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Abstract—Smartphones are a promising platform for 

continuous monitoring of human behavior. However, the 

ability to capture people's behavioral patterns in-the-wild 

is a challenge, as the user's behavior and physical activities 

can vary, given the variability of settings and 

environments. Modeling and understanding of human 

activity in-the-wild must not overlook a user's behavioral 

context, which is just as crucial as recognizing the range of 

physical activities. The work in this paper presents a novel 

framework for context-aware human activity recognition 

by incorporating human behavioral contexts with physical 

activities. The proposed framework utilizes a series of 

machine learning classifiers to validate the efficiency of the 

proposed method. 

Index Terms—Activity recognition, accelerometer, 

behavioral context, context-aware, smartphone, ubiquitous 

computing 

I. INTRODUCTION 

BIQUITOUS computing is a new paradigm, in which the 

information manipulation is linked with individual 

actions or objects as encountered anywhere at any time. In 

recent years, with the rapid advancement in smart gadgets and 

technologies, the worth of ubiquitous systems has become the 

key attraction for researchers [1]. These smart devices have 

been used for enabling a wide range of applications, especially 

in the area of human activity recognition (HAR). HAR is 

essential expertise in pervasive computing, which involves 

detecting the actions or activities of individuals from the 

sequence of information coming from different sensing 

modalities. The automatic recognition of human daily living 

activities has great significance in wide-ranging applications 

related to robotics, smart surveillance, web-video exploration, 

and road safety. A lot of research studies have been conducted 

in the area of HAR using either vision-based [2], [3] or sensor-

based approaches [4]–[6]. Recognizing human activities from 

static images or video sequences is challenging due to certain 

difficulties, including background mess, restricted occlusion, 

changes in viewpoint and illumination, and camera motion. 

Moreover, ubiquitous and in-the-wild monitoring of human 

activities is not possible with static cameras. These challenges 

are addressed by the use of miniaturized motion sensors for 

HAR, including on-body inertial sensors and smartphone 

sensors. These sensors offer the opportunity of being with the 

people during the whole day and provide pervasive monitoring 

of human activities [7]–[9]. Consequently, sensor-based HAR 

has become significantly crucial for detecting and recognizing 

in-the-wild human activities.  

Most of the existing studies on HAR are developed under 

controlled settings, where the authors instruct the participants 

to perform a predefined set of activities to train the system. It 

causes vile realization of the real-world settings as human 

physical activity patterns rely heavily on human behavioral 

context, which varies in different environments. For example, 

the sitting pattern may be different if a person is in a meeting, 

or in a car. Similarly, the gait pattern of a person may differ 

when the person is walking alone or walking with a group of 

friends. The emotional state of a person also influences his/her 

physical activity patterns. As a result, the HAR systems 

trained under controlled settings perform poorly in real-world 

scenarios. For robust HAR, it is essential to incorporate in-the-

wild experiments for training and testing of the system. 

Moreover, it is also necessary to model human behavioral 

context information along with human activity. Vaizman et al. 

[10] presented an in-the-wild recognition model for human 

context, which utilizes the fusion of smartphone sensors 

(including accelerometer, gyroscope, magnetometer, a 

location sensor, microphone, and phone state) and watch 

accelerometer for the recognition of human behavioral 

context. They used a logistic regression classifier for 

recognizing multiple single-label contexts for daily living, 

which include a person’s physical activity, phone position, and 

location. The major limitation of this study is the recognition 

of single-label human context information, which is not 

sufficient for better modeling of HAR. It will be more useful if 

we can recognize multi-label human activity and context 

information at the same time. For instance, just recognizing a 

person’s physical activity (“such as sitting”) or his/her context 

(“such as indoor”) at one time is not enough for fine-grained 

HAR. However, recognizing a person’s physical activity along 

with the context, such as sitting in a car, is more important 

and meaningful. Hence, there is a need to be aware of the 

specific human context along with the physical activities to 

obtain fine-grained activity information for better decision 

making. In this aspect, it becomes mandatory to model 

personal context information in combination with the physical 

activity simultaneously. 

In this study, a novel framework for context-aware human 

activity recognition (CAHAR) is presented, which combines 

human behavioral context information with their physical 

activities for in-the-wild activity and context recognition based 

on the smartphone accelerometer. The key reason for focusing 

on the smartphone accelerometer is its better individual 

performance than the gyroscope and magnetometer sensors, as 

analyzed in the existing HAR studies [11]. Besides, the fusion 

of multiple sensors increases the computational complexity of 

the system and hence becomes infeasible for real-time 
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applications on battery-constrained devices. A public domain 

dataset, i.e., ExtraSensory [12], is used for validation of the 

proposed scheme, which contains data (from heterogeneous 

sensors of smartphone and smartwatch) related to in-the-wild 

human activities of daily living and their behavioral contexts. 

Six (06) activities of daily living (ADLs) are considered as 

primary activities for recognition in the proposed study, which 

include sitting, standing, lying down, running, bicycling, and 

walking. For CAHAR, these activities are incorporated with 

behavioral context information using ten (10) different context 

labels inline with the ExtraSensory dataset, as shown in Fig. 1. 

