentially just a version of the Witten index but refined to carry more information
and regulate the infinite tower of states.
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δ = 0 Operator E j1 j2 R r I(p, q, t)

φ 1 0 0 0 −1 pq/t
λ1± 3/2 ± 1/2 0 1/2 −1/2 −p, −q
λ̄1+̇ 3/2 0 1/2 1/2 1/2 −t
F̄+̇+̇ 2 0 1 0 0 pq

∂−+̇λ1+ + ∂++̇λ1− = 0 5/2 0 1/2 1/2 −1/2 pq

q 1 0 0 1/2 0
√
t

ψ̄+̇ 3/2 0 1/2 0 −1/2 −pq/
√
t

∂±+̇ 1 ±1/2 1/2 0 0 p, q

Table 1: The δ = 0 operators for the 4d N = 2 vector multiplet and N = 2 half-hyper
multiplet. The contributions from derivatives is also included in the bottom line.

this topic, with the most relevant being [48], as it also introduces various limits and

hidden structures within the index.

The superconformal algebra for a 4d N = 2 SCFT is SU(2, 2|2) whose maximally

compact bosonic subalgebra is SU(2)1 × SU(2)2 × SU(2)R ×U(1)r, with charges j1, j2,

R and r respectively. We define the index with respect to Q̃1−̇ with charges j1 = 0,

j2 = −1/2, R = 1/2, r = −1/2, which gives

δ = {Q̃†
1−̇, Q̃1−̇} = E − 2j2 − 2R+ r , (2.45)

defining the index

I(p, q, t) = Trδ=0(−1)F pj2−j1−rqj2+j1−rtR+r . (2.46)

To get the single letter indices for the 4d N = 2 multiplets, one simply goes through

the operators in the multiplet and counts the ones with δ = 0. These states are given

in Table 1. Note the inclusion of the equations of motion constraint. This is because

we count an infinite tower of derivatives, so we will eventually encounter an equation

of motion which should be subtracted from the index (providing one is counting the

right operators that constitute the equation of motion).

The derivatives contribute

∞∑
i=0

∞∑
j=0

piqj =
1

(1− p)(1− q)
(2.47)

to the index.

Putting everything together, the so-called single letter contributions to the index
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are then

i 1
2
−hyp(p, q, t) =

√
t− pq√

t

(1− p)(1− q)
,

ivec(p, q, t) = − p

1− p
− q

1− q
+

pq
t − t

(1− p)(1− q)
. (2.48)

The index for a free half-hypermultiplet would simply be the Plethystic exponential of

the single-letter index, given by

I 1
2
−hyp(p, q, t) = P.E.

[
i 1

2
−hyp(p, q, t)

]
= exp

[ ∞∑
n=1

1

n
i 1

2
−hyp(pn, qn, tn)

]
= Γe

(√
t
∣∣p, q) , (2.49)

with the elliptic gamma function defined as

Γe(z|p, q) =
∏

`1,`2≥0

1− z−1p`1+1q`2+1

1− zp`1q`2
. (2.50)

The motivation for such an operation can be found in Section A.3. One can obtain the

N = 1 superconformal index simply with the limit t→ √pq
One can also refine the index to include data about global and gauge symmetries

not associated with the superconformal algebra. In this case it would look something

like

I(p, q, t) = Trδ=0(−1)F pj2−j1−rqj2+j1−rtR+r
∏
i

ucii

∏
a

vdaa , (2.51)

where ui is a fugacity associated with the charge ci under the gauge group, and va is a

fugacity associated with a charge da under the set of global symmetries. For example,

a vector multiplet for an SU(2) gauge theory would have the contribution[
− p

1− p
− q

1− q
+

pq
t − t

(1− p)(1− q)

]
(u2 + 1 + u−2) , (2.52)

where the second part is simply the adjoint character of SU(2) in terms of the fugacity

u. Indeed more generally if the jth multiplet has representations Rj under a gauge and

R̃j under a flavour group, with characters χRj (U) and χR̃j (V ) respectively, then their

single letter contribution to the index is given by

ij(p, q, t;U, V ) = ij(p, q, t)χRj (U)χR̃j (V ) , (2.53)

where j can represent a half-hypermultiplet or a vector multiplet; and U and V are the

26



CHAPTER 2. REVIEW

set of gauge and global symmetry fugacities respectively.

For theories with a weakly-coupled description admit one can simply integrate the

entire interacting index (that is, take the Plethystic exponential of the single letter

components) over the gauge group fugacities with the Haar measure in order to project

onto the space of gauge invariant operators. Hence

I(p, q, t;V ) =

∫
[dU ] P.E.

∑
j

ij(p, q, t;U, V )

 , (2.54)

where the sum is over all the multiplet content of the theory and [dU ] is the Haar

measure of the gauge group.

As a concrete example, let us take 4d N = 2 SU(N) SQCD with Nf = 2N flavours.

The index is given by

I(p, q, t;V ) =

∫
[dU ] P.E.

[
i 1

2
−hyp

(
χ�(U)χ�(V ) + χ�(U)χ�(V )

)
+ivec(p, q, t)χAdj(U)

]
, (2.55)

We note that, for SU(N), the Haar measure is

[dU ] =
N∏
j=1

duj
2πiuj

∏
j 6=k

(
1− uj

uk

)
=

N∏
j=1

duj
2πiuj

P.E.

∑
j 6=k
−uj
uk

 , (2.56)

with the constraint
∏N
j=1 uj = 1. The adjoint character of SU(N) is given by

χAdj(U) = −1 +
N∑

j,k=1

uj
uk

. (2.57)

Focusing on the off-diagonal part of the SU(N) contribution from the vector multiplet,

we can combine it with the Haar measure as

P.E.

∑
j 6=k
−uj
uk

× P.E.

∑
j 6=k

(
− p

1− p
− q

1− q

)
uj
uk

 =

∏
j 6=k

P.E.

[(
−1− p

1− p
− q

1− q

)
uj
uk

]
=
∏
j 6=k

P.E.

[
− 1− pq

(1− p)(1− q)

uj
uk

]
, (2.58)

where we can use the (A.49) to write this as∏
j 6=k

Γe(uju
−1
k |p, q)−1 . (2.59)
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since j ↔ k is symmetric under the product. So we see that the Haar measure has

been absorbed into the definition of special function. All in all our full index is then

I(p, q, t;V ) =

(
(p; p)(q; q)

Γe(t|p, q)

)N−1 ∫ N∏
j=1

duj
2πiuj

∏
j 6=k

Γe
(pq

t uju
−1
k

∣∣p, q)
Γe(uju

−1
k |p, q)

×
N∏
j=1

2N∏
b=1

Γe

(√
t ujv

−1
b

∣∣p, q)Γe

(√
t u−1

j vb
∣∣p, q) , (2.60)

where the contour integral can be calculated by considering residues inside |ui| < 1.

Note that this approach only works here since one has a weakly-coupled description.

When one does not have this, for example in dimensions higher than four, while one can

describe the index algebraically as in [42], one has to get creative in how one calculates

the full interacting index. This will often involve techniques such as localisation or the

refined topological vertex which are covered in the following sections.

Another fruitful avenue is to appeal to various symmetries and hidden structures

present in the theory. For example, one can exploit the AGT correspondence [17] to use

2d sYM correlators to calculate 4d indices [49] for non-Lagrangian theories by appealing

to their higher dimensional origin (the (2,0) theory).

Through this relationship one can use tools of topological quantum field theory to

recover unrefined limits of the 4d index as in [48]. There are a whole host of techniques,

especially in 4d, for computing the superconformal index. For a comprehensive review

the reader should consult [50] and the references therein.

2.3 Localisation

As previously mentioned, there exists an extremely powerful technique for calculating

exact forms of protected quantities such as partition functions and Wilson loops on

compact manifolds known as localisation. It was initially used in the context of co-

homological and topological field theories [51], and notably in [52] on the so-called Ω

background. It was applied to more realistic 4d theories on the S4 with at least N = 2

SUSY in the seminal paper by Pestun [53],3 subsequently followed by the S3 version

in [55]. By now there are too many papers on this topic to do justice to this subfield,

so we will simply reference those that are particularly pertinent to this thesis. For a

complete review and survey of this area we refer the reader to the tome-like [56] and

the contained references.

3Note that it is thought to be impossible to perform localisation for minimally supersymmetry
theories on the S4, but certain techniques are available to circumvent this as in [25]. Note that this is
not the same as declaring that partition functions on S4 cannot exist, thought they may be completely
scheme dependent [54].
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The schematic process will be presented in abstract, followed by an example in [55].

Suppose we have a fermionic symmetry of the action Q such that

QS = 0 . (2.61)

We deform the path integral with some additional Q-exact term, parametrised by t

Z(t) =

∫
Dϕe−S[ϕ]−tQV [ϕ] . (2.62)

We require Q2V [ϕ] to be zero, which can be achieved either with Q2 = 0 or Q2 = δB,

where δB is a bosonic symmetry,4 when acting on V [ϕ].

It is straightforward to show that, if the measure Dϕ is invariant under Q, then

∂Z(t)

∂t
= 0 , (2.63)

which can be extended to include all operators O[ϕ] that are also Q-invariant. This has

led to a host of results for computing correlators via localisation as in [58–65] Since the

deformed path integral is independent of t, the result at t = 0 (the undeformed theory)

should be equivalent to the result for generic t. Therefore as long as QV [ϕ] ≥ 0 along

the chosen contour, all field configurations for which QV [ϕ] are infinitely suppressed.

This is where the moniker ‘localisation’ comes from, in the sense that the deformed

path integral localises to the space of bosonic zeros of QV [ϕ]. Suppose we have found

a zero ϕ0, we then expand our field around this saddle point

ϕ→ ϕ0 +
ϕ√
t
, (2.64)

and after Taylor expanding for large t we have

S + tQV [ϕ] = S[ϕ0] + (QV )(2) [ϕ] +O(t−1/2) . (2.65)

What this tells us is that the only important parts are the on-shell action evaluated

at ϕ0 and the quadratic fluctuations of QV [ϕ] around that fixed point. These are

colloquially known as “classical” and the “one-loop” piece of the partition function

respectively.5

Given that the expansion around t suppresses all dynamic field configurations with

power greater than two, the one-loop piece is usually able to be computed exactly

either by simple Gaussian integration or by the use of index theorem methods from

4Typically this can be a combination of Lorentz, scale and R-symmetry transformations. See [57]
for a nice discussion. This would require that V [ϕ] be a scalar under these symmetries.

5Note that we can also have non-perturbative contributions to the partition function that one should
make sure are accounted for.
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cohomology.

Our deformed path integral is then able to be written as

Z(t) =

∫
Dϕ0e

−S[ϕ0] 1

SDet (QV )(2) |ϕ0

, (2.66)

where the superdeterminant is the ratio of of bosonic and fermionic determinants.

Note that there is a somewhat canonical choice for the deformation term in Eq. (2.62).

It is normally given by

V [ϕ] =
∑
ψ

(Qψ)† ψ , (2.67)

where the sum is over all fermions in the theory. If this bosonic part ofQV [ϕ] is positive-

semi-definite along the contour and δBV [ϕ] = 0 then the fixed points are simply when

Qψ = 0.

2.3.1 Localisation in 3d

We now proceed with an explicit demonstration of this principle. Specifically we will

derive the partition function for a 3d N = 2 vector multiplet on the round S3 with unit

radius in pure Chern-Simons theory, following [55].

The action is given by

S =

∫
d3x
√
g Tr

[
εµνρ

(
Aµ∂νAρ +

2i

3
AµAνAρ

)
− λ†λ+ 2Dσ

]
, (2.68)

and is invariant under the supersymmetry transformations

δAµ =
i

2
(η†γµλ− λ†γµε) ,

δσ = −1

2
(η†λ+ λ†ε) ,

δD =
i

2
(η†γµ(Dµλ)− (Dµλ

†)γµε)− i

2
(η†[λ, σ]− [λ†, σ]ε)

+
i

6
(∇µη†γµλ− λ†γµ∇µε) ,

δλ = (−1

2
γµνFµν −D + iγµDµσ)ε+

2i

3
σγµ∇µε ,

δλ† = η†(
1

2
γµνFµν −D − iγµDµσ)− 2i

3
σ∇µη†γµ , (2.69)

where η and ε are Killing spinors satisfying

∇µε =
i

2
γµε . (2.70)
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We now specify the fermionic symmetry that we wish to localise with respect to. It is

beneficial to choose the simplest symmetry possible while still constraining all fields in

the deformed action. This can be achieved by simply setting η = 0.

The new supersymmetry variations are

QAµ = −λ†γµε ,

Qσ = −1

2
λ†ε ,

QD = − i
2

(Dµλ
†)γµε+

i

2
[λ†, σ]ε− i

6
λ†γµ∇µε ,

Qλ = (−1

2
γµνFµν −D + iγµDµσ)ε+

2i

3
σγµ∇µε ,

Qλ† = 0 . (2.71)

It is clear that Q2 = 0 on all the bosonic fields, as required.

Given that we only have one fermion, our deformation is simply

V = Tr′(Qλ)†λ , (2.72)

where the prime is to distinguish it from initial trace. After considerable algebra one

can show that the bosonic and fermionic parts of QV are

QV
∣∣
bos

= Tr′(Qλ)†Qλ = Tr′
[

1

2
FµνF

µν + DµσDµσ + (D + σ)2

]
,

QV
∣∣
fer

= Tr′
(
Q(Qλ)†

)
λ = Tr′

[
iλ†γµDµλ+ i[λ†, σ]λ− 1

2
λ†λ

]
. (2.73)

Finding the saddle point amounts to finding the configuration where Qλ = 0, and can

be worked out to be

Fµν = 0 , σ = σ0 = −D . (2.74)

Therefore our classical part in (2.66) is calculated using

Scl[σ0] = −2

∫
d3x
√
g Tr(σ0)2

= −4π2Tr(σ0)2 , (2.75)

therefore

Zcl[σ0] = e4π2Tr(σ0)2
. (2.76)

Note that one still needs to perform the integral over σ0. Next we focus on the one-loop
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determinant part. We expand the fields around their VEVs

σ = σ0 +
σ√
t
, D = −σ0 +

D√
t
, X =

X√
t
, (2.77)

where X represents all fields without VEVs. An interesting observation is that, once

we do this, the kinetic term for the gauge field becomes effectively abelianised since in

this expansion

FµνF
µν =

1

t
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) +O(t−3/2) . (2.78)

This breaks the gauge group to U(1)rank, hence the colloquial term “Coulomb branch

localisation”. We will denote this diagonalised field strength as FAµν .

Repeating this for all fields and keeping the leading terms in the t→∞ limit gives

us the deformed action

Sbos =

∫
d3x
√
g Tr′

[
1

2
FAµνFAµν + ∂µσ∂µσ + (D + σ)2 − [Aµ, σ0][Aµ, σ0]

]
,

Sfer =

∫
d3x
√
g Tr′

[
iλ†γµ∇µλ+ i[λ†, σ0]λ− 1

2
λ†λ

]
,

Sgf =

∫
d3x
√
g Tr′ [∂µc̄∂µc+ b∇µAµ] , (2.79)

where the last expression is simply a gauge fixing contribution. Since D and b only

appear algebraically in the action we can integrate them out. When ∇µAµ = 0 it is

possible to write FAµνFAµν = −2Aµ∆Aµ after integrating by parts, with ∆ being the

Laplacian on the S3.

The σ and c fields can be integrated out to give factors of det(−∆)−1/2 and det(−∆)

respectively. To deal with the gauge field we need to split it into a divergenceless piece

and a pure divergence piece Aµ = Bµ + ∂µφ; now ∇µBµ = 0 and the Lorenz condition

becomes δ(∆φ). This splits the measure into [DAµ] = [D∂µφ][DBµ], and the kinetic

term is easily shown to be −Aµ∆Aµ = −Bµ∆Bµ − ∂µφ∆∂µφ.

A vector field that is pure divergence has a mode expansion on a S3 that is simply

proportional to that of a scalar, specifically integrating out ∂µφ contributes another

factor of const× det(−∆)−1/2 which cancels all other determinant factors.

What we are now left with is

S =

∫
d3x
√
g Tr′

[
−Bµ∆Bµ − [Bµ, σ0]2 + iλ†γµ∇µλ+ i[λ†, σ0]λ− 1

2
λ†λ

]
, (2.80)

to evaluate

Z1−loop[σ0] =

∫
[DBµ][Dλ]e−S . (2.81)
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Since we still have some gauge structure, we can decompose all fields using their rep-

resentations under the adjoint. Namely, for any field X we write it as X = XαTα,6

where α runs over the roots and Tα is its corresponding generator. This also means

that a commutator is [X,σ0] =
∑

α〈α, σ0〉XαTα, with 〈α, σ0〉 the inner product in root

space. The generators are normalised such that Tr′(XαXβ) = δα+β. Using results

from [66] one can trade the integral over all [Dσ0] to just the integral over components

of σ0 aligned with the Cartan sub-algebra, providing one introduces a Haar measure.

Therefore

Z =
1

|W (g)|

∫
[dσ0]

(∏
α

〈α, σ0〉

)
Zcl[σ0]Z1−loop[σ0] , (2.82)

with [dσ0] =
∏rank
a=1 dσa0 , W (g) the Weyl subalgebra and, for example in SU(N)∏

α

〈α, σ0〉 =
∏
a6=b

(σa0 − σb0) . (2.83)

With all this in mind, we have that

S =

∫
d3x
√
g
∑
α

[
B−αµ

(
−∆ + 〈α, σ0〉2

)
Bα

µ

+ λ†−α

(
iγµ∇µ + i〈α, σ0〉 −

1

2

)
λα

]
. (2.84)

On the round S3, the eigenvalues of the Laplacian acting on a divergenceless vector are

(` + 1) with degeneracy 2`(` + 2), and for the fermion it is ±(` + 1/2) with the same

degeneracy. Here ` ∈ Z+. Therefore

det(bosons) =
∏
α

∞∏
`=1

((`+ 1)2 + 〈α, σ0〉2) ,

det(fermions) =
∏
α

∞∏
`=1

(
±
(
`+

1

2

)
+ i〈α, σ0〉+

1

2

)
. (2.85)

After some creative relabelling of indices and algebraic manipulation, one can finally

write

Z1−loop[σ0] =
∏
α

2 sinhπ〈α, σ0〉
〈α, σ0〉

, (2.86)

6Note that this decomposition does not include the alignment with the Cartan subalgebra, for which
the root vector is zero. To get the correct Cartan factors, one should carefully put them back in.
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through the identity

sinh(πz) = πz
∞∏
`=1

(
1 +

z2

`2

)
. (2.87)

Therefore all in all we have

Z =
1

|W (g)|

∫ (rank∏
a=1

dσa0 e
−4π2(σa0 )2

)∏
α

2 sinhπ〈α, σ0〉 . (2.88)

Note that, if we had started with 3d sYM as the kinetic term, there would be no

classical contribution since the saddle point for the original action is zero.

These calculations were repeated for the squashed S3 in [57,67] for the vector mul-

tiplet and chiral multiplet. The results are

ZN=2
vec (λ) =

∏
α∈Adj

Γ̂h
(
〈α, σ0〉

∣∣ω1, ω2

)−1

= Γ̂h (0|ω1, ω2)−rank(g)
∏
α∈∆

Γ̂h
(
〈α, σ0〉

∣∣ω1, ω2

)−1
,

ZN=2
chi (λ, r) =

∏
α∈R

Γh
(
rω+ − 〈α, σ0〉

∣∣ω1, ω2

)
, (2.89)

where ∆ are the roots and Γh is defined in Appendix A with the squashing parameters

ω1 and ω2 of the S3. These functions will be important in Chapter 5, and thus we will

discuss them there.

2.4 The Refined Topological Vertex

Another particularly useful tool for computing partition functions of theories in four and

above dimensions is the refined topological vertex formalism [68]. Strictly speaking, the

result that one obtains with this method is a partition function on the Ω-background,

as defined in [52,69]. Namely, on the manifold R4
ε1,ε2 × S1

β; with the option to combine

copies of this partition function to obtain ones on S4
ε1,ε2 × S1

β and CP2 × S1
β; cf. [70,71]

While this technique might seem inherently restrictive in its choice of manifolds,

it is advantageous in other respects. Firstly, it produces the perturbative and non-

perturbative parts of a partition function. Secondly, one can obtain partition functions

for theories that lack a Lagrangian description, see for example [72–77]. One simply

needs to identify the (p, q) 5-brane configuration whose low energy limit yields the field

theory that we desire, then one maps the configuration to the dual toric diagram. From

there all that is needed is to follow the algorithmic process of the refined topological

vertex, which we enumerate here.

For a comprehensive review of the theory behind the refined topological vertex, we
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refer the reader to the previously cited references, in particular [72]; here we simply

focus on its application as a means for computing partition functions.

The Ω-background parameters q and t by

q = e−βε1 , t = eβε2 , (2.90)

where the β is the radius of the circle Sβ. Other Greek letters are reserved for partitions

of natural numbers, e.g. λ with λ1 ≥ λ2 ≥ . . . ≥ λl(λ) > 0, where l(λ) denotes the

length of the partition. Each partition can be represented as a Young diagram, with the

coordinates (i, j) identifying a box in a given diagram. We have that (i, j) ∈ {(i, j)|i =

1, . . . , l(λ); j = 1, . . . , λi}, so the number of boxes in the ith column is λi. It is also

useful to define the following quantities

|λ| =
l(λ)∑

(i,j)∈λ

1 =

l(λ)∑
i=1

λi , ‖λ‖2 =
∑

(i,j)∈λ

λi =

l(λ)∑
i=1

λ2
i , (2.91)

as well as the transposed Young diagram λt. These are to be used as data that label

the refined topological vertex.

Each refined topological vertex consists of three directed edges emanating from the

same point. The edges either all point outwards or inwards, forming two-vectors ~v1,2,3

which satisfy
∑3

i=1 ~vi = 0 and ~vi ∧ ~vi+1 := v1
i v

2
i+1 − v2

i v
1
i+1 = −1. Upon picking a

“preferred direction”—this will be indicated in our diagrams by a double red line—the

basic vertices can be glued together in a unique fashion (outgoing to incoming edges

and vice-versa) to form a dual-toric diagram. A chain of dualities relates this geometry

to a IIB 5-brane web represented by the same diagram. To every connected edge one

associates a partition: λ when the arrow points out of a vertex and λt when the arrow

points into a vertex. External edges are assigned an empty partition, ∅.
The dual-toric diagram can be converted into a closed topological string amplitude

(which in turn yields a 5d partition function on R4
ε1,ε2 × S1

β in the field-theory limit)

based on the following rules: To each vertex with outgoing edges we assign the vertex

factor

Cλµν(t, q) = q
‖µ‖2+‖ν‖2

2 t−
‖µt‖

2 Z̃ν(t, q)
∑
η

(q
t

) |η|+|λ|−|µ|
2

Sλt/η(t
−ρq−ν)

×Sµ/η(q−ρt−ν
t
) , (2.92)

such that ν is the partition associated with the edge vector aligned with the “pre-

ferred direction”. If the edges are incoming then the partitions are simply replaced by

their transposes. The Z̃ functions are a specialisation of the MacDonald polynomials
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Pν(x; t, q) given by

Z̃ν(t, q) = t−
‖νt‖2

2 Pν(t−ρ; q, t) =
∏

(i,j)∈ν

(
1− tν

t
j−i+1qνi−j

)−1
, (2.93)

while the Sλ/µ(x) are the skew-Schur functions for the vector x = (x1, . . .). These have

the properties that

Sµ/∅(x) = Sµ(x) , S∅/µ(x) = δµ,∅ , S∅/∅(x) = 1 . (2.94)

For a partition ν, the vector t−ρq−ν is

t−ρq−ν = (t
1
2 q−ν1 , t

3
2 q−ν2 , t

5
2 q−ν3 , . . .). (2.95)

Internal edges in the dual-toric diagram correspond to Kähler moduli in the geom-

etry, generically denoted by Q. More precisely, each internal edge is assigned an “edge

factor” given by

edge factor = (−Q)|λ| × framing factor . (2.96)

The “framing factor” is determined as follows: After glueing two vertices together, one

can assign to each connected edge vector ~v an incoming and outgoing external vector

~vin,out, such that ~vin · ~vout > 0. External-edge vectors with ~vin ∧ ~vout 6= 0 will have

non-trivial ‘framing factors’. Since we do not deal with framing factors in this thesis,

we defer this discussion to [72].

Equipped with the above definitions, we can finally write the Topological string

partition function with M internal edges as

Z =
∑

λ1,...,λM

∏
edges

edge factor
∏

vertices

vertex factor . (2.97)

2.4.1 Deriving the 4d Partition Function

In this part we review the computation of the topological amplitude for the basic build-

ing block of our Coulomb-branch partition functions, the “strip geometry”. We then

use this to derive the relevant 4d results that we need later in Chapter 4. Specifically,

we will derive the partition function for the 4d U(k)N circular quiver theory. The dual

toric diagram for the circular quiver theory that we will use in that chapter can be

built using the blocks depicted in Fig. 1.
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Figure 1: The “strip geometry” for the U(k)N theory. The preferred direction is high-
lighted in red. There are no non-trivial framing factors.

Derivation of the strip-geometry amplitude

The partition functions that we will be deriving in this thesis can all be constructed

from a single building block, the “strip geometry”. In view of using this for the SU(k)N

circular-quiver gauge theory, we assign Kähler moduli to each edge: For each vertical

edge a Q
(α)
g , each diagonal edge a Q

(α)
mb and each horizontal edge a Q

(α)
fb , as well as

associated partitions ν
(α)
b , µ

(α)
b and λ

(α)
b respectively. The indices are α = b−N

2 c +

1, . . . , bN2 c with N the number of nodes for the quiver and b = 1, . . . , k where k is the

rank of U(k).

The contribution to the partition function from this building block is given by

W(α)
k

(
ν(α), ν(α+1)

)
=

∑
~µ,~λ

k∏
b=1

(
−Q(α)

mb

)|µb| (
−Q(α)

fb

)|λb|
Cµbλb−1ν(b,α)

(t, q)Cµtbλ
t
bν
t
(b,α+1)

(q, t) , (2.98)

where we have denoted ν(α) = {ν(α)
b } for a fixed α and λ0 = λk = ∅. The corresponding

dual-toric diagram is given in Fig. 1. Using the definitions (2.92), as well as the identity
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Q|µ|−|ν|Sµ/ν(x) = Sµ/ν(Qx), we then have that

W(α)
k (ν(α), ν(α+1)) =

k∏
b=1

q
‖ν(α)
b
‖2

2 Z̃
ν

(α)
b

(t, q)t
‖ν(α+1)t
b

‖2

2 Z̃
ν

(α+1)t
b

(q, t)

×
∑
~µ,~λ

~η,~ξ

Sµtb/ηb

(
−
Q

(α)
mb

Q̃
(α)
b

t−ρq−ν
(α)
b

)
Sλb−1/ηb

(
−
Q̃

(α)
b

Q
(α)
mb

q−ρ−
1
2 t−ν

(α)t
b + 1

2

)

× Sµb/ξb
(
−Q̃(α)

b q−ρt−ν
(α+1)
b t

)
Sλtb/ξb

(
−(Q̃

(α)
b )−1t−ρ−

1
2 q−ν

(α+1)
b + 1

2

)
, (2.99)

with Q̃
(α)
b :=

∏b−1
k=1Q

(α)
mbQ

(α)
fk . The sum can be computed exactly with the help of the

Cauchy relations

∑
λ

Q|λ|Sλ/µ1
(x)Sλt/µ2

(y) =

∞∏
i,j=1

(1 +Qxiyj)
∑
λ

Q|µ1|+|µ2|−|λ|Sµt2/λ(x)Sµt1/λt(y) ,

∑
λ

Q|λ|Sλ/µ1
(x)Sλ/µ2

(y) =
∞∏

i,j=1

(1−Qxiyj)−1
∑
λ

Q|µ1|+|µ2|−|λ|Sµ2/λ(x)Sµ1/λ(y) ,

(2.100)

to obtain:

W(α)
k

(
ν(α), ν(α+1)

)
=

k∏
b=1

q
‖ν(α)
b
‖2

2 Z̃
ν

(α)
b

(t, q)t
‖ν(α+1)t
b

‖2

2 Z̃
ν

(α+1)t
b

(q, t)

×
∞∏

i,j=1

∏
1≤b≤c≤k

(
1−Q(α)

bc Q
(α)
mcq

j− 1
2
−ν(α)

b,i ti−
1
2
−ν(α+1)t

c,j

)
∏

1≤b<c≤k

(
1−Q(α)

bc qi−1−ν(α)
b,j tj−ν

(α)t
c,i

)

×
∞∏

i,j=1

∏
1≤b<c≤k

(
1− (Q

(α)
mb )
−1Q(α)

bc qj−
1
2
−ν(α+1)

b,i ti−
1
2
−ν(α)t

c,j

)
∏

1≤b<c≤k

(
1− (Q

(α)
mb )
−1Q(α)

bc Q
(α)
mcq

i−ν(α+1)
b,j tj−1−ν(α+1)t

c,i

) , (2.101)

where we have defined

Q(α)
bc :=

c−1∏
l=b

Q
(α)
mlQ

(α)
fl =:

c−1∏
l=b

Q
(α)
Fl . (2.102)

This is the refined version of the strip geometry found in [78,79]. Additionally, we need

to normalise the building block using the MacMahon function

M(Q; t, q) =

∞∏
i,j=1

(1−Qti−1qj)−1 , M(t, q) =M(1; t, q) , (2.103)
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to give

Ŵ(α)
k

(
ν(α), ν(α+1)

)
=M(1; t, q)kW(α)

k

(
ν(α), ν(α+1)

)
. (2.104)

This is a convention developed in [80] for correctly recovering the Cartan factors in the

amplitude by adding one such factor for each closed face of the dual toric diagram.

The 5d circular quiver

The Coulomb-branch partition function for the 5d uplift of theory depicted in Fig. 2

can be obtained by fusing the building blocks Ŵ(α)
k with the help of the glueing pa-

rameters
∑

ν(α)(−Q(α)
g )

∑k
b=1 |ν

(α)
b | and the cyclic identification of partitions ν

(bN/2c+1)
b =

ν
(b−N/2c]+1)
b .

Before we proceed, it is helpful to split the building block into one-loop and non-

perturbative pieces. We define the former as Ŵ(α)
k (∅, ∅). The latter is defined as

D(α)
k

(
ν(α), ν(α+1)

)
=
Ŵ(α)
k

(
ν(α), ν(α+1)

)
Ŵ(α)
k (∅, ∅)

. (2.105)

An additional simplification is afforded to us, since in both examples of interest we

will be identifying the top and bottom vertical edges of the dual-toric diagram. For

instance, for an N -noded circular quiver we identify the indices α = b−N
2 c + 1 with

α = bN2 c. We can use this cyclicity alongside the identity

Z̃ν(t, q)Z̃νt(q, t) =

(
−
√

q

t

)|ν|
t−
‖νt‖2

2 q−
‖ν‖2

2 Nνν(1; t, q)−1 , (2.106)

to write the non-perturbative piece of the building block as

D(α)
k

(
ν(α), ν(α+1)

)
=

(
−
√

q

t

)∑k
b=1 |ν

(α)
b | ∏

1≤b≤c≤k

N
ν

(α+1)
c ν

(α)
b

(
Q(α)
bc Q

(α)
mc

√
t
q

)
N
ν

(α+1)
c ν

(α+1)
b

(
(Q

(α)
mb )
−1Q(α)

bc Q
(α)
mc

)
×

∏
1≤b<c≤k

N
ν

(α)
c ν

(α+1)
b

(
(Q

(α)
mb )
−1Q(α)

bc

√
t
q

)
N
ν

(α)
c ν

(α)
b

(
Q(α)
bc

t
q

) . (2.107)

In the above we have defined the function

Nλµ(Q; t, q) =

∞∏
i,j=1

1−Qti−1−λtjqj−µi

1−Qti−1qj
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Figure 2: The dual-toric diagram for the U(k)N theory. The preferred direction is
along the compactified circle and is highlighted in red. There are no non-trivial framing

factors. We close the quiver by identifying the partitions ν
(bN2 c+1)
b = ν

(b−N2 c+1)
b .

=
∏

(i,j)∈λ

(1−Qqλi−j+1tµ
t
j−i)

∏
(i,j)∈µ

(1−Qq−µi+jt−λ
t
j+i−1) . (2.108)

whose properties can be found in App. A. We also adopt the shorthand Nλµ(Q) =

Nλµ(Q; t, q) since the second two arguments will always appear in that order.

The normalised one-loop piece is simply

Ŵ(α)
k (∅, ∅) =

∏
1≤b≤c≤k

M
(

(Q
(α)
mb )
−1Q(α)

bc Q
(α)
mc

)
M
(
Q(α)
bc Q

(α)
mc

√
t
q

) ∏
1≤b<c≤k

M
(
Q(α)
bc

t
q

)
M
(

(Q
(α)
mb )
−1Q(α)

bc

√
t
q

) ,
(2.109)

again with the shorthand M(Q) =M(Q; t, q).
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This results in the partition function

Z
U(k)N

5D =
∑
ν

bN
2
c∏

α=b−N
2
c+1

Ŵ(α)
k (∅, ∅) (−Q(α)

g )
∑k
b=1 |ν

(α)
b |D(α)

k

(
ν(α), ν(α+1)

)
, (2.110)

where ν = {ν(α)
b }. At this stage we can define the “physical parameters” (where β is

the radius of the S1)

q(α) = Q
(α)
gb

√
Q

(α)
mbQ

(α+1)
mb ∀ b , Q

(α)
Fb = Q

(α)
fb Q

(α)
mb , Q(α)

bc =
c−1∏
l=b

Q
(α)
Fl , (2.111)

which can be motivated by looking at distances between branes in the (p, q) web de-

picted in Fig 2 and rephrasing them in terms of the Kähler parameters. The q(α) is

interesting because it is independent of β, and is given by

q(α) = e2πiτ (α)
, τ (α) =

4πi

g2
(α)

+
θ(α)

8π2
, (2.112)

with τ (α) being the complexified coupling of the αth gauge node.

We may explicitly write:

Z
U(k)N

5d = Z
U(k)N

5d,1-loopZ
U(k)N

5d,inst , (2.113)

with

Z
U(k)N

5d,inst =
∑
ν

bN
2
c∏

α=b−N
2
c+1

(−Q(α)
g )

∑k
b=1 |ν

(α)
b |D(α)

k

(
ν(α), ν(α+1)

)

=
∑
ν

bN
2
c∏

α=b−N
2
c+1

(
q(α)

(
Q

(α)
mbQ

(α+1)
mb

)− 1
2

√
q

t

)∑k
b=1 |ν

(α)
b |

×
∏

1≤b≤c≤k

N
ν

(α+1)
c ν

(α)
b

(
Q(α)
bc Q

(α)
mc

√
t
q

)
N
ν

(α+1)
c ν

(α+1)
b

(
(Q

(α)
mb )
−1Q(α)

bc Q
(α)
mc

)
×

∏
1≤b<c≤k

N
ν

(α)
c ν

(α+1)
b

(
(Q

(α)
mb )
−1Q(α)

bc

√
t
q

)
N
ν

(α)
c ν

(α)
b

(
Q(α)
bc

t
q

) , (2.114)
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and

Z
U(k)N

5d,1-loop =

bN
2
c∏

α=b−N
2
c+1

Ŵ(α)
k (∅, ∅)

=

bN
2
c∏

α=b−N
2
c+1

∏
1≤b≤c≤k

M
(
Q

(α)
mb )
−1Q(α)

bc Q
(α)
mc

)
M
(
Q(α)
bc Q

(α)
mc

√
t
q

)
×

∏
1≤b<c≤k

M
(
Q(α)
bc

t
q

)
M
(

(Q
(α)
mb )
−1Q(α)

bc

√
t
q

) , (2.115)

We can now abuse the exchange relations detailed in App. A the MacMahon and

Nekrasov functions, along with the cyclicity of the product over α. First we convert

the Nλµ functions into Nβ
λµ for the instanton piece, resulting in

Z
U(k)N

5d,inst =
∑
ν

bN
2
c∏

α=b−N
2
c+1

q
∑k
b=1 |ν

(α)
b |

(α)

∏
1≤b≤c≤k

Nβ

ν
(α+1)
c ν

(α)
b

(
F(α)
bc +m

(α)
c + ε+

)
Nβ

ν
(α+1)
c ν

(α+1)
b

(
F(α)
bc +m

(α)
c −m(α)

b

)

×
∏

1≤b<c≤k

Nβ

ν
(α)
c ν

(α+1)
b

(
F(α)
bc −m

(α)
b + ε+

)
Nβ

ν
(α)
c ν

(α)
b

(
F(α)
bc + 2ε+

) ,

(2.116)

with ε+ = ε1+ε2
2 and

Nβ
λµ(m; ε1, ε2) =

∏
(i,j)∈λ

2 sinh
β

2

[
m+ ε1(λi − j + 1) + ε2(i− µtj)

]
×
∏

(i,j)∈µ

2 sinh
β

2

[
m+ ε1(j − µi) + ε2(λtj − i+ 1)

]
. (2.117)

We also used the following definitions for our fugacities

Q(α)
bc = e−βF

(α)
bc , Q

(α)
mb = e−βm

(α)
b . (2.118)

Note that the above can be interpreted with the help of our diagram using the positions

of the D5 branes, a
(α)
b . Specifically

F(α)
bc = a(α)

c − a
(α)
b , m

(α)
b = a

(α+1)
b − a(α)

b +m
(α)
bif , (2.119)

where the second variable is the distance between D5 branes over an NS5, with the

bif standing for bifundamental, since these contributions will come from bifundamental
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hypermultiplets. These will be expanded upon more in Chapter 4. This identification

allows us to write

Z
U(k)N

5d,inst =
∑
ν

bN
2
c∏

α=b−N
2
c+1

q
∑k
b=1 |ν

(α)
b |

(α)

∏
1≤b≤c≤k

Nβ

ν
(α+1)
c ν

(α)
b

(
a

(α+1)
c − a(α)

b +m
(α)
bif − ε+

)
Nβ

ν
(α+1)
c ν

(α+1)
b

(
a

(α+1)
c − a(α+1)

b

)

×
∏

1≤b<c≤k

Nβ

ν
(α)
c ν

(α+1)
b

(
a

(α)
c − a(α+1)

b −m(α)
bif − ε+

)
Nβ

ν
(α)
c ν

(α)
b

(
a

(α)
c − a(α)

b − 2ε+

)

=
∑
ν

bN
2
c∏

α=b−N
2
c+1

q
∑k
b=1 |ν

(α)
b |

(α)

∏
1≤b≤c≤k

Nβ

ν
(α+1)
c ν

(α)
b

(
a

(α+1)
c − a(α)

b +m
(α)
bif − ε+

)
Nβ

ν
(α)
c ν

(α)
b

(
a

(α)
c − a(α)

b

)

×
∏

1≤b<c≤k

Nβ

ν
(α)
c ν

(α+1)
b

(
a

(α)
c − a(α+1)

b −m(α)
bif − ε+

)
Nβ

ν
(α)
c ν

(α)
b

(
a

(α)
c − a(α)

b − 2ε+

) , (2.120)

where we used the cyclicity of α in the denominator of the first line to arrive at the

second equality. The exchange relation that we need to use is

Nβ
λµ(−x; ε1, ε2) = (−1)|µ|+|λ|Nβ

µλ(x− ε1 − ε2; ε1, ε2) , (2.121)

which we can apply to the last line giving

∏
1≤b<c≤k

(−1)|ν
(α)
c |+|ν

(α+1)
b |Nβ

ν
(α+1)
b ν

(α)
c

(
a

(α+1)
b − a(α)

c +m
(α)
bif − ε+

)
(−1)|ν

(α)
c |+|ν

(α)
b |Nβ

ν
(α)
b ν

(α)
c

(
a

(α)
b − a

(α)
c

) . (2.122)

The cyclicity of α will take care of the minus sign factors, and then we can relabel

b↔ c to finally write

Z
U(k)N

5d,inst =
∑
ν

∏
α

q
∑k
b=1 |ν

(α)
b |

(α)

k∏
b,c=1

Nβ

ν
(α+1)
c ν

(α)
b

(
a

(α+1)
c − a(α)

b +m
(α)
bif − ε+

)
Nβ

ν
(α)
c ν

(α)
b

(
a

(α)
c − a(α)

b

) . (2.123)

We recognise the denominator as coming from a 5d vector multiplet and the numerator

coming from a bifundamental chiral multiplet [52].

For the perturbative piece we simply need to use the relation from App. A

M(Q−1) =

(
−Q−1

√
q

t

) 1
12

M
(
Q
t

q

)
, (2.124)
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and do the relabelling trick to get

Z
U(k)N

5d,1-loop =
∏
α

(
m(α)

√
t

q

) 1
24
k(k−1) k∏

b,c=1

M
(
e
−β
(
a

(α)
c −a

(α)
b

))
M
(
e
−β
(
a

(α+1)
c −a(α)

b

)
m(α)

√
t
q

) , (2.125)

where we used the cyclicity of α again and m(α) = e−βm
(α)
bif .

Before we take the 4d limit, we note that if we specify the number of nodes in the

quiver to be N = 1, then we have a 5d N = 1∗ theory. This is precisely one way of

obtaining the 6d (2,0) index via [19, 20] and is what we use in Section 4 for the 6d

partition function.

If we had chosen the preferred direction to be horizontal instead of vertical then

the calculation would have yielded a equivalent partition function, rephrased in terms

of sum over the Coulomb branch parameters of θ functions.

The elliptic structure comes from the fact that, with the chosen preferred direction

to be horizontal, one can never use the Cauchy identities in (2.100) to permute an

empty partition into the correct position in the skew-Schur functions. One needs to

perform a recursion relation on the topological string amplitude and use the fact that

the Kähler parameters satisfy limn→∞Q
n = 0. This is a beautiful calculation and

is detailed in Appendix B of [71], but since we do not use this form of the partition

function we leave it as an exercise to the interested reader.

A similar calculation is done for the Little String Theories (LST) by identifying

both sets of external edges depicted in Fig. 2, which just amounts to having the same

partition on each side for each horizontal strip rather than the empty partition. This will

yield a 6d (1,0) LST partition function and was performed in [81–83], and reproduced

in [3] with the number of nodes equal to one.

The 4d limit

The 4d N = 2 U(k)N circular-quiver result is obtained by reducing the 5d answer along

the circle.

Z
U(k)N

4D = lim
β→0

Z
U(k)N

5D . (2.126)

This operation can be straightforwardly performed, since having a Lagrangian descrip-

tion implies that the limit and sum over partitions commute [73]. Armed with details

from App. A, this is a simple matter. In fact we can simply state the results of this
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reduction

Z
U(k)N

4d,inst =
∑
ν

∏
α

q
∑k
b=1 |ν

(α)
b |

(α)

k∏
b,c=1

N
ν

(α+1)
c ν

(α)
b

(
a

(α+1)
c − a(α)

b +m
(α)
bif − ε+

)
N
ν

(α)
c ν

(α)
b

(
a

(α)
c − a(α)

b

) , (2.127)

and

Z
U(k)N

4D,1-loop =
∏
α

k∏
b,c=1

Γ2

(
a

(α+1)
c − a(α)

b +m
(α)
bif + ε+

∣∣ε1, ε2)
Γ2

(
a

(α)
c − a(α)

b

∣∣ε1, ε2) , (2.128)

where

Nλν(x; ε1, ε2) =
∏

(i,j)∈λ

(
x+ ε1(λi − j + 1) + ε1(i− νtj)

)
×
∏

(i,j)∈ν

(
x+ ε1(j − νi) + ε2(λtj − i+ 1)

)
. (2.129)

Combining (2.128) with (2.127) one gets the full 4d partition function which matches

the results of [17,69,84]. Recall that, in this regime, ε1 > 0 and ε2 < 0.

We recognise the denominators of both the perturbative and instanton contributions

as coming from a 4d vector multiplet; while the numerators come from bifundamental

hypermultiplets. This concludes our introduction to the refined topological vertex.
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Chapter 3

Algebraic Techniques for the

Superconformal Index

This chapter is based on the paper [1]. Section 3.4.5 is based on unpublished work.

There is an accompanying python package for the explicit enumeration of the various

superconformal modules. Note that the package works for any representation of any

superconformal algebra, and is reviewed in App. B.

3.1 Introduction and Summary

The basic building blocks of a superconformal field theory (SCFT) are the multiplets

of local operators. By studying the unitary irreducible representations (UIRs) of the

corresponding superconformal algebra (SCA) one can make broad statements about

these theories, and their associated spectra.

These UIRs are of two general types: short representations and long representa-

tions. Short UIRs have primaries that are annihilated by certain non-trivial com-

binations of the Poincaré supercharges while long representations do not. Moreover,

short representations can contribute to the superconformal index [39,40,42], can realise

non-trivial structures like chiral algebras [24,85] and chiral rings that enjoy various non-

renormalisation properties, can be used to study the structure of anomalies [86], and can

describe the SUSY-preserving relevant and marginal deformations of SCFTs [87, 88].

Furthermore, by understanding how short representations recombine to form long rep-

resentations one can hope, when sufficient symmetry is present, to bootstrap non-trivial

correlation functions of local operators and perhaps even whole theories (see [15,24,89]

for important recent progress on this front).

In this chapter, we perform the conceptually straightforward, but calculationally

non-trivial, task of giving the level-by-level construction of all UIRs for the five-dimensional

N = 1 and six-dimensional (2,0) SCA. We also calculate the most general superconfor-
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mal index associated with these multiplets. Our approach throughout is based on the

presentation and conventions of [36,42].7

We expect the results assembled here to be useful for more detailed studies of the

many still-mysterious SCFTs in five and six dimensions (see, e.g., the theories described

in the classic works [93–97] and the more recent literature [98, 99]) as well as for more

general explorations of the space of SCFTs in these dimensions; c.f. [100–105] and their

gravity duals [106–108].

The methodology we use to extract our results is rather general and well established

[24, 36, 37, 42, 88, 109]. Indeed, we use a simple Verma-module construction to obtain

all irreducible representations of the full SCA from irreducible representations of its

maximal compact subalgebra. The UIRs are labelled by highest weights corresponding

to superconformal primaries, from which all descendants are recovered by the action of

momentum operators and supercharges. Hence, each UIR is uniquely identified by a

string of quantum numbers, which characterises the superconformal primary state. As

we described above, there are both long and short multiplets. The short multiplets have

null states, which can be consistently deleted (hence the moniker, “short”). A complete

classification of short UIRs can be obtained by imposing the condition of unitarity. For

special values of the quantum numbers characterising short UIRs, additional null states

can occur. The precise enumeration and analysis of all such possibilities using unitarity

is an intricate task.

