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Abstract: Missing responses occur in many industrial or medical experiments, for

example in clinical trials where slow acting treatments are assessed. Finding ef-

ficient designs for such experiments can be problematic since it is not known at

the design stage which observations will be missing. The design literature mainly

focuses on assessing robustness of designs for missing data scenarios, rather than

finding designs which are optimal in this situation. Imhof, Song and Wong (2002)

propose a framework for design search, based on the expected information ma-

trix. We develop a new approach which includes Imhof, Song and Wong (2002)’s

method as special case and justifies its use retrospectively. Our method is illus-

trated through a simulation study based on real data from an Alzheimer’s disease

trial.
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1. Introduction

In statistical studies, having missing values in the collected data sets is of-

ten unavoidable, in particular when the experimental units are humans and the

study is long-term. Consider, for example, a clinical trial where responses are

measured several months into the treatment regime for comparison with base-

line measurements. In this situation, some patients may be lost to follow-up for

various reasons, including side effects of the treatment or death.

Extracting the essential information on treatment characteristics from only

partially observed data is a key challenge. Missing values may reduce the power

of the study or increase the variability of estimation, due to smaller sample size.

Moreover, when not missing completely at random (MCAR), they can cause bias

in estimates and thus result in misleading conclusions when not analysed appro-

priately, see e.g. Little and Rubin (2002), Schafer (1997) or Carpenter, Kenward
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and White (2007). Several methods have been suggested in the literature to deal

with this issue, for example, multiple imputation (Rubin, 1987), maximum like-

lihood, weighting methods or pattern mixture models. Research in this area has

found much attention, see for example Kenward, Molenberghs and Thijs (2003),

White, Higgins and Wood (2008) and Spratt, Carpenter, Sterne, Carlin, Heron,

Henderson and Tilling (2010).

In this article we assume the missing data problem is handled using a com-

plete case analysis. This approach discards any experimental units containing

missing values from the analysis. Usual statistical procedures, such as regression

analysis, are then applied to the (reduced) fully observed data set. The approach

is appealing because of its simplicity. In addition, inferences of regression co-

efficients under complete case analysis are unbiased provided the probability re-

sponses are missing only depends on the covariates and not on the response itself.

The reason for this is because the regression analysis considers the conditional

distribution of the responses given the covariates, and so both response and co-

variates should be present to contribute to the inference. This is a well known

result in missing data and has been noted in the literature (Little and Rubin,

(2002), Glynn and Laird, (1986))

In the situation of completely observable data, it is well-established that a

good design can decrease the necessary sample size, and thus lower the costs of

experimentation. However, the design literature so far has only addressed very

few special cases involving missing data, which provide only limited guidance to

practitioners. Several papers focus on assessing the robustness of standard de-

signs, such as balanced incomplete block designs, D-optimal designs or response

surface designs, against missing observations; see, for example, Hedayat and John

(1974), Ghosh (1979), Ortega-Azurduy, Tan and Berger (2008) or Ahmad and

Gilmour (2010).

Herzberg and Andrews (1976) propose to optimise the expectation of the D-

and G-objective functions, respectively, where random missing data indicators

are incorporated into the information matrix. Such a modified G-optimal design

minimises the expected maximum variance of a predicted response among all

designs where these variances exist. Hackl (1995) penalises singular information

matrices in a modified version of the D-optimality criterion, and considers only
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small finite design spaces since the approach would become intractable for contin-

uous intervals or even large discrete sets. Imhof, Song and Wong (2002) develop

a framework for finding optimal designs using the expected information matrix,

where the expectation is taken with respect to the missing data mechanism. This

approach is mathematically equivalent to finding designs for heteroscedastic or

weighted regression models. Imhof, Song and Wong (2004) extend this work

by exploring different classes of probability functions for missing responses, and

study the robustness of their optimal designs against misspecification of the pa-

rameters in the probability functions. Baek, Zhu, Wu and Wong (2006) further

extend this approach to Bayesian optimality criteria. They study optimal de-

signs for estimating percentiles of a dose-response curve with potentially missing

observations.

In the situation where all outcomes will be observed, it is common in the

optimal design literature to use the inverse of the information matrix as an ap-

proximation to the covariance matrix, var(β̂), of the parameter estimators of

interest, held in the vector β̂. For linear models, these two matrices are in fact

the same. For maximum likelihood estimators in non-linear or generalised lin-

ear models, equality holds asymptotically. However, when some of the responses

may be missing, var(β̂) will not exist, and it is not clear if the inverse infor-

mation matrix will be a good approximation to the observed covariance matrix,

i.e. the covariance matrix after the experiment has been carried out. Hence it

is not known if a design which is optimal with respect to some function of the

expected information matrix will actually make the (observed) covariance matrix

(or a function thereof) small. Imhof, Song and Wong (2002) implicitly assumed

that this would be the case without providing a justification. Our research is

filling this gap. We propose a more sophisticated approximation to the covari-

ance matrix which contains Imhof, Song and Wong (2002)’s method as a special

case, and thus justifies their approach retrospectively. The framework proposed

in this paper is applicable to finding optimal designs for linear regression models

in the presence of missing at random (MAR) mechanisms (or MCAR, which is a

special case of MAR).

The structure of the paper is as follows. In Section 2, we provide some

background on optimal design for complete data, and describe the optimal design
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framework for incomplete data proposed by Imhof, Song and Wong (2002). In

Section 3, we introduce and justify an optimal design framework for a broad

class of MAR missing data mechanisms which includes the method by Imhof,

Song and Wong (2002) as a special case. Using a simple linear regression model,

the optimal design framework is illustrated for A-, c- and D-optimal designs in

Section 4. In Section 5, we apply our framework to redesigning a clinical trial for

two Alzheimer’s drugs, while providing a discussion of our results in Section 6.

2. Background

We briefly introduce the general linear regression model and some basic

theory on optimal design of experiments for the situation where all outcomes

are observed. Consider the general linear regression model for (p + 1) linearly

independent functions f0(x), ..., fp(x),

Yi = β0f0(xi) + ...+ βpfp(xi) + εi, xi ∈ X, i = 1, . . . , n, (2.1)

where Yi is the ith value of the response variable, xi is the value of the explanatory

variable (or the vector of explanatory variables) for experimental unit i, X is the

design region, and εi
iid∼N(0, σ2), i = 1, . . . , n. In matrix form, this can be written

as

Y = Xβ + ε

where the ith row of X is fT (xi) = (f0(xi), . . . , fp(xi)). A typical example is the

polynomial regression model of degree p, i.e.

Yi = β0 + β1xi + β2x
2
i + ...+ βpx

p
i + εi. (2.2)

Using the method of either least squares or maximum likelihood, the vector

of unknown parameters, β, is estimated by β̂ = (XTX)−1XTY, with covariance

matrix

var (β̂) = σ2(XTX)−1.

