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PRologic agent of Chagas' disease, an infection that affects several million people in

Latin America. With no immediate prospect of a vaccine and problems associated with current
chemotherapies, the development of new treatments is an urgent priority. Several aspects of the redox
metabolism of this parasite differ enough from those in the mammalian host to be considered targets for
drug development. Here we review the information about a trypanosomatid-specific molecule centrally
involved in redox metabolism, the dithiol trypanothione, and the main effectors of cellular antioxidant
defense. We focus mainly on data from T. cruzi, making comparisons with other trypanosomatids whenever
possible. In these parasites trypanothione participates in crucial thiol–disulfide exchange reactions and
serves as electron donor in different metabolic pathways, from synthesis of DNA precursors to oxidant
detoxification. Interestingly, the levels of several enzymes involved in trypanothione metabolism and oxidant
detoxification increase during the transformation of T. cruzi to its mammalian-infective form and the
overexpression of some of them has been associated with increased resistance to macrophage-dependent
oxidative killing. Together, the evidence suggests a central role of the trypanothione-dependent antioxidant
systems in the infection process.

© 2008 Elsevier Inc. All rights reserved.
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Introduction

Trypanosoma cruzi is a protozoan parasite from the order Kineto-
plastida that causes Chagas' disease, an infection that affects 16–18
million people mostly in rural regions of Latin America, and belongs to
the group of neglected diseases as defined by the World Health
Organization (http://www.who.int/tdr/diseases/chagas/swg_chagas.
pdf) [1]. The parasite life cycle involves an extracellular, proliferative
stage (epimastigote) that resides in the insect vector, and two forms
that occur in the mammalian host, a nonproliferating, infective form
(trypomastigote) and an intracellular, proliferative form (amastigote).
Only two drugs, nifurtimox and benznidazol, are currently available to
treat this disease but these are unsatisfactory given their toxic side
effects and limited efficacy in the chronic phase of the infection. With
no immediate prospect of a vaccine, the search for parasite-specific
traits exploitable in terms of new chemotherapies is an urgent priority
(http://www.who.int/tdr/diseases/chagas/swg_chagas.pdf). Thus,
basic research on metabolic pathways that are crucial for parasite
viability or infectivity and distinct from those in the mammalian host
may provide clues for rational drug design. In this regard, the thiol-
based redox metabolism of T. cruzi and its close relatives, T. brucei and
Leishmania spp. (recently reviewed in [2]), has long been considered a
source of promising candidates. In contrast to their hosts, which rely
on glutathione (GSH)/glutathione reductase (GR) and thioredoxin/
thioredoxin reductase for maintaining the intracellular thiol redox
homeostasis, trypanosomatids lack GR and thioredoxin reductase.
Their redox metabolism depends on a particular dithiol, called
trypanothione, and the corresponding reductase, trypanothione
reductase (TryR). Here, we review the main features of the
trypanothione-dependent metabolic pathways in T. cruzi, with special
emphasis on trypanothione synthesis and on the proteins involved in
antioxidant defense.

Trypanothione, the key player of redox metabolism in
trypanosomatids

Trypanothione [N1,N8-bis(glutathionyl)spermidine] is a low-mole-
cular-mass dithiol consisting of two GSH molecules covalently linked
to spermidine (Fig. 1). Trypanothione was identified 23 years ago in
trypanosomatids [3], where it replaces GSH in the majority of the
UN
CO

RR
E

Fig. 1. Biosynthesis of trypanothione. The synthesis of trypanothione [T(SH)2] occurs in tw
covalently linked to the terminal amino groups of spermidine. The whole process consu
glutathionylspermidine (Gsp) can also be synthesized by a separate enzyme, glutathionylsp
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7thiol–disulfide exchange reactions of the cell (Fig. 2). Dihydrotrypa-
8nothione [T(SH)2] is more reactive than GSH, a property explained by
8the pKa of its cysteines, ∼7.4, coincident with the intracellular pH, and
8its dithiol nature [4]. Being a dithiol favors the formation of an
8intramolecular disulfide bridge after one or two electron oxidations
8(Fig. 2), and, in the first case, prevents the formation of sulfinyl radicals
8(RSOOU), a species able to propagate oxidation to other molecules. In T.
8cruzi, T(SH)2 levels vary between life stages, being about 1.5–2.1mM in
8epimastigotes cultured in the presence of polyamines [5,6] and 0.5
8and 0.12 mM in trypomastigotes and amastigotes, respectively [6,7].
8These variations in T(SH)2 concentration may be relevant for the
9functioning of pathways that will be discussed below, such as: (i)
9those that involve noncatalyzed reactions of T(SH)2 with other
9molecules (Fig. 2), and (ii) tryparedoxin-dependent reactions (Fig. 2)
9in amastigotes only, as the Km of tryparedoxin for T(SH)2 is 40 μM,
9implying saturating conditions in the other life stages. Although T
9(SH)2 biosynthesis is likely to take place in the cytosol [8], the
9presence of T(SH)2 in other cellular compartments has been suggested
9based on the occurrence of enzymes that use it as electron donor, but
9this has not been experimentally verified.
9Trypanothione is maintained in its reduced state by the activity of
1the NADPH-dependent flavoenzyme trypanothione reductase. TryR
1has sequence identity (35%) with human GR, with the two enzymes
1sharing many physical and chemical properties. The main difference
1lies in their disulfide specificity: TryR interacts with oxidized forms of
1positively charged glutathionyl–polyamine conjugates, such as trypa-
1nothione, glutathionylspermidine, and bis(glutathionyl)spermine [7]
1(the apparent second-order rate constant (kcat/Km) for the reduction of
1trypanothione disulfide [TS2] is about 2–41×106 M-1 s-1 [9]) while GR
1only accepts negatively charged oxidized glutathione (GSSG). Speci-
1ficity is largely determined by five amino acids residues at the
1substrate binding site, making the active site pocket of TryR wider,
1more hydrophobic, and negatively charged than that of GR [10].
1Studies aimed at localizing TryR in T. cruzi have yielded conflicting
1results. Experiments using antisera raised against a TryR-derived
1peptide indicated that the enzyme is located in the cytosol and
1mitochondrion [11]. On the other hand, biochemical fractionation
1studies suggested that it is found mainly in the cytosol with a
1significant portion (15–25%) present in glycosomes [12,13] (Fig. 3).
1Moreover, in one of these studies traces of TryR activity was also
o consecutive steps in which the glycine carboxylate groups of glutathione (GSH) are
mes two ATPs and is catalyzed by trypanothione synthetase (TryS). In C. fasciculata,
ermidine synthetase (GspS).