Once all null states have been identified, the Racah–Speiser (RS) algorithm sim-

plifies the multiplet construction and clarifies the origin of equations of motion and

conservation equations, whenever these are present.8 The RS algorithm provides a pre-

scription for the Clebsch–Gordan decomposition of states in representation space. Since

representations of the maximal compact subalgebra are labelled by highest weights,

these take values in the dominant Weyl chamber and the corresponding Dynkin labels

are positive. After the Clebsch–Gordan decomposition, a representation in the sum

with negative Dynkin labels lies outside the dominant Weyl chamber and can no longer

label an irreducible representation. The RS prescription involves applying successive

Weyl reflections, which bounce the weight vector off the boundaries of the Weyl cham-

ber. Each time a Weyl reflection is performed, the multiplicity of the representation

flips sign. Therefore, if a representation is labelled by negative Dynkin labels, it gets

reflected back into the dominant Weyl chamber up to a sign. If it is labelled by a

weight which lies exactly on the boundary of the dominant Weyl chamber, the state

7Note that a comprehensive classification of unitary irreducible representations (UIRs) for all SCAs
was carried out in [36,38,42,90–92] and further discussed in [88]. However, in this section we supplement
these works by giving the level-by-level construction of the corresponding multiplets as well as the
resulting superconformal index contributions. Part of this work was already done in [24] for the 6d
(2, 0) SCA (but we will provide the full set of multiplets and index contributions for this algebra).

8A concise summary of the Racah–Speiser algorithm can be found in App. B of [37] and in App. B.
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has zero multiplicity and should be removed from the sum. A natural interpretation

for representations with negative multiplicities is in terms of constraints imposed on

operators inside the multiplet [37].

Since we study the 5d N = 1 and 6d SCAs, our presentation is split into three

corresponding sections, one for each algebra; all of which are largely self-contained.

Each multiplet is labelled by the quantum numbers designating its superconformal

primary and the shortening conditions the latter obeys. Some multiplets with special

values for their quantum numbers admit a distinct physical interpretation; these are

dealt with separately. We provide a detailed discussion for the case of the 5d N = 1

SCA in Sec. 3.2, which extends naturally to 6d cases in Sec. 3.3 and Sec. 3.4. Special

emphasis is put on identifying operator constraints, whenever present. Each section

also contains expressions for recombination rules and indices for the superconformal

multiplets under study.

The last section of the chapter is devoted to formally obtaining the superconformal

index from the corresponding multiplet supercharacters.

3.2 Multiplets and Superconformal Indices for 5d N = 1

We begin by providing a systematic analysis of all short multiplets admitted by the 5d

N = 1 SCA, f(4). This involves a derivation of the superconformal unitarity bounds.

By doing so we reproduce the results of [42]. We then proceed to write the complete

multiplet spectra and compute their indices. Our notation and conventions for the 5d

SCA are provided in Sec. 2.1.2. Unitarity for all these multiplets were proven in [1] by

paying special attention to new developments in [110–112]. We omit the proofs in this

thesis.

3.2.1 UIR Building with Auxiliary Verma Modules

The superconformal primaries of the 5d SCA f(4) are designated |∆; l1, l2; k〉, where

∆ is the conformal dimension, l1 ≥ l2 > 0 are Lorentz symmetry quantum numbers

in the orthogonal basis and k is an R-symmetry label. Each primary is in one-to-

one correspondence with a highest weight state of the maximal compact subalgebra

so(5) ⊕ so(2) ⊕ su(2)R ⊂ f(4).9 There are eight Poincaré and eight superconformal

supercharges, denoted by QAa and SAa respectively—where a = 1, · · · , 4 is an so(5)

Lorentz spinor index and A = 1,2 an index of su(2)R. One also has five momenta Pµ

and special conformal generators Kµ, where µ = 1, · · · , 5 is a Lorentz vector index. The

superconformal primary is annihilated by all SAa andKµ. A basis for the representation

9The quantum numbers labelling the primary are eigenvalues for the Cartans of the maximal com-
pact subalgebra in a particular basis.
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space of f(4) can be constructed by considering the following Verma module∏
A,a

(QAa)
nA,a

∏
µ

P
nµ

µ |∆; l1, l2; k〉hw (3.1)

for some ordering of operators,10 where n =
∑

Aa nA,a and n̂ =
∑

µ nµ denote the

“level” of a superconformal or conformal descendant respectively. In order to obtain

UIRs, the requirement of unitarity needs to be imposed level-by-level on the Verma

module. This leads to bounds on the conformal dimension ∆.

There exists a natural basis for constructing the UIRs of the 5d SCA, in which

particular combinations of supercharges map highest weights of the maximal compact

subalgebra, so(5)⊕su(2)R, to other highest weights. This is particularly helpful since it

allows for a far more compact way of writing out modules of superconformal symmetry.

Furthermore, each state is a conformal primary, which means that we can implicitly

take the infinite tower of derivatives along for the ride, and only deal with a module of

conformal primaries which are highest weight. We define

Λa1 :=
a∑
b=1

Q1bλ
a
b and Λa2 :=

a∑
b=1

Q2bλ
a
b −

a∑
b=1

Q1bR−λab
1

2R̂
. (3.2)

The λab are given by

λaa = 1 , where a is not summed over ,

λ2
1 = −M−2

1

2H2
,

λ3
1 =

(
−M−1M

−
2 +M−2M

−
1

(H1 −H2 + 1)

(H1 −H2)

)
1

4(H1 + 1)
,

λ3
2 = −M−1

1

2(H1 −H2)
,

λ4
1 =

(
−M−2M

−
1M

−
2

(2 +H1 + 5H2 + 4H1H2)

(H1 + 1)H2
+M−1 (M−2 )2 (2H2 + 1)

H2

+ (M−2 )2M−1
(2H1 + 3)

(H1 + 1)

) 1

8(H1 +H2 + 1)
,

λ4
2 =

(
−M−2M

−
1 +M−1M

−
2

(H2 + 1)

H2

)
1

4(H1 + 1)
,

λ4
3 = −M−2

1

2H2
. (3.3)

These coefficients can be uniquely determined by imposing the requirement that all

Lorentz raising operators and R-symmetry raising operators annihilate ΛaA |∆; l1, l2; k〉hw.

10Any other ordering can be obtained using the superconformal algebra.
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Unitarity Bounds for l1 ≥ l2 > 0

In order to derive unitarity bounds for the superconformal descendent states, we need

the norms of level-one states. These can be calculated using the above basis in (3.3)

and the algebra relations in Sec 2.19. They are

||Λ4
1 |∆; l1, l2; k〉hw ||2 = (∆− 3k − l1 − l2 − 4)

(2l1 + 3) (l1 + l2 + 2) (2l2 + 1)

4 (l1 + 1) l2 (l1 + l2 + 1)
,

||Λ3
1 |∆; l1, l2; k〉hw ||2 = (∆− 3k − l1 + l2 − 3)

(2l1 + 3) (l1 − l2 + 1)

2 (l1 + 1) (l1 − l2)
,

||Λ2
1 |∆; l1, l2; k〉hw ||2 = (∆− 3k + l1 − l2 − 1)

(2l2 + 1)

2l2
,

||Λ1
1 |∆; l1, l2; k〉hw ||2 = (∆− 3k + l1 + l2)

||Λ4
2 |∆; l1, l2; k〉hw ||2 = (∆ + 3k − l1 − l2 − 1)

(2l1 + 3) (l1 + l2 + 2) (2l2 + 1)

4 (l1 + 1) l2 (l1 + l2 + 1)

(
1 +

1

2k

)
,

||Λ3
2 |∆; l1, l2; k〉hw ||2 = (∆ + 3k − l1 + l2)

(2l1 + 3) (l1 − l2 + 1)

2 (l1 + 1) (l1 − l2)

(
1 +

1

2k

)
,

||Λ2
2 |∆; l1, l2; k〉hw ||2 = (∆ + 3k + l1 − l2 + 2)

(2l2 + 1)

2l2

(
1 +

1

2k

)
,

||Λ1
2 |∆; l1, l2; k〉hw ||2 = (∆ + 3k + l1 + l2 + 3)

(
1 +

1

2k

)
, (3.4)

where we have normalised
∥∥∥|∆; l1, l2; k〉hw

∥∥∥2
= 1. Observe that these norms are all of

the form ∥∥∥ΛaA |∆; l1, l2; k〉hw
∥∥∥2

=
(

∆− faA(l1, l2, k)
)
gaA(l1, l2, k)

:= Ba
A(l1, l2, k)gaA(l1, l2, k) , (3.5)

where ga(l1, l2) is a positive-definite rational function in the fundamental Weyl cham-

ber, l1 ≥ l2 > 0. Unitarity demands that the norms are positive semi-definite and

this imposes a bound on the conformal dimension via the functions Ba
A(l1, l2, k). The

strongest bound on the conformal dimension is provided by B4
A(l1, l2, k) ≥ 0. When

B4
A(l1, l2, k) > 0 the UIR can be obtained using (3.1). The resulting multiplet is called

“long” and labelled L.

When B4
A(l1, l2, k) = 0 the state is null. This means that the primary obeys the

“shortening condition” Λ4
1 |∆; l1, l2; k〉hw = 0. All such states can be consistently re-

moved from the superconformal representation. The resulting multiplet is “short” and

labelled as type A. Since it can be reached from a long multiplet by continuously di-

alling ∆ it is called a “regular” short multiplet. At higher levels,
∏n
a=1 Λa1 |∆; l1, l2; k〉hw

with n > 1, the norms involve products of Ba
A(l1, l2, k)s and the strongest bound still

comes from B4
1(l1, l2, k) ≥ 0. Therefore, there will be no change to the bounds obtained
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at level one.

We will shortly be interested in constructing the spectrum of UIRs using highest

weight states, which are only sensitive to quantum numbers. For this purpose, it will

be sufficient to use the following simplification: Instead of removing the null state

Λ4
1 |∆; l1, l2; k〉hw one can remove the supercharge with the same quantum numbers

(that is Q14) from the Verma module basis (3.1) and use the remaining supercharges

to obtain the quantum numbers for the superconformal descendants of the highest

weight. For this reason we will be identifying such “absent supercharges” for all short

multiplets of the SCA [24,42,109,113]. We emphasise that this is an auxiliary Verma-

module construction which leads to the same spectrum in terms of highest weights. If

one is interested in the precise form of the operators, the much more involved Λ-basis

should be used.

Unitarity Bounds for l1 > l2 = 0

We now turn to the special case with l1 > 0, l2 = 0. When l2 = 0 the operator

Λ4
1 is not well defined and we have to omit the level-one state Λ4

1 |∆; l1, 0; k〉hw from

our spectrum—and as a result Q14 from the basis of auxiliary Verma-module gen-

erators (3.1). Naively, the strongest bound then arises from the norm of the state

Λ3
1 |∆; l1, 0; k〉hw. However, the level-two state Λ3

1Λ4
1 |∆; l1, 0; k〉hw is actually well de-

fined, as can be explicitly checked. Its norm is proportional to∥∥∥Λ3
1Λ4

1 |∆; l1, 0; k〉hw
∥∥∥2
∝ (∆− 3k − l1 − 4) (∆− 3k − l1 − 3)

= B3
1(l1, 0, k)B4

1(l1, 0, k) (3.6)

and the corresponding set of restrictions come from B4
1(l1, 0, k) ≥ 0 or B3

1(l1, 0, k) = 0.

When B4
1(l1, 0, k) = 0 one recovers a regular short representation of type A and

the null-state condition translates to the removal of Q13Q14 from the basis of Verma-

module generators. Instead, one could also have B3
1(l1, 0, k) = 0; this gives rise to the

null state Λ3
1 |∆; l1, 0; k〉hw. Making that choice (and removing the corresponding vector

Q13 |∆; l1, 0; k〉hw in addition to Q14 |∆; l1, 0; k〉hw from the auxiliary Verma module)

leads to an “isolated” short multiplet of type B.11

Unitarity Bounds for l1 = l2 = 0

The same logic extends to l1 = l2 = 0: At level one the only well-defined state is

Λ1
1|∆; 0, 0; k〉hw. However, there exist well-defined states at levels two and four, ob-

tained by Λ2
1Λ3

1 |∆; 0, 0; k〉hw, Λ1
1Λ2

1Λ3
1Λ4

1 |∆; 0, 0; k〉hw. These give rise to the conditions

11The name isolated is due to the fact that there are no unitary states in the gap betweenB3(l1, 0, k) =
0 and B4(l1, 0, k) ≥ 0.
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B1
1(0, 0, k) = 0, B3

1(0, 0, k) = 0 or B4
1(0, 0, k) ≥ 0 and lead to the new set of isolated

short multiplets D. We summarise their properties and list all short multiplets for the

5d SCA in Table 2.

Additional Unitarity Bounds

It is important to note that for k = 0 additional null states can be generated by acting

on the existing ones with Lorentz and R-symmetry lowering operators.12 This results

in the removal of more combinations of supercharges from the set of Verma-module

generators in (3.1). We will mention explicitly whenever this will be the case in our

upcoming analysis.

Finally, there are supplementary unitarity restrictions and associated null states

originating from conformal descendants. These have been analysed in detail in [36,109],

the results of which we use. Saturating a conformal bound results in a “momentum-

null” state, where the corresponding shortening condition is an operator constraint

involving momentum analogues of the superconformal Λs [109]. In that reference, a

prescription is given for removing the associated states, Pµ |∆; l1, l2; k〉hw, from the

auxiliary Verma-module construction, again in analogy with the superconformal pro-

cedure.13 However, we will choose not to exclude any momenta from the basis of

Verma-module generators (3.1). After using the RS algorithm this choice will allow

us to explicitly recover highest weight states corresponding to the operator constraints

from the general multiplet structure.

One can combine the conformal and superconformal bounds to predict that operator

constraints will appear in the following short multiplets:

B[d1, 0; 0] , D[0, 0; {1, 2}] . (3.7)

The multiplet D[0, 0; 0] does not belong to this list as it is the vacuum.

The Procedure

Based on the above ingredients, let us summarise our strategy for constructing the

superconformal UIRs:

1. Begin with a superconformal primary and consider the highest weight component

of the corresponding irreducible representation of the Lorentz and R-symmetry

algebras.

12See e.g. the discussion in App. 6.2.1 of [24] in the context of the 6d (2,0) SCA.
13Note that this does not mean that all conformal descendants of a particular type should be removed

from the set of local operators.
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Multiplet Shortening Condition Conformal Dimension

A[l1, l2; k] Λ4
1Ψ = 0 ∆ = 3k + l1 + l2 + 4

A[l1, 0; k] Λ3
1Λ4

1Ψ = 0 ∆ = 3k + l1 + 4
A[0, 0; k] Λ1

1Λ2
1Λ3

1Λ4
1Ψ = 0 ∆ = 3k + 4

B[l1, 0; k] Λ3
1Ψ = 0 ∆ = 3k + l1 + 3

B[0, 0; k] Λ2
1Λ3

1Ψ = 0 ∆ = 3k + 3

D[0, 0; k] Λ1
1Ψ = 0 ∆ = 3k

Table 2: A list of all short multiplets for the 5d N = 1 SCA, along with the conformal
dimension of the superconformal primary and the corresponding shortening condition.
The Λa1 in the shortening conditions are defined in (3.2) and (3.3). The first of these
multiplets (A) is a regular short representation, whereas the rest (B,D) are isolated short
representations. Here Ψ denotes the superconformal primary state for each multiplet.

2. Determine all combinations of supercharges which need to be removed from the

auxiliary Verma-module basis (3.1) due to null or ill-defined states.14

3. Use the remaining Verma-module generators to determine the highest weights for

all descendant states. This may result in some of the quantum numbers labelling

the highest weight state becoming negative.

4. Use the Racah–Speiser algorithm to recover a spectrum with only positive quan-

tum numbers. This could result in some states being projected out, while others

acquiring a “negative multiplicity”. The latter can cancel out against other states

with the same quantum numbers but positive multiplicity. Any remaining states

with negative multiplicity can be interpreted as operator constraints. This con-

jectural identification follows [37] and is based on a large number of examples,

but can be additionally supported using supercharacters; c.f. Sec. B.1.3.

The spectrum of a given superconformal multiplet can always be obtained following

these steps. However, there also exist—and we will implement— case-specific alterna-

tive ways to map out the multiplet content. We will explicitly identify these occurrences

when applicable. Particular care should be taken with the identification of the unitarity

bounds in step 2, where one needs to explicitly calculate the norms of all well-defined,

distinct (i.e. not related through commutation relations) products of Λs.15

14We will occasionally use a simplified version of this step in our construction by listing and removing
only a subset of supercharges associated with ill-defined states. This is possible because in all cases
the remaining ones lead to zero-multiplicity states after the application of the RS algorithm. This is
computationally much cheaper.

15For example, in our discussion of unitarity bounds for l1 = l2 = 0, Λ3
1 |∆; 0, 0; k〉hw and

Λ2
1 |∆; 0, 0; k〉hw are individually ill defined, while Λ2

1Λ3
1 |∆; 0, 0; k〉hw is not. This can in turn lead to

the wrong identification of shortening conditions, since ||Λ2
1Λ3

1 |∆; 0, 0; k〉hw ||2 = B3
1(0, 0, k)B1

1(0, 0, k),
whereas ||Λ1

1Λ2
1 |∆; 0, 0; k〉hw ||2 = B2(0, 0, k)B1(0, 0, k), with the first one leading to more stringent

unitarity bounds.
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3.2.2 5d N = 1 Multiplet Recombination Rules

For the purposes of listing the recombination rules as well as for explicitly constructing

the multiplets, we will find it more convenient to switch to the Dynkin basis for the

various quantum numbers. That is, we will use

d1 = l1 − l2 , d2 = 2l2 , K = 2k . (3.8)

Short multiplets can recombine to form long multiplets when the conformal dimension

for the latter approaches the unitarity bound, that is when ∆ + ε→ 3
2K + d1 + d2 + 4.

It can then be checked, using the results that we will present in the following sections,

that

L[∆ + ε; d1, d2;K]
ε→0−−→ A[d1, d2;K]⊕A[d1, d2 − 1;K + 1] ,

L[∆ + ε; d1, 0;K]
ε→0−−→ A[d1, 0;K]⊕ B[d1 − 1, 0;K + 2] ,

L[∆ + ε; 0, 0;K]
ε→0−−→ A[0, 0;K]⊕D[0, 0;K + 4] . (3.9)

The following multiplets do not appear in a recombination rule:

B [d1, 0; {0, 1}] ,

D [0, 0; {0, 1, 2, 3}] . (3.10)

3.2.3 The 5d N = 1 Superconformal Index

We define the superconformal index with respect to the supercharge Q14, in accordance

with [42,114]. This is given by

I(x, y) = TrH(−1)F e−βδx
2
3

∆+ 1
3

(d1+d2)yd1 , (3.11)

where making use of the spin-statistics theorem the fermion number is F = d2 and the

trace is over the Hilbert space of operators of the theory. The states that are counted

by this index satisfy δ = 0, where

δ := {Q14,S21} = ∆− 3

2
K − d1 − d2 . (3.12)

It is easy to see that as a result long multiplets can never contribute to the index, since

none of their states are annihilated by any supersymmetry generators. The charges

d1 and 2
3∆ + 1

3(d1 + d2) appearing in the exponents of (3.11) are eigenvalues for the

generators commuting with Q14,S21 and consequently with δ. In practice, this index

can be explicitly evaluated as a supercharacter for each of the multiplets constructed

below. A detailed construction of characters for superconformal representations is
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reviewed in Section 3.5.

3.2.4 5d N = 1 Multiplets

Long Multiplets

We can now go ahead with the explicit construction of multiplets. Since long multi-

plets are not associated with any shortening conditions, we can proceed as per (3.1)

acting with all supercharges and momenta on the superconformal primary to obtain

the unitary superconformal representation.

We will choose to group the supercharges together as Q = (QA1,QA2) and Q̃ =

(QA3,QA4), purely for book-keeping purposes. The explicit quantum numbers of these

supercharges are given by

Q11 ∼ (1)(0,1) , Q12 ∼ (1)(1,−1) , Q13 ∼ (1)(−1,1) , Q14 ∼ (1)(0,−1) ,

Q21 ∼ (−1)(0,1) , Q22 ∼ (−1)(1,−1) , Q23 ∼ (−1)(−1,1) , Q24 ∼ (−1)(0,−1) .

(3.13)

With this information in hand, it is straightforward to map out their action starting

from a superconformal primary, labelled by (K)(d1,d2):

(K)(d1,d2)
Q−−→ (K + 1)(d1,d2+1),(d1+1,d2−1) , (K − 1)(d1,d2+1),(d1+1,d2−1) ,

Q2

−−→ (K + 2)(d1+1,d2) , (K)(d1,d2+2),(d1+1,d2)2,(d1+2,d2−2) , (K − 2)(d1+1,d2) ,

Q3

−−→ (K + 1)(d1+1,d2+1),(d1+2,d2−1) , (K − 1)(d1+1,d2+1),(d1+2,d2−1) ,

Q4

−−→ (K)(d1+2,d2) ,

(K)(d1,d2)
Q̃−−→ (K + 1)(d1,d2−1),(d1−1,d2+1) , (K − 1)(d1,d2−1),(d1−1,d2+1) ,

Q̃2

−−→ (K + 2)(d1−1,d2) , (K)(d1,d2−2),(d1−1,d2)2,(d1−2,d2+2) , (K − 2)(d1−1,d2) ,

Q̃3

−−→ (K + 1)(d1−1,d2−1),(d1−2,d2+1) , (K − 1)(d1−1,d2−1),(d1−2,d2+1) ,

Q̃4

−−→ (K)(d1−2,d2) , (3.14)

where we have split the actions of Q and Q̃ into two “chains”. Since the Dynkin labels

here are generic, there is no need to implement the RS algorithm. By definition, these

multiplets do not contribute to the superconformal index. Should these quantum num-

bers become negative after specifying the superconformal primary then the algorithm

would be required, but it is omitted here since the resulting multiplet would be large

and unwieldy. The states are of course obtainable by using the package detailed in

Appendix B.2.
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A-type multiplets

Recall from Table 2 that A-type multiplets obey three types of shortening conditions

depending on the quantum numbers of the superconformal primary. These result in the

removal of the following combinations of supercharges from the basis of Verma-module

generators (3.1):16

A[d1, d2;K] : Q14 ,

A[d1, 0;K] : Q13Q14 ,

A[0, 0;K] : Q11Q12Q13Q14 . (3.15)

Let us consider the first case. On the one hand, acting with the allowed set of super-

charges yields the same result as found in (3.14) for the Q-supercharge set. On the

other, for the Q̃-supercharge set we have

(K)(d1,d2)
Q̃−−→ (K + 1)(d1−1,d2+1) , (K − 1)(d1,d2−1),(d1−1,d2+1) ,

Q̃2

−−→ (K)(d1−2,d2+2),(d1−1,d2) , (K − 2)(d1−1,d2) ,

Q̃3

−−→ (K − 1)(d1−2,d2+1) . (3.16)

The two remaining cases with d2 = 0 and d1 = d2 = 0 can be obtained by implementing

the recipe at the end of Sec. 3.2.1, by e.g. first constructing all the states using the

combinations of the Q-chain of Eq. (3.14) and Q̃-chain of (3.16) and then setting

d2 = 0. Applying the RS algorithm will produce some negative-multiplicity states,

all of which cancel with positive-multiplicity states with the same quantum numbers.

The remaining states comprise the spectrum of the A[d1, 0;K] multiplet and one can

proceed analogously for A[0, 0;K].

For K = 0 and d1, d2 generic the primary still lies above the unitarity bound for

all conformal descendants and there are no momentum-null states. Moreover, there

are additional ill-defined states, which translates into also removing Q24, Q23Q24 and

Q21Q22Q23Q24 from the construction of the respective multiplets for d1, d2 > 0, d2 = 0

and d1 = d2 = 0 using the auxiliary Verma module. The resulting spectrum is no

different from setting K = 0 and running the RS algorithm for su(2)R.

As with the long multiplets, we choose not to include the explicit spectra of these

multiplets in the main body, as they would be too large. Again, the states are obtainable

by using the package detailed in Appendix B.

16Once again, we are using a Dynkin basis for the quantum numbers.
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The index over the spectrum of all A-type multiplets is given by

IA[d1,d2;K](x, y) = (−1)d2+1 xd1+d2+K+4

(1− xy−1) (1− xy)
χd1(y) , (3.17)

by appropriately tuning d1, d2 and K, including d2 = 0 and d1 = d2 = 0, where we

have used the su(2) character for the spin- l2 representation

χl(y) =
yl+1 − y−l−1

y − y−1
. (3.18)

One readily sees that (3.17) is compatible with the recombination rule (3.9):

lim
ε→0
IL[∆+ε;d1,d2;K](x, y) = IA[d1,d2;K](x, y) + IA[d1,d2−1;K+1](x, y) = 0 . (3.19)

B-type multiplets

For B-type multiplets, the supercharges that need to be removed from the Verma-

module basis (3.1) due to null states are

B[d1, 0;K] : Q13 ,

B[0, 0;K] : Q12Q13 .
(3.20)

Note that one should also remove Q14 since the state Λ4
1Ψ is ill defined for d2 = 0.

Acting on the primary—while keeping the quantum numbers generic—one has the same

action as (3.14) for Q, while the Q̃-chain is

(K)(d1,d2)
Q̃−−→ (K − 1)(d1,d2−1),(d1−1,d2+1) ,

Q̃2

−−→ (K − 2)(d1−1,d2) . (3.21)

We may then combine the action of these supercharges to construct the following grid;

acting with Q is captured by southwest motion on the diagram, while Q̃ by southeast
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motion. This module is well defined for all d1 ≥ 1 values:

∆

3 + d1 + 3K
2

7
2

+ d1 + 3K
2

4 + d1 + 3K
2

9
2

+ d1 + 3K
2

5 + d1 + 3K
2

11
2

+ d1 + 3K
2

6 + d1 + 3K
2

(K)(d1,0)

(K ± 1)(d1,1) (K − 1)(d1−1,1)

(K ± 2)(d1+1,0)

(K)(d1,2),(d1+1,0)

(K)(d1−1,2),(d1,0)

(K − 2)(d1−1,2),(d1,0)

(K − 2)(d1−1,0)

(K ± 1)(d1+1,1)

(K ± 1)(d1,1)

(K − 1)(d1,1),(d1−1,3)

(K − 3)(d1,1)

(K − 1)(d1−1,1)

(K − 3)(d1−1,1)

(K)(d1+2,0)

(K − 2)(d1,2),(d1+1,0)

(K)(d1,2),(d1+1,0)

(K − 2)(d1−1,2),(d1,0)

(K − 4), (K)(d1,0)

(K − 1)(d1+1,1) (K − 1), (K − 3)(d1,1)

(K − 2)(d1+1,0)

(3.22)

Let us next look at some special values of the R-symmetry quantum number. For K = 1

the states with values (K−4) and (K−3) are reflected to −(1) and −(0) respectively via

the RS algorithm, where they subsequently cancel with other descendants with identical

quantum numbers but non-negative multiplicity. The (K−2) states are simply deleted

as they lie on the boundary of the Weyl chamber for K = 1. Likewise if K = 2, the

(K − 3) states are deleted and the (K − 4) state is reflected to −(0) where it cancels

against another state with non-negative multiplicity.

Following this reasoning, it quickly becomes obvious that only through setting K =

0 does one end up with negative multiplicities being present after cancellations, which

we can observe from the last two levels of the module. In that case, the (K−1) highest

weights are deleted to leave the states −[11/2 + d1; d1, 1; 1] and −[6 + d1; d1 + 1, 0; 0].

We will study this B[d1, 0; 0] multiplet separately below.

The second type of B-multiplet to consider is B[0, 0;K], for which one is instructed

to remove from the Verma-module basis (3.1) the supercharge combinations Q12Q13.
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The superconformal representation constructed using the remaining supercharges is

∆

3 + 3K
2

7
2

+ 3K
2

4 + 3K
2

9
2

+ 3K
2

5 + 3K
2

11
2

+ 3K
2

6 + 3K
2

(K)(0,0)

(K ± 1)(0,1)

(K)(0,2),(1,0)

(K ± 2)(1,0)

(K − 2), (K)(0,0)

(K ± 1)(1,1)

2(K − 1), (K + 1)(0,1)

(K − 3)(0,1)

(K − 4), (K − 2)(0,0)

(K)(0,0)

(K − 2)(1,0),(0,2)

(K)(1,0),(0,2)

(K)(2,0)

(K − 1), (K − 3)(0,1)(K − 1)(1,1)

(K − 2)(1,0)
(3.23)

This UIR can also be obtained from B[d1, 0;K] by setting d1 = 0. The same arguments

as in the B[d1, 0;K] case can be applied to study the behaviour of the multiplet for

concrete K values. Again, we find that non-cancelling negative-multiplicity states only

appear at K = 0.

The superconformal index for all values of d1 and K > 0 is calculated to be

IB[d1,0;K](x, y) =
xd1+K+3

(1− xy−1) (1− xy)
χd1+1(y) . (3.24)

One observes that this satisfies the recombination rules (3.9):

lim
ε→0
IL[∆+ε;d1,0;K](x, y) = IA[d1,0;K](x, y) + IB[d1−1,0;K+2](x, y) = 0 . (3.25)

Higher-Spin-Current Multiplets: B[d1, 0; 0]

Let us now address the special case with K = 0. For d1 6= 0 this family of B-type multi-

plets contains higher-spin currents and has a primary corresponding to the symmetric

traceless representation of so(5). One finds that QA3 and QA4 need to be removed

from the Verma-module basis (3.1). Therefore the entire representation is built by just
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acting on the superconformal primary with the set of Qs from (3.13) and is

∆

3 + d1

7
2 + d1

4 + d1

9
2 + d1

5 + d1

(0)(d1,0)

(2)(d1+1,0)

(0)(d1,2)

(1)(d1,1)

(1)(d1+1,1)

(0)(d1+2,0)
(3.26)

This result seems to contradict (3.7), which predicted the presence of operator con-

straints. However, note that the absent Qs anticommute into P5, which has therefore

been implicitly removed from the Verma-module generators. This has the effect of

projecting out states corresponding to operator constraints; we will henceforth refer

to the remaining states as “reduced states”. Note that, if one studies the conformal

dimensions of the operators in this multiplet, P5 is exactly the operator responsible for

the conservation equation constraint detailed in [109].

The operator constraints can actually be restored—c.f. Sec. B.1— by utilising the

following relationship between characters

χ̂[∆; d1, d2;K] = χ[∆; d1, d2;K]− χ[∆ + 1; d1 − 1, d2;K] , (3.27)

where ∆ = 3 + d1 + 1
2d2. Here the χ̂ and χ correspond to taking a character of the

superconformal representation without/with the P5 respectively. It is clear that every

operator in this multiplet can satisfy a conservation equation, in fact, if d1 > 0, then

every operator does. We can appropriately account for the negative contributions to
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the RHS via negative-multiplicity states. The full multiplet can then be expressed as:

∆

3 + d1

7
2 + d1

4 + d1

9
2 + d1

5 + d1

11
2 + d1

6 + d1

(0)(d1,0)

(2)(d1+1,0)

(0)(d1,2)

(1)(d1,1)

(1)(d1+1,1)

(0)(d1+2,0)

−(0)(d1−1,0)

−(2)(d1,0)

−(0)(d1−1,2)

−(1)(d1−1,1)

−(1)(d1,1)

−(0)(d1+1,0)

(3.28)

An example of the above [3 + d1; d1, 0; 0] primary is the operator

Oµ1···µd1 = εABφ
A
↔
∂ µ1 · · ·

↔
∂ µd1φ

B , (3.29)

where φA is a free hypermultiplet scalar. This object satisfies the generalised conser-

vation equation

∂µOµµ2...µd1−1
= 0 , (3.30)

which is identified with the state −[4 + d1; d1 − 1, 0; 0], which we need to remove, lest

we over-count states in the multiplet.

It is interesting to point out that for d1 = 1 the superconformal primary is an

R-neutral ∆ = 4 conserved current, which is not itself a higher-spin current. The

higher-spin currents are instead found as its descendants. This logic also shows that

the commutator of the conserved charge, T , associated with the primary has a non-

vanishing commutator with the supercharges

[Q11, T ] = T ′11 , (3.31)
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where T ′11 is the charge associated with the level-one descendant current. This com-

mutator explains why we do not refer to T as a flavour symmetry.

The index is of course insensitive to the above discussion; it gives the same answer

when evaluated either on (3.26) or (3.28) and that is

IB[d1,0;0](x, y) =
xd1+3

(1− xy−1) (1− xy)
χd1+1(y) . (3.32)

The Stress-Tensor Multiplet: B[0, 0; 0]

Let us finally turn to the case where one also sets d1 = 0. The supercharges removed

from the Verma-module basis (3.1) should be those for B[0, 0;K], but since K = 0 one

can also act on its shortening conditions with the R-symmetry lowering operator. This

results in needing to remove Q12Q23. Consequently the module is:

∆

3

7
2

4

9
2

5

11
2

6

(0)(0,0)

(2)(1,0)

(0)(0,2)

(1)(0,1)

(1)(1,1)

(0)(2,0) −(2)(0,0)

−(1)(0,1)

−(0)(1,0)
(3.33)

We recognise that this multiplet contains the R-symmetry current, the supersymmetry

current and the stress tensor, as well as their corresponding equations of motion. In

particular, we identify:

[4; 1, 0; 2] : J (AB)
µ , −[5; 0, 0; 2] : ∂µJ (AB)

µ = 0 ,

[9/2; 1, 1; 1] : SA
µa , −[11/2; 0, 1; 1] : ∂µSA

µa = 0 , (3.34)
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[5; 2, 0; 0] : Θµν , −[6; 1, 0; 0] : ∂µΘµν = 0 .

This multiplet also contains three states that do not obey conservation equations.

The index over this multiplet counts just two components of the R-symmetry cur-

rent, J11
1 and J11

4 . It is given by

IB[0,0;0](x, y) =
x3

(1− xy−1) (1− xy)
χ1(y) . (3.35)

D-type multiplets

For the D[0, 0;K] multiplet unitarity requires that the conformal dimension of the

primary is ∆ = 3K
2 . The null state associated with this condition instructs us to

remove Q11 from the basis of Verma-module generators, but due to having d1 = d2 = 0

one actually needs to remove the larger set of supercharges Q1a, a = 1, . . . , 4. In fact,

in this case Λ1
1Ψ = Q11Ψ = 0 and one has the shortening condition

Q1aΨ = 0 , (3.36)

which renders the multiplet 1
2 -BPS.

The action of the remaining supercharges on a primary state where the quantum

numbers are kept generic is then

(K)(d1,d2)
Q−−→ (K − 1)(d1,d2+1),(d1+1,d2−1) ,

Q2

−−→ (K − 2)(d1+1,d2) ,

(K)(d1,d2)
Q̃−−→ (K − 1)(d1,d2−1),(d1−1,d2+1) ,

Q̃2

−−→ (K − 2)(d1−1,d2) . (3.37)
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After setting d1 = d2 = 0 and employing RS the full multiplet is

∆

3K
2

3K
2 + 1

2

3K
2 + 1

3K
2 + 3

2

3K
2 + 2

(K)(0,0)

(K − 2)(0,0)(K − 2)(1,0)

(K − 1)(0,1)

(K − 3)(0,1)

(K − 4)(0,0)
(3.38)

For low enough values of K there can be additional reflections. If K = 1 or K = 2

these will correspond to operator constraints, to be discussed below. If K = 3 then the

only problematic state will be the level four [0, 0;K − 4], which becomes [0, 0;−1]; this

is on the boundary of the Weyl chamber, and hence will also be deleted.

The index for this multiplet is

ID[0,0;K](x, y) =
xK

(1− xy−1) (1− xy)
, (3.39)

which satisfies a recombination rule from (3.9):

lim
ε→0
IL[∆+ε;0,0;K](x, y) = IA[0,0;K](x, y) + ID[0,0;K+4](x, y) = 0 . (3.40)
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The Hypermultiplet: D[0, 0; 1]

When K = 1 no additional shortening conditions arise, therefore we may proceed

directly using (3.38). One recovers:

∆

3
2

2

5
2

3

7
2

(1)(0,0)

(0)(0,1)

−(0)(0,1)

−(1)(0,0)
(3.41)

We can recognise these highest weight states as

[3/2; 0, 0; 1] : φA ,

[2; 0, 1; 0] : λa ,

−[3; 0, 1; 0] : /∂
ab
λb = 0 ,

−[7/2; 0, 0; 1] : ∂2φA = 0 .

(3.42)

The index for this multiplet counts the first operator in the primary, φ1 along with the

P1 and P2 conformal descendants. Therefore we have

ID[0,0;1](x, y) =
x

(1− xy−1) (1− xy)
. (3.43)

This is the single-letter index obtained in [114,115].

The Flavour-Current Multiplet: D[0, 0; 2]

One of the D-type multiplets predicted to contain operator constraints is D[0, 0; 2]. As

above, we may jump straight into the multiplet structure by setting K = 2 in the
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D[0, 0;K] module. This produces

∆

3

7
2

4

9
2

5

(2)(0,0)

(0)(0,0)(0)(1,0)

(1)(0,1)

−(0)(0,0)
(3.44)

We recognise these fields to be a scalar µ(AB) in the 3 of su(2)R, a fermion ψA
a in the 2 of

su(2)R, a vector Jµ and an R-neutral scalar M . Furthermore the negative-multiplicity

state is the equation of motion for the vector current ∂µJµ = 0. This multiplet is

also known as the linear multiplet and appeared in the UV symmetry-enhancement

discussion of [116].

The corresponding index is:

ID[0,0;2](x, y) =
x2

(1− xy−1) (1− xy)
. (3.45)

This concludes our listing of superconformal multiplets for the 5d SCA.

3.2.5 Index Spectroscopy

In five dimensions, it was conjectured in [94] that the UV fixed points of Sp(N) gauge

theories should exhibit a flavour symmetry enhancement. Specifically, the enhanced

flavour group is one of the exceptional series, EN . This was confirmed for N = 1 by

localisation in [114] and then with topological strings; firstly in [80] for the first flavour

two ranks, with the remaining ranks being completed in [72]. We can make statements

about the spectrum of these theories using our knowledge of indices from the various

superconformal multiplets using the sieve algorithm developed in [117].

For Nf = 0 where the global symmetry is U(1) which gets enhanced to E1 = SU(2).

The index is given by

INf=0 = 1 + χE1
3 x2 + χ1(y)

[
1 + χE1

3

]
x3 +

(
χ2(y)

[
1 + χE1

3

]
+ 1 + χE1

5

)
x4
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+
(
χ3(y)

[
1 + χE1

3

]
+ χ1(y)

[
1 + χE1

3 + χE1
5

])
x5 +

(
χ4(y)

[
1 + χE1

3

]
+ χ2(y)

[
1 + χE1

3 + χE1
5 + χE1

3 χE1
3

]
+ χE1

3 + χE1
7 − 1

)
x6 +O(x7) . (3.46)

This index can be concisely decomposed as

INf=0 = 1 + χE1
3 D[0, 0; 2] + B[0, 0; 0] + χE1

5 D[0, 0; 4] + χE1
3 B[0, 0; 2]

+ χE1
3 χE1

3 B[1, 0; 2] + χE1
7 D[0, 0; 6] +A[0, 0; 2] + . . . . (3.47)

We see the familiar flavour current multiplet coming with the adjoint character of E1

along with the stress tensor with no multiplicative factor as expected. Perhaps the

most interesting part is the appearance of the A multiplets in the decomposition. This

is because, with the exception of A[d1, 1;K], these multiplets do not admit a free field

decomposition.17 It is possible that these more mysterious contributions to the index

are a result of the instantons.

When NF = 1 the global symmetry is SO(2) × U(1) which gets enhanced to E2 =

SU(2)×U(1). The index is

INf=1 =

1 + χE2
4 x2 + χ1(y)

[
1 + χE2

4

]
x3 +

(
χ2(y)

[
1 + χE2

4

]
+ 1 + χ

SU(2)
5 − χ4(f)

)
x4

+
(
χ3(y)

[
1 + χE2

4

]
+ χ1(y)

[
1 + χE2

4 + χ
SU(2)
3 + χ

SU(2)
5 − χ4(f)

])
x5

+
(
χ4(y)

[
1 + χE2

4

]
+ χ2(y)

[
4χE2

4 + 2χ
SU(2)
5 − χ4(f)

]
+ χ

SU(2)
7 + 3χ

SU(2)
3 + 1

)
x6

+O(x7) . (3.49)

This can be rewritten as

INf=1 = 1 + χE2
4 D[0, 0; 2] + B[0, 0; 0] + χ4(f)A[0, 0; 0] + χ

SU(2)
5 D[0, 0; 4]

+2χ
SU(2)
3 B[0, 0; 2] + (1 + 2χE2

4 + χ
SU(2)
5 )B[1, 0; 2]

+(χE2
4 + χ

SU(2)
7 )D[0, 0; 6] + . . . (3.50)

with that χE2
4 = 1 + χ

SU(2)
3 and χ4(f) = (p + p−1)χ

SU(2)
2 with p = e

iρ
2 . Again, note

the appearance of the A multiplets. Now is even more curious since the contribution

to the index comes with a minus sign, and is charged under the fundamental of the

SU(2) but with opposite U(1) charges. This is no coincidence, as fermionic terms such

as this appear at higher orders of x [114] with non-trivial flavour charges. It would

17The free field decomposition of the aforementioned multiplet is

O(A1···AK)
a,µ1···µd1

= εBCφ
B
↔
∂ µ1 · · ·

↔
∂ µd1φ

Bλaφ
(A1 · · ·φAK) . (3.48)
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be interesting to see if by studying the multiplet structure of these fermionic operators

could shed some light on these instanton contributions.

3.3 Multiplets and Superconformal Indices for 6d (1,0)

We now switch to six dimensions. In this section we provide a systematic analysis of all

superconformal multiplets admitted by the 6d N = (1, 0) algebra, osp(8∗|2).18 Since

the method for building UIRs is completely analogous to Sec. 3.2.1 we will be brief and

merely sketch the derivation of the unitarity bounds obtained in detail by [36,42]. We

then proceed to write out the complete set of spectra for superconformal multiplets

along with their corresponding superconformal indices.

3.3.1 UIR Building with Auxiliary Verma Modules

The superconformal primaries of the algebra osp(8∗|2) are designated |∆; c1, c2, c3;K〉
and labelled by the conformal dimension ∆, the Lorentz quantum numbers for su(4)

in the Dynkin basis ci and an R-symmetry label K. Each primary is in one-to-one

correspondence with a highest weight labelling irreducible representations of the max-

imal compact subalgebra so(6)⊕ so(2)⊕ su(2)R ⊂ osp(8∗|2). There are eight Poincaré

and superconformal supercharges, denoted by QAa and SAȧ—where a, ȧ = 1, · · · , 4 are

su(4) (anti)fundamental indices and A = 1, 2 an index of su(2)R. One also has six

momenta Pµ and special conformal generators Kµ, where µ = 1, · · · , 6 is a Lorentz vec-

tor index. The superconformal primary is annihilated by all SAȧ and Kµ. A basis for

the representation space of osp(8∗|2) can be constructed by considering the following

Verma module ∏
A,a

(QAa)
nA,a

∏
µ

P
nµ

µ |∆; c1, c2, c3;K〉hw , (3.51)

where n =
∑

Aa nA,a and n̂ =
∑

µ nµ denote the level of a superconformal or conformal

descendant respectively. UIRs can be obtained from the above after also imposing the

requirement of unitarity level-by-level.

We will now review the conditions imposed by unitarity, starting with the super-

conformal descendants [42]. For descendants of level n > 0 it suffices to calculate the

norms of states in the highest weight of su(2)R, since these provide the most stringent

set of unitarity bounds [36,42,92]. Hence the unitarity bounds stem from the study of

superconformal descendants arising from the action of supercharges of the form Q1a.

18Some of the multiplets up to spin 2 discussed in this section have been previously constructed using
the dual gravity description in [118].
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Multiplet Shortening Condition Conformal Dimension

A[c1, c2, c3;K] A4Ψ = 0 ∆ = 2K + c1
2 + c2 + 3c3

2 + 6
A[c1, c2, 0;K] A3A4Ψ = 0 ∆ = 2K + c1

2 + c2 + 6
A[c1, 0, 0;K] A2A3A4Ψ = 0 ∆ = 2K + c1

2 + 6
A[0, 0, 0;K] A1A2A3A4Ψ = 0 ∆ = 2K + 6

B[c1, c2, 0;K] A3Ψ = 0 ∆ = 2K + c1
2 + c2 + 4

B[c1, 0, 0;K] A2A3Ψ = 0 ∆ = 2K + c1
2 + 4

B[0, 0, 0;K] A1A2A3Ψ = 0 ∆ = 2K + 4

C[c1, 0, 0;K] A2Ψ = 0 ∆ = 2K + c1
2 + 2

C[0, 0, 0;K] A1A2Ψ = 0 ∆ = 2K + 2

D[0, 0, 0;K] A1Ψ = 0 ∆ = 2K

Table 3: A list of all short multiplets for the 6d (1, 0) SCA, along with the conformal
dimension of the superconformal primary and the corresponding shortening condition.
The Aa in the shortening conditions are defined in (3.52) and [42]. The first of these mul-
tiplets (A) is a regular short representation, whereas the rest (B, C,D) are isolated short
representations. Here Ψ denotes the superconformal primary state for each multiplet.

Before proceeding, it is convenient to define the basis Aa |∆; c1, c2, c3;K〉hw, where

Aa =
a∑
b=1

Q1bΥ
a
b . (3.52)

The Υa
b are functions of su(4) Cartans and Lorentz lowering operators analogous to

those the (3.2), the explicit form of which can be found in [42]. They map highest

weights to highest weights.

One then conducts a level-by-level analysis of the norms for the superconformal

descendants, while also keeping track of whether the states Aa |∆; c1, c2, c3;K〉hw are

well defined when setting ci = 0. This gives rise to a set of regular and isolated short

multiplets, obeying certain shortening conditions [42]. The precise form of the Aa is

unimportant; they have the same quantum numbers as the supercharge Q1a. The

shortening conditions can then be translated into absent generators in the auxiliary

Verma module (3.51) and we are instructed to remove the corresponding combinations

of supercharges in a straightforward way. These results are summarised in Table 3.

Additional absent supercharges can be obtained when K = 0 by acting on the existing

null states with Lorentz and R-symmetry lowering operators. As a result additional

supercharges need to be removed from (3.51). These occurrences will be dealt with on

a case-by-case basis.

Finally, there can be supplementary unitarity restrictions and associated null states

arising from considering conformal descendants. These have been studied in detail

in [36, 109]. In analogy with the 5d approach, we will choose not to exclude any

momenta from the basis of auxiliary Verma-module generators (3.51); with the help of
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the RS algorithm this will account for states corresponding to equations of motion and

conservation equations.

We can combine the information from the conformal and superconformal unitarity

bounds to predict when a multiplet will contain operator constraints. These are found

to be

B[c1, c2, 0; 0] , C[c1, 0, 0; {0, 1}] , D[0, 0, 0; {1, 2}] (3.53)

and will be treated separately in the following sections. The multiplet D[0, 0, 0; 0] does

not belong to this list as it is the vacuum, which is annihilated by all supercharges and

momenta.

3.3.2 6d (1,0) Recombination Rules

Short multiplets can recombine into a long multiplet L. This occurs when the conformal

dimension of L approaches the unitarity bound, that is when ∆ + ε → 2K + 1
2(c1 +

2c2 + 3c3) + 6. We find that

L[∆ + ε; c1, c2, c3;K]
ε→0−−→ A[c1, c2, c3;K]⊕A[c1, c2, c3 − 1;K + 1] ,

L[∆ + ε; c1, c2, 0;K]
ε→0−−→ A[c1, c2, 0;K]⊕ B[c1, c2 − 1, 0;K + 2] ,

L[∆ + ε; c1, 0, 0;K]
ε→0−−→ A[c1, 0, 0;K]⊕ C[c1 − 1, 0, 0;K + 3] ,

L[∆ + ε; 0, 0, 0;K]
ε→0−−→ A[0, 0, 0;K]⊕D[0, 0, 0;K + 4] . (3.54)

These identities can be explicitly checked, e.g. by using supercharacters for the multi-

plets that we discuss below.

