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Abstract 

 

Auditory prediction error responses elicited by surprising sounds can be reliably recorded with 

musical stimuli that are more complex and realistic than those typically employed in EEG or MEG 

oddball paradigms. However, these responses are reduced as the predictive uncertainty of the 

stimuli increases. In this study, we investigate whether this effect is modulated by musical 

expertise. Magnetic mismatch negativity (MMNm) responses were recorded from 26 musicians 

and 24 non-musicians while they listened to low- and high-uncertainty melodic sequences in a 

musical multi-feature paradigm that included pitch, slide, intensity, and timbre deviants. When 

compared to non-musicians, musically trained participants had significantly larger pitch and slide 

MMNm responses. However, both groups showed comparable reductions of pitch and slide 

MMNm amplitudes in the high-uncertainty condition compared to the low-uncertainty condition. 

In a separate, behavioral deviance detection experiment, musicians were more accurate and 

confident about their responses than non-musicians, but deviance detection in both groups was 

similarly affected by the uncertainty of the melodies. In both experiments, the interaction between 

uncertainty and expertise was not significant, suggesting that the effect is comparable in both 

groups. Consequently, our results replicate the modulatory effect of predictive uncertainty on 

prediction error; show that it is present across different types of listeners; and suggest that 

expertise-related and stimulus-driven modulations of predictive precision are dissociable and 

independent.  

  



1. Introduction 

 

Prediction is fundamental for the perception of auditory sequences. When listening to a series of 

sounds, the brain generates expectations about future events partly based on the statistical 

regularities of the context and long-term knowledge of acoustic signals (Huron, 2006; Pearce, 

2018). The violation of these expectations generates neural prediction error responses (den Ouden, 

Kok, & de Lange, 2012). So far, most research in this area has focused on very simple and artificial 

auditory contexts such as sequences of repeated tones or short tone patterns (Heilbron & Chait, 

2018). As a consequence, little is known about how auditory prediction operates in more complex, 

real-world settings. 

 

In a previous study, we addressed this issue by measuring prediction error responses to surprising 

sounds embedded in auditory stimuli that resembled real music (Quiroga-Martinez et al., 2019). 

As a marker of prediction error, we recorded the magnetic counterpart of the mismatch negativity 

(MMNm), which is a well-studied brain response to sounds that violate auditory regularities 

(Garrido, Kilner, Stephan, & Friston, 2009; Näätänen, Gaillard, & Mäntysalo, 1978). We 

compared a low-uncertainty condition —referred to as low-entropy or LE—which consisted of a 

simple and repetitive pitch pattern, with a high-uncertainty condition—referred to as high-entropy 

or HE—which consisted of more realistic and less predictable non-repetitive melodies. Note that 

entropy was used as a measure of uncertainty. Pitch, intensity, timbre and slide (i.e. pitch glide) 

violations were introduced. We found reliable MMNm responses to the violations in both 

conditions, thus demonstrating that low-level prediction error responses could be elicited in a 

constantly changing and more ecologically valid auditory stream. 



 

Interestingly, even though MMNm responses were reliable, their amplitudes were reduced in the 

HE context compared to the LE context, for pitch and slide deviants. This is consistent with 

predictive processing theories which propose that prediction error responses are reduced in 

contexts with high as compared to low uncertainty or, equivalently, low as compared to high 

precision (Clark, 2016; Feldman & Friston, 2010; Hohwy, 2013; Ross & Hansen, 2016; Vuust, 

Dietz, Witek, & Kringelbach, 2018). The ensuing precision-weighted prediction error would 

ensure that primarily reliable sensory signals drive learning and behavior. While a growing body 

of research already provides evidence for this phenomenon in the auditory modality (Garrido, 

Sahani, & Dolan, 2013; Hsu, Bars, Hämäläinen, & Waszak, 2015; Lumaca, Haumann, Brattico, 

Grube, & Vuust, 2019; Sedley et al., 2016; Sohoglu & Chait, 2016; Southwell & Chait, 2018), our 

study was the first to show its presence in a more ecologically valid setting such as music listening. 

Furthermore, the findings also pointed to a feature-selective effect in which only prediction error 

responses related to the manipulated auditory feature—pitch, in our case—are modulated by 

uncertainty.  

 

In the present work, we elaborate on this finding and investigate whether the effect of uncertainty 

on auditory prediction error is modulated by musical expertise. This question is motivated by 

research showing that musicians tend to exhibit stronger auditory prediction error responses than 

non-musicians. For example, larger MMN responses are often found for musically trained subjects, 

especially for pitch-related deviants (Brattico et al., 2009; Fujioka, Trainor, Ross, Kakigi, & 

Pantev, 2004; Koelsch, Schröger, & Tervaniemi, 1999; Putkinen, Tervaniemi, Saarikivi, Ojala, & 

Huotilainen, 2014; Tervaniemi, Huotilainen, & Brattico, 2014; Vuust, Brattico, Seppänen, 



Näätänen, & Tervaniemi, 2012; Vuust et al., 2005). This has led some to propose that musical 

training enhances the precision of auditory predictive models (Hansen & Pearce, 2014; Hansen, 

Vuust, & Pearce, 2016; Vuust et al., 2018), as more precise representations of musically relevant 

regularities would facilitate the detection of unexpected sounds.  

 

Crucially, a distinction can be made between expertise-driven and stimulus-driven precision or 

uncertainty. The former corresponds to the fine-tuning of predictive models by musical training, 

whereas the latter refers to the uncertainty inferred from the stimulus currently being listened to. 

Note that stimulus-driven uncertainty was the one manipulated in Quiroga-Martinez et al., (2019). 

Consequently, our goal here is to address whether its effect on prediction error is modulated by 

expertise-driven precision. Thus, we conjectured that when musical sequences are predictable, 

long-term knowledge of music would only have a moderate impact on the processing of sounds. 

Conversely, when musical stimuli become more unpredictable, listeners would need to rely more 

on their musical knowledge, which would provide a greater processing advantage to musically 

trained participants. Therefore, we hypothesized an interaction effect in which the modulation of 

prediction error by uncertainty would be less pronounced for musicians than for non-musicians. 

 

In this study, we used magnetoencephalography (MEG) and behavioral measures to test this 

hypothesis, employing the same stimuli and experimental designs as in Quiroga-Martinez et al. 

(2019). To this purpose, we compared a group of musicians with the group of non-musicians 

reported in the previous study. In the MEG experiment, participants passively listened to high- and 

low-entropy melodic sequences where pitch, intensity, timbre and slide deviants were introduced. 

In the behavioral experiment, participants were asked to detect pitch deviants embedded in 



different melodies and report the subjective confidence in their responses. In this case, five levels 

of context uncertainty were employed in order to detect fine-grained effects of predictive precision 

and dissociate pitch-alphabet size—the number of pitch categories used in the melodies—and 

repetitiveness as sources of uncertainty. We expected musicians to exhibit smaller reductions in 

MMNm responses, deviance detection scores, and confidence ratings than non-musicians, as the 

uncertainty of auditory contexts increased. Finally, we performed source reconstruction on the 

MMNm responses and the difference in MMNm amplitude between HE and LE conditions in order 

to further our understanding of the neural underpinnings of the precision-weighting effect. 