logy of Trypanosoma cruzi: Trypanothione metabolism and oxidant
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Fig. 2. Trypanothione-dependent reactions. Trypanothione is maintained in its reduced form at the expense of NADPH, in a reaction catalyzed by trypanothione reductase (TryR).
T(SH)2 then directly reduces tryparedoxin (TXN), dehydroascorbate (dhAsc) to ascorbate (Asc), glutathione disulfide (GSSG) to glutathione (GSH). Via these intermediaries T(SH)2
participates in the synthesis of deoxyribonucleotides and decomposition of peroxides. T(SH)2 can also interact directly with various electrophiles in detoxification of
oxoaldehydes, metals, and drugs. Also, T(SH)2 can react with radical species (RU) in scavenging and/or repair reactions that lead to the transient formation of trypanothione thiyl
radical. This sulfur-centered radical is expected to readily combine with the vicinal thiol to yield a trypanothione disulfide anion radical, a good reductant, that evolves to the
stable trypanothione disulfide (TS2) with the concomitant formation of secondary radicals, including superoxide (O2

U−) that will be subsequently detoxified. RR, ribonucleotide
reductase; ROOH, hydroperoxides; A, one-electron oxidant; TXNPx, tryparedoxin peroxidase; GPx-I, GPx-II, glutathione peroxidase-like tryparedoxin peroxidases I and II; APx,
ascorbate-dependent peroxidase. Figure adapted from [80].
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detected in mitochondrial fractions [12], but this was probably due to
contamination from the cytosolic fraction (S. R. Wilkinson, unpub-
lished). It has been noted that TryR from several trypanosomatids,
including T. cruzi and T. brucei, contains a carboxyl-terminal extension
with a weak glycosomal targeting tripeptide and it was thus
postulated that it could have a dual cytosolic/glycosomal localization
[14]. However, in African trypanosomes TryR has been detected
exclusively in cytosolic fractions [15,16]. Intriguingly, in L. amazonen-
sis, immunolocalization suggested the presence of TryR also in regions
close to the flagellar pocket and other intracellular structure(s) in the
posterior end of promastigotes cells [17]. Reverse genetic approaches
in T. brucei [18] and L. donovani [19] have shown that TryR is essential
for parasite viability thus validating it as a drug target. In the case of T.
brucei, conditional gene deletion studies have revealed that parasites
can survive with only 10% of their normal TryR activity [18], indicating
that low levels of TryR are sufficient to maintain trypanothione in its
reduced state under optimal growth conditions. However, TryR-
depleted parasites grown in a thiol-free medium could not efficiently
detoxify hydrogen peroxide (H2O2) and, moreover, showed a reduced
capacity to infect mice when compared to wild types [18].

T(SH)2 serves as electron donor in a number of different pathways
(Fig. 2). In one of them, it drives a series of two-step oxidation/
reduction reactions that result in the decomposition of oxidants such
as H2O2, peroxynitrite, and a range of short-chain organic, fatty acid
and phospholipid hydroperoxides. In all cases T(SH)2 delivers
reducing equivalents to intermediary molecules, such as GSSG,
dehydroascorbate, or the dithiol protein, tryparedoxin (TXN), which,
in their reduced state, can then transfer electrons to the peroxidases.
From a structural and functional point of view, TXN represents a
distinct molecular clade within the thioredoxin superfamily of
oxidoreductases characterized by a WCPPC motif at their catalytic
center. Two genes coding for TXN have been identified in T. cruzi,
though only one isoform, a cytosolic TXN (TXN-I), has been
functionally characterized [12]. The other gene codes for a protein
(TXN-II) that has around 34% identity with other TXNs, differing from
them in having an insertion of 15 amino acids and a C-terminal tail of
Please cite this article as: Irigoín, F.; et al., Insights into the redox biol
detoxification, Free Radic. Biol. Med. (2008), doi:10.1016/j.freeradbiomed
TE
D26 amino acids. It is not known if TXN-II is a functional TXN andwhere

it is localized. L. infantum is the only trypanosomatid where a TXN
(TXN-II) has been experimentally detected in the mitochondrion [20].
However, this subcellular compartmentalization has also been
suggested for TXN-II of T. brucei [21] and inferred for a TXN of T.
cruzi, based on the existence of a TXN-dependent peroxidase activity
in this organelle [22,23]. TXN is specifically reduced by T(SH)2 and, in
contrast to thioredoxin, is a poor substrate for other members of the
disulfide reductase superfamily, such as TryR [24] or thioredoxin
reductase (an enzyme absent in Kinetoplastida). The reaction of T. cruzi
TXN-I with T(SH)2 has a Km around 40 μM and an apparent second-
order rate constant of 8×103 M-1 s-1 [12].

