
Incomplete Yamabe flows
and removable singularities

Mario B. Schulz
Queen Mary University of London, School of Mathematical Sciences,

Mile End Road, London E1 4NS, United Kingdom

26 December 2019

We study the Yamabe flow on a Riemannian manifold of dimension
m ≥ 3 minus a closed submanifold of dimension n and prove that there
exists an instantaneously complete solution if and only if n > m−2

2 . In the
remaining cases 0 ≤ n ≤ m−2

2 including the borderline case, we show that
the removability of the n-dimensional singularity is necessarily preserved
along the Yamabe flow. In particular, the flow must remain geodesically
incomplete as long as it exists. This is contrasted with the two-dimensional
case, where instantaneously complete solutions always exist.
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1. Introduction

Let (M, g0) be any Riemannian manifold of dimension m ≥ 3. We do not necessarily
assume that M is compact or complete. However, we always implicitly assume that
manifolds and Riemannian metrics are smooth. A family (g(t))t∈[0,T [ of Riemannian
metrics on M is called Yamabe flow with initial metric g0 if{

∂
∂t
g(t) = −Rg(t) g(t) in M × [0, T [,
g(0) = g0 on M,

(1)

where Rg(t) denotes the scalar curvature of the Riemannian manifold (M, g(t)). Hamil-
ton [10] introduced the Yamabe flow in 1989 as an alternative approach to the Yamabe
problem which states that any closed Riemannian manifold (M, g) admits a conformal
metric of constant scalar curvature. We call a Riemannian metric g̃ on M conformal
to g if there exists a positive function u ∈ C∞(M) such that g̃ = ug and we call a
manifold closed if it is compact without boundary. The Yamabe problem was solved
by Schoen [20] in 1984 after work of Yamabe [29], Trudinger [28] and Aubin [1] based
on variational methods.

Hamilton [10] proved that given any closed Riemannian manifold (M, g0), there
exists a unique solution (g(t))t∈[0,T [ to equation (1) for some T > 0. On noncompact
manifolds however, the well-posedness of the Yamabe flow is more subtle especially
in the case that (M, g0) is geodesically incomplete.

On arbitrary two-dimensional manifolds the Yamabe flow coincides with the Ricci
flow and the well-posedness theory of Giesen and Topping [26, 7, 8, 27] applies. We
summarise their results in the following statement.

Theorem 1 (Giesen–Topping [8], Topping [27]). Let (M, g0) be any smooth, connected
surface. Then there exists a unique solution (g(t))t∈[0,T [ of equation (1) onM satisfying

(I) g(0) = g0,

(II) (M, g(t)) is geodesically complete for every t > 0.

Remarkably, the initial surface (M, g0) is not assumed to be compact or complete.
Property (II) is called instantaneous completeness. Uniqueness fails without restriction
to the class of instantaneously complete flows, as the following example shows.

Example (Topping [26]). Let g0 be the Euclidean metric restricted to

(a) the unit disc M = {x ∈ R2 | |x| < 1},

(b) the punctured plane M = R2 \ {0}.
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In both cases (a) and (b), the Riemannian manifold (M, g0) is geodesically incomplete
and (g(t))t∈[0,∞[ given by g(t) = g0 for all t ≥ 0 is a constant Yamabe flow on M
because Rg0 vanishes identically. However, this flow is not unique. In either case, there
exists an instantaneously complete Yamabe flow (g(t))t∈[0,∞[ on M with g(0) = g0
and according to Theorem 1, this flow is unique in the class of Yamabe flows on M
satisfying (I) and (II).

1.1. Main result

In [23, 24, 25] the author investigated the existence and uniqueness of Yamabe flows
on noncompact manifolds of dimension m ≥ 3 and proved that instantaneously
complete Yamabe flows exist unconditionally if the initial manifold is conformal to
hyperbolic space. In general however, and in contrast with the two-dimensional case,
it is possible that problem (1) does not allow any instantaneously complete solution if
the initial manifold (M, g0) is incomplete. A conformally flat example is the punctured
sphere: According to [23, Theorem 3], any Yamabe flow starting from the punctured
round sphere of dimension m ≥ 3 must remain geodesically incomplete as long as
the flow exists. In this article we generalise this observation to arbitrary manifolds
of dimension m ≥ 3 and show that the statement is still true if we remove not only
a point but a low-dimensional submanifold. More precisely, we prove the following
sharp result.
Theorem 2. Let (M, g0) be a closed Riemannian manifold of dimension m ≥ 3 and
let ∅ 6= N ⊂M be a closed submanifold of dimension n ≥ 0.

(i) If n > m−2
2 then an instantaneously complete Yamabe flow (g(t))t∈[0,∞[ on M \N

with g(0) = g0 exists.

