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HAUSDORFF-YOUNG INEQUALITY FOR ORLICZ SPACES ON

COMPACT HOMOGENEOUS MANIFOLDS

VISHVESH KUMAR AND MICHAEL RUZHANSKY

Abstract. We prove the classical Hausdorff-Young inequality for Orlicz spaces on com-

pact homogeneous manifolds.

1. Introduction

The classical Hausdorff-Young inequality is one of the fundamental inequalities in the

theory of Fourier analysis on groups. For a locally compact abelian group G, 1 ≤ p ≤ 2

and p′ = p
p−1

, the classical Hausdorff-Young inequality says, “ If f ∈ L1(G) ∩ Lp(G)

then the Fourier transform satisfies f̂ ∈ Lp′(Ĝ) and ‖f̂‖p′ ≤ ‖f‖p. ” This inequality

was first given by Hausdorff in 1923 for torus T. Hausdorff was inspired by the work

of W. H. Young in 1912 who proved a similar result but did not formulate his result

in terms of inequalities. For a historical discussion on this inequality we refer to [6, 11].

The Hausdorff-Young inequality for a compact group G is given in Hewitt and Ross

[11, 10]. Later, Kunze [17] extended it to unimodular groups. On Lebesgue spaces, the

Hausdorff-Young inequality is proved by using the Riesz convexity complex interpolation

theorem between p = 1 and p = 2. It is well known that between any two Lebesgue

spaces there is an Orlicz space which is not a Lebesgue space. M. M. Rao [19] studied the

Hausdorff-Young inequality for Orlicz spaces on locally compact abelian groups. In fact,

the celebrated work of M. M. Rao in the context of Orlicz spaces on locally compact groups

(see [19, 21, 22, 23]) motivated the first author to study the Hausdorff-Young inequality

for Orlicz spaces on compact hypergroups [14, 13, 15]. Recently, the second author with his

collaborators established non-commutative version of the aforementioned inequality and

of Hardy-Littlewood inequalities on compact homogeneous manifolds and locally compact

groups [1, 3, 2, 4]. In this article, we study the classical Hausdorff-Young inequality with
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an enlargement of the space, namely, an Orlicz space on compact homogeneous manifolds.

It is to be noted that the Riesz convexity theorem is useful for the Lp-spaces only. For

Orlicz spaces results are obtained first by extending a key inequality of Hausdorff-Young

in the form of Hardy-Littlewood [9, p. 170]. It is worth mentioning here that we apply

the method of Hausdorff-Hardy-Littlewood [9].

In Section 2, we present the basics of compact homogeneous manifolds and of Orlicz

spaces in the form we use in the sequel. In Section 3, we prove a key lemma which occupies

a major part of this section, and finally, we prove the Hausdorff-Young inequality for Orlicz

spaces on compact homogeneous manifolds.

2. Preliminaries

2.1. Fourier analysis on compact homogeneous manifolds. Let G be a compact

Lie group and let K be a closed subgroup of G. The left coset space G/K can be seen

as a homogeneous manifold with respect to the action of G on G/K given by the left

multiplication. The homogeneous manifold G/K has a unique normalized G-invariant

positive Radon measure µ such that the Weyl formula holds. There exists a unique differ-

ential structure for the quotient G/K. Examples of compact homogeneous manifolds are

spheres Sn ∼= SO(n + 1)/SO(n), real projective spaces RP
n ∼= SO(n + 1)/O(n), complex

projective spaces CP
n ∼= SU(n + 1)/SU(1) × SU(n) and more generally Grassmannians

Gr(r, n) ∼= O(n)/O(n− r)×O(r).

Let us denote by Ĝ0 the subset of Ĝ, of representations in G, that are of class I with

respect to the subgroup K. This means that π ∈ Ĝ0 if there exists at least one non-zero

invariant vector a in the representation space Hπ with respect to K, i.e., π(h)a = a for

every h ∈ K. Let us denote by Bπ the vector space of these invariant vectors and let

kπ = dimBπ. We fix the an orthonormal basis of Hπ so that the first kπ vectors are the

basis of Bπ. We note that if K = {e}, then G/K is equal to the Lie group G and in this

case kπ = dπ for all π ∈ Ĝ. On the other hand, if K is a massive subgroup then kπ = 1.