2. Method 

For a more detailed description of the methods, please see Quiroga-Martinez et al., (2019). The 

data, code and materials necessary to reproduce these experiments and results are openly available 

at: https://osf.io/mgtjq/;  DOI: 10.17605/OSF.IO/MY6TE 

2.1. MEG experiment 

2.1.1. Participants 

Twenty-six musicians and twenty-four non-musicians participated in the experiment (see Table 1 

for demographics). The non-musicians’ group was the same as the one reported in Quiroga-

Martinez et al., (2019). All participants were right-handed with no history of neurological 

conditions, and did not possess absolute pitch. For recruitment purposes, participants who 

considered themselves musicians and had considerable experience playing an instrument were 

included in the musicians’ group. The musical training subscale of the Goldsmiths Musical 

Sophistication Index (GMSI) was used as a self-report measure of musical expertise (Müllensiefen, 



Gingras, Musil, & Stewart, 2014) and both the melody and rhythm parts of the Musical Ear Test 

(MET) were used as objective measures of musical skills (Wallentin, Nielsen, Friis-Olivarius, 

Vuust, & Vuust, 2010). Note that the GMSI musical training subscale is composed of seven items 

that measure years of formal training on a musical instrument, years of daily practice on a musical 

instrument, music theory training, hours of daily practice, number of instruments played, self-

perception as a musician, and social acknowledgment as a musician. These items are rated on a 

seven-point scale, rather than with truly continuous measures of, for example, years of training. 

The total score of the subscale is the sum of the individual items, thus allowing a minimum of 7 

and a maximum of 49. Individual ratings are shown in supplementary file 4, arranged by group 

and item.  GMSI values (t = 16.55, p < .001) and MET total values (t = 5.2, p < .001) were 

significantly higher for musicians than for non-musicians. All non-musicians’ scores lay in the 37 

percentile of the norm of the subscale, whereas all musicians’ scores lay above the 45 percentile 

of the norm. 

 

Participants were recruited through an online database and agreed to take part in the experiment 

voluntarily. All participants gave informed consent and were paid 300 Danish kroner 

(approximately 40 euro) as compensation. Data from two musicians (not included in the reported 

demographics) were excluded from the analysis due to artefacts related to dental implants. The 

study was approved by the Central Denmark Regional Ethics Committee (De Videnskabsetiske 

Komitéer for Region Midtjylland in Denmark) and conducted in accordance with the Helsinki 

declaration.  

 

Table 1 



2.1.2. Stimuli 

Low-entropy (LE) and high-entropy (HE) conditions were included in the experiment. LE stimuli 

corresponded to a simple four-note repeated pitch pattern (low-high-medium-high) known as the 

Alberti bass, which has previously been used in musical MMNm paradigms (Vuust et al., 2011; 

Vuust, Liikala, Näätänen, Brattico, & Brattico, 2016). In contrast, HE stimuli consisted of a set of 

major and minor versions of six novel melodies which did not have a repetitive internal structure 

and spanned a broader local pitch range than LE stimuli (Figure 1; see Supplementary file 1 in 

Quiroga-Martinez et al., 2019 for the full stimulus set). Individual HE and LE melodies were 32-

notes long, lasted eight seconds, and were pseudorandomly transposed from 0 to 5 semitones 

upwards. The order of appearance of the melodies was pseudorandom. After transposition during 

stimulation, the pitch-range of the HE condition spanned 31 semitones from B3 (F0 ≈ 247 Hz) to 

F6 (F0 ≈ 1397 Hz). LE melodies were transposed to two different octaves to cover approximately 

the same pitch range as HE melodies. The uncertainty of the stimuli along the pitch dimension was 

estimated with Information Dynamics of Music (IDyOM), a variable-order Markov model of 

auditory expectation (Pearce, 2005, 2018). When predicting pitch continuations based on scale-

degree and pitch-interval transition probabilities, and a training corpus of Western tonal hymns 

and folk songs, this model confirmed higher mean entropy (which is a measure of uncertainty) and 

information content (which is a measure of surprise) for HE as compared to LE melodies (see 

Quiroga-Martinez et al., 2019 for more details).  

 

For stimulus delivery, a pool of 31 standard piano tones was created with the “Warm-grand” 

sample in Cubase (Steinberg Media Technology, version 8). Each tone was 250 ms long, was peak-

amplitude normalized and had 3-ms-long fade-in and fade-out to prevent clicking. No gaps 



between tones were introduced. For the creation of deviants, the standards were modified as 

follows. Pitch: +50 cents; intensity: -20 dB; timbre: band-pass filter (1-4 kHz); slide: continuous 

pitch glide from -2 semitones. Deviants were created with Audition (Adobe Systems Incorporated, 

version 8). 

Figure 1 

Each condition was presented in a separate group of three consecutive blocks. Within each block, 

melodies were played one after the other without pauses. At the beginning of each block, a melody 

with no deviants was added to ensure a certain level of auditory regularity at the outset. One deviant 

per feature was introduced in each melody. There were 144 deviants per feature in each condition. 

The position of each deviant was defined by segmenting the melody in groups of four notes, 

selecting some of these groups, and choosing randomly any of the four places within a group, with 

equal probability. The order of appearance of the different types of deviants was pseudorandom, 

so that no deviant followed another deviant of the same feature. The selection of four-note groups 

was counterbalanced among trials attending to the constraints of a combined condition included to 

assess the predictive processing of simultaneous musical streams (see Quiroga-Martinez et al., 

2019 for further details). The analysis of the combined condition is beyond the scope of this article 

and will be presented elsewhere. HE and LE conditions were counterbalanced across participants 

and always came after the combined condition. 

2.1.3. Procedures 

Participants gave their consent after receiving oral and written information, and then completed 

the MET, filled out the GMSI questionnaire and put on MEG-compatible clothes. Electrodes and 

HPI coils were attached to their skin and their heads were digitized. During the recording, 

participants were sitting upright in the MEG scanner looking at a screen. Before presenting the 



musical stimuli, their individual hearing threshold was measured through a staircase procedure and 

the sound level was set at 60dB above threshold. Participants were instructed to watch a silent 

movie of their choice, ignore the sounds and move as little as possible. They were told there would 

be musical sequences playing in the background interrupted by short pauses so that they could take 

a break and adjust their posture. Sounds were presented through isolated MEG-compatible ear 

tubes (Etymotic ER•30). The recording lasted approximately 90 minutes and the whole 

experimental session took between 2.5 and 3 hours including consent, musical expertise tests, 

preparation, instructions, breaks, and debriefing. 

2.1.4. MEG recording and analyses 

Brain magnetic fields were recorded with an Elekta Neuromag MEG TRIUX system with 306 

channels (204 planar gradiometers and 102 magnetometers) and a sampling rate of 1000 Hz. 

Continuous head position information (cHPI) was obtained with four coils (cHPI) attached to the 

forehead and the mastoids. Offline, the temporal extension of the signal source separation (tSSS) 

technique (Taulu & Simola, 2006) was used to isolate signals coming from inside the skull 

employing Elekta’s MaxFilter software (Version 2.2.15). This procedure included movement 

compensation for all participants except two non-musicians, for whom continuous head position 

information was not reliable due to suboptimal placement of the coils. These participants, however, 

exhibited reliable auditory event-related fields (ERFs), as successfully verified by visually 

inspecting the amplitude and polarity of the P50(m) component. Electrocardiography, 

electrooculography, and independent component analysis were used to correct for eye-blink and 

heartbeat artifacts, employing a semi-automatic routine (FastICA algorithm and functions 

“find_bads_eog” and “find_bads_ecg” in  MNE-Python) (Gramfort, 2013). Visual inspection of 

the rejected components served as a quality check. 



 

Using the Fieldtrip toolbox (version r9093) (Oostenveld, Fries, Maris, & Schoffelen, 2011) in 

MATLAB (R2016a, The MathWorks Inc., Natick, MA), epochs comprising a time window of 400 

ms after sound onset were extracted and baseline-corrected with a pre-stimulus baseline of 100 

ms. Epochs were then low-pass filtered with a cut-off frequency of 35 Hz and down-sampled to a 

resolution of 256 Hz. For each participant, ERFs were computed by averaging the responses for 

all deviants for each feature and averaging a selection of an equal number of standards. These were 

selected by finding, for each single deviant, a standard tone that was not preceded by a deviant and 

was in the same position of the same HE or LE melody—although not necessarily the same 

transposition—in a different trial. This ruled out artefacts related to the difference in noise between 

conditions—since there are many more standards than deviants—and the position of the deviant 

within the melody. After averaging, planar gradiometers were combined by computing root mean 

square values. Finally, a new baseline correction was applied and MMNm difference waves were 

computed by subtracting the ERFs of standards from the ERFs of deviants. 

