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Extended Data Figure 1. Pelo is expressed in all skin cell subpopulations and
Knockout of Hbsll leads to mild dermal phenotype (a, b) Pelo and Hbsl! are
ubiquitously expressed in all cell populations of embryonic and neonatal skin. mRNA
expression data obtained from hair and skin gene expression library (Hair-GEL;
www.hair-gel.net). (¢) Schematic of Hbs 1/ knockout-first allele. (d) Immunolabelling
of tail epidermal wholemounts with antibodies to Krt14, Krt15, Lrigl and FASN. (e)
Tail skin sections immunolabelled for Ki67, showing no significant change in the
distribution of Ki67+ cells in HbsII" epidermis. (f) H&E staining of adult control and
Hbs1I"" tail skin. (g) Herovici’s polychrome staining to visualize immature (blue) and
mature (pink) dermal collagen. (h) Picrosirius staining of tail skin showing the
birefringence of collagen fibers against a black background. (i) Immunostaining of
tail skin sections with pan-keratin (PanKrt) and vimentin (Vim) antibodies. (j-m)
Quantification of dermal thickness (j), dermal cell density (k), dermal cellularity (I)
and total collagen deposition (m). Dashed lines mark epidermal-dermal boundary.
Scale bars 100 um. *p = 0.0286 in (j, m). FKPM - Fragments per Kilobase of

transcript Per Million mapped reads.
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Extended Data Figure 2. Delayed wound closure in Pelo null epidermis (a)
Histology of skin 10 days post wound (dpw) shows delayed wound closure in
Pelo™™ °_ (b, ¢) EdU staining of 10 dpw skin shows reduced proliferation in wound
bed. Itga6 staining demarcates dermal-epidermal boundary, Box indicates the wound
bed (d) Histology of 5 dpw wound shows altered epidermal architecture. (e, f) EAU
labelling of 5 dpw skin shows reduced proliferation at wound edge. (g, h)
Immunostaining of Krtl4 in 10 and 5 dpw skin shows abnormal differentiation in
Pelo®™ © (arrows). (i) TdTomato genetic labeling shows the contribution of Lrigl,
Lgr5 and Lgr6 progeny in tail wound healing. Note that altered migration of Lrigl
cells in Pelo™; Lrigi“*®"; tdTom when compared to Lgr5 and Lgr6 on Pelo

deletion. *p = 0.0123 in (c), *p = 0.0330 in (e). Scale bars, 100 wm.
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Extended Data Figure 3. Pelo deletion leads to progressive hair follicle and
sebaceous gland abnormalities (a, b, c¢) Confocal images of tail epidermal
wholemounts immunostained for Krt14, hair follicle bulge markers CD34 and Krtl5,
sebocyte maturation marker Fatty acid synthase (FASN) and junctional zone stem cell
marker Lrigl show progressive changes in hair follicle and sebaceous gland structure
from P16 to P120 in Pelo®™*° mice. Note that the FASN staining in P84 and P120
Pelo®P™© epidermis is non-specific due to highly keratinized hair follicles. Asterisks

in (b) indicate non-specific staining of sebaceous glands. Scale bars, 100 um.



Liakath-Ali et al. Extended Data Fig. 4

b 4-OHT Onset o$henotype
- YYVVYY Vv Vv v _>

g
P44 P45 P46 P47 P48 P53 P58 P63 P70

a

>
—P)— Pelota —hp— X —K14—@—

5.0 - = Ctil (+4OHT)
il = Pelo": K14 (+40HT)
4.0 4
3.54
3.0 4

254

Wound area (mm?)
~
o
2

TEWL (g/m?-h)

1.54

1.0 4
0.5 4
0.0

—rTTT T T T T
01 2 3 4 5 6 7 8 9 10
Days post wound

Pelo™; K14, TdTom
+40HT|

¥ g

h 7000 - JCtd
Bl Pe/o© : /
6000 o / :

+ A - CreERT
2ot Pefo K14 40T

5000
4000

3000 4

Relative abundance

2000 +

100: L ll I_]

o ) O &
2
& RN

/ CreERT
40H K it 40HT

K1 4(Zch=~lT+

- -

PRSNS.