T(SH)2 also plays a role in DNA synthesis, providing reducing
equivalents for the ribonucleotide reductase (RR)-catalyzed synthesis
of DNA precursors [25]. At high concentrations, T(SH)2 reacts directly
with RR, being the only known low-molecular-mass thiol able to
deliver reducing equivalents directly to this enzyme. However, in the
presence of TXN electron flux is more efficient (similar values of Vmax

but Km for TXN 560 times lower than for T(SH)2) [25], suggesting that
in vivo the dithiol protein is the reductant of RR. Interestingly, TS2 has
shown to be a potent inhibitor of TXN-mediated reduction of RR, thus
providing a direct link between the cell redox state and its ability to
proliferate [25]. More recently, another link between the T(SH)2-
dependent system and the cell division has been proposed. In this
case, T(SH)2 and mitochondrial TXN are believed to work in concert to
reduce and activate the universal minicircle sequence-binding
protein, an enzyme involved in mitochondrial-DNA replication [21].
Although the role of T(SH)2 in cell proliferation has come mainly from
work with T. brucei, the proteins involved are also present in T. cruzi
[26], thus suggesting a common pathway.

Lastly, T(SH)2 can react with a variety of electrophiles and as such
has been implicated in detoxification of ketoaldehydes, heavy metals,
and xenobiotics (reviewed in [27]). Reactive ketoaldehydes are
decomposed by the glyoxalase system, whose enzymes, glyoxalase I
and II, catalyze the dismutation of the 2-ketoaldehyde to the
corresponding 2-hydroxy acid. In the majority of the organisms GSH
ogy of Trypanosoma cruzi: Trypanothione metabolism and oxidant
.2008.05.028
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T(SH)2 reacts directly with the ketoaldehyde and at the end of the
catalytic cycle is recovered in reduced form. T. cruzi [28], L. major
[29,30], and L. donovani [31,32] possess both glyoxalase I and
glyoxalase II whereas T. brucei contains only glyoxalase II [33]. T
(SH)2 has also been implicated in the detoxification of heavymetal and
drugs. Most evidence comes from the analysis of Leishmania species
resistant to arsenite- or antimony-containing drugs. In vitro drug-
selected resistant parasites have higher levels of T(SH)2 than
susceptible ones [34–36]. Additionally, some resistant parasites
display an associated amplification of the pgpa (Gp-glycoprotein-like
protein A) gene [35,36]. This codes for an intracellular ATP-binding
cassette (ABC) transporter of the multidrug resistance proteins (MRP)
subfamily, known to facilitate the efflux of metal–thiol conjugates
[37]. Recently, these two features were also described in field isolates
of L. donovani naturally resistant to antimony [38]. Moreover, it has
been shown that T(SH)2 can form adducts with arsenite in vitro and in
vivo [34,39]. Taken together, these data suggest that resistance could
be associated with the formation, followed by extrusion or sequestra-
tion of T(SH)2–drug conjugates. In this scenario, the existence of a T
(SH)2–S-transferase activity had been proposed as another feature
that could contribute to parasite resistance [40]. In fact, this activity
has been described in several species of Leishmania, T. brucei, and
Crithidia fasciculata but could not be detected in T. cruzi epimastigotes
[41]. However, a recent study has shown that at least in L. tarentolae, T
(SH)2–S-transferase activity is not increased in antimony-resistant
Please cite this article as: Irigoín, F.; et al., Insights into the redox bio
detoxification, Free Radic. Biol. Med. (2008), doi:10.1016/j.freeradbiomed
TE
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2parasites [42]. In the case of T. cruzi the link between T(SH)2 and drug
2detoxification is less clear. On the one hand, treatment of parasites
2with buthionine sulfoximine (BSO), a compound that reduces
2intracellular thiol pools by inhibiting GSH synthesis (see next section),
2resulted in increased sensitivity to nifurtimox and benznidazol of the
2three forms of T. cruzi [43,44]. On the other hand, it has been shown
2that exposure of T. cruzi to both drugs resulted in a decrease in
2intracellular thiols, specially T(SH)2 [45]. As thiols could not be
2recovered by treatment of parasite extracts with TryR and NADPH, it
2was suggested that conjugation of the drugs to T(SH)2 was the reason
2for the observed decrease in T(SH)2 levels [45]. However, T(SH)2–drug
2complexes have not been identified nor detected in the extracellular
2media.
2In addition to T(SH)2 and GSH, T. cruzi also contains several other
2low-molecular-mass thiols including glutathionylspermidine (Gsp)
2and ovothiol A [N1-methyl-4-mercapthohistidine]. These, as well as
2GSH, are maintained in their reduced states by direct reaction with T
2(SH)2 [6]. The concentrations of these thiols vary between parasite life
2stages and with the phase of growth, with T(SH)2 being the most
2abundant in most conditions. Though several activities have been
2reported for Gsp [46,47] and ovothiol A [48] in vitro, specific in vivo
2functions remain unknown. This low-molecular-mass thiol pool,
2including T(SH)2, may play an important and direct role in parasite
2antioxidant defense via scavenging of primary radicals (i.e., UNO2 or
2CO3

U−) and repairing protein radicals (e.g., tyrosyl radical) (Fig. 2).
2Although these nonprotein thiols can also react with nonradical
2oxidants (i.e., H2O2 or peroxynitrite), their direct contribution to this
2pathway in vivo may be minor, taking into account that these two-
2electron oxidants are more efficiently decomposed by the enzymatic
2detoxification systems that are discussed later (e.g., apparent second-
2order rate constants for reaction of peroxynitrite with a cytosolic
2tryparedoxin peroxidase and T(SH)2 are WW1× 1×106 and 71×103

2M-1 s-1, respectively [49]).

