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Abstract

We present a study of internal reflection and cross-coupling systematics in Phase I of the Hydrogen Epoch of
Reionization Array (HERA). In a companion paper, we outlined the mathematical formalism for such systematics
and presented algorithms for modeling and removing them from the data. In this work, we apply these techniques
to data from HERA’s first observing season as a method demonstration. The data show evidence for systematics
that, without removal, would hinder a detection of the 21 cm power spectrum for the targeted Epoch of
Reionization (EoR) line-of-sight modes in the range 0.2 h−1Mpc−1 < k <0.5 h−1 Mpc−1. In particular, we find
evidence for nonnegligible amounts of spectral structure in the raw autocorrelations that overlaps with the EoR
window and is suggestive of complex instrumental effects. Through systematic modeling on a single night of data,
we find we can recover these modes in the power spectrum down to the integrated noise floor, achieving a dynamic
range in the EoR window of 106 in power (mK2 units) with respect to the bright galactic foreground signal. Future
work with deeper integrations will help determine whether these systematics can continue to be mitigated down to
EoR levels. For future observing seasons, HERA will have upgraded analog and digital hardware to better control
these systematics in the field.

Unified Astronomy Thesaurus concepts: Reionization (1383); Cosmology (343); Astronomy data analysis (1858)

1. Introduction

The Epoch of Reionization (EoR) marks a fundamental phase
transition in cosmic history, where neutral hydrogen filling the
intergalactic medium (IGM) was ionized by a radiation field

thought to originate from the formation of the first generation of
stars and galaxies in the universe (for reviews, see Furlanetto et al.
2006; Loeb & Furlanetto 2013; Mesinger 2016). One of the only
direct probes of the IGM throughout the entirety of the EoR is
neutral hydrogen’s 21 cm line. A hyperfine transition of neutral
hydrogen, 21 cm emission is a three-dimensional, tomographic
probe of the IGM’s density, ionization, and temperature structure.
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Low-frequency radio surveys promise to revolutionize our
understanding of the IGM by using the 21 cm line to map out
its morphology during EoR and place constraints on the sources
responsible for its heating and eventual reionization.

Over the past decade, experiments like the Donald C. Backer
Precision Array for Probing the Epoch of Reionization (PAPER;
Parsons et al. 2014; Jacobs et al. 2015; Cheng et al. 2018;
Kolopanis et al. 2019), the Murchison Widefield Array (MWA;
Dillon et al. 2014; Beardsley et al. 2016; Ewall-Wice et al.
2016b; Barry et al. 2019), the Low Frequency Array (LOFAR;
Patil et al. 2017; Gehlot et al. 2019), the Giant Metre Wave
Radio Telescope (GMRT; Paciga et al. 2013), and the Long
Wavelength Array (LWA; Eastwood et al. 2019) have placed
increasingly competitive limits on the 21 cm power spectrum.
These experiments face the challenge of separating a weak
cosmological signal from foreground emission that is generally
105 times brighter in order to characterize the EoR. Instrumental
systematics further complicate this effort, which can cause
foreground signal to contaminate Fourier modes in the data that
would otherwise only be noise-limited. As such, many of the
current upper limits on the 21 cm power spectrum have been
limited by instrumental systematics. Current and future experi-
ments like the Hydrogen Epoch of Reionization Array (HERA;
DeBoer et al. 2017) and the Square Kilometre Array (SKA;
Mellema et al. 2013) are nominally forecast to provide high-
significance characterizations of the 21 cm signal and place
constraints on IGM properties and the sources driving reioniza-
tion (Pober et al. 2014; Greig & Mesinger 2015, 2018; Greig
et al. 2015; Ewall-Wice et al. 2016a; Liu & Parsons 2016; Kern
et al. 2017). However, these forecasts neglect the impact of
systematic contamination, which can significantly hamper an
experiment’s overall sensitivity and parameter constraining
ability. Precise modeling and separation of instrumental
systematics is therefore necessary for 21 cm experiments to
make robust detections of the cosmological 21 cm signal.

Systematic contamination comes in a variety of forms, including
calibration errors, ionospheric faraday rotation, primary beam
ellipticity, analog signal chain imperfections (such as impedance
mismatches), and others. In a companion paper, Kern et al.
(2019a), we presented techniques for modeling and removing
systematics specifically due to internal instrument coupling, such
as signal chain reflections and antenna cross-coupling (e.g.,
crosstalk). In that paper, we described the phenomenology of
internal instrument systematics in the interferometric visibilities,
proposed algorithms for removing them from the data, and
demonstrated their performance against numerical simulations. In
this work, we investigate data from HERA Phase I for internal
instrument systematics and apply our systematic modeling
algorithms as a proof of concept.

The structure of this paper is as follows. In Section 2 we
describe the data and observations used for this analysis. In
Section 3 we examine the data for signal chain reflections and
demonstrate reflection calibration on HERA autocorrelation
visibilities. In Section 4 we present a study of cross-coupling
systematics in the HERA system and demonstrate cross-
coupling removal performance on a few select baselines. In
Section 5 we perform joint reflection and cross-coupling
systematic removal for baselines across the entire HERA array
and compute power spectra. Lastly, in Section 6 we summarize
our results.

2. Observations

Data were taken during HERA Phase I, which observed from
2017 to 2018 while undergoing active construction (DeBoer
et al. 2017). The Phase I instrument was a hybrid HERA-
PAPER system, taking the signal chains and correlator from the
PAPER experiment (Parsons et al. 2010; Ali et al. 2015) and
attaching them to new HERA antennas. The HERA antenna is
a parabolic dish spanning 14 m in diameter, with a focal height
designed to minimize reflections within the dish (Ewall-Wice
et al. 2016; Neben et al. 2016; Thyagarajan et al. 2016; Patra
et al. 2018). The feed uses the PAPER sleeved dipole as
the active element, which, in the Phase I instrument, has been
optimized for the HERA antenna (DeBoer 2015; Fagnoni & De
Lera Acedo 2016). An active balun or front-end module (FEM)
is connected to the feed and houses a low-noise amplifier. After
initial amplification, the signals are sent through a 150 m
coaxial cable (first cable in Figure 1) to a node unit in the field
holding a post-amplifier module (PAM; box A in Figure 1) and
then another coaxial cable of about 20 m in length (second
cable in Figure 1) to a container holding ROACH2 boards24

(Parsons et al. 2008; Hickish et al. 2016) that digitize the
signals and then Fourier transform them into the frequency
domain (box F in Figure 1). Finally, a graphics processing unit
(GPU) correlator cross-multiplies the signals between all
antenna pairs to form interferometric visibilities that are
integrated for 10.7 s before being written to disk (box X in
Figure 1).
The observations presented in this work come from a single

night spanning 8 hr of local sidereal time (LST) on Julian Date
2458101. At that time, the array consisted of 46 operational

Figure 1. Schematic of HERA signal chains for two antennas, 1 and 2. Sky
signal ( ) enters each antenna’s dish and feed, where it is converted into a
voltage and travels down a 150 m coaxial cable to a processing node holding a
post-amplification module (A) before being directed through a 20 m cable to an
engine that digitizes and Fourier transforms the signal (F) and then sent to the
correlator (X) to produce the visibility V12. A possible cable reflection in
antenna 1ʼs signal chain is marked as ò11, traversing up and down the cable
connecting the feed to the node. A possible source of feed-to-feed coupling is
marked as ò12 and ò21, where a signal is reflected off of antenna 1ʼs feed and
into antenna 2ʼs feed, or vice versa. The dashed line fromF toX denotes a
signal pathway after digitization, where reflection is not a concern.