 

Statistical analyses were performed on combined gradiometer data. For the main analyses, a mass 

univariate approach was used in combination with cluster-based permutations (Maris & 

Oostenveld, 2007) for family-wise error correction. Two-sided paired- and independent-samples 

t-tests were used for within- and between-subjects contrasts, respectively. The cluster-forming 

alpha level was .05, the cluster-level statistic was the maximum sum of t-values (maxsum) and the 

number of permutations was set to 10,000. All tests were conducted for each feature separately in 

a time window between 100 and 250 ms, which covers the typical latency of the MMN (Näätänen, 

Paavilainen, Rinne, & Alho, 2007). To assess the elicitation of the MMNm, we compared the ERFs 



of standards with the ERFs of deviants for each group independently. The main effect of entropy 

was assessed by comparing, for each feature, the MMNm responses of all participants for LE and 

HE conditions. The main effect of expertise was assessed by comparing the average of LE and HE 

responses between groups. The entropy-by-expertise interaction was tested by subtracting HE 

from LE MMNm responses for each participant, and comparing the resulting differences between 

groups. Post-hoc, exploratory tests of simple effects were performed for the effect of entropy and 

expertise for each group and condition, respectively.  

 

To assess the relative evidence for the null and alternative hypotheses, a secondary Bayesian 

analysis was performed on mean gradient amplitudes (MGA). The assessment of evidence was not 

possible under classical null hypothesis testing where we could only infer the probability of the 

data assuming the null hypothesis was true. Therefore, a Bayesian analysis allowed us to quantify 

the evidence in favor of and against the entropy-by-expertise interaction and measure its 

conclusiveness.  Furthermore, Bayesian estimation allowed the inclusion of prior knowledge, thus 

providing informed constraints that typically improve inference (Wagenmakers et al., 2018).    

 

MGA were obtained as the mean activity ±25 ms around the MMNm peak, defined as the highest 

local maxima of the ERF between 100 and 250 ms after sound onset. This average was obtained 

from the four temporal combined gradiometers in each hemisphere with the largest P50(m) 

response (right channels: 1342-1343, 1312-1313, 1322-1323, 1332-1333; left channels: 0222-

0223, 0212-0213, 0232-0233, 0242-0243). Using R (R Core Team, 2019), the differences between 

HE and LE MMNm amplitudes were computed for each participant and used as the dependent 

variable in a Bayesian mixed-effects model including parameters for the effects of feature, 



hemisphere and group and their interactions (brms package, Bürkner, 2017). Participants were 

included as a random effect with respect to the intercept and the slopes of feature and hemisphere. 

Priors were taken from our previous work with the non-musicians’ group (see the analysis scripts 

and saved model fits in the online repository for a full description of priors and parameters). For 

the effect of expertise and the interactions with hemisphere and feature, a conservative prior was 

set with a mean of 0 and a standard deviation of 3 fT/cm, which is around half of the effect of 

entropy for the pitch MMNm in non-musicians. This prior assumes that small effect modulations 

are most likely and that situations in which the effect of entropy in musicians disappears, changes 

direction, or is at least twice the effect in non-musicians are unlikely. Inference was based on 95% 

credible intervals, Bayes Factors (BF) and posterior probabilities, as estimated for each feature and 

hemisphere (“hypothesis” function, brms package).  

2.1.5. Source reconstruction 

Source reconstruction was performed with the Multiple Sparse Priors (MSP) method (K. J. Friston 

et al., 2008) implemented in SPM12 (version 7478). Only data from twenty musicians and twenty 

non-musicians were included, since individual anatomical magnetic resonance images (MRI) were 

available for these participants only. For one of the excluded musicians and one of the excluded 

non-musicians the images were corrupted by artefacts, whereas the remaining excluded 

participants did not attend the MRI session. Brain scans were obtained with a Magnetization-

prepared two rapid gradient echo (MP2RAGE) sequence (Marques et al., 2010) in a Siemens 

Magnetom Skyra 3T scanner, which produced two images that were combined and motion-

corrected to form unified brain volumes. These volumes were segmented, projected into MNI 

coordinates, and automatically coregistered with the MEG sensor positions using digitized head 

shapes and preauricular and nasion landmarks. Coregistration outputs were visually inspected. 



Lead-fields were constructed using a single-shell BEM model with 20.484 dipoles (fine grid). A 

volume of the inverse solution was created for each participant feature and condition, in the 

following time windows: 175-215 ms for pitch, 110-150 ms for timbre and intensity, and 275-315 

ms for slide. These time windows were chosen based on the peak MMNm amplitudes for each 

feature. Source reconstruction was also conducted for the differences between HE and LE 

conditions for pitch and slide MMNm amplitudes, with the aim to reveal the neural substrates of 

the entropy effect. To this end, individual volumes of the inverse solution were obtained for a time 

window between 150 and 200 ms. Note that the case of the slide deviant is somewhat particular 

since the peak MMNm response occurred later than expected, whereas the effect of entropy was 

restricted to an earlier time window. For greater detail and an interpretation of this result, see 

Quiroga-Martinez et al. (2019). The volumes for each feature and condition, as well as the volumes 

for the entropy effect, were submitted to a one-sample t-test to reveal the sources consistently 

identified across all participants. The error rate of voxel-wise multiple tests was corrected with 

random field theory with a cluster-level alpha threshold of 0.05 (Worsley, 2007). 

2.2. Behavioral experiment 

2.2.1. Participants 

Twenty-four musicians and twenty-one non-musicians participated in the behavioral experiment 

(Table 1). The non-musicians’ group is the same as the one reported in Quiroga-Martinez et al. 

(2019). Musical expertise was measured with the GMSI musical training subscale which yielded 

significantly higher scores for musicians than for non-musicians (t = 13.08, p < .001). All non-

musicians’ scores lay in the 42 percentile of the norm of the subscale, whereas all musicians’ 

scores lay above the 45 percentile of the norm. Individual ratings are shown in supplementary file 



4, arranged by group and subscale item. Participants were recruited through an online database for 

experiment participation, agreed to take part voluntarily, gave their informed consent and received 

100 Danish kroner (approximately 13.5 euro) as compensation. The data from all participants were 

analyzed, since above-chance deviance detection was verified in all cases. The sample size was 

chosen to be comparable to that of the MEG experiment. Two musicians and two non-musicians 

had previously participated in the MEG experiment. 

2.2.2. Experimental design  

Five conditions were included (Figure 1). Two of them correspond to the HE and LE conditions 

of the MEG experiment and employ a selection of the respective melodies. Three additional 

conditions with intermediate levels of entropy (IE1, IE2, IE3) were included to investigate whether 

more fine-grained manipulations of uncertainty modulate prediction error responses in musicians, 

as was previously shown in non-musicians. The pitch alphabet of these conditions spanned eight 

tones and was always the same, comprising a major diatonic scale from C4 to C5. Note that, in the 

MEG experiment, HE stimuli were not only less repetitive but also had a larger pitch alphabet than 

LE (at least before transposition during the experiment). In contrast, in the IE conditions we 

manipulated uncertainty by changing repetitiveness only. Thus, IE1 consisted of a repeated eight-

note pattern, IE2 consisted of proper melodies with less constrained repetition, and IE3 consisted 

of pseudorandom orderings of the tones. Note that the contrast LE > IE1 would reveal whether the 

pitch-alphabet size alone is sufficient to modulate prediction error, whereas the comparisons IE1 

> IE3, IE1 > IE2 and IE2 > IE3 would reveal the same with regard to repetitiveness.  

