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Abstract 42 

Background: Environmental enteropathy (EE) is associated with stunting, impairment of 43 

responses to oral vaccines and other adverse health consequences in young children throughout 44 

the developing world. EE is characterised by chronic low-grade intestinal inflammation and 45 

disrupted epithelial-barrier integrity, partly resulting from dysregulation of tight junction 46 

proteins; observed in other enteropathies such as coeliac disease. During EE, this dysregulation 47 

of tight junction expression amplifies translocation of pathogenic bacteria across the intestinal 48 

mucosa.  49 

Aims: Determine if enteropathogen-mediated epithelial-barrier failure can be ameliorated using 50 

contra-pathogenicity therapies.   51 

Methods: Intestinal epithelial-barrier damage was assessed in Caco-2 cells incubated with three 52 

important enteropathogens identified in EE patients: Enteropathogenic Escherichia coli (EPEC), 53 

Citrobacter rodentium (C. rodentium) and Cryptosporidium parvum (C. parvum). Potential 54 

therapeutic molecules were tested to detect effects on transepithelial resistance (TER), bacterial 55 

translocation (BT), claudin-4 expression and regulation of the inflammatory cytokine response.  56 

Results: All three enteropathogens compared to uninfected cells, reduced TER (EPEC; p<0.0001, 57 

C. rodentium; p<0.0001, C. parvum; p<0.0007), reduced claudin-4 expression, and permitted BT 58 

(EPEC; p<0.0001, C. rodentium; p<0.0001, C. parvum; p<0.0003) through the monolayer. Zinc, 59 

colostrum, epidermal growth factor, trefoil factor 3, resistin-like molecule-β, hydrocortisone and 60 

the myosin-light chain kinase (MLCK) inhibitor ML7 (Hexahydro-1-[(5-iodo-1-61 

naphthalenyl)sulfonyl]-1H-1,4-diazepine hydrochloride); ML7) improved TER (up to 70%) and 62 

decreased BT (as much as 96%). Only Zinc demonstrated modest antimicrobial activity.  63 

Conclusion: The enteropathogens impaired intestinal-epithelial barrier-integrity with 64 

dysregulation of claudin-4 and increased bacterial translocation. Enteropathogen-mediated 65 
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damage was reduced using contra-pathogenicity agents which mitigated the effects of pathogens 66 

without direct antimicrobial activity.  67 

 68 

Keywords: Intestinal-barrier, claudin-4, microbial translocation, Enteropathogenic Escherichia 69 

coli, Citrobacter rodentium, Cryptosporidium parvum. 70 
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Introduction 72 

Many disorders of the small intestine are characterised by increased permeability and impaired 73 

barrier function[1]. Environmental enteropathy (EE) is emerging as an example of a small intestinal 74 

disorder induced by frequent, often co-existent, sub-clinical intestinal infections [2,3,4], with or 75 

without nutrient deficiencies. It is associated with stunting and poor growth in young children 76 

throughout the developing world[5], with severe impaired responses to oral vaccines [6], and with 77 

reduced net absorption of micronutrients[7] and some drugs [8]. EE is characterised by chronic 78 

low-grade intestinal inflammation [9] such as lymphocytic infiltration of the lamina propria and 79 

increased intraepithelial lymphocytes, increased translocation of bacteria across the intestinal 80 

mucosa[10], reduced epithelial surface area, and immaturity of the absorptive cells of the 81 

intestine. There is also dysregulation of tight junctions (TJ) located at the apical margins of the 82 

lateral membranes of intestinal epithelial cells, which seal the intercellular space and define the 83 

boundary of the host versus the environment in the intestinal lumen [11]. As this dysregulation 84 

appears, at least partly, to explain microbial translocation [10,11], characterisation of its 85 

mechanisms is critical for improving health of children in low- and middle-income countries 86 

(LMICs) [12] . It may also assist in understanding critical care sepsis, autoimmune and neurological 87 

disorders of the gut. 88 

 89 

Recent major studies, building on decades of observational microbiology, have defined many of 90 

the most important enteropathogens responsible for diarrhoea in children in LMICs [13,14]. Our 91 

understanding of the contribution of enteropathogens to EE is less advanced, but emerging 92 

evidence links the severity of enteropathy (and growth failure) to frequent sub-clinical infections 93 

with parasites, viruses and bacteria [2,15,16]. Those enteropathogens which are invasive or cause 94 

intestinal epithelial disruption have been associated with more severe inflammation and growth 95 
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impairment[17]. The mechanism through which enteropathogens induce enteropathy is unknown, 96 

but in view of the intense microbial translocation found in children and adults with EE, it seems 97 

that impairment of epithelial barrier function [1] is central to pathophysiology. Whether this 98 

impairment is due to impairment of TJ, or to larger defects at sites of epithelial cell shedding, is 99 

unclear. What is known is that shedding of individual intestinal epithelial cells does not lead to 100 

impairment of epithelial barrier function [18], but simultaneous loss of multiple cells does impair 101 

it and may lead to intestinal inflammation.  102 

 103 

In previous work, our group studied adults with EE in Lusaka, Zambia using several methods 104 

including histology and confocal laser endomicroscopy (CLE). We demonstrated that there was 105 

marked epithelial barrier disruption in these EE patients with corresponding epithelial leakage 106 

images visible by CLE [10]. We suggested the epithelial defects were probably sites of bacterial 107 

translocation, and then hypothesised that it might be possible to ameliorate enteropathogen-108 

mediated damage using therapies targeting the epithelium. Here we describe a series of 109 

experiments to test novel therapeutic approaches for reduction of translocation in EE. These 110 

agents were selected from transcriptomic work (Kelly, unpublished observations) and extensive 111 

literature searches looking at their potential to function as either TJ modifiers or selective 112 

enhancers of epithelial barrier function (full explanations are listed in Supplementary Table 1).  113 

