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Abstract: The presence of missing values complicates statistical analyses. In de-

sign of experiments, missing values are particularly problematic when constructing

optimal designs, as it is not known which values are missing at the design stage.

When data are missing at random it is possible to incorporate this information into

the optimality criterion that is used to find designs; Imhof, Song and Wong (2002)

develop such a framework. However, when data are not missing at random this

framework can lead to inefficient designs. We investigate and address the specific

challenges that not missing at random values present when finding optimal designs

for linear regression models. We show that the optimality criteria will depend on

model parameters that traditionally do not affect the design, such as regression

coefficients and the residual variance. We also develop a framework that improves

efficiency of designs over those found assuming values are missing at random.
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1. Introduction

Missing values are a common problem in many fields. Their presence com-

plicates statistical analysis, and appropriate methods are required to handle the

missing data to ensure valid inferences. There is a wide variety of techniques

present to handle missing values once the data are observed, but the objective in

this paper is to focus on handling the missing data problem at the design stage

of an experiment. By incorporating information about the missing data mech-

anism we may be able to design a more efficient experiment that allows more

information to be obtained from the resulting data collected.

There has been work on finding optimal designs for experiments with po-

tentially missing values in the literature. The majority of the contributions is

concerned with robustness of designs to missing values; see for example He-

dayat and John (1974), Ghosh (1979), Ortega-Azurduy, Tan and Berger (2008)
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or Ahmad and Gilmour (2010). Herzberg and Andrews (1976) and Hackl (1995)

introduce design criteria that account for the presence of missing responses for

some special cases. Imhof, Song and Wong (2002) develop a framework that finds

optimal designs by taking the expectation of the information matrix with respect

to the missing data mechanism, which has been extended by Lee, Biedermann

and Mitra (2017) to improve the approximation of the covariance matrix.

All these contributions in optimal design implicitly assume that the data are

missing at random. This is where it is assumed that the process that generates the

missing values, the missing data mechanism, depends on only observed variables.

This is referred to as a missing at random (MAR) mechanism, defined by Rubin

(1976). If on the other hand it is assumed that the missing data mechanism

depends on unobserved variables, such as the missing values themselves, Rubin

(1976) referred to this as a not missing at random (NMAR) mechanism. Typically

NMAR problems are much more challenging to handle, as this is an untestable

assumption. Learning about the exact form of the NMAR mechanism is not

typically possible, and thus this often leads to biased inferences.

To our knowledge there has not been any explicit consideration of dealing

with NMAR when finding optimal designs. We are thus opening up a whole

new area of research. This article intends to explore this area, and to address

the specific problems that NMAR causes in optimal design. We also propose a

framework motivated by that of Imhof, Song and Wong (2002), but extend this

to incorporate the possibility of NMAR using an approximation to the bias. By

doing so we can mitigate the problems caused by NMAR and find more efficient

designs.

We assume that analysts will make inferences using a linear regression model

once the experiment has been performed, and will deal with the missing data

using the complete cases. Complete case analysis is a widely used strategy,

where any unit with missing data is discarded from the analysis. In the context

of regression analysis, complete case analysis can be appropriate when the missing

mechanism is MAR (Little, 1992). Under NMAR there are obvious problems that

can occur and these will be noted and mitigated through our proposed optimal

design framework.

The remainder of the article is organised as follows. Section 2 presents some
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background behind the key elements of missing data and optimal design. Section

3 motivates the problems NMAR causes in optimal design. Section 4 presents

an optimal design framework that takes NMAR into account and compares how

it relates to the traditional MAR framework. Section 5 empirically evaluates the

proposed framework to determine the benefits of using this approach. Section 6

evaluates our methodology in a real data scenario. Finally Section 7 ends with

some concluding remarks.

2. Background

We first review the relevant background to dealing with missing data. We

then present the key concepts in constructing optimal designs when a linear

regression analysis model is used. Finally we review how the potential for missing

data can be taken into account when finding optimal designs.

2.1 Missing data

Let xi, i = 1, . . . , n, represent a set of explanatory variables for unit i in

the experiment, and let yi be the outcome for unit i once the experiment is

performed. We assume that the analysts will make inferences by fitting a linear

regression model to the data of the form,

y = Xβ + ε (2.1)

where y = (y1, . . . .yn), X is the design matrix, β is the vector of regression

coefficients and ε ∼ N(0, σ2I) is the error vector with residual variance σ2. We

also define a missing indicator, mi, for each unit i, where mi = 1 corresponds to

yi missing and mi = 0 corresponds to yi observed. We can then denote ymis =

{yi : mi = 1} and yobs = {yi : mi = 0} as the missing and observed outcomes

respectively. We assume the analyst is interesting in making inferences about the

regression parameters, β. Typically, inference regarding the parameters should

be made using the joint likelihood for (yi,mi). One way this can be expressed is

as

p(mi|xi, yi,γ)p(yi|xi,β) (2.2)

which is known as the selection model framework (Little and Rubin, 2002) where

the vector γ represents parameters characterising the model for mi, also known

as the missing data mechanism. We implicitly assume in this model that the

parameters γ and β are distinct. It is commonly assumed that missing values
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arise under MAR, which implies that p(mi|xi, yi,γ) = p(mi|xi,γ). Under MAR

we can see that (2.2) factorises so that inferences concerning β can be made

using only p(yi|xi,β). In this paper, we assume the analyst will base inferences

on the complete cases, i.e. subset on those units where mi = 0. Under MAR,

estimates for β will be unbiased in this situation (Little, 1992). In this paper, we

assume that the missing mechanism can be modelled using a logit link function.