24 https://casper.ssl.berkeley.edu/wiki/ROACH2
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antennas, each with dual-polarization dipole feeds (Figure 2).
Additionally, the signal chains of the array were split into two
categories: type 1, which used newly manufactured FEMs,
PAMs, and coaxial cables specifically for HERA Phase I, and
type 2, which repurposed the PAPER FEMs, PAMs, and
coaxial cables (blue and red in Figure 2, respectively). In this
analysis, we only use north–south (“YY”) linear dipole
polarization data, although all four auto- and cross-feed
polarization data products are recorded by the correlator.
Additional observational parameters are tabulated in Table 1.

The data have been preprocessed with part of the HERA
reduction and calibration pipeline. Specifically, the data are first
flagged for radio frequency interference (RFI) using a median
filter and watershed algorithm operating on the cross-correla-
tion visibilities (Kerrigan et al. 2019). In this work, we also
enact two additional steps for RFI flagging. The first takes
stacked autocorrelation visibilities and differences them across
time and frequency, normalizes them by their median absolute
deviation, and flags the residual at the 4σ level. Our second step
runs a delay-based, iterative deconvolution on a subset of the
autocorrelation visibilities, which attempts to deconvolve the
discontinuous windowing function created by flagged data.
This is similar in concept to the image-based CLEAN
deconvolution (Högbom 1974), except applied to the frequency
and delay domains rather than the uv and lm domains and with
the missing data coming from RFI rather than incomplete uv
sampling. We then normalize the filtered residual in frequency
space by its median absolute deviation and again enact RFI cuts
at the 4σ level. Flags from each of the three independent steps
are combined with a logical OR operator and then broadcast
across time and/or frequency if a 15% flagged threshold is met
for any individual time bin or frequency channel. An example
of the fairly aggressive resultant visibility flagging mask is
shown in Figure 3. In total, roughly 30% of the data volume is
flagged, although this likely contains a decent amount of
overflagging.

Next, we calibrate the data using a highly simplified antenna-
based calibration. The full HERA calibration pipeline computes
complex antenna gains for each time integration over the entire
night from a combination of redundant calibration (J. Dillon
et al. 2019, in preparation) and a constrained absolute
calibration with the resultant gains smoothed across time and
frequency (Kern et al. 2019b). In this work, we take the gains
derived from these steps and (1) average them across the entire
night into a single spectrum, (2) average their amplitude across
frequency to a single number, and (3) fit for a phase slope
across frequency (i.e., a single antenna delay). We are left with
a single amplitude and delay for each antenna, which we apply
to all times of the night. This has the effect of properly setting
the flux scale of the data and also calibrates out the antenna
cable delay but ensures that the gain itself we apply to the data
has little to no spectral structure.

Figure 2. HERA array configuration at the time of observations on Julian Date
2458101 with roughly 46 operational antennas, showing which fall into type 1
(blue) and type 2 (red) signal chain categories.

Table 1
HERA Observation Parameters

Parameter Value

Observation date 13 December 2017
Array coordinates −30°. 7S, 21°. 4E
JD range 2458101.27–2458101.61
LST range 1.5–9.6 hr
Integration time 10.7 s
Frequency range 100–200 MHz
Channel width 97.65 kHz
Dish diameter 14 m
Feed type PAPER dipole
Instrumental polarization North–south (“YY”)
Cable type 150 and 20 m coaxial

Note. For the 2017–2018 observation, the HERA correlator used the convention
that the X dipole points east–west while the Y dipole points north–south, which
is not the standard Hamaker & Bregman (1996) definition.

Figure 3. Aggressive RFI visibility mask as a function of time and frequency
after three rounds of flagging. Flags are broadcast across time and/or frequency
if a 15% flagged threshold is met per time bin and frequency channel. For this
particular night, ∼30% of the total data volume is flagged, which is suboptimal
in that it is likely a significant overflagging but with the benefit of being more
aggressive in flagging low-level and repeating RFI.
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Because of our highly simplified calibration, the instrumental
bandpass is not corrected for and still exists in the data.
Calibration, being multiplicative in frequency space, can be
thought of as a convolution in delay space. The true response of
the visibilities in delay space is therefore initially convolved by
the bandpass kernel upon measurement by the telescope.
Assuming the bandpass is composed primarily of large-scale
modes, its impact will be a slight smoothing-out of the true sky
delay response and features created by systematics. Bandpass
calibration performed beforehand may therefore sharpen
systematics in delay space and actually make it easier to model
and remove them. Antenna-based calibration for HERA in the
context of redundant and absolute calibration is explored in
Kern et al. (2019b) and J. Dillon et al. (2019, in preparation).

3. Signal Chain Reflections

In this section, we inspect the data for evidence of signal
chain reflections. To do this, we take the autocorrelation
visibility from each antenna and look for peaks in delay space
(see Kern et al. 2019a for a summary of the algorithm). The
calibrated data are filled with flags due to RFI (Figure 3) and
thus nulled to zero at the flagged channels. This is not ideal for
inspecting the data in delay space, as the Fourier transform of
such a discontinuous windowing function creates strong side
lobes. To mitigate this, we employ the same delay-based,
iterative deconvolution algorithm from before to subtract these
side lobes, effectively interpolating across the nulled gaps in
the data due to RFI (Parsons & Backer 2009). We allow the
deconvolution to place model components out to delays of
∣ ∣t < 1600 ns and iterate until the process reaches 5×the noise
floor of the data. We then make a copy of the data, and with the
first copy, we average the absolute value of the deconvolved
visibilities in delay space across a few hours of LST. With the
second copy, we average the full complex-valued, deconvolved
visibilities across the same time range, which will have a lower
noise floor due to the complex average. Finally, we apply a

Blackman window to the CLEANed visibilities before taking
its Fourier transform.
Figure 4 shows these data products for the type 1 (left) and

type 2 (right) signal chain, with the absolute time-averaged data
shown in blue or red and the complex time-averaged data
shown in solid black. Additionally, the thermal noise floors of
each data product are plotted as dashed lines, which are
estimated from the data via adjacent time and frequency
differencing and then divided by 1/ Navg , where Navg is the
number of complex averages performed on the data. We find
that type 2 signal chains achieve a better overall impedance
match with the analog system, leading to slightly less structure
in the autocorrelations across a wide range of delays. None-
theless, we do see evidence for reflections from both the 20 and
150 m cables, with reflection amplitudes in the range of
roughly 3×10−3 and 1×10−3, respectively. Of major
concern is the tail of the autocorrelation response, which starts
at low delays and slopes down to the noise floor out to the
150 m cable delay. This tail is over an order of magnitude
larger than that predicted by simulations of the HERA dish and
feed (Ewall-Wice et al. 2016).
In this case, where the noise floor has been integrated down