This is the case for the sphere Sn. Other examples can be found in [26].

For a function f ∈ C∞(G/K) we can write the Fourier series of its canonical lifting

f̃ := f(gK) to G, f̃ ∈ C∞(G), so that the Fourier coefficients satisfy ̂̃f = 0 for all

representations π /∈ Ĝ0. Moreover, for class I representations we have
̂̃
f(π)ij = 0 for
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i > kπ. We will often drop the tilde for the simplicity and agree that for a distribution

f ∈ D′(G/K) we have f̂(π) = 0 for π /∈ Ĝ0 and f̂(π)ij = 0 for i > kπ. In order to

shorten the notation, for π ∈ Ĝ0 it make sense to set π(x)ij = 0 for j > kπ. We can

write the Fourier series of f (or of f̃) in terms of the spherical functions πij , 1 ≤ j ≤ kπ,

of the representation π ∈ Ĝ0, with respect to the subgroup K. The Fourier series of

f ∈ C∞(G/K) is given by

f(x) =
∑

π∈Ĝ0

dπ

dπ∑

i=1

kπ∑

j=1

f̂(π)jiπij(x),

which can also be written in a compact form

f(x) =
∑

π∈Ĝ0

dπTr(f̂(π)π(x)).

For the future reference we note that with these conventions the matrix π(x)π(x)∗ is

diagonal matrix with first kπ diagonal entries equal to one and others are equal to zero.

Therefore, we have
∑dπ

i=1

∑kπ
j=1 |π(x)ij|

2 = Tr(π(x)π(x)∗) = k
1
2
π . The ℓp-spaces on Ĝ0 can

be defined similar to the spaces ℓp(Ĝ) defined in [25] (see also [12]). First, for the space

of Fourier coefficients of functions on G/K we set

Σ(G/K) = {σ : π 7→ σ(π) ∈ C
dπ×dπ : [π] ∈ Ĝ0, σ(π)ij = 0 for i > kπ}. (1)

Now, we define the Lebesgue spaces ℓp(Ĝ0) ⊂ Σ(G/K) by the condition

‖σ‖ℓp(Ĝ0)
:=


 ∑

[π]∈Ĝ0

dπk
p( 1

p
− 1

2
)

π ‖σ(π)‖pHS




1
p

, 1 ≤ p < ∞, (2)

and

‖σ‖ℓ∞(Ĝ0)
:= sup

[π]∈Ĝ0

k
− 1

2
π ‖σ(π)‖HS.

The following embedding properties hold for these spaces:

ℓp1(Ĝ0) ⊂ ℓp2(Ĝ0) and ‖σ‖ℓp2(Ĝ0)
≤ ‖σ‖ℓp1(Ĝ0)

, 1 ≤ p1 ≤ p2 ≤ ∞.

The Hausdorff-Young inequality for Lebesgue spaces on compact homogeneous mani-

folds is proved in [18] which is stated in the following theorem.
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Theorem 2.1. Let G/K be a compact homogeneous manifold with normalized Haar mea-

sure µ and let f ∈ Lp(G/K) for 1 ≤ p ≤ 2. Suppose 1
p
+ 1

q
= 1, then we have

‖f̂‖ℓq(Ĝ0)
≤ ‖f‖Lp(G/K). (3)

Here we would like to mention that there is a well-established theory of another family

of Lebesgue spaces ℓpsch on Ĝ0 defined using Schatten p-norm ‖ · ‖Sp instead of Hilbert-

Schmidt norm ‖ · ‖HS on the space of (dπ × dπ)-dimensional matrices. Indeed, the space

ℓpsch(Ĝ0) ⊂ Σ(G/H) is defined by the norm

‖σ‖ℓpsch(Ĝ0)
:=


 ∑

[π]∈Ĝ0

dπ‖σ(π)‖
p
Sp




1
p

σ ∈ Σ(G/K), 1 ≤ p < ∞, (4)

and

‖σ‖ℓ∞sch(Ĝ0)
:= sup

[π]∈Ĝ0

‖σ(π)‖L(Hπ) σ ∈ Σ(G/K).