Let x∗i , i = 1, . . . ,m, m ≤ n, be the distinct values of the explanatory

variable in the experimental design, and let ni, i = 1, . . . ,m, be the number of

observations taken at xi where
∑m

i=1 ni = n. Then an exact design can be written

as

ξ =

{
x∗1 · · · x∗m

w1 · · · wm

}
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where wi = ni/n gives the proportion of observations to be made in the support

point x∗i . This concept can be generalised to approximate or continuous designs

where the restriction that win is a positive integer is relaxed to wi > 0, i =

1, . . . ,m, with
∑m

i=1wi = 1. The proportion wi is called the weight at the support

point x∗i . The latter approach avoids the problem of discrete optimisation and

is widely used in finding optimal designs for experiments. In order to run such

a design in practice, a rounding procedure which turns continuous designs into

exact designs can be applied; see, for example, Pukelsheim and Rieder (1992).

For a continuous design ξ, the Fisher information matrix for model (2.1) is

M(ξ) = n

m∑
i=1

f(x∗i )f
T (x∗i ) wi

and its inverse, M−1(ξ), is proportional to var (β̂).

The design problem is to find the values of x∗i and wi that provide maximum

information from the experiment. Let Ξ be the class of all possible designs on

X and M be the set of all information matrices with respect to Ξ, i.e. M =

{M(ξ); ξ ∈ Ξ}. An optimality criterion is a statistically meaningful, real-valued

function ψ(M(ξ)), which is selected to reflect the objective of the experiment. It

is typically an increasing and convex function over M, such that there is a critical

point in the region. The technical explanation of these properties can be found

in experimental design books such as Silvey (1980) and Pukelsheim (2006). We

seek a design ξ∗ such that ψ(M(ξ∗)) = min
ξ∈Ξ

ψ(M(ξ)). Such a design is called a

ψ-optimal design.

The following optimality criteria are some examples commonly used in find-

ing the optimal setting for an experiment with the corresponding objective.

• D-optimality: ψ(M(ξ)) = |M−1(ξ)|. A D-optimal design minimises the

volume of a confidence ellipsoid for β.

• A-optimality: ψ(M(ξ)) = trace(M−1(ξ)). An A-optimal design minimises

the sum of the variances of the individual elements of β̂.

• c-optimality: ψ(M(ξ)) = cTM−1(ξ)c where c is a (p + 1) × 1 vector. A

c-optimal design minimises the variance of cT β̂, a given linear combination

of β̂.
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2.1 Optimal design for missing values

To construct optimal designs that account for missing observations, we define

independent random missing data indicators Ri = 1, if the observation at xi is

missing; Ri = 0 otherwise, i = 1, . . . , n. Following Rubin (1976), if responses are

missing completely at random (MCAR) then

Pr(Ri = 1|xi, yi, i = 1, ..., n) = P (Ri) ∀i = 1, . . . , n.

If we have a missing at random (MAR) mechanism the probability of missingness

may depend on the observed values of xi and yi, i.e. for i = 1, . . . , n,

Pr(Ri = 1 | xi, yi, i = 1, ..., n) = E{Ri | observed xi, yi, i = 1, ..., n}.

In what follows, since only the design values of xi play a role in the optimal

design framework, we assume a special case of MAR mechanism where

E{Ri | observed xi, yi, i = 1, ..., n} = P (Ri = 1 | observed xi) = P (xi).

This is necessary as we do not know which responses will be observed at the time

of designing the experiment. In the remaining part of this paper, the conditioning

on xi will be omitted to simplify the notation of a MAR mechanism.

The Fisher information matrix containing the missing data indicators R =

{R1, R2, . . . , Rn} is given by

E{M(ξ,R)} = E{
n∑
i=1

f(xi)f
T (xi) (1−Ri)}

=

n∑
i=1

f(xi)f
T (xi) (1− P (xi))

= n

m∑
i=1

f(x∗i )f
T (x∗i ) wi (1− P (x∗i )) (2.3)

which is equivalent to M(ξ) if the responses are fully observed.

Imhof, Song and Wong (2002) proposed a general framework where a function

of (2.3) is used in constructing optimal designs. For example, a D-optimal design

maximises |E{M(ξ,R)}| as var(β̂) was implicitly assumed to be proportional

to [E{M(ξ,R)}]−1.
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The use of E{M(ξ,R)} is appealing since M(ξ,R) is linear in the missing

data indicators, and therefore taking the expectation is straightforward. More-

over, from (2.3), we can see that this framework is analogous to the optimal design

framework for weighted regression models, with weight function λ(x) = 1−P (x).

However, if responses may be missing, var(β̂) does not exist. Hence it is not

clear if the inverse of E{M(ξ,R)} will be a good approximation to the observed

covariance matrix of an experiment. In the next section, we will investigate this

approximation further.

3. Optimal design for MAR mechanisms with complete case analysis

We assume that the missing data mechanism is MAR and consider the law

of total variance,

var(β̂) = E(var(β̂|R)) + var(E(β̂|R)). (3.1)

This law only holds if all terms exist, but existence is not guaranteed due to the

presence of missing data. It is possible that the values of R result in XTX being

singular (for example if all values Ri = 1) but in the situations we consider such

occurrences would be extremely rare. Thus, if v is the probability that XTX is

singular due to R, we assume that v is negligibly small, and to allow us to apply

(3.1) above we assume that in such situations we assign some “dummy value”

to β̂, for example an estimate based on some prior distribution from a Bayesian

approach, although in principle any value would do. Whatever value is chosen

will only have a negligibly small influence on the final result when applying (3.1)

due to the very small value of v.

Let C be the set of values of R such that XTX is non-singular. Then

E(β̂|R ∈ C) = β and var(E(β̂|R ∈ C)) = var(β) = 0, the (p + 1) × (p + 1)

matrix with all elements equal to zero. Since v is assumed to be negligibly small

we approximate the covariance matrix by

var(β̂) ≈ E(var(β̂|R)).

Again, using the fact that v is close to zero, the right hand side should

be close to E{[M(ξ,R)−1]}. We apply a multivariate second-order Taylor se-

ries expansion to approximate the elements of the inverse matrix M(ξ,R)−1,

in the hope that the approximated value of E{[M(ξ,R)−1]} is close to the ob-

served value of var(β̂). The approach by Imhof, Song and Wong (2002) can be
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viewed as a Taylor expansion of order one, where they implicitly approximate

E{[M(ξ,R)−1]} by [E{M(ξ,R)}]−1. Technically the order of the approxima-

tion could be viewed as either the 0th or 1st order. While no Taylor expansion

has actually been applied here, it could be viewed as the 0th order expansion,

but as we are expanding the expression about the mean of the random variables,

the first order expansion simplifies to the 0th order result. As our approach is

obtained using a second Taylor expansion about the mean, we refer to the Imhof

et. al approach as the 1st order approach for consistency.