(solid black), we see that delays outside the 150m cable delay
seem to effectively integrate down with the noise, while delays
inside the 150m cable delay do not. This means that the features
at low and intermediate delays are coherent on long timescales of
at least a few hours. The abrupt change at ∼1250 ns is also
possibly suggestive that a tailed response might in part be
originating within the 150m cable. A possible mechanism for this
could be subreflections within the cable due to intrinsic cable
imperfections or environmental wear and damage along the cable.
Another explanation is the effect of mutual coupling between
neighboring antennas, which we explore in more detail in cross-
correlation visibilities in the following section. It is not easy to
distinguish between these two effects in the autocorrelation
visibilities alone. Direct electromagnetic simulations of mutual

Figure 4. Autocorrelation visibilities for signal chain type 1 (left) and type 2 (right) with absolute (blue and red) and complex (black) time averaging and their
associated noise floors (dashed). Antennas 84 and 121 were used for the two autocorrelation visibilities. Delays for relevant length scales in the analog system are
marked with arrows. Resonances in the dish and reflections in the cables tend to be worse for signal chain type 1. Additionally, we see evidence for a systematic tail in
both signal chain types spanning a wide range of delays that does not integrate down like noise.
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coupling in the HERA system provide mixed evidence, predicting
it to appear at a similar amplitude and slope in the autocorrelations
but also predicting it to truncate at lower delays of ∼600 ns
(Fagnoni et al. 2019).

The fact that the autocorrelations show a systematic tail that,
for τ>300 ns or kP>0.2 hMpc−1, shows only 3–4 orders of
magnitude of dynamic range is concerning, given that fiducial
EoR amplitudes are generally assumed to lie at or below 5 orders
of magnitude in dynamic range in the visibility for similar k
(Thyagarajan et al. 2016). Furthermore, the observed systematic
tail extends over a wide range of delays that covers essentially all
of the kP modes of interest (0.2h Mpc−1 <k<0.6 hMpc−1).
These systematics need to be well understood and mitigated if
the data are to be used for stringent EoR limits.

Next, we attempt to model some of these features and
calibrate them out. One needs to proceed carefully when doing
this because calibrating out structure that is inherent to the true
data will actually create systematics. To be conservative, we
only target the two features that we know to correlate with the
expected delays of the 20 and 150 m coaxial cables at ∼200
and ∼1250 ns. We use the method described in Kern et al.
(2019a) to derive reflection parameters across the full
bandwidth, excluding the band edges (120–180MHz), and
then apply them to the data in frequency space. Figure 5 shows
the result, demonstrating the delay response of an autocorrela-
tion before (green) and after (purple) reflection calibration and
showing the derived reflection amplitudes of the 20 and 150 m
cable reflections before and after calibration. We find that, in
general, we can suppress the 150 m cable reflection by a couple
orders of magnitude (in the visibility), whereas for the 20 m
cable reflection, we get, on average, only a factor of a few
suppression.

Often a limiting factor in reflection modeling is frequency
evolution of the reflection parameters (Ewall-Wice et al.
2016b). In Figure 6, we plot the autocorrelation response,
having taken the Fourier transform of the data over a low band
(120–150MHz; blue) and a high band (150–180MHz; gold)
plotted in decibels relative to their peak value. Between the
split subbands, we observe only slight evolution for the 150 m
cable bump (labeled) but see more evolution in the 20 m cable
bump (labeled). Furthermore, compared to the 150 m bump

feature, the low-level fluctuations from 200 to 1200 ns are also
substantially different between the low- and high-band spectral
windows. Recall that the noise floor of the data in this case is
around −50 dB, meaning that the observed fluctuations at
−35 dB are over an order of magnitude above the noise floor.
This is likely at least part of the reason why we achieve less
suppression for the 20 m cable reflection and suggests that to
mitigate reflections to higher dynamic range, we will need to
perform reflection calibration at the subband level. Because we
find that the suppression achieved by modeling these reflec-
tions across the full band is sufficient for this analysis
(Section 5), we defer subband reflection modeling to future
studies.
An immediate concern one might have about this technique is

the fact that we are applying a calibration with spectral structure
at the same or similar delays we hope to use for measuring the
EoR power spectrum (Grobler et al. 2014; Mouri Sardarabadi &
Koopmans 2019), which may lead to signal loss (Cheng et al.
2018). In our companion paper, we study signal loss in this same
scenario with simulated reflection systematics, and we find that
although the autocorrelation visibilities may sustain low levels of
signal loss, the cross-correlation visibilities show resistance to
signal loss across all delays (Kern et al. 2019a). This is in part
due to the subspace that reflection calibration spans relative to
the EoR signal: reflection calibration spans a direction-
independent, antenna-based space, while EoR is fundamentally
a baseline-dependent measurement. This is further compounded
by the fact that our reflection calibration method only uses the
autocorrelation visibilities to derive reflection parameters. We
refer the reader to Kern et al. (2019a) for a more detailed
description of the algorithm and our signal loss simulations.

4. Antenna Cross-couplings

Next, we turn our attention to HERA’s cross-correlation
visibilities in order to probe for antenna cross-coupling
systematics. Specifically, we look at the north–south instrumental
polarization (also denoted as “YY”) for baselines (11, 12), (11,
13), and (11, 14), which are three east–west baselines with lengths
of 15, 29, and 44m, respectively (Figure 2). These baselines
display some of the strongest cross-coupling systematics seen in
the data but are otherwise fairly nominal baselines.

Figure 5. Reflection calibration performed over the full band (120–180 MHz) and applied to the autocorrelation visibilities. Left: autocorrelation response before
(green) and after (purple) calibration demonstrating suppression of reflection systematics by roughly an order of magnitude in the visibility. Middle: histogram of
derived 20 m reflection amplitudes before and after calibration. In the majority of cases, we only see suppression by a factor of a few. Right: histogram of derived
150 m reflection amplitudes before and after calibration. In the majority of cases, we see suppression by at least an order of magnitude. Less suppression for the 20 m
cable is likely attributable to more significant frequency evolution in the reflection parameters.
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In a similar fashion as before, we perform a delay-space
deconvolution to fill in missing data due to RFI flags and
suppress its side lobes in the delay domain. We allow the
deconvolution to set model components out to ∣ ∣t < 1600 ns
and iterate down to 5×the noise floor of the visibilities. Figure 7
shows visibility spectra from the three baselines of interest after
deconvolution. We can clearly see a fast ripple on all baselines
with a spectral scale of roughly 1MHz. We also see larger-scale
ripples (particularly at the lower half of the band) that decrease in
spectral scale with increasing baseline length. As we will see
below, the former is likely a combination of a cross-coupling and
reflection systematic, while the latter may also be a form of
cross-coupling systematic.