These contexts are defined in terms of location (like indoor 

and outdoor) and secondary activities (such as talking and 

shopping). The activity of walking is associated with four 

contexts, including indoor, outdoor, talking, and shopping, 

whereas sitting is related to watching TV, in a meeting, surfing 

the internet, and in a car. The activities of bicycling and 

running are linked with the context of exercise, whereas, for 

lying down activity, sleeping, surfing the internet, and 

watching TV contexts are considered. For standing activity, 

indoor and outdoor contexts are used. By incorporating 

selected contexts with the primary activities, fifteen (15) 

different context-aware activities are obtained, which are 

opted for CAHAR using Random Forest, Bagging, Decision 

Tree, K-Nearest Neighbors, Support Vector Machine, and 

Naïve Bayes classifier. For signifying the effectiveness of 

using a smartphone accelerometer for the proposed scheme, 

this paper also provides a comparison of the recognition 

performance of different sensors (phone accelerometer, phone 

gyroscope, and watch accelerometer) and their fusion for 

CAHAR.  

Major contributions of this research work are as follows: 

 A computationally efficient scheme is presented for 

in-the-wild HAR, which computes simple statistical 

features from the smartphone accelerometer data only 

for context-based activity recognition.  

 For a better understanding of the human activity, 

behavioral context parameters (such as location and 

secondary activity) are incorporated with the primary 

activity for in-the-wild CAHAR. 

 For demonstrating the effect of adding behavioral 

context information on the recognition of primary 

activities, two types of experiments are performed, i.e., 

context-independent HAR and context-aware HAR,  

and the detailed analysis is presented for each case. 

 A detailed comparative analysis is provided regarding 

the performance of Random Forest, Decision Tree, 

Bagging, K-Nearest Neighbor, Support Vector 

Machine, and Naïve Bayes classifier for the proposed 

CAHAR scheme.  

The remaining part of this paper is structured as follows. In 

Section II, the related work for sensor-based HAR is 

discussed. In Section III, the proposed CAHAR method is 

explained in detail. The experimental results and the 

performance analysis are presented in Section IV. In the end, 

the research findings are concluded along with the future work 

in Section V. 

II. RELATED WORK 

Sensor-based HAR has become increasingly significant for 

human-centric computing. Different types of sensors, mainly 

ambient sensors, on-body inertial sensors, and smartphone 

sensors, have been utilized for HAR in different settings. 

Wearable sensors provide the advantage of being with the 

people during the whole day and thus facilitate to monitor the 

daily living activities of human beings continuously. As a 

result, various research studies emphasized on the utilization 

of the body motion sensor or wearable inertial sensor for HAR 

[13]. Bharti et al. [14] proposed an innovative scheme, known 

as HuMAn, which detects and classifies complex human 

activities using wearable sensors. The authors extracted time-

domain features to train the model using Random Forest and 

Naïve Bayes classifier and achieved 92% average accuracy for 

Random Forest classifier. Anwary et al. [15] presented a gait 

evaluation system that utilizes Procrustes and Euclidean 

distance matrix analysis to find out the degree of abnormality 

in the gait pattern of a person using the wearable 

accelerometer and gyroscope sensors. The authors collected 

data from twelve (12) and twenty (20) young and older 

subjects, respectively, and extracted gait features such as step, 

swing, stance, and stride for analyzing the gait pattern for any 

abnormality. HAR based on wearable sensor also helps to 

detect sudden actions like fall [16] and gives practical 

guidance about human activities to avoid dangerous behavior. 

However, wearable sensors often become a source of 

inconvenience for the users and may lead a person to behave 

differently, which omits the motive of recognizing natural 

behavior. 

The growing development in the ubiquitous devices 

(especially smartphones), along with their sensing and 

networking capabilities, has offered a way to continuously 

monitor human activities and their behavioral context. A lot of 

researchers worked on utilizing smartphone inertial sensors for 

 HAR [17]–[19], using Random Forest and Gradient Boosting 

classifiers. The authors in [20], [21], utilized smartphone 

 
Fig. 1.   Primary activities and the corresponding behavioral contexts 

selected for the proposed CAHAR framework 
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sensors for user authentication based on activity pattern 

recognition. Morales and Akopian [22] presented a detailed 

review of HAR using smartphones and explained the ways of 

dealing with the unknown phone positions/orientations and 

selecting the appropriate features, models, classifiers, and 

metrics for evaluating the usability of a HAR system. A few 

researchers focused on the combination of smartphone motion 

sensors and wearable inertial sensors for human activity 

monitoring [6], [23]–[25]. Y. Wang et al. [26] presented a 

hybrid sensing approach for elderly activity recognition using 

the fusion of both wearable and ambient sensors. They 

evaluated the proposed scheme for seventeen (17) ADLs 

(from 21 participants) using four different mutual information-

based feature selection methods. Their proposed scheme 

attained the best recognition accuracy of 98.32% using the 

support vector machine classification algorithm with the 

fusion of all the sensors. Sadiq et al. [27] presented an 

algorithm for stampede prediction, which uses the fusion of 

accelerometer, digital compass, and GPS sensors to find the 

direction and location of people’s motion in a crowd situation. 

Mane and Surve [28] presented a middleware to detect, 

recognize, and predict human daily life activities using low-

level contexts, i.e., features, from the sensor data. Khattak et 

al. [29] proposed HARE, a HAR engine for detecting and 

recognizing the activities of Alzheimer's disease patients. The 

authors used video cameras and sensor network to infer the 

patient’s context information (such as high-level physical 

activity, time, and location) for life care and intelligent 

decision making. 