2Biosynthesis of trypanothione

2Trypanothione synthesis results from the convergence of GSH and
2spermidine metabolic pathways, which are unconnected in mamma-
2lian cells. Trypanosomatids are able to synthesize GSH from its
2precursor amino acids. The first enzyme in this pathway, γ-
2glutamylcysteine synthetase (GCS), is rate limiting [50]. It is essential
2in T. brucei [51] and its activity can be inhibited by BSO, a compound
2that also blocks GSH transport [51] and cures or prolongs survival of T.
2brucei-infected mice [52]. GSH synthesis has not been extensively
2studied in T. cruzi but BSO has been used as an experimental tool for
2decreasing GSH and, to a lesser extent, T(SH)2 and Gsp levels
2[43,44,53].
2The way in which trypanosomatids obtain spermidine varies. T.
2brucei spp., Leishmania spp., and C. fasciculata are able to synthesize
2polyamines de novo from arginine, through the concerted action of
2arginase and ornithine decarboxylase (ODC). The resulting diamine,
2putrescine, is then converted to spermidine by spermidine synthase
2(reviewed in [54,55]). Spermidine has been identified as the crucial
2polyamine for parasite proliferation [56,57] and accordingly, the
2enzymes involved in its synthesis or that of its precursors have been
2shown to be essential (reviewed in [54]). In T. cruzi the scenario is
2rather different and polyamine metabolism has been a matter of
2controversy for almost 20 years [55]. It is certain that the three stages
2of the parasite are able to scavenge polyamines from the medium
2[58,59]. The transporters involved in diamine uptake have been
2functionally characterized in epimastigotes and they contain thiol
2residues that are critical for their activity [60]. A gene coding for a
2spermidine transporter has been expressed in an heterologous system
2where it was shown to be functional [61]. However, characterization
2of this transporter in T. cruzi is still lacking. On the other hand, the
2ability of T. cruzi to synthesize polyamines from arginine is a matter of
logy of Trypanosoma cruzi: Trypanothione metabolism and oxidant
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debate. The idea that T. cruzi is auxotrophic for polyamines was based
on evidence derived mainly from work on epimastigotes. One of the
main arguments was that the parasite, though possessing an active
spermidine synthase, lacks ODC [26,62]. Moreover, when epimasti-
gotes were grown in polyamine-deficient medium, proliferation was
arrested after 3 to 4 days and GSH levels increased while Gsp and T
(SH)2 were almost undetectable. When medium was supplemented
with putrescine or spermidine proliferation was restored together
with Gsp and T(SH)2 levels, the latter becoming the predominant low-
molecular-weight thiol. This recovery was not observed when the
culture was supplemented only with arginine [58].1 However, other
results support the idea that T. cruzi synthesizes putrescine through a
pathway different from the one used by the other trypanosomatids
and similar to the one used by prokaryotes, plants, and the protozoan
parasite Cryptosporidium parvum. This pathway involves the enzymes
arginine decarboxylase (ADC), that forms agmatine from arginine, and
agmatinase, that converts agmatine into putrescine (reviewed in [63]).
The first evidence of the existence of this pathway in T. cruzi came
from the observation that inhibitors of ADC, difluoromethylarginine
(DFMA) among others, inhibit trypomastigote infectivity and amas-
tigote proliferation in mammalian cells [64,65]. DFMA inhibition was
reverted in the presence of agmatine or putrescine, indicating that
DFMA was acting on parasite polyamine metabolism. Later, a modest
DFMA-inhibitable ADC activity was measured in extracts of trypo-
mastigotes by the detection of 14CO2 released from L-[U-14C]arginine
and the production of [3H]agmatine and [3H]putrescine from L-
[2,3,4,5-3H]arginine [66]. Finally, an effect of DFMAwas also observed
in epimastigotes. This form of the parasite dies by programmed cell
deathwhen exposed to fresh human serum [67,68]. Parasite deathwas
partially inhibited by arginine as well as by several polyamines,
including agmatine [68]. In thismodel, DFMA abrogated the protective
effects of arginine, suggesting that at least part of it depends on
endogenous polyamine synthesis [68]. Until now no ADC or
agmatinase genes have been identified in the T. cruzi genome [26].
However, it is important to take into account that ADCs are
evolutionary highly divergent enzymes [69], and therefore, identifica-
tion of the corresponding genes may require strategies more refined
than normal BLAST searches based on full-length sequences. Given
that trypanosomatids have developed a special molecule to govern the
thiol metabolism of the cell, it would be surprising if T. cruzi had lost
the capacity to synthesize one of the precursors of this molecule. The
fact that this parasite resides in environments rich in polyamines
would not by itself explain such a loss, as other parasites, which take
up polyamines from the host, have conserved the machinery to
synthesize them [70,71]. In our opinion, although T. cruzi undoubtedly
depends on exogenous polyamines in many conditions, the question
about the contribution of endogenous polyamine synthesis is not
completely settled.

Trypanothione is synthesized by the sequential covalent binding of
two GSHmolecules to terminal NH2 groups of spermidine, in a process
that consumes two ATPs (Fig. 1). Both steps are catalyzed by a single
enzyme, called trypanothione synthetase (TryS), that has been
characterized from T. cruzi [72], T. brucei [73,74], L. major [8], and C.
fasciculata [75]. The T. cruzi TryS (tctrys) gene is present as a single
copy per haploid genome and the encoded protein shows 74–81%
similarity with the amino acid sequence of the corresponding
trypanosomatids homologs. Also, it shows homology with Gsp
synthetase (GspS) from C. fasciculata and Escherichia coli (46 and
51% similarity, respectively) and it does not have homologs in
mammals. The catalytic properties of TcTryS have been addressed
using purified recombinant enzyme [72]. The reported apparent Km

for GSH was 570 and 190 μM with spermidine and Gsp, respectively,
and 625 μM for spermidine and 66 μM for Gsp. The enzyme showed
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ratios of kcat/Km of 6×103 M-1 s-1 for spermidine and 151×103 M-1 s-1