The following proposition presents the relation between both norms on ℓp(Ĝ0).

Proposition 2.2. For 1 ≤ p ≤ 2, we have the following continuous embeddings as well

as the estimates: ℓp(Ĝ0) →֒ ℓpsch(Ĝ0) and ‖σ‖ℓp
sch

(Ĝ0)
≤ ‖σ‖ℓp(Ĝ0)

for all σ ∈ Σ(G/K). For

2 ≤ p ≤ ∞, we have ℓpsch(Ĝ0) →֒ ℓp(Ĝ0) and ‖σ‖ℓp(Ĝ0)
≤ ‖σ‖ℓp

sch
(Ĝ0)

for all σ ∈ Σ(G/K).

Proof. The proof of proposition can be found in [8]. �

The space ℓp(Ĝ0) and the Hausdorff-Young inequality for it become useful for conver-

gence of Fourier series and characterization of Gevrey-Roumieu ultradifferentiable func-

tions and Gevrey-Beurling ultradifferentiable functions on compact homogeneous mani-

folds [7]. For more detail on Fourier analysis on compact homogeneous manifolds we refer

to [26, 18, 5, 7].

2.2. Basics of Orlicz spaces. For basics of Orlicz spaces one can refer to excellent

monographs [27, 20, 22] and articles [19, 21, 23, 13]. However we present a few definitions

and results here in the form we need.

A non-zero convex function Φ : [0,∞) → [0,∞] is called a Young function if Φ(0) = 0

and limx→∞Φ(x) = ∞. For any given Young function Φ the complimentary function Ψ of

Φ is given by

Ψ(y) = sup{x|y| − Φ(x) : x ≥ 0} (y ≥ 0),
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which is also a Young function. If Ψ is the complementary function of Φ then Φ is the

complimentary function of Ψ; the pair (Ψ,Φ) is called a complementary pair. In fact, a

complementary pair of Young functions satisfies

xy ≤ Φ(x) + Ψ(y) (x, y ≥ 0).

If a complimentary pair of Young functions (Φ,Ψ) satisfies Φ(1)+Ψ(1) = 1 then the pair

(Φ,Ψ) is called a normalized complimentary pair.

Let G/K be a compact homogeneous manifold with a left Haar measure µ. Denote the

set of all complex valued µ-measurable functions on G/K by L0(G/K). Given a Young

function Φ, themodular function ρΦ : L0(G/K) → R is defined by ρΦ(f) :=
∫
G/K

Φ(|f |) dµ

and the Orlicz space is defined by

LΦ(G/K) :=
{
f ∈ L0(G/K) : ρΦ(af) < ∞ for some a > 0

}
.

Then the Orlicz space is a Banach space with respect to the norm NΦ(·), called as Lux-

umburg norm, defined by

NΦ(f) := inf

{
λ > 0 :

∫

G/K

Φ

(
|f |

λ

)
dµ ≤ Φ(1)

}
.

One can also define the norm ‖ · ‖Φ, called Orlicz norm on LΦ(G/K) by

‖f‖Φ := sup

{∫

G/K

|fv|dµ :

∫

G/K

Ψ (|v|) dµ ≤ Φ(1)

}
.

These two norms are equivalent: Φ(1)NΦ(·) ≤ ‖ · ‖Φ ≤ 2NΦ(·). Also, it is known that

NΦ(f) ≤ 1 if and only if ρΦ(f) ≤ 1. We recover the Lebesgue spaces Lp, 1 ≤ p < ∞,

by considering the Young function Φ(x) = xp

p
. The complementary young function Ψ

corresponding to Φ is given by Ψ(x) = xq

q
, where q = p

p−1
. Other examples of Young

functions are ex − x− 1, cosh x− 1 and xp ln(x).