Recent advances in deep learning techniques have made it 

possible to extract automatic high-level features from sensor-

based data for achieving promising HAR performance. In 

[30], the authors utilized deep convolutional and LSTM (Long 

Short-Term Memory) recurrent neural networks (RNN) for 

multimodal wearable HAR. A few survey articles have also 

been presented on recent advances in sensor-based HAR using 

deep learning approaches [31]–[33]. Hammerla et al. [34] 

presented an exploration of deep, convolutional, and recurrent 

approaches for HAR based on wearable sensors. They 

explained how different recurrent approaches could be used 

for training HAR models in different settings and proposed a 

regularization scheme that outperforms the existing HAR 

schemes on the benchmark dataset. The major drawback of 

deep learning-based approaches is their high computational 

complexity, which is not feasible for s 

Table I provides a comparison of the proposed scheme 

with some well-known existing schemes for sensor-based 

HAR. It can be analyzed from the table that the existing 

sensor-based HAR schemes focus only on the classification of 

single-label ADLs, without recognizing the user context. 

However, coinciding recognition of human activities and the 

associated contexts is mandatory for human behavior analysis 

and is the core of many context-aware applications, 

recommender systems, and knowledge-driven systems. Hence, 

in this research work, we proposed a novel scheme for 

CAHAR, which recognizes six human activities and the 

associated contexts in-the-wild, thus enabling recognition of 

multi-label fine-grained human activities. Moreover, the 

proposed scheme is computationally advantageous as it is only 

dependent on the smartphone accelerometer as compared to 

the existing schemes that mostly rely on the fusion of multiple 

sensors for achieving effective results. 

TABLE I 

COMPARISON OF A FEW EXISTING STUDIES FOR SENSOR-BASED HAR  

Study / Year Activity Type 
No. of Activities / 

No. of Subjects 
Classifiers 

Sensing Modality 

(Sensor(s)) 
Accuracy % 

[6] / 2016 Complex ADLs 13/10 KNN, DT, NB 
Wearable (A); 

Smartphone (A, G) 
- 

[10] / 2017 Behavioral Contexts 25/60 Logistic Regression 
Smartphone (A, G, M, GPS, 

Wi-Fi); Wearable (A) 
87% 

[14] / 2019 Complex at-home ADLs 21/10 NB, RF 
Wearable (A, G); Ambient 

(B, T, H); GPS; Bluetooth 
92% 

[18] / 2018 
Simple ADLs with 

Transitional Activities 
12/30 SVM, ANN, DBN Smartphone (A, G) 

89.61% 

(DBN) 

[26] / 2018 Elderly Activities 17/21 SVM 
Wearable (T, A, G, M, B); 

Ambient (PIR) 
98.32% 

[38] / 2017 Simple ADLs 06/09 CNN, RNN Smartphone 94.20% 

[39] / 2015 Simple ADLs 12/06 
KNN, SVM, RF, GMM, 

HMM 
Wearable 

99.25% 

(KNN) 

[40] / 2017 Firefighter Activities 17/11 KNN, GBT, SVM 
Wearable (A, G, M) 

Ambient (B, H, T) 

97.68% 

(GBT) 

[41] / 2017 Simple ADLs 06/20 
Deep LSTM Recurrent 

Networks 
Wearable (A, G) 92% 

Proposed 
Context-Aware Activities 

(Multi-label Activities) 
15/60 RF, DT, BG Smartphone (A) - 

* A: Accelerometer, ANN: Artificial Neural Network, B: Barometer, CNN: Convolutional Neural Network, DBN: Deep Belief Network, DT: Decision Tree, G: 

gyroscope, GBT: Gradient Boosting Tree, GMM: Gaussian Mixture Model, GPS: Global Positioning System, H: Humidity Sensor, HMM: Hidden Markov Model, 

KNN: K-Nearest Neighbor, LSTM: Long Short-Term Memory, M: Magnetometer, NB: Naïve Bayes, T: Temperature Sensor, PIR: Passive Infrared Sensor, RF: 

Random Forest, RNN: Recurrent Neural Network, SVM: Support Vector Machine 
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III. PROPOSED METHODOLOGY 

In this research work, a CAHAR scheme is proposed, 

which incorporates human behavioral context with human 

activities for better modeling of human activities in-the-wild. 

The proposed  CAHAR method consists of the following 

steps:  data acquisition and preprocessing, feature extraction 

and selection, and activity recognition, which are shown in 

Fig. 2. The necessary details related to each of these steps are 

covered in the following sections. 

A. Data Acquisition, Annotation, and Preprocessing   

The implementation of the proposed method for CAHAR 

is based on supervised machine learning, which is evaluated 

on the publicly  available ExtraSensory dataset [12] collected 

in-the-wild from 60 users (26 males and 34 females). 

Heterogeneous sensors from both smartphone and smartwatch 

are used for collecting data. These sensors include smartphone 

motion sensors (such as accelerometer, gyroscope, and 

magnetometer), audio sensor (microphone), phone GPS, watch 

accelerometer (with a sampling rate of 25 Hz), and watch 

compass. In our proposed CAHAR scheme, we only used raw 

data from the accelerometer sensor of the smartphone, which 

was collected at a sampling rate of 40 Hz.  