Next, we window the visibilities from 120 to 180MHz with a
Blackman–Harris function (Blackman & Tukey 1958) to limit
spectral leakage and then Fourier transform the visibilities to
delay space. At the moment, we are only interested in diagnosing
systematics, so we do not square the Fourier amplitudes as we
would in forming power spectra, meaning the visibilities are in
units of Jy Hz. Figure 8 shows the result for the 15 (blue), 29
(orange), and 44 (green) m baselines. Also plotted as dashed
vertical lines are the geometric horizons for each baseline. The
nearly symmetric peaks at each baseline’s geometric horizon
could be due to the “pitchfork” effect predicted to exist for wide-
field radio interferometers (Thyagarajan et al. 2015). The
pitchfork effect is not a systematic in the context of this work;
it is a natural phenomenon from diffuse foregrounds and
explained as the boosting of measured diffuse sky power near
the horizon, where sky signal shows up in the visibilities with
delays of the baseline’s geometric horizon. While HERA has a
more compact primary beam compared to other low-frequency
21 cm experiments (e.g., MWA, PAPER), the pitchfork effect
was nonetheless predicted to exist from simulations of the
HERA dish and feed (Thyagarajan et al. 2016). However, these
features could also be due to sky emission reflecting off the feed
of one antenna and entering the feed of a neighboring antenna
(i.e., feed-to-feed reflections or mutual coupling), which is a form
of antenna cross-coupling that we would also expect to appear
at the delay of each baseline’s geometric horizon. While both
are expected to produce power at a baseline’s geometric horizon,

both are also expected to be slowly time-variable, meaning that
they will occupy similar modes in the delay and fringe-rate
Fourier domains.25

In Figure 9, we compare the data against a simulated diffuse
foreground visibility from Kern et al. (2019a), which uses the
Global Sky Model (GSM; de Oliveira-Costa et al. 2008) as the
foreground model and a simulated direction-dependent primary
beam response for HERA (Fagnoni et al. 2019). While we do
see evidence for a slight pitchfork effect in the simulated data at
the geometric horizon delay, its amplitude is considerably
weaker than what is observed in the data. There is also some
total power missing from the τ=0 mode, which is likely due to
our exclusion of point sources in the simulation. The simulated

Figure 6. Autocorrelation visibility after complex time averaging, transformed over the full band (120–180 MHz; black), just the low side of the band (120–150 MHz;
blue), and just the high side of the band (150–180 MHz; gold) for a type 1 signal chain. The 150 m cable reflection parameters are fairly consistent between both sides
of the band, while the 20 m cable reflection shows significantly more frequency evolution. The smaller peaks along the systematic tail also shows significant frequency
evolution.

Figure 7. Cross-correlation visibility amplitudes in frequency space for three
east–west-oriented baselines increasing in length from 15 up to 44 m at an LST
of ∼6 hr. In addition to a broad-scale ripple that decreases in spectral scale with
increasing baseline length (most apparent at lower frequencies), we can also see
a fast ripple at roughly a 1 MHz scale in all baselines that is likely due to a
cross-coupling systematic.

25 Cross-coupling produces slowly time-variable signals in the visibility
because it inserts a copy of the autocorrelation, which is slowly time-variable.
The pitchfork mechanism is a mimicking of the autocorrelation at declinations
near the horizon; thus, we expect it to have a slow time variability like the
autocorrelation.
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pitchfork can be seen more clearly when transforming the
simulated visibility into fringe rate and delay space (right panel
of Figure 9), where indeed we see the pitchfork occupying
f∼0MHz modes, as expected. This comparison needs further
study to better understand the nature of excess power at the
horizon delay: the pitchfork feature is highly dependent on the
adopted primary beam response at the horizon, which is typically
the least accurate aspect of the simulated primary beam response
and also hard to characterize in the field (Lanman et al. 2019).
Future work using a combination of perturbed primary beam
simulations and empirical beam constraints will help us better
disentangle these effects in HERA data.

We also see evidence in Figure 8 for nonnegligible amounts
of spillover of foreground emission (or suprahorizon emission)
beyond the baseline’s geometric horizon, which has also been
observed by other 21 cm experiments (e.g., Pober et al. 2013b;
Beardsley et al. 2016). Suprahorizon emission can come
naturally from the intrinsic spectral structure of the foregrounds.

It can also be created by the chromaticity of the instrumental
gain that pushes out structure inherently contained within the
geometric horizon or from low-level artifacts in the data that
have a similar effect (Offringa et al. 2019). As noted above, the
antenna-based gains we apply to the data are simplified to a
single flux scaling and delay, meaning that part of this
suprahorizon emission may be due to uncalibrated instrumental
gain terms, which we do not explore in this work. For a
foreground-avoidance approach to estimating the 21 cm power
spectrum, the presence of suprahorizon emission is highly
concerning because it limits our ability to measure the low k
modes that, in theory, probe the EoR at the highest signal-to-
noise ratio. The upside is that if suprahorizon emission is slowly
time-variable (as are both the pitchfork effect and antenna cross-
coupling systematics), then regardless of its origin, we can
mitigate it by filtering it off in Fourier space. Indeed, this is
exactly the principle that cross-coupling subtraction algorithms
are founded upon.

Figure 8. HERA cross-correlation visibilities averaged in amplitude across LST for three east–west baselines of increasing length: 15, 29, and 44 m (blue, orange, and
green, respectively). The dashed vertical lines represent the geometric delay of the horizon for each baseline, within which foreground emission is nominally bounded.
We see spikes in amplitude at the geometric horizon (“low-delay spikes”) and also at higher delays of ∣ ∣t > 700 ns (“high-delay spikes”). The low-delay spikes are
thought to be either a pitchfork effect, as predicted by Thyagarajan et al. (2015), or antenna cross-coupling. Evidence suggests the high-delay features to be some kind
of cross-coupling systematic.

Figure 9. Comparison of HERA data with a simulated foreground visibility using the diffuse GSM sky for a 29 m east–west baseline. Left: averaged HERA cross-
correlation visibility amplitude in delay space (solid) with an equivalent data product from a simulated foreground visibility with a matching LST range (dashed). The
geometric baseline horizon is shown at ∼100 ns (dashed green). While we see some evidence for a slight pitchfork-like structure in the simulated visibility, it is
significantly weaker than the power bumps at equivalent delays in the real data. Right: simulated visibility transformed to fringe rate and delay space, with the
geometric baseline horizon overplotted (dashed green). We can more clearly see the existence of the pitchfork effect in this plot, which is centered at f=0 MHz,
extends out to the geometric horizon, and falls off after.
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Another striking feature in Figure 8 is the large amount of
excess power above the noise floor at high delay (∣ ∣t > 700 ns).
These features, which we refer to as the “high-delay” spikes,
exhibit some very peculiar behavior. First, these features seem to
be highly baseline-dependent: the three baselines shown in this
section are all tied to antenna 11, yet their structures do not seem
to be significantly correlated between the baselines. Second,
their profile as a function of delay does not show isolated,
individual peaks, as one might expect from one or a few feed-to-
feed reflections, but rather a wide range of delays corrupted by
excess power. Third, while the structures show up roughly near
the delays where we would expect reflections from the 150m
cable to appear, they also show up at delays significantly
smaller, enough to necessitate a considerably shorter cable
length than 150m, which is unlikely. The high-delay spikes
exhibit slow time variability, with their power centered at
f=0MHz, as we would expect from a cross-coupling
systematic. Figure 10 shows the cross-correlation visibility from
the 29m baseline in time and delay space (top), as well as in
fringe rate and delay space (bottom), where we recall that the
latter is merely the Fourier transform of the former across time.
We can clearly see that the high-delay structures are slowly
variable, both by their slow movement as a function of time in
the top plot and the fact that their power is centered at
f=0MHz in the bottom plot. This is in contrast to the
foreground power centered at τ=0 ns, which oscillates rapidly
as a function of time and is therefore boosted to positive fringe
rates, with the exception of the power at the baseline’s geometric
horizon (dashed green), which, like the systematics at high
delay, exhibits slow time variability centered at f=0MHz.