 

For each single melody in the experiment, a target version was created by raising the pitch of a 

tone by 25 cents. This deviation was smaller than in the MEG experiment to avoid ceiling effects 



observed for non-musicians during piloting. The target tone was located in a random position in 

the second half of each melody. Only pitch deviants were included because we manipulated 

uncertainty along the pitch dimension and because this was the feature showing the largest 

uncertainty effect in the MEG results. All melodies were 32-notes long and were played with the 

same sound pool as the MEG experiment. There were ten target melodies and ten foil melodies 

(with no deviants) per condition. Participants were instructed to listen to the melodies, decide after 

each of them whether an out-of-tune note was present or not, and report how certain they were 

about their answer on a scale from 1 (not certain at all) to 7 (completely certain). The experimental 

session lasted around 30 minutes. 

2.2.3. Statistical analyses  

We used signal detection theory to analyze accuracy (Macmillan, 2004), based on the assumption 

that larger prediction error responses would enhance the ability to distinguish target from non-

target stimuli. For each condition, d-prime (d’) scores were computed as a measure of sensitivity 

and criterion (c) scores were computed as a measure of response bias. In the few cases where 

participants achieved 100% or 0% of hits or false alarms, values were adjusted to 95% and 5% 

respectively, to avoid infinite values in the estimations (Macmillan, 2004). 

 

Statistical analyses were run in R. For d’ scores, different mixed-effects models were estimated 

using maximum likelihood (“lmer” function, lme4 package, Bates, Mächler, Bolker, & Walker, 

2015), and compared using likelihood ratio tests and Akaike Information Criteria (AIC). Model 

d0 included only an intercept as a fixed effect, whereas two alternative models added categorical 

(d1) or continuous (d2) terms for the entropy conditions. For model d2, we assigned values 1, 2, 

3, 4 and 5 to the conditions according to their estimated uncertainty, and treated them as a 



continuous linear predictor. This allowed us to assess the extent to which a linear decreasing trend 

was present in the data, as was done previously with non-musicians (Quiroga-Martinez et al., 

2019). Building on these models, in d1e and d2e a term for musical expertise was added, and in 

d1i and d2i a term for the entropy-by-expertise interaction was further included. Random intercepts 

for participants were included in all models. Random slopes were not added, as the number of data 

points per participant was not sufficient to avoid overfitting. For c scores, mixed-effects models 

were similarly compared, including an intercept-only model (cr0), a model with a categorical 

effect of entropy (cr1), a model with an additional effect of expertise (cr1e) and a model with an 

additional term for the entropy-expertise interaction (cr1i). Random intercepts for participants 

were added. 

 

Regarding confidence ratings, ordinal logistic regression was employed in the form of a 

cumulative-link mixed model (“clmm” function, ordinal package; Christensen, 2019) using logit 

(log-odds) as link. Models with an intercept only (co0), categorical (co1s) terms for entropy, and 

additional terms for expertise (co1se) and the entropy-by-expertise interaction (co1si) were 

estimated and compared. These models included random intercepts and slopes for participants. 

Unlike with d’ scores, no model included continuous terms for entropy, since categorical models 

were previously shown to explain the data significantly better for non-musicians. Moreover, note 

that the cumulative-link model estimates an intercept for each cut-point between adjacent 

categories in the response variable. Post-hoc, Bonferroni-corrected pairwise contrasts for the effect 

of entropy on confidence ratings, d’ scores and c scores were conducted with the function 

“emmeans” (emmeans package; Lenth, Singmann, Love, Buerkner, & Herve, 2019) for musicians 

and non-musicians separately. 



 

Bayesian estimation was used to assess the evidence for the entropy-by-expertise interaction. 

Models d1i, d2i, and co1i were re-estimated and labeled as d1ib, d2ib and co1ib. Priors were 

defined based on our previous work with non-musicians (see corresponding analyses scripts in the 

online repository for a full description of priors and parameters). For the continuous model of d’ 

scores (d2ib), the prior for the entropy-by-expertise interaction was Gaussian with mean 0 and 

standard deviation 0.1, which corresponds to half of the slope for the effect of entropy previously 

estimated for non-musicians. This prior is conservative and implies that small effect modulations 

are deemed most likely, and that a complete absence, change of direction or excessive 

enhancement of the effect is considered unlikely. For the categorical model of d’ scores (d1ib), a 

Gaussian prior with mean 0 and standard deviation 0.4 was used for each of the entropy conditions. 

This prior corresponds to about half of the difference between the LE and HE conditions and, as 

with the continuous model, is conservative and deems extreme modifications of the effect unlikely. 

Regarding confidence ratings, a similar conservative Gaussian prior was set for the interaction 

term, with mean 0 and standard deviation 0.35. This prior deems small effects as the most likely 

and odds modifications larger than twice (𝑒$×&.() = 2) or smaller than half (𝑒$×-&.() = 0.5) of 

the original effect as unlikely. Inference was based on 95% credible intervals, Bayes Factors and 

posterior probabilities, estimated for each feature and hemisphere (“hypothesis” function, brms 

package). 



3. Results 

3.1. Presence of the MMNm  

As previously reported for the non-musicians (Quiroga-Martinez et al., 2019), we also found a 

difference between standards and deviants for each feature in the musicians’ group (all p < .001, 

supplementary file 1). This difference had virtually the same topography and polarity as previously 

reported, thus confirming the presence of the MMNm (Figure 2). 

Figure 2 

Figure 3 

Figure 4 

3.2. Effects of entropy, expertise, and interaction 

There was a significant main effect of entropy for pitch (p < .001), slide (p < .001) and intensity 

(p < .001), but not for timbre (p = .068), in the MMNm responses. Analyses of simple effects 

revealed significant differences for pitch and slide in both groups, and for intensity in musicians 

only (Figure 3). A significant main effect of expertise was observed for pitch and slide, but not 

intensity or timbre, in the MMNm responses (Figure 4). The same pattern emerged when LE (pitch: 

p = .01; slide: p = .018; intensity: p = .99; timbre: p = .68) and HE (pitch: p = .005; slide: p = .014; 

intensity: p = .3; timbre: p = .89) conditions were analyzed separately. The entropy-by-expertise 

interaction was not significant for any of the four features (Figure 4). 

 
Figure 5 

 



Regarding secondary Bayesian analyses, the posterior distributions of the differences between 

musicians and non-musicians for each hemisphere and feature are shown in Figure 5b. 95% 

credible intervals included zero in all cases. Bayes factors suggested that the null hypothesis was 

between 1.18 to 3.06 times more likely than the alternative, and the posterior probability of a null 

effect varied between 0.62 and 0.75, depending on the feature and hemisphere. We regard this as 

anecdotal/inconclusive evidence for the null hypothesis. Moreover, Bayesian pairwise contrasts 

between features reproduced the patterns observed in the maximum likelihood estimates 

previously reported for non-musicians (Quiroga-Martinez et al., 2019), in which pitch and slide 

tended to have larger entropy-related reductions in MMNm amplitude than intensity and timbre, 

in the right but not the left hemisphere. For musicians this pattern was different, with conclusive 

evidence for a difference between pitch and timbre in both hemispheres, and moderate evidence 

for a difference between pitch and intensity in the left hemisphere (Table 2). 

3.3. Source reconstruction 

Neural generators of the MMNm were located in the surroundings of right and left auditory 

cortices, including both the posteromedial and anterolateral portions of Heschl’s gyrus (Figure 6). 

No prefrontal generators were observed, with the exception of the pitch MMNm for which there 

was a small source in the ventral part of the premotor cortex (BA6). Small clusters were also found 

for pitch in the somatosensory and parietal cortices, and for intensity in the parietal lobe around 

the perisylvian region. Regarding the entropy effect, the neural generators for pitch were located 

in the planum temporale anterior to the generator of the MMNm, whereas for slide a significant 

cluster was found in the right fusiform gyrus—an area involved in higher-order visual 

processing—, which could be related to spurious visual activity arising from watching the movie. 