A small number of short multiplets do not appear in any recombination rule. These

are

B [c1, c2, 0; {0, 1}] ,

C [c1, 0, 0; {0, 1, 2}] ,

D [0, 0, 0; {0, 1, 2, 3}] . (3.55)

3.3.3 The 6d (1,0) Superconformal Index

We define the 6d (1,0) superconformal index with respect to the supercharge Q14, in

accordance with [42]. This is given by

I(p, q, s) = TrH(−1)F e−βδq∆− 1
2
Kpc2sc1 , (3.56)
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where the fermion number is F = c1 + c3. The states that are counted satisfy δ = 0,

where

δ := {Q14,S24̇} = ∆− 2K − 1

2
(c1 + 2c2 + 3c3) . (3.57)

The Cartan combinations ∆ − 1
2K, c2 and c1 are generators of the subalgebra that

commutes with Q14,S24̇ and δ. This index can be evaluated as a 6d supercharacter, as

discussed in Sec. 3.5.

3.3.4 6d (1,0) Multiplets

Long multiplets

Long multiplets are generated by the action of all supercharges. We will choose to

group them into Q = (QA1,QA2) and Q̃ = (QA3,QA4), with their individual quantum

numbers given by

Q11 ∼ (1)(1,0,0) , Q12 ∼ (1)(−1,1,0) , Q13 ∼ (1)(0,−1,1) , Q14 ∼ (1)(0,0,−1) ,

Q21 ∼ (−1)(1,0,0) , Q22 ∼ (−1)(−1,1,0) , Q23 ∼ (−1)(0,−1,1) , Q24 ∼ (−1)(0,0,−1) .

(3.58)

The action of these supercharges on a superconformal primary (K)(c1,c2,c3) is given by

(K)(c1,c2,c3)
Q−−→ (K ± 1)(c1+1,c2,c3),(c1−1,c2+1,c3) ,

Q2

−−→ (K ± 2)(c1,c2+1,c3) , (K)(c1+2,c2,c3),(c1,c2+1,c3)2,(c1−2,c2+2,c3) ,

Q3

−−→ (K ± 1)(c1+1,c2+1,c3),(c1−1,c2+2,c3) ,

Q4

−−→ (K)(c1,c2+2,c3) ,

(K)(c1,c2,c3)
Q̃−−→ (K ± 1)(c1,c2−1,c3+1),(c1,c2,c3−1) ,

Q̃2

−−→ (K ± 2)(c1,c2−1,c3) , (K)(c1,c2−2,c3+2),(c1,c2−1,c3)2,(c1,c2,c3−2) ,

Q̃3

−−→ (K ± 1)(c1,c2−1,c3−1),(c1,c2−2,c3+1) ,

Q̃4

−−→ (K)(c1,c2−2,c3) . (3.59)

As in 5d, the explicit form of the multiplets are obtainable by using the package detailed

in Appendix B.2; and indeed this case is considered for the primary [0, 0, 0, 0] in the

first example.
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A-type multiplets

Recall from Table 3 that the A–multiplets obey four kinds of shortening conditions.

These result in the removal of the following combinations of supercharges from the

basis of Verma module generators (3.51):

A[c1, c2, c3;K] : Q14 ,

A[c1, c2, 0;K] : Q13Q14 ,

A[c1, 0, 0;K] : Q12Q13Q14 ,

A[0, 0, 0;K] : Q11Q12Q13Q14 . (3.60)

With regards to the spectrum, let us first consider the A[c1, c2, c3;K] multiplet. The

action of the Q-set of supercharges is the same as for the long multiplet (3.59), however

since we are also instructed to remove Q14 the Q̃-chain becomes

(K)(c1,c2,c3)
Q̃−−→ (K ± 1)(c1,c2−1,c3+1) , (K − 1)(c1,c2,c3−1) ,

Q̃2

−−→ (K)(c1,c2−2,c3+2),(c1,c2−1,c3) , (K − 2)(c1,c2−1,c3) ,

Q̃3

−−→ (K − 1)(c1,c2−2,c3+1) . (3.61)

The remaining four cases can be obtained straightforwardly in a similar way. The

resulting multiplet spectra turn out to be the same as starting with (3.61), substituting

for specific ci values and running the RS algorithm.

Additional ill-defined states occur for K = 0, when one should also remove the

supercharge combinations

A[c1, c2, c3; 0] : Q24 ,

A[c1, c2, 0; 0] : Q23Q24 ,

A[c1, 0, 0; 0] : Q22Q23Q24 ,

A[0, 0, 0; 0] : Q21Q22Q23Q24 , (3.62)

from the basis of Verma-module generators. Once again, the resulting spectra are

equivalent to starting with the K 6= 0 multiplets, explicitly setting K = 0 and running

the RS algorithm for su(2)R.

The superconformal index for all values of ci and K is given by

IA[c1,c2,c3;K](p, q, s) =
(−1)c1+c3q6+ 3K

2
+ 1

2
(c1+2c2+3c3)

(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(p− qs)

×

{
p−c2+1sc2+4

(
p−c1 − psc1+1

)
+ pc2+4sc1+4
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p−c1+2s2−c2 + pc1+4s−c1+1
(
s−c2 − spc2+1

)}
. (3.63)

This index satisfies the following recombination rules

lim
ε→0
IL[∆+ε;c1,c2,c3;K](p, q, s) =

IA[c1,c2,c3;K](p, q, s) + IA[c1,c2,c3−1;K+1](p, q, s) = 0 . (3.64)

B-type multiplets

For the B-type multiplets, the supercharges that need to be removed from the basis

(3.51) are

B[c1, c2, 0;K] : Q13 , /crB[c1, 0, 0;K] : Q12Q13 ,

B[0, 0, 0;K] : Q11Q12Q13 . (3.65)

For the first type of multiplet, B[c1, c2, 0;K], one should also remove Q14 as the state

A4Ψ is ill defined for c3 = 0. Acting on a primary with generic quantum numbers,

(K)(c1,c2,c3), one has the same action as (3.59) for Q. The Q̃-chain is modified to

(K)(c1,c2,c3)
Q̃−−→ (K − 1)(c1,c2−1,c3+1),(c1,c2,c3−1) ,

Q̃2

−−→ (K − 2)(c1,c2−1,c3) . (3.66)

We can represent this multiplet on a grid, where acting with Qs corresponds to south-

west motion on the diagram, while acting with Q̃ to southeast motion
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∆

4 + 2K + c1
2

+ c2

9
2

+ 2K + c1
2

+ c2

5 + 2K + c1
2

+ c2

11
2

+ 2K + c1
2

+ c2

6 + 2K + c1
2

+ c2

13
2

+ 2K + c1
2

+ c2

7 + 2K + c1
2

+ c2

(K)(c1,c2,0)

(K ± 1)(c1+1,c2,0)

(K ± 1)(c1−1,c2+1,0)

(K − 1)(c1,c2−1,1)

(K)(c1+2,c2,0)

(K ± 2), (K)2
(c1,c2+1,0)

(K)(c1−2,c2+2,0)

(K), (K − 2)(c1+1,c2−1,1)

(K)(c1−1,c2,1)

(K − 2)(c1−1,c2,1)

(K − 2)(c1,c2−1,0)

(K ± 1)(c1+1,c2+1,0)

(K ± 1)(c1−1,c2+2,0)

(K − 1)(c1+2,c2−1,1)

(K − 3), (K ± 1)(c1,c2,1)

(K − 1)(c1−2,c2+1,1),(c1,c2,1)

(K − 1), (K − 3)(c1+1,c2−1,0)

(K − 1), (K − 3)(c1−1,c2,0)

(K)(c1,c2+2,0)

(K), (K − 2)(c1+1,c2,1)

(K), (K − 2)(c1−1,c2+1,1)

(K − 2)(c1+2,c2−1,0)

(K − 4), (K − 2), (K)(c1,c2,0)

(K − 2)(c1−2,c2+1,0),(c1,c2,0)

(K − 1)(c1,c2+1,1)

(K − 1), (K − 3)(c1+1,c2,0)

(K − 1), (K − 3)(c1−1,c2+1,0)

(K − 2)(c1,c2+1,0)

(3.67)

The next multiplet type is B[c1, 0, 0;K], where one is instructed to remove Q12Q13.

Similarly, Q12Q14 and Q13Q14 should also be removed as the states A2A4Ψ and A3A4Ψ

are ill defined for c2 = c3 = 0. The multiplet spectrum is given by
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∆

4 + 2K + c1
2

9
2

+ 2K + c1
2

5 + 2K + c1
2

11
2

+ 2K + c1
2

6 + 2K + c1
2

13
2

+ 2K + c1
2

7 + 2K + c1
2

(K)(c1,0,0)

(K ± 1)(c1+1,0,0)

(K ± 1)(c1−1,1,0)

(K)(c1+2,0,0)

(K ± 2), (K)2
(c1,1,0)

(K)(c1−2,2,0)

(K)(c1−1,0,1)

(K − 2)(c1−1,0,1)

(K ± 1)(c1+1,1,0)

(K ± 1)(c1−1,2,0)

(K − 3), (K ± 1)(c1,0,1)

(K − 1)(c1−2,1,1),(c1,0,1)

(K − 1), (K − 3)(c1−1,0,0)

(K)(c1,2,0)

(K), (K − 2)(c1+1,0,1)

(K), (K − 2)(c1−1,1,1)

(K − 4), (K − 2), (K)(c1,0,0)

(K − 2)(c1−2,1,0),(c1,0,0)

(K − 1)(c1,1,1)

(K − 1), (K − 3)(c1+1,0,0)

(K − 1), (K − 3)(c1−1,1,0)

(K − 2)(c1,1,0)

(3.68)

The last B-type multiplet to consider is B[0, 0, 0;K]. Its shortening condition isA1A2A3Ψ =

0. All other combinations of three Aa are ill defined and one is therefore required to

remove Q1aQ1bQ1c from (3.51). The multiplet spectrum is determined to be
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∆

4 + 2K

9
2

+ 2K

5 + 2K

11
2

+ 2K

6 + 2K

13
2

+ 2K

7 + 2K

(K)(0,0,0)

(K ± 1)(1,0,0)

(K)(2,0,0)

(K ± 2), (K)(0,1,0)

(K ± 1)(1,1,0) (K − 3), (K ± 1)(0,0,1)

(K)(0,2,0) (K − 2), (K)(1,0,1) (K − 4), (K − 2), (K)(0,0,0)

(K − 1)(0,1,1) (K − 3), (K − 1)(1,0,0)

(K − 2)(0,1,0)

(3.69)

The index over B-type multiplets for all values of ci and K 6= 0 is given by

IB[c1,c2,0;K](p, q, s) =

(−1)c1+1q4+ 3K
2

+
c1
2

+c2

{
p−c2sc2+5

(
p−c1 − psc1+1

)
− p−c1+2s1−c2

(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(p− qs)

+
pc2+5sc1+4 + pc1+4s−c1

(
s−c2 − s2pc2+2

)
(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(p− qs)

}
. (3.70)

Higher-Spin-Current Multiplets: B[c1, c2, 0; 0]

In Eq. (3.53) we claimed that the special subset of B-type multiplets with K = 0 should

contain operator constraints. Recall that for B[c1, c2, 0;K] one should remove Q14 and

Q13 from the basis of Verma-module generators. Since K = 0 we also remove two

more supercharges, Q24 and Q23. That is, we should completely remove the set of Q̃

supercharges of (3.58) and the spectrum is generated solely by acting with the set of
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all Qs:

∆

4 + c1
2

+ c2

9
2

+ c1
2

+ c2

5 + c1
2

+ c2

11
2

+ c1
2

+ c2

6 + c1
2

+ c2

(0)(c1,c2,0)

(1)(c1+1,c2,0)

(1)(c1−1,c2+1,0)

(0)(c1+2,c2,0)

(2), (0)(c1,c2+1,0)

(0)(c1−2,c2+2,0)

(1)(c1+1,c2+1,0)

(1)(c1−1,c2+2,0)

(0)(c1,c2+2,0) (3.71)

Note that the absent Qs anticommute into P6, which has therefore been implicitly

removed from the Verma-module generators. This has the effect of projecting out states

corresponding to operator constraints and hence the spectrum only contains reduced

states. The operator constraints can be restored using the dictionary developed in

App. B.1. This can be done using the character expression

χ̂[∆; c1, c2, c2;K] = χ[∆; c1, c2, c3;K]− χ[∆ + 1; c1, c2 − 1, c3;K] , (3.72)

where ∆ = 4 + c1
2 + c2. The hat indicates a character of the reduced (i.e. P6-removed)

Verma module. The result is
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∆

4 + c1
2

+ c2

9
2

+ c1
2

+ c2

5 + c1
2

+ c2

11
2

+ c1
2

+ c2

6 + c1
2

+ c2

13
2

+ c1
2

+ c2

7 + c1
2

+ c2

(0)(c1,c2,0)

(1)(c1+1,c2,0)

(1)(c1−1,c2+1,0)

(0)(c1+2,c2,0)

(2), (0)(c1,c2+1,0)

(0)(c1−2,c2+2,0)

(1)(c1+1,c2+1,0)

(1)(c1−1,c2+2,0)

(0)(c1,c2+2,0)

−(0)(c1,c2−1,0)

−(1)(c1+1,c2−1,0)

−(1)(c1−1,c2,0)

−(0)(c1+2,c2−1,0)

−(2),−(0)(c1,c2,0)

−(0)(c1−2,c2+1,0)

−(1)(c1+1,c2,0)

−(1)(c1−1,c2+1,0)

−(0)(c1,c2+1,0)

(3.73)

An example of a superconformal primary for a B[0, c2, 0; 0] multiplet with c2 > 0 is

Oµ1···µc2 = εABφ
A
↔
∂ µ1 · · ·

↔
∂ µc2φ

B , (3.74)

where φA is a free hypermultiplet scalar. It is interesting to point out that for c1 =

1, c2 = 0 or c1 = 0, c2 = 1 the superconformal primary is not higher spin. The higher-

spin currents are instead found as their descendants. Moreover, the superconformal

primary in the multiplet of B[0, 1, 0; 0] is a ∆ = 5, R-neutral conserved current. How-

ever, as explained around (3.31) in the case of 5d, this is not a flavour current.

The corresponding superconformal index for any c1, c2 ≥ 0 reads

IB[c1,c2,0;0](p, q, s) =

(−1)c1+1q4+ 1
2

(c1+2c2)

{
p−c2sc2+5

(
p−c1 − psc1+1

)
− p−c1+2s1−c2

(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(p− qs)
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+
pc2+5sc1+4 + pc1+4s−c1

(
s−c2 − s2pc2+2

)
(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(p− qs)

}
. (3.75)

The Stress-Tensor Multiplet: B[0, 0, 0; 0]

The last B-type multiplet of note is the stress tensor. Ordinarily, the shortening condi-

tions require that we remove Q1aQ1bQ1c from the basis of generators, but since K = 0

we also obtain that QAaQBbQCc should be removed from the auxiliary Verma module

for a 6= b 6= c and A,B,C = 1,2. The resulting multiplet is therefore

∆

4

9
2

5

11
2

6

13
2

7

(0)(0,0,0)

(1)(1,0,0)

(0)(2,0,0)

(2)(0,1,0)

−(2)(0,0,0)

(1)(1,1,0)

−(1)(1,0,0)

(0)(0,2,0)

−(0)(0,1,0)
(3.76)

We recognise these states as being associated with the fields

[5; 0, 1, 0; 2] : J (AB)
µ , −[6; 0, 0, 0; 2] : ∂µJ (AB)

µ = 0 ,

[11/2; 1, 1, 0; 1] : SA
µa , −[13/2; 1, 0, 0; 1] : ∂µSA

µa = 0 , (3.77)

[6; 0, 2, 0; 0] : Θµν , −[7; 0, 1, 0; 0] : ∂µΘµν = 0 ,
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namely the 6d R-symmetry current, supersymmetry current and stress tensor. We also

have three states that do not obey equations of motion. These are

[4; 0, 0, 0; 0] : Σ ,

[9/2; 1, 0, 0; 1] : ζAa ,

[5; 2, 0, 0; 0] : Z+
(ab) , (3.78)

where + denotes the selfdual part of the operator.

The index over this stress-tensor multiplet is

IB[0,0,0;0](p, q, s) = q4 s−1 + p+ p−1s

(1− pq)(1− qs−1)(1− p−1qs)
, (3.79)

counting three components of the R-symmetry current plus conformal descendants.

C-type Multiplets

The two distinct C-type multiplets are C[c1, 0, 0;K] and C[0, 0, 0;K], with the require-

ment that we remove Q1a for a 6= 1 and Q1aQ1b respectively from the basis of Verma-

module generators. On the one hand, since the generators Q13 and Q14 are absent, the

set of available Q̃s is the same as for the B[c1, c2, 0;K] case, that is Q23, Q24. On the

other, only Q12 is removed from the set of Qs. Therefore the two resulting chains of

supercharge actions on a generic state (K)(c1,c2,c3) are

(K)(c1,c2,c3)
Q−−→ (K ± 1)(c1+1,c2,c3) , (K − 1)(c1−1,c2+1,c3) ,

Q2

−−→ (K − 2)(c1,c2+1,c3) , (K)(c1+2,c2,c3),(c1,c2+1,c3) ,

Q3

−−→ (K − 1)(c1+1,c2+1,c3) ,

(K)(c1,c2,c3)
Q̃−−→ (K − 1)(c1,c2−1,c3+1),(c1,c2,c3−1) ,

Q̃2

−−→ (K − 2)(c1,c3+1,c3) . (3.80)
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After substituting in the relevant ci values for the primary and implementing the RS

algorithm we obtain for C[c1, 0, 0;K]

∆

2 + 2K + c1
2

5
2

+ 2K + c1
2

3 + 2K + c1
2

7
2

+ 2K + c1
2

4 + 2K + c1
2

9
2

+ 2K + c1
2

(K)(c1,0,0)

(K ± 1)(c1+1,0,0)

(K − 1)(c1−1,1,0)

(K − 2), (K)(c1,1,0)

(K)(c1+2,0,0)

(K − 2)(c1−1,0,1)

(K − 1)(c1+1,1,0) (K − 1), (K − 3)(c1,0,1) (K − 3)(c1−1,0,0)

(K − 2)(c1+1,0,1) (K − 2), (K − 4)(c1,0,0)

(K − 3)(c1+1,0,0)
(3.81)

The corresponding superconformal index

IC[c1,0,0;K](p, q, s) =

(−1)c1q2+ 3K
2

+
c1
2
pc1+5s−c1(ps− 1) + p2sc1+5

(
s− p2

)
+ p−c1s2

(
p− s2

)
(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(qs− p)

, (3.82)

which can be used in conjunction with A[c1, 0, 0;K] to verify the recombination rules

lim
ε→0
IL[∆+ε;c1,0,0;K](p, q, s) = IA[c1,0,0;K](p, q, s) + IC[c1−1,0,0;K+3](p, q, s) = 0 . (3.83)

Turning our attention to C[0, 0, 0;K], we recall that the shortening conditions require

the combinations Q1aQ1b to be absent from the basis of Verma-module generators.

The resulting spectrum is alternatively obtained by setting c1 = 0 in C[c1, 0, 0;K] and

running the RS algorithm. This is a simple task: the lowest value of c1 that appears

in C[c1, 0, 0;K] is c1 − 1 and only these states are deleted when setting c1 = 0—they

will be on the boundary of the Weyl chamber. There is no need to perform any of the

more elaborate Weyl reflections on any other state.

81



CHAPTER 3. ALGEBRAIC TECHNIQUES FOR THE SUPERCONFORMAL
INDEX

Therefore the spectrum for C[0, 0, 0;K] is given by

∆

2 + 2K

5
2

+ 2K

3 + 2K

7
2

+ 2K

4 + 2K

9
2

+ 2K

(K)(0,0,0)

(K ± 1)(1,0,0)

(K − 2), (K)(0,1,0)

(K)(2,0,0)

(K − 1)(1,1,0) (K − 1), (K − 3)(0,0,1)

(K − 2)(1,0,1) (K − 2), (K − 4)(0,0,0)

(K − 3)(1,0,0)
(3.84)

The associated index for K > 1 evaluates to

IC[0,0,0;K](p, q, s) = −q2+ 3K
2

s−1p+ s+ p−1

(1− pq)(1− qs−1)(1− p−1qs)
. (3.85)

The cases with K = 0, 1 are predicted to contain operator constraints from (3.53) and

will be dealt with separately below.

C[c1, 0, 0; 0]

For this class of multiplets, K = 0 and we obtain additional shortening conditions.

These can be translated into the requirement that QAa for a 6= 1 be removed from

the basis of Verma-module generators. The latter then in turn imply that P23 ∼
{Q12,Q23}, P24 ∼ {Q12,Q24} and P34 ∼ {Q13,Q24} have also been removed from the

auxiliary Verma-module basis. In vector notation, these momentum operators corre-

spond respectively to P3, P5 and P6. The implication of this fact is that the multiplet

construction will only reproduce the reduced states, with the operator constraints hav-
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ing been projected out. Thus the C[c1, 0, 0; 0] multiplet is very simply:

∆

2 + c1
2

5
2 + c1

2

3 + c1
2

(0)(c1,0,0)

(1)(c1+1,0,0)

(0)(c1+2,0,0)
(3.86)

The operator constraints can be restored by means of App. B.1. Implementing this

would result in introducing—for each of the three states in (3.86)—the following com-

binations

(K)∆
(c1,0,0) : −(K)∆+1

(c1−1,0,1) + (K)∆+2
(c1−2,1,0) − (K)∆+3

(c1−2,0,0) , (3.87)

for a total of nine additional states corresponding to equations of motion. As a side

comment, note that this spectrum is not the one we would have obtained had we just

set K = 0 in (3.81) and implemented the RS algorithm. As such, the index that one

obtains is different to just setting K = 0 in (3.82), and is given by

IC[c1,0,0;0] =

(−1)c1q2+
c1
2

{
pc1+5s−c1(ps− 1) + p2sc1+5

(
s− p2

)
+ s2p−c1

(
p− s2

)
(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(qs− p)

− q
pc1+4s1−c1(ps− 1) + p2sc1+4

(
s− p2

)
+ s2p1−c1

(
p− s2

)
(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(qs− p)

}
, (3.88)

where we see the appearance of more δ = 0 states being counted (or, rather, being

removed due to equations of motion).

The Free-Tensor Multiplet: C[0, 0, 0; 0]

When c1 = 0 we recover the free-tensor multiplet. In this case the lowering operator of

su(2)R acts on the null-state condition Q11Q12Ψ = 0 to create additional shortening

conditions. This translates into the requirement that QAaQBb for a 6= b should be

removed from the basis of Verma-module generators. The multiplet can be constructed
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using the remaining supercharges and is given by

∆

2

5
2

3

(0)(0,0,0)

(1)(1,0,0)

(0)(2,0,0)
(3.89)

We identify the states with the following fields

[2; 0, 0; 0; 0] : ϕ ,

[5/2; 1, 0, 0; 1] : λAa ,

[3; 2, 0, 0; 0] : H+
[µνρ] . (3.90)

Similar to the previous subsection, (3.89) only contains reduced states and no equations

of motion. When the latter are restored by means of App. B.1 we recover the expected

∂2ϕ = 0 : − [4; 0, 0, 0; 0] ,

/∂
ȧḃ
λ̃A
ḃ

= 0 : − [7/2; 0, 0, 1; 1] ,

∂[σH
+
µνρ] = 0 : − [4; 1, 0, 1; 0] + [5; 0, 1, 0; 0]− [6; 0, 0, 0; 0] . (3.91)

The index for this configuration evaluates to

IC[0,0,0;0](p, q, s) = −q2 s−1p+ s+ p−1 − q
(1− pq)(1− qs−1)(1− p−1qs)

, (3.92)

counting three components of the fermion λAa alongside its equation of motion. This

matches the index later found in [119].

Higher-Spin-Current Multiplets: C[c1, 0, 0; 1]

These multiplets are simple to construct since, contrary to the above case, we need

not act with the R-symmetry lowering operator. As such, we can take the spectrum

of (3.81) and set K = 1 without incurring new shortening conditions. The resulting
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C[c1, 0, 0; 1] multiplet is

∆

4 + c1
2

9
2 + c1

2

5 + c1
2

11
2 + c1

2

6 + c1
2

13
2 + c1

2

(1)(c1,0,0)

(2), (0)(c1+1,0,0)

(0)(c1−1,1,0)

(1)(c1,1,0)

(1)(c1+2,0,0)

(0)(c1+1,1,0) −(0)(c1−1,0,0)

−(1)(c1,0,0)

−(0)(c1+1,0,0)
(3.93)

which includes conservation equations. It is worth pointing out that the multiplet

with c1 = 1 contains a ∆ = 5, R-neutral conserved current as a level one descendant.

However, we see that there is also a spin-2 current with ∆ = 6 at level three.

The corresponding index evaluates to

IC[c1,0,0;1](p, q, s) = q
7
2

+
c1
2
pc1+5s−c1(ps− 1) + p2sc1+5

(
s− p2

)
+ p−c1s2

(
p− s2

)
(pq − 1) (p2 − s) (ps− 1) (p− s2) (q − s)(qs− p)

.

(3.94)

Note that this index is valid for c1 = 0. This is because setting K = 1 does not

introduce any additional shortening conditions. However, when c1 = 0 this multiplet

does not contain currents with spin j ≥ 2, and will be discussed below.

“Extra”-Supercurrent Multiplet: C[0, 0, 0; 1]

These multiplets can be constructed by substituting K = 1 into the spectrum of

C[0, 0, 0;K]. The result is
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∆

4

9
2

5

11
2

6

13
2

(1)(0,0,0)

(2), (0)(1,0,0)

(1)(0,1,0)

(1)(2,0,0)

(0)(1,1,0)

−(1)(0,0,0)

−(0)(1,0,0)
(3.95)

This multiplet contains a conserved K = 1 spin-1 current and a conserved R-neutral

spin-3
2 current. These generate additional global and supersymmetry transformations,

which—as we will discuss in Sec. 3.3.5—are necessary for the description of the (2,0)

stress-tensor multiplet in the language of the (1,0) SCA.

Its index is then given by

IC[0,0,0;1](p, q, s) = −q
7
2

s−1p+ s+ p−1

(1− pq)(1− qs−1)(1− p−1qs)
. (3.96)

D-type multiplets

We finally turn to the D[0, 0, 0;K] multiplets. These are the simplest of the 6d (1, 0)

SCA for generic values of K. Since the shortening condition is A1Ψ = Q11Ψ = 0,

acting with all Lorentz lowering operators leads to

Q1aΨ = 0 (3.97)

and hence the multiplet is 1
2–BPS.

Starting with a generic superconformal primary state (K)(c1,c2,c3), the two chains

obtained from the action of Qs and Q̃s are

(K)(c1,c2,c3)
Q−−→ (K − 1)(c1+1,c2,c3),(c1−1,c2+1,c3) ,

Q2

−−→ (K − 2)(c1,c2+1,c3) ,
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(K)(c1,c2,c3)
Q̃−−→ (K − 1)(c1,c2−1,c3+1),(c1,c2,c3−1) , (3.98)

Q̃2

−−→ (K − 2)(c1,c3+1,c3) . (3.99)

One then needs to set ci = 0 and run the RS algorithm. Upon doing so, the result is

∆

2K

2K + 1
2

2K + 1

2K + 3
2

2K + 2

(K)(0,0,0)

(K − 2)(0,1,0)

(K − 1)(1,0,0)

(K − 3)(0,0,1)

(K − 4)(0,0,0)
(3.100)

We notice that for K ≤ 2 the above will lead to negative-multiplicity representations via

the RS algorithm and hence operator constraints, to be discussed in the next section.

The superconformal index for K > 2 is given by

ID[0,0,0;K](p, q, s) =
q

3K
2

(1− pq)(1− qs−1)(1− p−1qs)
. (3.101)

The Hypermultiplet: D[0, 0, 0; 1]

Setting K = 1 in the D[0, 0, 0;K] multiplet will not incur any nontrivial changes to the

spectrum, as it does not lead to additional shortening conditions. As a result, we may
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simply write the multiplet out as

∆

2

5
2

3

7
2

4

(1)(0,0,0)

(0)(1,0,0)

−(0)(0,0,1)

−(1)(0,0,0)
(3.102)

These states can be interpreted as a scalar φA with its associated Klein–Gordon equa-

tion ∂2φA = 0 and a fermion ψa alongside the Dirac equation /∂
ȧḃ
ψ̃ḃ = 0.

The corresponding index is given by

ID[0,0,0;1](p, q, s) =
q

3
2

(1− pq)(1− qs−1)(1− p−1qs)
. (3.103)
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The Flavour-Current Multiplet: D[0, 0, 0; 2]

As above, we can simply substitute K = 2 into D[0, 0, 0;K] to generate this spectrum,

as there are no additional shortening conditions. The result is

∆

4

9
2

5

11
2

6

(2)(0,0,0)

(0)(0,1,0)

(1)(1,0,0)

−(0)(0,0,0)
(3.104)

These states can be identified with the operators µ(AB), ψA
a and the su(2)R-singlet

conserved current Jµ, with ∂µJµ = 0. This multiplet is also known as a linear multiplet

and appears in [116,120,121].

The index for this multiplet is given by

ID[0,0,0;2](p, q, s) =
q3

(1− pq)(1− qs−1)(1− p−1qs)
. (3.105)

We conclude our discussion of the superconformal multiplets for the 6d (1,0) SCA

by noting that all these indices admit a nice rewriting in terms of characters of the

maximally commuting subalgebra:

IA[c1,c2,c3;K](p, q, s) = (−1)c1+c3+1 q
c1+2c2+3c3

2
+ 3K

2
+6

(1− pq) (1− qs−1) (1− p−1qs)
χ
su(3)
(c2,c1)(p, s) ,

IB[c1,c2,0;K](p, q, s) = (−1)c1
q
c1+2c2

2
+ 3K

2
+4

(1− pq) (1− qs−1) (1− p−1qs)
χ
su(3)
(c2+1,c1)(p, s) ,

IC[c1,0,0;K](p, q, s) = (−1)c1+1 q
c1
2

+ 3K
2

+2

(1− pq) (1− qs−1) (1− p−1qs)
χ
su(3)
(0,c1+1)(p, s) ,

IC[c1,0,0;0](p, q, s) = (−1)c1+1 q
c1
2

+2

(1− pq) (1− qs−1) (1− p−1qs)
χ
su(3)
(0,c1+1)(p, s)

+ (−1)c1
q
c1
2

+3

(1− pq) (1− qs−1) (1− p−1qs)
χ
su(3)
(0,c1)(p, s) ,
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ID[0,0,0;K](p, q, s) =
q

3K
2

(1− pq) (1− qs−1) (1− p−1qs)
, (3.106)

where

χ
su(3)
(m,n)(p, s) =

∣∣∣∣∣∣∣∣∣
pm+n+2 s−2−m−n

(
s
p

)m+n+2

pn+1 s−n−1
(
s
p

)n+1

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
p2 s−2

(
s
p

)2

p1 s−1
(
s
p

)
1 1 1

∣∣∣∣∣∣∣∣∣

. (3.107)

3.3.5 Supersymmetry Enhancement of 6d (1, 0) Multiplets

An important consistency condition for the 6d N = 1 multiplets is that they can

combine to form N = 2 multiplets. For instance, one should be able to construct the

additional supersymmetry and R-symmetry currents of the N = 2 SCA from these

multiplets. The N = 2 case will be treated in more detail in the next section, so we

will only focus on two of the simplest multiplets: the free tensor and the stress tensor.

This will use the results and naming conventions of the upcoming section.

For the first, we need only consider the R symmetry, since the Lorentz quantum

numbers are the same for both cases. We identify the su(2)R ⊂ so(5)R by choosing

K = d1; note that as a result distinct states for N = 2 can give rise to the same state

for N = 1. The free tensor in N = 2 has the R-symmetry highest weight (1, 0), which

corresponds to a representation with Dynkin values (1, 0), (−1, 2), (0, 0), (1,−2) and

(−1, 0). Reducing this to su(2)R results in the states 2× (1), (0) and 2× (−1). Another

way of writing this is in terms of three modules, two with highest weights labelled by

(1) and one labelled by (0). Thus the superconformal primary of D[0, 0, 0; 1, 0] can be

identified with two primaries from the N = 1 hypermultiplet and one from the N = 1

tensor multiplet. Indeed one can repeat this for every state in D[0, 0, 0; 1, 0] and the

result is that the entire multiplet is written as

D[0, 0, 0; 1, 0] ' 2D[0, 0, 0; 1]⊕ C[0, 0, 0; 0] , (3.108)

where the equivalence is up to the identification d1 = K.

One can similarly rewrite the stress-tensor multiplet of N = 2, as a collection of

N = 1 multiplets. The result is that

D[0, 0, 0; 2, 0] ' 3D[0, 0, 0; 2]⊕ 2C[0, 0, 0; 1]⊕ B[0, 0, 0; 0] , (3.109)
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where the equivalence is again up to the identification d1 = K, confirming the original

expectation.19

3.4 Multiplets and Superconformal Indices for 6d (2,0)

We lastly turn to the construction of superconformal multiplets for the 6d (2,0) SCA,

osp(8∗|4). Since we now have sixteen Poincaré supercharges, the UIRs will be much

larger compared to the ones obtained in Sec. 3.2 and Sec. 3.3 and representing them di-

agrammatically would not be particularly instructive. Similarly, the full expressions for

the most general (“refined”) superconformal indices are unwieldy. In [24] the “Schur”

limit was provided, and the accompanying mathematica notebook of [1]. Here we do

something slightly different, and define a MacDonald-like index, analagous to the one

defined in [48].20

In contrast to the other sections, we will only explicitly display the half-BPS mul-

tiplets and those that contain generalised equations of motion. This is because, with

sixteen supercharges, the modules rapidly grow in size. Full details can be found by

using the python package detailed in Section B.2.

3.4.1 UIR Building with Auxiliary Verma Modules

The superconformal primaries of the algebra osp(8∗|4) are designated |∆; c1, c2, c3; d1, d2〉
and labelled by the conformal dimension ∆, the Lorentz quantum numbers for su(4)

in the Dynkin basis ci and the R-symmetry quantum numbers in the Dynkin basis di.

Each primary is in one-to-one correspondence with a highest weight labeling irreducible

representations of the maximal compact subalgebra so(6)⊕ so(2)⊕ so(5)R ⊂ osp(8∗|4).

There are sixteen Poincaré and superconformal supercharges, denoted by QAa and SAȧ,
where ȧ, a = 1, . . . , 4 are (anti)fundamental indices of su(4) and A = 1, . . . , 4 a spinor

index of so(5)R. One also has six momenta Pµ and special conformal generators Kµ,

where µ is a vector index of the Lorentz group, µ = 1, · · · , 6. The superconformal

primary is annihilated by all SAȧ and Kµ. A basis for the representation space of

osp(8∗|4) can be constructed by considering the Verma module∏
A,a

(QAa)
nA,a

∏
µ

P
nµ

µ |∆; c1, c2, c3; d1, d2〉hw , (3.110)

19For example, note that we find precisely the expected decomposition of the so(5)R currents (re-
call that these are level two superconformal descendants of the D[0, 0, 0; 2, 0] multiplet) in terms of
representations of su(2)R: 10 = 3× 1 + 2× 2 + 1× 3.

20A discussion of the null states for the 6d (2,0) SCA, along with the calculation of Schur indices for
the various short multiplets, can be found in App. C of [24]. Here we additionally construct the full
multiplets with an emphasis on the equations of motion and conservation equations.
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Multiplet Shortening Condition Conformal Dimension

A[c1, c2, c3; d1, d2] A4Ψ = 0 ∆ = 2d1 + 2d2 + c1
2 + c2 + 3c3

2 + 6
A[c1, c2, 0; d1, d2] A3A4Ψ = 0 ∆ = 2d1 + 2d2 + c1

2 + c2 + 6
A[c1, 0, 0; d1, d2] A2A3A4Ψ = 0 ∆ = 2d1 + 2d2 + c1

2 + 6
A[0, 0, 0; d1, d2] A1A2A3A4Ψ = 0 ∆ = 2d1 + 2d2 + 6

B[c1, c2, 0; d1, d2] A3Ψ = 0 ∆ = 2d1 + 2d2 + c1
2 + c2 + 4

B[c1, 0, 0; d1, d2] A2A3Ψ = 0 ∆ = 2d1 + 2d2 + c1
2 + 4

B[0, 0, 0; d1, d2] A1A2A3Ψ = 0 ∆ = 2d1 + 2d2 + 4

C[c1, 0, 0; d1, d2] A2Ψ = 0 ∆ = 2d1 + 2d2 + c1
2 + 2

C[0, 0, 0; d1, d2] A1A2Ψ = 0 ∆ = 2d1 + 2d2 + 2

D[0, 0, 0; d1, d2] A1Ψ = 0 ∆ = 2d1 + 2d2

Table 4: A list of all short multiplets for the 6d (2, 0) SCA, along with the shorten-
ing condition and conformal dimension of the superconformal primary. The Aa in the
shortening conditions are defined in (3.52) and [42]. The first of these multiplets (A) is a
regular short representation, whereas the rest (B, C,D) are isolated short representations.
Here Ψ denotes the superconformal primary state for each multiplet.

where n =
∑

Aa nA,a and n̂ =
∑

µ nµ denote the level of a superconformal or conformal

descendant respectively. In order to obtain UIRs, the requirement of unitarity needs to

be imposed level-by-level on the Verma module. This leads to bounds on the conformal

dimension ∆.

Starting with the superconformal descendants, the conditions imposed by unitar-

ity can be deduced as follows. In principle, one needs to calculate the norms of su-

perconformal descendants for n > 0. However, since it is sufficient to perform this

analysis in the highest weight of the R-symmetry group [36, 42, 92], the results of

Sec. 3.52 can be easily imported to the (2,0) case and we may still use the basis

Aai · · ·Aaj |∆; c1, c2, c3; d1, d2〉hw.21 We need only convert the Cartan for the highest

weight of su(2)R to so(5)R, which is done by simply replacing K → d1 + d2. This gives

rise to a group of similar short multiplets, which we collect in Table 4. We will provide

more details regarding the generators that are absent from the auxiliary Verma mod-

ule when discussing individual multiplets. Furthermore, it will be important to clarify

which additional absent generators can occur from tuning the R-symmetry quantum

numbers, d1 and d2. These turn out to be far more intricate than for (1,0). The null

states arising from conformal descendants are identical to Sec. 3.3. One can combine

the information from the conformal and superconformal unitarity bounds to predict

when a multiplet will contain operator constraints [36,109]. These special cases are

B[c1, c2, 0; 0, 0] , C[c1, 0, 0; d1, d2] for d1 + d2 ≤ 1 ,

21The analysis in [36, 42, 92] was performed for generic R-symmetry sp(N ). The construction is
largely focussed around the Lorentz Cartans and raising operators.
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D[0, 0, 0; d1, d2] for d1 + d2 ≤ 2 . (3.111)

The multiplet D[0, 0, 0; 0, 0] does not belong to this list as it is the vacuum, which is

annihilated by all supercharges and momenta.

3.4.2 6d (2,0) Recombination Rules

Short multiplets can recombine into a long multiplet L. This occurs when the conformal

dimension of L approaches the unitarity bound, that is when ∆+ε→ 2d1 +2d2 + 1
2(c1 +

2c2 + 3c3) + 6. As in [24], we find that

L[∆ + ε; c1, c2, c3; d1, d2]
ε→0−−→ A[c1, c2, c3; d1, d2]⊕A[c1, c2, c3 − 1; d1, d2 + 1] ,

L[∆ + ε; c1, c2, 0; d1, d2]
ε→0−−→ A[c1, c2, 0; d1, d2]⊕ B[c1, c2 − 1, 0; d1, d2 + 2] ,

L[∆ + ε; c1, 0, 0; d1, d2]
ε→0−−→ A[c1, 0, 0; d1, d2]⊕ C[c1 − 1, 0, 0; d1, d2 + 3] ,

L[∆ + ε; 0, 0, 0; d1, d2]
ε→0−−→ A[0, 0, 0; d1, d2]⊕D[0, 0, 0; d1, d2 + 4] . (3.112)

A small number of short multiplets do not appear in a recombination rule. These are

B [c1, c2, 0; d1, {0, 1}] ,

C [c1, 0, 0; d1, {0, 1, 2}] ,

D [0, 0, 0; d1, {0, 1, 2, 3}] . (3.113)

3.4.3 The 6d (2,0) Superconformal Index

We define the 6d (2,0) superconformal index with respect to the supercharge Q24. This

is given by

I(p, q, s, t) = TrH(−1)F e−βδq∆−d1− 1
2
d2pc2+c3−d2td1+d2sc1+c2 , (3.114)

where the fermion number is F = c1 + c3. The states that are counted satisfy δ = 0,

with

δ := {Q24,S34̇} = ∆− 2d1 −
1

2
(c1 + 2c2 + 3c3) . (3.115)

The exponents appearing in (3.114) are the eigenvalues for the generators commuting

with Q24, S34̇ and δ. This index can be evaluated as a 6d supercharacter; this is

discussed in our Sec. 3.5 and App. C of [24].
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The 6d MacDonald limit

The authors of [24] define the 6d Schur limit by taking t → 1 in (3.114). We define a

one-parameter refinement of this index, which single out the same set of multiplets but

with an additional fugacity. The limit is obtained by taking p→ 0

IMac(t, q, s) = TrH(−1)F e−β δq∆−d1− 1
2
d2td1+d2sc1+c2 , (3.116)

subject to the constraint that d2 = c2 + c3. Note that under this constraint

δ′ := {Q12,S42̇} = ∆− 2d1 − 2d2 −
1

2
(c1 − 2c2 − c3) = δ . (3.117)

We therefore have that both δ = 0 = δ′, hence the exponents in (3.116) commute

with the supercharge Q12 and the 6d MacDonald index consequently counts operators

annihilated by two supercharges. The operators contributing to the index in this limit

satisfy

∆ = 2d1 + d2 +
1

2
(c1 + c3) ,

d2 = c2 + c3 , (3.118)

which project onto the same subset of states as the Schur limit that was defined in [24].

Of course, one can unrefine this index by sending t→ 1 whereupon it becomes the Schur

index. An additional limit exists, known as the half-BPS limit, which only receives

non-zero contributions from the half-BPS multiplets. This is obtained by holding the

combination x := qt fixed and sending q → 0. This is a very simple limit which does not

count derivatives. It was calculated for the interacting AN type (2, 0) theories in [122].

3.4.4 6d (2,0) Multiplets

Long multiplets

Long multiplets are constructed by acting with all supercharges on a superconformal

primary (d1, d2)(c1,c2,c3). This leads to lengthy expressions which, although not pre-

sented here, are available from the python package. For book-keeping purposes we will

group the supercharges into Q = (Q2a,Q3a) and Q̃ = (Q1a,Q4a) for the remaining of

the 6d (2,0) discussion.

A-type multiplets

Recall from Table 4 that the A-type multiplets obey four kinds of shortening conditions.

These result in the removal of the following supercharges from the basis of Verma
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module generators in (3.110)

A[c1, c2, c3; d1, d2] : Q14 ,

A[c1, c2, 0; d1, d2] : Q13Q14 ,

A[c1, 0, 0; d1, d2] : Q12Q13Q14 ,

A[0, 0, 0; d1, d2] : Q11Q12Q13Q14 . (3.119)

The A-type multiplets cannot contain operator constraints for any d1 or d2.

One can arrive at new shortening conditions—and as a result a reduced number of

Q-generators—for d1 6= 0, d2 = 0 and d1 = d2 = 0. Consider for instance the case

A[c1, c2, c3; d1, 0]. From Table 4 the null state reads A4Ψ = 0. In the auxiliary Verma-

module basis, this corresponds to Q14Ψ = 0. However, since d2 = 0 one also finds that

R−2 Q14Ψ = 0. This corresponds to having to additionally remove Q24 from our Verma-

module basis. Following on from this, when d1 = 0 the operator R−1 also annihilates

the superconformal primary and two new conditions are obtained: R−1 R
−
2 Q14Ψ = 0

and R−2 R
−
1 R
−
2 Q14Ψ = 0. These correspond to also removing Q34 and Q44 respectively

from the basis of Verma-module generators.

All A-type multiplets have zero contribution to the MacDonald limit of the 6d (2,0)

index. In the fully refined case they are non-zero and satisfy

lim
ε→0
IL[∆+ε;c1,c2,c3;d1,d2](p, q, s, t) =

IA[c1,c2,c3;d1,d2](p, q, s, t) + IA[c1,c2,c3−1;d1,d2+1](p, q, s, t) = 0 , (3.120)

when ∆ = 6 + 2d1 + 2d2 + 1
2(c1 + 2c2 + 3c3).

As with the long multiplets, these multiplets are too enormous to display neatly, so

we can defer to the python package for the explicit structure.

B-type multiplets

For the B-type multiplets, the supercharges that need to be removed from the Verma-

module basis (3.110) are

B[c1, c2, 0; d1, d2] : Q13 ,

B[c1, 0, 0; d1, d2] : Q12Q13 ,

B[0, 0, 0; d1, d2] : Q11Q12Q13 . (3.121)

For the first type of multiplet, B[c1, c2, 0; d1, d2], one should also remove Q14 as the

state A4Ψ is ill defined. A similar argument can be made regarding B[c1, 0, 0; d1, d2] to

reach the conclusion that Q12Q13, Q12Q14 and Q13Q14 should be removed from the
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Verma-module basis. For B[0, 0, 0; d1, d2] these additional supercharges are Q1aQ1bQ1c

with a 6= b 6= c, exactly as in Sec. 3.3.4.

There are three distinct sub-cases that need to be considered when dialling d1, d2.

These are:

1. B[c1, c2, 0; d1, 1]: When d2 = 1 we find that (R−2 )2Ψ = 0. This leads to the

combination Q23Q24 being additionally removed from the basis of Verma-module

generators [24].

2. B[c1, c2, 0; d1, 0]: Having d2 = 0 implies that R−2 Ψ = 0. This means that

R−2 Q13Ψ = 0. Furthermore, since A4Ψ is ill defined, the combination R−2 A4Ψ

is similarly ill defined. Thus we remove Q23 and Q24 from the basis of Verma-

module generators as they are associated with ill-defined states.

3. B[c1, c2, 0; 0, 0]: When d1 = d2 = 0 all R-symmetry lowering operators annihilate

the primary. Hence we can apply the above logic while including the lowering

operator R−1 . One finds that the supercharges Q33, Q43, Q34, Q44 should also

be removed as well as the above from the basis of Verma-module generators as

they are associated with ill-defined states.

According to (3.111) the multiplets B[c1, c2, 0; 0, 0] should contain operator constraints.

However, the removal of QA3 and QA4 from the basis of generators implicitly also

removes

P34 = {Q13,Q44} = {Q23,Q34} ∝ P6 . (3.122)

This corresponds to projecting out all states associated with a conservation equation

from the UIR and the resulting module will not include negative-multiplicity represen-

tations. The operator constraints can be restored using the dictionary of Sec. B.1.