While the first order expansion will usually provide a cruder approximation

to the ‘true’ objective function, and thus somewhat less efficient designs, this

approach has the advantage that established theory on optimal design, such as

the use of equivalence theorems, is applicable. Hence we can often simplify design

search considerably through analytical results. For second order approximations,

convexity of the objective function is no longer guaranteed, which prohibits the

use of equivalence theorems. Hence, while optimal designs will be more efficient,

analytical results can only be established on a case by case basis, and design

search will be more challenging.

Theorem 1 shows that for a large class of MAR mechanisms and polynomial

models, the D-optimal design found using a first order approximation has the

same number of support points as it has parameters. This result corresponds

to the contribution of De la Garza (1954) and Silvey (1980) in the conventional

optimal design framework for finding the number and weight of support points

of a D-optimal design. The proof of Theorem 1 can be found in Appendix A.1.

Theorem 1. Let h(x) = 1
1−P (x) and assume that for the MAR mechanism P (x)

the equation h(2p)(x) = c has at most one solution for every constant c ∈ <.

Then a D-optimal design for the polynomial model (2.2) of degree p has exactly

p+ 1 support points, with equal weights.

Hence design search can be restricted to (p + 1)-point designs, with known

weights wi = 1/(p + 1), i = 1, . . . , p + 1. A further simplification is given in

Lemma (2), which shows that under the assumptions of Theorem 1, if the MAR

mechanism is monotone, one of the bounds of the design region is a support point

of the D-optimal design.
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Lemma 2. Let P (x) be a MAR mechanism that satisfies the conditions in The-

orem 1 and is monotone, and let the design interval X = [l, u], where l < u.

If P (x) is strictly increasing, then the lower bound, l, is a support point of the

D-optimal design. If P (x) is strictly decreasing, then the upper bound, u, is a

support point of the D-optimal design.

Proof. For a continuous design ξ with p+ 1 support points, we have

|E{M(ξ,R)}| =

p+1∏
i=1

wi(1− P (x∗i ))
∏

1≤i<j≤p+1

(x∗i − x∗j )2 (3.2)

where we order the support points by size:

l ≤ x∗1 < x∗2 < ... < x∗p+1 ≤ u.

If P (x) is monotonic increasing in x, (1 − P (x)) will be largest at x∗1 = l and

(x∗1−x∗j )2 will also be largest for x∗1 = l, for all values of x∗j where j = 2, . . . , p+1.

Hence l must be a support point. Analogously, if P (x) is monotonic decreasing,

(1− P (x)) and (x∗i − x∗p+1)2, i = 1, . . . , p will be maximised at x∗p+1 = u.

For optimal designs based on a second order approximation toE{[M(ξ,R)−1]},
there is no corresponding result in general. However, in the following section, we

provide a similar result for a special case.

3.1. Illustration

To fix ideas, we consider the simple linear regression model, i.e. model (2.2)

where p = 1, for D-, c- and A-optimality. For a design region X = [l, u] where

l < u, consider total sample size n and two support points x∗1 and x∗2. Two

support points are sufficient for estimation in the simple linear regression model

with two unknown parameters and, from Theorem 1, theD-optimal designs based

on the first order approximation are two-point designs for a large variety of MAR

mechanisms P (x). Hence finding the best two-point design for the second order

approximation facilitates comparing the two approaches. Let n1 = nw1 responses

{y1, ..., yn1} be taken at experimental condition x∗1, and n2 = n − n1 = nw2

responses {yn1+1, ..., yn} at x∗2. We seek an optimal design

ξ∗ =

{
x∗1 x∗2

w1 w2

}
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based on a function of the approximated expression for E{[M(ξ,R)−1]}. For

the simple linear regression model,

M(ξ,R)−1 =
1

(x∗1 − x∗2)2 Z1Z2

(
x∗21 Z1 + x∗22 Z2 −x∗1Z1 − x∗2Z2

−x∗1Z1 − x∗2Z2 Z1 + Z2

)
, (3.3)

where Z1 =
∑n1

i=1(1−Ri) and Z2 =
∑n

i=n1+1(1−Ri) follow binomial distributions

with parameters (nw1, 1 − P (x∗1)) and (nw2, 1 − P (x∗2)) respectively. If all

observations at a support point are missing, i.e. Z1 = 0 or Z2 = 0, M(ξ,R)

becomes singular and we cannot estimate the model parameters. In the scenarios

we investigate, the chance of this occurring is assumed to be quite small. If this

possibility is not small, then some changes to the experiment would need to be

proposed, e.g. increasing the sample size.

In what follows, we assume that this probability is close to zero. We aim to

approximate

E{[M(ξ,R)−1]} =
1

(x∗1 − x∗2)2

(
x∗21 E

(
Z1

Z1Z2

)
+x∗22 E

(
Z2

Z1Z2

)
−x∗1E

(
Z1

Z1Z2

)
−x∗2E

(
Z2

Z1Z2

)
−x∗1E

(
Z1

Z1Z2

)
−x∗2E

(
Z2

Z1Z2

)
E
(

Z1
Z1Z2

)
+E

(
Z2

Z1Z2

)
)
.

(3.4)

due to the fact that the distribution of Zi
ZiZj

is intractable. Using a multi-

variate second order Taylor series approximation expanded about E{Zi} and

E{ZiZj} = E{Zi}E{Zj}, and taking expectation with respect to the binomial

random variables, we obtain

E

(
Zi
ZiZj

)
≈ 1

nwj(1− P (x∗j ))
+

P (x∗i )P (x∗j )

nwi(1− P (x∗i ))(nwj(1− P (x∗j )))
2

+
P (x∗j )

(nwj(1− P (x∗j )))
2

(3.5)

for i, j = 1, 2, i 6= j. A full derivation of this result is given in Appendix A.2. If

the missing data mechanism is MCAR, this expression simplifies to

E

(
Zi
ZiZj

)
≈ 1

nwj(1− P )
+

P 2

nwi(1− P )(nwj(1− P ))2
+

P

(nwj(1− P ))2

=
1

n′wj
+

P 2

n′wi(n′wj)2
+

P

(n′wj)2
(3.6)

independent of the values of the support points, where P = P (Ri) is the prob-

ability that a response is missing completely at random and n′ = n(1 − P )

corresponds to a reduced total sample size of the experiment.
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We further note that E
(

Zi
ZiZj

)
6= E

(
1
Zj

)
as the probability that Zi =

0, while typically small, is strictly greater than 0. Hence cancelling Zi in the

above expression (which would lead to a slightly simpler expression for the Taylor

expansion) would add another level of approximation to the objective function.