(ii) If n ≤ m−2
2 then any Yamabe flow with initial data (M \N, g0) is incomplete and

uniquely given by the restriction of the Yamabe flow with initial data (M, g0).
Remark. Theorem 2 states that the removability of n-dimensional singularities is
necessarily preserved along the Yamabe flow on closed manifolds of dimension m ≥ 3
if and only if n ≤ m−2

2 . The borderline case n = m−2
2 for even m ≥ 4 is particularly

delicate. Moreover, Theorem 2 does not extend to the case m = 2 and n = 0
because on surfaces instantaneously complete Yamabe flows always exist according
to Theorem 1. The removed submanifold N is not assumed to be connected, i. e. if
n = 0 then N ⊂M is a finite set of points. In case (i) the uniqueness in the class of
instantaneously complete Yamabe flows with initial metric g0 is still open in general.

The Yamabe flow has been studied on incomplete manifolds by Bahuaud and Vertman
[3, 4] who proved short-time existence and uniqueness of solutions to equation (1) in
a suitable class of flows which preserve the incompleteness. In Theorem 2 (ii), we
allow any flow satisfying the initial condition and do not require further restrictions.
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1.2. Similarities with the singular Yamabe problem

Theorem 2 can be interpreted as parabolic analogue of several known results about
elliptic (Yamabe-type) equations. Most notably, the threshold m−2

2 also appears in
the “singular Yamabe problem” which we formulate on the sphere:
Theorem 3 (Singular Yamabe problem [14, 21, 22, 16, 17]). Let (Sm, gSm) be the
standard sphere of dimension m ≥ 3 and let N ⊂ Sm be a closed submanifold of
dimension n ≥ 1.

(i) If n > m−2
2 then there exists a complete, conformal metric on Sm \ N with

constant negative scalar curvature.

(ii) If n ≤ m−2
2 then there exists a complete, conformal metric on Sm \ N with

constant positive scalar curvature.

Loewner and Nirenberg [14] studied case (i) of Theorem 3. Moreover, they proved
[14, Theorem 7] that given any open domain Ω ⊂ Rm, compact subsets N ⊂ Ω of
Hausdorff dimension n < m−2

2 are removable sets for positive solutions of the equation

∆u = u
m+2
m−2

and conjectured that the result extends to the borderline case n = m−2
2 . For the proof

of Theorem 2 it is relevant that the statement of Theorem 3 (i) holds on any compact
Riemannian manifold in place of the sphere:
Theorem 4 (Aviles–McOwen [2]). Let (M, g) be a compact Riemannian manifold
of dimension m ≥ 3 and let N ⊂M be a closed submanifold of dimension n. Then
there exists a complete, conformal metric ĝ on M \N with constant negative scalar
curvature if and only if n > m−2

2 .

On the other hand, Schoen and Yau [22, Theorem 2.7] showed that if M ⊂ Sm is a
domain in the sphere and M has a complete, conformal metric g with scalar curvature
Rg ≥ 1, then the Hausdorff dimension of the boundary ∂M is at most m−2

2 (which
in particular implies that the closure of M must be all of Sm). Hence, the condition
n ≤ m−2

2 is necessary in Theorem 3 (ii). Moreover, Schoen [21] studied the case where
N ⊂ Sm is a finite set of at least two points. In the setting of Theorem 3 (ii), Pacard
[18] considered the borderline case n = m−2

2 for even m first and then solved the
singular Yamabe problem for n ≤ m−2

2 in joint work with Mazzeo [16, 17].

A variant of the singular Yamabe problem asks for complete conformal metrics with
vanishing scalar curvature. Ma and McOwen [15] generalised work of Lee and Parker
[13] and Jin [11] and proved that if (M, g) is a compact Riemannian manifold of
dimensionm ≥ 3 with positive Yamabe invariant and if N ⊂ N is a closed submanifold
of dimension n ≤ m−2

2 then M \N admits a complete conformal metric with constant
zero scalar curvature.
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2. Preliminaries and Notation

The conformal class of the initial metric g0 is preserved under the Yamabe flow.
In fact, any solution (g(t))t∈[0,T [ of problem (1) is of the form g(t) = u(·, t)g0 with
conformal factor u : M × [0, T [→ ]0,∞[ satisfying{

∂
∂t
u = −Rgu in M × ]0, T [,
u = 1 on M × {0}.

(2)

Lemma 2.1. Let (M, g) be a Riemannian manifold of dimension m ≥ 3 and let
g̃ = U

4
m−2 g be a conformal metric on M . Then the scalar curvature of (M, g̃) is

Rg̃ = U−
m+2
m−2

(
RgU − 4m−1

m−2∆gU
)
.