The ExtraSensory dataset comprises of six primary 

activities (e.g., lying down, sitting, walking, standing, running, 

and bicycling) per user. In addition, the dataset also entails a 

large number of binary context labels (consisting of secondary 

activity label and the user’s context information) per user, 

which represent the overall behavioral context of the user. 

However, the contexts labels are not consistent for all the 

users. For the implementation of the proposed scheme, we 

incorporated overall ten (10) different context labels with six 

(06) primary activities (as shown in Fig. 1) in different 

combinations. The association between the selected primary 

activities and the corresponding behavioral contexts is made 

owing to their higher frequency of occurrences together in the 

ExtraSensory dataset. In this aspect, for each user, we counted 

the number of different context labels that occur in pairs with 

each primacy activity. In the end, we pick fifteen (15) most 

frequent activity-context pairs as context-aware activities, 

which have at least 500 instances across multiple users. 

Hence, this entire process of data annotation is systematic and 

reproducible. 

For mitigating the effect of any unwanted noise from the 

acquired raw data, we applied a time-domain average 

smoothing filter (with order [    ) on the raw accelerometer 

data. As the noise encompasses high-frequency elements, 

hence, a smoothing filter can minimize the effect of abrupt 

spikes in the signal, which are generated owing to the system 

or participant noise. The selection of window size is an 

essential factor for data segmentation and affects the final 

recognition results. The existing studies [6], [11] have 

revealed that a 5-second time window is enough to recognize 

simple and repetitive human activities, such as walking or 

running. However, complex HAR underperforms when a 

small window length is used. Hence, for complex activities, a 

window size from 15s to 30s has been used by the researchers 

[6], which has shown excellent recognition performance. The 

proposed CAHAR scheme aims to recognize multi-label 

context-aware activities, which are complex and chaotic in 

nature. Furthermore, the ExtraSensory dataset used for the 

validation of our proposed scheme encompasses pre-

segmented data chunks of 20-seconds in length. Hence, in line 

with the pilot study [12], we used the same window length for 

the proposed scheme to obtain successful recognition results.   

B. Feature Extraction and Selection 

Feature extraction is a crucial step in any classification task 

as the recognition performance is directly affected by the type 

of attributes extracted from the raw data. As the proposed 

CAHAR scheme aims to effectively discriminate between the 

varying physical activity patterns in different contexts, hence 

it is necessary to choose a robust set of features for activity 

classification. For this purpose, we extracted eighteen (18) 

time-domain features from the preprocessed accelerometer 

data, which have revealed efficient performance in HAR 

related studies [10], [11], [35]. These features provide 

essential signal traits that are significant in recognizing human 

activities based on sensor data. For example, maximum and 

minimum latency represents the time when the signal reaches 

its maximum/minimum value, kurtosis is a measure of the 

tailedness of the signal probability distribution, signal 

percentile depicts information about the rank of the signal, 

first or second difference highlights the sharp changes in the 

signal values, and entropy measures the rate of change in the 

signal. Table II provides the mathematical description of the 

features extracted in this study for CAHAR. These features 

were extracted along each axis of the 3D sensor using a 20-

second fixed-length window with no overlapping samples. 

After extracting these features from the preprocessed raw data, 

we applied a supervised correlation-based feature subset 

selection (CfsSubetSel) [36] method to eliminate the 

redundant features. The final subset of the selected features is 

then used for activity recognition tasks. 

 
Fig. 2.   Methodology for the proposed CAHAR framework 
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C. Activity Recognition 

The last step of the proposed method is the automatic 

recognition of context-aware human activities based on the 

final set of features obtained from the smartphone 

accelerometer data. Identifying context-aware activities in-

the-wild is challenging due to the prodigious inconsistencies in 

the human activity patterns, occurring as a result of diverse 

behavioral contexts. However, these contexts provide more 

ample and fine-grained information about human activities, 

which is necessary for efficient activity modeling and a better 

understanding of human behavior. For this purpose, the 

proposed scheme explicitly models six (06) primary activities 

with overall ten (10) behavioral contexts to learn and identify 

fifteen (15) context-aware activities (as shown earlier in Fig. 

1) based on the smartphone accelerometer data. A set of 

machine learning classifier is used for the purpose of activity 

recognition. These classifiers are trained separately for 

different behavioral contexts associated with each primary 

activity to learn and recognize the selected primary activities 

along with their behavioral contexts. In this way, the proposed 

scheme provides the notion of CAHAR and offers fine-

grained information about in-the-wild human activities. 

Furthermore, for analyzing the effect of behavioral context 

modeling on HAR performance, two types of experiments are 

conducted for activity recognition, i.e., context-independent 

HAR (primary activity recognition) and context-dependent 

HAR (context-aware activity recognition). For context-

independent HAR, a conventional HAR approach is followed, 

where the selected classifiers are trained to recognize only six 

(06) context-independent activities that are chosen as primary 

activities in the proposed scheme. These activities are 

recognized in-the-wild as single-label activities without 

incorporating any context information. However, in the case 

of context-dependent HAR, the proposed idea of CAHAR is 

implemented, which involves adding behavioral context 

information with the primary activities for context-aware 

activity recognition. The detailed analysis regarding both 

types of experiments is provided in the results section. 