What we cannot see by looking at the visibility in time and
delay but can barely begin to discern when we transform to the
fringe-rate domain are the cable reflections at ∣ ∣t ~ 1300 ns. As
we saw in Figure 4, the measured reflection amplitudes are
roughly 3×10−3 times the peak power in the visibility.

Because the high-delay spikes at f=0MHz also show up at
similar delays and are stronger in amplitude, we cannot see the
cable reflections in Figure 8 or in the top panel of Figure 10
buried under the other systematics. Reflections have the same
time structure as the unreflected signal, so by transforming to
fringe-rate space, we can isolate them from the slowly time-
variable systematics, and indeed, we can just barely see them
above the noise floor of the cross-correlation visibilities at
roughly 3×10−3 times the main foreground power, as
expected. Figure 10 also shows evidence for the suprahorizon
emission having two distinct components: one that has fast
time variability, like foregrounds from the main lobe of the
primary beam, and another that is slowly fringing, like a cross-
coupling systematic or pitchfork effect, and both extend
considerably beyond the baseline’s geometric horizon.
Currently, there is no single physical model for the origin of

the high-delay spikes that can explain all of the behavior
observed in the data. In Appendix A, we explore some simple
physical models for the systematic and show that we can
tentatively rule them out; however, further work is needed to
more fully understand their origin. Nonetheless, their temporal
behavior is suggestive of some kind of antenna cross-coupling
that occurs at some point along the signal chain. At present,
what we can say with certainty is that their time dependence is
highly inconsistent with an EoR signal, and as such, we can
suppress it by filtering the data in fringe-rate space before
forming power spectra (see Kern et al. 2019a for details on why
this is inconsistent with an EoR signal).
With that in mind, Figure 11 shows the result of running an

singular value decomposition (SVD)-based cross-coupling model
(Kern et al. 2019a) on the 29m baseline data, which decomposes
the matrix shown in the top panel of Figure 10 into orthogonal
time eigenmodes (T), orthogonal delay eigenmodes (D), and their
singular values (S). Before taking the SVD, we apply a band-stop
window on the data matrix that assigns zero weight to all delay

Figure 10. HERA cross-correlation visibility showing foregrounds, cable reflections, and cross-coupling systematics. Top: real component of the visibility in time and
delay space, showing foreground power falling within the geometric horizon (green dashed). Notice that power well within the horizon fringes quickly as a function of
time, while power near the geometric horizon shows much slower time variability and has spillover to outside the baseline’s horizon. Bottom: visibility amplitude in
fringe rate and delay space. Here we can see the slowly time-variable systematics confined to f∼0 MHz fringe-rate modes, while foreground power is boosted to
positive fringe rates. In addition, although not visible in the top plot, we can see the cable reflection just barely visible from the background noise, which appears at
positive fringe rates because it is merely a copy of the intrinsic foreground signal.
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modes outside of the range ∣ ∣t< <200ns 2000 ns, which was
chosen to encompass most of the observed cross-coupling
systematics and reject the foregrounds at very low delays. The
left panel plots the firstT eigenmode across time, showing the raw
eigenmode (blue) and the eigenmode after low-pass filtering it out
to fmax=0.46MHz (orange). We use the Gaussian process–based
filter explored in Kern et al. (2019a) to low-pass filter these time
modes. The middle panel shows the first 60 singular values,
giving us a sense of how much the information content is isolated
into the first few eigenmodes. We find that most of the structure
can be described with only a handful of modes before reaching a
plateau. In forming the systematic model, we keep the top 30
modes out of∼1000 and truncate the rest. We choose 30 based on
inspection of Figure 11, which gets the strongest first few modes
but also tries to get some of the modes after the plateau, as they
may be picking up on the systematic at a low level. Lastly, the
right panel shows the firstD eigenmode across delay, showing it
picking up the high-delay cross-coupling systematic and some of
the suprahorizon emission at low delay. In addition to picking up
on the systematic, the SVD will pick up on the noise of the data as
well. However, because we keep only a small fraction of the
eigenmodes and additionally smooth them across time, we do not
suspect that we are subtracting a significant component of the
noise in the process of systematic removal. For the 29m baseline,
the number of Fourier modes kept in the low-pass smoothing filter
is ∼1/80, the total number of Fourier modes in the data.

We repeat this for the other baselines at hand, low-pass
filtering theT basis vectors from the 15 and 44m baselines with
fmax=0.14 and 0.83MHz, respectively, using a Gaussian
process–based smoothing for the low-pass filter. See Table1
and AppendixB of Kern et al. (2019a) for more details on this
process. Figure 12 shows the baselines in Figure 8 after cross-
coupling subtraction, with the vertical dashed lines showing the
minimum delay of the cross-coupling model at τ=200 ns. The
top panel shows only cross-coupling subtraction, where we see
significant suppression of the high-delay spikes and the outer
edge of the low-delay spikes. As expected, after subtracting the
strong cross-coupling terms at high delay, we are left with the
appearance of localized bumps that mark the cable reflections

(gray shaded regions), which, we recall, were not subtracted out
with the cross-coupling because they occupy fringe-rate modes
that were filtered out of the systematic model in the process of
smoothing. The bottom panel shows the data after applying
reflection calibration from Section 3 and cross-coupling
subtraction, showing that the data are now consistent with a
scale-independent thermal noise floor for all delays outside
∣ ∣t > 500 ns.

There is, however, still a slight slope in the data at
intermediate delays of ∣ ∣t< <200ns 500 ns, which is part of
the suprahorizon emission we observed earlier. To ensure that
this tail is not coming from the cross-coupling component that
we attempted to filter out, we can plot the systematic-subtracted
data in fringe rate and delay space, which is shown in Figure 13,
with the blue dashed region showing the region of Fourier space
where cross-coupling subtraction was performed. Figure 13
confirms that the excess signal in the range ∣ ∣t< <200 500 ns
observed in Figure 12 does not come from modes that should
have been subtracted in the process of cross-coupling removal
and originates from the second suprahorizon component at
higher fringe rates. As discussed above, this suprahorizon
emission can come from uncalibrated bandpass terms or low-
level artifacts in the data, which push foregrounds out in delay
that were intrinsically contained within the geometric horizon.
These effects can be somewhat mitigated with better bandpass
calibration and data flagging, but they are still active areas of
research in the literature. Additionally, the slight overlap of low
fringe-rate power inside the dashed region at ∣ ∣t = 200 ns is
produced by a windowing function applied to the data before
taking its Fourier transform.
Signal loss is a principal concern when applying any

baseline-dependent operation to the data, as we have done with
cross-coupling subtraction. In Kern et al. (2019a), we vetted
our cross-coupling modeling algorithms for EoR signal loss
against numerical visibility simulations of the HERA Phase I
system. We show that by low-pass filtering the systematic
model along time (Figure 11), we can harden our systematic
model against EoR signal loss to an almost arbitrary level. In
our case, we chose the fringe-rate bounds above by adopting a

Figure 11. Singular value decomposition of the 29 m east–west baseline visibility from Figure 10. Left: firstT eigenvector across time, showing its raw (blue) and
low-pass filtered (orange) forms, having filtering out modes with f>0.46 MHz with a Gaussian process model (Kern et al. 2019a). Middle: first 60 singular values,
showing that most of the variance in the systematic-prone regions can be described with a handful of modes before a noise plateau is reached. Right: firstD
eigenvector across delay, showing it picking up on the slowly variable structure at large delays (∣ ∣t ~ 1200 ns) and also some structure near the baseline
horizon (∣ ∣t ~ 200 ns).
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signal loss tolerance of 1% in EoR power, which is below the
expected measurement error of the full HERA array. We refer
the reader to our analysis and discussion in that paper for more
details on signal loss quantification in the context of cross-
coupling removal.