 114 

We used an in vitro modelling system with polarised Caco-2 cells and three different 115 

enteropathogens: 1) Enteropathogenic Escherichia coli (EPEC), part of a group of related 116 

pathogens which are an important cause of infant diarrhoea [19] and known to disrupt cell-cell 117 

junctions [20,21]; 2) Citrobacter rodentium (C. rodentium), a natural murine intestinal pathogen 118 

which has also been identified in EE cases of adults (human) in Zambia [22],and Cryptosporidium 119 
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parvum (C. parvum), associated with adverse outcomes in children with malnutrition [14,23]. C. 120 

rodentium possesses a locus of enterocyte effacement (LEE) pathogenicity island that shares all 121 

41 open reading frames with that of EPEC [24]. Therefore, EPEC and C. rodentium share a core set 122 

of virulence factors utilising intimate bacterial attachment to the host cells through attaching and 123 

effacing (A/E) lesions [25,26]. C. parvum infects the intestinal epithelium producing a 124 

parasitophorous vacuole in which the parasite resides in an intracellular yet extra-cytoplasmic 125 

manner [23]. Cryptosporidial enteropathy has recently also been shown to occur in an animal 126 

model [27]. 127 

 128 

Materials and Methods 129 

 130 

Cell culture 131 

The human Caco-2 enterocyte cell line (passage 6-40) was obtained from the American Type 132 

Culture Collection (ATCC: HTB-37; Middlesex, UK) and grown as monolayers (VWR, Leicestershire, 133 

UK) at 37oC in humidified 5% CO2 in complete medium consisting of Dulbecco’s Modified Essential 134 

Medium supplemented with 10% heat-inactivated fetal calf serum (FCS), 4 mM L-glutamine, 135 

100U/ml penicillin, 100g/ml streptomycin and 1% non-essential amino acids (Invitrogen Life 136 

Technologies, Paisley, UK). For membrane integrity and translocation investigations, trypsinised 137 

cells were seeded at a density of 1x 106/ml into 12 well plates holding polyethylene terephthalate 138 

(3.0μm) cell culture inserts (Transwell inserts, Millipore, Hertfordshire, UK), for 139 

immunofluorescence experiments at 5x 105/ml into 24-well culture plates (VWR International, 140 

Leicestershire, UK) with 13mm glass coverslips, or at 2 x 106/ml into 6 well plates for Western 141 

blot experiments. Cells were grown until polarization (15-21 days) for translocation studies or 142 

until 75% confluent for staining experiments (4-5 days; limiting cell damage during staining 143 
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procedure) before experiments were conducted. In some experiments, FCS was withheld from 144 

the medium to model nutrient depletion in malnutrition. Formation and disruption of polarised 145 

monolayers (membrane integrity) was determined by regular measurement of transepithelial 146 

electrical resistance (TER) (Millicell-ERS; Millipore, Livingston, UK). Caco2 cell monolayers were 147 

considered polarised when TER readings reached 800-1000 ohms/cm2 [28] correlating with the up-148 

regulated expression of the brush border enzyme sucrase isomaltase (data not shown). Migration 149 

of Caco2 cells through the filters was not observed in basolateral media. 150 

 151 

Bacterial strains and Parasite  152 

EPEC strain RDEC-1 serotype O15:H7 (ATCC 49106; rabbit) and C. rodentium strain DBS100, 153 

Biotype 4280 (ATCC 51459) were used. A non-pathogenic Escherichia coli K12 (E. coli K12) isolate 154 

was a generous gift from Dr David Wareham (Blizard Institute, Barts and The London School of 155 

Medicine, UK). Fresh colonies were stored on Luria-Bertani (LB) agar at 4°C and grown up in LB 156 

broth (LB agar and broth; Fisher Scientific, Leicestershire, UK) at 37°C overnight for each 157 

experiment. For immunofluorescence experiments, bacteria were incubated with rhodamine B 158 

isothiocyanate (Sigma-Aldrich, Dorset, UK) at 1mg/ml for 2h in the dark with gentle shaking, then 159 

washed. Oocysts of the C. parvum IOWA isolate (Bunch Grass Farm, Deary, ID, USA) were stored 160 

in phosphate buffered saline (PBS) at pH7.2 at 4oC. Prior to use oocysts were surface sterilized in 161 

10% (v/v) sodium hypochlorite (VWR, Leicestershire, UK) and centrifuged at 500xg for 10 min.  162 

 163 

In vitro bacterial and parasite infections 164 

Before infection commenced, monolayers were washed with PBS. Pathogens at 1x106 colony 165 

forming units (CFUs)/well (for 12 well plates) were then added to the brush border face of the 166 

monolayer in 1ml complete medium. C. parvum infection was initiated using 1x106 oocysts in 167 
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250l complete medium with 1x106 CFU/ml/well of non-pathogenic E. coli K12. After 2h at 37oC, 168 

cells were washed to remove oocyst debris and 1ml complete medium with 1x106 CFU/ml/well 169 

of E. coli K12 introduced. Both bacterial and parasite infections developed for 24h without 170 

antibiotics at any stage. For studies using 6- and 24-well plates the numbers of bacteria, parasites 171 

and volumes of medium were scaled up or down accordingly.  172 

 173 

Quantification of transepithelial resistance (TER) and bacterial translocation 174 

Electrical resistance across the stratified epithelium was measured using a Millicell-ERS-2 175 

instrument (Millipore, Bedford, Mass) with tweezer-like electrodes. Before measurement, the 176 

electrodes were equilibrated and sterilized according to the manufacturer’s recommendations. 177 

The value obtained from a blank insert (with culture medium) was subtracted to give the net 178 

sample resistance, which was then multiplied by the membrane area to give the resistance in 179 

area-corrected units (Ω/cm2). TER was measured before and after 24h infections. To observe 180 

bacterial translocation (BT), the medium from the basolateral compartment of the Transwell 181 

insert after infection was cultured for colony quantification. The apicomplexan parasite, C. 182 

parvum, was co-cultured with the non-invasive bacteria Escherichia coli K12 (K12) in the in vitro 183 

model, Therefore, K12 was used as a marker of BT during C. parvum infection. Whereas, for EPEC 184 

and C. rodentium experiments, each bacterium was used as the BT marker 185 

 186 

Fixation of cell monolayers and Immunofluorescence (IF) 187 

Confluent monolayers were fixed for 20min in 4% paraformaldehyde (Room temperature; RT), 188 

washed in PBS, then heated at 95°C for 10min with antigen retrieval buffer (10mM Tris Base, 189 