Specifically, under MAR,

p(mi = 1|xi,γ) =
exp(x′iγ)

1 + exp(x′iγ)
. (2.3)

We denote the expression in (2.3) by P (xi) for short, indicating that it is

explicitly dependent on values of xi. A corresponding NMAR mechanism, which

incorporates the (potentially missing) values of the response variable and includes

(2.3) as a special case, is proposed in Section 3.

If the MAR assumption is a not a reasonable assumption, so the missing

mechanism is NMAR, then estimates for β based only on p(yi|xi,β) will be bi-

ased (including those obtained using a complete case analysis). The presence of

NMAR is an untestable assumption, and if it exists there is currently little that

can be done to adjust for this, beyond assessing sensitivity of the results to dif-

ferent NMAR mechanisms (Little and Rubin, 2002). The problem arises in that

it is not possible to fully determine p(mi|xi, yi,γ) as it depends implicitly on the

missing outcome values, ymis. In Section 4 we propose a strategy that mitigates

the effect NMAR has in finding designs and estimating regression coefficients.

2.2 Optimal design

In experimental design the goal is to choose values of xi for each unit i that

optimise a relevant criterion to obtain maximum information from the experi-

ment. Typically, the optimality criterion minimises a function of the covariance

matrix of the estimators. We assume that the regression coefficients, β, will

be estimated using maximum likelihood, β̂ = (XTX)−1XTy, with covariance

matrix

var (β̂) = σ2(XTX)−1.
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We consider approximate designs, i.e. designs of the form

ξ =

{
x∗1 · · · x∗m

w1 · · · wm

}
, 0 < wi ≤ 1,

m∑
i=1

wi = 1,

where x∗1, . . . ,x
∗
m (m ≤ n) represent the distinct values of the explanatory vari-

ables and are referred to as the support points of the design, and the weights

w1, . . . , wm represent the relative proportions of observations taken at the corre-

sponding support points x∗i , i = 1, . . . ,m.

This approach is independent of sample size and avoids the problem of dis-

crete optimisation and is thus widely used in finding optimal designs for experi-

ments. Since nwi, i = 1, . . . ,m, are not necessarily integer valued, in order to run

such a design in practice, a rounding procedure can be applied; see, for example,

Pukelsheim and Rieder (1992).

For an approximate design ξ, the Fisher information matrix for model (2.1)

is

M(ξ) =
m∑
i=1

f(x∗i )f
T (x∗i ) wi

where the vector fT (x∗i ) is a row in the design matrix X corresponding to x∗i ,

and its inverse, M−1(ξ), is proportional to var (β̂).

We consider the following optimality criteria, which are commonly used in

the literature when the aim of the experiment is to estimate the parameter vector

β with high precision.

• D-optimality: Minimise |M−1(ξ)|. A D-optimal design minimises the vol-

ume of a confidence ellipsoid for β.

• A-optimality: Minimise trace(M−1(ξ)). An A-optimal design minimises

the sum of the variances of the individual elements of β̂.

2.3 Optimal design for missing values

Now when certain values yi may be missing we can take account of this

through the missing data mechanism. Assuming MAR we denote p(mi = 1|xi,γ) =

P (xi). The Fisher information matrix containing the missing data indicators

M = {m1,m2, . . . ,mn} is given by M(ξ,M) and we can take the expectation

over these,
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E[M(ξ,M)] = E[

n∑
i=1

f(xi)f
T (xi) (1−mi)]

=
n∑
i=1

f(xi)f
T (xi)[1− P (xi)]

= n
m∑
i=1

f(x∗i )f
T (x∗i ) wi[1− P (x∗i )] (2.4)

which is equivalent to M(ξ) if the responses are fully observed. Imhof, Song and

Wong (2002) proposed a general framework where M(ξ) is replaced by (2.4) in

the respective optimality criterion. However this assumes that E{[M(ξ,M)]−1}
is proportional to E[var (β̂|M)] which may result in a rather crude approx-

imation to the covariance matrix, in particular for small to moderate sample

sizes. Lee, Biedermann and Mitra (2017) develop an improved approximation

by considering the expectation of a 2nd order Taylor expansion of [M(ξ,M)]−1

which also results in better designs. For large sample sizes, however, the two

approaches will generate very similar designs.

Nevertheless both approaches are implicitly based on assuming MAR. If the

potential for NMAR exists then this framework may lead to inefficient designs,

with biased estimates, unless this is taken account of, regardless of which ap-

proach is used. In the next Section we determine what effect NMAR might have

on the performance of designs found assuming MAR holds. We then consider

how to best address the problem of NMAR in Section 4. In Sections 5 and 6 we

present results that incorporate our findings from Section 4 to find designs and

evaluate performance, which we use in conjunction with the Lee, Biedermann

and Mitra (2017) approach. We also considered equivalent results that use the

Imhof, Song and Wong (2002) approach, but the results were of a similar profile,

due to the relatively large sample sizes considered, and so we do not present the

results for brevity.

3. Effect of NMAR on optimal designs

If we have NMAR when constructing optimal designs then our missing data

mechanism implicitly depends on the outcome variable. We consider one such
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situation and modify the missing data mechanism in (2.3) to become,

p(mi = 1|xi, yi,γ) =
exp(x′iγ + δyi)

1 + exp(x′iγ + δyi)
(3.1)

for i = 1, . . . , n.