The following Hölder inequality holds for Orlicz spaces: for any complementary pair

(Φ,Ψ) and for f ∈ LΦ(G/K), g ∈ LΨ(G/K), we have
∫

G/K

|fg| dµ ≤ min{NΦ(f)‖g‖Ψ, ‖f‖ΦNΨ(g)}.

If (Φ,Ψ) is a normalized complimentary pair of Young functions then the above Hölder

inequality becomes [20, P. 58 and P. 62] (see also [22, P. 27]):
∣∣∣∣
∫

G/K

fg dµ

∣∣∣∣ ≤ NΦ(f)NΨ(g). (5)
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Let C(G/K) denote the space of complex valued continuous functions on G/K. It can

be easily proved that LΦ(G/K) ⊂ L1(G/K) (for example see [13]) as G/K is compact.

Therefore, the closure of C(G/K) inside LΦ(G/K) denoted by MΦ(G/K) is same as

LΦ(G/K) which is not the case in general. A Young function Φ satisfies the ∆2 condition

if there exist a constant C > 0 and x0 ≥ 0 such that Φ(2x) ≤ CΦ(x) for all x ≥ x0. In

this case we write Φ ∈ ∆2. If Φ ∈ ∆2, then it follows that (LΦ)∗ = LΨ. If, in addition,

Ψ ∈ ∆2, then the Orlicz space LΦ is a reflexive Banach space.

To define the space ℓΦ(Ĝ0) we follow the similar construction as in ℓp. The Orlicz space

ℓΦ(Ĝ0) ⊂ Σ(G/K) is defined by the norm

NΦ(σ) = inf



λ > 0 :

∑

π∈Ĝ0

Φ

(
k
− 1

2
π ‖σ(π)‖HS

λ

)
kπdπ ≤ Φ(1)



 . (6)

The partial order ≺ on th set of all Young functions is defined as: Φ1 ≺ Φ2 whenever

Φ1(ax) ≤ bΦ2(x) for |x| ≥ x0 > 0 and Φ2(cx) ≤ dΦ1(x) for all |x| ≤ x1, where a, b, c, d, x0

and x1 are fixed positive constants independent of x. In particular, for Lp-spaces with

p ≥ 1 we can see that a = b = c = d = 1, x1 ≥ 1 and x0 ≥ 1. With the help of this

ordering we can define inclusion relation in Orlicz spaces: if Φ1,Φ2 are continuous Young

functions and Φ1 ≺ Φ2 then LΦ2(G/K) ⊂ LΦ1(G/K) and NΦ1(·) ≤ αNΦ2(·) for some

α > 0.

Also, for Ĝ0, the space LΦ(Ĝ0) becomes ℓΦ(Ĝ0) under the identification of a matrix

valued function σ ∈ ℓΦ(Ĝ0) with a non-negative function σ̃(π) defined on Ĝ0 by σ̃(π) :=

k
− 1

2
π ‖σ(π)‖HS and in this case Φ1 ≺ Φ2 implies that ℓΦ1(Ĝ0) ⊂ ℓΦ2(Ĝ0) and NΦ2(·) ≤

β NΦ1(·) for some β > 0. The following result is well-known (see [22, Lemma 1, p. 209]).

Lemma 2.3. Let (Φi,Ψi), i = 1, 2 be complementary pairs of continuous Young functions

and let Φ1 ≺ Φ2. Then Ψ2 ≺ Ψ1.

3. The Main result

Throughout this section, we assume that G/K is a compact homogeneous manifold and

Ĝ0 be the set of type I irreducible inequivalent continuous representations of G for our

convenience. From now onwards, we assume that the pair of complimentary continuous

Young functions (Φ,Ψ) is a normalized pair. Note that continuity of a Young function
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guaranties the existence of its derivative [20, Corollary 2]. Also, since Φ is a positive

continuous convex function on [o,∞), it is increasing.