One of many references containing a proof of Lemma 2.1 is [19, § 18]. Depending on
the dimension m ≥ 3 of the manifold M we introduce the exponent

η := m− 2
4 (3)

and apply Lemma 2.1 in (2) to show that U = uη solves the parabolic equation

1
m− 1

∂U

∂t
=
(
− m− 2

4(m− 1)Rg0U + ∆g0U
)
U−

1
η (4)

or equivalently,

1
η + 1

∂U1+ 1
η

∂t
= −Rg0U + m− 1

η
∆g0U. (5)

Lemma 2.2. Let (M, g) be a Riemannian manifold of dimension m and let N ⊂M
be a closed submanifold of dimension 0 ≤ n < m. Let r : M → [0,∞[ measure the
Riemannian distance from N . Then, as r → 0,

r∆gr = m− n− 1 +O(r).

Proof. The convergence r∆gr → m− n− 1 as r → 0 is shown in [14, (5.5)] for the
case that (M, g0) is Euclidean space and can also be verified in this more general
setting by a similar computation. Since r2 is smooth in some neighbourhood of N and
∆gr

2 = 2 + 2r∆gr we may conclude that the error term O(r) is bounded uniformly
by a function linear in r.

The next lemma is related to results by Escobar [6] but we provide a self-contained
proof. In the following, we say that two Riemannian metrics g and g0 on M are
comparable if there exist constants c2 ≥ c1 > 0 such that c1g ≤ g0 ≤ c2g.
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Lemma 2.3. Let (M, g0) be any Riemannian manifold of dimension m ≥ 3 and
let N ⊂ M be a closed submanifold of dimension 0 ≤ n < m. Then there exist a
neighbourhood Ω ⊂ M of N and a Riemannian metric g on M which is conformal
and comparable to g0 such the scalar curvature of (M, g) vanishes in Ω.

Proof. Let Bε(x) be the metric ball of radius 0 < ε ≤ 1 around x in (M, g0) and let

Ωε :=
⋃
x∈N

Bε(x).

According to Lemma 2.1 the scalar curvature of g = U
4

m−2 g0 vanishes in Ωε if−∆g0U + m−2
4(m−1)Rg0U = 0 in Ωε,

U = 1 on ∂Ωε.
(6)

We consider the affine space X = 1 +H1
0 (Ωε) and the energy E : X → R given by

E(U) =
∫

Ωε
|∇U |2g0

+ m−2
4(m−1)Rg0U

2 dµg0 .

By Young’s inequality, there exists a finite constant C > 0 depending only on infΩ1 Rg0

and m but not on ε or U such that

E(U) ≥
∫

Ωε
|∇U |2g0

dµg0 − C(U − 1)2 − C dµg0 .

We claim that E is coercive if ε > 0 is sufficiently small. Let

λε = inf
u∈H1

0 (Ωε)

∫
Ωε|∇u|

2
g0
dµg0∫

Ωε u
2 dµg0

be the smallest Dirichlet eigenvalue of −∆g0 on Ωε. Given any U ∈ X we have
U − 1 ∈ H1

0 (Ωε) and hence

E(U) ≥
∫

Ωε

(
1− C

λε

)
|∇U |2g0

− C dµg0 .

Coercivity of E for sufficiently small ε > 0 follows provided that λε →∞ as ε↘ 0.
Indeed, if uε ∈ H1

0 (Ωε) is a corresponding eigenfunction which is normalised to
‖uε‖2

L2(Ωε) = 1 such that λε = ‖∇uε‖2
L2(Ωε) then by Hölder’s and Sobolev’s inequality

1 =
∫

Ωε
u2
ε dµg0 ≤

(∫
Ωε
dµg0

) 2
m
(∫

Ωε
|uε|

2m
m−2 dµg0

)m−2
m

≤
(∫

Ωε
dµg0

) 2
m

Sλε. (7)

The Sobolev constant S does not depend on 0 < ε ≤ ε0 if we extend each uε by zero
to Ωε0 and apply Sobolev’s inequality there. The volume of Ωε however converges to
zero as ε↘ 0 and λε →∞ follows according to (7).
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By the argument above, there exists some ε > 0 such that E is coercive. Since E is
also weakly sequentially lower semi-continuous, E attains its minimum at some U ∈ X
which satisfies the corresponding Euler–Lagrange equation (6). Since E(U) = E(|U |)
we may assume U ≥ 0. By elliptic regularity theory, U is smooth up to the boundary
of Ωε and strictly positive by the strong maximum principle. Below, we show that U
can be extended to a smooth, uniformly bounded function U : M → ]0,∞[. We may
then conclude the proof by setting Ω := Ωε and

g = U
4

m−2 g.