for Gsp as substrates. In the presence of equal amounts of GSH and
spermidine, T(SH)2 is formed with no apparent accumulation of Gsp
[72]. The synthetase activity of TryS resides in its C-terminal domain.
The proposed catalytic mechanism involves the formation of a ternary
complex among GSH, Mg2+-ATP, and the enzyme, leading to the
activation of GSH (probably by phosphorylation of the glycine
carboxyl group) for the glutathionylation of the terminal amino
group of spermidine or Gsp [75]. Apart from its synthetase activity, all
TryS and GspS so far studied have a T(SH)2/Gsp-amidase activity
located in their N-terminal domains. In recombinant TcTryS and
TbTryS this represents about 1% of the synthetase activity [72,74]. For
T. cruzi and C. fasciculata, the opposing synthetic and hydrolytic
functions of TryS and GspS were proposed to regulate polyamine
levels in response to polyamine availability and growth phase [72,76].
The 3D crystal structure of L. major TryS has been determined recently
[77]. It was noted that the last 20 amino acids at its C-terminus
contribute to the amidase domain and, in particular, block the
accessibility to the active site [77]. A similar peptide segment (20- to
26-residues long) is present in TryS from C. fasciculata, other Leish-
mania spp., and T. cruzi but the amino acids responsible for placing
this C-terminal lid in the amidase active site are conserved only in the
enzymes of the first two trypanosomatid genus [77]. Interestingly,
TbTryS and E. coliGspS lack this C-terminal extension and interdomain
communication has nevertheless been demonstrated to negatively
regulate the amidase activity of the bacterial enzyme [78]. Evidently,
further studies will be required to dissect the different molecular
mechanisms controlling the opposite activities in these enzymes as
well as to elucidate whether this bifunctional enzyme assemble
represents a selective advantage for the parasites.

TcTryS has broad substrate specificity; it can accept polyamines
other than spermidine, such as aminopropylcadaverine or spermine
[72]. The respective glutathionylated products, namely homotrypa-
nothione and mono- or bis(glutathionyl)spermine are also substrates
for TryR [7]. However, these products have been detected in vivo only
when epimastigotes cultures were specifically supplemented with
cadaverine or spermine. Indeed, in epimastigotes containing similar
amounts of spermine and spermidine the derivatives of the latter [Gsp
and T(SH)2] are preferentially synthesized over the spermine
derivatives. This broad substrate specificity has been proposed as an
advantage for T. cruzi in the case of spermidine shortage and in view of
its apparent inability to synthesize polyamines de novo.

Inhibition of trys expression in bloodstream and procyclic forms
of T. brucei by double-stranded RNA interference (dsRNAi) showed
that this enzyme is essential for parasite viability [79,80]. On
induction of dsRNAi, T(SH)2 levels rapidly decreased, and this was
followed by growth arrest and cell death. Moreover, the decrease in T
(SH)2 also resulted in increased susceptibility to oxidants [80]. In
procyclics, the decrease in T(SH)2 is paralleled by a marked increase
in free GSH (4.8 times), a moderate increase in total GSH (1.3 times),
and a decrease in ODC activity [79]. There are no studies about the
essentiality of TryS in other species of trypanosomatids, but it is
reasonable to think that the situation in T. cruzi will be similar to the
one described in T. brucei.

In addition to TryS, T. cruzi contains a gene coding for GspS [26].
The homolog in C. fasciculata encodes for an enzyme that has a Km for
spermidine 15-fold lower than CfTryS [76]. For this reason, GspS has
been proposed as the first enzyme of the T(SH)2 biosynthetic pathway
in this organism [76]. TcGspS has 63% similarity with CfGspS and
contains the conserved arginine residues shown to be required for
substrate binding in related enzymes [75,81]. However, there is no
direct evidence that the enzymemay represent an additional source of
Gsp in vivo. Actually, the level of Gsp in epimastigotes grown in the
presence of polyamines is five times lower than in C. fasciculata, and
similar to the amount found in promastigotes of T. brucei [6], where
there is no evidence for GspS [82].
ogy of Trypanosoma cruzi: Trypanothione metabolism and oxidant
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Effector proteins of the antioxidant defense: Old and new actors

Initial studies on T. cruzi antioxidant defenses suggested that the
absence of classical vertebrate-detoxifying enzymes such as catalase
and glutathione peroxidases rendered the parasite highly sensitive to
oxidative stress [83]. Over the subsequent 28 years, this picture has
been changing continuously and a whole battery of different
detoxifying enzymes has been characterized. The antioxidant arma-
mentarium of T. cruzi is distributed among different cellular
compartments (Fig. 3) and is active against a wide range of oxidants.
It comprises two peroxiredoxins, at least two peroxidases that share
sequence homology with glutathione peroxidases (GPx), an ascor-
bate-dependent hemoperoxidase, and four iron-containing super-
oxide dismutases. Interestingly, transformation of the parasite from
the epimastigote to the infective form is accompanied by an increase
in the expression of several antioxidant enzymes [84,85]. This can be
interpreted as a preadaptation of the parasite prior to invasion of the
vertebrate host in readiness to environments where it may be exposed
to reactive oxygen and nitrogen species such as those generated by
immune cells. In this respect, it has been well established that
macrophages activated by proinflammatory cytokines (i.e., IFN-γ,
TNF-α) represent a first line of defense against T. cruzi infection [86].
Under these conditions macrophages produce high levels of nitric
oxide (UNO) due to the activity of the inducible nitric oxide synthase.
Moreover, on infection with trypomastigotes, the assembly of NADPH
oxidase leads to the production of superoxide radical (O2

U−) [87] that in
the presence of UNO forms peroxynitrite, a highly toxic molecule that
kills T. cruzi in a dose-dependent manner [88]. As discussed below, the
antioxidant enzymes of the parasite are able to decompose the main
toxic diffusible species (i.e., H2O2, peroxynitrite) produced by immune
cells. Nitric oxide is the only diffusible species that cannot be
enzymatically decomposed by any of the previously described
enzymes. In prokaryotes, nitric oxide dioxygenases convert UNO to
NO3

− [89]. Taking into account that T. cruzi has several enzymes that are
present in bacteria and not in other eukaryotes (for example, GspS,
Fe-containing superoxide dismutases [see below]), the existence ofUNO dioxygenases is an issue that deserves to be explored.