1mM EDTA, 0.05% Tween, pH 9.5) and washed again in PBS. C. parvum infected cells were 190 

permeabilized with 0.2% Triton X-100 at RT for 3 min then washed in PBS. Cells were blocked 191 
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with 20% goat serum (Abcam, Cambridge, UK) for 30min, incubated with 1:100 rabbit polyclonal 192 

anti-claudin 4 (antibodies from Abcam, Cambridge, UK) in 20% goat serum for 2h at RT, then 193 

washed in PBS and incubated with conjugated secondary antibody (anti-rabbit IgG H & L -194 

AlexaFluor) for 1h at RT. Cells were mounted in Vectorshield including DAPI (Vector Laboratories, 195 

Peterborough, UK). For C. parvum staining, 1μg/ml-1 VVL (lectin of Vicia villosa, Vector 196 

laboratories, Peterborough, UK) in PBS with 1% Bovine serum albumin (BSA) was added to cells 197 

for 1h at RT, washed and incubated with 1μg/ml conjugated streptavidin CY3. After 10min, cells 198 

were mounted with vectorshield and DAPI. A Leica DM5000 upright epifluorescence microscope 199 

was used for images at 400x magnification. A Zeiss LSM710 point scanning confocal microscopy 200 

was used for representative confocal images at 400x magnification. 201 

 202 

Lactate Dehydrogenase (LDH) Assay 203 

To evaluate the extent of intestinal epithelial cell damage after enteropathogen infection, the 204 

LDH assay (Promega, Southampton, UK) was performed on culture medium from cell monolayers 205 

± infection (24h), and analysed according to the manufacturer’s instructions.  206 

 207 

Pharmacological therapies 208 

The potential therapeutic agents optimised and tested are listed in Table 1, and the rationale for 209 

their selection is tabulated in Supplementary Table 1.  210 

 211 

Antimicrobial Assay 212 

To establish the antimicrobial activity of each molecule on the bacteria, EPEC, C. rodentium and 213 

E. coli K12 was grown overnight in LB broth, washed and 1x106 CFU/ml incubated with a molecule 214 

at optimal testing concentrations for 24h at 37°C.  E. coli K12 was co-incubated with C. parvum. 215 
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After the incubation period, the samples were cultured on LB agar and bacterial colonies 216 

enumerated.  217 

 218 

Western blotting 219 

Proteins for western blotting were extracted using lysis buffer (Cell RIPA lysis plus protease 220 

inhibitor cocktail, Sigma-Aldrich, Dorset, UK) and sonicated (100W, 10s; Microson, New York, 221 

USA), then centrifuged (13000xg, 10min, 4°C). Total protein (20μg) was boiled at 95-100°C for 5 222 

min, cooled on ice before electrophoresis on 12% SDS-Tris-Glycine gels and then transferred to a 223 

Polyvinylidene fluoride (PVDF) membrane (Amersham Biosciences, Bucks, UK). After overnight 224 

rabbit polyclonal claudin-4 Ab (1:1000) incubation (4°C), the membrane was washed repeatedly 225 

in tris-buffer saline (TBS) and then incubated for 1h with horseradish peroxidase (HRP; 1:10; 226 

Supersignal West Pico rabbit kit (Pierce Fast; Thermo Scientific, Loughborough). Recombinant 227 

human claudin-4 was used as a positive control. To confirm equal protein loading, the membrane 228 

was stripped and Re-Blot plus strong solution (Millipore, Livingston, UK) was added for 20min. 229 

After washes in TBS, the membrane was incubated at 4°C with anti-human GAPDH (1:5000 230 

dilution, Sigma-Aldrich, Dorset, UK) for 1hr and re-developed.  231 

 232 

Cytokine and Chemokine expression assay (Takeda) 233 

Cell supernatants were assessed for cytokine and chemokine expression using the V-PLEX pro-234 

inflammatory panel 1 human assay (Meso Scale Discovery MD, USA). The assay was performed 235 

according to the manufacturer’s instruction.  236 

 237 

Data analysis  238 

TER is presented without transformation whilst bacterial translocation is presented as log colony-239 
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forming units/ml. TER % change was calculated by using the mean decrease due to each 240 

enteropathogen. The Wilcoxon signed-rank test was used to test the effect of the intervention 241 

on paired data from each experiment conducted on adjacent wells, with or without the therapy. 242 

One-way ANOVA with Kruskal-Wallis/Tukey’s post hoc was used for antimicrobial activity, LDH, 243 

bacterial invasion and adherence experiments and cytokine analysis where appropriate. 244 

Statistical significance was established at p<0.05. 245 

 246 

  247 
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Results 248 

 249 

Selected pathogens induce barrier dysfunction in Caco2 cell  250 

In preliminary experiments, an appropriate TER (Ω/cm2) was selected for Caco2 cells to confirm 251 

polarity, which correlated with the expression of the bush border enzyme sucrase isomaltase 252 

(data not shown). All three enteropathogens reduced TER irrespective of nutrient rich or nutrient 253 

deplete conditions (Figure 1A). Both bacterial pathogens elicited a greater decline in TER than C. 254 

parvum whilst non-pathogenic E. coli K12 alone did not modify the TER readings.  EPEC and C. 255 

rodentium added to the apical sides of the intestinal monolayer were isolated and cultured from 256 

the basal Transwell chamber signifying bacterial translocation (BT) had occurred across the 257 

epithelium (Figure 1B). Consistent with observations of TER, there was no BT during incubation 258 

of E. coli K12 alone in the in vitro model, but this was induced by co-culture with C. parvum. 259 