Following the proof of the extension lemma [12, Lemma 2.27] we choose for each
point p in the closure Ω of Ω a neighbourhood Wp ⊂ Ω2ε of p together with a smooth
function Ũp : Wp → R which agrees with U on Wp ∩ Ω. By shrinking Wp if necessary,
we may assume that Ũp satisfies 0 < 1

2 infΩ U ≤ Ũp ≤ 2 supΩ U for each p ∈ Ω. Let
{ψp | p ∈ Ω}∪{ψ0} be a smooth partition of unity (in the sense of [12, Theorem 2.25])
subordinate to the open cover {Wp | p ∈ Ω} ∪ {M \ Ω} of M , where suppψp ⊂ Wp

and suppψ0 ⊂M \ Ω, and define

U := ψ0 +
∑
p∈Ω

ψpŨp.

The sum has only a finite number of nonzero terms in a neighbourhood of any point of
M since the collection of supports {suppψp | p ∈ Ω} is locally finite. By construction,
the function U agrees with U in Ω, it is constant and equal to 1 in M \ Ω2ε and it is
bounded from above and below by positive constants depending on U .

3. Boundedness

Theorem 2 (ii) is based on the following local upper bound.
Theorem 5. Let (M, g0) be any open Riemannian manifold of dimension m ≥ 3 and
let N ⊂M be any closed submanifold of dimension 0 ≤ n ≤ m−2

2 . Let (g(t))t∈[0,T ] be
any Yamabe flow on M \N with g(0) = g0. Then there exists a constant C > 0 such
that g(t) ≤ Cg0 holds for all t ∈ [0, T ] in some neighbourhood of N .
Remark. Theorem 5 already implies that every Yamabe flow (g(t))t∈[0,T ] on M \N
with g(0) = g0 must be geodesically incomplete for all t ∈ [0, T ]. The intuition
for Theorem 5 is that conformally opening up the edge N generates positive scalar
curvature near N which prevents the Yamabe flow from expanding further. In fact,
our argument is based on the construction of such a conformal background metric.

Since we allow the manifold M to be noncompact and do not make any further
assumption, it is unknown whether any Yamabe flow on M with initial metric g0
exists. Therefore, existence is not part of the claim of Theorem 5.
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3.1. The key idea

Let (M, g0) be an open Riemannian manifold of dimension m ≤ 3 and let N ⊂M be
a closed submanifold of dimension n ≤ m−2

2 . According to Lemma 2.3, there exist a
neighbourhood Ω ⊂ M of N and a Riemannian metric g on M which is conformal
and comparable to g0 such the scalar curvature of (M, g) vanishes in Ω. Let Bδ(x)
denote the metric ball of radius δ > 0 around the point x in (M, g) and let

Ωδ :=
⋃
x∈N

Bδ(x).

Let r : M → [0,∞[ be the distance from N in (M, g). Since N is smooth and closed,
there exists some δ > 0 such that r2 restricted to Ωδ is smooth. We may assume that
δ > 0 is sufficiently small such that Ωδ ⊂ Ω which means that Rg = 0 in Ωδ.

Let f ∈ C∞(M \N) be a positive function to be chosen, let η = m−2
4 as in (3) and let

g̃ = f g on M \N. (8)

Since Rg = 0 in Ωδ, Lemma 2.1 applied to (8) respectively g = f−1g̃ yields

−f−η−1∆gf
η = ηRg̃

m− 1 = f η∆g̃f
−η in Ωδ \N . (9)

Let (g(t))t∈[0,T ] be any Yamabe flow on M \N with g(0) = g0. Since g̃ is conformal
to g0 on M \N , there exists a function U : (M \N)× [0, T ]→ ]0,∞[ such that

g(t) = U(·, t)
1
η g̃.

We combine (4) and (9) to obtain

1
m− 1

∂U

∂t
=
(
− ηRg̃

m− 1U + ∆g̃U
)
U−

1
η

=
(
− ηRg̃

m− 1(U − cf−η) + ∆g̃(U − cf−η)
)
U−

1
η (10)

in (Ωδ \N)× [0, T ] with an arbitrary constant c ∈ R. Equation (10) is the central
step in the proof and reveals the key idea: If we show U(·, t) ≤ cf−η for some c > 0
and all t ∈ [0, T ], then, since g and g0 are comparable, we obtain

g(t) ≤ c
1
η f−1g̃ = c

1
η g ≤ Cg0 in Ωδ \N . (11)
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3.2. Low-dimensional singularities

To implement the key idea, we require the metric g̃ defined in (8) to be geodesically
complete towards N with positive scalar curvature in Ωδ \N . This is easier to achieve
if the dimension n of the submanifold N is strictly below the threshold m−2

2 . Choosing
f = r−2 in Ωδ \N , equation (9) implies

Rg̃ = −m− 1
η

r2η+2∆gr
−2η = −(m− 1)

(
m− 2r∆gr

)
(12)

in Ωδ \N , where we computed 2(2η + 1) = m. By Lemma 2.2,

Rg̃ = (m− 1)
(
m− 2− 2n+ 2O(r)

)
(13)

as r → 0. If δ > 0 is sufficiently small and n < m−2
2 then (13) is positive in Ωδ \N .