T. cruzi possess several distinct peroxidases, five of which have
been characterized. Two of these are typical 2-Cys peroxiredoxins and
are called tryparedoxin peroxidases (TXNPx) because they are reduced
by TXN [22,24] (Fig. 2). The two isoforms, one cytosolic (cTXNPx) and
the other present in the mitochondrion (mTXNPx) (Fig. 3), decompose
H2O2, peroxynitrite, and, with lower efficiency, organic hydroper-
oxides. Kinetic parameters have been determined for recombinant
cTXNPx, which has second-order rate constants of 51×106, 11×106,
and 31×104 M-1 s-1, for the reduction of the above-noted species,
respectively2 [49,90], values comparable with those determined for
peroxiredoxins from other organisms (reviewed in [91]). Regeneration
of the reduced enzyme by TXN occurs with an apparent second-order
rate constant of 11×105 M-1 s-1 [90]. When looking at the catalytic
efficiency of the individual steps of the electron flow from T(SH)2 to
the hydroperoxide, it seems that peroxide detoxification is dependent
on T(SH)2 concentration, as regeneration of reduced TXN by T(SH)2 is
the rate-limiting step in this pathway (81×103 M-1 s-1 [12]). In this
regard, it is again surprising that T. cruzi depends entirely on host
polyamine availability so as to maintain the concentration of such a
central molecule.

The second class of trypanosomal peroxidase has similarity with
mammalian phospholipid hydroperoxide GPxs. Four GPx homologs
have been identified in the T. cruzi genome, two of which, TcGPx-I and
TcGPx-II, have been characterized [12,92,93]. TcGPx-I is found in both
the cytosol and the glycosomes (organelles where most of the
glycolysis takes place in trypanosomatids [94]) while TcGPx-II is
35
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4present in the endoplasmic reticulum (Fig. 3). Both decompose
4organic peroxides, especially those derived from phospholipids and
4fatty acids, but are unable to decompose H2O2 [92]. This substrate
4specificity has led to the suggestion that their main functionmay be to
4prevent cellular damage due to lipid peroxidation. Trypanosomal GPxs
4differ from their mammalian counterparts in that they have cysteine
4instead of selenocysteine (Sec) as their catalytic residue and they lack
4critical residues involved in GSH binding. Consequently they are not as
4efficient at reducing oxidants and their affinity for GSH is extremely
4low (Km about 6 mM) [92,93]. The search for alternative electron
4donors showed that TcGPx-I is actually another type of TXN-
4dependent peroxidase. Enzyme activity with TXN-I as reductant is
48- to 15-fold higher thanwith GSH [12]. The difference between these
4two substrates is even more dramatic in the case of the homologous
4enzyme of T. brucei, in which the activity of the recombinant enzyme
4is 5 orders of magnitude higher with the T(SH)2/TXN system when
4compared with GSH [95]. These observations are compatible with the
4emerging idea that most cysteine-containing GPxs use thioredoxin or
4thioredoxin-like proteins as reductant instead of GSH [96]. Contrarily,
4oxidized TcGPx-II cannot be regenerated by TXN-I, GSH being the only
4known electron donor identified to date. The catalytic efficiency of
4TcGPx-II reduction by GSH is low (21×103 M-1 s-1) [93], thus
4questioning the relevance of the TcGPx-II function in vivo in a GSH-
4dependent fashion. In this regard, one can envisage functions for the
4trypanosomal GPxs different from or in addition to the detoxification
4of hydroperoxides. For instance, it has been suggested that they might
4act in hydroperoxide signaling/transduction [97] as it has been
4demonstrated for the yeast homolog GPx3 [98]. In summary, similar
5to the TXNPx described above, TcGPxs activity is linked to the
5oxidation of T(SH)2, through GSH, or in the case of TcGPx-I, more
5efficiently through TXN (Fig. 2).
5A third type of peroxidase, related to ascorbate-dependent
5hemoperoxidases (APx) found in plants, has been detected in the
5endoplasmic reticulum of T. cruzi (Fig. 3) [99]. Sequences related to
5TcAPx have been identified in other intracellular Kinetoplastida, such
5as Leishmania species, but are apparently absent in the blood dwelling
5T. brucei. TcAPx decomposes H2O2 but not organic hydroperoxides,
5and uses ascorbate as a source of reducing equivalents; the resultant
5dehydroascorbate is reduced nonenzymatically by T(SH)2 (Fig. 2)
5[100]. Ascorbate can be synthesized by the parasite itself. The enzyme
5that catalyzes the last step of ascorbate synthesis has been
5characterized in T. brucei and T. cruzi and is functionally equivalent
5to the plant ortholog galactonolactone dehydrogenase [101,102].
5Unlike plants, where the enzyme has a mitochondrial localization, in
5Trypanosoma the enzyme is present in the glycosomes [102].
5Interestingly, whereas both T. brucei and T. cruzi appeared to be
5unable to take up ascorbate or dehydroascorbate from the medium,
5the enzyme responsible for ascorbate synthesis seems to be essential
5only in T. cruzi [102]. This correlates with the presence of APx in T.
5cruzi, but not in T. brucei, suggesting that this branch of oxidant
5detoxification is important in T. cruzi biology and possibly related to
5its intracellular lifestyle in the mammalian host.
5As discussed, all trypanosomal peroxidases depend on the T(SH)2/
5TryR system for their activity. However, when looking at Fig. 3 it is
5clear that the complete regeneration pathway is not always present in
5the compartments where peroxidases are found. This poses a central
5question: How do electrons actually reach the different cellular
5compartments? For example, assuming that there is a mitochondrial
5TXN, as is the case in L. infantum, it is not known how trypanothione
5reaches this organelle. Are there specific trypanothione transporters?
5Is TS2 reduced in the cytosol and subsequently transported? Is there a
5pool of T(SH)2 within the mitochondrion that is maintained in this
5form by TryR present in the organelle [11]? The situation is even more
5complicated if we wish to explain GPx-I function in the glycosome,
5where we should add to the previous questions how does TXN reach
5this compartment. In the case of APx it has been suggested that
logy of Trypanosoma cruzi: Trypanothione metabolism and oxidant
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Table 1 t1:1