We now illustrate what effect, if any, NMAR might have in the construction

of optimal designs and their resulting performance. We focus on the simple linear

regression model for the design region X = [0, u] for some value 0 < u < ∞. As

such we have an analysis model:

yi = β0 + β1xi + εi, εi ∼ N(0, σ2) (3.2)

for i = 1, . . . , n. Without loss of generality we assume δ = 1 which gives us a

missing data mechanism

p(mi = 1|xi, yi, γ0, γ1) =
exp(γ0 + γ1xi + yi)

1 + exp(γ0 + γ1xi + yi)
. (3.3)

From the above two equations, it is immediately obvious that our design will

depend on the regression coefficients β0 and β1. This can be seen by re-expressing

(3.3) as

p(mi = 1|xi, yi, γ0, γ1) =
exp(γ∗0 + γ∗1xi + εi)

1 + exp(γ∗0 + γ∗1xi + εi)
(3.4)

where γ∗0 = γ0 + β0 and γ∗1 = γ1 + β1. For different values of β0 and β1 we can

see γ∗0 and γ∗1 will change and hence our design will change. We assume that

designs are constructed under some known fixed values of β0 and β1. In practice

knowing these values is unrealistic, and finding their values is the goal of the

experiment in the first place. However, it may be possible to assume that the

analyst has some prior information about likely values of β0 and β1 that can

be used. The resultant designs will thus be locally optimal. It is important to

note that traditionally for linear models the optimal design is not sensitive to

the specific values of the regression coefficient, even when missingness is MAR,

so this is a specific complication that arises due to NMAR here.

It is also of interest to consider the residual variance σ2. It is not immediately

obvious what effect, if any, σ2 has on the efficiency of the design. As εi has zero

mean, it may be the case that this term does not influence the design, but from

a practical point of view the larger the value of σ2 the greater the uncertainty
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about the expected amount of missing data at any given point xi within the

design region X, and hence it is logical that this might influence what design we

choose.

Let u = 2, so the design space is X = [0, 2] in what follows. We first find the

optimal two-point designs, under D- and A- optimality, assuming (γ0, γ1, β0, β1)

are known and equal to (−5.572, 2.191, 1, 1) respectively, we also assume σ2 = 0

when finding the designs. This is equivalent to setting εi = 0 in (3.4) and

assumes a MAR mechanism with parameters (γ∗0 , γ
∗
1) = (−4.572, 3.191). With

these values we find the probability of missing at the end points of the design

space, 0 and 2, are 0.01 and 0.859 respectively and is monotone increasing over

this space. Thus the potential for missing data is not too extreme at any point

in the design space, while still allowing the potential for missing data to have an

impact on the performance of any given design. When the missing mechanism

is monotone increasing, Lee, Biedermann and Mitra (2017) show that the lower

bound of the design space will always be one of the support points in an optimal

design. Thus in a two-point design it suffices to find the second support point,

x∗2 and its weight w2, as w1 = 1− w2. These optimisation problems are subject

to w1 +w2 = 1. Using the fmincon function in Matlab, we find an optimal design

of {x∗1, x∗2;w1, w2} = {0, 1.3766; 0.5, 0.5} under the D-optimality criterion and

{x∗1, x∗2;w1, w2} = {0, 1.5147; 0.546, 0.454} under the A-optimality criterion.

For each optimal design, we then simulate n = 60 (where n1 = nw1 and

n2 = nw2 with integer rounding if necessary) observations from (3.2) using the

support points, the values of β0, β1 above and under different σ2. We make some

outcome values missing using (3.3) with the values of γ0, γ1 above, as well as

the simulated yi values. Estimates of β0, β1 are obtained using the complete case

data. This process is repeated 100,000 times to obtain measures of bias, and mean

squared error for β0 and β1 respectively. We also present the determinant and

trace of the variance-covariance and mean squared error matrix which correspond

to the objective functions we are seeking to minimise under D- and A- optimality

respectively.

Table 3.1 presents the performance of the two respective optimal designs

under different missing data mechanisms and different values of σ2. The outputs

under NMAR correspond to the situations where εi in (3.4) has the corresponding
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Table 3.1: Simulation outputs of A- and D-optimal designs across 100,000 simulated data sets under

different missing data mechanisms.

under NMAR under MAR

σ = 0.5 σ = 1 σ = 1.5 σ = 0.5 σ = 1 σ = 1.5

A-optimal design, {x∗1, x∗2;n1, n2} = {0, 1.5147; 33, 27}
bias of β̂0 -0.00303 -0.0163 -0.0555 -7.82 ×10−5 -2.34 ×10−4 -3.91 ×10−4

bias of β̂1 -0.0855 -0.292 -0.538 2.56 ×10−4 7.69 ×10−4 0.00128

mse of β̂0 0.00765 0.0306 0.0701 0.00191 0.0172 0.0478

mse of β̂1 0.0198 0.130 0.379 0.00327 0.0294 0.0817

tr(mse) 0.0275 0.161 0.449 0.00518 0.0466 0.130

|mse| 1.29 ×10−4 0.00374 0.0263 4.65 ×10−6 3.77 ×10−4 0.00291

var(β̂0) 0.00764 0.0303 0.0670 0.00191 0.0172 0.0478

var(β̂1) 0.0125 0.0447 0.0891 0.00327 0.0294 0.0817

tr(var(β̂)) 0.0201 0.0750 0.156 0.00518 0.0466 0.130

|var(β̂)| 7.01 ×10−5 9.53 ×10−4 0.00401 4.65 ×10−6 3.77 ×10−4 0.00291

D-optimal design, {x∗1, x∗2;n1, n2} = {0, 1.3766; 30, 30}
bias of β̂0 -0.00312 -0.0165 -0.0559 -1.26 ×10−4 -3.79 ×10−4 -6.31 ×10−4