After selecting a specific missing data mechanism P (x), the optimal design

ξ∗ can be found by taking derivatives of the criterion with respect to the support

points and weights respectively, with constraints w1 + w2 = 1 and x∗2 > x∗1 ∈ X.

Note that in order to define the quantities in (3.3) and below, we need to work

in terms of exact designs, i.e. n1 = nw1 and n2 = nw2 are integers. To facilitate

the numerical computation of the optimal designs, we only use the constraint

w1 +w2 = 1 and then round nw∗1 and nw∗2 to the nearest integers, where w∗1 and

w∗2 are the resulting optimal weights. For example, a D-optimal design minimises

the determinant of (3.4), i.e

1

(x∗1 − x∗2)2E

(
Z1

Z1Z2

)
E

(
Z2

Z1Z2

)
(3.7)

over X; a c-optimal design for minimising the variance of β̂1, i.e. where c =

(0 1)T , minimises

1

(x∗1 − x∗2)2

(
E

(
Z1

Z1Z2

)
+ E

(
Z2

Z1Z2

))
(3.8)

over X; an A-optimal design minimises

1

(x∗1 − x∗2)2

(
(x∗21 + 1)E

(
Z1

Z1Z2

)
+ (x∗22 + 1)E

(
Z2

Z1Z2

))
(3.9)

over X, where the expectations are approximated by (3.5) or (3.6), depending on

the form of the missing data mechanism.

Theorem 3 shows that the D, c- and A-optimal two-point designs based on

the second order expansion have a similar structure to the corresponding first

order designs. Here the c-optimal design minimises the variance of the estimated

slope parameter of the simple linear model.

Theorem 3. For the simple linear regression model (2.2) with p = 1, assume

we approximate E{[M(ξ,R)−1]} by a second order Taylor expansion, and let the

design interval X = [l, u].
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(a) If the missing data mechanism is MCAR, then the D- and the c-optimal

design among the two-point designs are equally weighted on l and u. If,

in addition, l ≥ 0 or u ≤ 0, the two-point A-optimal design will also have

support points l and u.

(b) If the missing data mechanism is MAR and monotone increasing (decreas-

ing), then l (u) is a support point of the D- and the c-optimal design among

the two-point designs. If, in addition, l ≥ 0 (u ≤ 0), this result also holds

for A-optimality among the two-point designs.

The proof of part (a) of Theorem 3 is given in Appendix A.3.

Proof of Theorem 3 (b). Let without loss of generality x∗1 < x∗2, and

assume P (x) is monotone increasing. From (3.5), it can be seen that the second

order approximations for E[Z1/(Z1Z2)] and for E[Z2/(Z1Z2)] are both increasing

in x∗1 and are hence minimised when x∗1 = l. Since x∗1 = l also minimises 1/(x∗1−
x∗2)2, and all expressions are non-negative, the objective functions in (3.7) and

(3.8) are both minimised when x∗1 = l. If l ≥ 0, (x∗21 + 1) is also increasing in x∗1,

and the result for A-optimality follows.

An analogous argument shows that x∗2 = u minimises (3.7), (3.8) and, for

u ≤ 0, also (3.9) if P (x) is monotone decreasing. �

From part (a), we see that the optimal designs are the same as for the

simple linear regression model without missing data. In part (b), we find that

the lower/upper limit of the design interval is a support point, and thus has the

same support structure as the first order design from Lemma 2. However, the

weights and the other support point may have different values. In particular,

second order D-optimal designs are not necessarily equally weighted.

In the next section, we find some optimal designs for the two respective

approximation strategies and illustrate their performance through simulations.

4. Simulation study

We set the design region X = [0, 2] and sample size n = 30. For a given

design we simulate a response variable by

Yi = 1 + xi + εi, εi ∼ N(0, σ2)

where we treat σ2 as known. We then introduce missing values into the observed

yi, i = 1, . . . , n, by specifying a MAR mechanism through the following logistic
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model,

P (xi) =
exp(γ0 + γ1xi)

1 + exp(γ0 + γ1xi)

with γ0 = −4.572 and γ1 = 3.191. The positive value of γ1 indicates the mech-

anism is monotone increasing with xi. The logistic model is a commonly used

choice for modelling the missing data mechanism (Ibrahim and Lipsitz (1999),

Bang and Robins (2005), Mitra and Reiter (2011, 2016)) as in practical situa-

tions, it allows the estimation of parameters in the missing data model using a

logistic regression. However, we note there are many other choices for modelling

the missing data mechanism (Little (1995)) and our approach would be compat-

ible with any choice of missing data model. We assume the analyst will fit a

simple linear regression model to the complete case data, obtaining estimates of

the coefficients, (β̂0, β̂1), and their variances, from the available cases, i.e. using

only those units for which yi is observed.

Using Theorem 1 and Lemma 2, the lower bound of X, 0, is chosen as one of

the support points of the two-point optimal design, denoted by x∗1 here. Substi-

tuting the MAR mechanism, the value of x∗1 and w1 = 1−w2 into the correspond-

ing elements of (3.4), an optimal design is found by minimising a function of this

matrix with respect to x∗2 and w2 in Mathematica with the Minimize function.

We first consider several designs ξ = {0, x∗2} and, under each design, compare

the two proposed approaches for approximating elements of the matrix specified

in (3.4), as well as various relevant functions of this matrix. The two proposed

approaches approximate E
(

Zi
ZiZj

)
in the elements of (3.4) with first order and

second order Taylor expansions respectively, where the first order expansion cor-

responds to the approach proposed by Imhof, Song and Wong (2002). Specifi-

cally for each design, we repeatedly simulate incomplete data using the models

described above and empirically obtain the estimates for (3.4) by averaging the

elements in M(ξ,R)−1, given in (3.3), across the replications. Treating these as

the true values, we can then compare the two approximations. Table 4.1 presents

the simulation results over 200000 replications from two different designs where

x∗2 = 1 and x∗2 = 1.5 respectively. Consider the design where x∗2 = 1.5, we can

see that for the [2, 2] element in (3.4) which is the criterion used in c-optimality

to minimise the variance of β̂1 the first order approximation has a bias of 7.2%,

while for the second order approximation this bias has reduced to 1.9%. For this



14 K. M. LEE, S.BIEDERMANN & R.MITRA

same design, the trace of matrix (3.4) (which corresponds to the criterion used

in A-optimality) has a bias of 4.4% and the determinant of the matrix (which

corresponds to the criterion used in D-optimality) has a bias of 10.1% when

using the first order approximation, while the biases are reduced to 1.1% and

2.6% respectively when using the second order approximation. In general, we

can see that using the second approximation yields better approximations of the

elements of (3.4) and relevant functions of the matrix.

Table 4.1: Simulation output of 200000 replications for two different designs with weight w1 = 0.5 = w2,

P (x∗1) = P (0) = 0.01, and n = 30. The numbers in the penultimate row indicate the frequency of the

cases where M(ξ,R) becomes singular.