Phenotypes associated with increased or decreased levels of enzymes involved in redox
metabolism in T. cruzi and T. brucei

t1:2
t1:3Enzymea Species Method Phenotype

T(SH)2 metabolism
t1:5GCS T. brucei dsRNAi Impaired cell growth and

viability [51]
t1:6Spermidine

synthetase
T. brucei dsRNAi Growth arrest [57]

t1:7TryS T. brucei dsRNAi Impaired growth and viability,
increased sensitivity to H2O2

and t-butyl hydroperoxide
[79,80]

t1:8TryR T. cruzi Overexpression Unchanged susceptibiliy to H2O2,
nifurtimox, and gentian
violet [116]

t1:9T. brucei Conditional
null-mutants

Impaired growth and viability,
increased sensitivity to H2O2,
less virulent in mice [18].

T(SH)2-dependent oxidant detoxification
t1:11TXN-I T. brucei dsRNAi Impaired cell growth

and viability [117,118],
enhanced sensitivity
to H2O2 [118]

t1:12TXN-II T. brucei dsRNAi None [117]
t1:13cTXNPx T. cruzi Overexpression Enhanced resistance to

H2O2, t-butyl hydroperoxide
[22], and peroxynitrite [23]

t1:14T. brucei dsRNAi Impaired cell growth and
viability, increased sensitivity
to H2O2, and t-butyl
hydroperoxide [117]

t1:15mTXNPx T. cruzi Overexpression Enhanced resistance to H2O2,
t-butyl hydroperoxide [22], and
peroxynitrite [23]

t1:16T. cruzi Gene deletion Impaired cell growth (S.R.
Wilkinson, unpublished data)

t1:17T. brucei Overexpression Loss of kinetoplast DNA [21]
t1:18T. brucei dsRNAi None [117]
t1:19APx T. cruzi Overexpression Enhanced resistance against H2O2

[99]
t1:20GPx-I T. cruzi Overexpression Enhanced resistance to H2O2 and

t-butyl hydroperoxide [12]
t1:21T. brucei dsRNAi Impaired growth and viability,

increased susceptibility to
H2O2 [117]

t1:22GPx-II T. cruzi Overexpression None (S.R. Wilkinson.
unpublished data)

t1:23T. brucei dsRNAi None (S.R. Wilkinson,
unpublished data)

O2
U− detoxification

t1:25SODA T. cruzi Overexpression Increased resistance to
complement-dependent
programmed cell death [5].
Unchanged susceptibility to
benznidazol (M.C. Taylor,
personal communication)

t1:26T. brucei dsRNAi No effect on parasite growth.
Increased sensitivity to
paraquat [108]

t1:27SODB1 T.cruzi Overexpression Enhanced sensitivity against
benznidazol and gentian violet [105]

t1:28T. brucei Gene deletion Increased sensitivity to
nifurtimox and benznidazol [111]

t1:29SODB1/SODB2 T. brucei dsRNAi Impaired growth and viability [108]
t1:30SODB2 T. brucei Gene deletion None [111]

a GCS, γ-glutamylcysteine synthetase; TryS, trypanothione synthetase; TryR, trypa-
nothione reductase; TXN, tryparedoxin; cTXNPx and mTXNPx, cytosolic and mitochon-
drial tryparedoxin peroxidase, respectively; APX, ascorbate-dependent hemoperoxidase;
GPx, glutathione peroxidase-like tryparedoxin peroxidase; SODB1, SODB2, SODA, and
SODC, cytosolic/glycosomal, glycosomal, and mitochondrial superoxide dismutases,
respectively. t1:31
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dehydroascorbate is reduced by T(SH)2 in the cytosol and that
ascorbate then enters the endoplasmic reticulum through specific
transporters [13]. Thus, there is still a considerable amount of work to
do to understand fully the functioning of the antioxidant system in
trypanosomatids.

Apart from the hydroperoxide-detoxifying enzymes T. cruzi
expresses several superoxide dismutase (SOD) isoforms able to
metabolize O2

U−. Due to the very limited diffusion capacity of O2
U−

SODs are expected to decompose endogenously produced O2
U−only.

With the exception of the bloodstream form of T. brucei, that has a
nonfunctional mitochondrial electron transport chain (reviewed in
[103]), the main source of O2

U− is probably the mitochondrion.
Interestingly, all trypanosomatid SODs are of the Fe class, a group
restricted to other protozoans, prokaryotes, and chloroplasts. There
are four SOD genes in the T. cruzi genome, though only two of them
have been cloned and the recombinant proteins characterized
[104,105]. These are a mitochondrial (SODA) [106] isoform and
another isoform (SODB1) whose compartmentalization, cytosolic/
glycosomal, has been inferred from localization studies of the T. brucei
ortholog protein (Fig. 3). In T. brucei, two other proteins have been
studied, SODB2, which is located mainly in glycosomes, and SODC, a
second mitochondrial SOD isoform [107,108].