bias of β̂1 -0.0761 -0.266 -0.501 2.43 ×10−4 7.29 ×10−4 0.00121

mse of β̂0 0.00840 0.0335 0.0766 0.00210 0.0189 0.0525

mse of β̂1 0.0180 0.116 0.345 0.00317 0.0285 0.0793

tr(mse) 0.0264 0.150 0.422 0.00527 0.0475 0.132

|mse| 1.17 ×10−4 0.00351 0.0258 4.37 ×10−6 3.54 ×10−4 0.00273

var(β̂0) 0.00839 0.0333 0.0735 0.00210 0.0189 0.0525

var(β̂1) 0.0123 0.0456 0.0945 0.00317 0.0285 0.0793

tr(var(β̂)) 0.0206 0.0789 0.168 0.00527 0.0475 0.132

|var(β̂)| 6.59 ×10−5 9.36 ×10−4 0.00410 4.37 ×10−6 3.54 ×10−4 0.00273

σ2 whereas those under MAR correspond to the situations where εi in (3.4) has

σ2 = 0. In all cases, the responses are simulated with the corresponding values

of σ2. We see that the bias and the mean squared error increase as σ2 increases

in the simulation. Comparing the two different scenarios for the same σ2, we find

that the estimates obtained in the presence of a NMAR mechanism have more

bias and larger mean squared errors than those obtained in the presence of the

MAR mechanism. We also find a similar profile for the determinant and trace of

the covariance and the mean squared error matrix.

Focussing on the bias and the mean squared error of the estimates in the



10 K. M. LEE, R.MITRA & S.BIEDERMANN

Figure 3.1: Mean squared error and bias of the estimates that are computed using the A- and the

D-optimal design in the presence of NMAR mechanisms.
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presence of a NMAR mechanism, in Figure 3.1 we plot how this varies with

different values of σ2 under the D- and A- optimal designs found above. We see

that the mean squared error of each estimate increases with the values of σ2 and

the estimates are biased downward when σ2 is large. These results show that

σ2 plays a role in affecting the performance of any design under NMAR. Again,

this is a parameter that traditionally does not affect the optimal design found

in linear regression when missingness is MAR. In the next section we investigate

how we can take account of the effect of σ2 in constructing optimal designs.

4. Optimal design under NMAR

In this section we first provide intuition behind why new theory needs to

be developed in constructing optimal designs when NMAR is present. We then

present details concerning our investigation into approximating the missing in-

dicator probability, and finally we consider broadening the framework to include

bias into the optimality criterion.

4.1 Incorporating NMAR into the design framework

Recall from Section 2.3 when missing data are present the optimality crite-

rion would seek to minimise a function of E{[M(ξ,M)]−1} as this can be viewed

as a surrogate for minimising the corresponding function of E[var(β̂|M)]. Eval-

uating this expectation is not straightforward however and must be approxi-

mated. Imhof, Song and Wong (2002) approximate this by {E[M(ξ,M)]}−1

while Lee, Biedermann and Mitra (2017) first take a 2nd order Taylor expansion

of [M(ξ,M)]−1 and then take the expectation.

Regardless of which approach is taken, both approaches assume MAR, and

the expectations involve taking expectations of the missing data indicators E(mi) =

P (xi) which are then components of the resulting optimality criterion. However,

in order to account for NMAR when finding optimal designs, it is crucial to recog-

nise the presence of the outcome in the missing mechanism. Hence rather than

using the notation P (xi) we use P (xi, yi) here, where P (xi, yi) = E(mi|xi, yi) is

now random.

Clearly the presence of P (xi, yi) in the approximation to E{[M(ξ,M)]−1}
complicates the construction of optimal designs as we have not yet observed the

outcome values yi and so treat P (xi, yi) as random. In order to proceed we

replace P (xi, yi) with its expected value E[P (xi, yi)] where the expectation is
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taken with respect to yi. Evaluating this expectation is however not typically

available in closed form and we investigate ways to approximate this expectation

in Section 4.2.

Another key consideration is the potential for bias. Typically optimal de-

sign criteria focus on minimising a function of the covariance matrix, and this is

because it assumes analysis of the resulting data will yield unbiased estimates.

Minimising a function of the covariance matrix will then be equivalent to min-

imising the corresponding function of the mean squared error (MSE). However,

this is not necessarily the case when NMAR is present, as estimates are likely to

be biased and this is evident from the results presented in Section 3. Optimal

design criteria should then incorporate the bias, or some approximation to the

bias, in order to find designs with small MSE. This idea is discussed in more

detail in Section 4.3.