 260 

To confirm that human Caco2 cells were infected by C. rodentium (murine; DBS100), EPEC (rabbit; 261 

RDEC-1) and C. parvum + E. coli K12 (human; K12), adherence and invasion (gentamicin) assays 262 

were performed (Supplementary Figure 1A and B). Previous studies have reported that both 263 

animal and human EPEC strains are clonally related [29], and regardless of the isolate’s original 264 

host, colonisation is similar and so not host dependent [30]. This study has confirmed those key 265 

observations by demonstrating the ability of EPEC (RDEC-1) to attach to the human intestinal 266 

epithelial cells from 30min onwards (P<0.05; Supplementary Figure 1A) and were isolated from 267 

inside Caco2 cells after 60min (P<0.05; Supplementary Figure 1B). The murine pathogen C. 268 

rodentium, also infected Caco2 cells but took longer to attach (60min) and were isolated from 269 

within the cell monolayer at 120min. E. coli K12 when co-cultured with C. parvum, attached and 270 

were isolated from within Caco2 cells over a similar timescale to C. rodentium but in much lower 271 
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numbers. The results confirmed the pathogenicity of the three enteropathogens in Caco2 cells 272 

and indicated that C. parvum may induce paracellular translocation of E. coli K12 whilst EPEC and 273 

C. rodentium appeared to demonstrate partial transcellular movement. 274 

 275 

Barrier dysfunction was associated with reduced claudin-4 276 

Our group has previously shown dysregulation of claudin-4 in biopsies from adults and children 277 

with EE [10,31]. To establish if enteropathogen-induced barrier disruption was also accompanied 278 

by impairment of claudin-4 expression, immunofluorescence and Western blotting of the protein 279 

was performed. In monolayers infected with either of the three enteropathogens, the expression 280 

of claudin-4 (green) was reduced (Figure 2A and B), and this was confirmed by Western blotting 281 

(Figure 2C) and densitometry (Figure 2D). Interestingly, unlike EPEC and C. parvum infections, at 282 

the site of C. rodentium infection the claudin-4 protein appeared to aggregate around the 283 

bacterium, with reduced expression over the remaining cells in the monolayer (Figure 2A). 284 

Although, the LDH assay showed a small increase in Caco2 cell lysis after enteropathogen-285 

infection this was not statistically significant compared to non-infected controls and therefore is 286 

unlikely to explain the loss of claudin-4 expression (Figure 2D). Consistent with TER findings 287 

(Figure 1A), the results show bacterial infections elicited greater reductions of claudin-4 than C. 288 

parvum infection.  289 

 290 

Partial reversal of pathogen-induced barrier dysfunction using contra-pathogenicity agents 291 

Several molecules were screened for their ability to limit the enteropathogen-induced damage 292 

caused to the epithelial barrier integrity (Table 1 and Supplementary table 1). Seven of these 293 

agents: zinc, colostrum, human epidermal growth factor (hEGF), trefoil factor-3 (TFF3), resistin-294 

like molecule-beta (RELM-), hydrocortisone and the myosin-like chain kinase (MLCK) inhibitor 295 
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ML7 (Hexahydro-1-[(5-iodo-1-naphthalenyl)sulfonyl]-1H-1,4-diazepine-hydrochloride); ML7),  296 

impeded the pathogen-induced decrease in TER (Figure 3A) and they also reduced BT (Figure 3B), 297 

suggesting a relationship between these two processes. Vitamin A and leptin had minimal effect 298 

on pathogen-induced damage. Interestingly, to determine the dependence of the molecules on 299 

nutrients, Caco2 cells were starved of fetal calf serum (FCS) which crudely mimics clinical 300 

malnutrition. Nutrient-rich conditions improved TER readings in cells treated with, TFF3, 301 

hydrocortisone, hEGF, zinc and ML7. Colostrum, ML7 (in C. parvum only) and Relm-β, had a 302 

greater effect in nutrient-deplete conditions. To determine whether the nine molecules acted on 303 

the enteropathogens in an antimicrobial manner we incubated these molecules directly with the 304 

pathogens, and no antimicrobial activity was observed except with zinc (Figure 4). Tissue inhibitor 305 

of metalloproteinases (TIMP) 1 and 2 were tested along with low minimum inhibitory 306 

concentrations (MICs) of tetracycline and doxycycline (known to also function as 307 

metalloproteinase inhibitors). However, data are not included due to the strong antimicrobial 308 

activity observed with these widely used antibiotics. 309 

 310 

Two of the most effective contra-pathogenic agents TFF3 and ML7, were further evaluated by 311 

investigating their effect on expression of claudin-4. Both molecules ameliorated the pathogen-312 

induced reduction of claudin-4 protein expression (Figure 5A and C). The Western blot results 313 

were confirmed by densitometry (Figure 5B and D), correlating with observations that both 314 

molecules decreased LDH release from cells induced by enteropathogens infections (Figure 5E). 315 

Although the LDH readings after infection from either of the three enteropathogens was already 316 

low (Figure 2E and Figure 5E), ML7 appeared to block LDH release completely from the three 317 

enteropathogen-infected Caco2 cells (p<0.0001). However, TFF3 appeared slightly more effective 318 

in reducing LDH levels in EPEC-infected cells (p<0.0001) compared to C. rodentium (P<0.007) and 319 
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C. parvum (p<0.007) – infected monolayers.  320 

 321 

A dose-response relationship was apparent for TFF3 (Figure 6), which was also dependent on 322 

nutrient availability. TFF3 increased TER and reduced BT in both nutrient-rich and nutrient-323 

depleted conditions for both EPEC (Figure 6A and B,) and C. rodentium (Figure 6C and D). The 324 

concentration-dependence of TFF3 was clearer in C. rodentium infection, and translocation was 325 

reduced further in the presence of FCS (Fig 6A and C) than in its absence (Fig 6B and D). These 326 

dose-response experiments also demonstrated the marked inverse correlation between TER and 327 