ξ {0, 1} {0, 1.5}
[1, 1] element of (3.4) 0.06740 0.06740

First order Taylor series approximation 0.06736 0.06736

Second order Taylor series approximation 0.06740 0.06741

[2, 2] element of (3.4) 0.15242 0.10375

First order Taylor series approximation 0.15078 0.09628

Second order Taylor series approximation 0.15222 0.10179

[1, 2] element of (3.4) -0.06740 -0.04494

First order Taylor series approximation -0.06736 -0.04490

Second order Taylor series approximation -0.06740 -0.04494

Determinant of (3.4) 0.00573 0.00497

First order Taylor series approximation 0.00562 0.00447

Second order Taylor series approximation 0.00572 0.00484

No. of cases failed 0 23

P (x∗2) 0.20085 0.55342

We now find optimal values for x∗2 and w2, over the design region X = [0, u]

with w1 = 1− w2, and where the missing mechanism is defined as above. Table

4.2 present the optimal values when constructing A-optimal, c-optimal and D-

optimal designs respectively. We can see that using the 2nd order approximations

results in an upper design point that is smaller than the upper design point when

using the first order approximation. The final row in the table considers the

probability, P (singular), that the regression coefficients cannot be estimated,

i.e. the covariance matrix becomes singular. This is equivalent to finding the

probability that all outcomes at either one (or both) of the design points are
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completely missing. For more complicated scenarios, this probability can be

calculated as follows (see Imhof et al., 2002):

P (singular) =

m−1∑
j=0

∑
S⊂{1,...,k}
|S|=j

P (ni > 0 if i ∈ S;ni = 0 if i /∈ S)

=

m−1∑
j=0

∑
S⊂{1,...,k}
|S|=j

∏
i∈S

[
1− p(xi)Nwi

]∏
i/∈S

p(xi)
Nwi .

We see that this probability is consistently smaller when adopting the second

order approximation over the first order. We also additionally consider a design

that assumes the data will be fully observed and places half the observations at

both end of the design space, here assumed to be [0, 2]. We see that P (singular) is

significantly higher here than for other designs, and is motivation for considering

the potential for missing data at the design stage of an experiment.

Table 4.2: Optimal designs found by using a first order and a second order Taylor series approximation

to (3.4) respectively, for the optimality criterion denoted by the subscript, for n = 30. Missing values

are introduced through the logistic model with γ0 = −4.572 and γ1 = 3.191. The other support point

is x∗1 = 0 with w1 = 1 − w2 and P (x∗1) = 0.01. ξ is the A, c, and D-optimal design that assumes fully

observed responses.

ξ∗A 2nd ξ∗A 1st ξ∗c 2nd ξ∗c 1st ξ∗d 2nd ξ∗d 1st ξ

x∗2 1.46206 1.51466 1.54924 1.60059 1.33597 1.37660 2

w2 0.4665 0.4539 0.6257 0.6208 0.5110 0.5 0.5

P (x∗2) 0.5233 0.5650 0.5919 0.6308 0.4234 0.4553 0.8594

P (singular) 1.15 e-04 3.378 e-04 4.7067 e-05 0.0001577 2.5192 e-06 7.4897 e-06 0.10302

To investigate the issue of possible singularity of the covariance matrix fur-

ther, we consider the effect of varying the parameter values for the missing data

mechanism, resulting in different probabilities of missingness at the design points.

We focus on D-optimality, and on comparing the designs found using a first order

and a second order Taylor series approximation to (3.4), respectively.

Table 4.3 shows some examples of P (singular) computed using the D-

optimal designs for the simple linear model found for the different approximation

methods with logistic MAR mechanisms. We find that as the probability that

a response being missing increases (i.e. γ0 becomes larger), the optimal designs
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Table 4.3: Probability of obtaining a singular covariance matrix using D-optimal designs found using

different approximations. The MAR mechanism follows the logistic model with γ1 = 3.191; N = 30;

x1 = 0 and w1 = 1− w2.

2nd order D-optimal design 1st order D-optimal design

γ0 x∗2 w2 P (singular) x∗2 w2 P (singular)

-4.572 1.3360 0.5110 2.519 e-06 1.3766 0.5 7.490 e-06

-1.572 0.7554 0.5263 0.003185 0.8362 0.5 0.01325

-0.572 0.6159 0.5353 0.02879 0.7336 0.5 0.09426

found by the first order approach have a consistently higher failure rate in esti-

mating the model parameters.

To further illustrate performance, for each design given in Table 4.2 we re-

peatedly simulate the incomplete data 200000 times as described above, set-

ting σ2 = 1. In each incomplete data set, we compute the sample estimate

β̂ = (XTX)−1XTy from the complete cases, i.e. where the design matrix X

and response vector y comprises only units with observed response values. We

can then empirically obtain the covariance matrix for β̂ across the replications.

Table 4.4 summarises the performance of the designs derived under the differ-

ent optimality criteria and approximations. We see that the designs obtained

under A-optimality have the smallest trace of the covariance matrix for β̂, as

expected. Further, this trace is smaller when using the design obtained from

the second order approximation rather than the first order approximation. This

pattern is repeated for the other optimality criteria. The design obtained under

c-optimality from the 2nd order approximation results in the smallest variance

for β̂1, and the design obtained under D-optimality from the 2nd order approxi-

mation results in the smallest determinant of the covariance matrix for β̂. The

design that assumes fully observed outcomes performs the worst across all op-

timality criteria, it also has the greatest proportion of cases where it was not

possibly to estimate the regression coefficients, as expected. This is further mo-

tivation for considering the potential for missing data at the design stage, to

extract the most information out of an experiment. In addition, we also note

that the second order approximation consistently resulted in fewer cases where it

was not possible to estimate the parameters due to the missing data, and reflects

what is seen in Table 4.2. This is further motivation for adopting the 2nd order
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approximation over the 1st order here.

Table 4.4: Simulation outputs of 200000 replications for different designs. The numbers in the last row

indicate the frequency of the cases where M(ξ,R) becomes singular.

sample var(β̂1) tr(sample var(β̂)) |sample var(β̂)| No. of cases failed

ξ∗A 2nd 1.0687e-01 1.6988e-01 4.8764e-03 19

ξ∗A 1st 1.0823e-01 1.7123e-01 5.0880e-03 67

ξ∗c 2nd 9.7349e-02 1.8893e-01 5.4165e-03 16

ξ∗c 1st 9.8102e-02 1.8968e-01 5.7121e-03 35

ξ∗d 2nd 1.0401e-01 1.7590e-01 4.5809e-03 0

ξ∗d 1st 1.0486e-01 1.7197e-01 4.6526e-03 2

ξ 1.4029e-01 2.0063e-01 7.5657 e-03 20588

We have empirically evaluated the framework proposed to construct optimal

designs in the presence of missing values under the assumption of a complete

case analysis. We have seen that this framework worked well in the simulations,

with evidence suggesting that the second order approximation, at least in these

simulations, had the potential to provide better approximations and hence result

in better designs. Moreover, in all scenarios we investigated, the probability of

a singular covariance matrix was lowest for the optimal design using the second

order approximation. In the next section we consider a scenario motivated from

an application concerned with designing a clinical trial to treat Alzheimer’s dis-

ease.