The contribution to the Macdonald limit of the 6d (2,0) superconformal index for

these multiplets is vanishing, with the exception of B[c1, c2, 0; d1, 0], for which

IMac
B[c1,c2,0;d1,0](q, s, t) = (−1)c1

q4+d1+
c1
2

+c2td1+2

1− q
χc1+1(s) . (3.123)

The refined indices satisfy

lim
ε→0
IL[∆+ε;c1,c2,0;d1,d2](p, q, s, t) =

IA[c1,c2,0;d1,d2](p, q, s, t) + IB[c1,c2−1,0;d1,d2+2](p, q, s, t) = 0 , (3.124)

when ∆ = 6 + 2d1 + 2d2 + 1
2(c1 + 2c2).

96



CHAPTER 3. ALGEBRAIC TECHNIQUES FOR THE SUPERCONFORMAL
INDEX

Higher-Spin-Current Multiplets: B[c1, c2, 0; 0, 0]

Recall that we are only constructing the auxiliary Verma module with the supercharges

QA1 and QA2. Their action on a superconformal primary with generic Dynkin labels

(d1, d2)(c1,c2,c3) are given by

(d1, d2)(c1,c2,c3)
Q−→(d1 − 1, d2 + 1), (d1 + 1, d2 − 1)(c1+1,c2,c3),(c1−1,c2+1,c3) ,

Q2

−−→(d1, d2)(c1+2,c2,c3),(c1−2,c2+2,c3),(c1,c2+1,c3)2 , (d1 − 2, d2 + 2)(c1,c2+1,c3),

(d1 + 2, d2 − 2)(c1,c2+1,c3) ,

Q3

−−→(d1 + 1, d2 − 1), (d1 − 1, d2 + 1)(c1+1,c2+1,c3),(c1−1,c2+2,c3) ,

Q4

−−→(d1, d2)(c1,c2+2,c3) ,

(d1, d2)(c1,c2,c3)
Q̃−→(d1, d2 + 1), (d1, d2 − 1)(c1+1,c2,c3),(c1−1,c2+1,c3) ,

Q̃2

−−→(d1, d2)(c1+2,c2,c3),(c1−2,c2+2,c3),(c1,c2+1,c3)2 , (d1, d2 + 2)(c1,c2+1,c3) ,

(d1, d2 − 2)(c1,c2+1,c3) ,

Q̃3

−−→(d1, d2 − 1), (d1, d2 + 1)(c1+1,c2+1,c3),(c1−1,c2+2,c3) ,

Q̃4

−−→(d1, d2)(c1,c2+2,c3) . (3.125)

The full representation is then built from these chains of supercharges. Clearly since

d1 = d2 = 0 we would only use the so(5) Weyl reflections in the implementation of

the RS algorithm. As mentioned in the beginning of this section, we will omit the

explicit depiction of this multiplet since it is large and unwieldy. As always, though,

one can use the provided python package as desired. Note that this would give the

reduced spectrum because, as predicted from the discussion around (3.122), there are

no negative-multiplicity states. In order to restore them we would the character relation

χ̂[∆; c1, c2, c3; d1, d2] = χ[∆; c1, c2, c3; d1, d2]− χ[∆ + 1; c1, c2 − 1, c3; d1, d2] , (3.126)

where the hat denotes a character over the reduced (i.e. P6–removed) Verma module.

Reconstructing this module with the conservation equation states simply amounts to
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the following pairings

∆

∆ + 1
2

∆ + 1

(d1, d2)(c1,c2,0)

−(d1, d2)(c1,c2−1,0)
(3.127)

when c2 ≥ 1. If c2 = 0 on the primary then there is no vector index with which to

contract in a conservation equation, which is mirrored by the fact that the would-be

negative multiplicity state sits on the boundary of the Weyl chamber at c2 = −1, and

would therefore be deleted.

This leads to the observation that, for arbitrary values of c1 and c2, we have an in-

finite family of conserved currents which have higher spin. A subset of these conserved

higher-spin currents are the ones belonging to the multiplet B[0, c2, 0; 0, 0]. This mul-

tiplet has a superconformal primary in the rank-c2 symmetric traceless representation

of su(4), which corresponds to the higher-spin currents that one expects to find in the

free 6d (2, 0) theory.

For example, we may take

Oµ1···µc2 =
∑
I

ΦI
↔
∂ µ1 · · ·

↔
∂ µc2 ΦI, (3.128)

where I = 1, · · · , 5 is an so(5)R vector index, and ΦI is a free-tensor primary. Therefore,

this object satisfies the conservation equation

∂µOµµ2...µc2−1 = 0 . (3.129)

For generic c1, c2, the MacDonald index for this type of multiplet is given by

IMac
B[c1,c2,0;0,0](q, s, t) = (−1)c1

q
c1
2

+c2+4t2

1− q
χc1+1(s) . (3.130)

C-type multiplets

From Table 4 the two distinct C-type multiplets are C[c1, 0, 0; d1, d2] and C[0, 0, 0; d1, d2].

Upon repeating the null-state analysis, one finds that for generic values of d1, d2 one is

required to remove Q1a for a 6= 1 and Q1aQ1b respectively from the basis of Verma-

module generators.

One also obtains additional absent Verma-module generators for certain values of
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d1 and d2. The procedure for identifying these is the same as the one presented in

Sec. 3.4.4, so we simply summarise the additional set of Qs that are to be removed:

C[c1, 0, 0; d1, 2] : Q22Q23Q24 ,

C[c1, 0, 0; d1, 1] : Q2aQ2b for a 6= b 6= 1 ,

C[c1, 0, 0; d1, 0] : Q2a for a 6= 1 ,

C[c1, 0, 0; 0, 0] : QAa for a 6= 1 . (3.131)

There are three combinations of d1, d2 for which the multiplet contains operator con-

straints. The first two C[c1, 0, 0; 1, 0], C[c1, 0, 0; 0, 1] contain conservation equations,

whereas C[c1, 0, 0; 0, 0] contains generalised equations of motion. The latter will be

discussed in detail below.

The only non-vanishing MacDonald indices for the C–multiplets are

IMac
C[c1,0,0;d1,1](q, s, t) = (−1)c1+1 q

7
2

+d1+
c1
2 td1+2

1− q
χc1+1(s) ,

IMac
C[c1,0,0;d1,0](q, s, t) = (−1)c1

q2+d1+
c1
2 td1+1

1− q
χc1+2(s) . (3.132)

The refined indices of course satisfy

lim
ε→0
IL[∆+ε;c1,0,0;d1,d2](p, q, s, t) =

IA[c1,0,0;d1,d2](p, q, s, t) + IC[c1−1,0,0;d1,d2+3](p, q, s, t) = 0 , (3.133)

when ∆ = 6 + 2d1 + 2d2 + 1
2c1.

C[c1, 0, 0; 0, 0]

Recall from (3.131) that the associated Verma module is constructed by the action of

QA1. Since we are removing all other supercharges, we also have to remove several

momenta from the basis of generators of the Verma module. These are

P23 = {Q12,Q43} = {Q22,Q33} ∝ P3,

P24 = {Q12,Q44} = {Q22,Q34} ∝ P5,

P34 = {Q13,Q44} = {Q23,Q34} ∝ P6 , (3.134)

where in the last column we have converted to Lorentz vector indices. Thus for generic

Dynkin labels the actions of the supercharges lead to

(d1, d2)(c1,c2,c3)
Q−→ (d1 − 1, d2 + 1), (d1 + 1, d2 − 1)(c1+1,c2,c3),
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Q2

−−→ (d1, d2)(c1+2,c2,c3),

(d1, d2)(c1,c2,c3)
Q̃−→ (d1, d2 + 1), (d1, d2 − 1)(c1+1,c2,c3),

Q̃2

−−→ (d1, d2)(c1+2,c2,c3). (3.135)

Denoting the action of Q = (Q2a,Q3a) as moving southwest on the diagram and Q̃ =

(Q1a,Q4a) as moving southeast, we can represent this multiplet as:

∆

2 + c1
2

5
2 + c1

2

3 + c1
2

7
2 + c1

2

4 + c1
2

(0, 0)(c1,0,0)

(0, 1)(c1+1,0,0)

(1, 0)(c1+2,0,0) (0, 0)(c1+2,0,0)

(0, 1)(c1+3,0,0)

(0, 0)(c1+4,0,0)
(3.136)

As in the B[c1, c2, 0; 0, 0] case, we can restore the negative-multiplicity states by making

use of the character relation

χ̂[∆; c1, 0, 0; d1, d2] =

χ[∆; c1, 0, 0; d1, d2]− χ[∆ + 1; c1 − 1, 0, 1; d1, d2] + χ[∆ + 2; c1 − 2, 1, 0; d1, d2]

− χ[∆ + 3; c1 − 2, 0, 0; d1, d2] , (3.137)

where a hat denotes the P -reduced character. This will lead to a set of equations of

motion.

The index over this multiplet in the MacDonald limit is

IMac
C[c1,0,0;0,0](q, s, t) = (−1)c1

q
c1
2

+2t

1− q
χc1+2(s) . (3.138)

D-type multiplets

These multiplets, summarised in Table 4, are the smallest of the osp(8∗|4) algebra. The

associated null state is A1Ψ = 0, which implies that Q1aΨ = 0 and the multiplet is
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thus 1
4 -BPS.

These multiplets contain additional vectors for d2 ≤ 3, when one also needs to

remove the following combinations of supercharges from the basis of Verma-module

generators:

D[0, 0, 0; d1, 3] : Q21Q22Q23Q24 ,

D[0, 0, 0; d1, 2] : Q2aQ2bQ2c

D[0, 0, 0; d1, 1] : Q2aQ2b ,

D[0, 0, 0; d1, 0] : Q2a . (3.139)

When d1 = d2 = 0 this corresponds to the vacuum, because all supercharges annihilate

the superconformal primary.

For generic d1, d2 we have the Q-chain

(d1, d2)(c1,c2,c3)
Q−→ (d1, d2 − 1)(c1+1,c2,c3),(c1−1,c2+1,c3),(c1,c2−1,c3+1),(c1,c2,c3−1) ,

Q2

−−→ (d1, d2 − 2)(c1,c2+1,c3),(c1+1,c2−1,c3+1),(c1+1,c2,c3−1),(c1−1,c2,c3+1) ,

(d1, d2 − 2)(c1−1,c2+1,c3−1),(c1,c2−1,c3) ,

Q3

−−→ (d1, d2 − 3)(c1,c2,c3+1),(c1,c2+1,c3−1),(c1+1,c2−1,c3),(c1−1,c2,c3) ,

Q4

−−→ (d1, d2 − 4)(c1,c2,c3) . (3.140)

The action of the Q̃ supercharges will be dealt with on a case-by-case basis as we dial

d2 for the examples that we provide.

The non-zero contributions to the MacDonald limit of the index are given by

IMac
D[0,0,0;d1,2](q, s, t) =

q3+d1td1+2

1− q
d1 ≥ 0 ,

IMac
D[0,0,0;d1,1](q, s, t) = −q

3
2

+d1td1+1

1− q
χ1(s) for d1 ≥ 0 ,

IMac
D[0,0,0;d1,0](q, s, t) =

qd1td1

1− q
for d1 > 0 . (3.141)

The D-type multiplets contain negative-multiplicity states for d1 + d2 ≤ 2. These

include the free-tensor and stress-tensor multiplet.

Half–BPS Multiplets: D[0, 0, 0; d1, 0]

Recall that in this case we are prescribed to remove Q2a from the basis of Verma-

module generators. This is because A1Ψ = Q11Ψ = 0 and using R-symmetry lowering

operators we find that all Q1a, Q2a annihilate the primary. As a result, the multiplet
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is 1
2–BPS. The set of Q̃s consist entirely of Q3a supercharges. Acting on a generic

superconformal primary state (d1, d2)(c1,c2,c3) with the Q̃s yields

(d1, d2)(c1,c2,c3)
Q̃−→ (d1 − 1, d2 + 1)(c1+1,c2,c3),(c1−1,c2+1,c3),(c1,c2−1,c3+1),(c1,c2,c3−1) ,

Q̃2

−−→ (d1 − 2, d2 + 2)(c1,c2+1,c3),(c1+1,c2−1,c3+1),(c1+1,c2,c3−1),(c1,c2−1,c3) ,

(d1 − 2, d2 + 2)(c1−1,c2+1,c3−1),(c1−1,c2,c3+1) ,

Q̃3

−−→ (d1 − 3, d2 + 3)(c1,c2,c3+1),(c1,c2+1,c3−1),(c1+1,c2−1,c3),(c1−1,c2,c3) ,

Q̃4

−−→ (d1 − 4, d2 + 4)(c1,c2,c3) .

(3.142)

The Verma module is then built out of Q3a, Q4a and we obtain

∆

2d1

2d1 + 1
2

2d1 + 1

2d1 + 3
2

2d1 + 2

2d1 + 5
2

2d1 + 3

2d1 + 7
2

2d1 + 4

(d1, 0)(0,0,0)

(d1 − 1, 1)(1,0,0)

(d1 − 1, 0)(2,0,0)(d1 − 2, 2)(0,1,0)

(d1 − 3, 3)(0,0,1) (d1 − 2, 1)(1,1,0)

(d1 − 4, 4)(0,0,0) (d1 − 3, 2)(1,0,1) (d1 − 2, 0)(0,2,0)

(d1 − 4, 3)(1,0,0) (d1 − 3, 1)(0,1,1)

(d1 − 4, 2)(0,1,0) (d1 − 3, 0)(0,0,2)

(d1 − 4, 1)(0,0,1)

(d1 − 4, 0)(0,0,0)
(3.143)
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The half-BPS index limit of this index is very simple:

I
1
2

-BPS

D[0,0,0;d1,0](x) = xd1 , (3.144)

which is the only non-vanishing class of half-BPS indices, as the name might suggest.

The Free-Tensor Multiplet: D[0, 0, 0; 1, 0]

This spectrum can be obtained by substituting d1 = 1 into that of D[0, 0, 0; d1, 0] and

running the RS algorithm. The resulting states match a scalar ΦI, I = 1, . . . , 5, a

fermion λAa and a selfdual tensor H+
[µνρ]. The negative-multiplicity representations are

naturally matched with the equations of motion ∂2ΦI = 0, /∂
ȧḃ
λ̃A
ḃ

= 0 and the Bianchi

identity for the selfdual tensor ∂[µH
+
νρσ] = 0.

The full multiplet is given by

∆

2

5
2

3

7
2

4

9
2

5

11
2

6

(1, 0)(0,0,0)

(0, 1)(1,0,0)

(0, 0)(2,0,0)

−(0, 1)(0,0,1)

−(1, 0)(0,0,0) −(0, 0)(1,0,1)

(0, 0)(0,1,0)

−(0, 0)(0,0,0)
(3.145)
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The refined index over this multiplet is compact enough to be presented in full

ID[0,0,0;1,0](p, q, s, t) =
qt+ q2p2t−1 − q2p(s+ p+ s−1) + q3p2

(1− q)(1− qps)(1− qps−1)
. (3.146)

The Stress-Tensor Multiplet: D[0, 0, 0; 2, 0]

This spectrum can be obtained by substituting d1 = 2 into that of D[0, 0, 0; d1, 0] and

running the RS algorithm. The resulting representation is

∆

4

9
2

5

11
2

6

13
2

7

(2, 0)(0,0,0)

(1, 1)(1,0,0)

(1, 0)(2,0,0)(0, 2)(0,1,0)

(0, 1)(1,1,0)

−(0, 2)(0,0,0) (0, 0)(0,2,0)

−(0, 1)(1,0,0)

−(0, 0)(0,1,0)
(3.147)

The superconformal primary is now the diboson

OIJ := :Φ(IΦJ): . (3.148)

We can identify the important states with the following currents and their conservation

equations; namely the R-symmetry current J
(AB)
µ , supersymmetry current SA

µa and

stress tensor Θµν . We also have three states with no associated conservation equations.

The refined index for this multiplet is calculated to be

ID[0,0,0;2,0](p, q, s, t) = −pq
3(st+ s−1t+ pt+ p3qt−1 + p2qst−1 + p2qs−1t−1)

(1− q)(1− qps)(1− qps−1)
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+
q2t2 + p2q3(1 + p2qt−2) + p2q4(1 + ps+ ps−1)

(1− q)(1− qps)(1− qps−1)
. (3.149)

D[0, 0, 0; 0, 1]

The shortening conditions for this follow from (3.139) by setting d1 = 0. The full

spectrum of states, including those corresponding to operator constraints, is given by

the diagram:

∆

2

5
2

3

7
2

4

9
2

5

11
2

6

13
2

(0, 1)(0,0,0)

(1, 0)(1,0,0) (0, 0)(1,0,0)

(0, 1)(2,0,0)

−(0, 0)(0,0,1)−(1, 0)(0,0,1) (0, 0)(3,0,0)

−(0, 1)(0,0,0)−(0, 1)(1,0,1)

−(0, 0)(2,0,1)

(0, 1)(0,1,0)

(0, 0)(1,1,0)

−(0, 1)(0,0,0)

−(0, 0)(1,0,0)
(3.150)

3.4.5 Index Spectroscopy

Despite years of progress, the (2, 0) theory remains a very mysterious theory. One

approach in gaining some insight is to study its superconformal indices. Fully refined
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indices obtained in integral form were found by appealing to the (2,0) theory’s rela-

tionship to 5d super Yang Mills (sYM). They were calculated through localisation as

in [122, 123] and by topological strings in [70]. Note that, through topological strings,

one need not necessarily appeal to 5d sYM, as was shown in [71] via a change of

preferred direction in the topological vertex.

While these integral representations are incredibly complicated and difficult to ma-

nipulate (aside from a series expansion of the integrand), there exist limits of the

integrand where the integral is able to be computed exactly; largely due to the limit

trivialising the sum over instanton contributions. It was shown in [21, 122] that the

Schur limits of the interacting theories are given by

ISchurAN−1
(q) = P.E

[
q2 + . . .+ qN

1− q

]
,

ISchurDN
(q) = P.E

[
qN + (q2 + . . .+ q2N−2)

1− q

]
, (3.151)

which was later reproduced by [24] using the fact that a 2d subsector of the theory

can be mapped to a WN algebra. The character of this algebra is what reproduces

these limits of the index. They then conjectured the following forms of the exceptional

indices

ISchurE6
(q) = P.E

[
q2 + q5 + q6 + q8 + q9 + q12

1− q

]
,

ISchurE7
(q) = P.E

[
q2 + q6 + q8 + q10 + q12 + q14 + q18

1− q

]
,

ISchurE8
(q) = P.E

[
q2 + q8 + q12 + q14 + q18 + q20 + q24 + q30

1− q

]
, (3.152)

using the same method. It was then noted by the authors that these indices all have no

dependence on the fugacity s. Due to the structure of the unrefined indices, no state

with the appropriate power of s can be cancelled by another state with with the opposite

sign once one fixes the corresponding power of q. Since there are no cancellations

available in this Schur limit, they immediately ruled out representations whose index

counts states with non-zero c1. Therefore the set of allowed Schur multiplets that can

contribute to interacting (2, 0) theories are

B[0, c2, 0; d1, 0], D[0, 0, 0, ; d1, {0, 2}] . (3.153)
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whose Schur indices are

ISchurB[0,c2,0;d1,0](q) =
q4+d1+c2

1− q
,

ISchurD[0,0,0;d1,2](q) =
q3+d1

1− q
,

ISchurD[0,0,0;d1,0](q) =
qd1

1− q
. (3.154)

This is already huge progress, but when performing index spectroscopy, the simplicity

of the Schur limits of these multiplets is both a gift and a curse. It is not clear a priori

how one would differentiate contributions coming from, e.g. D[0, 0, 0; 4, 0], D[0, 0, 0; 1, 2]

or B[0, 0, 0; 0, 0].

This is where the MacDonald index comes in. The additional fugacity t distinguishes

all three of these multiplets, such that there could never be any confusion. We simply

need the MacDonald versions of these interacting indices. The authors of [21,123] note

that the numerator that appears in the Plethystic exponential comes from contribu-

tions of the half-BPS primary operators, while the denominator comes from derivative

contributions. Since our MacDonald index counts primary half-BPS operators with

qd1td1 as opposed to qd1 , while both count the derivative with q, we conjecture that the

MacDonald indices for the interacting (2, 0) theories are given by

IMac
AN−1

(q, t) = P.E

[
(qt)2 + . . .+ (qt)N

1− q

]
,

IMac
DN

(q, t) = P.E

[
(qt)N + ((qt)2 + . . .+ (qt)2N−2)

1− q

]
,

IMac
E6

(q, t) = P.E

[
(qt)2 + (qt)5 + (qt)6 + (qt)8 + (qt)9 + (qt)12

1− q

]
, (3.155)

IMac
E7

(q, t) = P.E

[
(qt)2 + (qt)6 + (qt)8 + (qt)10 + (qt)12 + (qt)14 + (qt)18

1− q

]
,

IMac
E8

(q, t) = P.E

[
(qt)2 + (qt)8 + (qt)12 + (qt)14 + (qt)18 + (qt)20 + (qt)24 + (qt)30

1− q

]
.

Armed with these, one can show that the MacDonal index for the A1 theory has an

exact expansion as

P.E

[
(qt)2

1− q

]
=

1 +

∞∑
d1=1

IMac
D[0,0,0;2d1,0](q, t) +

∞∑
c2,d1=0

mult(c2, d1)IMac
B[0,c2,0;2d1+2,0](q, t) , (3.156)
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where mult(c2, d1) are the multiplicities given by the generating function

mult(c2, d1) =
1

(d1 + 2)!

∂d1+2

∂xd1+2

c2∏
k=2

1

1− xk

∣∣∣∣
x=0

. (3.157)

Notice the lack of D[0, 0, 0; d1, 2] contributions. This is not a general statement, how-

ever, as when one considers the A2 index one finds contributions coming from two

towers

∞∑
i1,i2=1

IMac
D[0,0,0;2i1+3i2−2,2](q, t) . (3.158)

This can be seen by noting that

P.E

[
(qt)N

1− q

]
= 1 +

∞∑
d1=1

IMac
D[0,0,0;Nd1,0](q, t)

+
∞∑

c2,d1=0

mult(c2, d1)IMac
B[0,c2,0;Nd1+2(N−1),0](q, t) , (3.159)

along with the following “fusion” rules:

IMac
D[0,0,0;i,0](q, t)× I

Mac
D[0,0,0;j,0](q, t) =IMac

D[0,0,0;i+j,0](q, t) + IMac
D[0,0,0;i+j−2,2](q, t)

+
∞∑
k=0

IMac
B[0,k,0;i+j−2,0](q, t) ,

IMac
D[0,0,0;i,0](q, t)× I

Mac
B[0,m,0;j,0](q, t) =

∞∑
k=0

IMac
B[0,k+m,0;i+j,0](q, t) ,

IMac
B[0,m,0;i,0](q, t)× I

Mac
B[0,n,0;j,0](q, t) =

∞∑
k=0

IMac
B[0,k+m+n+2,0;i+j+2,0](q, t) . (3.160)

One can simply write

IMac
A2

(q, t) = P.E

[
(qt)2 + (qt)3

1− q

]
= P.E

[
(qt)2

1− q

]
× P.E

[
(qt)3

1− q

]
, (3.161)

expand in the two Plethystic exponentials using Eq. 3.159 and use the “fusion” rules.

This then recovers, among other terms, the aforementioned contributions from the

D[0, 0, 0; d1, 2] multiplets. While we have not been able to rule out any more multiplets,

we have been able to find a decomposition in terms of Schur multiplets; and in the A1

case, obtain a closed form expression for the coefficients of all these multiplets. It

would be interesting to explore these coefficients more for two reasons. Firstly, it may

be that we are able to find a closed form expression for these coefficients. Secondly,
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these coefficients are of particular interest in the area of combinatorics and might be

interesting in their own right.

Another interesting route in this spirit is to see whether one can probe more refined

limits of the interacting superconformal indices; either as a series expansion up to high

order or by finding a particular limit that simplifies the Nekrasov partition function in

a non-trivial way. We leave both these questions as areas for future investigation.

3.5 From Supercharacters to Indices

In the previous two sections we had simply quoted the results for the indices of the

mentioned multiplets. While one could simply try letter counting to extract these

quantities, for generic quantum numbers, this process becomes rather arduous. A

better way is to calculate the supercharacter and perform a redefinition of parameters

to match the index. A supercharacter is defined in a general way as

TrR(−1)F
∏
i

pdii , (3.162)

where the pi are fugacities and di are the corresponding Dynkin labels associated with

the charges of the representation of a particular algebra. An index is similarly defined

as (see Sec 2.2)

TrH(−1)F e−βδ
∏
i

xµii , (3.163)

where µi are the charges associated with a maximally commuting subalgebra. Since

these µi are a subalgebra of the larger algebra, one simply needs to express the µi in

terms of the di, then find the corresponding map for the character fugacities such that

we are left with

TrR(−1)F
n∏
i

xi(p1, . . . , pn)µi . (3.164)

This endows us with a map from pi to xi. Note that once we perform this map, since

the exponents are all in terms of the commuting subalgebra, all states that do not

satisfy δ = 0 will be pair-wise cancelled which enforces the e−βδ term. This will be

made more precise when we discuss specific examples.

For now let us a consider a representation of a Lie algebra g with highest weight λ.

The Weyl character formula is given by [66]

χλ =

∑
w∈W sgn(w)ew(λ+ρ)

eρ
∏
α∈Φ−

(1− eα)
, (3.165)
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where W is the Weyl group of the Lie algebra root system and ρ is the half sum of the

positive roots Φ+. Note that sgn(w) = (−1)l(w) where l(w) is the length of the Weyl

group element, i.e. how many simple reflections it is comprised of.

One can alternatively obtain this formula using a Verma-module construction: De-

compose the algebra g as

g = Φ+ ⊕ h⊕ Φ− , (3.166)

where h corresponds to the Cartan subalgebra and Φ− (Φ+ ) are the negative (positive)

roots. We construct the Verma module V corresponding to some highest (lowest) weight

|λ〉 by considering the space comprised of the states f(Φ−) |λ〉 (f(Φ+) |λ〉), where f

is any polynomial of the negative (positive) roots modulo algebraic relations. The

character of this module is defined to be [66]

χV =
eλ∏

α∈Φ−
(1− eα)

. (3.167)

The character of the representation labelled by Λ is recovered by summing over the

Weyl group action on the roots

χλ =
∑
w∈W

w(χV) =
∑
w∈W

ew(λ)∏
α∈Φ−

(1− ew(α))
. (3.168)

We can utilise the identity w(e−ρ−λχV) = sgn(w)e−ρ−λχV along with the fact that w

acts naturally—i.e. we may take w(e−ρ−λχV) = w(e−ρ−λ)w(χV) [66]—to show that

χλ =
∑
w∈W

w(χV) =

∑
w∈W (−1)l(w)ew(λ+ρ)

eρ+λ
χV =

∑
w∈W (−1)l(w)ew(λ+ρ)

eρ
∏
α∈Φ−

(1− eα)
. (3.169)

The formulation of the Weyl character formula (3.168) is particularly useful in the

context of UIRs of the SCA [24,113].

3.5.1 Characters of 5d N = 1 Multiplets

We are now in a position to compute the characters of f(4).22 Let us consider a represen-

tation the highest weight of which has conformal dimension ∆ with so(5) Lorentz quan-

tum numbers (d1, d2) and su(2)R quantum numbers K. Note that these are expressed

in the Dynkin basis and hence are integer. The highest weight can be decomposed as

λ = ωβ1 d1 + ωβ2 d2 + ωαK , (3.170)

22A summary of this discussion for the case of the (2,0) SCA can be found in App. C of [24].
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where ωβi (i = 1, 2) are the fundamental weights associated with the so(5) simple roots

βi, while ωα is the fundamental weight associated with the su(2)R simple root α. We

may in turn express the fundamental weights in terms of the simple roots (for reasons

which will become apparent) by using the Cartan matrix Aij

ωβi = (A−1
B2

)ijβj =

(
1 1
1
2 1

)(
β1

β2

)
,

ωα =
1

2
α . (3.171)

Let us next consider eλ by defining the fugacities

b1 = eβ1+β2 , b2 = e
1
2

(β1+2β2) , a = e
1
2
α , (3.172)

hence

eλ = bd1
1 b

d2
2 a

K . (3.173)

The character of a particular representation R is then defined to be

χR(a,b, q) = TrR(q∆bd1
1 b

d2
2 a

K) , (3.174)

where we have included the so(2) Cartan, ∆. For example we can read off the character

for the supercharges QA1 as (recall that we are in the Dynkin basis)

4∑
A=1

χ(QA1) = ab2q
1
2 +

ab1q
1
2

b2
+
ab2q

1
2

b1
+
aq

1
2

b2
. (3.175)

We can then apply this to specific representations of the SCA.

Long Representations

For the long representation L[∆;d1,d2;K] we construct the superconformal multiplet by

acting on the highest weight state |∆; d1, d2;K〉hw with momentum operators and su-

percharges as in Eq. (3.1). Thus for a generic long representation we can decompose

the character of the superconformal Verma module using (3.167) as

χL(a,b, q) = q∆χ[d1,d2](b)χ[K](a)f(a,b, q) . (3.176)

The polynomial appearing above can be decomposed as f(a,b, q) = Q(a,b, q)P (b, q)

since the momentum operators and supercharges commute. Explicitly these functions
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are

Q(a,b, q) =
∏
A,a

(1 + χ(QAa)) ,

P (b, q) =

5∏
µ=1

(1− χ(Pµ))−1 . (3.177)

The characters χ[d1,d2](b) and χ[K](a) can be obtained through their Weyl orbits. As

a result one has

χ[d1,d2](b) =
∑

w∈WSO(5)

w(b1)d1w(b2)d2M(w(b)) ,

χ[K](a) =
∑

w∈WSU(2)

w(a)KR(w(a)) , (3.178)

where the M(b) and R(a) are the products of the characters of negative roots, explicitly

M(b) =
1(

1− 1
b1

)(
1− 1

b22

)(
1− b1

b22

)(
1− b22

b21

) ,
R(a) =

a2

a2 − 1
. (3.179)

As an aside it will be worthwhile to explicitly demonstrate the Weyl group actions

appearing in (3.178). In the orthogonal basis the generators of WSO(5) = S2 n (Z2)2

and WSU(2) = S2 have the form

wB1 =

(
0 1

1 0

)
, wB2 =

(
1 0

0 −1

)
, wA =

(
0 1

1 0

)
. (3.180)

There are eight elements in S2 n (Z2)2 and two in S2. These act on the simple roots as

wBi βj = f(β1, β2) , wAα = g(α) , (3.181)

where the RHS is a combination of simple roots depending on the particular example.

In fact, the simple reflections on the simple roots will generate every other root minus

the Cartans of the algebra. For example, the simple roots of so(5) in the orthogonal

basis are β1 = (1,−1) and β2 = (0, 1). Acting on them with wB2 produces

wB2 β1 = (1, 1) = β1 + 2β2 ,

wB2 β2 = (0,−1) = −β2 . (3.182)
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Similarly, acting with wB1 will produce −β1 and β1 + β2 respectively. Furthermore,

since the Weyl group has a natural action on eλ (i.e. w(eλ) = ew(λ)), this action can

be directly translated to the fugacities. Following the same example

wB2 (b1) = ew
B
2 (β1+β2) = e(β1+β2) = b1 ,

wB2 (b2) = e
1
2
wB2 (β1+2β2) = e

1
2
β1 =

b1
b2
. (3.183)

Combining the Weyl groups leads to WSO(5)×SU(2), which has sixteen elements acting on

a and bi. The Q(a,b, q) and P (b, q) are both invariant under the action of any element

of this combined Weyl group. Using this fact, the character for long representations

can be rewritten in terms of

χL(a,b, q) =
q
q∆bd1

1 b
d2
2 a

KM(b)R(a)P (b, q)Q(a,b, q)
y
W
, (3.184)

where [[· · · ]]W is shorthand for the Weyl symmetriser, a notation adopted from [24].

Short Representations

Consider now the short multiplets of Table 2. In order to calculate their characters,

one is instructed [42, 109, 113] to remove certain combinations of Qs and P s from the

expressions Q(a,b, q) and P (b, q) given in (3.177).23 We explicitly consider a few

examples to elucidate this point:

a. Take the most basic short multiplet, A[d1, d2;K], with d1, d2,K > 0. Its su-

perconformal primary is annihilated by the supercharge Q14 and the associated

character would be

χA(a,b, q) =

q∆bd1
1 b

d2
2 a

KM(b)R(a)P (b, q)Q(a,b, q)

(
1 +

aq
1
2

b2

)−1


W

,

with ∆ = 4 + 3K + d1 + d2. Notice that this includes the character for the

product over QAa but now with the Q14 contribution removed; hence the Weyl

symmetrisation removes descendant states associated with the action of Q14.

b. Take the B[d1, 0;K] multiplet with K 6= 0. One is instructed to remove Q13 and

Q14 and the supercharacter is

χB(a,b, q) =

23There is a subtlety with removing momentum operators, which will be addressed in the following
section.
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q∆bd1
1 a

KM(b)R(a)P (b, q)Q(a,b, q)

(
1 +

ab2q
1
2

b1

)−1(
1 +

aq
1
2

b2

)−1


W

,

with ∆ = 3 + 3K + d1.

c. Suppose now we consider the multiplet B[d1, 0; 0]. In this case the R-symmetry

lowering operator in the Dynkin basis R− also annihilates the superconformal

primary and two additional shortening conditions are generated

R−Q13Ψ = Q23Ψ = 0 ,

R−M−2 Q13Ψ = Q24Ψ = 0 , (3.185)

where we remind the reader thatM−2 is a Lorentz lowering operator in the Dynkin

basis. Therefore, for the purposes of building the Verma module we can remove

both of these from the basis of Verma-module generators. As a result, the modified

product over supercharges, now indicated by Q̂(a,b, q), is

Q̂(a,b, q) = Q(a,b, q)

×

(
1 +

ab2q
1
2

b1

)−1(
1 +

aq
1
2

b2

)−1(
1 +

b2q
1
2

b1a

)−1(
1 +

q
1
2

b2a

)−1

. (3.186)

The last thing to take into account is the possible removal of P s from P (b, q) when

some components of the multiplet correspond to operator constraints. This will be

discussed at length in App. B.1.

The 5d Superconformal Index

The supercharacter for a given multiplet can be readily converted into the superconfor-

mal index. The five-dimensional superconformal index, as we have previously defined

it in the Dynkin basis in Sec. 3.2.3, is given by24

I(x, y) = TrH(−1)F e−βδx
2
3

∆+ 1
3

(d1+d2)yd1 . (3.187)

The states that are counted satisfy δ = 0, where

δ := {S21,Q14} = ∆− 3

2
K − d1 − d2 . (3.188)

24The fermion number in this case is F = 2d1 + d2 ' d2, since d1 is always integer.
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In order to make contact between the character of a 5d superconformal representation

and this index, one can simply make the following fugacity reparametrisations

q → x2/3 , b1 → x1/3y , b2 → x1/3 (3.189)

and introduce a factor of (−1)F . The resulting object is precisely the index since every

state without δ = 0 pairwise cancels.

3.5.2 Characters of 6d (N , 0) Multiplets

Consider a representation, the highest weight of which has conformal dimension ∆ with

su(4) quantum numbers (c1, c2, c3) and R-symmetry quantum numbers R. For N = 1

we have that R = K, the Dynkin label of su(2)R, while for N = 2 the Dynkin labels

of so(5)R are R = (d1, d2). The highest weight can be decomposed as

λ = ωα1 c1 + ωα2 c2 + ωα3 c3 + ωRi R
i , (3.190)

where the index in ωRi R
i is summed over. The ωαi are the fundamental weights asso-

ciated with the su(4) simple roots αi and ~ωR are the fundamental weights associated

with the simple roots of the R-symmetry algebra, ~β.25 For su(2)R ~β has only one

component, while for so(5)R ~β has two components, (β1, β2). Again, we can express

the fundamental weights in terms of the simple roots by using the Cartan matrix Aij

ωαi = (A−1
A3

)ijαj =


3
4

1
2

1
4

1
2 1 1

2
1
4

1
2

3
4


α1

α2

α3

 , (3.191)

alongside the expressions for su(2)R and so(5)R given in (3.171).

This allows for a rewriting of eλ by defining the su(4) fugacities

a1 = e
1
4

(3α1+2α2+α3) , a2 = e
1
2

(α1+2α2+α3) , a3 = e
1
4

(α1+2α2+3α3) . (3.192)

Similarly, we define the R-symmetry fugacities b using (3.172). For N = 1 we have

that

b = b = e
1
2
β , (3.193)

25Recall that in the previous subsection, we had defined the simple root of su(2)R as α. In order to
avoid confusion with the su(4) Lorentz-algebra simple roots, we label all simple roots associated with

the 6d R-symmetry algebras as ~β.
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while for N = 2 we have b = (b1, b2) with

b1 = eβ1+β2 , b2 = e
1
2

(β1+2β2) . (3.194)

hence

eλ = ac11 a
c2
2 a

c3
3

∏
i

bR
i

i . (3.195)

The character of a particular representation R is then given by

χR(a,b, q) = TrR

(
ac11 a

c2
2 a

c3
3

∏
i

bR
i

i

)
(3.196)

and for N = 1, 2 respectively we have:

χ
(1,0)
R (a, b, q) = TrR

(
ac11 a

c2
2 a

c3
3 b

K
)
,

χ
(2,0)
R (a,b, q) = TrR

(
ac11 a

c2
2 a

c3
3 b

d1
1 b

d2
2

)
. (3.197)

We can then apply this to specific irreducible representations of the 6d (N , 0) SCA.

Long Representations

For the long representation L[∆;c1,c2,c3;R] we construct the superconformal multiplet

by acting on the highest weight state |∆; c1, c2, c3; R〉hw with momentum operators

and supercharges f(Q, P ) |∆; c1, c2, c3; R〉hw. This polynomial can be factorised as

f(a,b, q) = Q(a,b, q)P (a, q), since the momentum operators and supercharges com-

mute. Explicitly these functions are

Q(a,b, q) =
∏
A,a

(1 + χ(QAa)) ,

P (a, q) =
6∏

µ=1

(1− χ(Pµ))−1 , (3.198)

where the range of the sum over A depends on the amount of supersymmetry.

Thus for a generic long representation we can decompose the character of the su-

perconformal Verma module using (3.167) as

χL(a,b, q) = q∆χ[c1,c2,c3](a)χ[d1,d2](b)P (a, q)Q(a,b, q). (3.199)

The characters χ[c1,c2,c3](a) and χ[d1,d2](R) can in turn be obtained through their Weyl

orbits. The relevant Weyl groups are WSU(4) = S4, WSO(5) = S2 n (Z2)2 and WSU(2) =
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Z2 so one has

χ[c1,c2,c3](a) =
∑

w∈WSU(4)

w(a1)c1w(a2)c2w(a3)c3M(w(a)), (3.200)

χ[R](b) =
∑
w∈WR

(∏
i

w(bi)
Ri

)
R(N ,0)(w(b)). (3.201)

We use WR to indicate the Weyl group appropriate for the R symmetry of the (N , 0)

SCA. The M(a) and R(N ,0)(b) are the products of characters of negative roots as

defined in (3.167); explicitly

M(a) =
1(

1− a2

a2
1

)(
1− a2

a2
3

)(
1− 1

a1a3

)(
1− a1

a2a3

)(
1− a1a3

a2
2

)(
1− a3

a1a2

) ,
R(2,0)(b) =

1(
1− 1

b1

)(
1− 1

b22

)(
1− b1

b22

)(
1− b22

b21

) ,
R(1,0)(b) =

b2

b2 − 1
. (3.202)

Again, we note that both Q(a,b, q) and P (a, q) are invariant under the appropriate

Weyl symmetrisations and one can write for N = 2

χ
(2,0)
L (a,b, q) =

q
q∆ac11 a

c2
2 a

c3
3 b

d1
1 b

d2
2 M(a)R(2,0)(b)P (a, q)Q(a,b, q)

y
W
, (3.203)

matching [24], while for N = 1

χ
(1,0)
L (a, b, q) =

q
q∆ac11 a

c2
2 a

c3
3 b

KM(a)R(1,0)(b)P (a, q)Q(a, b, q)
y
W
, (3.204)

where [[· · · ]]W denotes the Weyl symmetriser.

Short Representations

Consider now the short multiplets of Table 3 for N = 1 or Table 4 for N = 2. To

calculate their characters we remove certain combinations of Qs from the expressions

Q(a,b, q) given in (3.198). This discussion is completely analogous to Sec. 3.5.1. There

are a few cases when one is also prescribed to remove certain Pµ from P (a, q). This is

discussed at length in App. B.1.
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The 6d (1, 0) Superconformal Index

Once we have obtained the full supercharacter we can readily covert it into the super-

conformal index. For N = 1 the index as defined in (3.3.3) is given by26

I(p, q, s) = TrH(−1)F e−βδq∆− 1
2
Kpc2sc1 . (3.205)

The states that are counted satisfy δ = 0, where

δ = ∆− 2K − 1

2
(c1 + 2c2 + 3c3) . (3.206)

We can therefore write the character of a representation as an index via the following

fugacity reparametrisations

a1 → s , a2 → p , a3 → 1 , b→ 1

q
1
2

(3.207)

and inserting (−1)F . The resulting object is precisely the index since every state

without δ = 0 pairwise cancels.

The 6d (2, 0) Superconformal Index

The 6d (2, 0) superconformal index, as previously defined in (3.4.3), is given by

I(p, q, s, t) = TrH(−1)F e−βδq∆−d1− 1
2
d2pc2+c3−d2t−d1−d2sc1+c2 . (3.208)

The states that are counted satisfy δ = 0, where

δ = ∆− 2d1 −
1

2
c1 − c2 −

3

2
c3 . (3.209)

In order to make contact between the character and this index, we make the following

fugacity reparametrisations

a1 → s , a2 → ps , a3 → p , b1 →
t

q
, b2 →

q
1
2 t

p
(3.210)

and insert (−1)F . The resulting object is precisely the index since every state previously

counted by the character without δ = 0 pairwise cancels. This concludes our discussion

about obtaining general multiplet superconformal indices from supercharacters.

26The fermion number in this case is F = c1 + c3.
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Chapter 4

Deconstructing Six Dimensional

Theories

This chapter is based on the papers [2] and [3]. It has two main sections, each corre-

sponding to the two aforementioned articles. Useful identities and definitions pertinent

to this Chapter have been included in Appendix A.

Over the last few years, there has been significant progress in the study of six-

dimensional supersymmetric field theories. This progress relied on advances in the

exact calculation of protected quantities, such as the superconformal index [39,40,42],

using e.g. the method of supersymmetric localisation [53] or the refined topological

vertex [68]. The two six-dimensional theories that we will focus on are the 6d (2,0)

theory and the 6d little string theory (LST).

These are the only two UV-complete interacting 6d theories that are thought to

exist with sixteen supercharges. The (2,0) theory is conformal and can be understood

as a low energy description of k coincident M5-branes in M-theory, commonly denoted

as (2,0)k. LST with (1,1) SUSY can be found as a gs → 0 limit of k coincident NS5-

branes in type IIB string theory. Note that this is a non-local quantum field theory

since one keeps α′ fixed. It is believed that this theory is a UV completion of 6d

MSYM. There is a T-dual description for NS5 branes in type IIA string theory with

(2,0) supersymmetry. Both of these 6d theories lack a Lagrangian description, and so

one needs to get quite creative with how we probe them.

The 6d ADE (2,0) theories have no known Lagrangian descriptions, however, var-

ious supersymmetric partition functions have been calculated by appealing to the re-

lationship between 5d maximally-supersymmetric Yang–Mills theory (MSYM) and the

6d (2,0) theory on a circle S1
R6

of radius R6 = g2
5/2π. The prototypical example of

such a protected quantity is the supersymmetric partition function of 5d MSYM on

S5 [124–129] (or CP2×S1 [122]), which computes the superconformal index of the (2,0)
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theory;27 for a more complete list of references see [123]. The (2,0) superconformal

index was also recovered in [70, 71] using the “refined topological vertex” formalism

for constructing topological string amplitudes [68,132]. Some of these exact tools were

subsequently used to help establish a striking connection between BPS subsectors of

the (2,0)ADE theory and 2d WADE-algebras. By doing so, the authors of [24] solved for

said subsector of the (2,0) theory, since e.g. 3-point functions of associated operators

can immediately be obtained from theW-algebra literature. Finally, a significant com-

plementary approach was initiated in [15], aiming to constrain the (2,0) theory as an

abstract SCFT through the conformal-bootstrap programme, which is solely based on

the system’s symmetries and a minimal set of initial assumptions.

Conversely for LST, due to its lack of conformal symmetry, there are fewer options

available for probing these theories. However, a great deal of progress has been made

by using the refined topological vertex to calculate the R4
ε1,ε2 × T2 partition function,

cf. [81–83].

These new developments join an older proposal for attacking the (2,0) theory and

LST: dimensional deconstruction [23]. In this section we would like to revisit this

armed with some modern non-perturbative techniques. Towards that end, we remind

the reader of the work of [23]. Two cases were postulated. First, one can start from a

superconformalN = 2 four-dimensional circular quiver-gauge theory with SU(k) gauge-

group nodes, and upon taking a specific limit of parameters that takes the theory to the

Higgs phase, one recovers the corresponding Ak−1 (2,0) theory on a torus of fixed (but

arbitrary) size. Evidence for this claim included estimating the Kaluza–Klein (KK)

spectrum of the 6d theory on T2, as well as a string-duality argument where the field

theories involved were geometrically engineered using branes. In follow-up work [133],

it was confirmed that the circular-quiver theory explicitly deconstructs 5d MSYM on a

finite circle S1
R5

, for values of the parameters corresponding to weak coupling (for fixed

energies), g2
5 = 2πR6, where the theory is well defined.28

The second case was to consider a four-dimensional toroidal quiver-gauge theory

with N5 × N6 SU(k) gauge nodes. For a certain set of limits on the field theory

parameters it was argued that this theory deconstructs the (1,1) LST with 2πR5 =
N5
Gv5

and 2πR6 = N6
Gv6

; where vi are vacuum expectation values (VEVs) for the chiral

multiplets and G is the gauge coupling for each node. This will be expanded on in the

subsequent sections.

Although the existing qualitative evidence is highly suggestive, it would be useful

to have quantitative tests for the proposals of [23]. The aim of this chapter is to

address precisely this point. We perform a detailed comparison between the part of

27This is despite the fact that the 5d MSYM theory is perturbatively non-renormalisable [130],
although it is also not sufficient evidence to rule in favour of the conjecture of [19, 20,131].

28It naturally follows that for large values of R6 the UV-finite 4d N = 2 theory provides a quantum
definition of 5d MSYM through deconstruction [133].
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the circular-quiver spectrum that survives deconstruction, and that of the (2,0)k theory

that captures the low-energy dynamics of k M5-branes on a torus. This is carried out

via two independent calculations, both of which are only indirectly sensitive to the

choice of Higgs VEV. We then test the proposal for (1,1) LST, and along the way

propose a refinement for the S4 partition function for N = 1 theories.