5. Power Spectrum Estimation

Now that we have demonstrated that we can suppress
reflection and cross-coupling systematics for a few baselines
down to their individual noise floors, we would like to prove that
we can similarly do this for baselines across the entire array and
confirm that these systematics are a nonlimiting factor in the
power spectrum even after redundant baseline averaging. We
will focus on the same three baseline orientations (14, 29, and
44m east–west baselines) but now look at all baselines within
the array that fall within each baseline group.

To estimate the three-dimensional 21 cm power spectrum,
P21(k), we use the delay spectrum estimator (Parsons et al.
2012a, 2014; Liu et al. 2014). The delay spectrum is a per-
baseline, visibility-based power spectrum estimator that relies
on the Fourier transform of the visibility across frequency into
the delay (τ) domain,

( ) ( ) ( )òt n n=~ p ntu uV d e V, , , 1i2

whereu=b/λ is the baseline vector divided by the observing
wavelength. The “delay transform” of the visibility is not a direct
measurement of the line-of-sight cosmological k mode, due to
an interferometer’s inherent chromaticity (Morales et al. 2012).
Approximating it as such is known as the “delay approx-
imation,” which was shown to be a good approximation for short
baselines and is one of the motivating factors behind HERA’s
compact design (Parsons et al. 2012a; Dillon & Parsons 2016).
We refer the reader to Morales et al. (2019) for a broader

discussion of various 21 cm power spectrum estimators. The
delay spectrum approximation of the 21 cm power spectrum is
then the square of the delay-transformed visibility with the
appropriate scaling factors,
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where X and Y are redshift-dependent scalings converting sky
angles and frequencies to cosmological length scales, Ωpp is the
sky integral of the squared antenna primary beam response, n̄ is
the delay transform center frequency, and Bp is the delay
transform bandwidth, as defined in Appendix B of Parsons
et al. (2014). The factors relating theu and τ Fourier domains
inherent to the telescope to the cosmological Fourier domains
of k̂ and k are
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21

1 1, Y=D(z), ν21=1.420GHz,
H(z) is the Hubble parameter, D(z) is the transverse comoving
distance, b is the baseline length, and λ is the observing
wavelength (Parsons et al. 2012b; Liu et al. 2014). In this work,
we adopt cosmological parameters from the Planckmission’s 2015
analysis (Planck Collaboration et al. 2016), namely ΩΛ=0.6844,
Ωb=0.04911, Ωc=0.26442, and H0=67.27 km s−1Mpc−1.
Cross-multiplying a visibility with itself in Equation (2) to

form a delay spectrum will result in an overall bias in power
due to the noise present in the data. To avoid this, we take
visibility spectra adjacent to each other in LST separated by
10.7 s and apply a phasing term to align their phase centers

Figure 12. HERA cross-correlation visibilities from Figure 8 after cross-coupling subtraction but before reflection calibration (solid) and after both cross-coupling
subtraction and reflection calibration (dashed). The black dashed lines represent the lower delay boundary of the cross-coupling model. Gray shaded regions indicate
expected delays for reflection systematics having inspected the autocorrelations for peaks. Joint systematic suppression yields cross-correlations visibly free of
systematics at the level of the per-baseline noise floor.
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before cross-multiplication (Pober et al. 2013a). This means
that the two visibilities to leading order measure the same
cosmological mode on the sky but have uncorrelated noise
realizations, such that they do not produce a noise bias upon
cross-correlation.

Thermal noise in interferometric visibilities is mean-zero,
Gaussian-distributed, and statistically uncorrelated on all time
and frequency scales; however, it generally is nonstationary
and will have an amplitude dependence as a function of LST
and frequency. A signal chain’s system temperature is
proportional to the total amount of noise power received by
the analog system and is the sum of the sky and receiver noise,

( ) ( ) ( ) ( ) ( )n n n= +T t T t T t, , , K . 4sys sky rcvr

In practice, antenna signal chains will have variable system
temperatures due to different angular primary beam responses
and receiver properties. A visibility-based system temperature
can therefore be estimated, which is the system temperature as
measured by a particular baseline. This can be estimated by
taking differences of adjacent pixels in time and frequency and
relating the rms to a system temperature via the radiometer
equation,
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where sij
rms is the rms of the visibility between antennas i and j

in jansky, kb is the Boltzmann constant, ν is the average
observing frequency, Ωp is the angular integral of the peak-
normalized primary beam response in steradians, Δνis the
correlator channel width in hertz, and Δt is the correlator
integration time in seconds (Thompson et al. 2017). Another
estimate of the noise comes directly from the autocorrelation
visibility, which itself is a measurement of the total power
received by a particular antenna. For a cross-correlation
visibility between antennas i and j, we can estimate the

baseline’s system temperature as
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where Vii is the autocorrelation visibility of antenna i. While
both methods are comparable, we defer to using the
autocorrelations, which, in practice, generally lead to more
stable and cleaner noise models.
Figure 14 shows system temperature estimates for each

baseline participating in the analysis (blue) and the averaged
system temperature, which is each baseline’s system temper-
ature averaged in quadrature. Again, because we have not
corrected for the bandpass structure of the gains, the large-scale
fluctuations in Figure 14 are not unexpected and would be
smoothed out after solving for and applying the appropriate

Figure 13. Same 29 m visibility in fringe rate and delay space as shown in Figure 10 but now with reflection and cross-coupling systematics removed. The blue
dashed region shows where the cross-coupling algorithm modeled and removed systematics, and the green dashed lines mark the baseline’s geometric horizon.

Figure 14. System temperature curves for all baselines used in the power
spectral analysis (blue) and their average (black dashed). Delay spectra presented
in this section are formed between channels 450 and 650 (144–163 MHz) with
an effective system temperature of ∼270 K.
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instrumental gains. The presence of such structure in the noise
curves does not change the fundamental results of this section.
Power spectra presented in this section are formed between
channels 450 and 650 (144–163MHz), with an effective
system temperature of ∼270 K.

With an understanding of the noise properties of our data, we
can compute a theoretical estimate of the noise power
spectrum, PN, which is equivalent to the rms of the power
spectrum if the only component in the data were noise. This is
one way to measure the uncertainty on the estimated power
spectra but also represents the theoretical amplitude of the
power spectra in the limit that they are noise-dominated (as
opposed to signal- or systematic-dominated). This is given in
Cheng et al. (2018) as

( )=
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P
X Y T

t N N2
, 7N

2
eff sys

2

int coherent incoherent

where the X and Y scalars are the same as before, Tsys is the
system temperature in millikelvin, tint is the correlator
integration time in seconds, Ncoherent is the number of sample
averages done at the visibility level (i.e., before visibility
squaring), and Nincoherent is the number of sample averages
done at the power spectrum level (i.e., after visibility squaring).
Here Ωeff is the effective beam area given by W = W Wp ppeff

2 ,
where Ωp is the integral of the beam across the sky in
steradians, and Ωpp is the integral of the squared-beam across
the sky in steradians (Pober et al. 2013a; Parsons et al. 2014).
We calculate PN for each redundant group using the baseline-
averaged system temperature.