5. Application: Redesigning a study on Alzheimer’s disease

To illustrate an application of our approach, we use data from an Alzheimer’s

disease study which investigated the benefits of administering the treatments

donepezil, memantine, and the combination of the two, to patients over a period

of 52 weeks, on various quality of life measures. See Howard et al. (2012) for

full details of the study. The total number of patients included in the primary

intention-to-treat sample was 291, with 72 in the placebo group (Group 1), 74 in

the memantine treatment group (Group 2), 73 in the donepezil treatment group

(Group 3), and 72 in the donepezil-memantine group (Group 4).

In the per-protocol analysis, 43 patients were excluded in Group 1, 32 in

Group 2, 23 in Group 3 and 21 in Group 4. Considering these patients as data
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missing at random, a logistic regression model is fitted to the data, specifically

P (Ri = 1|xi, vi) =
exp(γ0 + γ1xi + γ2vi)

1 + exp(γ0 + γ1xi + γ2vi)

where xi, vi ∈ {0, 1} represent the level of donepezil and memantine respectively

(with 1 indicating the treatment is applied) for patient i. From the data the

regression coefficients were estimated to be γ̂0 = 0.2636472, γ̂1 = −0.8988845

and γ̂2 = −0.4108504.

We assume a linear regression model will be fit to the data, i.e.

Yi = β0 + β1xi + β2vi + εi, εi ∼ N(0, σ2), i = 1, . . . , n, (5.1)

where Yi corresponds to the outcome value for patient i. We assume σ2 is known

and fixed to 1 without loss of generality. The specific values of β0, β1, β2 will not

affect the performance of the different designs. We can define the four groups

(G1 - G4) the units are allocated to in terms of the design variables x and v:

• G1: x∗i = 0, v∗i = 0 with n1 experimental units;

• G2: x∗i = 0, v∗i = 1 with n2 experimental units;

• G3: x∗i = 1, v∗i = 0 with n3 experimental units;

• G4: x∗i = 1, v∗i = 1 with n4 experimental units.

In this situation we have thus fixed the design points, defined by the values of

(x, v) and equal to (0, 0), (0, 1), (1, 0), and (1, 1). The design problem is then to

find the optimal number of patients to allocate to Groups G1 - G4, denoted by

n1, n2, n3, and n4 respectively, under the assumption the analyst fits a linear

regression model of the form described in (5.1) using the complete cases. The

diagonal elements of the (conditional) covariance matrix of the least squares

estimators for this model are

var(β̂0|R) =
Z2Z3 + Z2Z4 + Z4Z3

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4
,

var(β̂1|R) =
(Z2 + Z4) (Z1 + Z3)

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4
,
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var(β̂2|R) =
(Z3 + Z4) (Z1 + Z2)

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4
,

where Zk =
∑

r∈Gk
(1−Rr) is the sum of the response indicators for Group

Gk, k = 1, . . . , 4. The A-optimal design for this model minimises an appropriate

approximation to

E{var(β̂0|R)}+ E{var(β̂1|R)}+ E{var(β̂2|R)}

subject to the constraints
∑4

k=1wk = 1 (equivalent to the constraint n1+n2+n3+

n4 = n) and wk ≥ 0, k = 1, . . . , 4. See Appendix A.4 for the analytical expression

of the objective function for A-optimality. The corresponding expression for D-

optimality is not given here, but it can be easily obtained through the use of

analytical software such as Maple 17 or Mathematica.

Setting n = 291 and using the above estimated MAR mechanism, the optimal

design is found by using the Minimize function in Mathematica, subject to the

weight constraint. Table 5.5 shows the allocation scheme of a A- and a D-optimal

design, denoted by ξ∗A and ξ∗D respectively. In the example considered here, due

to the large sample size, we did not find any significant differences between the

designs obtained through the first and second order approximations and so we

have not distinguished between both designs here. In addition, the probability

the regression coefficients cannot be estimated here is small and are less than

10−20, so there is no significant drawback using the 1st order approximation.

Table 5.5: A- and D-optimal designs for the Alzheimer’s example. The numbers in parentheses indicate

the expected number of missing values in the respective group.

n1 n2 n3 n4 n

w1 w2 w3 w4

ξ∗A 108(61.1) 64(29.6) 64(22.2) 55(14.3) 291

0.371 0.220 0.219 0.190

ξ∗D 60(33.9) 72(33.4) 78 (27.0) 81(21.1) 291

0.206 0.248 0.268 0.278

Using the same procedure as in Section 4, we assess the performance of the

optimal designs by simulating incomplete data from the different designs using

(5.1) above, choosing values of β0, β1, β2 to be 1, 1, 1 respectively. The miss-

ing values are introduced into the response using the MAR mechanism specified
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above with parameters γ̂0 = 0.2636472, γ̂1 = −0.8988845 and γ̂2 = −0.4108504

estimated from the data. From each incomplete data set, regression coefficients

β̂0, β̂1, β̂2 are estimated from the complete cases. We repeat this process 350000

times to generate 350000 incomplete data sets, which allows us to empirically

obtain the covariance matrix for β̂0, β̂1, β̂2 for each design across the replications.

The original design, i.e. ξori = (n1, n2, n3, n4) = (72, 74, 73, 72) with expected

missing observations (40.7, 34.3, 25.3, 18.7) is also considered as a candidate de-

sign here.

Table 5.6 presents the simulated values for the A- and the D-objective

function for the different designs. As expected, ξ∗A has the smallest value for

tr
(

sample var(β̂)
)

as this optimal design minimises the trace of our approxi-

mation to this matrix. Similarly, ξ∗D has the smallest determinant of the simu-

lated covariance matrix. Both designs result in an improved criterion value over

the original design used and so could potentially have improved performance if

they had been applied. For example, the A-optimal design would be expected

to achieve a similar trace of the sample covariance matrix as the original design,

while requiring only 95.55% of the overall sample size, or 13 fewer patients.

Table 5.6: Simulated values for the A- and the D-objective function, respectively, for different designs.

tr
(

sample var(β̂)
)
|sample var(β̂)|

ξ∗A 0.066327 3.722e-06

ξ∗D 0.072111 3.3028e-06

ξori 0.069416 3.3439e-06

6. Discussion and remarks

In this article we have proposed a theoretical framework for designing exper-

iments that takes into account the possibility of missing values. By incorporating

a model for the missing data mechanism, we are able to create designs that op-

timise an objective function of interest. For various commonly used objective

functions we have shown that our designs have the potential to improve perfor-

mance over designs that do not necessarily incorporate the missing data model

into the optimisation.