BT (EPEC:  = -0.80, P<0.0001; C. rodentium:  = -0.66, P<0.0001). 328 

 329 

TFF3 and Relm-β increase immune-regulation in enterocytes 330 

The disruption of intestinal barrier function and the alteration of the TJ protein claudin-4 331 

following infection, led us to additionally examine the effect of two goblet cell released contra-332 

pathogenic molecules, TFF3 and Relm-β, in regulating the inflammatory response. The effects of 333 

TTF3 or Relm-β on cytokine release by enteropathogens in polarised Caco2 cells over 24h was 334 

determined by measuring cytokines in supernatants by ELISA. TFF3 and Relm-β modestly 335 

increased the induction of interleukin 10 (IL-10) and tumour necrosis factor alpha (TNF-α) by EPEC 336 

(Figure 7). Relm-β also increased induction of IL-2 and IL-6 by all three pathogens and induced 337 

these two cytokines in the absence of pathogens.  338 

 339 

Discussion 340 

 341 

Several investigators have shown that EPEC [32], C. rodentium [33] and C. parvum [34] infections of 342 

intestinal epithelial monolayers alter barrier function. Using a similar in vitro model, we have tried 343 
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to model the epithelial barrier dysfunction in environmental enteropathy (EE) utilising these 344 

important enteropathogens. We have demonstrated that all three pathogens reduced intestinal 345 

epithelial integrity by decreasing TER associated with downregulation of claudin-4. This barrier 346 

defect could be prevented by agents that mitigated pathogenic effects including the reduction of 347 

bacterial translocation. We refer to this mechanism as a contra-pathogenicity effect as it occurs 348 

without demonstrable antimicrobial activity (except for zinc) and therefore appears to alter the 349 

balance between host and pathogen. There was a clear inverse correlation between membrane 350 

integrity (TER) and BT although details of the mechanism(s) involved require further work. The 351 

contra-pathogenicity effect seems to entail protection against cytopathic effects and tight junction 352 

disruption and reduced ionic conductance. 353 

 354 

The rabbit EPEC strain, RDEC-1, has extensively been used over the years to study the human EPEC 355 

infection because it contains a homolog of the human EPEC 35kb LEE locus (locus of enterocyte 356 

effacement), which encodes all necessary determinants for the (A/E) phenotype[35]. Previous 357 

studies have shown human and rabbit EPEC strains cause A/E lesions in infant pigs indicating EPEC 358 

colonisation is not host-dependent[30] and supports our data.  Sharing a genetically similar LEE 359 

pathogenicity island is the pathogen C. rodentium; the causative agent of transmissible murine 360 

colonic hyperplasia, a naturally occurring disease in laboratory mice [36]. The protozoan parasite C. 361 

parvum causes cryptosporidiosis[37] and has been listed as one of the four major enteric pathogens 362 

causing life-threatening diarrhoea in infants globally[3,13]. Importantly, for our investigation all three 363 

enteropathogens have been isolated in EE patients (both adults and children) in Zambia [22,23,24] and 364 

when used in our in vitro model have been shown to infect Caco2 cells (See supplementary Figure 365 

1).   366 

 367 
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Previous in vitro studies have observed that EPEC-induced barrier dysfunction is attributed in part 368 

to the secretion of the effector protein, EspF [38] within the first 24hr of infection and not at later 369 

time-points[21]. The mechanism by which EspF expression disrupts the TJ barrier has been correlated 370 

with the redistribution of occludin[38]. Our study now demonstrates the TJ protein, claudin-4, is also 371 

affected within the first 24hr of EPEC infection. Other effector molecules such as EspG1 and EspG2 372 

(involved in microtubule destruction) cause TJ perturbation but claudin-4 localisation has not been 373 

shown to be affected[39]. Unsurprising, C. rodentium also increased intestinal epithelial permeability 374 

in our in vitro model which correlated with claudin-4 disruption. It has been previously reported 375 

that claudin-4 expression was downregulated during C. rodentium infection of the murine cell line 376 

CMT-93, due to the Rho-Rho kinase (ROCK) signalling pathway[33] . However, this mechanism has 377 

not been determined in our model. In agreement with our investigation, the third enteropathogen 378 

tested, C. parvum has been shown to decrease protein levels of claudin-4 in Caco2 cells, mouse 379 

enteroid-derived monolayers and the ileal and jejunal mucosa of mice post- 24hr infection[37]. 380 

Kumar et al., (2018) observed that in Caco2 cells the parasite had no effect on mRNA levels of 381 

claudin-4, whereas both mRNA and protein levels were decreased in vivo (murine and enteroids) 382 

models.  This suggested posttranslational mechanisms, play a role in C. parvum-induced modulation 383 

of claudin-4. Cell death would also reduce claudin-4 expression and increase bacterial translocation 384 

although our lactate dehydrogenase assay findings (Figure 2E) demonstrated this was not a 385 

significant factor. 386 

 387 

Two of the agents we selected for testing (Figure 3) are micronutrients (Vitamin A and Zinc) which 388 

are well known to have protective or therapeutic effects in reducing diarrhoea incidence or 389 

severity[40,41]. ML7 is a small molecule inhibitor of Myosin Light Chain Kinase (MLCK) which has been 390 

implicated in TJ remodelling[42]. Leptin is a hormone postulated to have effects in intestinal 391 
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resistance to infection[43]. Whilst, the remaining five are paracrine mediators of mucosal healing, or 392 

nutrient solutions such as colostrum which are likely to contain them. Vitamin A and leptin had very 393 

little effect at the concentrations and in the preparations used. Among the other active agents, 394 

there was considerable variation in nutrient dependence: hydrocortisone seems to have greater 395 

efficacy under nutrient-deplete conditions, whereas colostrum, hEGF and TFF3 seem to be more 396 

effective in nutrient replete states. Zinc deficiency is known to result in epithelial barrier leak in the 397 

intestines and alter TJ composition[44]. We found zinc improved TER readings and decreased BT. Its 398 

effect on translocation was proportionately greater in C. parvum infection than in bacterial 399 