4.2 Evaluating the expectation of P (xi, yi)

To evaluate the expectation of P (xi, yi) we consider the specific example of

the NMAR mechanism (3.3) introduced in Section 3, where we use a logit link and

where the model for yi is given in (3.2). In principle however, the approach would

work with any appropriate NMAR missing data mechanism. We can re-express

P (xi, yi) =
exp(γ0 + γ1xi + yi)

1 + exp(γ0 + γ1xi + yi)

=
exp(zi)

1 + exp(zi)
(4.5)

where zi ∼ N(γ0 + β0 + (γ1 + β1)xi, σ
2) which implies exp(zi) has a Log-

normal distribution with parameters given by the mean and variance of zi, and

P (xi, yi) = exp(zi)
1+exp(zi)

has a logit-normal distribution with parameters given by the

mean and variance of zi. Unfortunately, the mean of the logit normal distribution

is not available in closed form and so we consider approaches to approximating

the expected value of P (xi, yi).

The simplest approach is to simply replace zi with its expected value in (4.5),

i.e. approximate

E[P (xi, yi)] ≈
exp[E(zi)]

1 + exp[E(zi)]
. (4.6)

This is equivalent to the naive approach of finding an optimal design in Section

3 which assumes MAR, and we see that it does not perform well.
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An improved approximation uses the fact that E[exp(zi)] = exp[γ0 + β0 +

(γ1 + β1)xi + σ2/2] and taking a first order Taylor expansion of P (xi, yi) as a

function of exp(zi) about the mean of exp(zi) which results in,

E[P (xi, yi)] ≈
E[exp(zi)]

1 + E[exp(zi)]

=
exp[γ0 + β0 + (γ1 + β1)xi + σ2/2]

1 + exp[γ0 + β0 + (γ1 + β1)xi + σ2/2]
, (4.7)

We also consider approximating expectation of P (xi, yi), the mean of a

logit-normal random variable, using numerical methods. Specifically, defining

P (xi, yi) = ti for simplicity, we use the function integral in Matlab to evaluate

E

[
exp(zi)

1 + exp(zi)

]
= E(ti) =

∫ 1

0
ti

1

σ
√

2π

1

ti(1− ti)
e−

[logit(ti)−µi]
2

2σ2 dti (4.8)

We conducted simulation studies to empirically evaluate the performance of

these different methods for approximating E[P (xi, yi)]. Specifically we generated

data that followed a specific logit normal distribution, with parameters µ and σ

corresponding to mean and variance of zi above, and computed the estimated

mean of this distribution using the different approximations. This was then

repeated many times and estimates from the different methods were averaged

over the replications and compared to the “true mean” obtained empirically by

averaging the sample mean of observations over the replications. This process was

then repeated for a range of different values of µ and σ. Our simulation studies

show that approximations from (4.6) and (4.7) performed poorly compared to

(4.8). In particular, the error from the approach given by (4.7) is only negligible

when µi
σ is large. On the other hand, the approximation given by (4.8) gives

us very small magnitude of absolute differences in the simulation for −30 ≤
µi
σ ≤ 30. We also considered other alternatives to approximating the expected

value, including a second order Taylor expansion about exp(zi) as well as first

and second order Taylor expansions about zi and also using the median of the

logit normal distribution implied by P (xi, yi) (which is available in closed form)

as a surrogate for the expected value. However none of these performed as well

as the numerical approximation considered. Hence, we use (4.8) in our design

framework for the remainder of this article

4.3 Incorporating bias into the design criterion
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When responses are not missing at random, it is unavoidable that estimates

will be biased, as noted in Section 3. Hence, instead of simply considering

var(β̂), which is the typical approach in optimal design we consider broadening

the framework to incorporate bias. Specifically we focus on now optimising a

function of the mean squared error. Returning to the example of obtained re-

gression coefficient estimates β̂, we can see the mean squared error incorporates

both variance and bias,

m.s.e. (β̂) = E[(β̂ − β)(β̂ − β)T ] = var (β̂) +
[
E(β̂)− β

] [
E(β̂)− β

]T
,

(4.9)

where E(β̂) − β measures the bias of the estimates. In the remainder of this

article, we denote E(β̂) − β by ∆(σ, ξ), i.e. we assume the bias depends on

σ as well as the design. Other more complex bias functions that depend on

more parameters could also be considered but are not investigated further in this

article.

Thus in order to find optimal designs in the presence of NMAR with good

MSE properties, we need to include this bias into the criterion. This bias will

not be known in advance of course and so in practice must be conjectured as

must the functional relationship between the bias and (σ, ξ). In this article we

numerically approximate the bias function by simulating the bias for a range of

different pairs of values (σ, ξ). Each simulation step involves fitting the model

and evaluating the bias for the given pair. We then fit a smooth function, e.g.

a second order response surface or a LOESS function, to these simulated ‘bias

data’, and use this function, B(σ, ξ) say, as an approximation to the true bias.

We are thus now able to optimise a function of the MSE, or at least an

approximation of this for finding an optimal design. As before we consider the

same optimality criteria, A- and D- optimality, but these are now applied to the

MSE matrix rather than the covariance matrix.

In the next section we evaluate how the approach of finding optimal de-

signs based on the approximation given in (4.8) as well as the inclusion of a

bias term performs in the presence of NMAR and specifically whether it offers

any improvements over the optimal designs that assume MAR and thus assume

m.s.e. (β̂) = var (β̂).
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5. Simulation study

As in Section 3, we set the design region X = [0, 2] and sample size n = 60.