Our framework has broadened the approach proposed by Imhof, Song and

Wong (2002), which is in fact a special case of the framework suggested here
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that only takes a Taylor expansion of order one. We have illustrated the potential

benefits of extending the first order approach through a simulation study. In some

situations, in particular for large sample sizes, the first and second order approach

tend to lead to very similar designs. We can see how this occurs from the results in

(3.5) and (3.6) as the terms arising from the second order expansion are of O(n−2)

and will decrease the fastest as the sample size increases. In these situations the

first order approach might be preferred for practical reasons. The sample size

of 30 we considered in Section 4 is typical for Phase II clinical trials, where

sample sizes are normally no more than 50. In this situation our investigation in

Section 4 showed that the 2nd order approximation offered various benefits over

the 1st order. We have also noted some further theoretical properties of using an

approach based on the first order expansion and derived the necessary results in

this article.

We have described our methodology for the general linear regression model,

and have illustrated its benefits through one- and two-variable models for simplic-

ity. In these situations, the necessary Taylor expansions could easily be derived

by hand. For more complicated linear models, in particular if the size of the

covariance matrix is large, it is recommended to use symbolic computation soft-

ware, such as Mathematica, for deriving the second order approximation to the

covariance matrix. Numerical computation of optimal designs will be challenging

since convexity of the objective function is not guaranteed, but is feasible e.g.

using metaheuristic search algorithms such as PSO; see, e.g., Chen et al. (2015).

Our methodology is also applicable to nonlinear and generalised linear regres-

sion models. For nonlinear regression models with normally distributed errors,

this can readily be seen by considering linearisation of the regression function; see

e.g. Atkinson, Donev and Tobias (2007), Chapter 17.2. More generally, the for-

mula var(β̂) ≈ E(var(β̂|R)) is also applicable here where var(β̂|R) is replaced

by the inverse of the Fisher information matrix conditional on the random indica-

tors for missingness. We note that in these situations, the conditional covariance

matrix is not available in closed form, but has already been approximated, which

adds another level of approximation.

We note that accounting for the impact caused by the MAR mechanism

in the optimal design framework does not entirely overcome the potential issues
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caused by singular information matrices. In situations where completely observed

responses are not possible, Imhof, Song and Wong (2002) have shown that designs

found by the first order approximation approach have some advantages over the

conventional optimal designs. This has been confirmed by our investigations

in Section 4. In addition, we have provided evidence that the second order

approximation leads to optimal designs which perform better in this respect, i.e.

the probability of a singular covariance matrix is smaller than for optimal designs

using the first order approximation. In view of this, we suggest to compare the

optimal designs found for the different approaches prior to the implementation

of the experiment.

So far we have assumed that the analysis will be performed under a complete

case analysis. While for many types of models such as linear regression models

under a MAR mechanism, parameter estimates will be unbiased, this may not

necessarily be the best way to handle the missing value problem. Another com-

mon approach to handling the missing data problem is by multiply imputing the

missing values. Analysing the incomplete data in this way will not necessarily

lead to the same designs derived in this article and further work will be needed

to determine what the optimal designs will be here, as well as comparing which

approach will lead to improved performance.

We note that the proposed framework here relies on the assumption of MAR,

but it may be the case that missingness is not missing at random (NMAR).

NMAR is a very challenging problem that poses additional challenges in con-

structing designs. For example, the dependency of the missing mechanism on

the outcome means that the optimal design could be sensitive to model param-

eters that typically do not determine the optimal design when missingness is

MAR. This is something that merits future investigation.
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Appendix

A.1 Proof of Theorem 1. We can prove that the D-optimal design has p+ 1

support points using the general equivalence theorem, by finding a contradiction.

Assume ξ∗ has p+ 2 support points. Consider

g(x) :=
fT (x) M−1(ξ∗) f(x)

p+ 1
≤ 1

1− P (x)
:= h(x)

where g(x) is a polynomial of degree 2p, which has to be less than h(x) over the

region [l, u]. We order the p+ 2 values for x by size:

l ≤ x∗1 < x∗2 < ... < x∗p+2 ≤ u (1)

such that the above equality is achieved. This implies g(x∗i ) touches h(x∗i ) and

g
′
(x∗i ) = h

′
(x∗i ) for i = 2, 3, ..., x∗p+1. From (1), there are values x∗

′
1 , ..., x

∗′
p+1 with

g
′
(x∗

′
i ) = h

′
(x∗

′
i ) such that x∗1 < x∗

′
1 < x∗2 < x∗

′
2 < x∗3 < ... < x∗p+1 < x∗

′
p+1 < x∗p+2

by the Mean Value Theorem.

Hence we have a total of 2p+ 1 values where g and h have equal derivatives,

and g
′
(x) is a polynomial of degree 2p − 1. Applying the Mean Value Theorem

again to g
′
and h

′
, there must be 2p values where g

′′
and h

′′
are equal. By repeat-

ing this process, we find that there must be 2 values where the 2pth derivatives

g(2p) and h(2p) are equal, and g(2p)(x) is a constant since g is a polynomial of

degree 2p.

This is a contradiction since we assumed that h(2p)(x) = c has at most one

solution in < for any constant c. The same contradiction occurs if we assume ξ∗

has more than p+ 2 support points. �

A.2 Multivariate second order Taylor series approximation. Let X and

Y be two independent discrete random variables with expectations X and Y ,

respectively. Define F = X and G = XY , which have expected values X and

XY respectively. Assume we want to expand H(F,G) = F/G about the point

(X,XY ) into a multivariate second order Taylor series. The partial derivatives

evaluated at the point (X,XY ) are
∂ H(X,XY )

∂F = 1
XY

; ∂2 H(X,XY )
∂F 2 = 0; ∂2 H(X,XY )

∂F ∂G = − 1
(XY )2

;

∂ H(X,XY )
∂G = − X

(XY )2
; ∂2 H(X,XY )

∂G2 = 2 X
(XY )3

; ∂2 H(X,XY )
∂G ∂F = − 1

(XY )2
.
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Thus, a second-order Taylor series expansion for the function H(F,G) ex-

panded about the point (X,XY ) is

H(F,G)

≈ H(X,XY ) + (F −X)
∂ H(X,XY )

∂F
+ (G−XY )

∂ H(X,XY )

∂G

+
1

2

(F −X)2 ∂
2 H(X,XY )

∂F 2︸ ︷︷ ︸
=0

+(G−XY )2∂
2 H(X,XY )

∂G2

+2(F −X)(G−XY )
∂2 H(X,XY )

∂G ∂F

)
=

X

XY
+ (F −X)

(
1

XY

)
− (G−XY )

(
X

(XY )2

)
+ (G−XY )2

(
X

(XY )3

)
− (F −X)(G−XY )

(
1

(XY )2

)
.