Extended Data Figure 4. Postnatal epidermal Pelo deletion impairs barrier
function and wound healing (a, b) Breeding scheme and topical Tamoxifen (4-OHT)
treatment regime. (c) Representative Pelo™™; Krt14““*®" mouse showing skin lesions
(dashed area) in 4-OHT-treated dorsal skin. (d) TEWL is increased in 4-OHT-treated
skin of Pelo™; Krt14“*® mice. (¢) Rate of wound closure. (f) Tail epidermal
wholemounts immunostained with Krtl4 and Krtl5 antibodies showing altered
sebaceous gland architecture (arrows) in 4-OHT-treated Pelo™; Krt14“*RT mice. (2)
Tail epidermal wholemounts from TdTomato (red) genetically labelled Pelo™™;
Krt14“°**" mice show keratinized cysts in hair follicles (arrows). (h) Cumulative
mean values of gene expression obtained from ribosome profiling show down-
regulation of markers of sebaceous gland differentiation and increase in Myec. (i) Tail
epidermal wholemounts showing altered expression of FASN, Scdl and Lrigl
(arrows) in sebaceous glands of 4-OHT-treated Pelo™"; Krt14“*" mice (middle and
right panels). Dashed lines indicate pilosebaceous units. Scale bars, 100 um. **p =

0.0072, *p = 0.0650, n. s., non significant. n = 3 in treated and untreated control

groups.
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Extended Data Figure 5. Knockdown of PELO in human Kkeratinocytes
phenocopies mouse epidermal phenotype and proliferation difference in mice
lacking Pelo in Lrigl, LgrS and Lgr6é stem cells. (a-d) PELO knockdown
validation. (a) qRT-PCR for individual siRNAs transfected in human primary
keratinocytes. (b) Clonal growth. (c, d) colony number and average size of individual
colonies. (e-g) Clonal growth of keratinocytes, comparing pooled PELO siRNA
knockdown (PELO*™*) and scrambled (Scr) control. (h-1) Effect of PELO
knockdown in human epidermal reconstitution assay on decellularised dermis. (h, 1)
Epidermal thickness of DED cultures is significantly increased on PELO knockdown.
(- Immunolabelling for Krt14 (K14), Ki67, p63 and differentiation markers Krt10
(K10) and involucrin (IVL) shows increased number of differentiated cell layers (j)
and increased number of cells expressing Ki67 and p63 (k, 1) in PELO™®A
reconstituted epidermis. Dashed lines indicated dermal-epidermal boundary.
Assessing proliferation by Ki67 and p63 in the dorsal skin IFE sections of mice
lacking Pelo in Lrigl, Lgr5 and Lgr6 stem cells. Scale bars, 100 um. ***p = 0.0009
(a, for siRNA#10), ***p = 0.0004 (a, for siRNA#11), **p = 0031 (a, for siRNA#12);
*p = 0.0286 (c); *p = 0.0286 (d); **p = 0.0022 (f); **p = 0.0087 (g); ****p = <
0.0001 (i); *p = 0.0229 for Ki67 and *p = 0.0107 for p63 (1). n = 2 independent

transfections; n = 3 dishes (a - g) and n = 2 sections of reconstituted epidermis (h, 1).
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Extended Data Figure 6. Lrigl+ stem cells account for Pelo mutant epidermal
phenotype (a) Tail epidermal wholemounts labeled with Krt14 and Ki67 antibodies,
showing increased proliferation and alterations to the junctional zone (asterisks) and

ilin . 1CreERT2
; Lrigl

sebaceous glands (arrow) in Pelo mice. (b) Cross section of dorsal

skin stained for EdU shows increased proliferation and alterations in HF

infundibulum structure (arrow) in Pelo™"; Lrigl“***™

mice. (c-e¢) Confocal images of
tail epidermal wholemounts (c, €) and dorsal skin sections (d) of tdTomato labelled
Pelo™™; LrigI“™ pelo™; Lgr5“ 2 and Pelo™; Lgr6“*** mice. (c, d)
Expansion of tdTomato-labelled Lrigl (arrows) but not Lgr5 or Lgr6 progeny upon
Pelo deletion. (e, f) Increase in proliferation (Ki67 labelling) of Lrigl (arrows) but not
Lgr5 and Lgr6 populations. Scale bars, 100 um. *p = 0.0047 (f). n = 3-4 mice per
group. All mice were in telogen of the hair cycle (2-3 months old) when treated with

4-OHT. Treatment regime and harvest of tissue were as indicated in Fig. 2c. Dashed

lines mark epidermal-dermal boundary.
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Extended Data Figure 7. Pelo knockout epidermal cells do not accumulate
3’'UTR footprints (a) Empiric cumulative distribution plots of relative 3'UTR
ribosome occupancy for all transcripts or (b) those with at least 1 read mapped to the
3'UTR. (c-e) Gene Ontology of genes differentially expressed in Pelo-null epidermis.