For a given design we simulate a response variable by

yi = 1 + xi + εi, εi ∼ N(0, σ2)

for a given σ2. We then introduce missing values into the observed yi, i = 1, . . . , n,

using the NMAR mechanism given by (3.4), i.e. through specifying a missing data

mechanism through the following logistic model,

P (xi, yi) =
exp(γ0 + γ1xi + yi)

1 + exp(γ0 + γ1xi + yi)

with γ0 = −5.572 and γ1 = 2.191. We assume the analyst will fit a simple

linear regression model to the complete case data, obtaining estimates of the

coefficients, (β̂0, β̂1), and their variances, from the available cases, i.e. using only

those units for which yi is observed.

We restrict our optimal designs to the class of designs with two support

points, i.e. m = 2. From the results given in Lee, Biedermann and Mitra (2017),

the lower bound of X, 0, is chosen as one of the support points of the two-

point optimal design, denoted by x∗1 here. To find the second support point,

x∗2, we substitute the approximation to E[P (x∗i , yi)] given by (4.8) with mean

−5.572+1+(2.191+1)x∗i and a known value of σ2, the value of x∗1 and w1 = 1−w2

into the mean squared error given in (4.9). The expected bias term in (4.9)

is treated as being a function of x∗2 and σ2, and is approximated numerically

as described in Section 4.3. An optimal design is then found by minimising a

function of this matrix with respect to x∗2 and w2 in Matlab with the fmincon

function.

Table 5.2 presents the values of x∗2 given under the D- and A- optimality

criteria for various different values of σ2, the corresponding weight w2 and the

(rounded) number of replicates, n2, of x∗2. The first column from the left shows

the optimal design found by the framework that assume a MAR mechanism and

zero bias (see Section 3). We see that the optimal designs that account for the

impact of NMAR have smaller x∗2 of both design criteria than the designs that

assume the presence of MAR mechanism. The optimal weights of A-optimal

designs remain constant in the considered cases whereas w2 of the D-optimal
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Table 5.2: The first column from the left shows the optimal designs that assume a MAR mechanism

(4.6); the other columns show the optimal designs for NMAR mechanisms (4.5) with different σ2. In all

designs, x∗1 = 0, n = 60 and w1 = 1− w2.

MAR σ =1 σ =1.5 σ =2

D-optimal x∗2 1.3766 0.9793 1.0202 1.1210

design w2(n2) 0.5000(30) 0.3811 (23) 0.3194 (19) 0.2879 (17)

A-optimal x∗2 1.5147 1.0871 1.0617 1.0671

design w2(n2) 0.4539(27) 0.4462 (27) 0.4508 (27) 0.4534 (27)

design decreases with σ2 when responses are assumed to be NMAR. Figure 5.2

further illustrates the optimal designs that account for the impact of NMAR.

Now to illustrate the performance of these designs we repeatedly simulate

an incomplete data set 200,000 times using each of the designs given in Table

5.2 and the models for the response and the missing data mechanism. For each

design, we calculate the empirical bias and the mean squared error for β0 and β1,

as well as the determinant and trace of the empirical mean squared error matrix

for (β0, β1). Table 5.3 presents these results for various different values of σ.

When σ is large, we see that the biases and mean squared errors of the

estimators are large, as expected. The designs that assume the presence of MAR

have the largest biases and m.s.e. (β̂) across the board. By taking NMAR into

account at the design stage, we can mitigate some of its effects. For example,

the A-optimal design for σ = 1.5 reduces the bias of β̂1 by more than 23% from

-0.53864 to -0.41095, and a similar reduction applies to the trace of m.s.e. (β̂).

In general we see that the NMAR design with the conjectured value of σ performs

best with respect to the relevant optimality criterion. However, it is also clear

that NMAR designs with different conjectured values of σ also perform well and

far better than the designs that assume MAR.

To complete the illustration, we also consider the potential problem of as-

suming the presence of NMAR when in fact a MAR assumption is reasonable.

Specifically we evaluate the performance of the designs given in Table 5.2 when

the missing mechanism is in fact MAR and given by,

P (xi) =
exp(γ0 + γ1xi)

1 + exp(γ0 + γ1xi)

with γ0 = −4.572 and γ1 = 3.191. The performance metrics considered as
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Figure 5.2: “+” correspond to A-optimal designs, “�” correspond to D-optimal designs in the presence

of different NMAR mechanisms with x1 = 0 and w1 = 1− w2.
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Table 5.3: Performance of various designs in the presence of NMAR mechanism over 200,000 simulated

data sets.

σ2 = 1 in generating yi and in the NMAR mechanism

D-optimal design that assumes

MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.015710 -0.015657 -0.015559 -0.015525

bias of β̂1 -0.26664 -0.18472 -0.19344 -0.21511

m.s.e. (β̂0) 0.033581 0.027279 0.024665 0.023522

m.s.e. (β̂1) 0.11689 0.11449 0.12077 0.12403

tr(m.s.e. (β̂)) 0.15047 0.14176 0.14544 0.14756

|m.s.e. (β̂)| 0.0035232 0.0025149 0.0025445 0.0026165

A-optimal design that assumes

MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.015717 -0.015717 -0.015717 -0.015717

bias of β̂1 -0.29240 -0.20739 -0.20208 -0.20313

m.s.e. (β̂0) 0.030604 0.030604 0.030604 0.030604

m.s.e. (β̂1) 0.13022 0.10697 0.10728 0.10713

tr(m.s.e. (β̂)) 0.16083 0.13758 0.13788 0.13774

|m.s.e. (β̂)| 0.0037448 0.0026704 0.0026408 0.0026451

σ2 = 1.52 in generating yi and in the NMAR mechanism

D-optimal design that assumes

MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.054443 -0.054393 -0.054202 -0.054178