To construct an optimal design, the expected value of the approximated function

expanded about the point (X,XY ) is required. Since E{(F − X)} = 0 and

E{(G−XY )} = 0,

E {H(F,G)}

≈ X

XY
+ E{(G−XY )2}

(
X

(XY )3

)
− E{(F −X)(G−XY )}

(
1

(XY )2

)
=

X

XY
+ (E{G2} − (XY )2)

X

(XY )3
− (E{FG} −X XY )

1

(XY )2

= E{G2} X

(XY )3
− E{FG}

(XY )2
+

X

XY
=

E{G2}E{F}
E{G}3

− E{FG}
E{G}2

+
E{F}
E{G}

.

Approximating the elements of E{[M(ξ,R)]−1} of the general linear

model. Considering F and G are the products of independent binomial ran-

dom variables present in the elements of var(β̂), the value of E{[M(ξ,R)]−1}
can be approximated. For instance, the matrix for a simple linear model con-

tains E{Zi/(ZiZj)} where i 6= j; for a quadratic model, this matrix contains

E{ZiZj/(ZiZjZk)} where no pair of i, j, k is equal. Rewriting G = FZ where Z
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is the extra independent variable, we have

E {H(F,G)} ≈ E{F 2}E{Z2}E{F}
E{F}3E{Z}3

− E{F 2}E{Z}
E{F}2E{Z}2

+
E{F}

E{F}E{Z}

=
E{F 2}E{F}

(
E{Z2} − E{Z}2

)
E{F}3E{Z}3

+
1

E{Z}

=
E{F 2}V ar(Z)

E{F}2E{Z}3
+

1

E{Z}
.

Example: Approximation of E{Zi/(ZiZj)} for i, j = 1, 2, i 6= j. Zi is

a binomial random variable with mean nwi(1 − P (x∗i )) and variance nwi(1 −
P (x∗i ))P (x∗i ), let F = Zi and G = ZiZj = FZj . Using the above expression

where the extra variable is Zj in this example, we have

E

(
Zi
ZiZj

)
≈ 1

E{Zj}
+

E{Z2
i }V ar(Zj)

(E{Zi})2(E{Zj})3

= 1
nwj(1−P (x∗j )) +

(nwi(1−P (x∗i ))P (x∗i )+(nwi(1−P (x∗i )))2)nwj(1−P (x∗j ))P (x∗j )

(nwi(1−P (x∗i )))2(nwj(1−P (x∗j )))3

= 1
nwj(1−P (x∗j )) +

P (x∗i )P (x∗j )

nwi(1−P (x∗i ))(nwj(1−P (x∗j )))2
+

P (x∗j )

(nwj(1−P (x∗j )))2

A.3 Proof of part (a) of Theorem 3. We substitute w1 = 1 − w2 into the

respective objective function and take the partial derivative with respect to w2.

For the D-objective function, we obtain

∂
∂w2

(
E
(

Z1
Z1Z2

)
E
(

Z2
Z1Z2

))
=
(

∂
∂w2

E
(

Z1
Z1Z2

))
E
(

Z2
Z1Z2

)
+ E

(
Z1
Z1Z2

)(
∂
∂w2

E
(

Z2
Z1Z2

))
≈

(2w2−1)(n′4w2
4−2n′4w2

3−6P 2n′2w2
2−2Pn′3w2

2+n′4w2
2+6P 2n′2w2+2Pn′3w2+3P 4+3P 3n′)

n′6(−1+w2)4w2
4

and the optimal weight w2 = 1/2 as ∂
∂w2

(
E
(

Z1
Z1Z2

)
E
(

Z2
Z1Z2

))
= 0. On the
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other hand, the derivative of the c-objective function with respect to w2 is

∂

∂w2
E

(
Z1

Z1Z2

)
+

∂

∂w2
E

(
Z2

Z1Z2

)

≈ −
(2w2 − 1)

(
2Pn′w2

2 − n′2w2
2 − 2Pn′w2 + n′2w2 + 2P 2 + 2Pn′

)
n′3w2

3 (−1 + w2)3 ,

which yields that the optimal weight is w2 = 1/2 for this criterion as well.

Hence, we have shown that the optimal weight for the experiment with MCAR

mechanism is the same as the optimal weight for complete observations.

From (3.6), for both optimality criteria, the expressions above do not depend

on the support points. Hence the objective functions in (3.7) and (3.8), respec-

tively, are minimised with respect to x∗1 and x∗2 when the factor 1/(x∗1 − x∗2)2 is

minimised. This is achieved by setting x∗1 = l and x∗2 = u.

Taking partial derivatives in (3.9) with respect to x∗1 and x∗2, respectively,

shows that regardless of the values of the expression in (3.6) the derivative with

respect to x∗1 is non-negative if l ≥ 0 or u ≤ 0. Hence the A-objective function

is minimised when x∗1 = l. Similarly, the derivative with respect to x∗2 is non

positive if l ≥ 0 or u ≤ 0. Hence the A-objective function is minimised when

x∗2 = u. �

A.4 The covariance matrix of model Yi = β0 +β1xi +β2vi +N(0, σ2) from

the Alzheimer’s example

[M(ξ,R)]−1 =
1

|M(ξ,R)|

 Z2Z3+Z2Z4+Z4Z3 −(Z2+Z4)Z3 −(Z3+Z4)Z2

−(Z2+Z4)Z3 (Z2+Z4)(Z1+Z3) −Z4Z1−Z2Z3

−(Z3+Z4)Z2 −Z4Z1−Z2Z3 (Z3+Z4)(Z1+Z2)


where |M(ξ,R)| = Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4. After some simplifi-

cation, the trace is found to be

Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4

Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4

where Zk =
∑

i∈Gk
(1 − Ri) is the sum of the response indicators in Group

Gk, k = 1, . . . , 4. Using Taylor second order linearisation where

E

(
F

G

)
≈ E{G2}E{F}

(E{G})3
− E{FG}

(E{G})2
+
E{F}
E{G}

,
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the A-objective function can now be found by taking the expectation with re-

spect to the binomial random variables where E(Zk) = nwk(1 − P (x∗k)) and

E(Z2
k) = nwk(1 − P (x∗k))P (x∗k) + (E(Zk))

2 for k = 1, 2, 3, 4. The expressions F

and G are given by F = Z1Z2 + Z1Z3 + 2Z1Z4 + 3Z2Z3 + 2Z2Z4 + 2Z3Z4 and

G = Z1Z2Z3 + Z1Z2Z4 + Z1Z3Z4 + Z2Z3Z4.
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