4.1 The (2,0) Theory

We commence this section with a short summary of the first results of [23] in order

to establish conventions and notation. The starting point is an N -noded 4d circular-

quiver theory, with SU(k) gauge groups. The nodes are connected by bifundamental

chiral superfields, the scalar components of which are denoted by (Xα+1,α)i(α+1)
j(α)

,

(Xα,α+1)j(α)
i(α+1)

; here α = b−N/2c + 1, . . . , bN/2c labels the quiver nodes and the

(down) up i(α)s are (anti)fundamental gauge indices associated with the α-th gauge

group. The minimal coupling to the gauge fields occurs via

Dµ(Xα+1,α)i(α+1)
j(α)

= ∂µ(Xα+1,α)i(α+1)
j(α)
− i(A(α+1)

µ )i(α+1)

k(α+1)
(Xα+1,α)k(α+1)

j(α)

+ i(Xα+1,α)i(α+1)
l(α)

(A(α)
µ )l(α)

j(α)
. (4.1)

This theory is conformal and enjoys N = 2 supersymmetry.

The first step towards implementing the deconstruction prescription of [23] is to

give a VEV to the scalar fields

〈(Xα,α+1)j(α)
i(α+1)

〉 = v δj(α)
i(α+1)

∀ α . (4.2)

This takes the theory onto the Higgs branch and has the effect of breaking the gauge

group down to the diagonal subgroup SU(k)N → SU(k). Consequently, the previously-

independent N − 1 gauge couplings g(α) are replaced by a single coupling parameter

denoted by G.

The second step is to consider the limit

N →∞ , G→∞ , v→∞ , (4.3)

in a fashion that keeps

g2
5 :=

G

v
→ fixed , 2πR5 :=

N

Gv
→ fixed . (4.4)

For energies small compared to the scale 1/g2
5, the resultant theory can be explicitly

seen to reproduce 5d MSYM on a continuous circle of radius R5, with bare gauge

coupling g5 [133]. Note that supersymmetry is enhanced in the limit, with 16 preserved
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

k D3 branes − − − − · · · · · ·
AN−1 ALE · · · · · · − − − −

Table 5: Brane configuration in type IIB string theory. The ALE space extends in the
directions x6, x7, x8, x9. The direction x6 is compact with periodicity x6 → x6 + 2πr.

supercharges. One straightforwardly recovers two towers of massive states:

M2
n1

=

(
2πn1

R5

)2

, M̃2
n2

=

(
4π2n2

g2
5

)2

. (4.5)

The first is a tower of KK modes associated with S1
R5

, while the second with the BPS

spectrum of n2-instanton-soliton states. The latter can also be identified with another

KK tower when the bare 5d coupling is related to the radius of an additional circle,

g2
5 = 2πR6 . (4.6)

This identification is implied by Type IIA/M-theory duality, whence 5d mSYM is in-

terpreted as the low-energy effective description for the 6d (2,0) theory on S1
R6

. Even

though this 5d picture is expected to break down at high energies, the 4d description is

UV complete and valid for all values of parameters (4.4), therefore bypassing the issue

of non-completeness of 5d MSYM. The 4d N = 2 circular-quiver theory is thus claimed

to be deconstructing the (2,0) theory on a torus T2 = S1
R5
× S1

R6
of any size. It is

interesting to observe that the S-duality action on the 4d theory, which sends G↔ N
G ,

also exchanges the two circles of the T2.

Brane Engineering I

The above picture is reinforced using brane engineering and a chain of dualities. The

circular-quiver theory can be obtained at low energies on a stack of k D3 branes probing

a C × C2/ZN orbifold singularity. This system is parametrised by the orbifold rank,

N , the string length, ls, and string coupling, gs. Turning on the chiral-multiplet VEVs

corresponds to taking the k D3 branes off the orbifold singularity and into the orbifolded

transverse space by a distance d. The limit (4.4) translates into taking ls → 0 and

N →∞, while keeping

gs → fixed ,
d

Nl2s
=

1

R5
→ fixed ,

d

Nl2sgs
=

1

R6
→ fixed . (4.7)
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One can use the above to straightforwardly deduce the following relation between the

string and gauge-theory parameters

d

2πl2s
= Gv ,

√
gsN = G . (4.8)

In the limit (4.7) the geometry probed by the k D3s can be locally approximated

by R5 × S1
r , where r = d/N = l2s/R5. The D3s can be T-dualised along this circle

to obtain k D4s wrapping S1
R5

, with string coupling g′s = gsR5/ls. This becomes

strong as ls → 0 upon which one has k M5 branes on S1
R5

, with the M-theory circle

being R6 = g′sls = gsR5. Moreover, in the deconstruction limit the 11d Planck length

lp = lsg
′
s
1/3 → 0 and one recovers (2, 0)k, the Ak−1 theory plus a free-tensor multiplet

on T2 = S1
R5
× S1

R6
[23] .

Note that the low-energy description for this D-brane system is in terms of U(k) as

opposed to SU(k) gauge groups. On the one hand, this distinction is unimportant for

the procurement of the mass spectrum (4.5) as well as for the deconstruction argument

reviewed above (since, rather than providing any strong-coupling scale, confinement or

any sort of exotic IR phenomena, the U(1) part is IR free and thus decouples). This

observation will be important later on and we will therefore explicitly use the U(k)N

circular-quiver theory in the calculations that follow [23].

Brane Engineering II

One can also use an alternative description of this brane system, where the T-duality

transformation is implemented before taking the branes off the orbifold singularity. This

will be more appropriate for our purposes. For the D3-brane probes, the space C2/ZN
resolves to the AN−1 ALE metric, as summarised in Table 5. This can be T-dualised

along the compact direction to give rise to a configuration of N NS5s on the dual circle,

with k D4 branes stretched between them, as summarised in Table 6 [134–137]. There

is a U(k)N gauge theory associated with open strings that end on the D4 segment

between two adjacent NS5s (each of which have their own coupling), massive modes

coming from open strings stretching between adjacent D4 segments (across an NS5), as

well as an overall centre of mass. At low energies the massive modes freeze out (they

become parameters) and the remaining degrees of freedom comprise an SU(k)N ×U(1)

theory. Rotations along x7,8,9 correspond to the SU(2)R of the N = 2 theory while

rotations along the x4,5 plane to the U(1)r symmetry [138,139].

The gauge theory possesses several deformations, which can be appropriately en-

coded in terms of distances in the geometric interpretation. In order to parametrise the

D4/NS5 brane setup it is useful to define the complex coordinates v and s as follows:

v = x4 + ix5 and s = x6 + ix10 . (4.9)
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 (x10)

k D4 branes − − − − · · − · · · −
N NS5 branes − − − − − − · · · · ·

Table 6: Brane configuration in type IIA string theory. The direction x6 is compact
with periodicity x6 → x6 + 2πR5. The coordinate x10 parametrises the M-theory circle
at strong coupling with periodicity x10 → x10 + 2πR6.

D41

D42

D4k−1

D4k

a′
(bN/2c)
1

a′
(bN/2c)
2

a′
(bN/2c)
k−1

a′
(bN/2c)
k

NS5(b−N/2c+1)

a′
(b−N/2c+1)
1

a′
(b−N/2c+1)
2

a′
(b−N/2c+1)
k−1

a′
(b−N/2c+1)
k

NS5(b−N/2c+2) NS5(0)

a′
(0)
1

a′
(0)
2

a′
(0)
k−1

a′
(0)
k

NS5(1) NS5(bN/2c)

a′
(bN/2c)
1

a′
(bN/2c)
2

a′
(bN/2c)
k−1

a′
(bN/2c)
k

Figure 3: The brane set up for the U(k)N circular-quiver theory. The vertical lines rep-
resent NS5 branes while the horizontal lines represent D4 branes. The cyclic identification
of the end points is indicated by the double red line on the D4 branes.

Using these variables, the separation of D4 branes can be measured along v. Distances

in this coordinate, associated with the U(1)r symmetry, translate into Coulomb pa-

rameters a
(α)
b , as well as bifundamental masses m

(α)
bif . The Coulomb-branch moduli

are straightforwardly encoded as the distances between a colour-D4-brane position and

the centre-of-mass position of the colour branes within a single gauge-group factor; see

Fig. 3:

a
(α)
b =

1

2πl2s

(
a′

(α)
b −

1

k

k∑
c=1

a′
(α)
c

)
. (4.10)

The only mass parameters are those of the bifundamental hypermultiplets that capture

the relative centre-of-mass positions of two consecutive D4 stacks.29 For bifundamen-

tal fields—fundamental under the gauge group on the left ((α − 1)-th gauge group)

and anti-fundamental under the gauge group on the right (α-th gauge group)—the

bifundamental mass is given by

m
(α)
bif =

1

2πl2s

(
1

k

k∑
b=1

a′
(α+1)
b − 1

k

k∑
b=1

a′
(α)
b

)
. (4.11)

29In U(k)N gauge-theory language this translates into the relative U(1) of the two consecutive colour
groups [138].
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These definitions were used in the identification of parameters in the calculation of the

4d partition function in Chapter 2.4.1.

In a similar manner, the coordinate s measures the distance between NS5 branes.

This encodes the couplings for the α-th D4 segment

τ (α) =
4πi

g(α)2

+
θ(α)

8π2
. (4.12)

Due to the periodic nature of the M-theory circle, x10, it is also natural to introduce

the exponentiated coordinate t = e
− s
R6 , where R6 is the radius of M-theory circle [138].

In the t coordinate the distance between two NS5 branes is given by

q(α) = e2iπτ (α)
. (4.13)

For the purposes of deconstruction we are interested in the “maximally-Higgsed” phase,

where all chiral multiplets acquire a VEV and the gauge group gets broken to U(k)N →
U(k). In the absence of bifundamental masses, the corresponding classical-brane picture

is in terms of coincident endpoints for all adjacent D4 segments. At this point of moduli

space, where the Coulomb and Higgs branches meet, the brane segments can reconnect

to form a single collection of k D4s wrapping the circle S1
R5

, with a single coupling G.

These can then be moved off the NS5s in the x7,8,9 directions. In the limit (4.7) the

resultant configuration leads once again to the (2, 0)k theory on the same T2 = S1
R5
×S1

R6

as in the previous brane engineering case. We will use this picture of deconstruction as

our starting point for the calculation of the partition functions in Sec. 4.1.2.

4.1.1 4d/6d Matching: Higgs-Branch Hilbert Series and the (2,0) In-

dex

Having established the proposal of [23], we now set out to test it using some exact

methods. We have already discussed in Sec. 4.1 how the 4dN = 2 circular-quiver theory

deconstructs the (2,0) theory on a torus of fixed (but arbitrary) size. Nevertheless, a

special limit of parameters in Eq. (4.4) can be considered, such that the radii R5, R6 →
∞ and the torus decompactifies. The deconstruction limit then relates two fixed-

point theories in the UV (4d) and the IR (6d) (at v → ∞) and hence their local

operator spectra, up to sectors of the 4d theory decoupling at low energies and large

N . A quantitative diagnostic of this claim can be performed by setting up a counting

problem for local operators on both sides. For instance, one could try and quantify

this relationship by comparing appropriate limits of superconformal indices following

the procedure of [140], but generalising that approach to the maximally-Higgsed phase

of the circular-quiver theory proves difficult.

For this reason, we will focus on very special classes of BPS operators using the
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superconformal algebra (SCA) as a guide and analysing the embedding of the N = 2

4d SCA into the 6d (2,0) SCA. This will lead in an identification between a set of

simple half-BPS primary operators parametrising the 4d mesonic Higgs branch in the

deconstruction limit, and operators in a 6d half-BPS ring. As we will explain in detail

below, we will perform the 4d counting using the Higgs-branch Hilbert Series for the

U(k)N theory, while the 6d counting via the “half-BPS” limit of the superconformal

index [141,142].

SCA Analysis

The the (2,0) 6d superconformal algebra has been discussed in great detail in Chap-

ter 3, but we will remind the reader of the salient points. The algebra is denoted by

osp(8∗|4). Primaries in the corresponding modules are in one-to-one correspondence

with highest weights in irreducible representations of the maximal compact subalge-

bra so(6) ⊕ so(2) ⊕ so(5)R ⊂ osp(8∗|4). They are thus labelled by the eigenvalues of

the respective Cartan generators: the conformal dimension ∆, so(6) Lorentz quantum

numbers in the orthogonal basis hi, and R-symmetry quantum numbers in the orthogo-

nal basis Ji. There are also fermionic generators: sixteen Poincaré and superconformal

supercharges, denoted by QAa and SAȧ, where ȧ, a = 1, . . . , 4 are (anti)fundamental

indices of su(4) and A = 1, . . . ,4 a spinor index of so(5)R; see e.g. [1, 24, 36] for con-

ventions and notation.

Similarly, the N = 2 4d superconformal algebra is denoted by su(2, 2|2). Primaries

in the corresponding modules are in one-to-one correspondence with highest weights in

irreducible representations of the maximal compact subalgebra so(4)⊕so(2)⊕su(2)R⊕
u(1)r ⊂ su(2, 2|2). They are labelled by the eigenvalues of the respective Cartans: their

conformal dimension ∆, su(2)1⊕ su(2)2 ' so(4) Lorentz quantum numbers mi, and R-

symmetry quantum numbers R, r. There are also fermionic generators: eight Poincaré

and superconformal supercharges, QIα, Q̃Iα̇ and Sα̇I , S̃Iα̇, where α̇, α = ± and I = 1, 2

are fundamental indices of su(2)⊕ su(2) and su(2)R respectively; see e.g. [37] for more

details. The 4d N = 2 SCA is a subalgebra of the (2,0) 6d SCA with the Cartans being

related to the 6d ones through

R = J1, r = J2 ,

m1 =
1

2
(h2 + h3), m2 =

1

2
(h2 − h3) . (4.14)

We choose an embedding of the 4d SCA into the 6d SCA, which relates the supercharges

as in Table 7 [24].

The (2,0) SCA contains a special class of half-BPS short multiplets, denoted by

D[0, 0, 0; J1, 0], for which ∆ = 2J1 and where the superconformal primary is annihilated

by the set of Poincaré supercharges Q1a,Q2a in addition to all the superconformal
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6d Supercharge (h1, h2, h3) (m1,m2) R r 4d Supercharge

Q11 (+,+,+) (+, 0) + + Q1
+

Q21 (+,+,+) (+, 0) + −
Q31 (+,+,+) (+, 0) − + Q2

+

Q41 (+,+,+) (+, 0) − −
Q12 (+,−,−) (−, 0) + + Q1

−
Q22 (+,−,−) (−, 0) + −
Q32 (+,−,−) (−, 0) − + Q2

−
Q42 (+,−,−) (−, 0) − −
Q13 (−,+,−) (0,+) + +

Q23 (−,+,−) (0,+) + − Q̃2+̇

Q33 (−,+,−) (0,+) − +

Q43 (−,+,−) (0,+) − − Q̃1+̇

Q14 (−,−,+) (0,−) + +

Q24 (−,−,+) (0,−) + − Q̃2−̇
Q34 (−,−,+) (0,−) − +

Q44 (−,−,+) (0,−) − − Q̃1−̇

Table 7: Summary of supercharge quantum numbers in 6d and the 4d embedding.
All orthogonal-basis quantum numbers have magnitude one half. The four-dimensional
subalgebra acts on the h2 and h3 planes.

SAȧ [1, 24, 36]. By inspecting Table 7, one sees that Q11,Q12 and Q23,Q24 can be

identified with certain supercharges Q1
α, Q̃2α̇ for a 4d N = 2 subalgebra, which can in

turn be interpreted as the SCA for the 4d quiver.

Recall now that in four dimensions, operators HI satisfying

[Q1
α,HI ] = 0 , [Q̃2α̇,HI ] = 0 (4.15)

form a (non-freely-generated) ring that parametrises the Higgs branch of the theory;

see e.g. [143]. In the notation of [37] these are in the B̂R multiplet with shortening

condition ∆ = 2R. Therefore, the 4d Higgs-branch operators HI are good candidates

for reproducing the 6d half-BPS superconformal primaries in the deconstruction limit.

It is these two classes of operators that we will be counting.

The Half-BPS Index of the 6d (2,0) Theory

Here we briefly review the half-BPS index of the (2,0) theory. For a choice of defining

supercharge, Q44,30 the 6d (2,0) superconformal index is given by the quantity [42,142]

I = Tr(−1)F e−βδx∆+J1yh1−h2
1 yh2+h3

2 qh1+h2−h3−3J2

30Note that this is a different choice than we have previously used in Chapter 3. This is in order to
faithfully review the result of [141].
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δ = {Q44,S14̇} = ∆− h1 − h2 + h3 + 2J1 + 2J2 , (4.16)

where the trace is taken over the Hilbert space of the theory in radial quantisation,

the x, y1, y2, q are a maximal set of fugacities taking values inside the unit circle, such

that e.g. |x| < 1, and their exponents are the already-defined Cartan generators of the

(2,0) SCA [42,142]. The superconformal index receives contributions from operators in

short representations of the superconformal algebra with δ = 0, modulo combinations

of short representations that can pair up to form long representations.

Let us first consider the abelian case. The index of the free-tensor multiplet in 6d—

denoted in [1, 24] as D[0, 0, 0; 1, 0]—can be straightforwardly calculated using letter

counting and gives31

I(2,0)1 = PE[f ], f =
x+ x2q3 − x2q2(y−1

1 + y1y
−1
2 + y2) + x3q3

(1− xqy1)(1− xqy1y
−1
2 )(1− xqy−1

2 )
. (4.17)

The index for the interacting (2,0) theory is known in closed form only in certain

limits of fugacities; see e.g. [122] and also [24] for an alternative calculation using

the associated W algebra. A particularly-simple such limit is obtained when q → 0,

whence the only operators counted are the half-BPS primaries of the D[0, 0, 0; J1−J2, 0]

multiplets. The latter admit a free-field realisation in terms of D[0, 0, 0; 1, 0] for which

limq→0 f = x. One subsequently has for the “half-BPS” index in the (2,0) theory of k

M5 branes (including the c.o.m. free-tensor multiplet) [141,142]

I(2,0)k
1
2

BPS
= PE

[
k∑

m=1

xm

]
=

k∏
m=1

1

1− xm
. (4.18)

Note that this is not the same as the Schur limit of the index, which also counts

derivatives acting on the primaries. This can also be obtained from the MacDonald

index defined in Chapter 3

IMac
Ak−1

(q, t) = P.E.

[
qt+ (qt)2 + . . .+ (qt)k

1− q

]
, (4.19)

by taking x = qt = fixed and sending q → 0.

Alternatively, the answer can be rephrased as the coefficient of νk in the expansion of

the generating function PE[νx], where ν an arbitrary parameter. A simple manipulation

31Recall that the plethystic exponential is defined as PE[f(x)] = exp
[∑∞

n=1
f(xn)
n

]
, where x corre-

sponds to a certain list of fugacities. The inverse operation is called the plethystic logarithm and given
by PL[f(x)] =

∑∞
n=1

µ(n)
n

log [f(xn)], where µ(n) is the Möbius function.
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shows that

PE[I(2,0)1
1
2

BPS
ν] =

∞∏
n=0

1

1− xnν
=

1

(ν, x)
=

∞∑
k=0

νk

(x, x)k
(4.20)

and the coefficient of νk is

1

(x, x)k
=

k∏
n=1

1

1− xn
= I(2,0)k

1
2

BPS
. (4.21)

This method reproduces the k-fold-symmetrised product of the quantity multiplying

ν on the left-hand-side of (4.20). We have thus recovered the half-BPS index of the

interacting theory from the symmetrised product of the half-BPS index for the free-

tensor theory.

Higgs-Branch Hilbert Series for Circular Quivers

We next proceed to the counting of the primary operators HI on the Higgs branch of

the 4d circular quiver. These operators can be thought of as holomorphic functions

on the Higgs-branch moduli space, and their counting is naturally accomplished by

the Higgs-branch Hilbert Series (HS), which we next briefly review [144, 145]. To our

knowledge, there is no limit of the 4d index for circular quivers that only receives

contributions from such operators, although the Higgs-branch HS is closely related

to the Hall-Littlewood limit of the 4d index. The Hall-Littlewood index counts the

B̂R, DR(m1,0) (or DR(0,m2))-type multiplets, while the Higgs-branch HS only counts

B̂R [48, 146].

Typically, the classical moduli space of a (Lagrangian) N = 2 Quantum Field

Theory contains a Coulomb branch (where vector multiplet scalars acquire VEVs), a

Higgs branch (where hypermultiplet scalars acquire VEVs) and, possibly, a number of

mixed Coulomb–Higgs branches. While on the Coulomb branch there is some residual

gauge symmetry, on the Higgs branch the gauge group is usually completely broken.

The Higgs branch H does not receive quantum corrections [147] and can be described

as a hyper-Kähler quotient by D and F terms.

We proceed to evaluate the Higgs-branch HS for the circular quiver theory with

U(k) gauge symmetry at each of the N nodes; c.f. Fig. 4. In 4d N = 1 notation,

each node α = b−N/2c + 1, . . . , bN/2c is associated with an adjoint scalar Xα,α. The

hypermultiplets linking the αth and (α + 1)th nodes contain bifundamental scalars

Xα,α+1, Xα+1,α. The superpotential for this theory is given by

W =

bN
2
c∑

α=b−N
2
c+1

tr
(

Xα+1,αXα,αXα,α+1 −Xα,α−1Xα,αXα−1,α

)
, (4.22)
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U(k)(b−N2 c+1)

U(k)(b−N2 c+2)
U(k)(−1) U(k)(0)

U(k)(1)

U(k)(bN2 c)

Figure 4: The quiver diagram corresponding to the system of D4 and NS5 branes.

where tr denotes the trace over the gauge group. Note that each chiral multiplet scalar

is charged under a baryonic U(1)B symmetry, such that Xα,α+1 has charge +1 and

Xα+1,α charge -1.

When the gauge group is completely broken, the Higgs-branch HS is typically com-

puted through “letter counting” [145]: On the Higgs branch all vector-multiplet scalars

are set to zero and one is left with F terms arising from the derivative of the super-

potential W with respect to Coulomb-branch scalars. The HI operators consist of

all symmetrised, gauge-invariant combinations (words) made out of the hypermulti-

plet fields (letters) modulo these F terms. To count them it is sufficient to consider

a partition function over the plethystic exponential of the “single-letter” contribution.

The F terms are also taken into account but since they act as constraints they appear

with opposite-sign coefficients. Taking the result, g, and projecting to gauge singlets

through integration over the appropriate Haar measure dµ for a gauge group G leads

to the HS:

HS =

∫
G
dµ g . (4.23)

Let us now illustrate this procedure with the simple example of the abelian k = 1 U(1)N

theory. Generically, the k = 1 HS will depend on the following complex parameters: a

fugacity t keeping track of operator scaling dimensions, fugacities for global symmetries

(which we will set to one since the index (4.18) only keeps track of scaling dimensions)

and k gauge fugacities ui. The t fugacities are complex parameters that take values

inside the unit circle, that is |t| < 1, while the gauge and possible flavour fugacities lie

on the unit circle.

Let us take e.g. N = 2 where the superpotential is explicitly given by

W = Xj
2,1X1,1X

i
1,2εij +Xj

1,2X2,2X
i
2,1εij . (4.24)
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The relevant F terms are Xi
1,2X

j
2,1εij = 0 and Xi

2,1X
j
1,2εij = 0, explicitly

X1
1,2X

2
2,1 = X2

1,2X
1
2,1 , X1

2,1X
2
1,2 = X2

2,1X
2
1,2 , (4.25)

and are obviously identical. This argument generalises to the N -noded case, where

instead of N F terms, one only has N − 1 conditions due to the circular nature of the

quiver. Since the adjoint character for k = 1 is equal to one, the F -term constraints

can easily be accounted for. Thus, in this case, we have that the letter counting of

(4.23) should be modified into

HSNk=1 = PE
[
−(N − 1)t2

] ∫ bN
2
c∏

α=b−N
2
c+1

duα
uα

PE

[
t
( uα
uα+1

+
uα+1

uα

)]
, (4.26)

where ubN/2c+1 ≡ ub−N/2c+1 from the cyclic identification, the factor outside the inte-

gral captures the F -term contributions, while the one under the integral the scalar-field

contributions. After performing the gauge integrations one has

HSNk=1 = PE[t2 + 2tN − t2N ] . (4.27)

The above is just the HS of the space C2/ZN defined as the surface XY = WN embedded

in C3. This is consistent with the fact that the Higgs branch of these quiver theories

engineers the moduli space of instantons on ALE space [148]. In order to show this

explicitly, note that the generators X, Y and W have respective weights N , N and 2,

such that the defining equation is homogeneous of degree 2N . From this it can also

be deduced that the HS is PE[t2 + 2tN − t2N ] [145]. In terms of operators, the t2

term corresponds to the meson W = Xα,α+1Xα+1,α—they are all equal due to the F

terms—while the 2tN correspond to the two long mesons X = X1,2X2,3 . . . XN,1 and

Y = X1,NXN,N−1 . . . X2,1.32 These clearly satisfy XY = WN .

This result is also to be expected on physical grounds. Upon considering adding Nα

flavours to the α-th node, the Higgs branch of the circular quiver with generic ranks

kα engineers the moduli space of U(
∑
Nα) instantons on C2/ZN (see e.g. [149] for

the details of this identification). For Nα = 0, kα = k = 1, the so-called “rank-zero”

instanton only has position moduli and we thus recover the HS of the target-space

algebraic variety C2/ZN .

Since |t| < 1, it is now straightforward to take the large-N limit of (4.27). By

32The operators that parametrise the Higgs branch can be constructed out of these generators, such
as a meson that “connects” the nodes 1 and 3, H13 = X1,2X2,3X3,2X2,1 within contribution t4, a meson
that “connects” the nodes 1 and 4, H14 = X1,2X2,3X3,4X4,3X3,2X2,1 with contribution t6, and so on.
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relating t2 = x we obtain

HS∞k=1 =
1

1− x
= PE

[
lim
q→0

f

]
= I(2,0)1

1
2

BPS
, (4.28)

which is the half-BPS index for the 6d free-tensor theory. Note that a 6d scalar has

scaling dimension two, while a 4d scalar has dimension one; this accounts for the

redefinition t2 = x.

Coming back to the general non-abelian case, it is clear that an obstruction to the

direct use of letter counting will arise because of F terms. However, extracting mod-

ifications to the single-letter evaluation of higher-rank theories becomes increasingly

complicated. Nevertheless, regarding the U(k)N quiver as describing k rank-zero in-

stantons on C2/ZN strongly suggests that one can obtain the general formula for all k

andN by simply considering the k-fold-symmetrised product of the k = 1 case [144,149].

This is because rank-zero instantons do not have internal degrees of freedom and thus

are akin to a gas of k non-interacting particles on C2/ZN .33 This can be implemented

by considering the coefficient of νk in the expansion of

PE
[
HSNk=1(t)ν

]
= PE

[
(1− t2N )

(1− t2)(1− tN )2
ν

]
. (4.29)

Taking the large-N limit gives back the coefficient of νk in the expansion of

PE

[
ν

(1− t2)

]
. (4.30)

By setting t2 = x, this expression is precisely (4.20) and one reproduces the superconformal-

index result

lim
N→∞

HSNk =
k∏

m=1

1

1− xm
. (4.31)

We have thus confirmed the expectation that, through the deconstruction procedure,

the mesonic part of the 4d BPS-operator spectrum properly accounts for the appropri-

ate piece of the 6d (2,0) spectrum.

4.1.2 4d/6d Matching: Partition Functions

While the matching that we have just performed is satisfying, it provides but a very

simple test of the deconstruction proposal for a collection of protected states. Moreover,

since it only involves 6d BPS local operators it is not sensitive to selfdual strings, which

33This expectation can be checked explicitly by brute-force calculation for the first few values of
k, N , as shown in Appendix 1 of [2].
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should be part of the spectrum and can e.g. wrap a torus of finite size. We will next

rectify both of these drawbacks by performing a more sophisticated counting on both

sides.

We thus switch gears and turn our attention to the deconstruction of the full par-

tition function for the (2, 0)k theory on S4 × T2. Putting the superconformal circular

quiver on S4 initially lifts the moduli space through the conformal coupling of the

scalars to the curvature, thus naively posing a problem for deconstruction. However,

this can be easily rectified by appropriately mass-deforming the theory [150]. With this

in mind, our starting point will be the BPS partition function in the Coulomb-branch

of the mass-deformed 4d N = 2 circular-quiver theory on R4
ε1,ε2 . The latter can be used

as a building block for the full 4d partition function on the ellipsoid S4
ε1,ε2 , upon taking

two copies and integrating over the Coulomb-branch parameters with the appropriate

Haar measure.34 Such a construction is typical of (Coulomb-branch) supersymmetric

localisation [53,56]; see also [17,84].35

We propose that the deconstruction limit of [23] be taken directly on these building

blocks. Appropriate implementation of this procedure leads to an analogous BPS build-

ing block for the 6d partition function on R4
ε1,ε2×T2

R5,R6
[71]. Taking two copies of this

result and integrating them over the Coulomb-branch parameters with the appropriate

Haar measure leads to the desired answer.

The 4d Coulomb-Branch Partition Function

We denote the IR partition function of the mass-deformed 4d N = 2 theory on Rε1,ε2
by Z4d(τ, a,mbif ; ε1, ε2). We use the symbol a = {a(α)

b } for the set of Coulomb-

branch parameters associated with the brane separations of Fig. 3, with the index

α = b−N/2c + 1, . . . , bN/2c counting the number of colour groups and b = 1, . . . , k

the Coulomb-branch parameters within a given colour group. Moreover, we denote the

set of N bifundamental-hypermultiplet masses as mbif = {m(α)
bif }; we will keep these

generic for the moment. The partition function Z4d(τ, a,mbif ; ε1, ε2) is the holomorphic

half of the integrand of the partition function on the ellipsoid S4
ε1,ε2 :

ZS4
ε1,ε2

(τ, τ̄ ,mbif ; ε1, ε2) =

∫
[da] |Z4d(τ, a,mbif ; ε1, ε2)|2 , (4.32)

34This IR building block counts BPS particles (monopoles, dyons, etc.) at low energies on the
Coulomb branch and is the well-known 4d limit of the “Nekrasov partition function”, in the definition
of which we include the classical, one-loop and instanton contributions [52,69].

35It is straightforward to convince oneself that the IR partition functions for the mass-deformed
SU(k)N ×U(1) circular quiver and the undeformed U(k)N circular quiver on R4

ε1,ε2 are identical up to
U(1) vector-multiplet factors.
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where complex conjugation is implemented by:

Z4d(τ, a,mbif ; ε1, ε2) = Z4d(−τ̄ ,−a,−mbif ;−ε1,−ε2) . (4.33)

The Coulomb-branch partition function Z4d(a,mbif ; ε1, ε2) comprises of a classical,

a one-loop and a non-perturbative piece, all of which can be constructed using existing

results from the localisation literature. However, they are also known to arise from

the circle reduction of the 5d Nekrasov partition function. In turn, the 5d one-loop

and instanton pieces can be calculated using the refined topological vertex formalism

[68, 132, 151, 152], the technology of which we employ in the independent rederivation

of our expressions in Sec. 2.4.1.36 Our conventions are given in Sec. 2.4.

Following [17,84], the classical piece of the Coulomb-branch partition function com-

prises of the factor

Z4d,cl(τ, a; ε1, ε2) = exp

− 2πi

ε1ε2

bN
2
c∑

α=−bN
2
c+1

τ (α)
k∑
b=1

(
a

(α)
b

)2

 . (4.34)

The one-loop part is obtained by appropriately assigning vector and hypermultiplet

contributions for the quiver of Fig. 4,

Z4d,1-loop(a,mbif ; ε1, ε2) =

bN
2
c∏

α=b−N
2
c+1

Zvec
1-loop(a; ε1, ε2)Zbif

1-loop(a,mbif ; ε1, ε2) , (4.35)

with the vector and hypermultiplet one-loop determinant contributions given by37

Zbif
1-loop(a,mbif ; ε1, ε2) =

k∏
b,c=1

Γ2

(
a(α+1)
c − a(α)

b +m
(α)
bif + ε+

∣∣ε1, ε2) ,

Zvec
1-loop(a; ε1, ε2) =

k∏
b,c=1

Γ2

(
a(α)
c − a

(α)
b

∣∣ε1, ε2)−1
, (4.36)

where ε+ = ε1+ε2
2 and Γ2(x|ε1, ε2) is the Barnes double-Gamma function, defined in

detail in Appendix A.

36The classical contribution in the calculation of the IR partition function cannot be recovered
by dimensionally reducing the R4

ε1,ε2 × S1 result obtained through the topological vertex formalism
[74, 80, 153]. However, it is explicitly known from the localisation calculation of [53]. In 5d it can be
restored using symmetries, e.g. by imposing fibre-base duality [74].

37Note that, compared to [17,84], the vector multiplet piece includes additional factors arising from
the Cartan contributions which we explicitly keep. Furthermore, by virtue of making contact with the
topological vertex formalism we have shifted the one-loop contributions by various factors of ε1,2. See
Appendix B.2 of [17] for details.
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Similarly, the instanton part is given by [17]

Z4d,inst(a,mbif ; ε1, ε2) =
∑
ν

bN
2
c∏

α=b−N
2
c+1

q
∑k
b=1 |ν

(α)
b |

(α) Zvec
inst(a; ν)Zbif

inst(a; ν) (4.37)

where q(α) is the fugacity keeping track of the instanton number, associated with the

complexified coupling τ (α) for the αth colour group as in (4.13). A Young diagram

ν
(α)
b appears for each of the Coulomb moduli a

(α)
b , collectively denoted by ν = {ν(α)

b },
while the instanton number is given in terms of the total number of boxes of the Young

diagram |ν(α)
b |. The vector and hypermultiplet instanton contributions respectively

read

Zbif
inst(τ, a,mbif ; ν) =

k∏
b,c=1

N
ν

(α+1)
c ν

(α)
b

(
a(α+1)
c − a(α+1)

c +m
(α)
bif −

ε+
2

)
,

Zvec
inst(a,mbif ; ν) =

k∏
b,c=1

N
ν

(α)
c ν

(α)
b

(
a(α)
c − a

(α)
b

)−1
, (4.38)

where the functions Nλµ(x) involved above are defined as38

Nλν(x; ε1, ε2) =
∏

(i,j)∈λ

(
x+ ε1(λi − j + 1) + ε1(i− νtj)

)
×
∏

(i,j)∈ν

(
x+ ε1(j − νi) + ε2(λtj − i+ 1)

)
, (4.39)

The full Coulomb-branch partition function can be rewritten as

Z4d = Z4d,clZ4d,1-loopZ4d,inst . (4.40)

The 6d Tensor-Branch Partition Function

The IR partition function for the (2, 0)k theory on R4
ε1,ε2 ×T2 was given in [71,80,122].

The key point for our purposes is that the BPS sector of the (2, 0)k theory on the

(twisted) torus T2
R5,R6

= S1
R5
×S1

R6
, can be captured by the (mass-deformed) 5d MSYM

theory on R4
ε1,ε2×S1

R5
[19,20,70,126,127]. The partition function associated with these

BPS states is precisely given by the original calculation of [52, 69] and, as already

mentioned, can be straightforwardly reproduced by the refined topological vertex for-

malism.39 As in 4d, taking two copies of this building block and integrating over the

38See Sec. 2.4 for our conventions on labelling partitions.
39The 6d (2,0) theory has no Coulomb branch, since the role of the vector multiplet is played by

a tensor multiplet. However, since the 6d result is recovered by a purely 5d calculation, both the
Coulomb- and tensor-branch nomenclatures are appropriate.
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Coulomb/tensor-branch parameters ã = {ãb} leads to the full partition function of the

6d theory on S4
ε1,ε2 × T2

R5,R6
, that is

ZS4
ε1,ε2

×T2
R5,R6

(τ̃ , ¯̃τ, t̃m; ε1, ε2) =

∫
[dã]

∣∣∣Z6d(Q̃τ , Q̃bc, Q̃m; q, t)
∣∣∣2 , (4.41)

where

Z6d(Q̃τ , Q̃bc, Q̃m; q, t) = Z6d

(
Q̃−1
τ , Q̃−1

bc , Q̃
−1
m ; q−1, t−1

)
, (4.42)

where we have put a tilde over parameters that are only associated with the 6d partition

function. The fugacities appearing in the above expressions are related to chemical

potentials through

q = e−R5ε1 , t = eR5ε2 , Q̃bc = e−R5 t̃bc , Q̃m = e−R5 t̃m , Q̃τ = e2πiτ̃ , (4.43)

which can in turn be readily identified with 6d geometric parameters as follows [71]:

t̃m =
τ̃ m̃

R5
, t̃bc = ãc − ãb =

1

2πl3p
iR6δbc . (4.44)

Here R5, R6 are the radii of the circles, τ̃ the modulus of T2, the δbc denote the distance

between the bth and cth separated M5 branes in the broken phase (b, c = 1, ..., k), m̃

and ε1, ε2 are twists of the torus along R5 and R6 respectively, and lp is the 11d Planck

length.

The 6d holomorphic block comprises of a classical, a one-loop and a non-perturbative

piece

Z6d = Z6d,clZ6d, 1-loopZ6d,inst , (4.45)

with [71,127]

Z6d,cl = exp

[
−2πiτ̃

ε1ε2

(
k∑
b=1

ã2
b

)]
,

Z6d,inst =
∑
ν

Q
∑k
b=1 |νb|

τ

k∏
b,c=1

NR5
νcνb

(
ãc − ãb + t̃m − ε+

)
NR5
νcνb (ac − ab)

,

Z6d,1-loop =

(
Q̃m

√
t

q

) 1
24
k(k−1) k∏

b,c=1

M
(
e−R5(ac−ab)

)
M
(
e−R5(ac−ab)Q̃m

√
t
q

) , (4.46)

136



CHAPTER 4. DECONSTRUCTING SIX DIMENSIONAL THEORIES

where

M(Q; t, q) =

∞∏
i,j=1

(1−Qti−1qj)−1 ,

Nβ
λµ(x; ε1, ε2) =

∏
(i,j)∈λ

2 sinh
β

2

[
x+ ε1(λi − j + 1) + ε1(i− µtj)

]
×
∏

(i,j)∈µ

2 sinh
β

2

[
x+ ε1(j − µi) + ε2(λtj − i+ 1)

]
. (4.47)

We provide a complete derivation of the one-loop and instanton contributions in

Eq. (4.45) using the refined topological vertex formalism in Section 2.4.1 in a more

general case from which we recover this as the N = 1 version of the 5d result.

Deconstructing the 6d Partition Function

Equipped with both the 4d and 6d expressions, we can finally proceed with our prescrip-

tion for implementing the dimensional-deconstruction limit at the level of IR partition

functions. This was first done in [2] but the prescription was made more precise in [4].

We summarise it here.

The principle of dimensional deconstruction can be extended to exact partition

functions with no specific reference to the number of spacetime dimensions. Assuming

Lagrangian circular-quiver theories with the appropriate amount of supersymmetry,40

The Sd partition functions can be put together in a modular fashion by accounting

for the individual contributions coming from the various supersymmetric multiplets

appearing in the quiver diagram. Each node will be labelled by an index α and the (in-

tegrand of the) corresponding partition function can generically depend on a coupling,

Coulomb-branch parameter, mass-deformation parameter etc. Then, exact deconstruc-

tion can be implemented directly at the level of partition functions by:

(1) Identifying all parameters between the nodes (couplings, Coulomb-branch param-

eters, mass deformations etc.)—this reflects the breaking of the gauge symmetry,

e.g. U(k)N → U(k).

(2) Including a mass parameter mα = i2πα
R for the α-th node contribution—this

captures the reorganisation of the quiver degrees of freedom into the KK modes

of the deconstructed theory—and taking N →∞.

Deconstruction can be performed separately on the classical, instanton and perturbative

piece.

40A certain amount of supersymmetry is required to be able to use the localisation method on certain
backgrounds such as Sd. This will be discussed in the next section.
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Let us begin with the one-loop piece of the 4d partition function

Z
U(k)N

4d,1-loop =
∏
α

k∏
b,c=1

Γ2

(
a

(α+1)
c − a(α)

b +m
(α)
bif + ε+

∣∣ε1, ε2)
Γ2

(
a

(α)
c − a(α)

b

∣∣ε1, ε2) . (4.48)

Applying the prescription we identify all a
(α)
b = ab for all b and α. The masses are also

identified m
(α)
bif = m for all α. The arguments of the special functions are shifted by

the KK mass and we get

ZHiggs
4d,1-loop =

∏
α

k∏
b,c=1

Γ2

(
ac − ab +m+ i2πα

R5
+ ε+

∣∣∣ε1, ε2)
Γ2

(
ac − ab + i2πα

R5

∣∣∣ε1, ε2) . (4.49)

Using Appendix A, we know that Γ2 with ε1 > 0 and ε2 < 0 has the product represen-

tation

Γ2(x|ε1, ε2) ∝
∞∏

i,j=0

(x+ iε1 − ε2(j + 1)) , (4.50)

from which we can write

∞∏
α=−∞

Γ2

(
x+ i

2πα

R5

∣∣∣ε1, ε2) =

 ∞∏
i,j=0

e
R5
2
xq−

i
2 t−

j+1
2

M(
e−R5x t

q

)−1

, (4.51)

where the prefactor will need to be regularised. Putting everything together we get

lim
N→∞

ZHiggs
4d,1-loop =

k∏
b,c=1

 ∞∏
i,j=0

e
R5
2

(m+ε+)

 M
(
e−R5(ac−ab) t

q

)
M
(
e−R5(ac−ab+m+ε+) t

q

) . (4.52)

After regularising the prefactor we get

lim
N→∞

ZHiggs
4d,1-loop =

k∏
b,c=1

(
Qm

√
q

t

) 1
24 M

(
e−R5(ac−ab) t

q

)
M
(
e−R5(ac−ab)Qm

√
t
q

) , (4.53)

where we defined Qm = e−R5m alongside the normal definitions for q and t. This almost

matches the 6d result. We need to use the reflection formula (2.124)

M(Q−1) =

(
−Q−1

√
q

t

) 1
12

M
(
Q
t

q

)
, (4.54)
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to write

lim
N→∞

ZHiggs
4d,1-loop =

(
Qm

√
t

q

) 1
24
k2 k∏

b,c=1

M
(
e−R5(ac−ab)

)
M
(
e−R5(ac−ab)Qm

√
t
q

) , (4.55)

We now see that, upon identifying ãb = ab, which from the brane point of view makes

sense, and t̃m = m, we have

lim
N→∞

ZHiggs
4d,1-loop = Z6d,1-loop ×

(
Qm

√
t

q

) 1
24
k

. (4.56)

Note that this prefactor is the regularised version of
∏∞
i,j=0

(
Q−2
m

q
t

) k
4 which is added

by hand in [71]. It is interpreted as the gravitational contribution to the topological

string partition function. It is explicitly present in the localisation calculation of [122].

The calculation for the non-perturbative piece proceeds in a similar manner. Once

again, we begin with the instanton part of the 4d Coulomb-branch partition function

from Eq. (4.37)

Z
U(k)N

4d,inst =
∑
ν

∏
α

q
∑k
b=1 |ν

(α)
b |

(α)

k∏
b,c=1

N
ν

(α+1)
c ν

(α)
b

(
a

(α+1)
c − a(α)

b +m
(α)
bif − ε+

)
N
ν

(α)
c ν

(α)
b

(
a

(α)
c − a(α)

b

) , (4.57)

and impose the “deconstruction” identifications that we did for the perturbative part,

the shifts of the special functions and

g(α) → G , θ(α) → Θ , ν
(α)
b → νb . (4.58)

This implies that

∞∏
α=−∞

q(α) = lim
N→∞

exp

(
−8π2N

G2
+ i

NΘ

4π

)
= Qτ . (4.59)

Recall that the combination N/G2 is precisely R5/R6, so it makes sense for this to be

the imaginary part of a complex structure for the emerging torus. This ensures that

Iτ > 0 as required. Furthermore, the theta angles provide a real part for the complex

structure, which facilitates a twist along the torus. We have anticipated setting all the

couplings to be equal in (4.13) using the brane picture, from which the identification

of theta angles and partitions follows naturally. The latter can be see as the D4 branes

reconnecting over the NS5 brane.
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We then have

lim
N→∞

ZHiggs
4d,inst =

∑
ν

Q
∑k
b=1 |νb|

τ

k∏
b,c=1

∏
α

Nνcνb

(
ac − ab +m− ε+ + i2πα

R5

)
Nνcνb

(
ac − ab + i2πα

R5

) . (4.60)

Perhaps somewhat unsurprising given the definition, the product over α is computed

as

∞∏
α=−∞

Nλµ

(
x+ i

2πα

R5
; ε1, ε2

)
= NR5

λµ (x; ε1, ε2) , (4.61)

and is even simpler than the perturbative case. This is mostly due to the fact that no

regularisation needs to be taken place, since we are dealing with finite products over

partitions. We therefore end up with

lim
N→∞

ZHiggs
4d,inst = Z6d,inst , (4.62)

upon identifying Qτ = Q̃τ .

Lastly, we have the classical piece. Recall it is given by

Z4d,cl = exp

[
− 2πi

ε1ε2

∑
α

τ (α)
k∑
b=1

(
a

(α)
b

)2
]
. (4.63)

Note that a shift in the classical piece by the KK mass will simply result in a factor

which is zero due to it being expressible as ζ(−2), which is itself zero, where ζ is the

Riemann zeta function. Thus upon the deconstruction identifications we obtain

lim
N→∞

ZHiggs
4d,cl = exp

[
− 2πi

ε1ε2
Nτ

(
k∑
b=1

a2
b

)]
= Z6d,cl , (4.64)

after imposing the deconstruction identifications.

To summarise, using the map

a
(α)
b = ãb , m

(α)
bif = t̃m , τ (α) = τ , Nτ = τ̃ , ν

(α)
b = νb , (4.65)

along with the prescription of converting the product over α indices to a product over

KK masses M
(α)
KK = 2πiα

R5
to indicate a reorganisation of the 4d spectrum, we showed

that

lim
N→∞

ZHiggs
4d =

(
Qm

√
t

q

) k
24

Z6d . (4.66)
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N6

N5

Figure 5: The quiver diagram for the ZN5 × ZN6 orbifold theory. Opposite edges are
identified. Each directional arrow is a 4d N = 1 bifundamental chiral multiplet and each
node is a 4d N = 1 vector multiplet.

This multiplicative piece encodes the genus-one contribution to the topological string

partition function [71]. This factor is absent when one uses the glueing prescription to

move to the S4 × T2 partition function.

Upon integrating over the Coulomb/tensor-branch parameters one immediately gets

the full partition function for the (2, 0)k theory on S4
ε1,ε2 × T2

R5,R6
as per Eq. (4.41)

∫
[da]

∣∣∣∣ lim
N→∞

ZHiggs
4d

∣∣∣∣2 =

∫
[da] |Z6d|2 = ZS4

ε1,ε2
×T2

R5,R6
. (4.67)

The quantitative agreement found here provides strong motivation for using the circular

quiver—combined with deconstruction—as a tool towards computing observables for

the (2,0) theory on T2. In particular, by reproducing the full 6d partition function from

4d we establish a precise dictionary that could be extended to a number of closely-

related exact calculations, including e.g. chiral correlators [58–62, 143], Wilson loop

expectation values [53, 154, 155], the radiation emitted by a heavy quark [156, 157], or

other protected subsectors of operators [158]. It would be very interesting to import

these results to 6d, and compare where possible with other approaches to the (2,0)

theory. Ultimately, one would hope to be able to extend this procedure to non-protected

sectors [159]. We leave these possibilities open as directions for future research.