For this reason, uncorrected values thresholded at .001 are shown for the entropy effect on the 

slide MMNm in the supplementary file 2, which includes clusters in the planum temporale. 

Figure 6 

Table 3 
 

3.4. Behavioral experiment 

 

Parameter estimates and data from the behavioral experiment are shown in Figure 7. Analyses of 

d’ scores revealed that adding entropy as a categorical (d1) or continuous (d2) factor explained the 

data significantly better than an intercept-only (d0) model (Table 3). Furthermore, the comparisons 

d1e-d1 and d2e-d2 revealed a significant main effect of expertise, whereas the comparisons d1i-

d1e and d2i-d2e were nonsignificant, thus failing to provide evidence for an entropy-by-expertise 

interaction. A contrast between the continuous (d2e) and the categorical model (d1e) was not 

significant (𝜒$ = 1.53, 𝑝 = 	 .67). The residuals of these two models were normally distributed. 

AIC values revealed a similar picture and slightly favored d2e over d1e as the winning model 

(Table 3). Bonferroni-corrected pairwise comparisons for the full model (d1i) showed significant 

differences between LE and the other four conditions for non-musicians. For musicians, however, 

the comparisons LE > IE1 and LE > IE2 were nonsignificant, whereas the contrasts LE > IE3, LE 

> HE, IE1 > IE2, IE1 > IE3 and IE1 > HE were significant. Finally, other comparisons such as IE1 

> IE3, IE2 > HE and IE2 > HE, although nonsignificant, resulted in large effect sizes in both 

groups (table 4). 

 

Regarding Bayesian analyses, there was anecdotal/inconclusive evidence that the interaction terms 

were not different from zero, for both the d1ib and d2ib models (Figure 8). The only exception 



was the parameter for LE > IE1 in model d1ib, for which zero was located slightly to the left of 

the credible interval. An interaction in this case was about three times more likely than a null effect. 

This is in agreement with the likelihood ratio test between d1i and d1e, for which the p-value was 

close to the alpha threshold (table 3). 

Figure 7 

Figure 8 

 
 
An analysis of c scores revealed a main effect of entropy and an interaction between entropy and 

expertise (Table 3). The mean c score for both groups was positive, thus indicating a mild bias 

towards missing the targets. The bias changed between conditions following different patterns for 

each group, as revealed in the pairwise contrasts. Concretely, for non-musicians there was a 

significant difference in the contrasts LE > IE3 and IE1 > IE3, whereas for musicians c scores 

were significantly higher for LE than the other four conditions (supplementary file 3). When 

contrasting musicians and non-musicians for each condition separately, the nature of the 

interaction was clearer. For LE and IE1, the bias was significantly lower for musicians than non-

musicians and even became negative in the case of LE (Table 6, Figure 7). 

 

Regarding classical linear mixed-effects models of confidence ratings, there were main effects of 

entropy and expertise, as revealed by the contrasts co1s-co0 and co1se-co1s, respectively (Table 

3). Adding an interaction term (co1si) did not explain the data significantly better. AIC values 

suggested co1se as the winning model. Pairwise comparisons revealed significant differences 

between LE and the other four conditions and the contrast IE1 > IE3 for non-musicians (Table 5). 

For musicians, there was not a significant difference for the contrast LE > IE1 but for contrasts 



IE1 > LE2, IE1 > LE3, IE > HE, IE1 > IE3, IE1 > HE and IE2 > IE3. Finally, Bayesian analyses 

suggested moderate evidence for an interaction in the case of the LE-IE1 and LE-IE2 slopes and 

inconclusive evidence in favor of the null for the LE-IE3 and LE-HE parameters (Figure 8). 

 

Table 4 

Table 5 

Table 6 

4. Discussion 

In the present work, we show that the reduction of prediction error responses by predictive 

uncertainty (Quiroga-Martinez et al., 2019) is also found in musically trained participants. This 

indicates that the effect is robust and is present across listeners with different levels of musical 

expertise. Moreover, while musicians had larger MMNm responses to pitch and slide deviants, 

there was no evidence for an entropy-by-expertise interaction that would indicate a less 

pronounced effect of uncertainty for musical experts. 

 

4.1. Expertise-related effects 

 

Across different degrees of melodic entropy, musicians were more accurate and confident in 

detecting pitch deviations, and had larger pitch and slide MMNm responses in the MEG 

experiment. This extends previous findings showing larger MMNm responses—especially for 

pitch-related deviants—in musicians than non-musicians (Brattico et al., 2009; Fujioka et al., 

2004; Koelsch et al., 1999; Putkinen et al., 2014; Tervaniemi et al., 2014; Vuust et al., 2012, 2005). 

Since this indicates an enhancement of auditory discrimination skills and could be framed as an 



increase in predictive precision, it is rather surprising that the effect of contextual uncertainty on 

prediction error is not significantly different between the two groups.   

 

What these results suggest is that expertise-driven and stimulus-driven changes in predictive 

precision are dissociable and independent. Thus, intensive musical training might sharpen the 

long-term representation of in-tune musical pitch categories and therefore facilitate the detection 

of pitch deviants. This would result in higher baseline levels of deviance detection and confidence 

as well as larger baseline MMNm amplitudes for musicians. In contrast, the uncertainty of the 

current stimulus would be inferred dynamically from its local statistics, leading to a short-term 

modulation of prediction error that is independent from long-term expertise, hence explaining the 

additive effects observed in both the MEG and behavioral experiments. 

 

The observed pattern of results is surprising also with regard to behavioral studies in which 

musicians gave significantly higher unexpectedness ratings to melodic continuations than non-

musicians, in contexts with low but not high entropy (Hansen & Pearce, 2014; Hansen et al., 2016).  

This finding has been taken to reflect a better ability of musicians to distinguish between low- and 

high-entropy contexts. Note that these results would predict a larger effect of entropy in musical 

experts, which is the opposite of what we hypothesized, but for which there was no evidence in 

our data either. It has to be noted, though, that the type of unexpected tones that we used was 

different from the one reported in those experiments. Here, surprising tones corresponded to out-

of-tune deviants, whereas in the behavioral studies unexpectedness judgements were made on 

plausible in-tune melodic continuations. Furthermore, the effect of entropy was reported for 

expected and unexpected tones combined, whereas here we only employed tones that were highly 



unexpected. These discrepancies point to future research addressing the effect of entropy on the 

neural responses to in-tune compared to out-of-tune surprising tones, and to expected and 

unexpected tones separately. 

 

Bayesian estimation allowed us to evaluate the relative evidence for the null and alternative 

hypotheses. For the change in MMNm amplitude between conditions, the parameter estimates of 

the difference between groups generally had small mean values (Figure 5b), indicating a rather 

small or absent modulation of expertise. However, while all credible intervals contained zero, they 

were also uncertain, spanning a rather broad amplitude range. This is reflected in Bayes factors, 

which were inconclusive, and therefore not much can be said about the null hypothesis. 

 

In the behavioral experiment, the picture was slightly different. For d’-scores, there was moderate 

evidence that the difference between LE and IE1 was reduced in musical experts. Evidence for 

other interaction terms, including LE-IE3, LE-HE and the slope for the continuous model, although 

inconclusive, suggested that the effect of entropy was slightly less pronounced for musicians. A 

similar pattern was observed for the confidence ratings. Therefore, although likelihood ratio tests 

were non-significant for the interactions, Bayesian analyses provided some evidence for a group 

difference, at least for some interaction parameters. 