IV. EXPERIMENTAL RESULTS AND PERFORMANCE ANALYSIS 

This section describes the experimental setup and provides 

the numerical results obtained for the proposed CAHAR 

scheme. Detailed discussion and analysis are provided 

regarding CAHAR results. 

A. Experimental Setup 

1) Machine Learning Classifiers and Hyperparameters 

For validating the proposed methodology for activity 

recognition, six (06) different machine learning classifiers are 

employed, which included Random Forest (RF), Decision 

Tree (DT), Bagging (BG), K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), and Naïve Bayes (NB). The 

hyperparameters relating to these classifiers are tuned such 

that the training error of each classifier is minimized. A 

random tree with a base learner is utilized for RF classifier, 

where the number of iterations is set to 100.  A fast decision 

tree learner (with the number of folds equal to 3) is employed 

for BG classifier, which builds a tree from information 

variance and prunes it using back fitting. A  J48 pruned tree is 

used for DT classifier with three folds. In the case of KNN 

classifier, Euclidean distance is used for similarity measure, 

and the nearest neighbor parameter is set equal to 1 (i.e., K=1). 

For SVM classifier, the one-vs.-one approach is used with 

sequential minimal optimization (SMO) [37] algorithm. 

2) Performance Metrics and Validation Scheme 

The recognition performance of the selected classifiers is 

measured in terms of accuracy, precision, sensitivity (recall), 

specificity, and f-measure (harmonic mean of precision and 

recall). However, these metrics, particularly precision and f-

measure, are highly sensitive to rare-labels (in the case of the 

imbalanced dataset), which may lead to biased recognition 

results for some activities. As the ExtraSensory dataset is 

collected in-the-wild; hence, the sample distribution for 

different activities is not uniform. Hence, to avoid any 

unfairness in the recognition results, balanced accuracy (BA) 

is taken as a key performance indicator in this study, which 

does not suffer from the rare-labels issue and provides fair 

results in the case of imbalanced class distribution [10]. The 

BA value is calculated by averaging the value of sensitivity 

and specificity. 

TABLE II 

LIST OF TIME DOMAIN FEATURES EXTRACTED FOR CAHAR  

Feature Mathematical Equation 

Maximum Amplitude 𝑋𝑚𝑎𝑥 =  max(s(n)) 

Minimum Amplitude 𝑋𝑚𝑖𝑛 =  min(s(n)) 

Maximum latency 𝑛𝑋𝑚𝑎𝑥
=  𝑛|𝑠(𝑛) = 𝑋𝑚𝑎𝑥  

Minimum latency 𝑛𝑋𝑚𝑖𝑛
=  𝑛|𝑠(𝑛) = 𝑋𝑚𝑖𝑛  

Arithmetic Mean 𝜇 =  
 

𝑁
 𝑠(𝑛)

𝑁

𝑛=1
 

Kurtosis 𝐾 =
𝐸 (𝑠(𝑛) − 𝜇 )4 

𝐸 (𝑠(𝑛) − 𝜇 )2 2
 

Variance 𝜎2 =
 

𝑁
 (s

𝑁

𝑛=1

(𝑛) − 𝜇 )2 

Standard deviation 𝜎 =  
 

𝑁
 (𝑠(𝑛) − 𝜇 )2

𝑁

𝑛=1
 

Third Moment 𝑚3 = E (s(n) − 𝜇 )3  

Fourth Moment 𝑚4 = E (s(n) − 𝜇 )4  

Skewness 𝑆 =
𝑚3 

𝑚3
3/2

 

Mean of absolute values 

of first difference 
𝑢∇ =

 

𝑁
 |𝑠(𝑛) − 𝑠(𝑛 −  )|

𝑁

𝑛=1

 

Mean of absolute values 

of second difference 
𝑢∆ =

 

𝑁
 |

𝑁

𝑛=1

𝑠(𝑛 +  ) − 2𝑠(𝑛) + 𝑠(𝑛 −  )| 

25th- percentile 𝑛25 = 𝑠(𝑟) , 𝑟 = 𝑟𝑜𝑢𝑛𝑑(0.25 ∗𝑁) 

50th-percentile  𝑛50 = 𝑠(𝑟), 𝑟 = 𝑟𝑜𝑢𝑛𝑑(0.50 ∗𝑁) 

75th-percentile  𝑛75 = 𝑠(𝑟), 𝑟 = 𝑟𝑜𝑢𝑛𝑑(0.75 ∗𝑁) 

Energy 𝑒 =
 

𝑁
 (𝑠(𝑛)2

𝑁

𝑛=1

 

Value entropy 𝐻(𝑠(𝑛)) = − 𝑃𝑖(𝑠(𝑛) 𝑙𝑜𝑔2 𝑃𝑖(𝑠(𝑛)
𝑁

𝑖=1
) 

* s(n) represents the acceleration signal along x, y, or z-axis of the 

accelerometer, N is the length of sequence s(n),  𝐸 symbolizes the 

expected value, r is the rank of the signal s(n), and 𝑃𝑖 is probability 

value. 
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For training and testing of the proposed CAHAR scheme 

using the selected classifiers, a 10-fold cross-validation 

scheme is used, where 90% data is used for classifier training, 

and the remaining 10% data is used for testing the classifier. 

Ten different iterations are performed for training and testing 

the proposed system based on ten random splits of data 

obtained with 10-fold cross-validation. The average results of 

all the iterations are provided in the next section. 