Let χ : R→ [0, 1] be a smooth, nonincreasing cutoff function satisfying χ(s) = 1 for
s ≤ 1 and χ(s) = 0 for s ≥ 2. We recall r = distg(x,N) and g̃ = f g with f = r−2.
Given ε > 0 the function ρ : Ωδ \N → ]0,∞[ defined by

ρ(x) = ε distg̃(x, ∂Ωδ) (14)

satisfies ∂
∂r
ρ = −ε

√
f and ρ(x)→∞ as r(x)→ 0. Let ϕ : Ωδ → [0, 1] be defined by

ϕ = χ ◦ ρ. (15)
Then,

∂ϕ

∂r
= −ε

√
f χ′ ◦ ρ,

∂2ϕ

∂r2 = ε2f χ′′ ◦ ρ− ε∂
√
f

∂r
χ′ ◦ ρ.

Recalling how the gradient and the Laplacian of a function transform under a conformal
change of the metric (see e. g. [5, § 1.J]), we compute

|∇ϕ|2g̃ = 1
f
|∇ϕ|2g = 1

f

∣∣∣∣∂ϕ∂r
∣∣∣∣2 = ε2|χ′ ◦ ρ|2, (16)

∆g̃ϕ = 1
f

∆gϕ+ m− 2
2f 2 〈∇f,∇ϕ〉g

= 1
f

∂2ϕ

∂r2 + 1
f

∂ϕ

∂r
∆gr + (m− 2)

2f 2
∂f

∂r

∂ϕ

∂r

= ε2χ′′ ◦ ρ−
(

(m− 1) 1
f

∂
√
f

∂r
+ ∆gr√

f

)
εχ′ ◦ ρ (17)

9
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Since f = r−2 the factor

−
(

(m− 1) 1
f

∂
√
f

∂r
+ ∆gr√

f

)
= (m− 1)− r∆gr = n+O(r) (18)

is bounded uniformly in Ωδ \N by Lemma 2.2. In particular, by choosing the cutoff
function χ appropriately (see [23, Lemma A.4]), there exists a constant C such that

(2|∇ϕ|2g̃
ϕ

−∆g̃ϕ
)
≤ Cεϕ1− 1

η . (19)

After fixing δ > 0 such that Rg̃ > 0 in Ωδ \N , we choose c > 0 such that

U ≤ V := cf−η on (Ωδ \N × {0}) ∪ (∂Ωδ × [0, T ]). (20)

This is possible, since the construction

g0 = U(·, 0)
1
η g̃ =

(
U(·, 0)f η

) 1
η g

implies that U(·, 0)f η is uniformly bounded in Ωδ \ N . Moreover, we could prove
local upper bounds for U as in [25, Lemma 7] to estimate c in terms of the dimension
m, the final time T , the initial data U(·, 0) and δ. The latter two depend only on g0.
Based on (10), we compute

1
m− 1

∂(U − V )ϕ
∂t

=
(
− ηRg̃ϕ

m− 1(U − V ) + ϕ∆g̃(U − V )
)
U−

1
η

= − ηRg̃ϕ

m− 1(U − V )U−
1
η + U−

1
η∆g̃

(
(U − V )ϕ

)
(21)

− U−
1
η

〈
∇
(
(U − V )ϕ

)
,∇ϕ

〉
g̃

+
(2|∇ϕ|2g̃

ϕ
−∆g̃ϕ

)
U−

1
η (U − V ).

The final argument is the same as for [23, Proposition 2.1] but we repeat it for clarity:
By construction, the function w : [0, T ]→ [0,∞[ given by

w(t) = max
Ωδ\N

((
(U − V )ϕ

)
(·, t)

)

is well defined and for each t0 ∈ ]0, T ] there exists an interior point q0 ∈ Ωδ \N such
that w(t0) =

(
(U − V )ϕ

)
(q0, t0). If w(t0) > 0, then

(
U−

1
η (U − V )

)
(q0, t0) ≤

(
(U − V )1− 1

η

)
(q0, t0). (22)