infections (EPEC and C. rodentium). Interestingly, this effect was nutrient-independent. These 400 

findings are in line with previous studies which showed zinc had a protective effect in pigs suffering 401 

from enterotoxigenic Escherichia coli (ETEC) infections as zinc supplementation prevented or 402 

alleviated diarrhoea in this model [45].  403 

 404 

It appeared that the contra-pathogenicity agents tested varied in effect and this is likely to reflect 405 

variation in cellular receptors or targets. Retinoids act through nuclear receptors. Whilst, Relm-β is 406 

exclusively found in goblet cells of the intestines and may play a role during colonisation and 407 

infection of the gastrointestinal tract[46]. It plays a role in the production of Th2 cytokines during 408 

nematode infections in mice and is essential in helminth expulsion[47]. Relm-β also has been shown 409 

to be induced during C. rodentium infection, in which it is involved in recruiting CD4+ T-cells[48]. TFF3 410 

is also a goblet cell product with well-established protective effects on the small intestinal 411 

mucosa[49] working at the cell membrane. ML7 acts on the adenosine triphosphate- binding site of 412 

the active centre of MLCK causing inhibition[42] and therefore will perform throughout the cell. The 413 

agents which had the greatest effect on translocation, such as TFF3 and ML7, also reduced the 414 

effect of pathogens on claudin-4 expression (Figure 5). With TFF3 demonstrating its action in a dose-415 



20 
 

dependent manner (Figure 6). 416 

 417 

Despite the absence of lymphoid cells in this model we were still able to detect low levels of 418 

cytokine and chemokine secretion, except for IL-8 which was in the range reported by Sansonetti 419 

et al., (1999). The significance of these immunological results is unclear at present. It is possible that 420 

the enteropathogens disrupt claudin-4 distribution and inhibit its restoration and so the contra-421 

pathogenicity molecules may act by modulating the inflammatory response preventing complete 422 

claudin-4 obliteration. Further investigations are needed to understand the cytokine results and to 423 

establish if these therapies involve dual actions, working on both the pathogen and by controlling 424 

the release of the inflammatory mediators which if in excess could be detrimental to host health.  425 

 426 

Given the emergence of antimicrobial resistance as a global phenomenon, development of 427 

strategies to reduce the impact of pathogens on the host intestinal mucosa could be helpful. Some 428 

of the agents we studied are in clinical use, could be easily applied to clinical studies or inserted 429 

into clinical trials. 430 

 431 

  432 
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 618 

Pharmacological therapies. 619 

Therapy Concentration(s) tested Incubation Time Reference 

Colostrum 160mg/ml  

 

 

 

Added to Caco2 cells at  

same time as infection 

51 

Human epidermal growth factor (EGF) 100 & 200 ng/ml 52,53 

Hydrocortisone 20,30 & 50μg/ml 54 

Resistin-like molecule β (RELMβ) 100nM 58 

preliminary  

unpublished data 

Trefoil Factor 3 (TFF3) 10ng/well 59 

Colostrum + hEGF 

+TFF3 

Colostrum – 160mg/ml 

hEGF – 200ng/ml 

TFF3 – 10ng 

51,54,55 

Vitamin A (Retinoic acid) 1, 10 & 100 μmol 60 

Leptin 10μM Pre-treated Caco2 cells  

30mins prior infection 

55,56 

Myosin-light chain kinase (MLCK) 

inhibitor ML-7 

50μM Pre-treated Caco2 cells 2h 

prior infection 

32, 57 

Zinc 50 & 100μM Pre-treated Caco2 cells 

24h  or 7days prior 

infection 

61,62 

Table 1: Therapeutic molecules tested including concentrations used and incubation conditions. 620 
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Figure Legends 621 

Figure 1: Selected enteropathogens modulate barrier integrity leading to bacterial 622 

translocation in vitro.  Polarised Caco2 cells grown on Transwell inserts were infected with 623 

Enteropathogenic Escherichia coli (EPEC), Citrobacter rodentium (C. rodentium), Cryptosporidium 624 

parvum (C. parvum) or Escherichia coli K12 for 24h, with or without fetal calf serum (FCS) to model 625 

nutrient-rich or nutrient-deplete conditions respectively. During the C. parvum incubations, 626 

addition of Escherichia coli K12 (K12) was used as a marker of passive translocation. (A) Trans-627 

epithelial resistance (TER) was measured to establish membrane integrity; n=50. One-way 628 

ANOVA with the Kruskal-Wallis test was performed separately for each stimulus with or without 629 

(w/o) FCS. Non-infected Caco2 cells (no infection) was used as the control and compared to each 630 

pathogen dataset: ****p<0.000.1, *** p=0.0007 and ns= non-significant. (B) Basal media from 631 

beneath the monolayer of Caco2 cells (Transwell inserts) were cultured to measure bacterial 632 

translocation (CFU/ml) from the in vitro model; n=50.  One-way ANOVA with the Kruskal-Wallis 633 

test was performed separately on samples with or without (w/o) FCS. Caco2 cells with no 634 

infection were used as the control and compared to the datasets of each pathogen: *** 635 

p=0.0003, ****p<0.0001, , ns = non-significant. 636 

 637 

Figure 2: Enteropathogens dysregulate the expression of the tight junction protein, Claudin-4. 638 

(A) Enteropathogenic Escherichia coli (EPEC), Citrobacter rodentium (C. rodentium) or 639 

Cryptosporidium parvum (C. parvum) were added to non-polarised Caco2 cells grown on 640 

coverslips for 24h. Cells were then fixed, and immunofluorescence staining for claudin-4 (green) 641 

performed. Bacteria (red) were labelled with rhodamine B isothiocyanate (588nm) whilst C. 642 

parvum was identified using the lectin VVL-biotin and CY3-streptavidin (red; 565nm). Cell nuclei 643 