bias of β̂1 -0.50182 -0.38675 -0.39934 -0.42936

m.s.e. (β̂0) 0.076555 0.062639 0.056827 0.054331

m.s.e. (β̂1) 0.34630 0.32185 0.33703 0.34929

tr(m.s.e. (β̂)) 0.42285 0.38449 0.39386 0.40362

|m.s.e. (β̂)| 0.025828 0.018580 0.018181 0.018456

A-optimal design that assumes

MAR σ =1 σ =1.5 σ =2

bias of β̂0 -0.054465 -0.054465 -0.054465 -0.054465

bias of β̂1 -0.53864 -0.41838 -0.41095 -0.41264

m.s.e. (β̂0) 0.070012 0.070012 0.070012 0.070012

m.s.e. (β̂1) 0.37910 0.31198 0.31145 0.31162

tr(m.s.e. (β̂)) 0.44912 0.38199 0.38146 0.38163

|m.s.e. (β̂)| 0.026319 0.020325 0.020139 0.020183
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Table 5.4: Performance of various designs in the presence of a MAR mechanism, i.e. NMAR with

σ2 = 0. Responses yi are generated with σ2 = 1.52, and over 200,000 simulated data sets.

D-optimal design that assumes

MAR σ =1 σ =1.5 σ =2

bias of β̂0 (10−4×) 3.7083 4.0648 5.8203 6.2709

bias of β̂1 (10−4×) 4.4560 2.9727 -5.9871 -8.3833

m.s.e. (β̂0) 0.075687 0.061415 0.055479 0.052892

m.s.e. (β̂1) 0.11455 0.19076 0.19898 0.18913

tr(m.s.e. (β̂)) 0.19024 0.25218 0.25446 0.24202

|m.s.e. (β̂)| 0.0056653 0.0078116 0.0081087 0.0077921

A-optimal design that assumes

MAR σ =1 σ =1.5 σ =2

bias of β̂0 (10−4×) 3.3924 3.3924 3.3924 3.3924

bias of β̂1 (10−4×) 2.4240 2.4140 3.2951 3.3618

m.s.e. (β̂0) 0.068937 0.068937 0.068937 0.068937

m.s.e. (β̂1) 0.11793 0.15299 0.15843 0.15727

tr(m.s.e. (β̂)) 0.18687 0.22192 0.22736 0.22621

|m.s.e. (β̂)| 0.0060607 0.0065411 0.0067209 0.0066843

before are empirical bias, and mean squared error for β0 and β1 as well as the

determinant and trace of the empirical mean squared error matrix for (β0, β1).

Table 5.4 presents these results for MAR optimal designs and different NMAR

optimal designs constructed assuming various values of σ2. In this simulation, we

have used a residual variance of σ2 = 1.52 in generating the responses under each

different design. We see that in this scenario the empirical biases are negligible,

as expected. We will thus focus on the mean squared errors. The designs gener-

ated assuming MAR perform best as expected but there is evidence to suggest

that the loss in assuming a positive value of σ is less severe than the one incurred

when using the MAR design for NMAR data. In particular, from Table 5.3 we

see the bias in β̂1 is smaller in all designs that assume NMAR than the MAR

design and we would argue this is an important property analysts would value

in any design.

6. Case study: Two-group A-optimal design for Alzheimer’s Disease

Trial

To illustrate an application of our approach, we use data from an Alzheimer’s
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disease study which investigated the benefits of administering the treatments

donepezil, memantine, and the combination of the two, to patients over a period

of 52 weeks, on various quality of life measures. See Howard et al. (2012) for full

details of the study. For illustration purposes, we only consider the experimental

units in the placebo group and the donepezil-memantine treatment group, who

were included in the primary intention-to-treat sample. The sample size in each

group (n1, n2) respectively is 72 resulting in a total sample size of 144. Here we

treat the rate of change of the primary outcome measure, SMMSE score (higher

score indicates better cognitive function), as the response variable of a simple

linear model,

yi = β0 + β1xi + εi, εi ∼ N(0, σ2),

where xi = 0 for subject i in the placebo group and xi = 1 for patient i in the

treatment group, i = 1, . . . , 144.

However, from the data set for the per-protocol analysis, we have 46 patients

in the placebo group and 23 patients in the treatment group who have missing

responses by the end of the study. Assuming that these responses are not missing

at random, a logistic regression model is fitted to the missing data indicator,

obtaining
exp(γ̂0 + γ̂1xi)

1 + exp(γ̂0 + γ̂1xi)

where γ̂0 = 0.5705 and γ̂1 = −1.3269. Using the observed responses, we fit a lin-

ear model to the data, obtaining β̂0 = −0.10503, β̂1 = 0.04302 and σ2 = 0.061432.

We then use these estimates to construct a NMAR mechanism, (4.5), where the

logit-normal variable, ti, has mean γ0 + β0 + (γ1 + β1)xi = 0.5705 − 0.10503 −
(1.3269 − 0.04302)xi and variance σ2 = 0.061432. We use this information in

(4.6) to approximate the expected NMAR mechanism, which is present in the

elements of the approximation to E[var(β̂|M)] when finding optimal designs.