B. Experimental Results and Discussion 

As discussed before in Section III.C, HAR experiments are 

conducted for the proposed scheme in two different phases, 

i.e., context-independent HAR and context-dependent HAR. 

For this purpose, the final subset of features obtained after 

applying CfsSubetSel is passed as input to the selected 

classifiers for HAR. The feature selection process is applied 

only for context-aware activity recognition, where a subset of 

eight (08) distinct features is obtained for smartphone 

accelerometer data. These features include minimum 

amplitude, mean, maximum latency, third moment, kurtosis, 

50
th

-percentile, mean of absolute values of the first difference, 

and value entropy. The same set of final features is used for 

context-independent HAR as well. Thus, the size of the final 

feature obtained for each data chunk is [1× (8×3)] = [1×24] for 

both types of HAR experiments. 

 Table III compares the performance of the selected 

classifiers for context-independent and context-dependent 

HAR in terms of accuracy, precision, sensitivity, and 

specificity. It can be easily observed from the table that RF 

classifier provides better results for both types of experiments 

based on these performance measures. Fig. 3 compares the 

balanced accuracies achieved for primary activity recognition 

(i.e., context-independent HAR) and context-aware activity 

recognition (i.e., context-dependent HAR) using different 

classifiers. It can be analyzed from the figure that RF classifier 

achieves the best average BA of 80% in recognizing six 

primary activities for context-independent HAR experiments. 

For the same experimental setting, BG and DT classifiers 

achieve an average BA of 77.2% and 75.9 %, respectively, 

which is 2.8% and 4.1% lesser than that obtained for RF 

classifier. Likewise, KNN, SVM, and NB classifiers achieve 

an average BA of 66.4%, 59.3%, and 58.7%, respectively, 

which is 13.6%, 21.7%, and 22.3% smaller than the best BA 

value obtained using RF classifier. Moreover, the average BA 

values achieved for context-dependent HAR using RF, BG, 

DT, KNN, SVM, and NB classifier are 77.9%, 73.8%, 73.2%, 

55.4%, 54.2%, and 61.4% respectively, which states that RF 

classifier performs better than the rest of classifiers. Moreover, 

SVM, KNN, and NB classifiers provide the lowest recognition 

accuracies for the proposed scheme, which shows their 

inability to handle in-the-wild data effectively. Generally, 

SVM provides excellent recognition performance when the 

margin of separation between the target classes is higher, and 

the number of dimensions is more than the number of samples. 

As in-the-wild human activity patterns entail significant 

variations, noisy data, and outliers; hence, SVM classifier does 

not perform well as the target classes become overlapping. 

KNN is a lazy-learner and cannot generalize the training 

model before seeing the test data, hence not useful for 

classifying the real-time data. Similarly, NB is a simple 

probabilistic classifier that works on the principle of Bayes 

theorem and cannot handle variations in human activity 

patterns in diverse behavioral contexts, thus produce 

insufficient recognition results. 

TABLE III 

PERFORMANCE COMPARISON OF RF, BG, DT, KNN, SVM, AND NB CLASSIFIER FOR THE PROPOSED CAHAR METHOD  
Experiment Type Classifier Accuracy Precision Sensitivity Specificity 

 

Context-independent HAR 
(06 Primary activities) 

Random Forest (RF) 0.871  0.840 0.754 0.846 
Bagging (BG) 0.830  0.791 0.698 0.845 

Decision Tree (DT)  0.790 0.675 0.675 0.843 

K-Nearest Neighbors (KNN)  0.595 0.454 0.431 0.898 
Support Vector Machine (SVM) 0.584 0.552 0.275 0.912 

Naïve Bayes (NB) 0.570 0.309 0.311 0.862 

 

Context-dependent HAR 
(15 Context-aware activities) 

Random Forest (RF) 0.840 0.795 0.617 0.941 

Bagging (BG) 0.798 0.795 0.537 0.939 
Decision Tree  (DT) 0.592 0.760 0.525 0.939 

K-Nearest Neighbors (KNN) 0.528 0.198 0.153 0.955 

Support vector Machine (SVM) 0.542 0.223 0.117 0.960 
Naïve Bayes (NB) 0.502 0.288 0.277 0.952 

 

 
Fig. 3. Comparison of balanced accuracies achieved for primary activity 

recognition and context-aware activity recognition using the selected 

classifiers. 
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As compared to DT classifier, RF performs well as it uses a 

combination of decision trees to improve the classification 

performance. RF randomly selects the partition nodes for 

constructing multiple decision trees, and then uses a majority 

voting criterion for assigning new examples to a specific class. 

Moreover, RF classifier improves the variance between 

different classes by reducing the correlation between multiple 

trees. On the other hand, BG improves variance by averaging 

the outcome from multiple fully grown trees on different 

variants of the training set. RF only uses a subset of randomly 

selected features out of the total features and uses the best split 

feature to split each node in a tree. However, BG utilizes all 

the features for splitting a tree node, which affects its 

recognition performance as well. As a result, RF generally 

performs better than DT and BG classifier in most cases, as 

depicted by the existing HAR studies. The experimental 

results endorse the efficacy of using RF classifier for the 

proposed CAHAR method. 