For f ∈ LΦ(G/K) define Ff : Ĝ0 → [0,∞) by

F 2
f (π) =

dπ∑

i=1

kπ∑

j=1

|f̂(π)i,j|
2

kπ
=

Tr(f̂(π)∗f̂(π))

kπ
forπ ∈ Ĝ0. (7)

Now, define the gauge norm of Ff by

NΦ(Ff) := inf



λ > 0 :

∑

π∈Ĝ0

Φ

(
Ff (π)

λ

)
kπdπ ≤ Φ(1)



 . (8)

We note here that for f ∈ LΦ(G/K), f̂ : Ĝ0 →
⋃

π∈Ĝ0
Cdπ×dπ. So, the norm NΦ(Ff )

is same as the norm NΦ(f̂) on the non-commutative Orlicz space ℓΦ(Ĝ0) as Ff (π) =

k
− 1

2
π ‖f̂(π)‖HS. The space (ℓ

Φ(Ĝ0), NΦ(·)) is a Banach space. If Φ is continuous then there

exists λ0 := NΦ(Ff ) such that inequality in (8) is an equality with λ = λ0 on the left, i.e.,
∑

π∈Ĝ0
Φ
(

Ff (π)

λ0

)
dπ kπ = Φ(1).

The proof of our main result depends on the following key lemma which is an extension

of an important inequality in the case of Lp due to Hardy and Littlewood [9].

Lemma 3.1. Let G/K be a compact homogeneous manifold with the normalized measure

µ and let (Φ,Ψ) be a pair of continuous normalized Young functions such that

(i) Φ ≺ Φ0, where Φ0(t) =
1
2
|t|2,

(ii) Ψ′(t) ≤ c0 t
p, ∀ t ≥ 0, for some p ≥ 1, and for some c0 > 0.

Suppose Λ is a finite subset of Ĝ0. Define fΛ : G/K → C by

fΛ(x) :=
∑

π∈Λ

dπ

dπ∑

i=1

kπ∑

j=1

cπi,jπi,j(x), (9)

where cπi,j ∈ C. If FΛ = Ff is as in (7) with f = fΛ, then

NΨ(FΛ) ≤ r̄0NΦ(fΛ), (10)

where r̄0 > 0 depends only on Φ and the ordering ≺ .

Proof. Let Λ be a finite subset of Ĝ0. If fΛ is as in the statement of the lemma, f̂Λ(π)i,j =

cπi,j χΛ(π), where χΛ is characteristic function of the subset Λ in Ĝ0. For simplicity of ex-

pressions, we set SΦ(fΛ) = NΦ(FfΛ). For a non-zero f ∈ LΦ(G/K), the Fourier coefficients
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f̂(π)i,j of f are denoted by c̃πi,j. Let f̃Λ be the function fΛ given by (9) with cπi,j = c̃πi,j.

Following an idea of Hardy and Littlewood [9], we define,

M = MΦ(Λ) := sup

{
SΨ(f̃Λ)

NΦ(f)
: f 6= 0

}
. (11)

We prove the lemma in three steps.

STEP I. M < ∞.

Since M is described by a ratio of norms, without loss of generality we assume that

SΨ(f̃Λ) = 1 to find a bound on M . It follows using continuity of Ψ and the definition of

the gauge norm (with λ0 = 1, see the discussion in the paragraph below the equation (8))

that
∑

π∈Ĝ0

Ψ(Ff̃Λ
(π))kπdπ = Ψ(1). (12)

Since kπ ≥ 1, Ff̃Λ
(π) = 0 for π ∈ Ĝ0\Λ and 0 < Ψ(1) < 1, at least one term on the left

hand side of (12) is greater than or equal to Ψ(1)
#(Λ)

, where #(Λ) is the cardinality of Λ. If

this term is for π = π′ ∈ Λ then we have

0 < Ψ−1

[
Ψ(1)

#(Λ) kπ′ dπ′

]
≤ Ff̃Λ

(π′). (13)

Next,

Ff̃Λ
(π) =

(
1

kπ

dπ∑

i=1

kπ∑

j=1

|c̃πi,j|
2

) 1
2

≤
1

k
1
2
π

dπ∑

i=1

kπ∑

j=1

|c̃πi,j|

≤
1

k
1
2
π

∫

G/K

|f(x)|

dπ∑

i=1

kπ∑

j=1

|π(x)i,j | dµ(x).