 

Based on this, it would be tempting to conclude that there is evidence for our hypothesis at the 

behavioral level. However, these results might as well arise from a ceiling effect in musicians’ d’ 

scores and confidence ratings that would reduce differences between LE and IE1 or LE and IE2, 

compared to the non-musicians’ noticeable differences between these conditions. The distribution 



of individual data points in Figure 7 suggests that this might be the case. Taking into consideration 

the results of the MEG experiment, the generally inconclusive Bayes factors and the possibility of 

a ceiling effect, it is fair to remain skeptical about the presence of an entropy-by-expertise 

interaction when the two experiments are considered together. 

4.2. Feature-specific effects 

One intriguing finding in Quiroga-Martinez et al. (2019) was that the effect of predictive 

uncertainty on prediction error was restricted to pitch-related deviants (out-of-tune tones and pitch 

glides). This was interpreted as suggesting a feature-selective effect, given that uncertainty was 

manipulated in the pitch dimension only, while uncertainty in other dimensions such as timbre and 

intensity was kept constant. In the current work, this result was replicated in musicians, although 

with a slightly different pattern of differences. In non-musicians, larger entropy effects were 

observed for pitch and slide deviants, compared to intensity and timbre deviants, in the right but 

not the left hemisphere. For musicians, larger entropy effects were found for pitch deviants when 

compared with timbre deviants in both hemispheres, and when compared with intensity deviants 

in the left hemisphere.  

 

Care should be taken not to overinterpret these potential expertise-related differences, until they 

have been shown in direct group comparisons. However, attention should be paid to the intensity 

MMNm because, for musicians, a small yet significant difference between LE and HE contexts 

was found in the cluster-based permutation analyses, which in turn resulted in a significant main 

effect of entropy for this feature. Note that, for non-musicians, there was already a hint of such a 

difference. Therefore, it seems that intensity prediction errors are also somewhat affected by the 

pitch entropy of the melodies, something that challenges the proposed feature-selectivity.  



 

These results suggest that uncertainty is mainly feature-selective, but has a residual effect on 

predictive processing in other features as well. However, there might be two confounding factors 

here. First, the perception of loudness changes with pitch height (Suzuki, Møller, Ozawa, & 

Takeshima, 2003). In that case, the slightly different pitch distributions in HE and LE conditions 

(see Supplementary figure 1 in Quiroga-Martinez, et al., 2019) might have made the loudness 

violation slightly more or less salient for different conditions. The second confound could be the 

baseline salience of the deviants, which might have differed between features. For example, a very 

strong timbre violation might have been less affected by entropy than a less strong intensity 

violation or an even weaker pitch violation, thus yielding the observed feature-specific patterns.  

 

Another interesting feature-wise finding is that musicians had larger MMNm amplitudes for pitch 

and slide but not timbre or intensity compared to non-musicians. This is consistent with the 

literature, in which larger amplitudes have been consistently found for pitch-related deviants in 

musicians but less so for other features (Putkinen et al., 2014; Tervaniemi et al., 2014). This might 

reflect a focus on pitch discrimination as a core ability for musical experts and the fact that musical 

pitch is organized in rich multidimensional cognitive systems (Krumhansl, 1990), which is not the 

case for intensity or timbre.   

4.3. Source reconstruction 

As expected from the literature (Deouell, 2007), neural generators of the MMNm were located in 

primary and secondary bilateral auditory cortices. No prefrontal generators were observed, with 

the exception of the pitch MMNm for which there seemed to be a small source in the ventral part 

of BA6. This, however, could be caused by leakage of the temporal source. The location of the 



entropy effect for the pitch MMNm, which was anterior to the primary source, suggests that 

entropy affected the passing of prediction error responses from primary to secondary auditory 

cortex. This is consistent with predictive processing theories (Clark, 2016; Feldman & Friston, 

2010; Hohwy, 2013) that suggest an uncertainty-driven reduction in the gain of prediction error 

responses, which prevents them from driving inference and learning at higher levels of the cortical 

hierarchy (Griffiths & Warren, 2002). Moreover, this is partly consistent with results reported by 

Southwell and Chait (2018), who found reduced anterior temporal responses to deviant sounds in 

contexts with high as compared to low uncertainty. Note that other prefrontal sources were also 

found in that study which were not detected here. However, their results were based on EEG source 

reconstructions with no individual anatomical images, which may explain the differences in the 

sources found in the two studies. 

4.4. Behavioral experiment 

As mentioned above, the effect of entropy on accuracy and confidence scores was present in 

musicians as well. There was also a main effect of expertise in which musicians were better and 

more confident at discriminating the deviants, but there was no conclusive evidence for an entropy-

by-expertise interaction. Thus, behavioral measures were in agreement with the outcomes of the 

MEG experiment. Apart from these findings, two results deserve attention. First, pairwise 

differences were found between HE and IE1, and between intermediate conditions (e.g. IE1 and 

IE3) in both groups. This corroborates the finding that any of the two sources of uncertainty 

manipulated in the experiment, namely pitch-alphabet size and stimulus repetitiveness, can 

modulate prediction error separately. Second, c scores revealed a reduced bias in musicians for LE 

and IE1 conditions, indicating a higher rate of hits only for categories with the highest precision. 

Interestingly, for LE stimuli, some musicians systematically reported deviants when there were 



none, which suggests that the expectancy of a deviation might have occasionally induced the 

illusion of a mistuning. 

4.5. Limitations and future directions 

Since we used the same methods as in Quiroga-Martinez et al. (2019), the limitations already 

discussed in that work also apply to the current report. Briefly, these include the impossibility of 

disentangling the contribution of pitch-alphabet size and repetitiveness to the modulation of the 

MMNm; the different repetition rates of individual melodies in different conditions, which might 

have created different veridical expectations during stimulation; the difference in the distribution 

of pitches between conditions in the MEG experiment and its possible implications for the pitch 

MMNm; the measurement of uncertainty at the context level rather than on a note-by-note basis; 

the unusual listening situation—i.e. participants listening passively while watching a silent 

movie—which limits the generality of the findings; the rather artificial auditory context—even 

though our stimuli are much more realistic than in most MMN research; and the lack of a 

preregistration of our hypothesis and analysis plan—something that is partly overcome by the fact 

that we have now replicated our main findings and have openly shared materials, code and data. 

 

Despite these limitations, our work provides further evidence for the effect of uncertainty—or 

precision—on prediction error, which is consistent with an increasing number of empirical 

findings (Garrido et al., 2013; Hsu et al., 2015; Lumaca et al., 2019; Sedley et al., 2016; Sohoglu 

& Chait, 2016; Southwell & Chait, 2018), theories of predictive processing and models of music 

perception (Clark, 2016; Feldman & Friston, 2010; Hohwy, 2013; Ross & Hansen, 2016; Vuust et 

al., 2018). Furthermore, our findings confirm that MMNm responses can be reliably recorded in 



realistic paradigms where sounds constantly change, which constitutes a methodological 

improvement on existing approaches.  

 

Consequently, we hereby open the possibility of addressing questions about predictive processing 

and predictive uncertainty in more realistic and complex auditory environments. One possible 

future direction in this regard would be to elucidate where and how the modulation of prediction 

error takes place in the auditory frontotemporal network. Specifically, it would be interesting to 

address whether the precision-weighting effect arises from top-down or intrinsic connectivity, and 

whether neuromodulation plays a role (Auksztulewicz et al., 2018). Paradigms similar to the one 

presented here could be used in combination with connectivity measures, such as dynamic causal 

modelling (Moran, Pinotsis, & Friston, 2013), and intracranial recordings (e.g. Omigie et al., 2019) 

to address these questions. Moreover, for music research, methods such as these could be very 

informative about the nature of musical knowledge and musical expectations and how these are 

represented in the cortical hierarchy. Relatedly, this line of research could inform musical 

aesthetics, given that some musical styles exploit uncertainty as an artistic resource (Mencke, 

Omigie, Wald-Fuhrmann, & Brattico, 2019). Finally, the use of more realistic stimuli could help 

us understand how different types of musical stimuli (e.g. different styles) are processed by 

listeners of different backgrounds, something that we have started to address here with musical 

experts, but that could be extended, for example, to listeners from different cultures or with 

instrument-specific expertise.      