4.2 Little String Theory

To deconstruct Little String Theory, we effectively need to repeat the procedure we

described above, with one additional orbifold in the brane picture described by Table 5.

As such, the starting theory that we need to consider is a double ZN5 × ZN6 orbifold

of 4d N = 4 sYM. The result is a 4d N = 1 “toroidal-quiver” theory, as depicted in

Fig. 5.
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Following [23], we would like to explore how the four-dimensional N = 1 toroidal-

quiver gauge theory deconstructs the six-dimensional (1,1) LST and test their proposal

by comparing the respective partition functions.41

Dimensional deconstruction dictates that the horizontal and vertical chiral multi-

plets in Fig. 5 acquire fixed vacuum expectation values v5 and v6, and all couplings are

identified as G. One then takes the limit

N5, N6 →∞ , G→∞ , (4.68)

while also fixing the ratios

2πR5 ≡
N5

Gv5
, 2πR6 ≡

N6

Gv6
. (4.69)

The latter are identified with the radii of the deconstructed compact dimensions. The

theory that emerges at low energies is six-dimensional sYM with (1,1) supersymmetry—

the amount of supersymmetry has quadrupled—and gauge coupling g2
6 = (v5v6)−1.

However, on top of the conventional spectrum of massive gauge bosons that decon-

structs the Kaluza–Klein (KK) towers associated with the square torus S1
R5
× S1

R6
, the

four-dimensional quiver contains additional towers of states. This can be seen by acting

on the KK towers with the S-duality transformation of the four-dimensional toroidal-

quiver theory— sending G→ N5N6/G. From the point of view of the six-dimensional

theory, this is a T-duality transformation and the new towers are interpreted as string

winding modes on the torus. The combined spectrum of this non-gravitational theory

matches that of (1,1) LST with string tension 1/α′ = 1/g2
6. This remarkable conclusion

can also be reached using a complementary brane-engineering argument [23]. To our

knowledge there exist no quantitative checks of this claim to date.

In this section, the proposal is tested by using exactly results along the lines of the

previous section, but with one additional obstruction.

4.2.1 4d N = 1 Ellipsoid Partition Functions

It has been surprisingly difficult to apply the approach of supersymmetric localisation

to minimally-supersymmetric theories on the four-sphere, which would be desirable if

one were to extend its utility to more realistic settings; see e.g. [162–164] for a discussion

of associated issues.42 Note that although N = 1 partition functions on S4 are known

to be scheme dependent and therefore a priori ambiguous [54], one can still use them

to extract meaningful physical information, cf. [162,166].

41For an alternative approach to (1,1) LST using spherical deconstruction see [160,161].
42It should be mentioned that such localisation calculations have been performed for four-dimensional

theories with N = 1 supersymmetry on other manifolds [45,165].
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Given this impasse, it is then intriguing that the issues with the direct computation

of the N = 1 partition function on S4 using localisation were recently sidestepped.

In [25] known results for the exact, round-sphere partition functions of two- and three-

dimensional theories with four supercharges were analytically continued to four dimen-

sions. This culminated into specific expressions for the perturbative contribution of

vector and chiral multiplets to the exact S4-partition function for a particular class

of N = 1 theories. The proposal passes several checks, including a comparison with

the holographic-dual results of [166] for the free energy of N = 1∗ super Yang–Mills

(sYM), reproducing the generic NSVZ β function, and matching a free field calculation

of the same result. Overall, this is an important first step in obtaining the full partition

function of N = 1 theories on S4.

The approach of [25] closely follows [53]. Starting with N = 1 sYM in ten-

dimensional Minkowski space, one performs a dimensional reduction to Euclidean

2d/3d and reduces supersymmetry by explicitly performing two successive projections

Γ6789ε = ε, Γ4589ε = ε, on the 32-component Killing spinors. The result is conformally

mapped to the two/three-sphere by adding appropriate curvature couplings, leading

to theories with one vector and three adjoint chiral multiplets; one can also turn on

mass deformations in the latter.43 Supersymmetric localisation yields the vector- and

chiral-multiplet contributions on S2/S3; these can be combined to give the full partition

function. The final two- and three-dimensional answer can be elegantly written in a

d-dependent form, which can then be continued to d = 4. Through this operation one

arrives at the proposed perturbative partition functions for four-dimensional theories

with four supercharges [25].

As appearing in [25] we have

Zvec
pert

∏
β

i〈β, λ〉 =
∏
β

∞∏
`=0

[
`+ i〈β, λ〉

`+ d− 1− i〈β, λ〉

]n`,d
,

Zchi
pert(m) =

∏
β

∞∏
`=0

[
`+ d

2 − im− i〈β, λ〉
`+ d−2

2 + im+ i〈β, λ〉

]n`,d
, (4.70)

where β is now a rootspace representative and 〈β, λ〉 is valued in whichever represen-

tation is required. Note that the vector multiplet piece includes the Haar measure of

the gauge group. Without it we can write

Zvec
pert =

∏
β

∏
`=0

(`+ 1 + i〈β, λ〉)n`+1,d(`+ d− 1− i〈β, λ〉)−n`,d . (4.71)

This is important, for example, in the U(1) case where there no Haar measure. The

43As viewed from ten dimensions, the directions x4, . . . , x9 are transverse to the two/three-sphere.

143



CHAPTER 4. DECONSTRUCTING SIX DIMENSIONAL THEORIES

degeneracies are

n`,d =
Γ(`+ d− 1)

Γ(`+ 1)Γ(d− 1)
. (4.72)

These expressions can be elegantly recast as

Zchi
pert =

∏
β∈R

Γ3(R−1 + iM + i〈β, λ〉|R−1, R−1, R−1)

Γ3(2R−1 − iM − i〈β, λ〉|R−1, R−1, R−1)
,

Zvec
pert =

∏
β∈Adj

Γ3(3R−1 − i〈β, λ〉|R−1, R−1, R−1)

Γ̂3(i〈β, λ〉|R−1, R−1, R−1)
, (4.73)

where Γ̂N is a modification of ΓN that only involves a product over ` ∈ NN \ {0} as

discussed in Appendix A. In the above, R denotes the radius of the S4, M is a mass

parameter, while λ a variable with mass-dimension one that is an element of the Lie

algebra to be integrated over in the final expression for the full partition function.44

Finally, β takes values in the weights of the representation R for the chiral multiplets,

or the adjoint for the vector multiplet, and 〈β, λ〉 denotes an inner product in weight

space.

When phrased in terms of gamma functions, we can compare these expressions to

the existing ellipsoid partition functions for 4d N = 2 in [84] or 3d N = 2 in [57, 67].

These provide a hint as to how to refine the partition functions. We have two conditions

that we immediately need to fulfil for the 4d N = 1 story. Namely we should reproduce

the refined partition functions of [84] when fused together with the appropriate field

content and also reduce to those in [25] upon unrefining. Moreover, we know that it

should be an unrefinement of a Γ3 function. However a squashed four-sphere only has

two parameters, ε1 and ε2, hence the third parameter in Γ3 cannot be independent.

That is, ω3 = ω3(ε1, ε2).

Another fact that we need to bear in mind is that, when Rεi > 0, squashed spheres

are symmetric under the exchanges of ε1 ↔ ε2 and therefore the partition function

should reflect this. Indeed this is an observed property of squashed-sphere partition

functions across dimensions.

With all this in mind, we propose that the refinements of the functions in Eq. (4.73)

to the case of the ellipsoid, S4
ε1,ε2 are given by

Zchi
pert =

∏
β∈R

Γ3 (ε+ + iM + i〈β, λ〉| ε1, ε2, ε+)

Γ3 (2ε+ − iM − i〈β, λ〉| ε1, ε2, ε+)
,

Zvec
pert =

∏
β∈Adj

Γ3(3ε+ − i〈β, λ〉|ε1, ε2, ε+)

Γ̂3(i〈β, λ〉|ε1, ε2, ε+)
, (4.74)

44Our definition for the vector-multiplet partition function does not include the Haar measure.
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where ε± = 1
2(ε1 ± ε2) and the ellipsoid S4

ε1,ε2 is defined by

x2
1

R2
+
x2

2 + x2
3

ε−2
1

+
x2

4 + x2
5

ε−2
2

= 1 (4.75)

for ε1, ε2 ∈ R>0. Eqs. (4.74) readily reduce to the results for the round S4, when

ε1 = R−1 = ε2.

Moreover, these refined expressions lead to the expected supersymmetry enhance-

ment upon choosing a theory with a vector and a single massless adjoint chiral multiplet.

Making use of the identity

Γ2(x|ε1, ε2) =
Γ3(x|ε1, ε2, ε+)

Γ3(x+ ε+|ε1, ε2, ε+)
, (4.76)

one finds that

Zchi
pert|M=0Zvec

pert =
∏
β∈Adj

Γ2(2ε+ − i〈β, λ〉|ε1, ε2)−1 Γ̂2(i〈β, λ〉|ε1, ε2)−1 . (4.77)

Once the Haar measure is also included this matches the answer for the N = 2 vector-

multiplet partition function on the ellipsoid, as calculated in [84].

Likewise, pairing up two chiral multiplets with the same mass in conjugate repre-

sentations R results in

Zchi
pert|M,λ Zchi

pert|−M,−λ =
∏
β∈R

Γ2(ε+ − iM − i〈β, λ〉|ε1, ε2)

× Γ2(ε+ + iM + i〈β, λ〉|ε1, ε2) , (4.78)

which matches the N = 2 hypermultiplet result in [84].

Eqs. (4.74) form the seed for the perturbative partition function needed in dimen-

sional deconstruction. The gauge theory of interest is obtained by twice-orbifolding

the four-dimensional N = 4 sYM with U(KN5N6) gauge group by ZN5 × ZN6 . The

result is a toroidal quiver-gauge theory with N5 ×N6 U(K) nodes and interconnecting

bifundamental chiral multiplets as depicted in Fig. 5.

It is at the “orbifold point”, that is the coupling at each node takes the same value,

which we will denote by G. It enjoys superconformal symmetry and is a Lagrangian

example of the theories of class Sk [16, 167].

The dimensional-continuation argument can be directly applied to the N = 1

toroidal-quiver theory: the two orbifold actions lead to the same Killing-spinor pro-

jections Γ4589ε = ε, Γ6789ε = ε,45 and although they also break the gauge group to

U(K)N5×N6 with bifundamental chirals, these can be individually coupled to the cur-

45See [23] for the detailed action of the ZN5 × ZN6 orbifold.
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vature of S2/S3.

In accordance with the above, the perturbative part of the integrand of the full

partition function for the toroidal-quiver theory on S4
ε1,ε2 takes the form

Zquiv
pert =

∏
b,b̂

∆(λ(b,b̂))Z(b,b̂)
vec Z

(b,b̂)
H Z(b,b̂)

D Z(b,b̂)
V , (4.79)

where

∆(λ(b,b̂)) =

K∏
m 6=n=1

i(λ(b,b̂)
m − λ(b,b̂)

n ) (4.80)

is the Haar measure for each U(K)(b,b̂) gauge node, while the product in b, b̂ runs over all

N5 ×N6 nodes. The bifundamental chiral-multiplet contributions for the vertical (V),

horizontal (H) and diagonal (D) terms can be organised according to their gauge-group

representations, summarised in Tab. 8. The explicit expressions are given by46

Z(b,b̂)
H =

K∏
m,n=1

Γ3

(
ε+ + iM

(b,b̂)
H + i

(
λ

(b,b̂)
m − λ(b+1,b̂)

n

))
Γ3

(
2ε+ − iM (b,b̂)

H − i
(
λ

(b,b̂)
m − λ(b+1,b̂)

n

)) ,
Z(b,b̂)

D =
K∏

m,n=1

Γ3

(
ε+ + iM

(b,b̂)
D − i

(
λ

(b,b̂)
m − λ(b+1,b̂+1)

n

))
Γ3

(
2ε+ − iM (b,b̂)

D + i
(
λ

(b,b̂)
m − λ(b+1,b̂+1)

n

)) ,
Z(b,b̂)

V =
K∏

m,n=1

Γ3

(
ε+ + iM

(b,b̂)
V + i

(
λ

(b,b̂)
m − λ(b,b̂+1)

n

))
Γ3

(
2ε+ − iM (b,b̂)

V − i
(
λ

(b,b̂)
m − λ(b,b̂+1)

n

)) , (4.81)

where compared to (4.74) the weight-space inner products have been evaluated on the

respective representations.47 Similarly, the vector-multiplet expressions are given by

Z(b,b̂)
vec =

K∏
m,n=1

Γ3

(
3ε+ − i

(
λ

(b,b̂)
m − λ(b,b̂)

n

))
Γ̂3

(
i
(
λ

(b,b̂)
m − λ(b,b̂)

n

)) . (4.82)

In the unrefined limit ε1 = ε2 = R−1, and for N5 = N6 = 1, Eq. (4.79) collapses

to the partition function of a single-node theory with a vector and three adjoint chiral

46From now on we will suppress the triple-gamma function parameters ε1, ε2, ε+ for brevity; the
reader should assume that all expressions are given for the ellipsoid.

47We note that the lower-dimensional origin of the perturbative partition functions implies that the
4d mass parameters have to satisfy the constraints [25]

M
(b,b̂)
H +M

(b,b̂)
D +M

(b+1,b̂)
V = 0 ,

M
(b,b̂+1)
H +M

(b,b̂)
D +M

(b,b̂)
V = 0 .

Our deconstruction prescription will respect these conditions.
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U(K)(b,b̂) U(K)(b,b̂+1) U(K)(b+1,b̂+1)

V(b,b̂) � � 1

H(b,b̂+1) 1 � �

D(b,b̂) � 1 �

Table 8: The chiral multiplets for the toroidal quiver and their gauge-group represen-
tations. Each chiral multiplet has an associated mass which is also indexed.

multiplets with distinct masses, i.e. N = 1∗ sYM as in [25]. In a different limiting case

where N5 = 1 or N6 = 1, and after appropriately tuning the masses, the theory reduces

to an N = 2 circular quiver involving the expected partition function Eqs. (4.77),

(4.78).

4.2.2 Deconstructing Little String Theory

Following the prescription that was clarified in [4] we identify the parameters under

the products along with fixing the masses to reflect the fact that we were sitting at the

orbifold point. Namely

λ(b,b̂)
m − λ(c,ĉ)

n = λm − λn , M
(b,b̂)
V = 0 , M

(b,b̂)
H = −M (b,b̂)

D = M , (4.83)

along with the following shift in the argument for each triple-gamma function

Γ3(x(b,b̂)) 7→ Γ3(x(b,b̂) + 2πibR−1
5 + 2πb̂R−1

6 ) . (4.84)

Furthermore, one needs to extend the range of the products over b, b̂ ∈ Z when taking

the limit N5, N6 →∞.

We will explicitly perform the resultant product over b, b̂ by zeta-function regulari-

sation. In particular, we will use [168]

∏
b,b̂∈Z

ΓN (x+ b+ b̂τ |ω1, . . . , ωN ) =
∏

`∈NN

1

θ(q|y)
, (4.85)

with

y = e−2πi(x+`·ω) , q = e2πiτ (4.86)

and θ(q|y) a q-theta function. Applying (A.36) to the triple-gamma functions that

appear in (4.79), and after some algebra, the result for the integrand of the perturbative
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QM

Qτ2
QMQτ1

Qf1

Qf2

QM

QfK

Figure 6: The dual toric diagram for the rank-K LST. The vertical direction has been
chosen as the preferred one. There are no non-trivial framing factors. Each internal line
is associated with a Kähler parameter and a partition. The periodic identification of both
horizontal and vertical lines is indicated by the cyclic identification of Kähler parameters
and their associated partitions.

partition function of the toroidal theory in the deconstruction limit becomes

Zdec
pert =


∏

`∈N2

θ
(
q
∣∣q`1+1t`2+1

) ∏
`∈N2\{0}

θ
(
q
∣∣q`1t`2)∏

`∈N2

θ
(
q
∣∣q`1+ 1

2 t`2+ 1
2QM

)
θ
(
q
∣∣q`1+ 1

2 t`2+ 1
2Q−1

M

)

K

×
K∏

m6=n=1

∏
`∈N2

θ
(
q
∣∣q`1+1t`2+1ξmn

)
θ
(
q
∣∣q`1t`2ξmn)∏

`∈N2

θ
(
q
∣∣q`1+ 1

2 t`2+ 1
2QMξmn

)
θ
(
q
∣∣q`1+ 1

2 t`2+ 1
2Q−1

M ξmn
) (4.87)

where τ = iR5/R6 and with the following definitions for the fugacities:

q = e−R5ε1 , t = e−R5ε2 ,

QM = eiR5M , ξmn = eiR5(λm−λn) . (4.88)

This concludes the application of the deconstruction prescription to the N = 1 quiver

partition function on S4
ε1,ε2 .

The BPS Partition function for (1,1) Little String Theory

Finally, we will show how Eq. (4.87) compares against (1,1) LST, the BPS partition

function for which can be calculated by appealing to topological string theory. Via

a chain of dualities, the topological string partition function for the toric Calabi–Yau

threefold depicted by the dual toric diagram in Fig. 6 evaluates the BPS partition

function of (1,1) LST on R4
ε1,ε2 × T2; cf. [81–83].48

48The web diagram for K NS5 branes in the Coulomb branch coincides with the dual toric diagram
of Fig. 6, where the vertical directions correspond to NS5 branes.
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A lengthy calculation using the refined topological vertex formalism [68] leads to a

result that factorises into winding sectors, accounting for little strings that wrap one

of the toroidal directions. We find

ZLST
R4
ε1,ε2

×T 2 = ẐZwind , (4.89)

where

Ẑ =

(
QM

√
t

q

)−K
24

P.E.

[
q

1− q
+ I+

(
q

1− q
+

1

2

) K∑
m,n=1

ξmn

]
, (4.90)

with

I+ =
q + t−

√
qt(QM +Q−1

M )

(1− t)(1− q)
(4.91)

and

Zwind =
∞∑
k=0

wkZ(k) , (4.92)

such that

Z(k) =
∑

Y :
∑
m |Ym|=k

K∏
m,n=1

∏
s∈Ym

θ1 (τ |Emn(s) +M − ε−)

θ1 (τ |Emn(s) + ε2)

× θ1 (τ |Emn(s)−M − ε−)

θ1 (τ |Emn(s)− ε1)
. (4.93)

In the last expression one has that Z(0) = 1 and

Emn = λm − λn − ε1hm(s) + ε2vn(s) , (4.94)

with s denoting a box in the coloured Young diagram Ym that labels a given partition,

hm(s) the horizontal distance from the box s to the right edge of Ym and vn(s) the

vertical distance to the bottom edge.

To reach this answer using the topological vertex formalism one also needs to make

the following identifications between the parameters appearing in the toric diagram and

the physical ones:

QM Qτα>1 = eiR5(λα−1−λα) ,
K∏
i=1

QτiQM = q ,

QM Qτ1 = qeiR5(λK−λ1) ,
K∏
α=1

(QfαQM )|Yα| = wk , (4.95)
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while keeping in mind that

q = e−R5ε1 , t = eR5ε2 , (4.96)

for ε1 ∈ R>0 and ε2 ∈ R<0. The explicit usage of these identifications should be used

alongside the schematic description in Section 2.4.1.

Two copies of the BPS partition functions of LST on R4
ε1,ε2 × T2 can be “glued

together” to construct the corresponding expressions on the ellipsoid [53,70,71]:

ZS4
ε1,ε2

=

∫
[dλ] ZR4

ε1,ε2
ZR4

ε1,ε2
, (4.97)

with

ZR4
ε1,ε2

(q, t, q, QM , λm) = ZR4
ε1,ε2

(q, t−1, q−1, Q−1
M ,−λm) , (4.98)

for Re τ = 0.

Now recall that at low energies (1,1) LST reduces to (1,1) sYM in six dimensions.

In turn, the BPS partition function for LST coincides with that of (1,1) sYM, with

the zero-winding contributions in the former being reproduced by the perturbative

piece in the latter, while the non-trivial winding sectors coming from the tower of

instanton-string states, see e.g. [82]. Therefore, for the purpose of comparing with the

deconstruction result we will single out the zero-winding sector of the LST partition

function.

Since the glueing prescription Eq. (4.97) can be implemented independently for each

winding sector, it is straightforward to extract the zero-winding piece of ZLST
S4
ε1,ε2

×T2 from

(4.89). All in all it can be shown that the 0-winding contributions to the integrand of

Eq. (4.97) is given by

ZLST, 0-wind
S4
ε1,ε2

×T2 =

e−
πiτ
6

η(τ)2

K∏
m,n=1

∏
`∈N2

θ
(
q
∣∣q`1+ 1

2 t`2+ 1
2QMξmn

)
θ
(
q
∣∣q`1t`2+1ξmn

) θ
(
q
∣∣q`1+ 1

2 t`2+ 1
2Q−1

M ξmn
)

θ
(
q
∣∣q`1+1t`2ξmn

) . (4.99)

As a last step, one needs to analytically continue the above to ε2 ∈ R>0 before

comparing with Eq. (4.87). Proceeding as e.g. in App. A.2 of [17], the LST result

Eq. (4.99) coincides with the one from deconstruction up to an overall geometric factor

of exp (−πiτ/6) η(τ)−2.49

Having shown that there is agreement between the perturbative part of the partition

functions, one might ask if it is possible to do the same with the instanton parts. Indeed

49This a purely geometric factor that does not contain dynamical information and is often dropped
outright in the topological strings literature cf. [83].
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it is quite trivial to show that performing a double deformation of the functions involved

in the 4d N = 2∗ partition function reproduces something very similar to (4.93),

however, this is simply a mathematical relationship between a rational function and an

elliptic one. For it to be genuine, one should start from a purely 4d N = 1 instanton

partition function. Unfortunately, no such partition function exists yet; see [169, 170]

for recent attempts on this front.
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Chapter 5

Deconstructing Defects

This chapter is based on the paper [4]. It uses many definitions and identities that are

presented in Appendix A.

As previously mentioned in this thesis, there has been remarkable progress in the

area of exact results. Somewhat more recently, this success has been extended to include

contributions of supersymmetric defects of different codimensionalities [140, 171–176].

The results of the above calculations can often be expressed elegantly in terms of special

functions. This reformulation sheds light into various properties of the theory itself,

like its duality structure. Furthermore, mathematical relationships between different

special functions can lead to connections between supersymmetric partition functions

in different dimensions via dimensional reduction [177–180].50

In this chapter we explore the above themes in a process which can be thought

of as the reverse of dimensional reduction, namely dimensional deconstruction [22,

182]. In its simplest formulation, dimensional deconstruction involves starting with a

circular-quiver gauge theory and employing a finely-tuned infinite-node limit to obtain

dynamics for a theory in one-compact dimension higher. Although in its original form

deconstruction relates four-dimensional quivers to five-dimensional theories on a circle,

it is possible under certain conditions to deconstruct theories in any dimension starting

from a lower-dimensional compact quiver lattice [183]. Here we will be interested

in the version that relates three-dimensional quivers to four-dimensional theories on

a circle. Moreover, we will mainly focus on examples that contain supersymmetric

defects. Defects have not been considered previously in the context of deconstruction.

It should be noted that the main argument behind the dimensional-deconstruction

proposal uses the Lagrangian description of the quiver to identify the classical Kaluza–

Klein (KK) spectrum for the higher-dimensional theory. However, one can actually

go beyond this perturbative approach and apply the principle of deconstruction at the

level of full supersymmetric partition functions on compact manifolds [2, 3]. We will

50See also [181] for a related review.
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refer to this operation as “exact deconstruction” to distinguish it from the dimensional-

deconstruction limit of [22,182].

Specifically, we will apply exact deconstruction to the squashed-S3 partition func-

tions51 of three-dimensional circular-quiver theories in the presence of various defects,

to recover the S3×S1-partition function—also known as the index—of four-dimensional

theories that include 1
2 -BPS defects wrapping the emerging circle.

The rest of this chapter is organised as follows: In Sec. 5.1 we provide a summary

of the original dimensional-deconstruction proposal and a detailed description of both

the technical as well as some conceptual points regarding exact deconstruction. We

also review how one can brane engineer our three-dimensional starting points and how

to view deconstruction in that language. We also perform a warm-up calculation in a

purely 3d setting, where we recover the index of 4d N = 2 super-Yang–Mills (SYM) and

super-QCD (SQCD) theories from the squashed-S3 partition function of a 3d N = 2

circular quiver. This is then extended in Sec. 5.2 to include vortex loops that lead

(after deconstruction) to codimension-two defects with 2d (2, 2) supersymmetry. In this

discussion, 1d and 2d defects are respectively coupled to 3d and 4d bulk theories before

and after deconstruction. The extension of the procedure to 3d Wilson loops, and their

potential interpretation in terms of codimension-two defects in 4d post deconstruction,

appears in Sec. 5.3. We finally conclude in Sec. 5.4 with a summary of the main results

and a list of possible future directions.

5.1 Pure Three Dimensional Deconstruction

We begin with a general overview of dimensional deconstruction and its application at

the level of supersymmetric sphere partition functions. We refer to the latter application

as “exact deconstruction”, since the partition functions include contributions from all

orders in the coupling, and also to distinguish it from the original proposal that relates

theories on flat backgrounds at different energy scales. Some of the details will be

omitted at this stage, but will appear when we specialise to the cases of interest in the

coming sections. We first focus on the case with no defects.

The dimensional-deconstruction prescription, in the absence of defects, is well known

and can be summarised as follows:52 starting from a supersymmetric N -noded circular-

quiver theory, where the nodes denote U(k) vector multiplets with the same bare gauge

coupling G53 and the links supersymmetric matter, one takes the theory onto the Higgs

51We will focus on squashings of the S3 that preserve a U(1)×U(1) isometry.
52Here we focus on supersymmetric QFTs, which are the main cases of interest in this chapter. Also,

in view of the applications that follow we consider unitary gauge groups. Clearly, these assumptions
are not necessary features of deconstruction; e.g. one could use special unitary groups instead with no
need to modify our prescription.

53This is known as the “orbifold point” in the space of couplings.
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branch by allowing the scalars in the matter multiplets to simultaneously develop a vac-

uum expectation value (vev), v 1lk×k. This has the effect of breaking the gauge group to

a diagonal subgroup, U(k)N → U(k). By flowing to low energies the degrees of freedom

get reorganised into the KK modes of a theory in one dimension higher, compactified

on a discretised circle with

g2
dec ≡

G

v
→ fixed , 2πR̂ ≡ N

Gv
→ fixed , a ≡ 1

Gv
. (5.1)

In these formulas, R̂ is the radius of the emerging circle, a the lattice spacing and gdec

the emerging bare coupling [22, 182]. Although the original deconstruction proposal

relates four-dimensional quivers to five-dimensional theories on a circle, it can also be

applied to lower-dimensional quivers [183]. It can be further generalised to theories of

higher codimensionality by producing products of circles when starting from higher-

dimensional periodic lattices in theory space [23,183].

When the Higgs branch of the theory is not lifted by quantum corrections, e.g.

when the quiver is superconformal or by adding an appropriate superpotential term,

one can consider taking the combined limit

v →∞ N →∞ , G→∞ , (5.2)

which sends a→ 0 and recovers the continuum theory, while keeping gdec and R̂ fixed;

such examples may also exhibit supersymmetry enhancement for the deconstructed

theory [23,184].

Formally this was translated into the replacement rule where the product over

gauge nodes was replaced by a product over the KK masses, schematically represented

through ∏
α

f(x(α)) 7→
∏
α

f
(
x+ 2πiαR̂−1

)
. (5.3)

This was discussed in Chapter 4 and in [4]. We will now demonstrate how this pre-

scription can be applied to recover four-dimensional partition functions on S3
ω1,ω2

× S1
R̂

from three-dimensional circular-quivers on the squashed three-sphere, S3
ω1,ω2

.

Let us close this discussion with a comment that has to do with the legitimacy of the

continuum deconstruction limit (5.2). Unlike the circular-quiver theories of [2, 3, 23],

the 3d quivers of this chapter are not superconformal, so one needs to make sure

that quantum effects do not lift the Higgs branch—the existence of which is necessary

for deconstruction—at low energies. Single-noded N = 2 SQCD theories in three

dimensions with Nf ≥ Nc fundamental/anti-fundamental pairs are believed to have

distinct Higgs and Coulomb branches, even after incorporating quantum corrections.

154



CHAPTER 5. DECONSTRUCTING DEFECTS

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 − − − − · · · · · ·
NS5 − − − · · · · − − −
D5 − − − · − − − · · ·
D1 − · · · · · − · · ·

NS5′ − · · · − − · − − −
AN−1 · · · · − − · · − −

Table 9: Brane configuration in type IIB string theory engineering 3d vortex-loop op-
erators. The ZN orbifold acts in the directions x4, x5, x8, x9. The D3s are stretched
between NS5s along an interval L3 in the x3 direction. The D1s are stretched between
the D3s and NS5s and/or NS5′s along the x6 direction.

Moreover, at the intersection of these branches such theories flow to interacting critical

points in the IR [185,186]. In all the examples that we will consider in this chapter, we

have circular quivers where Nf ≥ Nc is obeyed at each node. We expect that the above

statements about the non-lifting of the Higgs and Coulomb branches extend to the full

theory. Although we will not present rigorous arguments to this effect, we will see in

the upcoming sections that this picture leads to sensible results. Related statements

about the low energy dynamics of 3d N = 4 quivers can be found in [187]. Further

evidence that supports the validity of dimensional deconstruction in the cases that we

consider is provided in the next subsection with a suitable embedding in string theory.

5.1.1 Brane Engineering

Before implementing the technical steps of exact deconstruction it is useful to have

complementary evidence that dimensional deconstruction works unobstructed in the

full physical theory. In many cases such evidence is encoded naturally in string-theory

embeddings. All 3d theories that we will be interested in in this section arise in the

low-energy limit of type IIB string theory configurations that involve branes of the type

listed in Tables 9 and 10. The precise combinations of these ingredients depend on the

specific example under study and we will spell out the pertinent details in the upcoming

sections as needed. In the rest of this subsection we summarise the key features of these

constructions.

The low-energy dynamics of multiple D3s suspended between NS5s along an interval

L3 in the x3 direction are captured by a three-dimensional gauge theory. The inclusion

of D5 branes that intersect the D3s corresponds to the introduction of flavour. In order

to engineer vortex loops, which are related to codimension-two defects with non-chiral

2d supersymmetry through dimensional reduction, one needs to introduce D1s that

stretch between the D3s and an NS5 and/or NS5′s along the x6 direction, oriented

as in Tab. 9. In order to engineer Wilson loops, which are related to codimension-

two defects with chiral 2d supersymmetry through dimensional reduction, one needs to
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 − − − − · · · · · ·
NS5 − − − · · · · − − −
D5 − − − · − − − · · ·
F1 − · · · · · · − · ·
D5′ − · · · − − − · − −
AN−1 · · · · − − · · − −

Table 10: Brane configuration in type IIB string theory engineering 3d Wilson-loop
operators. The ZN orbifold acts in the directions x4, x5, x8, x9. The D3s are stretched
between NS5s along an interval L3 in the x3 direction. The F1s are stretched between
the D3s and D5s and/or D5′s along the x7 direction.

introduce F1s that stretch between the D3s and a D5 and/or D5′ along the x7 direction,

oriented as in Tab. 10. In this fashion, one can engineer a wide variety of examples

with N = 4 supersymmetry; see e.g. [174]. Placing various combinations of the above

ingredients on a C2/ZN orbifold singularity, AN−1, leads to a circular-quiver gauge

theory in three dimensions with N = 2 supersymmetry and vortex/Wilson loops at

low energies [148,188].

In this set-up deconstruction is simply realised by taking the combined brane system

off the AN−1 singularity and into the orbifolded space, which is locally R3 × S1
R̃

, by a

distance d. In the presence of flavour/defect branes this is carried out in one of the

directions x8 or x9, with x9 or x8 respectively compactified on a circle of radius R̃.

The continuum limit (5.2) involves taking the string length scale ls → 0 and N → ∞
while keeping the string coupling gs → fixed and R̃/l2s ≡ d/Nl2s → fixed. An equivalent

description is in terms of a T-dual system with the various D-branes wrapping a fixed-

sized circle R̂ ≡ l2s/R̃ and string coupling g′s = gsR̂/ls [2, 23]. In order to keep the 3d

gauge coupling 1/g2
3d ≡ L3ls/gs tunable, as required by deconstruction, one needs to

take L3 →∞ as ls → 0. Then, the 4d gauge coupling 1/g2
4d ≡ L3/g

′
sls = L3/gsR̂→∞

in the limit, resulting in a weakly-coupled 4d gauge theory (with matter and/or defects).

5.1.2 4d Indices from S3 Partition Functions

The exact-deconstruction procedure can be straightforwardly applied in the context

of 3d quiver-gauge theories and their partition functions on the U(1)× U(1) isometric

hyper-ellipsoid, S3
ω1,ω2

. The latter is given by the equation

ω−2
1 (X2

1 +X2
2 ) + ω−2

2 (X2
3 +X2

4 ) = 1 . (5.4)

Sometimes the squashing parameter can be defined as the dimensionless ratio b =
√

ω2
ω1

;

the round three sphere is then recovered in the limit b → 1. However, to remain

consistent with the previous chapters, the partition functions will not be in terms of this

156



CHAPTER 5. DECONSTRUCTING DEFECTS

parameter. Supersymmetric partition functions on the ellipsoid are readily calculated

using supersymmetric localisation [55,57,67]. The unsquashed S3 partition function for

the vector multiplet was also shown explicitly in the review Chapter 2. The answer can

be neatly organised by observing that it factorises into individual contributions from

vector and chiral multiplets—in the appropriate representations of the Lie algebra—

over which one needs to perform a final matrix integral for any symmetries that are

gauged. We summarise our notation and the key ingredients in the following.

Building blocks of sphere partition functions

The partition function of 3d N = 2 theories on S3
ω1,ω2

can be constructed using the

vector- and chiral-multiplet partition functions

ZN=2
vec (λ) =

∏
β∈Adj

Γ̂h
(
〈β, λ〉

∣∣ω1, ω2

)−1

= Γ̂h (0|ω1, ω2)−rank(g)
∏
β∈∆

Γ̂h
(
〈β, λ〉

∣∣ω1, ω2

)−1
,

ZN=2
chi (λ, r) =

∏
β∈R

Γh
(
rω+ − 〈β, λ〉

∣∣ω1, ω2

)
, (5.5)

where Γh and Γ̂h are hyperbolic Gamma functions—defined in App. A. Here R is a

generic representation in any product of gauge or global symmetries and λ is associated

with a set of chemical potentials corresponding to these symmetries, β takes values

in the weights of the representation R54 and r denotes the chiral-multiplet U(1)R

charge. The product 〈β, λ〉 is an inner product in weight space. We are also using the

combination ω+ = ω1+ω2
2 .

Note that we can combine the vector-multiplet contributions with the matrix-

integral Haar measure, ∆Haar(λ) =
∏
β∈∆ i〈β, λ〉, to write

∆Haar(λ)ZN=2
vec (λ) = Γ̂h(0|ω1, ω2)−rank(g)

∏
β∈∆

Γh
(
〈β, λ〉

∣∣ω1, ω2

)−1
. (5.6)

The above ingredients can be used to construct 3d N = 4 multiplet contributions.

For the vector multiplet we combine an N = 2 vector multiplet with an adjoint N = 2

chiral multiplet with r = 1. For an adjoint chiral ZN=2
Adj chi(λ, r = 1) = 1,55 hence

∆Haar(λ)ZN=4
vec (λ) = Γ̂h(0|ω1, ω2)−rank(g)

∏
β∈∆

Γh
(
〈β, λ〉

∣∣ω1, ω2

)−1
, (5.7)

which is the same function as in N = 2. For the 3d N = 4 hypermultiplet, one simply

54For the adjoint representation the product over β can be reduced to a product over the roots ∆
and Cartans h.

55This is due to the result enjoying a symmetry under root reflections.
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takes two N = 2 chiral multiplets in conjugate representations, both with r = 1
2 . Thus

ZN=4
hyp (λ) =

∏
β∈R

Γh

(ω+

2
− 〈β, λ〉

∣∣ω1, ω2

)
Γh

(ω+

2
+ 〈β, λ〉

∣∣ω1, ω2

)
. (5.8)

Post deconstruction, and for the appropriate choice of matter content, the S3 partition

functions of 3d N = 2 theories will lift to the superconformal index of 4d N = 2 theories

[39]. For superconformal N = 2 theories in Euclidean R4, and in radial quantisation,

this index is defined as the trace (we use the conventions of [172])

I4d = Tr(−1)F e−β(E−h01−h23−2R+r)ph23−rqh01−rtR+r , (5.9)

where F is the fermion number, E the conformal dimension, h01 = j1 + j2 and h23 =

−j1 + j2 are rotation generators along the two planes 01 and 23 of R4, R is the SU(2)R

Cartan, while r is the U(1)r Cartan. One can also make the change of variables t →
v
√
pq to arrive at

I4d = Tr(−1)F e−β(E−h01−h23−2R+r)ph23+ 1
2

(R−r)qh01+ 1
2

(R−r)vR+r , (5.10)

which in the limit v→ 1 reduces to an N = 1 superconformal index [41].56

The superconformal index of Lagrangian theories can itself be neatly organised

in terms of separate contributions from vector multiplets and chiral multiplets, all of

which are again expressible via special functions. The special function that dominates

the 4d superconformal index is the elliptic Gamma function Γe(z|p, q) (also defined in

App. A). In what follows we explain how deconstruction recovers all the details of the

4d superconformal index from three-dimensional data.

Deconstruction of 4d N = 2 pure sYM theory

Let us begin with the simplest possible example, which will allow us to highlight the

main points of the exact-deconstruction procedure. In the brane-system description of

Tab. 9 this involves kN D3s on the AN−1 singularity, suspended between two NS5s

that are separated by an interval of size L3. In the string-decoupling limit this set-up

gives rise to the three-dimensional quiver-gauge theory with N = 2 supersymmetry

illustrated in Fig. 7. Up to factors of ω1, ω2, the partition function of this theory on

56Via the operator-state map the superconformal index also admits a presentation in terms of a
twisted partition function on S3× S1 with supersymmetric boundary conditions and Hamiltonian H =
E − h01 − h23 − 2R − r [40]. This definition is more general as it is also applicable to non-conformal
theories, for which the name superconformal index is not quite appropriate. However, since this quantity
is independent of the coupling and the theory eventually flows to some SCFT at an IR fixed point, we
will still use this nomenclature through a mild abuse of language.
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k k k k

Figure 7: 3d N = 2 circular quiver with N nodes. The nodes denote U(k) vector
multiplets, while the links bifundamental-chiral multiplets with assigned R charge r = 1.
The endpoints are to be understood as periodically identified.

the ellipsoid, S3
ω1,ω2

, can be immediately written down with the help of (5.5) as

Zquiver
3d =

∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b ∆Haar

(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ(α+1)

c

∣∣∣ω1, ω2

)
Γ̂h

(
σ

(α)
b − σ(α)

c

∣∣∣ω1, ω2

) , (5.11)

where the σ(α) are the Coulomb-branch parameters for the gauge group at each node.

As we have already described in this thesis, the exact-deconstruction prescription

has two key elements:

(1) We should identify all σ(α) → σ. This encodes the breaking of the gauge symmetry

U(k)N → U(k).

(2) We should shift all the arguments of the hyperbolic Gamma functions by Γh(x)→
Γh(x+ i2πα

R ) and take N →∞. This encodes the reorganisation of the spectrum

into the KK modes of the higher-dimensional theory with mass parameters mα =

i2πα
R . In these formulae, R is the radius the deconstructed S1.

Implementing these steps leads to the partition function

ZDec
3d =

1

k!

∫ k∏
b=1

dσb
∏
α

Γh

(
ω+ + i2πα

R

∣∣∣ω1, ω2

)k
Γ̂h(i2πα

R |ω1, ω2)k

×
∏
b6=c

Γh

(
ω+ + σb − σc + i2πα

R

∣∣∣ω1, ω2

)
Γh

(
σb − σc + i2πα

R

∣∣∣ω1, ω2

) . (5.12)

At this stage one uses the following identity between hyperbolic and elliptic Gamma

functions

∞∏
α=−∞

Γh

(
x+ i

2πα

R

∣∣∣∣ω1, ω2

)
= x2 (pq)−

1
2 Γe(x|p, q) (5.13)
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k k k k

Nf Nf Nf Nf

Figure 8: 3d N = 2 circular quiver with N gauge and flavour nodes. The circular
nodes denote U(k) vector multiplets, while the squares U(Nf ) flavour groups. The links
between circles encode bifundamental-chiral multiplets with assigned R charge r = 1,
while the ones between circles and squares (anti)fundamental chirals with assigned R
charge r = 1

2
. The endpoints are to be understood as periodically identified.

for x = e−Rx, p = e−Rω1 , q = e−Rω2 , as shown in Appendix A. One can therefore write

ZDec
3d =

1

k!

∮ k∏
b=1

dvb
2πivb

Γe(
√
pq|p, q)k

Γ̂e(1|p, q)k

∏
b6=c

Γe

(√
pqvbv

−1
c

∣∣∣p, q)
Γe

(
vbv
−1
c

∣∣∣p, q) , (5.14)

where vb = e−Rσb . Finally, using Γ̂e(1|p, q) = (p; p)−1(q; q)−1 and recognising that

Γe(
√
pq|p, q) = 1, as well as

∏
b6=c Γe(

√
pqvbv

−1
c |p, q) = 1, we arrive at

ZDec
3d =

1

k!
(p; p)k(q; q)k

∮ k∏
b=1

dvb
2πivb

∏
b6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1
, (5.15)

which reproduces precisely the expression for the N = 1 superconformal index of a 4d

N = 2 vector multiplet.57 Note that, although the supersymmetry of the deconstructed

theory is double that of the original one, the 3d partition function has a single R-charge

chemical potential and can therefore only provide the v → 1 limit of the full N = 2

superconformal index (5.10).58

Deconstruction of 4d N = 2 SQCD

One can further enrich the previous example by adding flavour. In the brane picture

this corresponds to adding NfN D5 branes to the kN D3s suspended between two

57This corresponds to taking the t→ √pq limit in the expressions of [172].
58It is possible to deconstruct the additional R-symmetry fugacity present in the N = 2 index by

turning on appropriate real-mass terms in the S3 partition function. Real masses in the S3 partition
function are related to background-U(1) gauge fields in the S3 × S1 partition function through dimen-
sional reduction [44]. The S3 × S1 partition function in turn provides an alternative presentation of
the index via the state-operator map, with generic background-U(1) gauge fields mapping to global
fugacities. Therefore, real masses in 3d will generically deconstruct global fugacities in 4d. In par-
ticular, turning on real masses, where the accompanying charges specifically correspond to the R + r
combination that appears in the N = 2 index (-1 for bifundamental chiral multiplets and 1

2
for the

(anti)fundamental chiral multiplets of the next example), reproduces the contributions of the fugacity
v.
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NS5s in the presence of the AN−1 orbifold singularity, along the directions listed in

Tab. 9. In the string-decoupling limit this gives rise to the quiver of Fig. 8, which

preserves N = 2 supersymmetry in three dimensions. The S3
ω1,ω2

partition function of

this circular-quiver theory is given by the expression

Zquiver
3d =

∏
α

1

k!

∮ k∏
b=1

dσ
(α)
b ∆Haar

(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ(α+1)

c

)
Γ̂h

(
σ

(α)
b − σ(α)

c

)
×

k∏
b=1

Nf∏
j=1

Γh

(
1

2
ω+ − µ(α)

j + σ
(α)
b

)
Γh

(
1

2
ω+ − σ(α+1)

b + µ
(α)
j

)
, (5.16)

where we dropped the explicit dependence on ω1 and ω2 for brevity.

In order to perform the dimensional-deconstruction procedure, even in the flat-

space case, one first needs to explicitly break the flavour group to its diagonal subgroup

U(Nf )N → U(Nf ) [184]; this has the effect of identifying all the square nodes in Fig. 8

and sending µ
(α)
j → µj . Apart from this additional detail, the exact-deconstruction pro-

cedure can be implemented as in the previous example, by identifying all the Coulomb-

branch parameters and shifting all the arguments of the hyperbolic-gamma functions.

This leads to the formula

ZDec
3d =

1

k!

∫ k∏
b=1

dσb
∏
α

Γh(ω+ + i2πα
R )k

Γ̂h(i2πα
R )k

∏
b6=c

Γh
(
ω+ + σb − σc + i2πα

R

)
Γh
(
σb − σc + i2πα

R

)
×

k∏
b=1

Nf∏
j=1

Γh

(
1

2
ω+ ∓ σb ± µj + i

2πα

R

)
, (5.17)

where we adopted the notation f(±x) = f(x)f(−x). A similar notation will be used

for exponents. Finally, using (A.22) we arrive at

ZDec
3d =

1

k!
(p; p)k(q; q)k

∮ k∏
b=1

dvb
2πivb

∏
b 6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1

×
k∏
b=1

Nf∏
j=1

Γe

(
(pq)

1
4 (vbs

−1
j )±

∣∣∣p, q) , (5.18)

where sj = e−Rµj . When Nf = 2k, our U(k) theory is not conformally invariant.

However, it flows to 4d N = 2 SQCD with a weak U(1) gauging times a free abelian

vector multiplet in the IR. The IR theory admits an honestN = 1 superconformal index

and, upon a reparametrisation ũb = uba
− 1
k ,59 the result (5.18) is in explicit agreement

59The ũb are k SU(k) fugacities obeying
∏k
b=1 ũb = 1, while a denotes the fugacity for the free U(1)

sector.
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with this quantity.

5.2 4d Surface Defects from 3d Vortex Loops

We next examine how exact deconstruction works in the presence of codimension-two

defects. Codimension-two defects in three-dimensional QFTs are line operators. In

four-dimensional QFTs they are surface operators. We will explain how exact decon-

struction lifts S3
ω1,ω2

partition functions with supersymmetric line-operator insertions

in 3d N = 2 (or 3d N = 4) quiver-gauge theories to S1×S3
ω1,ω2

partition functions with

surface-operator insertions in 4d N = 2 (or 4d N = 4) gauge theories. Our line defects

will always wrap the fibre of the (squashed) Hopf fibration S1 ↪→ S3 → S2, and will

be situated at the North or South pole of the S2, as in [174]. Note that the squashing

deformation breaks the same supersymmetry as the line defect. So even though in

flat space the line defects are 1
2 -BPS, on the S3

ω1,ω2
they do not break any additional

supersymmetry.

In 3d N = 4 theories one can consider two types of 1
2 -BPS line defects supported

on a straight line in flat space. The first type preserves the 1d N = 4A supersymmetry

algebra, which arises from the dimensional reduction of 2d N = (2, 2) supersymmetry.60

1
2 -BPS vortex lines in 3d N = 4 QFTs realise this symmetry. The second type preserves

the 1d N = 4B supersymmetry algebra, which arises from the dimensional reduction

of 2d N = (4, 0) supersymmetry. 1
2 -BPS Wilson lines in 3d N = 4 QFTs are examples

of this type. A review of pertinent details can be found in [174].