By comparing the average recognition results achieved for 

context-independent and context-dependent HAR in Fig. 3, it 

can be observed that context-independent activities are 

recognized with a better BA as compared to context-aware 

activities. It is due to the fact that it is more natural to 

discriminate between different primary activities (such as 

walking, bicycling, and sitting) as the activity patterns are 

entirely different as a result of significant inter-class variation 

even in diverse contexts. However, differentiating between the 

changing patterns of the same activity in different contexts is 

difficult as the margin of error is minimal due to small intra-

class variation. This variation occurs due to the reason that 

human activity patterns are dependent on their behavioral 

context, and change on account of varying context in-the-wild. 

Moreover, different persons have their own way of interacting 

and behaving in different contexts, which makes it tough to 

model context-aware human activities in-the-wild. As a result, 

the addition of user behavioral context with human activities 

makes the recognition task more laborious and difficult. 

Nevertheless, the proposed scheme provides effective 

recognition results for CAHAR experiments as well, where 

fifteen activities are recognized on account of only 2.1% 

decrease in the overall average BA value as compared to that 

achieved for context-independent recognition of six primacy 

activities.  

Fig. 4 and Fig. 5 provide the balanced accuracies achieved 

pertaining to each individual activity for context-independent 

and context-dependent HAR, respectively, using RF classifier. 

Table IV and Table V present in depth the numerical values 

for other performance metrics related to each individual 

activity for context-independent and context-dependent HAR, 

respectively.  It can be observed from Fig. 4 that it is easier to 

recognize dynamic activities, such as running (BA=84.2%) 

and bicycling (BA=84.8%), in-the-wild as compared to static 

activities, such as standing (BA=79.3%), and lying down 

(BA=70.3%) activities. Static activities usually do not exhibit 

any significant motion due to which it becomes difficult to 

distinguish between these activities in-the-wild on the basis of 

phone accelerometer without having any prior knowledge of 

the user’s context. Hence, in-the-wild recognition of the 

context-independent static activities becomes difficult as 

compared to the dynamic activities. 

TABLE IV 

INDIVIDUAL RECOGNITION PERFORMANCE ACHIEVED FOR EACH PRIMARY ACTIVITY USING RANDOM FOREST CLASSIFIER 
Primary Activity Code # of Instances Accuracy Precision Sensitivity F-measure Specificity 

Running A01 1052 0.998 0.963 0.688 0.802 0.995 

Lying down A02 83811 0.952 0.956 0.955 0.956 0.450 
Sitting A03 33490 0.916 0.772 0.877 0.821 0.791 

Walking A04 8817 0.961 0.685 0.597 0.638 0.964 

Standing A05 20946 0.928 0.763 0.688 0.724 0.899 
Bicycling A06 4953 0.989 0.906 0.720 0.802 0.976 

 

 
Fig. 5. Comparison of individual BA values achieved for fifteen context-

aware activities using RF classifier. Table IV provides the labels for the 

activity codes related to these context-aware activities.  

 
Fig. 4. Comparison of individual BA values achieved for six primary 

activities using RF classifier. 
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In the case of context-aware activities, it can be seen from 

Fig. 5 that the activity of sitting in a meeting is best 

recognized with a BA of 86.6%. Similarly, the values of BA 

obtained for the activity of sitting with other contexts such as 

in a car, surfing the internet, and watching TV are also higher 

than 80%, which shows that recognition of context-dependent 

activities relating to the sitting activity is more relaxed when 

compared to other static or dynamic activities. The recognition 

of lying down activity when surfing the internet is more 

comfortable as compared to other contexts, such as watching 

TV and sleeping. Likewise, standing indoor is easier to 

recognize than standing outdoor. Recognition of the dynamic 

activity of walking is poorly affected by different behavioral 

contexts. It can be analyzed from Fig. 5 and Table V that 

context-aware activities of walking indoor, walking while 

shopping, and walking while talking are challenging to 

recognize owing to the vast diversity in the activity patterns 

among different users. Moreover, any change in the user’s 

context (such as secondary activity or phone position) 

adversely affects the walking activity pattern, and there is a 

great likelihood for the walking activity to get misclassified 

with some other dynamic activity in-the-wild, such as running 

or bicycling. The average recognition accuracy of lying down 

and sitting activities is increased to 77.2% and 85%, 

respectively, in the case of context-dependent recognition. 

Conversely, for walking and standing activities, the average 

BA values achieved for context-dependent HAR are reduced 

to 69.1% and 74.45%, respectively. Generally, the activities of 

bicycling while exercise, sitting in a meeting, and sitting while 

surfing the internet are more comfortable to recognize using a 

smartphone accelerometer as depicted by the results presented 

in Table V.  