In order to probe the in vivo role of antioxidant enzymes, the
general strategy has been to manipulate cells genetically to specifi-
cally increase or decrease their expression. Parasites thus transformed
have been studied with regard to their ability to cope with oxidants
and trypanocidal compounds or to infect cells or animals (Table 1). In
the case of T. cruzi, experiments have predominantly involved
overexpression of the enzyme under study; null mutants are difficult
to obtain and dsRNAi cannot be employed as T. cruzi lacks the
necessary machinery [109]. In general, elevated levels of TXNPxs,
GPx-I, and APx rendered parasites more resistant to H2O2 [12,22,99]
and t-butyl hydroperoxide [12,22]. Recently, it has been shown that
cTXNPx-overexpressing cells were also resistant to exogenous and
endogenous peroxynitrite [23]. Interestingly, these parasites were
more infectious than controls to peroxynitrite-producing macro-
phages and mice.3 Similar results were obtained with L. donovani
cTXNPx-overexpressing cells, that were more resistant to oxidants
and more virulent to macrophages than control cells [110]. The
relevance of the T(SH)2-dependent antioxidant metabolism is further
supported by experiments in T. brucei, in which dsRNAi technology
can be used. Decreased levels of many enzymes involved in T(SH)2
metabolism and T(SH)2-dependent peroxide detoxification correlated
with impaired resistance to oxidants (Table 1) with GCS, TryS, TryR,
TXN-I, cTXNPx, and GPx-I shown to be essential to the parasite in
unstressed conditions (Table 1). Regarding O2

U− detoxification, over-
expression of cytosolic/glycosomal SOD (SODB1) in T. cruzi caused an
increased susceptibility to some O2

U−generating drugs, such as
benznidazol and gentian violet, but had no effect on the action of
others, such as nifurtimox and paraquat [105]. The higher suscept-
ibility of the overexpressing cells was interpreted in terms of
increased levels of H2O2 under conditions where peroxide metabo-
lism is rate limiting. Moreover, the unaltered susceptibility of
overexpressing cells toward nifurtimox and paraquat was explained
by different compartmentalization of the enzyme and the production
of O2

U−. Overexpression of the mitochondrial isoform (SODA) rendered
epimastigotes more resistant to complement-dependent pro-
grammed cell death, a stimulus that alters mitochondrial function
with a concomitant increase in O2

U− production [5]. In T. brucei, the
simultaneous knockdown of SODB1 and SODB2 by dsRNAi resulted in
growth arrest and cell death, whereas decrease in mitochondrial SOD
isoforms did not affect cell proliferation [108]. Further dissection of
600
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[111]. Intriguingly, cells deficient in SODB1 have increased sensitivity
to nifurtimox and benznidazol, a phenotype not shared by the SODB2
null mutant lines. The interplay between the different SOD isoforms
and trypanocidal drugs will be better understood when the mode of
action of these drugs is clearly established. In the case of nifurtimox (a
nitrofuran derivative) and benznidazol (a nitroimidazol derivative) it
has been proposed that the nitro group of both compounds is reduced
to an amino group by nitroreductases, with the formation of free
radical intermediates and electrophilic metabolites. It is generally
accepted that nifurtimox acts mainly as a redox cycling agent,
producing O2

U−, whereas benznidazol acts mainly through the
formation of drug–protein/drug–thiol conjugates [112]. However, it
becomes now critically important to reassess these concepts and
make direct measurements of rates and localization of O2

U− produc-
tion when these drugs are present, in view of the new available
methodologies for oxidant detection and our current knowledge of T.
cruzi redox biology.

The sequencing of trypanosomatid genomes has provided new
tools for the identification of putative new proteins involved in redox
metabolism. For instance, genes coding for the machinery of
selenocysteine incorporation have been recently identified in these
organisms. These include a putative selenophosphate synthetase (the
enzyme that generates selenophosphate, the selenium donor for
selenoprotein biosynthesis [113]), a Sec-tRNA, and a Sec-tRNA-specific
elongation factor [114]. Moreover, genes coding for three selenopro-
teins have also been identified in the trypanosomatid genomes [114].
Two of them are distant homologs of the mammalian SelK and SelT,
whereas the third one, SelTryp, has neither Sec- nor cysteine-bearing
homologs in other organisms, suggesting that it is a trypanosomati-
dae-specific protein. Transcription of Sel-K and Sel-T was detected in T.
brucei and a selenoprotein with the predicted molecular weight of
SelK was identified in T. cruzi epimastigotes by metabolic labeling
with 75Se [114]. The function of these proteins is unknown; however,
considering that all selenoproteins of known function participate in
redox catalysis [115], this generalization could be extended to the ones
found in trypanosomatids.

Conclusions

In the present work we have tried to summarize what is known
about the redox biology of T. cruzi in the context of trypanothione
metabolism and oxidant detoxification, the molecules that orches-
trate these processes and their role in different aspects of parasite
life. Also, we have pointed out some puzzling facts that need to be
answered in the future to understand fully the functioning of the
system.

The pleiotropic role of T(SH)2 and the unique nature of the whole
system in trypanosomatids make it an ideal target for pharmacolo-
gical intervention. In this respect, it appears advisable to block the
system in its initial steps, i.e., the synthesis of T(SH)2 and/or its
reduction. TryR is the most studied enzyme of the T(SH)2 system and
numerous studies have looked for selective inhibitors (reviewed in
[27]). However, the fact that its activity has to be reduced more than
90% to affect parasite viability probably underlies the poor efficacy
demonstrated by TryR inhibitors in vivo. On the other hand, TryS
appears as a promising target. Preliminary studies trying to inhibit its
activity using substrate analogues have given some positive results
with T. brucei although not yet with T. cruzi.4 The three-dimensional
structure of L. major TryS has been recently described [77] and this
will be a major input for the design of structure-based inhibitors.
Other molecules that may be envisaged as central for parasite life are
the putative transporters that mediate T(SH)2 movement among
different cellular compartments, as well as the transporters involved
4 T. Jaeger, M. Comini, F. Irigoín, L. Cibils, R. Radi, and L. Flohé, unpublished.
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6in polyamine uptake. However, this is a field in which everything is
6still to be done.
6Finally, the antioxidant enzymes have a key role in the detoxifica-
6tion of macrophage-derived oxidants and the success of the infection
6[23]. Preliminary data suggest that virulence of T. cruzi strains
6correlates positively with higher levels of several of these enzymes,5

6which may therefore constitute virulence factors whose inhibition
6could result in infection control.
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