(blue) were stained using DAPI (405nm). Composite images are shown, and scale bars represent 644 
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100m. (B) A representative confocal image of EPEC infection in Caco2 cells; solid arrows indicate 645 

bacterial colonies and the dotted arrow highlights interruption of Claudin-4 expression. (C) 646 

Western blotting of Claudin-4 protein expression (22kDa) in cells infected for 24h. A positive 647 

control of recombinant claudin-4 (49kDa) was used with levels of GAPDH (36kDa) used to confirm 648 

equal protein loading. D) densitometry confirmed the Western blotting *p<0.005 E) LDH assay 649 

on supernatants of infected monolayers confirmed non-significant (ns) cell lysis compared to the 650 

control (non-infected Caco2 cells). n=24. 651 

 652 

Figure 3: Selected pharmacological agents impede enteropathogen-induced barrier damage 653 

and subsequent bacterial translocation. (A) Transepithelial resistance (TER) of polarised Caco2 654 

cells was measured after 24h infection with Enteropathogenic Escherichia coli (EPEC), Citrobacter 655 

rodentium (C. rodentium) and Cryptosporidium parvum (C. parvum) together with Escherichia coli 656 

K12, in the presence or absence of one of a range of potential therapeutic molecules. 24h prior 657 

to infection Caco2 cells were incubated with or without fetal calf serum (FCS) to model nutrient-658 

rich or nutrient-deplete conditions respectively. The TER results are presented as a percentage 659 

change from Caco2 cells infected with each specific enteropathogen and no molecule. The Mann-660 

Whitney U-test was performed to compare differences between nutrient deplete and nutrient 661 

replete conditions; n=6, *p<0.05, **p<0.005 (B) Bacterial isolation (CFU/ml) from the basal 662 

medium beneath Caco2 cell monolayers (Transwell inserts) was measured to demonstrate 663 

bacterial translocation. CFU results are presented as a percentage change from Caco2 cells 664 

infected with the pathogen alone and without a molecule. Differences between nutrient deplete 665 

and nutrient replete conditions were tested using the Mann-Whitney U- test.; n=6, *p<0.05, 666 

**p<0.005 667 

 668 
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Figure 4: The contra-pathogenic molecules have limited antimicrobial activity. The 669 

enteropathogens A) EPEC, B) C. rodentium and C) C. parvum + E. coli K12 were incubated with 670 

each potential therapeutic molecule for 24h and cultured, to establish direct killing effects of the 671 

molecules on the bacteria and presented as CFU/ml [Log10]. The Mann-Whitney U-test was 672 

performed to compare each dataset with each pathogen(s) incubated in medium alone (control). 673 

n= 4; *p<0.02. 674 

 675 

Figure 5:  Trefoil factor-3 (TFF3) and the MLCK inhibitor ML-7, ameliorate dysregulation of 676 

Claudin-4 expression after enteropathogen infection. (A) TFF3 and (C) ML-7 were added to 677 

polarised Caco2 cells prior to infection with Enteropathogenic Escherichia coli (EPEC), Citrobacter 678 

rodentium (C. rodentium) or Cryptosporidium parvum (C. parvum). After 24h, cells were lysed to 679 

measure protein levels of Claudin-4 (22kDa) by Western blotting, with recombinant claudin-4 680 

(49kDa) used as a positive control. Levels of GAPDH (36kDa) were also determined to confirm 681 

equal protein loading. B) TFF3 and D) ML7, represent densitometry of the Western blots *p<0.05, 682 

**P<0.005, ****P<0.0001. E) supernatants of infected monolayers co-stimulated with TFF3 or 683 

ML7 were tested for cell cytotoxicity using the LDH assay and compared with controls (infection 684 

+ no molecule) using One-way ANOVA with the Kruskal-Wallis test.  n=12; *p<0.05, **p<0.005, 685 

***p<0.005.  686 

 687 

Figure 6: TFF3 improves transepithelial resistance and reduces bacterial translocation in a dose-688 

dependent manner, demonstrating the reciprocal relationship between them. Transepithelial 689 

resistance (TER) and bacterial translocation (BT; CFU/ml) were measured in experiments with 690 

varying concentrations of TFF3 during Enteropathogenic Escherichia coli (EPEC; A and B) and 691 

Citrobacter rodentium (CR; C and D) infections for 24h. The experiments were conducted in the 692 
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presence (A and C) or absence (B and D) of fetal calf serum (FCS) to model nutrient-rich or 693 

nutrient-deplete conditions respectively. TFF3 concentrations were 0ng/ml (red), 5ng/ml (green), 694 

10ng/ml (blue) or 20ng/ml (brown). Spearman’s rank correlation coefficient demonstrates  = -695 

0.80 (P<0.0001) for EPEC and  = -0.66 (P<0.0001) for C. rodentium.  696 

 697 

Figure 7: Trefoil factor-3 (TFF3) and Relm-β increase both pro- and anti-inflammatory cytokine 698 

production. Polarised Caco2 cells were infected with: Enteropathogenic Escherichia coli (EPEC), 699 

Citrobacter rodentium (CR) and Cryptosporidium parvum (CP) and co-stimulated with TFF3 or 700 

Relm-β for 24h in nutrient (FCS) deprived conditions. The supernatant from the cells were used 701 

to measure a range of cytokines and chemokines. n=6. One-way ANOVA with Tukey’s post hoc 702 

was used for analysis. *p=0.01, **p=0.002, ***p<0.001. LLOD= Lowest level of detection.  703 

704 
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Supplementary Material 705 

Therapy Rationale Reference 

Colostrum The first milk produced after birth, rich in bioactive molecules including growth 

factors. Colostral fractions or individual peptides present in colostrum have been 

shown to be beneficial in the treatment of gastrointestinal conditions such as 

inflammatory bowel disease and so could limit enteropathogen-induced epithelial 

barrier damage. 

51 

 

Human epidermal 

growth factor 

(EGF) 

A component of human colostrum (200μg/L) and milk (30-50μg/L). EGF receptors 

are present on the basolateral membrane of enterocytes. Luminal EGF may gain 

access to the basolateral receptors in the immature neonatal gut due to increased 

permeability, or in any enteropathy characterised by increased permeability to 

macromolecules. 