The data are natively sampled at a 10.7 s cadence. Before
forming power spectra, we coherently average each visibility
across LST for 3.6 minutes (20 samples), applying a fringe stop
in each averaging window to limit sky signal attenuation. We

select a wide spectral window between channels 400 and 700
(139–168MHz) and apply a Blackman–Harris windowing
function before transforming to Fourier space. Because the
cosmological signal undergoes nonnegligible evolution within
such a bandwidth, we would not normally use such a wide
bandwidth for setting upper limits; however, we do this to
achieve better resolution in delay space for diagnostic purposes.
We then cross-multiply the visibilities and apply the necessary
normalization factors as per Equation (2). For simplicity, we
only form power spectra by cross-multiplying baselines with
themselves (at adjacent times) and do not cross-correlate
different baselines within redundant groups. Then we average
the power spectra within each redundant group (i.e., an
incoherent average). For the 15, 29, and 44 m groups, this
involves averaging 35, 28, and 20 independent baselines,
respectively.
What we are left with is a single complex-valued power

spectrum waterfall for each redundant group as a function of
LST and delay, consisting of 60 leftover time bins and 200
delay bins. In Figure 15, we show this for the 15 m group with
and without systematic removal (right and left). In our final
step, we take the real component of each power spectrum
waterfall and average its absolute value over the remaining
time bins with uniform weighting for each bin. This is done to
make a higher signal-to-noise measurement of the noise floor at
the level of the power spectrum waterfall: we could have
gained more sensitivity by not taking the absolute value before
averaging, but our point here is to make a visually clearer
comparison with the known noise level rather than gain
increased sensitivity. Figure 16 shows the power spectra of the
data without systematic removal (blue) and with systematic
removal (orange) and also shows the theoretical noise level
given our visibility noise estimates and taking into account
the various forms of averaging before and after squaring the

Figure 15. Averaged power spectrum waterfall of the east–west 15 m group showing the absolute value of the real component of the power spectra, having first
incoherently averaged 35 separate baseline pairs in the group. We plot the data with systematics in (left) and with systematics removed (right).
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visibilities (black dashed). In this case, the systematic removal
includes both cross-coupling subtraction and reflection calibra-
tion. We find that we can suppress the observed systematics by
roughly 2 orders of magnitude in power, enabling us to achieve
6 orders of magnitude in dynamic range with respect to the
peak foreground power for ∣ ∣ >k h0.2 Mpc−1.

The power spectra in Figure 16 show general agreement with
our prediction of the thermal noise floor for delays considerably
outside of the foreground wedge. The bottom panels show the
fractional offset of the data with respect to the analytic noise,
showing that PN is broadly consistent with the data at the
∼15% level. While the 29 and 44 m groups seem to exhibit
slight systematic offsets between the observed and predicted
PN, this offset is contained within the majority of the random
fluctuations seen in the noise floor; without noise propagation
trials, this offset is hard to quantify rigorously, which we defer
to future work. Although the geometric horizon for these short
baselines is on the order of 50–150 ns, the Blackman–Harris
windowing function pushes this out by about +100 ns, such
that their effective horizon is on the order of 150–250 ns.
However, we can still see some amount of positive power near
the transition region, particularly for the 15 m group. This
could be due to uncalibrated bandpass terms in the data, low-
level artifacts in the data missed by RFI flagging, or residual
reflection and cross-coupling systematics. More complete gain
calibration and deeper integrations will allow us to investigate
this at higher signal-to-noise ratio levels.

A. Gosh et al. (2019, in preparation) also propose methods
for subtracting systematics observed in the HERA Phase I
instrument using a Gaussian process–based model. With their

model, they find good subtraction of the systematic down to
similar dynamic ranges (106 in power), at the cost of possible
signal loss at the ∼10% level. Systematics of a similar nature
were also observed in the HERA-19 commissioning array
(Kohn et al. 2019). However, a direct comparison with this
work is difficult because the array was reconfigured en route to
the Phase I configuration.
As a final note, we would like to clarify how we came to the

noise level plotted in Figure 16. Noise in the interferometric
visibility is a complex Gaussian random variable, meaning that
when we form power spectra by squaring the visibilities, we are
left with a noise component that is drawn from a complex normal-
product distribution. A real-valued normal-product distribution
can be shown to be described by a modified Bessel function of the
second kind of order zero (Wells et al. 1962; Cui et al. 2016). A
complex-valued normal-product random variable is simply the
sum of two real-valued normal-product random variables, which
means its probability density function (PDF) is a convolution of
the Bessel function with itself and turns out to be a double-sided
exponential distribution. Therefore, after squaring the visibilities,
noise in the power spectrum is drawn exponentially.
However, most power spectrum pipelines will average the

data after squaring the visibilities (i.e., incoherent averaging),
which will re-Gaussianize the data due to the central limit
theorem. Indeed, to create Figure 15, we perform a few dozen
incoherent averages across redundant baselines after squaring the
visibilities, meaning that it is fair to assume the noise in our
power spectrum is Gaussian-distributed. However, in order to
collapse our data along the LST axis to form Figure 16, we took
the absolute value of the real component of the power spectrum

Figure 16. Delay spectra for three unique baseline lengths oriented along the east–west axis without systematic removal (blue) and with systematic removal (orange).
The power spectra are formed directly from the visibilities for each baseline in the array and incoherently averaged within each redundant group; then, their absolute
value is averaged across the remaining bins in LST. We see suppression of high-delay systematics down to the integrated noise floor and get some suppression of
suprahorizon power at low delay.
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before averaging. The absolute value operation transforms the
noise from a normally distributed, mean-zero random variable
into a random variable drawn from a half-normal distribution,
which is no longer mean-zero and has an expectation value of

s
p
2 . Recall from Equation (7) that PN tells us the expected rms

of the real (or imaginary) component of the complex power
spectrum due to thermal noise. Therefore, the act of taking the
absolute value of the real component of the power spectra and
averaging across LST means we need to multiply our final PN

estimate by a factor of p2 , which is what is actually plotted in
Figure 16 as the black dashed line.

6. Summary

In this work, we investigate data from HERA Phase I for signal
chain reflection and antenna cross-coupling systematics. We
find cable reflections on the order of ∼10−3 in amplitude and a
systematic tail in the autocorrelation visibilities straddling the EoR
window at roughly the 10−3–10−4 level, which is considerably
larger than that expected from simulations of the HERA dish
and feed. If not mitigated, the systematic tail observed in the
autocorrelations may prevent HERA Phase I from setting
competitive upper limits on the EoR, let alone detecting it. We
show that reflection calibration can help to suppress some of these
features by about an order of magnitude in the visibility at specific
kP modes. The presence of the systematic tail in the autocorrela-
tion may be indicative of highly complex cable subreflections that
will be hard to calibrate out down to EoR levels, even with the
methods demonstrated here.

We also inspect the data for antenna cross-coupling systematics
and find that they contaminate the data at high delays near the
edge of the targeted EoR modes at  ~k h0.5 Mpc−1. We also
find evidence for excess emission at each baseline’s geometric
horizon that is likely due to either (1) a pitchfork effect
(Thyagarajan et al. 2016) or (2) feed-to-feed mutual coupling.
These features produce nonnegligible spillover into the EoR
window and thus need to be controlled for foreground-avoidance
power spectrum approaches. We investigate three east–west
baselines of increasing length (15, 29, and 44m) that exhibit
particularly strong systematics and find that we can model and
suppress both of the contaminating components in the EoR
window down to the noise floor of the nightly observation.