See Section 2.3 and 4.1 for more details. Of course in practice NMAR is an

untestable assumption and there is no guarantee that these conjectured mech-

anism corresponds to the true missing mechanism, the following analysis could

have been repeated with different conjectured NMAR mechanisms.

In this scenario, the support points of an optimal design are given as x∗1 = 0

(placebo) and x∗2 = 1 (active treatment) since we are comparing two groups. We

consider A-optimality. Hence we want to minimise m.s.e. (β̂0) + m.s.e. (β̂1) for
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Table 6.1: Fitted coefficients for the approximation function B(σ, ξ) of ∆(σ, ξ) for β̂0 (first row) and β̂1

(second row), respectively.

λ̂0 λ̂1 λ̂2 λ̂3 λ̂4 λ̂5

-2.5282×10−5 1.8727×10−6 -1.2511×10−3 -1.4028×10−8 8.7490×10−7 -0.6023

-2.9306×10−5 -4.1954×10−7 1.6884×10−3 2.9213×10−9 3.1693×10−6 0.2919

a future experiment. The optimisation problem is now in one variable, i.e. w2,

with the condition w1 + w2 = 1.

In this illustration, we conduct simulation studies on designs that have n2 =

37, 38, ..., 107 in each design, with σ = 0.04, 0.05, ..., 0.09 in each case, to obtain

empirical biases for β̂0 and β̂1. Fitting a second order response surface to these

observed biases and values of n2 and σ, we approximate bias as a function of n2

and σ in the following way,

B(σ, ξ) = λ̂0 + λ̂1n2 + λ̂2σ + λ̂3n2
2 + λ̂4n2σ + λ̂5σ

2

for each estimate β̂0 and β̂1 (see Table 6.1).

Using this information, we can find the A-optimal design by using the fmin-

con numerical method in Matlab as was done in Section 5. The optimal design

resulted in w2 = 0.34365, i.e. n2 = 144 × w2 = 49.486 = 49 subjects in the

treatment group, giving n1 = 95 subjects in the placebo group. We then con-

duct a simulation study comparing this design with other design candidates using

the estimates β̂0, β̂1, γ̂0, γ̂1 and σ̂2 in generating responses (both observed and

missing). Table 6.2 shows the performance of these designs in the simulation.

Specifically we repeatedly simulate incomplete data under the various designs

and compute the trace of the mean squared error matrix obtained from each

design. The simulation study shows that the A-optimal design that accounts for

NMAR and bias in the experiment performs better than all other designs con-

sidered and in particular is better than the original design that assumes equal

sample size for both groups. There is about a 9% (1 − 3.2919/3.6155) × 100%

efficiency loss if we use the equal sample size design instead of the optimal de-

sign. This indicates that in this real application there is also the potential for

obtaining estimates with smaller mean squared error if the proposed design is

used rather than conventional designs.

7. Discussion and remarks
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Table 6.2: Performance of various designs where n2 is the sample size of the treatment group and

n1 = 144− n2 for each design.

n2 52 51 50 49 72

tr(m.s.e. (β̂))(×10−4) 3.2950 3.2927 3.2934 3.2919 3.6155

We have opened up a new area of research, showing that the effects of NMAR

mechanisms on estimation can be mitigated through a clever choice of experi-

mental design.

We first assess the effect of the value of σ2 under a NMAR mechanism on the

performance of optimal designs, which have been generated under the assumption

of MAR (i.e. σ2 = 0). We see dramatic increases in empirical biases and mean

squared errors. Having established the need for further investigation, we then

propose a novel approximation to the information matrix taking NMAR into

account. Unlike in the MAR case, or indeed the classical case of no missing

data, our designs depend on the linear parameters of the mean model and on the

value of σ2. The optimal designs found through our new approach considerably

outperform the naive designs generated assuming MAR when NMAR is present.

To the best of our knowledge this is the first paper dealing with optimal de-

sign of experiments in a NMAR framework. There are thus many open problems

left to investigate. We present and illustrate our methodology through linear

regression models. However, a similar approximation to (4.7) can be found for

nonlinear models with normally distributed errors, and extensions to generalised

linear models are also possible in our framework.

The designs we find are locally optimal in the sense that they depend on

the unknown model parameters. Our numerical investigation shows that even

when the value of σ2 is misspecified at the design stage, the designs assuming

NMAR with an incorrect σ2 perform still better than the MAR design when the

missing data mechanism is NMAR. For the other parameters, we assume here

that good information can be elicited from the experimenter. If this is not the

case, parameter robust design criteria, such as Bayesian or standardised maximin

criteria (see, e.g., Chaloner and Verdinelli, 1995, and Dette, 1997, respectively),

need to be developed for our approach, which is a topic for future research.
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There are a plethora of possible methods to handle the problem of missing

values, in addition to complete case analysis considered in this article. Other

common approaches include multiple imputation, methods based on the EM

algorithm, Hot Deck methods, plus many others. We do not investigate these

here, as our approach focuses on the design aspect of the problem, rather than

the specific method to deal with the missing data. For each new method for

handling the missing values, the design framework would change to reflect the

type of analysis being performed on the data and would need to be derived

carefully mathematically. It would be interesting to investigate this further in

future research to see whether the benefits seen here could be similarly observed

when other methods are used to handle the missing data.

Our approach sheds new light on NMAR problems, and shows there is scope

for optimal experimental design as a tool to reduce biases and mean squared

errors in such scenarios.
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