Conclusion 

In the present study we have shown that pitch prediction error responses in musical experts—as 

indexed by MMNm responses, accuracy scores, and confidence ratings—are reduced by pitch 



predictive uncertainty when listening to relatively complex and realistic musical stimuli. This 

suggests that our previous findings in non-musicians are robust and replicable and provides further 

support for theories of predictive processing which propose that neural responses to surprising 

stimuli are modulated by predictive uncertainty. Furthermore, our results show that, while 

musicians have generally larger prediction error responses, the uncertainty effect does not 

substantially change with expertise, thus pointing to separate long-term and short-term 

mechanisms of precision modulation. Overall, our work demonstrates that music, as a rich and 

multifaceted auditory signal, is an ideal means to improve our understanding of uncertainty and 

predictive processing in the brain. 
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Table 1. Participants’ demographic and musical expertise information in the two experiments. M 
= musicians, NM = non-musicians, Beh = behavioral. 
 

Experiment Group Age 
(mean) 

Age 
(SD) 

Female Male GMSI 
(mean) 

GMSI 
(SD) 

MET 
Mel 

(mean) 

MET 
Mel 
(SD) 

MET 
Rhy 

(mean) 

MET 
Rhy 
(SD) 

MET 
Total 

(mean) 

MET 
Total 
(SD) 

MEG NM 
(n=24) 

26.54 3.4 13 11 10.67 4.03 33.17 5.39 35.79 5.33 69.12 9.44 

M 
(n=26) 

24.15 2.89 10 16 35.96 6.57 41.5 4.43 40.77 4.55 82.27 8.35 

Beh NM 
(n=21) 

21.9 5.18 16 5 12.76 5.88 - - - - - - 

M 
(n=24) 

22.75 4.42 14 10 35.42 5.69 - - - - - - 

 
  



Table 2. Pairwise Bayesian contrasts between features for entropy-related MMNm amplitude 
differences in each group and hemisphere. NM = non-musicians, M = musicians, CI = credible 
interval, BF01 = Bayes factor in favor of the null, BF10 = Bayes factor in favor of the alternative, P 
= posterior probability of the null. Contrasts with moderate or strong evidence for either the null 
hypothesis or the alternative hypothesis are highlighted in bold and marked with a star (*). 
 

Hemisphere Expertise Contrast Estimate CI 2.4% CI 97.5% BF01 BF10 P 

Right 
 
 
 
 
 
 
 
 

NM 
 
 
 

pitch > slide -0.01 -3.02 3.01 1.96 0.51 0.66 

pitch > intensity 3.45 0.47 6.4 0.61 1.64 0.38 

pitch > timbre 5.97 2.96 8.98 0.02 60.09 0.02* 
slide > intensity 3.46 -0.29 7.14 0.85 1.18 0.46 

slide > timbre 5.98 2.17 9.8 0.1 10.39 0.09* 

intensity > timbre 2.52 -1.09 6.16 1.03 0.97 0.51 

M 
 
 
 

pitch > slide 1.41 -2.05 4.89 1.79 0.56 0.64 

pitch > intensity 3.15 -0.32 6.6 0.96 1.04 0.49 

pitch > timbre 5.58 2.12 9.07 0.06 17.11 0.06* 
slide > intensity 1.74 -2.28 5.77 2.92 0.34 0.75 

slide > timbre 4.17 -0.02 8.38 0.8 1.25 0.45 

intensity > timbre 2.43 -1.51 6.44 1.53 0.65 0.6 

Left 
 
 
 
 
 
 
 

NM 
 
 
 

pitch > slide -0.14 -3.88 3.66 3.02 0.33 0.75 

pitch > intensity 1.36 -2.34 5.07 3.57 0.28 0.78 

pitch > timbre 2.67 -1.09 6.51 2.4 0.42 0.71 

slide > intensity 1.5 -2.87 5.82 3.59 0.28 0.78 

slide > timbre 2.81 -1.72 7.3 2.48 0.4 0.71 

intensity > timbre 1.31 -3.01 5.61 3.31 0.3 0.77 

M 
 
 
 

pitch > slide 2.23 -2.63 6.95 1.35 0.74 0.57 

pitch > intensity 5.99 1.29 10.75 0.16 6.29 0.13* 
pitch > timbre 7.09 2.33 11.87 0.08 13.2 0.07* 

slide > intensity 3.76 -2.15 9.79 1.51 0.66 0.6 

slide > timbre 4.86 -1.09 10.98 1.09 0.91 0.52 

intensity > timbre 1.1 -4.67 6.95 2.46 0.41 0.71 
 

  



Table 3. Likelihood ratio tests for all models in the behavioral experiment. AIC = Akaike 
Information Criterion, LR= Likelihood ratio, Df = difference in degrees of freedom, con = 
continuous, cat = categorical. Significant contrasts are highlighted in bold and marked with a star 
(*). 

Measure Effect Comparison AIC LR (𝝌𝟐) Df p > LR 

d’ scores (categorical) 
 

null d0 576.28 - - - 

Entropy (cat) d1-d0 529.14 55.13 4 < .001* 

Expertise d1e-d1 505.15 26 1 < .001* 

Interaction d1i-d1e 504.06 9.09 4 0.06 

d’ scores 
(continuous) 

 

Entropy (con) d2-d0 524.68 53.6 1 < .001* 
Expertise d2e-d2 500.68 26 1 < .001* 
Interaction d2i-d2e 501.46 1.22 1 0.27 

c scores 
 
 

null cr0 369.81 - - - 
Entropy (cat) cr1-cr0 364.8 13.01 4 0.01* 

Expertise cr1e-cr1 365.61 1.19 1 0.28 
Interaction cr1i-cr1e 348.43 25.18 4 < .001* 

Confidence 
 
 

null co0 14660.73 - - - 
Entropy (cat) co1s-co0 14182.46 514.28 18 < .001* 

Expertise co1se-co1s 14179.11 5.34 1 0.02* 
Interaction co1si-co1se 14180.86 6.25 4 0.18 

 
  



Table 4. Bonferroni-corrected pairwise comparisons for d’-scores. Significant contrasts are 
highlighted in bold and marked with a star (*). CI = confidence interval, LE = low entropy, IE = 
intermediate entropy, HE = high entropy, M = musicians, NM = non-musicians. 

expertise contrast estimate CI 2.5% CI 97.5% t p Cohen's d 
NM 

 
 
 
 
 
 
 

LE > IE1 0.55 0.02 1.07 2.96 0.04* 0.93 
LE > IE2 0.54 0.01 1.06 2.91 0.04* 0.92 
LE > IE3 1.04 0.51 1.56 5.61 < .001* 1.77 
LE > HE 1.04 0.52 1.57 5.66 < .001* 1.79 
IE1 > IE2 -0.01 -0.53 0.52 -0.04 1 -0.01 
IE1 > IE3 0.49 -0.03 1.01 2.65 0.09 0.84 
IE1 > HE 0.5 -0.03 1.02 2.7 0.08 0.85 
IE2 > IE3 0.5 -0.03 1.02 2.7 0.08 0.85 
IE2 > HE 0.51 -0.02 1.03 2.74 0.07 0.87 
IE3 > HE 0.01 -0.52 0.53 0.04 1 0.01 

M 
 
 
 
 
 
 