Defects of each of these types can generically be studied by coupling a 1d super-

symmetric quantum mechanics theory (SQM), supported on the defect worldvolume, to

the 3d bulk gauge theory of interest (here a quiver-gauge theory). The supersymmetry

of the SQM defines the type of the defect. The typical coupling between the defect

and the bulk proceeds via gauging 1d global symmetries with the vector multiplets of

the bulk gauge theory. The coupling may also include superpotential terms involving

defect and bulk matter fields.

Similarly, in 3d N = 2 theories one can consider 1
2 -BPS line defects preserving

either 1d N = 2A supersymmetry (that arises from the dimensional reduction of 2d

N = (1, 1) supersymmetry) or 1
2 -BPS defects preserving 1d N = 2B supersymmetry

(that arises from the dimensional reduction of 2d N = (0, 2) supersymmetry).

In this chapter we will consider line defects in 3d supersymmetric quiver-gauge

theories that preserve the N = 4A, N = 4B or N = 2B supersymmetries. The N = 2A

supersymmetry will not play any rôle in the cases that we study. In the rest of this

section we will discuss how to use exact deconstruction to lift the partition functions

60We note in passing that the dimensional reduction of 2d N = (2, 2) surface defects in 4d N = 2
gauge theories to three dimensions has been discussed in [189].
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of vortex loops with 1d N = 4A or N = 2B supersymmetry in a 3d bulk, to indices

for surface defects with 2d N = (4, 4) or 2d N = (2, 2) supersymmetry in a 4d bulk.

Note that in this fashion we will bypass the discussion of dimensionally deconstructing

the 4d-2d system from 3d-1d at the level of Lagrangians for the flat-space theories,

comparing instead the theories directly at the level of sphere partition functions. The

case of Wilson loops is in Sec. 5.3.

Building blocks of partition functions with vortex-loop insertions

In the presence of codimension-two defects the S3
ω1,ω2

partition functions will have, in

addition to the 3d-multiplet contributions that we discussed in Sec. 5.1.2, contributions

coming from the 1d defect theory, which is supported on a circle of radius ω−1;61 these

can also be evaluated using supersymmetric localisation.

Let us first consider building defect theories with 1d N = 2B supersymmetry. The

basic multiplets in such SQM theories are N = 2B vector multiplets, chiral multiplets

and Fermi multiplets (we refer the reader to [193] for a review). The one-loop contri-

butions of each of these multiplets to the Witten index of 1d N = 2B SQM theories

are

gN=2
vec (λ) =

∏
β∈Adj

Γ̂1

(
〈β, λ〉

∣∣ω)−1
Γ1

(
ω − 〈β, λ〉

∣∣ω)−1

= Γ1

(
ω
∣∣ω)−2×rank(g)

∏
β∈∆

Γ̂1

(
〈β, λ〉

∣∣ω)−1
Γ1

(
ω〈β, λ〉

∣∣ω)−1
,

gN=2
chi (λ, r) =

∏
β∈R

Γ1

(
〈β, λ〉+

r

2
z
∣∣∣ω)Γ1

(
ω − 〈β, λ〉 − r

2
z
∣∣∣ω) ,

gN=2
fer (λ, r) =

∏
β∈R

Γ1

(
−〈β, λ〉 − r

2
z
∣∣∣ω)−1

Γ1

(
ω + 〈β, λ〉+

r

2
z
∣∣∣ω)−1

, (5.19)

where R is a generic representation in any product of gauge or global symmetries and

λ is associated with a set of chemical potentials corresponding to these symmetries.

As part of the global symmetries, we will always include an overall U(1)c that rotates

the fundamental and anti-fundamental fields in the opposite way, as well as a U(1)d

61In toric coordinates the metric on the ellipsoid is

ds2 =
(
ω2

2 cos2 θ + ω2
1 sin2 θ

)
dθ2 + ω2

2 sin2 θ dϕ2
1 + ω2

1 cos2 θ dϕ2
2 ,

where θ ∈ [0, π
2

] and φi ∈ [0, 2π). The Killing vectors of the two U(1) isometries are K± =
±ω−1

2 ∂ϕ1 + ω−1
1 ∂ϕ2 . Details on the structure of supersymmetric field theories on three-dimensional

curved manifolds can be found in [190] (see also [191, 192], where the special case of the ellipsoid is
worked out in detail). The supersymmetric defects in this chapter are wrapping the orbits of K+.
These orbits are periodic when ω2

ω1
is a rational number. Otherwise, they do not close and instead fill

out the (ϕ1, ϕ2)-torus densely. In what follows, we focus on the case of ω2
ω1

being rational (the round

S3 has ω1 = R̃−1 = ω2 and is such a case), and ω is related to the dimensional radius R of the closed
orbit of K+ by the relation R = (2πω)−1√ω1ω2.
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that acts on the adjoint fields. In addition, we have a generic U(1)R charge r for chiral

and Fermi multiplets, along with its chemical potential z. The Γ1(x|ω) are Barnes

1-Gamma functions, defined in App. A.

Note that we can combine the Haar measure ∆Haar(σ) with the vector multiplet to

obtain

∆Haar(λ)gN=2
vec (λ) =

Γ1

(
ω
∣∣ω)−2×rank(g)

∏
β∈∆

Γ1

(
〈β, λ〉

∣∣ω)−1
Γ1

(
ω − 〈β, λ〉

∣∣ω)−1
. (5.20)

With these ingredients we can also easily build models withN = 4A supersymmetry.

For this we simply need to use that a 1d N = 4 vector multiplet is a combination of an

N = 2 vector multiplet and an adjoint N = 2 chiral multiplet with r = 2. Similarly, an

N = 4 chiral multiplet of charge r comprises of an N = 2 chiral multiplet with charge

r and an N = 2 Fermi multiplet with charge (r− 2), in the same representations of the

gauge or global symmetry algebras.

Combining this information with an identity given in the appendix, Eq. (A.13), we

deduce that the contributions of N = 4A vector and chiral multiplets to the SQM index

can be succinctly written as

∆Haar(λ)gN=4
vec (λ) =

(
Γ1(z|ω)Γ1(ω − z|ω)

Γ1(ω|ω)2

)rank(g) ∏
β∈∆

∆h

(
〈β, λ〉

∣∣ω, z)−1
,

gN=4
chi (λ, r) =

∏
β∈R

∆h

(
〈β, λ〉+

r

2
z
∣∣∣ω, z) , (5.21)

with

∆h(a|ω, t) ≡ Γ1(a|ω)Γ1(ω − a|ω)

Γ1(a+ t|ω)Γ1(ω − a− t|ω)
=

sin(π(a+t)
ω )

sin(πaω )
. (5.22)

Post deconstruction the above will lift to the elliptic-genus contributions of 2d

surface defects with (2, 2) and (4, 4) supersymmetry respectively. As we will see shortly,

these results will be dominated by a closely-related function, ∆e, which will be related

to ∆h by an identity analogous to the one relating Γh and Γe in Appendix A.

5.2.1 Indices of Defect Systems

We consider two examples in our analysis. Firstly is a (4, 4) defect theory in N = 4

sYM and second is a (2, 2) defect theory in N = 2 SQCD.
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n n n n

3d

1d

Figure 9: The 3d N = 4 circular quiver theory in the presence of 1d N = 4 defects.
Black links and nodes are 3d N = 4 hypermultiplets and 3d N = 4 vector multiplets
respectively of the bulk theory. The blue oriented links and nodes are 1d N = 4 chiral
multiplets with assigned R charge r = 0 and 1d N = 4 vector multiplets respectively
for the defect theory. The diagonal 1d chiral multiplets have been assigned U(1)c charge
qc = 1, while the horizontal ones U(1)d charge qd = 1.

2d N = (4, 4) defects in 4d N = 4 sYM

For this example, the starting point is an orbifold of a 3d N = 8 theory in the presence

of a 1d N = 8 defect. In the language of the brane system of Tab. 9, the defects are

described by nN D1 branes suspended between the kN D3s and an NS5 in the x6

direction. The x3 direction is compactified and the branes are in the presence of the

AN−1 orbifold singularity. The quiver-gauge theory emerging at low energies is given

by Fig. 9 and involves a 3d N = 4 bulk quiver with U(k) gauge group nodes coupled

to N = 4 1d defects with U(n) groups.62

The partition function of the combined 3d-1d system can be split into two parts as

per

Z3d−1d =
∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b Z3d(σ

(α)
b )Z1d(σ

(α)
b ) . (5.23)

The bulk partition function contains the ingredients discussed in Sec. 5.1.2 and for the

quiver of Fig. 9 is given by

Z3d(σ
(α)
b ) =

∏
α

Γ̂h
(
0
∣∣ω1, ω2

)−k k∏
b6=c

Γh

(
σ

(α)
b − σ(α)

c

∣∣ω1, ω2

)−1

×
k∏
b,c

Γh

(ω+

2
− σ(α+1)

b + σ(α)
c

∣∣ω1, ω2

)
Γh

(ω+

2
+ σ

(α+1)
b − σ(α)

c

∣∣ω1, ω2

)
. (5.24)

The defect contribution can be evaluated from the ingredients of Sec. 5.2 and is in

62A class of closely-related systems with the same amount of supersymmetry appear in [194]. Our
brane configurations before deconstruction are related to those appearing in that reference by T duality
and the low-energy quiver-gauge theories by dimensional reduction.
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turn given by

Z1d(σ
(α)
b ) =

∏
α

1

n!

(
Γ1(z|ω)Γ1(ω − z|ω)

Γ1(ω|ω)2

)k ∮ n∏
j=1

du
(α)
j

∏n
i,j ∆h

(
u

(α+1)
i − u(α)

j + κ|ω, z
)

∏n
i 6=j ∆h

(
u

(α)
i − u

(α)
j |ω, z

)
×

n∏
i=1

k∏
b=1

∆h

(
u

(α)
j − σ

(α)
b + l|ω, z

)
∆h

(
σ

(α)
b − u(α+1)

j + l|ω, z
)
. (5.25)

Note that this involves integrating the 1d gauge-group parameters u
(α)
j over some con-

tour. These integrals can be eventually performed using the Jeffrey–Kirwan residue

prescription—as e.g. in [174, 195]—although we will not do so in this chapter.63 Fur-

thermore, for each defect node there is a U(1)c symmetry that rotates the bifundamental

chiral multiplets connecting to the bulk theory, with associated chemical potential l,

as well as a different U(1)d symmetry that acts on the bifundamental chiral multiplets

between defect gauge nodes—associated with a chemical potential κ. We have chosen

these charges appropriately, qc = 1 and qd = 1, so as to deconstruct a superconformal

4d-2d system.

The exact-deconstruction procedure can now be applied to the 3d piece as in

Sec. 5.1.2. It is implemented in a similar fashion for the 1d piece, namely, we identify

the parameters u
(α)
i → ui and shift all the arguments of the functions appearing in

(5.25) by mα = i2πα
R . Upon performing this operation Z3d−1d becomes

ZDec
3d−1d =

1

k!

∮ k∏
b

dvb
2πivb

ZDec
3d (v)ZDec

1d (v) , (5.26)

with

ZDec
3d (v) = (p; p)k(q; q)k

∏k
b,c Γe(vbv

−1
c (pq)

1
4 |p, q)2∏k

b 6=c Γe
(
vbv
−1
c | p, q

) , (5.27)

which agrees with the index for N = 4 SYM as found in [39].64 In turn, the defect part

becomes

ZDec
1d (v) =

(
(q; q)2

θ(y−1|q)

)k ∮ n∏
j

duj
2πiuj

∏n
i,j ∆e

(
d uiu

−1
j |q, y−1

)
∏n
i 6=j ∆e

(
uiu
−1
j |q, y−1

)
63The Jeffrey–Kirwan residue prescription is sensitive to the sign of a Fayet–Iliopoulos (FI) parameter

in the SQM. We will implicitly assume that all the 1d gauge theories that appear in this chapter are
deformed by an FI term of definite sign.

64This can be seen if in the notation of [39] one considers the limit w → t
1
2 and by mapping v → t−

1
2 ,

with t = (pq)
1
6 and y =

(
pq−1

) 1
2 , after the inclusion of the Haar measure.
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4d

2d

kk

n

Figure 10: The 4d N = 4 sYM theory in the presence of a 2d N = (4, 4) surface
defect. Black unoriented links and nodes are 4d N = 2 hypermultiplets and 4d N = 2
vector multiplets respectively of the bulk theory. The blue oriented links and nodes are
2d N = (2, 2) chiral multiplets and 2d N = (2, 2) vector multiplets respectively for the
defect theory.

×
n∏
j

k∏
b

∆e

(
ujv
−1
b c|q, y−1

)
∆e

(
u−1
j vb c|q, y−1

)
, (5.28)

with q = e−Rω, y = e−Rz, c = e−Rl and d = e−Rκ. Here we made use of the identity

∆e(A|Ω, T ) =
∞∏

α=−∞
∆h

(
a+ i

2πα

R

∣∣∣ω, t) , (5.29)

where A = e−Ra, Ω = e−Rω, T = e−Rt. The function ∆e(A|Ω, T ) is defined as the ratio

of theta functions

∆e(A|Ω, T ) ≡ θ(AT ; Ω)

θ(A; Ω)
. (5.30)

We would like to identify the above result as the index of a 2d (4, 4) theory coupled to

the bulk 4d N = 4 sYM theory (see Fig. 10). For that purpose it is useful to recall some

facts regarding elliptic genera in two-dimensional theories.65 On the one hand, when

considered as a partition function on T2, e.g. such as in the supersymmetric-localisation

calculations of [195,196], the elliptic genus involves tracing over states in the R-R sector

of the 2d (2,2) theory; these theories need not necessarily be superconformal. On the

other hand, for superconformal theories, the state-operator map exchanges R and NS

boundary conditions and therefore when viewed as a generating function for operator

counting it is more appropriately defined by tracing over the NS-NS sector, e.g. such

as in the superconformal index calculations of [172,176].

The exact-deconstruction procedure in general takes an N = 2B SQM partition

function on S1 and lifts it to a (2,2) partition function on T2. As such, one would

expect it to reproduce the R-R elliptic genus. Indeed, in (5.28) one recognises the

elliptic-genus contributions attributed to a 2d (2,2) vector, an adjoint chiral (first line)

65For a summary of the relevant details we refer the reader to [176].
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and two (anti)fundamental chirals (second line) as given in [195]. When combined

with the bulk piece they make up the contributions attributed to the 4d-2d system

summarised by the quiver of Fig. 10.

The R-R and NS-NS elliptic genera can be related by spectral flow through the

relation

GR−R(q, y) = yc/6GNS−NS(q, q
1
2 y) . (5.31)

Implementing this dictionary in (5.28) gives rise, up to an overall c-dependent coeffi-

cient, to

ẐDec
1d (v) =

(
(q; q)2

θ(q
1
2 y−1|q)

)k ∮ n∏
j

duj
2πiuj

∏n
i,j ∆e

(
d uiu

−1
j |q, q

1
2 y−1

)
∏n
i 6=j ∆e

(
uiu
−1
j |q, q

1
2 y−1

)
×

n∏
j

k∏
b

∆e

(
ujv
−1
b c|q, q

1
2 y−1

)
∆e

(
u−1
j vb c|q, q

1
2 y−1

)
. (5.32)

The identifications between defect and bulk fugacities

q = q , y = p−
1
2 , c = p−

3
8 q

1
8 , d = p−1 , (5.33)

which was discussed in [4], lead to the final result

ẐDec
1d (v) =

(
(q; q)2

θ(
√
pq|q)

)k ∮ n∏
j

duj
2πiuj

∏n
i,j ∆e

(
p−1 uiu

−1
j |q,

√
pq
)

∏n
i 6=j ∆e

(
uiu
−1
j |q,

√
pq
)

×
n∏
j

k∏
b

∆e

(
ujv
−1
b p−

3
8 q

1
8 |q,
√
pq
)

∆e

(
u−1
j vb p

− 3
8 q

1
8 |q,
√
pq
)
. (5.34)

This is precisely the answer for the N = 1 limit (t→ √pq) of the N = 2 superconformal

index of the 4d-2d system of Fig. 10, as calculated in [172]. Once again, one needs to

perform the 2d gauge integrals using the Jeffrey–Kirwan residue prescription, which

can be carried out explicitly as in [172,195].

2d N = (2, 2) defects in 4d N = 2 SQCD

Our next example is more general in that it involves half of the supersymmetry of the

previous subsection and non-trivial flavour symmetries. The starting point is a brane

system consisting of kN D3s stretched between two NS5 branes along the interval L3,

with N1N semi-infinite D3s extending to the left and N2N to the right. Once again,

there are also nN D1s suspended between the rightmost NS5 and an additional NS5

in the x6 direction and the whole system is probing the AN−1 orbifold singularity. The
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Figure 11: The 3d N = 2 circular-quiver theory in the presence of 1d N = 2 defects.
Black oriented links and nodes are 3d N = 2 chiral multiplets and 3d N = 2 vector
multiplets respectively of the bulk theory. The blue oriented links and nodes are 1d
N = 2 chiral multiplets with R charge r = 0 and 1d N = 2 vector multiplets respectively
for the defect theory. The orange oriented links are N = 2 Fermi multiplets for the defect
theory. The diagonal 1d chiral multiplets have been assigned U(1)c charge qc = 1, while
the horizontal ones U(1)d charge qd = 1.

corresponding 3d-1d quiver emerging at low energies is depicted in Fig. 11.66

From the 1d point of view, the fundamental/antifundamental chiral and Fermi

multiplets have unit charge under the U(1)c symmetry. The adjoint chiral multiplets

and bifundamental Fermi multiplets have unit charge under the U(1)d symmetry.

As before, the S3
ω1,ω2

partition function can be split into 3d and 1d contributions:

Z3d−1d =
∏
α

1

k!

∫ k∏
b=1

dσ
(α)
b Z3d(σ

(α)
b )Z1d(σ

(α)
b ) . (5.35)

The 3d part is

Z3d(σ(α)) =
∏
α

∆Haar
(
σ(α)

) k∏
b,c=1

Γh

(
ω+ + σ

(α)
b − σ(α+1)

c

)
Γ̂h

(
σ

(α)
b − σ(α)

c

)
×

k∏
b=1

N1∏
j=1

Γh

(
1

2
ω+ − µ(α)

j + σ
(α)
b

)
Γh

(
1

2
ω+ − σ(α+1)

b + µ
(α)
j

)

×
k∏
b=1

N2∏
m=1

Γh

(
1

2
ω+ − σ(α+1)

b + ν(α+1)
m

)
Γh

(
1

2
ω+ − ν(α+1)

m + σ
(α)
b

)
, (5.36)

66There also exists a dual UV description of the same vortex loop, obtained by having the D1s end
on the leftmost NS5 along x3. This leads to a quiver with N1 and N2 exchanged and the opposite sign
for the 1d FI term compared to the system we are using. This sign difference is crucial for recovering
the same partition function from both configurations. For a detailed account see [174].
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where we suppressed the dependence on ω1 and ω2. The µ
(α)
j , ν

(α)
m are new chemical

potentials associated with the global symmetries, while the other chemical potentials

were defined in Sec. 5.2.1. The 1d part is in turn

Z1d(σ(α)) =∮ ∏
α

1

n!
∆Haar

(
u(α)

)∏
j

du
(α)
j

n∏
i,j=1

Γ1

(
u

(α)
i − u

(α+1)
j

)
Γ1

(
ω − u(α)

i + u
(α+1)
j

)
Γ̂1

(
u

(α)
i − u

(α)
j

)
Γ1

(
ω + u

(α)
i − u

(α)
j

)
×

n∏
i,j=1

Γ1

(
u

(α)
i − u

(α)
j + κ

)
Γ1

(
ω − u(α)

i + u
(α)
j − κ

)
Γ1

(
−u(α)

i + u
(α+1)
j + z − κ

)
Γ1

(
ω + u

(α)
i − u

(α+1)
j − z + κ

)
×

n∏
i=1

k∏
b=1

Γ1

(
u

(α)
i − σ

(α+1)
b + l

)
Γ1

(
ω − u(α)

i + σ
(α+1)
b − l

)
Γ1

(
−u(α)

i + σ
(α)
b + z − l

)
Γ1

(
ω + u

(α)
i − σ

(α)
b − z + l

)
×

n∏
i=1

N2∏
m=1

Γ1

(
−u(α)

i + ν
(α)
m + l

)
Γ1

(
ω + u

(α)
i − ν

(α)
m − l

)
Γ1

(
u

(α)
i − ν

(α+1)
m + z − l

)
Γ1

(
ω − u(α)

i + ν
(α+1)
m − z + l

) , (5.37)

where again we suppressed the dependence on ω for brevity. Once again, in order to

implement dimensional deconstruction at the level of partition functions, we break the

relevant groups involved to a diagonal subgroup and shift the arguments of the Gamma

functions, which results in a product over the KK mass parameters, mα = i2πα
R .

The resultant expression is much simpler and when expressed in terms of fugacities

reads

ZDec
3d−1d =

1

k!

∮ ∏
b

dvb
2πivb

ZDec
3d (v)ZDec

1d (v) , (5.38)

with

ZDec
3d (v) = (p; p)k(q; q)k

∏
b6=c

Γe

(
vbv
−1
c

∣∣∣p, q)−1
k∏
b=1

N1∏
j=1

Γe

(
(pq)

1
4 (vbs

−1
j )±

∣∣∣p, q)

×
k∏
b=1

N2∏
m=1

Γe

(
(pq)

1
4 (vbt

−1
m )±

∣∣∣p, q) , (5.39)

where sj = eRµj and tm = eRνm . The defect piece becomes just

ZDec
1d (v) =

(
(q; q)2

θ(y−1|q)

)k ∮ n∏
j

duj
2πiuj

∏
i,j ∆e

(
d uiu

−1
j |q, y−1

)
∏
i 6=j ∆e

(
uiu
−1
j |q, y−1

)
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Figure 12: The 4d N = 2 SYM theory in the presence of a 2d N = (2, 2) surface defect.
Black unoriented links and semi-circular nodes are 4d N = 2 hypermultiplets and 4d
N = 2 vector multiplets respectively of the bulk theory. The black squares denote 4d
flavour groups. The blue oriented links and nodes are 2d N = (2, 2) chiral multiplets
and 2d N = (2, 2) vector multiplets, respectively, for the defect theory.

×
n∏
j=1

k∏
b=1

∆e

(
ujv
−1
b c |q, y−1

) N2∏
m=1

∆e

(
u−1
j tm c |q, y−1

)
, (5.40)

which upon making use of the identifications that realise the embedding of the defect

into the bulk (5.33) leads to

ZDec
1d (z) =

(
(q; q)2

θ(p
1
2 |q)

)k ∮ n∏
j

duj
2πiuj

∏
i,j ∆e

(
p−1 uiu

−1
j |q, p

1
2

)
∏
i 6=j ∆e

(
uiu
−1
j |q, p

1
2

)
×

n∏
j=1

k∏
b=1

∆e

(
ujv
−1
b p−

3
8 q

1
8 |q, p

1
2

) N2∏
m=1

∆e

(
u−1
j tm p−

3
8 q

1
8 |q, p

1
2

)
.(5.41)

This is the combined S3
ω1,ω2

×S1
R̂

partition function for the quiver depicted in Fig. 12 in

the R-R sector for the 1d defect partition function. In the case of N1 = N2 = k, one can

once again implement the spectral flow argument (5.31) to recover the corresponding

index result in [172].

We close this discussion by noting that, although we have examined two very specific

examples involving vortex loops, one can clearly apply the method of exact deconstruc-

tion to more general setups. These can be engineered using branes through various

combinations of the ingredients from Tab. 9, including combinations of NS5 and NS5′

branes at different points along the x6 direction connected with different numbers of

D1s. As a result, one can obtain e.g. all examples of [174] placed on an orbifold sin-

gularity, which will result in product defect gauge groups, additional matter at each

quiver node and so on. The implementation of exact deconstruction to these theories

is straightforward.
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5.3 4d Surface Defects from 3d Wilson Loops

In Sec. 5.2 we demonstrated how to deconstruct codimension-two surface defects in 4d

N = 4/N = 2 theories that preserve non-chiral 2d N = (4, 4)/N = (2, 2) supersym-

metry from vortex loops in 3d N = 4/ N = 2 theories. The vortex loops in three

dimensions were defined by coupling 1d N = 4/N = 2 SQM to the 3d bulk. Similarly,

the deconstructed surface defects were defined by coupling 2d N = (4, 4)/N = (2, 2)

theories to the 4d bulk.

Another prominent, and perhaps more common, class of line defects in 3d theories

arises from Wilson loops. In 3d N = 4 theories 1
2 -BPS Wilson-loop operators, which

will be the focus of our discussion in the rest of this section, are given by path-ordered

traces of the form

WR = TrRP exp

∮
i
(
Aµẋ

µ +
√
−ẋ2σ

)
dτ , (5.42)

In this formula σ is the real scalar field in the N = 2 vector multiplet, which is part of

the 3d N = 4 vector multiplet. As usual, Wilson loops are labelled by a gauge-group

representation R. For concreteness, in what follows we will focus on the fundamental

and antisymmetric representations of the unitary gauge group (namely, representations

labelled by Young tableaux with a single column). Analogous statements will apply

to more general representations. As a one-dimensional defect, the operator (5.42)

preserves the 1d N = 4B supersymmetry that arises from the dimensional reduction

of the chiral 2d N = (4, 0) supersymmetry. This should be compared against the 2d

N = (2, 2) supersymmetry associated by dimensional reduction with the vortex loops.

In supersymmetric localisation the insertion of a Wilson-loop operator (5.42) in the

round S3 partition function67 is captured by the introduction of a factor

TrR
(
e2πσ

)
=
∑
β∈R

e2π〈β,σ〉 (5.43)

in the resultant matrix integral [53, 55]. On the RHS of this expression the sum is

performed over all the weights β of the representation R.

The question of whether one can implement exact deconstruction with 3d Wilson-

loop insertions is an obvious one. However, if there exists a well-defined procedure for

lifting 3d Wilson loops in some representation R, what kind of defect does one expect

to obtain in four dimensions? The natural answer seems to be a codimension-two defect

with chiral supersymmetry labelled by the same representation.

The literature on surface defects with 2d N = (4, 0) supersymmetry is relatively-

67For the moment we consider the case of a round S3. We will soon generalise to squashed three-
spheres with arbitrary squashing.
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limited.68 An early discussion of surface defects with 2d N = (8, 0) supersymmetry

appears in [199] and is based on the D3-D7 intersection in string theory; see [200] for

related work. The surface defects in [199] are formulated by integrating out 2d chiral

fermions. Notice that a similar approach to Wilson loops in 4d N = 4 SYM was

employed in [201, 202]. In that case the result of integrating out the chiral fermions is

not a single Wilson loop, but rather a sum over Wilson loops in different representations;

this is a point which we will come back to more explicitly in a moment. Here we stress

that the codimension-two operators obtained in this manner are formulated in terms

of a Wess–Zumino–Witten action supported on a surface, with no explicit reference to

individual representations [199].

Applying deconstruction to 3d Wilson loops is therefore an interesting direction

that has the potential to produce novel results about chiral surface operators in 4d

theories. In this section, we take the first steps towards this direction by studying

deconstruction at the level of S3
ω1,ω2

partition functions with Wilson loop insertions.69

The strategy is straightforward and begins with a 3d circular quiver-gauge theory

with a Wilson-loop insertion for each node. That in turn introduces a product of inser-

tions of the type (5.43) into the S3
ω1,ω2

partition function. Then, one has to implement

the deconstruction procedure and evaluate the result in the appropriate limit. We have

previously argued that in the context of S3
ω1,ω2

partition functions the main effect of the

exact-deconstruction procedure is to produce a shift in the argument of various Gamma

functions. This encoded the reorganisation of the 3d spectrum into the KK modes of

a 4d theory on a circle. However, from that point of view it is not immediately clear

how we should extend the prescription to treat insertions of the type (5.43). To handle

this issue we instead propose the following approach.

First, it is convenient to take a step back and reformulate 3d Wilson loops in terms

of a gauged 1d N = 2 Fermi multiplet in analogy with [201]—see [174] for a related

discussion in three dimensions.70 For starters, consider a gauge theory with a single

U(k) node. We insert a one-dimensional defect described by a gauged N = 2 Fermi

multiplet in the fundamental representation of the bulk U(k) gauge group. This can

be engineered using the ingredients of Tab. 10 in terms of k D3s suspended between

68We note that the generating function for a class of BPS co-dimension two defects on S3 × S1 with
(2, 0) supersymmetry was recently obtained from the affinisation of the S3 partition function including
Wilson-loop insertions, followed by a projection with affine characters [197, 198]. This procedure pro-
duces results that are very similar to the ones given in this section through deconstruction. It would
be very interesting to further explore the relationship between the two prescriptions.

69Chiral surface defects in 4d N = 2 or N = 4 SYM theories can also be obtained from the 6d
N = (2, 0) theory by dimensionally reducing codimension-two or codimension-four defects. Related
brane constructions of such defects appear, for example, in [203, 204]. These constructions produce
surface defects that are naturally labelled by representations of the gauge group.

70The 3d N = 2 Fermi multiplet is also a representation of the 3d N = 4 supersymmetry algebra,
and in that context it is sometimes called a half-Fermi multiplet; see e.g. the appendix of [205] for a
2d version.
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two NS5s along x3 and a single D5′ separated by some distance in the x7 direction.

The fermion χ in the Fermi multiplet emerges from the quantisation of open strings

connecting the D3s and D5′ and has the action∫
dt χ†

[
i∂t + (A0 +

1
√
ω1ω2

σ − 1
√
ω1ω2

im)
]
χ , (5.44)

where A0 is the temporal component of the bulk gauge field, σ is the bulk Coulomb-

branch parameter and m is a mass parameter that can be viewed as the vev of a

background U(1) gauge field, corresponding to the frozen dynamics of the single D5′.

Integrating out this fermion leads to the insertion of a 1
2 -BPS Wilson loop [174, 201].

Let us verify this statement at the level of the S3
ω1,ω2

partition function. As in the

vortex-loop case, we will take the Wilson-loop defect to wrap the Hopf fibre of the

ellipsoid.

Up to an overall regularisation-dependent factor, the contribution of such a Fermi

multiplet (5.19) can be re-expressed as

gN=2
fer (σ,m) =

k∏
b=1

sinπ(iω−1σb + ω−1m) ∝
k∏
b=1

(
e−πω

−1σb+iπω
−1m − eπω−1σb−iπω−1m

)
= eiπω

−1kme−πω
−1
∑
b σb

k∏
b=1

(
1− e−2πiω−1me2πω−1σb

)
, (5.45)

The factor e−πω
−1
∑
b σb is related to a global anomaly for U(1) ⊂ U(k) and is also noted

in [174], where it is argued that it is cancelled by a bare supersymmetric Chern-Simons

term in the bulk at level κ = 1
2 . Since

k∏
b=1

(
1− e−2πiω−1me2πω−1σb

)
=

k∑
ρ=0

(−1)ρe−2πiω−1mρ
∑
β∈Aρ

e2πω−1〈β,σ〉 (5.46)

we recover from (5.45) the expansion of the Fermi-multiplet contribution as a sum

over all Wilson loops in the anti-symmetric representations Aρ. From this result, the

contribution of the ρ-antisymmetric representation can be recovered by noticing that

it is weighted by the ρ-th power of the factor µ = e−2πiω−1m and hence isolated by

evaluating the residue

1

2πi

∮
dµµ−ρ−1gN=2

fer (σ, µ) . (5.47)

This observation motivates the following three-step approach for extending exact de-

construction to 3d Wilson loops:

(i) Add a 1d defect described by a Fermi multiplet for each node of the 3d quiver.
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(ii) Use this to deconstruct a 4d theory with a chiral 2d surface defect described by

a 2d Fermi multiplet.

(iii) Isolate the contributions associated with different powers of µ.

The last point that needs to be addressed is whether the final step in the above pre-

scription truly defines quantities that correspond to k independent objects in 2d. The

latter could in turn be interpreted as chiral surface operators labelled by antisymmetric

representations of the four-dimensional bulk gauge group U(k). To address this matter

let us examine in detail the results obtained by this prescription.

For the first step, and as in any of the constructions of the previous sections our

starting point is a 3d N -noded quiver, with each node labelled by α = b−N
2 c +

1, . . . , bN2 c. The specific details of the quiver are not important—we will only assume

that it is a 3d N = 2 or N = 4 quiver that deconstructs to a 4d N = 2 or N = 4 gauge

theory on a circle. For concreteness, one can consider engineering such an example by

taking the brane system leading to (5.44) and placing it on the orbifold singularity of

Tab. 10. At low energies, each node of the resultant quiver includes a 1d defect with

chiral supersymmetry, described by an N = 2 Fermi multiplet of mass m(α). This

system is placed on S3
ω1,ω2

and as already mentioned the 1d defect at each node wraps

the Hopf fibre.

Before exact deconstruction, the total 1d contribution to the S3
ω1,ω2

partition func-

tion is

Z1d(σ
(α)
b ,m

(α)
b ) =

∏
α

gN=2
fer (σ(α),m(α)) (5.48)

with each Fermi-multiplet contribution given by71

gN=2
fer (σ(α),m(α)) =

k∏
b=1

Γ1

(
−σ(α)

b −m(α)
∣∣∣ω)−1

Γ1

(
ω + σ

(α)
b +m(α)

∣∣∣ω)−1
. (5.49)

To deconstruct, we set σ(α) → σ and m(α) → m, shift the arguments of the Γ1 functions

and take N →∞ to obtain

ZDec
1d (σ,m) =

∞∏
α=−∞

k∏
b=1

Γ1

(
−σb −m+ i

2πα

R

∣∣∣ω)−1

Γ1

(
ω + σb +m+ i

2πα

R

∣∣∣ω)−1

∝
∞∏

α=−∞

k∏
b=1

∞∏
n=−∞

(
−σb −m+ i

2πα

R
+ nω

)
.

(5.50)

71We have switched off all other chemical potentials that could appear here for the purposes of this
discussion.
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Up to an unimportant zeta-function regularisable factor

ZDec
1d (σ,m) ∝

∞∏
α=−∞

k∏
b=1

∞∏
n=−∞

(
ω−1(−σb −m) + n+ ατ

)
=

k∏
b=1

θ
(
e−2πiω−1σbµ|q

)
, (5.51)

where we defined τ = − i
ωR , µ = e−2πiω−1m, q = e2πiτ . This completes the second step

of our prescription.

For the third and final step we compute the quantity

ZDec (ρ)
1d (σ) ≡ 1

2πi

∮
dµµ−ρ−1

k∏
b=1

θ
(
e−2πiω−1σbµ|q

)
, (5.52)

Since θ(z|q) is closely related to the Jacobi-theta function,

ϑ(z|q) =

∞∏
n=1

(1− qn)(1 + zqn−
1
2 )
(

1 + z−1qn−
1
2

)
=

∞∑
n=−∞

znq
n2

2 , (5.53)

and the eta function, η(q) = q
1
24
∏∞
n=1(1− qn), via the relation

θ(z|q) = q
1
24 η−1(q)ϑ(−zq−

1
2 |q) , (5.54)

we can re-write (5.52) as

ZDec (ρ)
1d (σ) = (−1)ρq

ρ
2

+ k
24 η−k(q)

∞∑
n1,...,nk=−∞

δρ,
∑
b nb

e−2πiω−1
∑
b nbσbq

1
2

∑k
j=b n

2
b .

(5.55)

Therefore, our proposal for the index of a chiral surface defect, labelled by integer ρ,

in 4d N = 2 or N = 4 theories is given by

I(ρ)
4d−2d =

∮ k∏
b=1

dvb
2πivb

ZDec
3d (v)ZDec (ρ)

1d (vτ ) , (5.56)

with vb = e−2πiRσb . Now one can ask whether ρ could be related to the ρ-antisymmetric

representation in a suitable classification.

At first sight, the association with the fundamental or antisymmetric representations

of U(k) fails because the integer ρ that appears in (5.55) is not restricted to k different

values. Nevertheless, we notice that ZDec (ρ)
1d (σ) as defined in (5.55) obeys the following
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quasi-periodicity relation

ZDec (ρ+k)
1d (σ) = (−1)kqk+ρe−2πiω−1

∑
b σb ZDec (ρ)

1d (σ) , (5.57)

which is easily derived by shifting all sums over nb by one unit.

The σ-dependent factor e−2πiω−1
∑
b σb would cancel if the definition (5.55) included

an extra e2πiω−1 ρ
k

∑
b σb ,72 or if the bulk gauge group was SU(k). With this cautionary

note in mind, the deconstructed 3d-1d squashed S3 partition function is restricted to k

different values that could eventually fit into a classification of chiral surface defects in

terms of the fundamental or antisymmetric representations of the gauge group.

As a brief illustration we consider the case of a U(2) gauge group, i.e. k = 2. Then,

it is straightforward to show that ZDec (ρ)
1d in (5.55) only assumes two different values73

eπiω
−1ρ

∑
b σbq−

ρ2

4 ZDec (ρ=even)
1d (σ) = ϑ00

(
e−2πiω−1(σ1−σ2)

∣∣∣q2
)
,

eπiω
−1ρ

∑
b σbq−

ρ2

4 ZDec (ρ=odd)
1d (σ) = ϑ10

(
e−2πiω−1(σ1−σ2)

∣∣∣q2
)
, (5.58)

where ϑ00, ϑ10 are the standard theta-function variants with characteristics. It is pos-

sible to manipulate the restricted sum in (5.55) for general k and express it in terms of

the product of k − 1 theta functions, but unfortunately we have not uncovered simple

expressions like the ones in (5.58) for general k.

As in the vortex-loop case, we should mention that more complicated Wilson-loop

insertions can be used as the starting point for deconstruction, where the associated

representations of the bulk gauge group can be symmetric, antisymmetric or products

thereof.

5.4 Conclusions and Outlook

In this section we applied the exact-deconstruction procedure, introduced in [2, 3], to

exact partition functions of 3d circular-quiver theories that lift to 4d indices. We gen-

eralised it to include supersymmetric, codimension-two defects that are associated with

vortex- or Wilson-loop insertions at each node of the 3d quiver. In the process of doing

so, we made use of some remarkable identities between special functions of hyper-

bolic and elliptic type. Even though we explicitly compared our post-deconstruction

results with the index of superconformal 4d-2d systems, we stress that exact decon-

struction more generally produces supersymmetric partition functions on S3 × S1 for

non-conformal setups. We note that we applied our procedure directly at the level of

72We remind the reader that a similar e−π
∑
b σb factor had to be cancelled in (5.45) for the case of

the round S3.
73This is up to an overall e−πω

−1ρ
∑
b σb factor, which can be cancelled by the e2πiω−1 ρ

k

∑
b σb factor

proposed in the previous paragraph.
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integrands for the 4d/3d and 2d/1d Coulomb-branch parameters. Although we have

not done so, the associated integrals can subsequently be performed using the Jeffrey-

Kirwan residue prescription [172, 174, 195]. It is also worth pointing out that by em-

ploying exact deconstruction we have straightforwardly recovered non-trivial results for

4d-2d indices while completely bypassing the conventional dimensional-deconstruction

limit at the level of classical Lagrangians. Regarding the deconstruction of codimension-

one defects, we introduced a localised insertion of gauge/matter fields at specific nodes

of the 3d circular quiver, which lift to a coupled system of 4d-3d indices/three-sphere

partition functions. Obtaining results for this class of defects is particularly simple

through our method.

There are various avenues for future research stemming from this work. For ex-

ample, it would be useful to further examine the prescription of Sec. 5.3 that isolates

chiral-surface defect contributions in 4d related to a specific (single-column) Young

tableau and, more specifically, contemplate further on its interpretation from the four-

dimensional perspective. Moreover, vortex defects in both 4d and 3d can be obtained

using certain difference operators that act directly on the 4d/3d index/partition func-

tion [140, 189]. These operators satisfy an interesting elliptic algebra and are related

by dimensional reduction. It would be interesting to see how exact deconstruction fits

into this picture. In the direction of reducing supersymmetry, it would be worth de-

termining whether the surface defects for 4d N = 1 SCFTs recently discussed in [206]

can also be studied from three dimensions using exact deconstruction.

Departing from our 3d/4d set-up, an obvious generalisation of our results would

involve applying them to the six-dimensional (2,0) theory [2,23]. One could attempt to

deconstruct the (2,0) partition function on S4 × T2 in the presence of various defects,

based on the S4 (defect) partition functions associated with N = 2 superconformal

circular-quiver theories in 4d. Such an approach would make contact with and supple-

ment the results of [207].

In addition, one could remain on the three-sphere to explore 4d non-Lagrangian

theories. For example, to see if an orbifold of ABJM theory could reproduce the results

of [208] for the index of 4d N = 3 SCFTs [209,210]. Finally, it would be very interesting

to try and extend the principle of deconstruction to non-Lagrangian starting points.

This would entail generalising exact deconstruction away from the individual building-

block prescription presented here, to an operation at the level of the full partition

function.
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Conclusions and Outlook

This thesis consisted of two main themes. The first was superconformal representation

theory. Specifically, how we can use the superconformal algebras in 5d and 6d to

help us in our quest to understand these mysterious higher dimensional theories. The

second theme was that of dimensional deconstruction. We explored how one could

use information about theories in lower dimensions to construct higher dimensional

quantities that we then compared against. In this final chapter we present a short

summary of the results along with some concluding remarks about future directions for

research.

In Chapter 3 we built on the work of [36] by providing a level-by-level construction

of multiplets available in the superconformal algebras in 5d and 6d. Through this study

we found various unifying themes that coincided nicely with the lore on SCFTs in d > 4.

These relied on the recombination rules. Recombination happens when one tunes the

conformal dimension to be at a certain threshold limε→0 ∆ + ε, whereupon the long

multiplet splits into two short multiplets. This has a wider implication for whether

or not a short multiplet is absolutely protected, since a short multiplet that combines

into a long multiplet need not necessarily be protected from quantum corrections (if the

other short multiplet that it pairs up with is also present). In 4d this ε can be an exactly

marginal parameter, though in 5d and 6d these theories are necessarily isolated [87,88],

so the recombination rule is simply an algebraic feature.

With this in mind, we have shown that all multiplets in 5d and 6d that contain

higher spin currents can never recombine into long multiplets. This implies that there

are no exactly marginal deformations of (almost) free theories. Moreover, all multiplets

with conserved spin-two currents never recombine, which implies that there are no

marginal couplings between two isolated SCFTs, unlike in 4d. Both of these statements

are purely algebraic, and are compatible with the isolated nature of 5d and 6d SCFTs.

One can also rule out classes of multiplets in free SCFTs by virtue of the presence

of higher spin free multiplets. For example, these include some B and C multiplets in
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6d (1,0) and (2,0) for c1 > 0; along with some additional D multiplets in (2,0) where

d2 = 1.

On the subject of ruling out multiplets, we included the general superconformal

indices for each class of multiplet that we studied following the paper [24]. Specifically

in Section 3.4.5 we used a conjectured MacDonald limit of the interacting supercon-

formal index to perform spectroscopy along the lines of [117]. This was a powerful

technique that allowed us to probe the spectrum of the (2,0) theory. However, it was

unfortunately quite limited. The MacDonald limit is insensitive to a large amount of

possible multiplets in the SCA, so we could only make definitive statements about a

subsector of the theory.

There are two interesting lines of inquiry that follows this. The first is to try

to obtain a closed form for the coefficients of multiplets that appear in the spectral

decomposition. This might be interesting from a combinatorics point of view but is

still limited in terms of its wider implications for the (2,0) theory spectrum. The

second is to move onto the fully refined index. This is quite difficult since the integral

expressions for interacting (2,0) indices are very complicated, as they involve sums over

the instanton sectors using the Nekrasov functions in App. A. An approach would be

to use a series expansion in order to evaluate the integral for low rank to a sufficiently

high order to gain meaningful information about the coefficients of the refined indices.

However, this is computationally quite an intense procedure, and is not clear to which

order in an expansion parameter would be sufficient to get meaningful information.

There is the possibility that there exists another limit of the index that allows for exact

integration due to a simplification of the Nekrasov partition function. However, such a

limit even may not even exist, let alone one that has access to a wider set of multiplets

than the Schur limit.

Lastly, Chapter 3 used results that can be obtained using the python package

detailed in Appendix B. While the work has already been done for dimensions three

and above, this package is still useful for two reasons. Firstly, for sixteen supercharge

theories, most of the multiplets have been omitted due to their sheer enormity. Thus

this package provides a way for the reader to access whichever multiplet they want,

and not be at the whim of the author’s sensibility of what can or cannot neatly fit onto

a page. The other reason is that that there is a large number of defect theories whose

superconformal algebra has not been enumerated in this fashion; cf. [211–214] which

might benefit from having this tool available.

In Chapter 4 we used some of the advances in exact results, such as localisation and

the refined topological vertex, to test the efficacy of the dimensional deconstruction

proposal of [23] for 6d theories.

We started with the 6d (2,0) theory. This can be deconstructed by starting with a

4d N = 2 circular quiver theory which results in the 6d theory on a two-torus. The
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k k k k

k′k′

Figure 13: A modification of the circular quiver considered in Chapter 4 to include
additional field content.

first check was done using a comparison between the Higgs branch Hilbert series and

the “half-BPS” limit of the (2,0)k index. Specifically

lim
N→∞

HSNk =
k∏

m=1

1

1− xm
= I(2,0)k

1
2

-BPS
. (6.1)

This was a short calculation that served as a litmus test for the proposal before carrying

onto a more refined computation. While this was done for the Ak−1 theory in [2], it

was later extended to the Dk case in [215]. The starting quiver was more subtle, and

the deconstruction procedure as a whole was more complicated. It would be nice to

see if this could be extended to the Ek series. This could possibly shed some light as

to the brane realisation of this theory in M-theory.

The initial computation, while encouraging, can be improved on by including more

information. We implemented a prescription for performing dimensional deconstruction

at the level of the partition function—a process dubbed as “exact deconstruction”. It

was shown that, upon integration, we have∫
[da]

∣∣∣∣ lim
N→∞

ZHiggs
4d

∣∣∣∣2 =

∫
[da] |Z6d|2 = ZS4

ε1,ε2
×T2 . (6.2)

While establishing this dictionary is promising, it is not clear whether one can extract

novel results using this procedure. For example, while physically motivated, this proce-

dure is simply akin to a q-deformation of 4d N = 2∗ which will of course give the (2, 0)

partition function by appealing to 5d MSYM. Extracting correlation functions of chiral

operators and Wilson loop expectation values as detailed in Chapter 4 by starting with

a 4d N = 2 circular quiver might be extraneous when compared to simply starting

with 5d MSYM. Perhaps a way to predict new quantities via this method would be

more along the lines of the codimension-one defects detailed in [4]. More concretely

this would involve having additional field content at, say, one of the nodes and then

performing deconstruction as normal as in Fig. 13. This would now have codimen-

sion two. This approach would lead to a novel way of generating defects in the (2,0)

theory that wrap the S4, though care would need to be taken in order to ensure the
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correct IR behaviour when one takes the deconstruction limit. It would be interesting

to investigate this avenue.