10
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Only the last term in equation (21) can be positive at (q0, t0) since q0 ∈ Ωδ \ N is
an interior maximum of (U − V )ϕ(·, t0) and Rg̃ > 0 by (13). In combination with
estimates (19) and (22) we obtain

lim sup
τ↘0

w(t0)− w(t0 − τ)
τ

≤ lim sup
τ↘0

((U − V )ϕ)(q0, t0)− ((U − V )ϕ)(q0, t0 − τ)
τ

= ∂(U − V )ϕ
∂t

(q0, t0)

≤ (m− 1)Cε
(
(U − V )ϕ

)1− 1
η (q0, t0) = (m− 1)Cε

(
w(t0)

)1− 1
η . (23)

Since w(0) = 0 by (20), Lemma A.2 stated in the appendix yields w(t) ≤ (m−1
η
εCt)η

for every t ∈ [0, T ]. Letting ε ↘ 0 such that ϕ → 1 pointwise proves U ≤ V in
(Ωδ \N)× [0, T ] and (11) follows.

3.3. The borderline case

In the borderline case n = m−2
2 the scalar curvature (13) is not necessarily positive.

To overcome this obstruction, we choose the conformal factor f more carefully:

f = r−2(− log r)− 2
3 in Ωδ \N .

By (9) we have

−Rg̃

m− 1 = 1
η
f−η−1∆gf

η

= f−2∆gf + (η − 1)f−3|∇f |2g

= f−2∂
2f

∂r2 + f−2∂f

∂r
∆gr + (m− 6)

4 f−3
(
∂f

∂r

)2
. (24)

Therefore, we compute

∂f

∂r
= 2(1 + 3 log r)

3r3(− log r) 5
3

=
(

2
3(− log r)− 1

3 − 2(− log r) 2
3
)
rf 2, (25)

∂2f

∂r2 =
(

10
9 (− log r)− 4

3 − 10
3 (− log r)− 1

3 + 6(− log r) 2
3
)
f 2, (26)

(
∂f

∂r

)2
= 4

9(1 + 3 log r)2(− log r)− 4
3f 3

= 4
(

1
9(− log r)− 4

3 − 2
3(− log r)− 1

3 + (− log r) 2
3
)
f 3 (27)

11
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and insert (25), (26), (27) in (24) which yields

−Rg̃

m− 1 =
(10

9 + (m− 6)
9

)
(− log r)− 4

3

+
(
−10

3 + 2
3(r∆gr)−

2(m− 6)
3

)
(− log r)− 1

3

+
(

6− 2(r∆gr) + (m− 6)
)

(− log r) 2
3

= m+ 4
9(− log r) 4

3
− 2(n−O(r))

3(− log r) 1
3
−
(
m− 2− 2n+ 2O(r)

)
(− log r) 2

3 (28)

using the formula r∆gr = m− n− 1 +O(r) from Lemma 2.2. In the case n = m−2
2 ,

the second term in (28) dominates the first and third term as r → 0 which implies
that Rg̃ > 0 in Ωδ \N if δ > 0 is chosen sufficiently small.

Given 0 < ε < 1 we define ρ(x) = ε distg̃(x, ∂Ωδ) and ϕ = χ ◦ ρ as in (14) and (15).
For sufficiently small δ > 0, we may replace (18) by the estimate

−
(

(m− 1) 1
f

∂
√
f

∂r
+ ∆gr√

f

)
= (m− 1)

(
(− log r) 1

3 − 1
3(− log r)− 2

3
)
−
(
m− n− 1 +O(r)

)
(− log r) 1

3

= 1−m
3(− log r) 2

3
+
(
n−O(r)

)
(− log r) 1

3 ≤ n(− log r) 1
3 . (29)

We now fix δ > 0 such that all the estimates described above are satisfied in Ωδ \N .
In the support of ϕ = χ ◦ ρ we have by definition

2 ≥ ρ = ε
∫ δ

r

1
s(− log s) 1

3
ds = 3ε

2
(
(− log r) 2

3 − (− log δ) 2
3
)

and hence (− log r) 2
3 ≤ 4

3ε + (− log δ) 2
3 . Assuming 0 < ε ≤ 2

3(− log δ)− 2
3 we obtain

(− log r) 1
3 ≤

√
2
ε
. (30)

We combine (30) and (29) in (17) and recall χ′ ≤ 0 to conclude

∆gϕ ≥ ε2χ′′ ◦ ρ+ n
√

2ε χ′ ◦ ρ.

Consequently, estimate (19) with
√
ε instead of ε holds also in the borderline case

and we may complete the proof of Theorem 5 as before.

12
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4. Preservation of removability

In this section, we prove Theorem 2. Our approach for part (ii) is inspired by the
energy method Topping [27] used to prove the uniqueness part in Theorem 1 and by
the generalisation of this approach to higher dimensions established in [23, § 2.2].