LE > IE1 -0.11 -0.6 0.38 -0.64 1 -0.19 
LE > IE2 0.39 -0.1 0.88 2.25 0.25 0.67 
LE > IE3 0.52 0.03 1.01 3.02 0.03* 0.89 
LE > HE 0.66 0.17 1.15 3.81 < .001* 1.13 
IE1 > IE2 0.5 0.01 0.99 2.9 0.04* 0.86 
IE1 > IE3 0.63 0.14 1.12 3.67 < .001* 1.08 
IE1 > HE 0.77 0.28 1.26 4.46 < .001* 1.32 
IE2 > IE3 0.13 -0.36 0.62 0.77 1 0.23 
IE2 > HE 0.27 -0.22 0.76 1.56 1 0.46 
IE3 > HE 0.14 -0.35 0.63 0.79 1 0.23 

 
  



Table 5. Bonferroni-corrected pairwise comparisons for confidence ratings. Significant contrasts 
are highlighted in bold and marked with a star (*). CI = confidence interval, LE = low entropy, IE 
= intermediate entropy, HE = high entropy, M = musicians, NM = non-musicians. 

expertise contrast odds ratio CI 2.5% CI 97.5% z p 

NM 
 
 
 
 
 
 
 

LE > IE1 2.64 1.59 4.38 5.39 < .001* 
LE > IE2 4.24 2.09 8.59 5.74 < .001* 
LE > IE3 6.23 2.69 14.44 6.11 < .001* 
LE > HE 3.99 2.19 7.25 6.49 < .001* 
IE1 > IE2 1.6 0.84 3.08 2.03 0.42 
IE1 > IE3 2.36 1.04 5.35 2.94 0.03* 
IE1 > HE 1.51 0.82 2.79 1.88 0.6 
IE2 > IE3 1.47 0.96 2.24 2.57 0.1 
IE2 > HE 0.94 0.65 1.36 -0.46 1 
IE3 > HE 0.64 0.4 1.01 -2.74 0.06 

M 
 
 
 
 
 
 

LE > IE1 1.53 0.92 2.52 2.36 0.18 
LE > IE2 2.14 1.08 4.21 3.14 0.02* 
LE > IE3 3.56 1.6 7.92 4.46 < .001* 
LE > HE 2.79 1.56 4.99 4.96 < .001* 
IE1 > IE2 1.4 0.75 2.62 1.5 1 
IE1 > IE3 2.33 1.07 5.08 3.06 0.02* 
IE1 > HE 1.83 1.01 3.31 2.86 0.04* 
IE2 > IE3 1.67 1.1 2.52 3.48 0.01* 
IE2 > HE 1.31 0.9 1.89 2.02 0.43 
IE3 > HE 0.78 0.5 1.22 -1.54 1 

 

  



Table 6. Bonferroni-corrected contrasts of c scores between musicians and non-musicians for each 
condition. Significant contrasts are highlighted in bold and marked with a star (*). CI = confidence 
interval, LE = low entropy, IE = intermediate entropy, HE = high entropy, M = musicians, NM = 
non-musicians. 

condition contrast estimate CI 2.5% CI 97.5% t p Cohen's d 
LE NM - M 0.6 0.26 0.94 3.46 < .001* 1.41 
IE1 NM - M 0.35 0.01 0.7 2.05 0.04* 0.84 
IE2 NM - M -0.1 -0.44 0.25 -0.55 0.58 -0.22 
IE3 NM - M -0.19 -0.53 0.16 -1.08 0.28 -0.44 
HE NM - M 0.02 -0.32 0.36 0.1 0.92 0.04 

 



 
Figure 1. Examples of the individual melodies employed in A) the MEG and B) the behavioral 
experiment. Colored notes represent deviants (see online version for color display). LE = low 
entropy, IE = intermediate entropy, HE = high entropy. For the full stimulus set see Quiroga-
Martinez et al. (2019) and the online repository. 

  



 

 
 

Figure 2. Topographic maps of the MMNm for all features, groups, and conditions in A) 
magnetometers and B) gradiometers. The activity corresponds to an average of ±25 ms around the 
peak latency, which is shown above each plot. The slide MMNm is displayed in both early and 
late time windows (see Quiroga-Martinez et al., 2019 for an explanation of early and late effects 
in the slide MMNm). LE = low entropy, HE = high entropy, M = musicians, N = non-musicians. 

  



 

 
Figure 3. MMNm amplitudes for low-entropy (LE) and high-entropy (HE) conditions and the 
difference between conditions in both groups. The displayed activity corresponds to the average 
of the four right temporal combined gradiometers with the largest amplitude (channels 1342-1343, 
1312-1313, 1322-1323 and 1332-1333). Gray lines depict individual MMNm responses. Shaded 
gray areas indicate 95% confidence intervals. Dashed vertical lines mark the onset of the next tone. 
Topographic maps show activity ±25 ms around the peak difference. For descriptive purposes, 
green horizontal lines indicate when this difference was significant, according to the permutation 
tests (see online version for color display). Note, however, that this is not an accurate estimate of 
the true extent of the effect (Sassenhagen & Draschkow, 2019). 
  



 
 
Figure 4. Activity related to the main effect of expertise and the entropy-by-expertise 
interaction—i.e. difference between low-entropy and high-entropy MMNm amplitudes for 
musicians and non-musicians. The displayed activity corresponds to the average of the four right 
temporal combined gradiometers with the largest amplitude (channels 1342-1343, 1312-1313, 
1322-1323 and 1332-1333). Shaded areas indicate 95% confidence intervals. Dashed vertical lines 
mark the onset of the next tone. Topographic maps show activity ±25 ms around the peak 
difference. For descriptive purposes, green horizontal lines indicate when this difference was 
significant (see online version for color display). Note, however, that this is not an accurate 
estimate of the true extent of the effect (Sassenhagen & Draschkow, 2019). 
 
 



 
Figure 5. A) Bayesian estimates of the mean gradient MMNm amplitude differences between 
high-entropy (HE) and low entropy (LE) conditions for each group. Error bars represent 95% 
credible intervals. B) Posterior probability densities of the differences in the entropy effect 
between musicians and non-musicians (i.e. entropy-by-expertise interaction) for each hemisphere 
and feature. Shaded areas depict 95% credible intervals. NM = non-musicians, M = musicians, 
BF01 = Bayes factor in favor of the null, p = posterior probability of the null. 
 



 
Figure 6. Statistical maps of the source reconstruction for A) the MMNm for each feature and 
condition and B) the effect of entropy on pitch MMNm responses. Clusters are thresholded at p < 
.05 after multiple-comparisons correction. Clusters for the entropy effect are marked with a circle. 
Participants from both groups (musicians and non-musicians) were included in the statistical tests. 
P = pitch, S = slide, I = intensity, T = timbre. 

 
 



 
Figure 7. A) d’ scores, B) c scores and C) confidence ratings—expressed as the probability of 
response for each confidence category. Note how the number of higher ratings (e.g. 7) tended to 
decrease, and the number of lower ratings (e.g. 1) tended to increase, with increasing entropy 
levels. Also note how musicians were more confident or certain overall. All parameter values were 
taken from maximum likelihood estimates. For d’ scores, the slopes of the continuous (d2i) model 
are also plotted as dashed lines. Error bars and shaded areas represent 95% confidence intervals. 
M = musicians, NM = non-musicians, LE = low entropy, IE = intermediate entropy, HE = high 
entropy. 
 
 
 



 
 

Figure 8. Bayesian posterior probability densities for the entropy-by-expertise interaction 
parameters—i.e. expertise-related modulation of the comparisons LE-IE1, LE-IE2, LE-IE3, LE-
HE and the slope of the continuous model. Densities for (A) categorical and (C) continuous mixed 
models of d’ scores, as well as (B) a cumulative-link mixed model of confidence ratings are 
displayed. Shaded areas represent 95% credible intervals. Since accuracy and confidence generally 
decreased with higher entropy levels, positive parameter values indicate smaller differences 
between conditions for musicians compared to non-musicians. BF01 = Bayes factor in favor of the 
null, p = posterior probability of the null, LE = low entropy, IE = intermediate entropy, HE = high 
entropy. 

 
 