TABLE V 

INDIVIDUAL RECOGNITION PERFORMANCE ACHIEVED FOR EACH CONTEXT-AWARE ACTIVITY USING RANDOM FOREST CLASSIFIER 

Context-aware Activity Code # of instances Accuracy Precision Sensitivity F-measure Specificity 

Running while exercise C01 1052 0.997 0.953 0.713 0.815 0.995 

Lying down  while watching TV C02 2411 0.993 0.863 0.689 0.767 0.989 

Lying down while surfing the internet C03 79045 0.955 0.944 0.971 0.957 0.475 

Lying down while sleeping C04 2355 0.991 0.838 0.515 0.638 0.992 

Sitting in a meeting C05 4117 0.990 0.878 0.752 0.810 0.980 

Sitting while watching TV C06 9246 0.972 0.820 0.695 0.752 0.957 

Sitting in a car C07 5684 0.979 0.726 0.715 0.720 0.973 

Sitting while surfing the internet C08 14443 0.960 0.782 0.802 0.792 0.921 

Walking indoor C09 2489 0.988 0.821 0.362 0.503 0.994 

Walking while shopping C10 552 0.996 0.816 0.185 0.301 0.999 

Walking outdoor C11 3727 0.981 0.622 0.617 0.620 0.985 

Walking while talking C12 2049 0.989 0.650 0.393 0.490 0.995 

Standing indoor C13 19547 0.915 0.634 0.800 0.707 0.888 

Standing outdoor C14 1399 0.992 0.740 0.293 0.420 0.997 

Bicycling while exercise C15 4953 0.987 0.845 0.753 0.797 0.975 

 

 

Fig. 6. Performance comparison of phone accelerometer (PA), phone gyroscope (PG), watch accelerometer (WA), and their fusion for the proposed 

CAHAR scheme using RF classifier. 
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Fig. 6 compares the best recognition performance achieved 

for the proposed scheme using different sensors (phone 

accelerometer, phone gyroscope, watch accelerometer, and 

their fusion). Data pre-processing, feature selection, and 

accuracy evaluation procedures are adopted for the phone 

gyroscope and watch accelerometer in the same way as 

utilized for the phone accelerometer. Hence, the same 

parameters are used for noise filtering, data segmentation, 

classifier training, and validation. For feature selection, 

CfsSubetSel is re-evaluated on the gyroscope and watch 

accelerometer data individually, and the final set of features 

obtained is used for evaluating the selected classifiers. In the 

case of sensor fusion, the best-selected features for each of the 

individual sensors are concatenated to find out the recognition 

results. RF classifier provided the best BA values for each 

individual sensor as well as their fusion. It can be observed 

from Fig. 6 that the phone accelerometer provides the best 

individual recognition performance for most of the context-

aware activities. However, for C04 (lying down while 

sleeping) and C15 (bicycling while exercising), the individual 

recognition performance of the watch accelerometer is better 

than the phone accelerometer. The overall average BA values 

attained for the proposed scheme using RF classifier are 

77.9%, 65.1%, 68.6%, and 78.3% using phone accelerometer, 

phone gyroscope, watch accelerometer, and the fusion of all 

three sensors, respectively. Hence, it is evident that the fusion 

of these sensors does not provide any significant improvement 

in the system accuracy when compared to BA achieved using 

the phone accelerometer only. Accordingly, based on the 

recognition accuracy of the proposed system and its 

computational cost, it is concluded that the proposed CAHAR 

method provides the best performance using a smartphone 

accelerometer.  

In general, as compared to most of the existing HAR 

schemes that are practicable only under some specific settings, 

the proposed scheme effectively offers in-the-wild HAR. 

Hence, it can be used for HAR in diverse environments and 

varying contexts. The limitations associated with the practical 

use of the existing HAR systems are owing to the void of 

training in diverse settings and environments. Training usually 

involves some controlled environment, a set of rules to follow, 

and a pre-occupied list of activities, which affect in-the-wild 

user behavior. Moreover, the collection of in-the-wild data for 

system training is a challenging task from the practical and 

legal perspectives. There exist various unpretentious issues 

with data collection procedures due to inadequate amount and 

diversity of data, the sparse representation of real-world use 

cases, and critical self-consciousness of the participants. In 

addition, in-the-wild data collection and self-reporting labels 

from the users may result in the poor realization of the users’ 

activities and their contexts. Nevertheless, if we can train the 

system based on the data related to the user’s natural behavior 

in diverse contexts, then in-the-wild HAR can be achieved 

successfully. Henceforth, in this research work, we focus on 

training the proposed system for CAHAR based on the mobile 

sensor data collected in-the-wild from 60 participants in 

diverse contexts without entailing any scripted tasks. Hence, 

the proposed scheme is independent of any controlled 

environments and can be applied effectively to diverse 

contexts for HAR. 

V. CONCLUSION AND FUTURE WORK  

In this paper, we concentrate on recognizing context-aware 

human activities in-the-wild using the phone accelerometer. 

For this purpose, we select six primary daily living activities 

and model the user’s behavioral context information with 

these activities to recognize fifteen context-aware activities. 

The experimental results indicate that the proposed scheme 

achieves efficient recognition performance using Random 

Forest classifier. Moreover, we conclude that recognizing 

behavioral context with the physical activity in-the-wild is a 

challenging task due to the inconsistencies in user behavior 

and activity patterns. However, incorporating a detailed user 

context provides a better understanding of human activity, 

which is very useful for human behavior analysis. 

In the future, the proposed study can be extended to 

incorporate the user’s natural activities and behavior in a large 

number of contexts and environments. Additional sensors and 

the relevant feature extraction and fusion strategies can be 

employed to improve system accuracy. Furthermore, 

emotional states of the users can be recognized based on 

physical activity patterns in specific contexts. In this way, a 

relationship can be investigated between the physical activities 

of a user and his/her mental state. Moreover, personalized 

human behavior can be modeled in different contexts, which 

can further be utilized for the recommender systems. 
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