Proof of Theorem 2. (i) Let (M, g0) be a closed Riemannian manifold of dimension
m ≥ 3 and let N ⊂ M be a closed n-dimensional submanifold. By Theorem 4, the
condition n > m−2

2 is equivalent to the existence of a complete conformal metric ĝ
on M \ N with constant negative scalar curvature. In [25] the author proves the
existence of instantaneously complete Yamabe flows on hyperbolic space starting
from any given conformally hyperbolic initial metric. The approach is based on an
exhaustion of the complete background manifold with smooth, bounded domains
and exploits only the negativity of the background scalar curvature and general local
upper and lower bounds for Yamabe flows [25, Lemmata 5 and 7]. Therefore, we may
replace hyperbolic space by (M \N, ĝ) and use exactly the same arguments as in [25]
to construct an instantaneously complete Yamabe on M \N with initial metric g0.

(ii) Let (g(t))t∈[0,T0] be a Yamabe flow on M \N with g(0) = g0. Since M is closed,
there exists T̃ > 0 and a unique Yamabe flow (g̃(t))t∈[0,T̃ ] on M with g̃(0) = g0 by the
results of Hamilton [10]. Let T = min{T0, T̃} and let u, ũ : (M \N)× [0, T ]→ ]0,∞[
be such that g(t) = u(·, t)g0 and g̃(t) = ũ(·, t)g0 in M \N for every t ∈ [0, T ].

SinceM and N are closed, Theorem 5 implies that u is uniformly bounded from above
in the noncompact manifold (M \N)× [0, T ]. The same holds for ũ, since it is the
restriction of a smooth function on a compact manifold. Additionally, infM×[0,T ] ũ > 0.
Both, uη and ũη are solutions to the equation (5), i. e.

1
η + 1

∂uη+1

∂t
= −Rg0u

η + m− 1
η

∆g0u
η

where η = m−2
4 as in (3). Let w := uη+1 − ũη+1 and w+(x, t) := max{w(x, t), 0}.

Given 0 ≤ ϕ ∈ C∞c (M \N) we study the evolution of

J(t) =
∫
M
w+(·, t)ϕdµg0 .

For every fixed t ∈ ]0, T ] and every 0 < τ < t we have

J(t)− J(t− τ) =
∫
M
w+(·, t)ϕdµg0 −

∫
M
w+(·, t− τ)ϕdµg0

≤
∫
{w(·,t)>0}

(
w+(·, t)− w+(·, t− τ)

)
ϕdµg0

≤
∫
{w(·,t)>0}

(
w(·, t)− w(·, t− τ)

)
ϕdµg0

13
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and obtain

Ψ(t) := lim sup
τ↘0

J(t)− J(t− τ)
τ

≤ lim sup
τ↘0

∫
{w(·,t)>0}

1
τ

(
w(·, t)− w(·, t− τ)

)
ϕdµg0

=
∫
{w(·,t)>0}

∂w

∂t
(·, t)ϕdµg0

= (η + 1)
∫
{w(·,t)>0}

(uη − ũη)(·, t)(−Rg0)ϕdµg0 (31)

+ (η + 1)m− 1
η

∫
{w(·,t)>0}

ϕ∆g0(uη − ũη)(·, t) dµg0 .

Let f := (uη − ũη)(·, t). For any 0 ≤ ϕ ∈ C∞c (M \N) there holds∫
{f>0}

(ϕ∆g0f − f∆g0ϕ) dµg0 ≤ 0 (32)

as shown in [23, § 2.2]. For convenience of the reader, we repeat the argument: Let
(mk)k∈N be a sequence of regular values for f such that mk ↘ 0 as k → ∞. Then,
{f > mk} ⊂ M is a regular, open set with outer unit normal ν in the direction of
−∇f . By Green’s formula∫

{f>mk}

(
ϕ∆g0f − f∆g0ϕ

)
dµg0 =

∫
∂{f>mk}

(
ϕ〈∇f, ν〉g0

− f〈∇ϕ, ν〉g0

)
dσ

≤ −mk

∫
∂{f>mk}

〈∇ϕ, ν〉g0
dσ

= −mk

∫
{f>mk}

∆g0ϕdµg0

≤ mk

∫
M
|∆g0ϕ| dµg0 .

Passing to the limit k →∞ proves (32) since (M, g0) is closed.

For any pair a, b of real numbers satisfying 0 < a ≤ b, there holds

bη − aη = bηa− aη+1

a
≤ bη+1 − aη+1

a
, (33)

bη − aη = bη+1 − aηb
b

≤ bη+1 − aη+1

b
. (34)

Since w(·, t) > 0 implies u(·, t) > ũ(·, t) we may apply (33) with a = ũ(x, t) and
b = u(x, t) and (32) in equation (31) to obtain

1
η + 1Ψ(t) ≤ supM(−Rg0)

infM×[0,T ] ũ
J(t) + m− 1

η

∫
{w(·,t)>0}

(uη − ũη)(·, t)∆g0ϕdµg0 .