52,53 

 

Hydrocortisone The glucocorticoid hydrocortisone is present in breast milk. It has anti-

inflammatory properties in both rat and human studies, has been shown to 

regulate the expression of genes involved in development of cell polarity, tight 

junction formation and interactions with extracellular matrices and so may assist 

in maintaining epithelial cell integrity after enteropathogen-induced epithelial 

barrier damage 

54 

 

Leptin Leptin is an adipose-tissue derived hormone that functions in maintaining 

homeostatic control of adipose tissue mass and so its levels fall during starvation. 

Leptin exerts pleiotropic effects on the intestinal epithelium including nutrient 

absorption, epithelial growth, inflammation and injury. It contributes to the 

defence against intestinal amoebiasis. Therefore, leptin could protect the 

intestinal epithelium against pathogens directly or indirectly. 

55,56 

 

Myosin-light chain 

kinase (MLCK) 

inhibitor ML-7 

MLCK induces contraction of the peri-junctional actomyosin ring through myosin II 

regulatory light chain phosphorylation which regulates tight junction permeability. 

EPEC infection has been shown to induce phosphorylation of the 20 kilodalton 

myosin light chain (MLC) in the intestinal epithelium, which causes changes in 

32,57 

 



35 
 

intestinal barrier function, contributing to the diarrhoea associated with the 

infection. However, Inhibition of the MLC20 phosphorylation prevented EPEC 

induced changes to the epithelium. Therefore, ML-7 could be a class of targeted 

therapeutic agents that restore barrier function in intestinal disease states. 

Resistin-like 

molecule β 

(RELMβ) 

Resistin-like molecule (RELM) beta is secreted by goblets cells in the intestine and 

are essential for normal spontaneous expulsion and IL-4-induced expulsion of 

parasitic helminths, which live in the intestinal lumen but not in IECs.  It is strongly 

induced within goblet cells during C. rodentium infection. It appears also to act as 

a CD4+T cell chemoattractant in the colon, in part via the induction of increased 

IEC proliferation. Therefore, the molecule could induce an immunomodulatory 

response towards the enteropathogens, maintaining epithelial barrier integrity.  

46,47,58 

Trefoil Factor 3 

(TFF3) 

Trefoil peptides are also present in breast milk and in goblet cells along the 

intestinal tract. Goblet cells are depleted during infection with C. rodentium and 

EPEC which results in dramatically reduced TFF3 levels.  TFF3 has been shown to 

down-regulate cytokines (IL-8 & IL-6) and promote the expression of the 

antimicrobial peptides, beta defensin (hBD2&4) in enterocytes. They have been 

shown to be activated in intestinal cells through protease activated receptors 2 

(PAR-2) and so increased TFF3 levels during enteropathogen infections may 

improve the intestinal epithelium. 

59 

 

Vitamin A 

(Retinoic acid) 

Vitamin A and its analogs are essential for normal development.  Vitamin A 

deficiency (VAD) is associated with decreased immune response and increased 

bacterial translocation and mortality e.g. the retinoic acid (RA) receptor α (RARα) 

signaling in intestinal epithelial cells (IECs) deregulates epithelial lineage 

specification, leading to reduced luminal bacterial detection (for C. rodentium). 

Therefore, increases in Vitamin A exposure could reduce bacterial translocation 

60 

Zinc Zinc is an essential nutrient. Its deficiency is known to result in epithelial barrier 

leak in the intestines and alter TJ composition. Zinc oxide (ZnO) has a protective 

61,62 
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effect in pigs suffering from enterotoxigenic Escherichia coli (ETEC) infections. This 

observation may be extended to enteropathogens-induced epithelial damage. 

Supplementary Table 1: Molecules tested and rationale for selection 706 

 707 

Assessment of Bacterial Adherence 708 

Cells grown on coverslips were infected with EPEC, C. rodentium or C. parvum + E. coli K12 for 0, 709 

15, 30, 60 and 120min. Medium was then removed, cells washed with PBS and fixed in methanol 710 

(VWR, Leicestershire, UK) for 15min followed by overnight Giemsa (VWR, Leicestershire, UK) 711 

staining. Numbers of cells and bacteria were counted at x200 magnification in 20 randomly 712 

selected fields under a Leica DM500 upright Epi-fluorescent Dual Camera. 713 

 714 

Bacterial Invasion Assay 715 

Cells were infected on the apical side with EPEC, C. rodentium or C. parvum + E. coli K12, for 0, 716 

15, 30, 60 or 120min. Cells were washed in culture media and incubated with gentamicin 717 

(200ug/ml) for 60min to kill extracellular bacteria. Cells were washed three times and lysed in 718 

10mM Tris-HCL pH7.5, 1mM EDTA, and 1% Triton-X (Sigma-Aldrich Company Ltd, Dorset, UK) 719 

prior to culture. 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 
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Supplementary Figure 1: EPEC (rabbit), C. rodentium (murine) and C. parvum + E. coli K12 732 

(human) attach and infect Caco2 cells. Enteropathogenic Escherichia coli (EPEC), Citrobacter 733 

rodentium (C. rodentium) or Cryptosporidium parvum (C. parvum) together with Escherichia coli 734 

K12 (K12) were incubated with Caco2 cell monolayers for 0, 15, 30, 60 and 120min. Cells were 735 

washed and underwent Giemsa staining a) The number of bacteria attached per cell was then 736 

enumerated in 20 fields for the adhesion assay b) infected cells were treated with gentamicin for 737 

1h to kill only the extracellular pathogens. The Caco2 cells counted then lysed and cultured on 738 
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Luria-Bertani (LB) agar plates to enumerate the number of viable intracellular bacteria per Caco2 739 

cell over the time course. Statistical testing using One-way ANOVA with the Kruskal-Wallis test 740 

was used to compare the infections with the no-infection control at each time point; *P<0.05, 741 

**p=0.006. 742 