Functional, component and process categories of genes enriched in Pelo™©.
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Extended Data Figure 8. Computational analysis of differentially regulated

epiKO

pathways between control and Pelo and comparison of molecular signatures

epiKO

in Pelo and Gtpbp2-deficient brain (a) Number of genes that were

epiKO

differentially expressed in Pelo and control epidermis and their associated

functions. (b, c¢) Ingenuity Pathway Analysis showing changes in mTOR pathway

genes in Pelo®*°

vs control epidermis (b) and their predicted molecular activities (c).
(d) Venn diagram shows common differentially expressed genes in our study and that

of Ishimura et al (2014) when comparing Ctrl and mutants. The 314 overlapping

genes are enriched in top canonical pathways that are highly related to translation.
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Extended Data Figure 9. Pelo epidermal deletion results in increased protein
synthesis and basal stem cell size and Rapamycin treatment reduces
proliferation of Pelo-null epidermis

(a) Gating strategy for measurement of OP-Puromycin incorporation in cell
populations (b, c) Confocal images of tail and ear epidermal wholemounts
immunolabelled for Krtl4 and P-cadherin (P-Cad), showing IFE basal cells. (d, e)
Representative flow cytometric dot plot showing increased cell size (FSC-A) of
Itgo6™e" cells and altered S and G2/M cell cycle phases in Pelo™*° epidermis. (£, g)
Breeding scheme and rapamycin treatment regime. (h) Immunolabelling of tail
epidermal wholemounts with Krt14 and Ki67 antibodies shows reduced proliferation
in rapamycin-treated mice compared to vehicle-treated group. Note that there was no
significant change in epidermal proliferation of control mice treated with rapamycin

K
KO and

when compared to vehicle treated mice. (i, j) Cross sections of IFE from Pelo
control back skin immunolabelled with Krtl4 and Ki67 antibodies, showing
significant reduction in Ki67+ and suprabasal Krtl4+ cells in rapamycin-treated
compared to vehicle-treated mice. (k) Cross sections of IFE from control and
Pelo®P™© back skin immunolabelled with Krt14 and pS6K antibodies showing marked
increase in pS6K labeling indicating mTOR hyperactivation in vehicle-treated
Pelo®™™° skin. (1) Cross sections of IFE of control and Pelo™"; Krt14“**T mice (with
simultaneous 4-OHT and Rapamycin treatment) immunolabelled for Krt14 and EAU
showing significant reduction in EdU+ and suprabasal Krt14+ cells in rapamycin-
treated compared to vehicle-treated mice. (m) Cross sections of IFE of control and
Pelo™™; Krt14“*®" mice (with simultaneous 4-OHT and Rapamycin treatment)

immunolabelled for Krtl4 and p4EBP antibodies. Note reduced pS6K labeling (k)

and p4EBP1 (m) in rapamycin-treated epidermis. Gray scale images for pS6K are



shown below merged images. Scale bars, 100 um. *p = 0.0132 in (j), n. s., non

significant. n = 3 mice in all groups. Dashed lines mark epidermal-dermal boundary.
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Extended Data Figure 10. RNA-sequencing of Lrigl+, Lgr5+ and Lgré+ cells
reveals Lgr5 as a transcriptionally unique subpopulation and subtle changes in
transcription in all subpopulations when Pelo is deleted. (a) Schematic illustration
of the EGFP"®" sorting and RNA-seq strategy for control and Pelo-deleted
subpopulations using Pelo™"; Lrig /"™ -ERT2 | pejoM, 1 gp5POFP-CreERT2 g g Pelo™™,;
Lgr6™FPCeERT2 mice. (b) Principal component analysis of RNA-seq data shows that
the Lgr5 subpopulation is remarkably different from the other two. Note that there is
no major change in the clusters when Pelo is deleted in any of the subpopulations. (c)
Hierarchical clustering of the subpopulations corroborates minimal transcriptional
changes between control and Mut mice, revealing two major clusters, one for Lgr5
and another for Lrigl and Lgr6. (d) Venn diagram illustrating the differentially
expressed genes in common between the 3 subpopulations when comparing control
and Mut. (e) Top differentially regulated transcription factors between Lrigl and Lgr5
(f), Lgr5 and Lgr6 (g) and Lrigl and Lgr6 control subpopulations. (h-j) Top
differentially regulated canonical pathways between Lrigl and Lgr5 (h), LgrS and
Lgr6 (i) and Lrigl and Lgr6 control subpopulations (j). (k) Schematic of epidermis

showing location of marker expression and the various transgenic mice used in this

study.