14
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We claim that given ε > 0, there exists 0 ≤ ϕ ∈ C∞c (M \N) satisfying

ϕ(p) =

0, if distg0(p,N) < 1
2ε,

1, if distg0(p,N) > ε,
(35)

∆g0ϕ ≤ Cε−2 (36)

with some constant C independent of ε. Indeed, if r denotes the distance from N in
(M, g0) and if ε > 0 is sufficiently small, we may choose ϕ locally depending only on
r satisfying (35) as well as 0 ≤ ∂

∂r
ϕ ≤ Crε−2 and ∂2

∂r2ϕ ≤ Cε−2. Then, (36) follows
because Lemma 2.2 implies that ∆g0r ≤ C

r
in the support of ∂

∂r
ϕ. Moreover,∫

{∆g0ϕ>0}
∆g0ϕdµg0 ≤ Cεm−n−2

with some constant C depending on (M, g0) and N . We conclude

1
η + 1Ψ(t) ≤ supM(−Rg0)

infM×[0,T ] ũ
J(t) + Cεm−n−2 sup

M×[0,T ]
uη. (37)

Abbreviating

α := (η + 1)supM(−Rg0)
infM×[0,T ] ũ

, β := (η + 1)C sup
M×[0,T ]

uη

and recalling J(0) = 0, we obtain

J(t) ≤ βeαt

α
εm−n−2

by applying Lemma A.3 given in the appendix to (37). Since ε > 0 is arbitrary and
m−n− 2 ≥ m

2 − 1 > 0, we obtain J(t) ≤ 0 for every t ∈ [0, T ], or equivalently, u ≤ ũ.

Switching the roles of u and ũ and using estimate (34) instead of (33) shows that the
reverse inequality also holds. Therefore, u = ũ.

Acknowledgements The author is grateful to Professor Alessandro Carlotto and
Professor Michael Struwe for inspiring conversations about the incompleteness of
Yamabe flows on general punctured manifolds.
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A. Appendix

In the proofs of Theorems 2 and 5, we encounter continuous functions of time which
are not quite differentiable. In these cases, we deal with the lim sup of backward
difference quotients. The approach is inspired by work of Hamilton [9, Lemma 3.1]
who obtained similar inequalities for the forward difference quotient.
Lemma A.1. Let T > 0 and let f : [0, T ]→ R be continuous satisfying

lim sup
τ↘0

f(ξ)− f(ξ − τ)
τ

≤ 0

for every 0 < ξ ≤ T . Then f(t) ≤ f(0) for every t ∈ [0, T ].
Lemma A.2. Let η > 0 and Q ≥ 0. Let v : [0, T ]→ [0,∞[ be a continuous function
satisfying

lim sup
τ↘0

v(ξ)− v(ξ − τ)
τ

≤ ηQv(ξ)1− 1
η

for every 0 < ξ ≤ T where v(ξ) 6= 0. Then v(t)
1
η − v(0)

1
η ≤ Qt for every t ∈ [0, T ].

The two lemmata above were already proven in [23, Lemmata A.5 and A.6] (see also
[25, Eqn. (13)–(16)]). Below we state and prove a related inequality used in section 4.
Lemma A.3. Let a, T > 0 and b ≥ 0 and let J : [0, T ]→ R be continuous satisfying

lim sup
τ↘0

J(t)− J(t− τ)
τ

≤ aJ(t) + b

for every 0 < t ≤ T . Then, J(t) ≤ J(0) eat + (eat − 1) b
a
.

Proof. The map f : [0, T ]→ R given by f(t) = e−at(J(t) + b
a
) is continuous satisfying

f(t)− f(t− τ) = e−at(J(t) + b
a
)− e−ateaτ

(
J(t− τ) + b

a

)
= e−at

(
J(t)− J(t− τ)

)
+ e−at

(
J(t− τ) + b

a

)
(1− eaτ )

for every 0 ≤ τ ≤ t ≤ T . Let 0 < t ≤ T be arbitrary but fixed. By continuity of J ,

lim
τ↘0

(
J(t− τ) + b

a

)1− eaτ
τ

=
(
J(t) + b

a

)
(−a) = −aJ(t)− b.

Therefore, and by the assumption on the backward difference quotient of J , we obtain

lim sup
τ↘0

f(t)− f(t− τ)
τ

≤ 0.

Lemma A.1 implies f(t) ≤ f(0) for every t ∈ [0, T ]. Consequently,

J(t) + b
a
≤ eat

(
J(0) + b

a

)
.
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