Using Cauchy-Schwartz inequality, we get

Ff̃Λ
(π) ≤

1

k
1
2
π

∫

G/K

|f(x)|

(
dπ∑

i=1

kπ∑

j=1

|π(x)i,j|
2

) 1
2

d
1
2
πk

1
2
π dµ(x).

Using Tr(π(x)π(x)∗) = kπ, we get

Ff̃Λ
(π) ≤

∫

G/K

|f(x)| d
1
2
πk

1
2
π dµ(x) = d

1
2
πk

1
2
π

∫

G/K

|f(x)| dµ(x). (14)

Now, by the Hölder inequality (5)

Ff̃Λ
(π) ≤ d

1
2
πk

1
2
π NΦ(f). (15)
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Now by combining (13) and (15), we have

1

NΦ(f)
≤


 d

1
2

π′k
1
2

π′

Ψ−1
(

Ψ(1)
#(Λ)kπ′dπ′

)


 < ∞. (16)

Since the right hand side of (16) is independent of f, we have M < ∞.

STEP II. M is independent of Λ.

For fΛ as in (9), define g by

g(x) := Ψ′

(
|fΛ(x)|

NΨ(fΛ)

)
sgn(fΛ(x)), (17)

where sgn(z) = z/|z| for z 6= 0 and 0 for z = 0. Since Φ is continuous and µ(G/K) = 1

it follows from the discussion in [27, p. 175] (see also [22, Chapter VI]) that NΦ(g) = 1,

and that the Hölder’s inequality (5) is an equality for the functions fΛ and g, that is,

NΨ(fΛ) = NΦ(g)NΨ(fΛ) =

∣∣∣∣
∫

G/K

g(x)fΛ(x) dµ(x)

∣∣∣∣ .

Using the Parseval formula, we have

NΨ(fΛ) =

∣∣∣∣∣
∑

π∈Λ

dπ

dπ∑

i=1

kπ∑

j=1

ĝ(π)i,j f̂(π)i,j

∣∣∣∣∣ (by using
∑

l

albl ≤
(∑

a2l

) 1
2
(∑

b2l

) 1
2
)

≤
∑

π∈Λ

dπ

(
dπ∑

i=1

kπ∑

j=1

|f̂(π)ij |
2

) 1
2
(

dπ∑

i=1

kπ∑

j=1

|ĝ(π)ij|
2

) 1
2

=
∑

π∈Λ

kπdπ FfΛ(π)Fg̃Λ(π) (by Hölder’s inequality)

≤ NΦ(FfΛ)NΨ(Fg̃Λ) = SΦ(fΛ)SΨ(g̃Λ).

By STEP I, we know that SΨ(g̃Λ) ≤ MNΦ(g) = M and therefore

NΨ(fΛ)

SΦ(fΛ)
≤ SΨ(g̃Λ) ≤ M. (18)

Note that M ≥ 1. In fact, for f = 1, we note that NΦ(1) = 1 as the measure µ is

normalized. By continuity of Φ,

∑

π∈Ĝ0

Φ

(
Ff̃Λ

(π)

S(f̃Λ)

)
kπdπ = Φ(1).

Now, by choosing π′ ∈ Λ such that (13) holds, we have

SΨ(f̃Λ) ≥
1[

Φ−1
(

Φ(1)
kπ′dπ′

)] = r0 (say). (19)
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Note that r0 ≥ 1. Indeed, since Φ is increasing and 0 < Φ(1) < 1, we have r0 =

1[
Φ−1

(
Φ(1)

k
π′dπ′

)] ≥ 1[
Φ−1

(
1

k
π′dπ′

)] ≥ 1. Therefore, M ≥ SΨ(f̃Λ)
NΦ(f)

≥ r0 ≥ 1. By continuity of

norms, there is a function fΛ such that M = NΨ(fΛ)
SΦ(fΛ)

. Consequently, from (18) we get

SΦ(g̃Λ) = M. We fix this fΛ and set g as in (17) for the remaining part of this step.