In this vein, it could be fruitful to consider the codimension-two defects considered

on the S4 considered in [175,216]. A whole host of defect configurations were considered,

including ones where two 2d defects overlap at a point leading to a 0d defect theory on

the intersection. They provide a detailed brane system which engineers these defects

and meta-defects which could lead to interesting and intricate M2/M5 brane ensembles,

alongside the ones considered in [207].

The second thing that we considered in Chapter 4 was to deconstruct Little String

Theory. This required a S4 partition function for a 4d N = 1 which, though it should

exist in principle, is not currently amenable to any of the known techniques for ex-

tracting such information. This was circumvented by [25] by means of an analytic

continuation through dimensions. We proposed a refined version of this quantity to be

defined on the ellipsoid with squashing parameters ε1 and ε2. The proposed form was

Zchi
pert =

∏
β∈R

Γ3 (ε+ + iM + i〈β, λ〉| ε1, ε2, ε+)

Γ3 (2ε+ − iM − i〈β, λ〉| ε1, ε2, ε+)
,

Zvec
pert =

∏
β∈Adj

Γ3(3ε+ − i〈β, λ〉|ε1, ε2, ε+)

Γ̂3(i〈β, λ〉|ε1, ε2, ε+)
. (6.3)

These satisfied the preliminary tests that were required of them, and also matched the

6d result in the deconstruction limit. Though a similar problem to the (2,0) case arises:

it seems far easier and more robust to simply calculate the partition function of LST

through conventional techniques such as the refined topological vertex as in [82, 83].

Moreover, given the subtlety of N = 1 partition functions on the S4 it is not obvious

that one could use this deconstruction method to find robust novel things about LST.

An interesting follow up would be to see if one could perform a free-theory calcu-

lation for the 4d N = 1 multiplets on the ellipsoid. This was performed in [25] on the

round sphere where it supported the conjectured partition functions. It would be a nice

calculation to put the 4d theory on the ellipsoid à la [44] and evaluate its spectrum

under the Laplacian via Gaussian elimination.

The last chapter focused on testing some ideas for generalising the “exact decon-

struction” procedure. In this section we have already mentioned the idea of extending

the discussion to include defects. This was performed in Chapter 5, only in the context

of 3d to 4d theories. The reason why was that both sides of the picture are far more

tractable with more resources for both. We considered the case of vortex and Wilson

loop defects in 3d from [174]. As before, the concrete brane realisation of the 3d theory

acted as a robust guiding principle for the implementation of the procedure of dimen-

sional deconstruction. This led to matching the results for (2,2) defects in 4d theories
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that were explored in [172]. There were also new results for (4,0) defects which came

from the Wilson loops in 3d. These were similar to ones found via affine characters in

the context of the superconformal index in [197, 198]. It would be interesting to fully

explore the connection between the two approaches.

Moving away from defects but staying in 3d, an extremely interesting line of inquiry

would be in exploring the relationship between ABJM and the newly discovered non-

Lagrangian 4d N = 3 theories. In [209] it was mentioned that these theories reduce

to ABJM at some point in the moduli space. Due to the non-Lagrangian nature of

the theory, it is hard to extract information about them. Some approaches for the

index have relied on AdS/CFT [217] whereas others have used a so-called discrete

gauging [208]. By starting with an orbifold of ABJM on the S3, one could possibly

obtain integral formulas for more refined versions of the mentioned indices for a generic

rank of the gauge group.

Exact methods for calculating quantities in quantum field theory are an important

and rewarding line of attack. The scope of information that we can extract from them

has broadened significantly over the last decade or so. This has happened through

obtaining a deeper understanding of these techniques in order to generalise them; or

through applying them in interesting and novel ways. This body of work has focused

on the latter approach and we hope that it has been successful in inspiring the reader

to try some exact methods in unconventional ways.
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Appendix A

An Exegesis on Special Functions

We use this technical appendix to collect useful formulas and identities that we will use

liberally throughout the thesis. This doubles up as a reference for the conventions that

will be adhered to. We will build from rational functions, to trigonometric and then to

elliptic; as well as any relevant properties. Caution should be paid when using these

formulas since they are often defined for specific regions of analyticity.

A.1 Rational Functions

Barnes Gamma functions

To start, we define the Barnes N -Gamma function as

ΓN (x|ω1, . . . , ωN ) = exp

[
∂

∂s
ζN (s, x|ω1, . . . , ωN )

∣∣
s=0

]
, (A.1)

for Rωi > 0 and the Barnes Zeta function defined as

ζN (s, x|ω1, . . . , ωN ) =
∑

`1,...,`N≥0

1

(x+ `1ω1 + · · ·+ `NωN )s
. (A.2)

To see the analytic properties it is helpful to write this as

∑
`∈NN

1

(x+ `1ω1 + · · ·+ `NωN )s
=

1

Γ(s)

∫
dt

t
ts

e−tx

(1− e−ω1t) · · · (1− e−ωN t)
. (A.3)

One requirement for convergence is Rωi > 0 since then 0 < e−ωit < 1. This is clear

because then we can write

1

Γ(s)

∫
dt

t
ts

e−tx

(1− e−ω1t) · · · (1− e−ωN t)
=
∑
`∈NN

1

Γ(s)

∫
dt

t
tse−t(x+`·ω)
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=
∑
`∈NN

(x+ ` · ω)−s , (A.4)

as required. We thus arrive at the product representation

ΓN (x|ω1, . . . , ωN ) ∝
∏

`∈NN

1

x+ ` · ω
, (A.5)

up to a global constant that arises due to the analytic continuation in s. We also define

the function Γ̂N which is the same as the above, only the domain of the product is over

` ∈ NN \ {0}.
One can combine Barnes Gamma functions to lower the ‘rank’ using the difference

equations

ΓN−1(x|ω(i)) =
ΓN (x|ω1, . . . , ωN )

ΓN (x+ ωi|ω1, . . . , ωN )
, (A.6)

where ω(i) = (ω1, . . . , ωi−1, ωi+1, . . . , ωN ). The Barnes Gamma function satisfies the

following nice reflection formula which can be proved through its integral representation:

ΓN (−x|ω1, . . . , ωN ) = ΓN (x+ ω1 + ω2 + . . .+ ωN |ω1, . . . ωN )(−1)N . (A.7)

Let us now continue the parameter ω1 such that ω1 < 0. Clearly now e−ω1t > 1 and

so the geometric series does not converge. Therefore we need to carefully treat the

integral∫
dt

t
ts

e−tx

(1− e−ω1t) · · · (1− e−ωN t)
= −

∫
dt

t
ts

e−t(x−ω1)

(1− eω1t)(1− e−ω2t) · · · (1− e−ωN t)
,

(A.8)

which is now convergent. Thus we can perform the integral to get∫
dt

t
ts

e−t(x−ω1)

(1− eω1t)(1− e−ω2t) · · · (1− e−ωN t)
= Γ(s)

∑
`∈NN

(x− (`1 + 1)ω1 + ˆ̀· ω̂)−s ,

(A.9)

where we define ˆ̀ = (`2, . . . , `N ) and ω̂ = (ω2, . . . , ωN ). Putting everything together

we have that the N -Gamma function with an analytically continued ω1 is equal to

ΓN (x|ω1, . . . , ωN ) ∝
∏

`∈NN
(x− (`1 + 1)ω1 + ˆ̀· ω̂) . (A.10)

Note that the analytic structure has changed, in particular, instead of poles there are

zeros. Moreover, the Gamma function is now well defined at x = 0.
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Through this we can introduce the hyperbolic Gamma function Γh(x|ω1, ω2) as

defined in [218] which is closely related to the double-gamma function

Γh(x|ω1, ω2) =
Γ2(x|ω1, ω2)

Γ2(−x+ ω1 + ω2|ω1, ω2)
. (A.11)

This function is actually the rank two specialisation of the so-called multiple sine func-

tion defined in [219] as

SN (x|ω) = ΓN (x|ω)−1ΓN (|ω| − x|ω)(−1)N , (A.12)

where |ω| = ω1+. . .+ωN , which satisfies the same difference equation that the multiple

gamma function does.

These functions naturally appear in the context of sphere partition functions cf. [25,

70, 220]. Another function that we encounter in the context of partition functions, in

particular for defects, is

∆h(a|ω, t) ≡ Γ1(a|ω)Γ1(ω − a|ω)

Γ1(a+ t|ω)Γ1(ω − a− t|ω)
=

sin(π(a+t)
ω )

sin(πaω )
. (A.13)

4d Nekrasov functions

The functions above have all been regularised infinite products. The next set that we

consider are finite product formulas associated with partitions of natural numbers µ

such that µ1 ≥ µ2 ≥ . . . ≥ µl(µ) where the µi are all non-negative.

An important function that we will encounter in this thesis is the so-called ‘Nekrasov’

function. It is characterised by two partitions, µ and ν, and the Omega background

parameters ε1 and ε2 [52]. It is defined as

Nλν(x; ε1, ε2) =
∏

(i,j)∈λ

(
x+ ε1(λi − j + 1) + ε1(i− νtj)

)
×
∏

(i,j)∈ν

(
x+ ε1(j − νi) + ε2(λtj − i+ 1)

)
, (A.14)

where λi is the number of boxes in the ith column of the partition λ. Note that we

have ε1 > 0 and ε2 < 0.

These satisfy the following exchange relations [73]

Nλµ(m;−ε2,−ε1) = Nµtλt(m− ε1 − ε2; ε1, ε2),

Nλµ(−m; ε1, ε2) = (−1)|λ|+|µ|Nµλ(m− ε1 − ε2; ε1, ε2) ,

Nλµ(m; ε2, ε1) = Nλtµt(m; ε1, ε2) , (A.15)
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A.2 Trigonometric and Elliptic Functions

The functions defined above can be generalised to include infinite towers of poles and

zeros. A simple way to introduce this is to ‘q-deform’ a function. A q-number is defined

as

x→ [x]q =
1− qx

1− q
, (A.16)

such that limq→1[x]q = x. This is achieved by writing q = e−β. In the context of

partition functions, this is interpreted as adding Kaluza-Klein modes, with β being the

radius of the circle. This is seen very easily in the context of S3 partition functions in

3d and the 4d superconformal index.

A free 3d N = 2 chiral multiplet with some r-charge r on a squashed S3 has the

partition function [57,67]

Zchi(r) = Γh(rω+|ω1, ω2) , (A.17)

with ω+ = ω1+ω2
2 , where ω1 and ω2 are the squashing parameters of the sphere. The

superconformal index à la [40] of a free 4d N = 1 chiral multiplet is simply

Ichi(r) =
∏

`1,`2≥0

1− (pq)−
r
2 p`1+1q`2+1

1− (pq)
r
2 p`1q`2

, (A.18)

where we have defined p = e−βω1 and q = e−βω2 . It is simple to show that

lim
β→0
Ichi(r) = Zchi(r) , (A.19)

where the β → 0 limit can be seen geometrically as shrinking the circle of the S3 × S1
β

partition function. More generally we may define the so-called elliptic gamma function

as

Γe(z|p, q) =
∏

`1,`2≥0

1− z−1p`1+1q`2+1

1− zp`1q`2
, (A.20)

which is simply the q-deformation of the hyperbolic gamma function that we previously

defined. It satisfies

Γe(z|p, q) = Γe

(
pq

z

∣∣∣∣p, q)−1

. (A.21)

Reducing β → 0 takes one from elliptic to hyperbolic, but we can also go in the opposite
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direction:

∞∏
α=−∞

Γh

(
x+ i

2πα

β

∣∣∣∣ω1, ω2

)
= z2(pq)−

1
2 Γe(z|p, q) , (A.22)

with z = e−βx, p = e−βω1 and q = e−βω2 . This hinges on the product form of the sin

function

sin(πx) = πx

∞∏
`=1

(
1− x2

`2

)
. (A.23)

This can be additionally rephrased through the use of gamma functions

Γ1(x|ω)−1Γ1(ω − x|ω)−1 = 2 sin
πx

ω
. (A.24)

Indeed one can define the trigonometric analogue of the Barnes Gamma function, the

multiple q-Pochhammer symbol

∞∏
α=−∞

ΓN

(
x+ i

2πα

β

∣∣∣∣ω) ∝ ∏
`∈NN

(
1− zp`11 · · · p

`N
N

)−1
= (x; p1, . . . , pN )−1 , (A.25)

with pi = e−βωi74 and z = e−βx, where we defined

(x; p1, . . . , pN ) =
∏
`∈NN

(1− xp`11 · · · p
`N
N ) . (A.26)

The exact factor depends on the rank of the gamma function being regularised. This

identity can be rephrased as

ΓN+1

(
x+ i

2π

β

∣∣∣∣ω, i2πβ
)

ΓN+1

(
x

∣∣∣∣ω,−i2πβ
)
∝ (x; p1, . . . , pN )−1 , (A.27)

and is core to the process of exact dimensional deconstruction. The analogue of the

deconstruction identity for the function ∆h is

∆e(A|Ω, T ) =
∞∏

α=−∞
∆h

(
a+ i

2πα

R

∣∣∣ω, t) , (A.28)

where A = e−Ra, Ω = e−Rω, T = e−Rt. The function ∆e(A|Ω, T ) is the ratio of theta

74Note that, when N = 2, we will use p = e−βω1 and q = e−βω2 to compare with the superconformal
index literature, while we will use q = e−βε1 and t = eβε2 when comparing to the topological strings
literature, after the analytic continuation.

188



APPENDIX A. AN EXEGESIS ON SPECIAL FUNCTIONS

functions

∆(A|Ω, T ) =
θ(AT |Ω)

θ(A|Ω)
, (A.29)

who explicit form will be defined in the following few lines.

When N = 2 we have a function similar to the familiar refined MacMahon function

(z; p, q) =M(zq−1; p, q) . (A.30)

The MacMahon function satisfies the reflection formula

M(z−1; p, q) =

(
−z
√

q

t

) 1
12

M
(
z
t

q
; p, q

)
, (A.31)

after zeta function regularisation. The elliptic functions used in this thesis are

θ(q|y) =
∞∏
`=0

(1− yq`)(1− y−1q`+1) ,

η(q) = q
1
24

∞∏
`=0

(1− q`+1) , (A.32)

alongside

θ1(q|y) = −iq
1
8 y

1
2

∞∏
`=0

(1− q`+1)(1− yq`+1)(1− y−1q`) , (A.33)

where y = e2πiz and q = e2πiτ with Iτ > 0.

The modular properties are easier to see when expressing the latter two functions

in terms of τ and z. Notably

θ1(τ + 1; z) = θ1(τ ; z) , θ1

(
−1

τ
;
z

τ

)
= −i(−iτ)

1
2 exp

(
iπz2

τ

)
θ(τ ; z) , (A.34)

and

η(τ + 1) = e
iπ
12 η(τ) , η

(
−1

τ

)
= (−iτ)

1
2 η(τ) . (A.35)

However, since we do not exploit any modular properties of these functions in this thesis,

we will use the former convention to express the arguments in terms of fugacities rather

than chemical potentials.
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One can relate the gamma functions to the theta functions through [168]

∏
α,α̂∈Z

ΓN (x+ α+ α̂τ |ω1, . . . , ωN ) =
∏

`∈NN

1

θ(q|y)
, (A.36)

with y = e−2πi(x+`·ω) and q = e2πiτ up to zeta function regularisation.

5d Nekrasov Functions

We may also define an analogous set of finite product formulas associated with par-

titions. The relevant ones for us are defined on the Omega background, R4
ε1,ε2 × S1

β.

These functions depend on the exponentiated Omega background parameters

q = e−βε1 , t = eβε2 , (A.37)

where β is the radius of the additional circle. Note that we have ε1 > 0 and ε2 < 0.

These 5d Nekrasov functions come in two forms. First we define

Nλµ(Q; t, q) =
∞∏

i,j=1

1−Qti−1−λtjqj−µi

1−Qti−1qj

=
∏

(i,j)∈λ

(1−Qqλi−j+1tµ
t
j−i)

∏
(i,j)∈µ

(1−Qq−µi+jt−λ
t
j+i−1) . (A.38)

Since the dependence of t and q in these functions does not change throughout the

thesis, we shall use the shorthand notation Nλµ(Q; t, q) = Nλµ(Q) for brevity.

Note that we can build this function with the specialisation of the MacDonald

polynomials through

Z̃ν(t, q)Z̃νt(q, t) =

(
−
√

q

t

)|ν|
t−
‖νt‖2

2 q−
‖ν‖2

2 Nνν(1)−1 , (A.39)

with

Z̃ν(t, q) = t−
‖νt‖2

2 Pν(t−ρ; q, t) =
∏

(i,j)∈ν

(
1− tν

t
j−i+1qνi−j

)−1
. (A.40)

For special values the Nλν function behaves as a delta function. Namely Nλ∅
(

t
q

)
=

δλ∅ = N∅λ (1). This form of the Nekrasov functions satisfy the following identities

which have been poached from [73]

Nλµ(Q; q, t) = Nµtλt
(
t

q
Q; t, q

)
,
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Nλµ(Q−1; t, q) =

(
−Q−1

√
q

t

)|λ|+|µ|
t
‖µt‖2−‖λt‖2

2 q
‖λ‖2−‖µ‖2

2 Nµλ
(
Q
t

q
; t, q

)
.(A.41)

The other form has somewhat nicer exchange formulas, and is a much simpler general-

isation of the 4d case. We may write

Nλµ(Q; t, q) =

(
Q

√
q

t

) |λ|+|µ|
2

t
‖µt‖2−‖λt‖2

4 q
‖λ‖2−‖µ‖2

4 Nβ
λµ(x; ε1, ε2) , (A.42)

for some Q = e−βx, where

Nβ
λµ(x; ε1, ε2) =

∏
(i,j)∈λ

2 sinh
β

2

[
x+ ε1(λi − j + 1) + ε1(i− µtj)

]
×
∏

(i,j)∈µ

2 sinh
β

2

[
x+ ε1(j − µi) + ε2(λtj − i+ 1)

]
. (A.43)

These functions behave very simply in the β → 0 limit

Nβ
λµ

β→0−−−→ β|µ|+|λ|Nλµ , (A.44)

and satisfy [73]

Nβ
λµ(x; ε2, ε1) = Nβ

λtµt(x; ε1, ε2) ,

Nβ
λµ(x;−ε2,−ε1) = Nβ

µtλt(x− ε1 − ε2; ε1, ε2) ,

Nβ
λµ(−x; ε1, ε2) = (−1)|µ|+|λ|Nβ

µλ(x− ε1 − ε2; ε1, ε2) . (A.45)

A.3 The Plethystic Exponential

A core tool in the combinatorics of operator counting is the Plethystic exponential. It

is a way to take all distinct combinations of the “single-particle” set of operators that

we might want to count. For example, the grand canonical partition function for an

ideal quantum gas of bosons is given by

Z =
∏
i

1

1− xBi
, (A.46)

and will produce a counting tool to count all possibly combinations of these bosonic

states. This admits a simple rewriting as

Z =
∏
i

1

1− xBi
=
∏
i

exp(− log(1− xBi )) = exp

( ∞∑
n=1

1

n

∑
i

(xBi )n

)
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= P.E.

[∑
i

xBi

]
, (A.47)

where the last line has defined the Plethystic exponential. Suppose we now have a gas

of multiple species of bosons and fermions, we would simply write

Z =

∏
j(1− xFj )∏
i(1− xBi )

= P.E.

∑
i

xBi −
∑
j

xFj

 , (A.48)

where the single letter is simple zsingle =
∑

i x
B
i −
∑

j x
F
j . Since it has this interpretation

in terms of operator combinatorics, this operation appears naturally throughout our

discussion of exact partition functions.

Indeed, we can rephrase a lot of the trigonometric and elliptic functions that we have

previously defined through the Plethystic exponential. The relevant ones are defined

through

(x; p1, . . . , pN ) = P.E.

[
−x

(1− p1) · · · (1− pN )

]
,

η(q) = q
1
24 P.E.

[
q

1− q

]
,

θ(q|y) = P.E.

[
− y

1− q
− qy−1

1− q

]
,

θ1(q|y) = −iq
1
8 y

1
2 P.E.

[
− q

1− q
− y

1− q
− qy−1

1− q

]
,

Γe(z|p, q) = P.E.

[
z − z−1pq

(1− p)(1− q)

]
. (A.49)

Note that, through this definition, we can perform a quick and dirty analytic continu-

ation without having to appeal to the integral representation. For example

(x; p1, . . . , p
−1
i , . . . , pN ) = P.E.

[
−x

(1− p1) · · · (1− p−1
i ) · · · (1− pN )

]
= P.E.

[
xpi

(1− p1) · · · (1− pN )

]
= (xpi; p1, . . . , pN )−1 , (A.50)

though caution should be taken when doing this, as it can be confusing when dealing

with fugacities rather than chemical potentials.

192



Appendix B

The Racah–Speiser Algorithm

and Its Implementation

We use this technical appendix to describe how the Racah–Speiser (RS) algorithm used

in Chapter 3 works and how to implement it in a python3 library that was developed by

the author. We will also show how the Racah-Speiser algorithm is related to operator

constraints through the use of supercharacters in Chapter 3.

B.1 Racah–Speiser and Operator Constraints

In this section we provide the details needed to carry out the RS algorithm for the 5d

N = 1, 6d (1, 0) and 6d (2, 0) SCAs. Fortunately, we need only discuss three different

algebras, so(5), su(4) and su(2). We will assume some familiarity with the description

of the RS algorithm from App. B of [37], the notation of which we use. First, we

describe the Racah–Speiser algorithm.

B.1.1 The Racah–Speiser Algorithm

The Racah–Speiser algorithm is a prescription for performing Clebsch-Gordan decom-

positions of tensor products of representations in representation space. A good descrip-

tion for the procedure can be found in [66] and in Appendix B of [37].

The basic principle is that, for a representation to be valid, its Dynkin labels need

to be all greater than or equal to zero, i.e. it needs to lie in the dominant Weyl chamber

in weight space. We denote this by RΛ where Λ = [λ1, . . . , λr]. The tensor product is

performed through

RΛ ⊗RΛ′ '
∑
λ∈VΛ′

RΛ+λ , (B.1)
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where VΛ′ is the set of states in the module parametrised by Λ′. This will generically

result in some of the highest weights in the Λ + λ becoming negative. When this

happens, one reflects the weight until it lands in the dominant Weyl chamber while

keeping track of the number of reflections required. Mathematically

Rλ = sign(σ)Rλσ , (B.2)

where λσ = σ(λ+ ρ)− ρ, with ρ being the half-sum of the positive roots, known as the

Weyl vector and σ an element of the Weyl group.

The Weyl group can be generated by the set of simple reflections corresponding to

the simple roots

σiλ = λ− 2
λ · αi
α2
i

αi , (B.3)

and sign(σ) = (−1)Nσ which is the number of simple reflections. In practice it is often

easier to use reflections with respect to all positive roots, since they carry the same sign,

and build the Weyl group from there. The signs introduced by the reflections cancel

with other representations for typical Lie algebras (these are interpreted as equations of

motion and operator constraints in Lie superalgebras, as discussed in the next section).

It is worth noting that, if is a reflection whose length is odd, such that λσ = σ then

we have

Rλ = −Rλ = 0 , (B.4)

and the vector is said to be on the boundary of the Weyl chamber. Note that all these

zeros with respect to the reflections through the positive roots correspond to the zeros

of the Weyl dimension formula

dλ =
∏
α∈∆+

(λ+ ρ) · α
ρ · α

. (B.5)

As an example let us consider so(5). This is the Lorentz Lie algebra for 5d N = 1 and

the R-symmetry Lie algebra for 6d (2, 0). The highest weight identifications resulting

from Weyl reflections (σ) are given by

[d1, d2] = −[−d1 − 2, 2d1 + d2 + 2] ,

= −[d1 + d2 + 1,−d2 − 2] ,

= −[−d1 − d2 − 3, d2] ,

= −[d1,−4− 2d1 − d2] , (B.6)
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where we have used the shorthand Rλ = λ for ease of reading. We see that λσ = λ

with sign(σ) = − under the following conditions:

d1 = −1 , d2 = −1 , 2d1 + d2 = −3 , d1 + d2 = −2 . (B.7)

Therefore representations which satisfy any one of these conditions are labelled by a

highest weight on the boundary of the Weyl chamber, in which case they have zero

multiplicity and need to be removed. Notice that the conditions (B.7) correspond to

the zeros of the Weyl dimension formula for irreducible representations of so(5):

d(d1, d2) =
1

6
(1 + d1)(1 + d2)(2 + d1 + d2)(3 + 2d1 + d2) . (B.8)

As an example we can consider a tensor product of two representations of so(5) given

by [0, 1] and [1, 0]. The module of states for the [1, 0] representation is

V[1,0] = {[1, 0], [−1, 2], [0, 0], [1,−2], [−1, 0]} , (B.9)

So our product is

[0, 1]⊗ [1, 0] = [1, 1]⊕ [−1, 2]⊕ [1, 0]⊕ [2,−2]⊕ [0, 0] . (B.10)

The states with negative Dynkin weights need to be dealt with. [−1, 2] is on the

boundary of the Weyl chamber and is therefore deleted, but [2,−2] is reflected to be

−[0, 0] using (B.6). Therefore

[0, 1]⊗ [1, 0] = [1, 1]⊕ [0, 1] , (B.11)

which can be verified by looking at the dimensionality of these representations, i.e.

4× 5 = 16 + 4. This very simple recipe can be used repeatedly, for example

[0, 1]⊗ [1, 0]⊗ [1, 0] = ([1, 1]⊗ [1, 0])⊕ ([0, 1]⊗ [1, 0])

= [2, 1]⊕ [0, 3]⊕ 2× [1, 1]⊕ 2× [0, 1] , (B.12)

with 4× 5× 5 = 40 + 20 + 2× 16 + 2× 4.

Next we consider su(4), the Lorentz Lie algebra of 6d theories. The highest weight

identifications resulting from Weyl reflections are

[c1, c2, c3] = −[−c1 − 2, c1 + c2 + 1, c3] ,

= −[c1 + c2 + 1,−c2 − 2, c2 + c3 + 1] ,

= −[c1, c2 + c3 + 1,−c3 − 2] ,
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= −[−c2 − 2,−c1 − 2, c1 + c2 + c3 + 2] ,

= −[c1 + c2 + c3 + 2,−c3 − 2,−c2 − 2] ,

= −[−c2 − c3 − 3, c2,−c1 − c2 − 3] . (B.13)

The representations we delete are the ones where the following conditions are met:

c1 = −1 , c2 = −1 , c3 = −1 , c1 + c2 = −2 ,

c2 + c3 − 2 , c1 + c2 + c3 = −3 . (B.14)

Again, these correspond to the zeros of the Weyl dimension formula for su(4):

d(c1, c2, c3) =

1

12
(c1 + 1)(c2 + 1)(c3 + 1)(c1 + c2 + 2)(c2 + c3 + 2)(c1 + c2 + c3 + 3) . (B.15)

Lastly, the R-symmetry Lie algebra for the minimally supersymmetric theories is su(2),

which involves identifying highest weights via the reflection:

[K] = −[−K − 2] . (B.16)

We therefore see that the representations we delete are the ones where the following

condition is met:

K = −1 . (B.17)

Clearly this corresponds to the zero for the Weyl dimension formula of su(2)

d(K) = K + 1 . (B.18)

We may now simply combine the set of Weyl reflections appropriate for our SCA in

order to dictate which states survive when building representations. Our method will

involve generating all possible highest weight states, even in cases where the Dynkin

labels become negative, and then performing the RS algorithm. This is akin to using

the procedure about, but the representations are generated by fermionic operators and

thus have a natural termination.

After performing the RS algorithm there can also be negative representations that

have not been cancelled. This only occurs in superalgebras and are interpreted as

constraints for operators in the multiplet [37].
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B.1.2 Operator Constraints Through Racah–Speiser

We now further explore this concept. Since R-symmetry quantum numbers will not

play a role in this analysis we will simplify our discussion by denoting all of their

quantum numbers by R. The only distinction we need to make is between the so(5)

and su(4) Lorentz Lie algebras. It will be instructive to proceed by first providing an

example and then the result in full generality.

Consider the Lorentz vector representation in 6d, [∆; 0, 1, 0;R], corresponding to an

operator Oµ. In terms of quantum numbers, its components are given by

O1 ∼ [0, 1, 0] , O2 ∼ [1,−1, 1] , O3 ∼ [−1, 0, 1] ,

O4 ∼ [1, 0,−1] , O5 ∼ [−1, 1,−1] , O6 ∼ [0,−1, 0] . (B.19)

One can envisage a conservation-equation state for this object being −[∆+1; 0, 0, 0;R],

that is we pick components of Pµ and Oµ such that their combination has Lorentz

quantum numbers [0, 0, 0]. This combination is

P6O1 + P5O2 + P4O3 + P3O4 + P2O5 + P1O6 = 0 , (B.20)

which can be concisely interpreted as the conservation equation75

∂µOµ = 0 . (B.21)

This is precisely what we see e.g. for the R-symmetry currents of the (1, 0) and (2, 0)

stress-tensor multiplets, B[0, 0, 0; 0] and D[0, 0, 0; 2, 0].

More generally, there are only two ways in which operator constraints manifest

themselves in 6d using the approach employed in this thesis. These are

[∆; c1, c2, c3;R] −→ −[∆ + 1; c1, c2 − 1, c3;R] ,

[∆; c1, 0, 0;R] −→ −[∆ + 1; c1 − 1, 0, 1;R] + [∆ + 2; c1 − 2, 1, 0;R]

− [∆ + 3, c1 − 2, 0, 0;R] . (B.22)

The first equation is a contraction of a vector index; this is a conservation equation.

The other requires that c2 = c3 = 0. These are the “generalised Dirac equations” or

“generalised equations of motion” mentioned in [109]. When c1 = 0 the primary is a

scalar [2; 0, 0, 0;R], and the only state that survives the RS algorithm is −[4; 0, 0, 0;R],

namely a Klein–Gordon equation. When c1 = 1 the primary is a fermion [5/2; 1, 0, 0;R],

with the only state surviving RS being a Dirac equation −[7/2; 0, 0, 1;R]. For c1 ≥ 2,

all states survive RS, leaving a Bianchi identity for a higher p-form field; this is usually

75One has that (Pµ)† = Pµ. Then it can be straightforwardly checked that Pµ = P7−µ.
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endowed with additional constraints, i.e. self-duality in the free-tensor case, c1 = 2.

The analogous states in 5d are given by

[∆; d1, d2;R] −→ −[∆ + 1; d1 − 1, d2;R] ,

[∆; 0, d2;R] −→ −[∆ + 1; 0, d2;R] + [∆ + 2; 1, d2 − 2;R]

− [∆ + 3, 0, d2 − 2;R] . (B.23)

Again, the first expression is the contraction of a vector index and the second expression

recovers the Klein–Gordon equation (d2 = 0), the Dirac equation (d2 = 1) and the

Bianchi identity (d2 ≥ 2).

B.1.3 Relation to Momentum-Null States

The expressions (B.22) and (B.23) can also be understood from a different perspective.

When the superconformal primary saturates both a conformal and a superconformal

bound, certain components in the multiplet satisfy operator constraints. One is then

instructed to remove appropriate Pµ generators from the auxiliary Verma-module basis

[109]. We call the set contained in the resulting module “reduced states”.

Following [109], in 5d N = 1 we are instructed to remove P5 for the multiplets

B[0, 0; 0] andD[0, 0; 2]. ForD[0, 0; 1] one removes P3, P4 and P5. In 6d, whereR = K for

N = 1 and R = d1+d2 forN = 2, one removes P6 from B[c1, c2, 0;R = 0], C[c1, 0, 0;R =

1] and D[0, 0, 0;R = 2]. Likewise we remove P3, P5 and P6 from C[c1, 0, 0;R = 0] and

D[0, 0, 0;R = 1].

The connection between the momentum-null states and the negative-multiplicity

representations is clear when considering the supercharacter: Taking the character

of all states—including the negative-multiplicity representations—produces the same

result as doing so for all reduced states with the appropriate P s removed from the basis

of generators. Hence it is not appropriate to do both. This is reflected in the fact that

the following character identity holds in 6d:

χ̂[∆; c1, c2, c3;R] ≡ χ[∆; c1, c2, c3;R]− χ[∆ + 1; c1, c2 − 1, c3;R] , (B.24)

where a hat denotes using the P -polynomial from (3.198) after having removed P6;

the operator constraints that one recovers in this fashion are conservation equations.

Likewise when we remove P3, P5 and P6 we obtain:

χ̂[∆; c1, 0, 0;R] ≡ χ[∆; c1, 0, 0;R]− χ[∆ + 1; c1 − 1, 0, 1;R] + χ[∆ + 2; c1 − 2, 1, 0;R]

−χ[∆ + 3; c1 − 2, 0, 0;R] .

(B.25)
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The operator constraints recovered in this case are equations of motion.

In 5d one can make the analogous identifications:

χ̂[∆; d1, d2;R] ≡ χ[∆; d1, d2;R]− χ[∆ + 1; d1 − 1, d2;R] , (B.26)

where we have removed P5 from χ̂. Likewise, when we remove P3, P4 and P5 we obtain:

χ̂[∆; 0, d2;R] ≡ χ[∆; 0, d2;R]− χ[∆ + 1; 0, d2;R] + χ[∆ + 2; 1, d2 − 2;R]

−χ[∆ + 3; 0, d2 − 2;R] . (B.27)

This effectively endows us with a choice for how to treat the operator constraints: We

can either take the character of all reduced states—not including states associated with

constraints—with the appropriate Pµ removed, or we can take the character of all states

(including negative-multiplicity representations) without removing any Pµ.

Note that if one has to remove momenta from the basis of generators for a given

multiplet then not every component contained within need have an associated operator

constraint. The stress-tensor multiplets in 6d B[0, 0, 0; 0] and D[0, 0, 0; 2, 0] are exam-

ples of such superconformal representations: they contain superconformal descendants

which do not contain operators satisfying constraints. However, according to the argu-

ments of the previous subsection, we are still instructed to remove P6 in one approach

of evaluating the supercharacter. At first glance this is perplexing.

The resolution to this small puzzle is that the associated characters are actually

invariant under the removal of P6. Hence such states satisfy

χ̂[∆; c1, c2, c3;R] = χ[∆; c1, c2, c3;R] , (B.28)

in 6d, or in 5d

χ̂[∆; d1, d2;R] = χ[∆; d1, d2;R] . (B.29)

The method for evaluating characters of conformal UIRs presented in [109] makes no

distinction between states that do/do not obey constraints due to the above invariance.

This knowledge is useful when the absent generators of the Verma module are such

that the removed Qs anticommute into P s; c.f. Sec. 3.2.4, Sec. 3.3.4 and Sec. 3.4.4.

In that case, one is effectively projecting out the states associated with operator con-

straints from the very beginning. Therefore what is generated under these circum-

stances is the spectrum of reduced states. It is still possible to reconstruct the full

multiplet spectrum using character relations, as e.g. in (B.24). This lets us recover all

the negative-multiplicity states.
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B.2 Supersymmetry Module Building in python3

We use this section both as an introduction to the python group theory package and

to see how the results of Chapter 3 were obtained. To begin we need to first put the

reptheory package in the same directory as the python3 notebook. It can be found

using the following link https://github.com/JHayling/reptheory, and one should ensure

that they have the prerequisite libraries in python3: numpy, itertools, collections

and functools.

B.2.1 Introduction to reptheory

This subsection will effectively serve as the documentation for the reptheory library.

It can be treated as one single ipython environment in e.g. the terminal. It should be

evaluated in order since certain code snippets rely on previously defined objects.

Groups

The main object at the heart of library is the group object. These are initialised as

>>> import reptheory as rt

>>> A = rt.AGroup

>>> B = rt.BGroup

with similar naming conventions for the other groups. Let us focus on A2 and explore

some of the methods associated with the group object. These are

>>> A(2).simple roots(basis=‘orthogonal’)

[[1, -1, 0], [0, -1, 1]]

>>> A(2).positive roots()

[[2, -1], [1, 1], [-1, 2]]

Both the simple roots() and positive roots() have an optional argument basis

which one can assign to either ‘orthogonal’, ‘dynkin’ (the default) or ‘alpha’.

The Weyl vector, Cartan matrix and the quadratic form can be obtained via
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>>> A(2).weyl vector()

array([1., 1.])

>>> A(2).cartan matrix()

array([[ 2, -1],

[-1, 2]])

>>> A(2).quadratic form()

array([[0.66666667, 0.33333333],

[0.33333333, 0.66666667]])

with the latter being non-integer since it involves irrational numbers in the definition.

Using the quadratic form one can compute an inner product in the Dynkin basis through

>>> A(2).inner_product([2, 0], [1, 1])

2.0

The last method we discuss is basis changer() whose first argument is the vector,

with the second and third being one of ‘orthogonal’, ‘dynkin’ or ‘alpha’ and does

what the name suggests. It converts the vector from the second argument to the third:

>>> A(2).basis_changer([1, -1, 0], ‘orthogonal’, ‘dynkin’)

array([ 2, -1])

Representations

The next object of importance is the representation object. To initialise it one specifies

the group and the Dynkin labels. Let us consider the adjoint representation of A2:

>>> R = rt.Representation

>>> adj = R(A, [1, 1])

Two straightforward methods are dim() which gives the dimension or the repre-

sentation and dominant weights() which returns the set of dominant weights in the

representation:

>>> adj.dim()

8

>>> adj.dominant weights()

[[1, 1], [0, 0]]
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If one simply wants to see the list of weights in a representation and not perform any

algebraic manipulations then the method is just print weights(). The other option is

to call weight system() with the optional argument form which allows for the choice of

data structure: ‘list’ (default), ‘array’ or ‘dict’. The latter returns a dictionary

indexed by level, e.g. ‘Level 2’.

>>> adj.print_weights()

Level 0: (1, 1)

Level 1: (-1, 2) (2, -1)

Level 2: (0, 0) (0, 0)

Level 3: (-2, 1) (1, -2)

Level 4: (-1, -1)

>>> adj.weight_system()

[(1, 1), (-1, 2), (2, -1), (0, 0), (0, 0), (-2, 1), (1, -2),

(-1, -1)]

>>> weights = weight_system(form=‘dict’)

>>> weights[‘Level 3’]

[(-2, 1), (1, -2)]

To find the level of a state in a representation we use the method

>>> adj.weight_level([-2, 1])

3

Note that this needs to be in the Dynkin basis.

Another class that is important in this discussion is the ProductRep, which allows us

to define representations of products of multiple different representations. For example,

let us consider the product representation of the 6d N = (1, 0) supercharge. It is in

the spinor representation of both su(4) and su(2)R. The full module is then
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>>> Q = rt.ProductRep((A, [1, 0, 0]), (A, [1]))

>>> Q.build()

array([[ 1, 0, 0, 1],

[ 1, 0, 0, -1],

[-1, 1, 0, 1],

[-1, 1, 0, -1],

[ 0, -1, 1, 1],

[ 0, -1, 1, -1],

[ 0, 0, -1, 1],

[ 0, 0, -1, -1]])

Once the product representation has been established, namely the groups and rep-

resentations in a specific order, one can start performing advanced operations on these

compound vectors. For example, reflecting states that are not in the dominant Weyl

chamber of the compound representation space and noting the number of reflections

required:

>>> Q.product_racah([-1, 0, 2, 1])

[[-1, 0, 2, 1], ‘del’]

>>> Q.product_racah([-2, 1, 2, 1])

[[0, 0, 2, 1], 1]

>>> Q.product_racah([-2, 1, 2, -2])

[[0, 0, 2, 0], 2]

The first item is the reflected vector and the second is either ‘del’, indicating that it

is on the boundary and should therefore be deleted, or the number of reflections, and

hence the sign of the multiplicity.

Tensor products

There are two ways to perform tensor products. One is the class RepTensor which

performs simple tensor products between two representation objects. The other is

ListTensor which takes a group object and a list of representations that one wants

to tensor together. They both have the same method decompose with the optional

argument form. Two options specify the data structure: ‘list’ and ‘dict’, which

is a dictionary whose keys are the states and values are the multiplicities. The third

option is a simple ‘print’ option. They are demonstrated below with the examples

given in Section B.1.1.
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>>> r1 = R(B, [0, 1])

>>> r2 = R(B, [1, 0])

>>> T = rt.RepTensor(r1, r2)

>>> T.decompose(form=‘list’)

[(1, 1), (0, 1)]

>>> T.decompose(form=‘print’)

(1, 1) ⊕ (0, 1)

and for the ListTensor:

>>> LT = rt.ListTensor(B, [[0, 1], [1, 0], [1, 0]])

>>> LT.decompose()

{(2, 1): 1, (0, 3): 1, (1, 1): 2, (0, 1): 2}

>>> LT.decompose(form=‘print’)

(2, 1) ⊕ (0, 3) ⊕ 2x(1, 1) ⊕ 2x(0, 1)

B.2.2 Superconformal Module Building

The class core to this section is SUSYModule. It is a very effective and simple way

of performing implementing the RS algorithm for the multiplets of Chapter 3, and in

other references that are similar in spirit [1, 35,37].

To construct a multiplet, one first needs to initialise the supercharges. That is, one

needs to specify the representations of algebras that the supercharges transform in as

ProductRep objects. These, and the highest weight state, are needed to instantiate the

SUSYModule object. As an example let us take an unconstrained 6d N = (1, 0) long

multiplet with highest weight [0, 0, 0, 0].

>>> Qs = rt.ProductRep((A, [1]), (A, [1, 0, 0]))

>>> sm = rt.SUSYModule([0, 0, 0, 0], Qs)

There two methods to generate the module. The first is build module() which

returns an iterator data structure. This is preferable if one wants to only access the

states that are in the earlier levels of the multiplet, since for theories with sixteen

supercharges the number of states grows at a tremendous rate. Note that, since it is an

iterator, once one iterates through (either with a for loop or a next(sm) command)

the level, one needs to rebuild the module to access previously seen levels due to how

iterators work in python.

The second, more user friendly, method is the return module(). This is more

intensive since it generates the entire module before it returns anything. Its optional
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argument form can be either ‘print’ (default) which prints the states level by level

without returning anything, or ‘dict’ which returns a dictionary whose keys are in

the form ‘Level x’. The latter is more memory intensive since it stores all the states,

but is better for repeated analysis since this method is built on the iterator, hence one

does not need to repeatedly generate the module.

>>> sm.return_module()

Level 0: (0, 0, 0, 0)

Level 1: (1, 1, 0, 0)

Level 2: (2, 0, 1, 0) ⊕ (0, 2, 0, 0)

Level 3: (3, 0, 0, 1) ⊕ (1, 1, 1, 0)

Level 4: (4, 0, 0, 0) ⊕ (2, 1, 0, 1) ⊕ (0, 0, 2, 0)

Level 5: (3, 1, 0, 0) ⊕ (1, 0, 1, 1)

Level 6: (2, 0, 1, 0) ⊕ (0, 0, 0, 2)

Level 7: (1, 0, 0, 1)

Level 8: (0, 0, 0, 0)

Next we can look at a module with level one constraints. Given that we can pick

any multiplet of any superconformal algebra, we choose the 4d N = 4 stress tensor

multiplet. This also serves to a highlight a subtlety when dealing with theories that have

supercharges in different representations of the same algebra. We need to instantiate

the module with two sets of supercharges, the ones transforming in the (4,2,1) of the

su(4)R ⊕ su(2)1 ⊕ su(2)2 subalgebra and the ones transforming in the (4̄,1,2). This is

done via

>>> Qs = rt.ProductRep((A, [1, 0, 0]), (A, [1]), (A, [0]))

>>> QBs = rt.ProductRep((A, [0, 0, 1]), (A, [0]), (A, [1]))

>>> sm = rt.SUSYModule([0, 2, 0, 0, 0], Qs, QBs)

The next step is to add the relevant constraints. We use the add constraints()

method. The first argument is level which is the level at which the constraints are

implement, i.e. the order or the monomial of the null state. The second argument

nullstates is the set of combinations of states that are null. According to [37], the

null states come from Q1
α, Q2

α, Q̃4α̇ and Q̃3α̇. This is implemented below
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>>> Q_constraints = [(1, 0, 0, 1, 0), (1, 0, 0, -1, 0),

... (-1, 1, 0, 1, 0), (-1, 1, 0, -1, 0)]

>>> QB_constraints = [(0, 0, 1, 0, 1), (0, 0, 1, 0, -1),

... (0, 1, -1, 0, 1), (0, 1, -1, 0, -1)]

>>> sm.add_constraints(1, Q_constraints)

>>> sm.add_constraints(1, QB_constraints)

>>> sm.return_module(form=‘print’)

Level 0: (0, 2, 0, 0, 0)

Level 1: (0, 1, 1, 1, 0) ⊕ (1, 1, 0, 0, 1)

Level 2: (0, 0, 2, 0, 0) ⊕ (0, 1, 0, 2, 0) ⊕ (1, 0, 1, 1, 1) ⊕
(2, 0, 0, 0, 0) ⊕ (0, 1, 0, 0, 2)

Level 3: (0, 0, 1, 1, 0) ⊕ (1, 0, 0, 2, 1) ⊕ (1, 0, 0, 0, 1) ⊕
(0, 0, 1, 1, 2)

Level 4: 2x(0, 0, 0, 0, 0) 	 (1, 0, 1, 0, 0) ⊕ (0, 0, 0, 2, 2)

Level 5: 	 (1, 0, 0, 1, 0) 	 (0, 0, 1, 0, 1)

Level 6: 	 (0, 0, 0, 1, 1)

Lastly we consider higher order constraints. The example we consider now is the

D[0, 0, 0; 0, 1] multiplet from Section 3.4 in 6d (2, 0) theory. Recall that this has the

level one constraints that Q1a for all a annihilate the primary, but also that Q2aQ2b

annihilate the primary for all a 6= b. This is set up through

>>> Qs = rt.ProductRep((B, [0, 1]), (A, [1, 0, 0]))

>>> sm = rt.SUSYModule([0, 1, 0, 0, 0], Qs)

>>> L1_constraints = [(0, 1, 1, 0, 0), (0, 1, -1, 1, 0),

... (0, 1, 0, -1, 1), (0, 1, 0, 0, -1)]

>>> sm.add_constraints(1, L1_constraints)

One can either manually write out the level two constraints or we can use the

itertools module.

>>> from itertools import combinations

>>> qs = [(1, -1, 1, 0, 0), (1, -1, -1, 1, 0), (1, -1, 0, -1, 1),

... (1, -1, 0, 0, -1)]

>>> L2_constraints = combinations(qs, 2)

>>> sm.add_constraints(2, L2_constraints)

For ease of reading and to demonstrate the dictionary approach:

206



APPENDIX B. THE RACAH–SPEISER ALGORITHM AND ITS
IMPLEMENTATION

>>> mult_dict = sm.return_module(form=‘dict’)

>>> print(mult_dict[‘Level 0’])

{(0, 1, 0, 0, 0): 1}

>>> print(mult_dict[‘Level 1’])

{(1, 0, 1, 0, 0): 1, (0, 0, 1, 0, 0): 1}

>>> print(mult_dict[‘Level 2’])

{(0, 1, 2, 0, 0): 1}

We conclude this appendix with some comments. First is that, as stressed, if one

is only interested in the early levels of the multiplet then one should use the iterator

approach with the build module() method. The second is that, for higher amounts

of supersymmetry and low numbers of level one constraints, these computations can

take some time. Therefore it is always preferable to rephrase things using level one

constraints if possible.
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