We then form power spectra from three redundant groups for
baselines across the entire array. We show that by combining
reflection calibration and cross-coupling subtraction on specific
baseline orientations, we can suppress systematics for kP>
0.2 hMpc−1 down to the integrated noise floor of the array for a
single nightly observation, with the exception of a weak
suprahorizon tail at low k that merits further investigation through
improved bandpass calibration and RFI flagging. Instrumental
bandpass calibration for HERA Phase I is explored in Kern et al.
(2019b) and J. Dillon et al. (2019, in preparation).

This work shows that the immediate systematics seen in the
HERA Phase I system can be modeled and dealt with down to a
dynamic range of 106 in the power spectrum against the peak
foreground power, even with an extremely simple approach to
direction-independent, antenna-based calibration. While this is
reassuring, fiducial EoR levels are expected to appear at
dynamic ranges of ∼1010 in the power spectrum for low-k
modes (Thyagarajan et al. 2016). Future work with deeper
integrations will help determine whether these systematics can
continue to be mitigated down to EoR levels.
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Appendix A
Physical Models for the Observed Cross-coupling

Here we explore the feasibility for some simple physical models
as the origin of the “high-delay” cross-coupling systematics
investigated in Section 4. In summary, we cannot find a single
model that explains all of the observed behavior of the systematics,
but we can tentatively rule out some simplistic models. In what
follows, we adopt the mathematical conventions in Section2 of
Kern et al. (2019a) when discussing voltage spectra, visibilities,
and coupling coefficients. Specifically, for two antennas, 1 and 2,
with intrinsic voltage spectra v1 and v2, we can write the voltage of
antenna 1 corrupted by a cable reflection as

( ) ( )¢ = + v v 1 , 81 1 11

where ò11 is the cable reflection coefficient, and we can write
the voltage of antenna 1 corrupted by cross-coupling from
antenna 2 as

( )¢ = + v v v , 91 1 21 2

where ò21 is the cross-coupling of antenna 2ʼs voltage into
antenna 1ʼs voltage. If the uncorrupted cross-correlation
visibility is =V v v12 1 2*, then the visibility corrupted by a
reflection from antenna 1 can be written as

( ) ( )¢ = ¢ = + V v v v v 1 , 1012 1 2 1 2 11* *

and the visibility corrupted by cross-coupling can be written as

( )¢ = ¢ = + V v v v v v v . 1112 1 2 1 2 21 2 2* * *

A.1. A Noise Source in the Field

A cross-coupling-like signal can be generated by a stable
noise source in the field, which will not fringe over time. We
can rule this out as the systematic mechanism simply based on
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the fact that we observe cross-coupling systematics on short
baselines at delays of �1000 ns: any (unreflected) source
situated in the field will have a maximum achievable delay
corresponding to the baseline’s geometric horizon, which for
short baselines is from 50 to 150 ns.

A.2. Mutual Coupling Boosted by Cable Reflections

One way to get cross-coupling at high delays is to take cross-
coupling at low delays (e.g., mutual coupling) and boost it to high
delays via a cable reflection. If antenna 1 observes cross-coupling
from antenna 2 that then travels down and gets reflected in the
cables of antenna 1, we can write the final measured visibility as

( )( )
( )

¢ = + +

= + + +

 
   

V v v v

v v v v v v v v

1

. 12
12 1 21 2 11 2

1 2 1 2 11 21 2 2 21 2 2 11

*

* * * *

On the right-hand side of Equation (12), we recognize the first
term as the uncorrupted visibility, the second term as the cable-
reflected visibility, the third term as the first-order cross-coupling
systematic at low delay, and the last term as the cross-coupling
systematic boosted to high delay. What we find is that the
systematic can only be boosted to specific delays, determined by
the product ò21ò11. What we see in the data (specifically, the right
side of Figure 10) are cross-coupling systematics at delays that
are not consistent with this expectation. Furthermore, the high-
delay systematics do not look like a shifted version of the low-
delay systematics, which is also a prediction of this model.

A.3. A Broadcasting Antenna

This model is a hybrid of the first two models and states that a
single antenna, say, antenna 3, receives sky signal that traverses
down its signal chain, is reflected back up one of its cables, and
is rebroadcast out into the field and then picked up by
neighboring antennas, mimicking a stable noise source in the
field that has acquired a large delay lag due to the cable
reflection in antenna 3ʼs signal chain. We can write the visibility
between antennas 1 and 2 in the presence of this signal as

( )( ) ( )¢ = + +   V v v v v 1312 1 31 33 3 2 32 33 3 *

( )= + + +       v v v v v v v v . 141 2 1 32 33 3 31 33 3 2 31 33 3 32 33 3* * * * * * * *

We recognize the first term on the right-hand side as the
uncorrupted visibility and the fourth term as a standard cross-
coupling term (due to the autocorrelation nature of v v3 3*) that
has had its large delay canceled out due to  33 33* and thus does
not appear at high delays. Only the second and third terms will
appear at high delays, but we can see that these terms are
actually fringing terms because they contain products like v v1 3*

rather than v v3 3* and thus will not appear centered at a fringe
rate of 0 MHz, as we observe in the data.

A.4. Summary

While we have tentatively ruled out a few simple physical
models, we still cannot point to a single mode that seems to
explain the wide variety of behavior observed in the high-delay
systematics. What we can say is that the high-delay f∼0MHz
terms seem to be physically disconnected from the f∼0MHz
terms at low delays (i.e., at each baseline’s geometric horizon).
Regardless of its origin, we do know that the high-delay
features do not look like an EoR signal and can therefore be

filtered out of the data. Work is currently underway to assess
whether these systematics appear in the upgraded HERA Phase
II system, and if so, what can be done in the field to mitigate
their presence in the field.

Appendix B
Software

The analysis presented in this work relies heavily on the
Python programming language (https://www.python.org)
and Python software developed by HERA collaboration
members. Here we provide a list of these packages and their
version or Git hash: aipy [v2.1.12] (https://github.
com/HERA-Team/aipy), healvis [v1.0.0] (https://
github.com/RadioAstronomySoftwareGroup/healvis; Lanman &
Pober 2019), hera_cal [v2.0] (https://github.com/HERA-
Team/hera_cal), hera_sim [v0.0.1] (https://github.com/
HERA-Team/hera_sim), pyuvdata [v1.3.6] (https://
github.com/RadioAstronomySoftwareGroup/pyuvdata; Hazelton
et al. 2017), and uvtools [v0.1.0] (https://github.com/
HERA-Team/uvtools). These packages, in turn, rely heavily on
other publicly available software packages, including astropy
[v2.0.14] (https://astropy.org; The Astropy Collaboration
et al. 2013), healpy [v1.12.9] (https://github.com/healpy/
healpy), h5py [v2.8.0] (https://www.h5py.org/), matplo-
tlib [v2.2.4] (https://matplotlib.org), numpy [v1.16.2]
(https://www.numpy.org), scipy [v1.2.1] (https://scipy.
org), and scikit-learn [v0.19.2] (https://scikit-
learn.org).
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