Let us denote SΦ by S2 for the Young function Φ(x) = |x|2

2
. Using the Bessel inequality,

we get

S2
2(g̃Λ) =

∑

π∈Λ

d2π

dπ∑

i=1

kπ∑

j=1

|ĝ(π)i,j|
2 ≤

∫

G/K

|g|2 dµ ≤ NΨ(g
2), (20)

where the last inequality follows from Hölder’s inequality (since NΦ(1) = 1). Set Ψ1(t) =

Ψ(t2). Then Ψ1 is a Young function satisfying Ψ ≺ Ψ1. Since g is a bounded function, by

setting a2 = NΨ(g
2)(< ∞), we get

Ψ1(1) = Ψ(1) =

∫

G/K

Ψ

(
|g|2

a2

)
dµ(x) =

∫

G/K

Ψ1

(
|g|

a

)
dµ(x),

whence a = NΨ1(g). Thus, by (20), we have

S2(g̃Λ) ≤ NΨ1(g). (21)

Now, we find an absolute bound for M . If a = NΨ1(g) then, by definition, there exists

b0 > 0 such that

1 =

∫

G/K

Ψ1

(
g

ab0

)
dµ(x) =

∫

G/K

Ψ1

[
1

ab0
Ψ′

(
|fΛ|

NΨ(fΛ)

)]
dµ(x).

Since Ψ′(t) ≤ c0 t
p for some p ≥ 1, we get

1 ≤

∫

G/K

Ψ1

[
c0
b0a

(
|fΛ|

NΨ(fΛ)

)p]
dµ(x) =

∫

G/K

Ψ2

[
b1

|fΛ|

NΨ(fΛ)

]
dµ(x), (22)

where Ψ2(t) = Ψ1(t
p) and b1 =

(
c0
b0a

) 1
p

> 0. Thus Ψ2 is a Young function satisfying

Ψ ≺ Ψ1 ≺ Ψ2. Then (22) gives the following important inequality: there exists a constant

b2 depending only on Ψ2 and independent of fΛ, such that

NΨ2

(
b1fΛ

NΨ(fΛ)

)
≥ b2 > 0, (23)

(see [20, Theorem 2, Chapter III]). Since NΨ2(·) is a norm, by the definition of b1, we get
[
NΨ2(fΛ)

NΨ(fΛ)

]p
≥ bp2

(
b0
c0

)
NΨ1(g) = b3NΨ1(g), (24)
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where b3 = bp2
b0
c0
. Since we have Ψ0 ≺ Ψ ≺ Ψ1 ≺ Ψ2, by Lemma 2.3, Φ2 ≺ Φ1 ≺ Φ ≺ Φ0

so that ℓΦ2 ⊂ ℓΦ1 ⊂ ℓΦ ⊂ ℓΦ0 = ℓ2 ⊂ ℓΨ ⊂ ℓΨ1 ⊂ ℓΨ2. Now, for some r2 > 0, we get the

following inequalities:

1 ≤ M = MΦ = SΨ(g̃Λ) ≤ r2S2(g̃Λ) ≤
r2
b3

[
NΨ2(fΛ)

NΨ(fΛ)

]p
≤

r2
b3

[
NΨ3(fΛ)

NΨ(fΛ)

]p
, (25)

where Ψ3(t) = c0
p+1

t2p(p+1), so Ψ2 ≺ Ψ3, (Since Ψ′(t) ≤ c0 t
p so Ψ(t) = c0

p+1
tp+1 and

therefore Ψ2(t) = Ψ1(t
p) = Ψ(t2p) ≤ c0

p+1
t2p(p+1) = Ψ3(t)). Let Φ3 be the complementary

function of Ψ3. Then SΦ3(fΛ) ≤ b4SΦ(fΛ) for some b4 > 0 depending only on Φ3 and Φ

only. Therefore, by (25), we have

1 ≤ M = MΦ ≤
r2
b3

[
MΦ3SΦ3(fΛ)

MΦSΦ(fΛ)

]p
≤

r2
b3

[
b4
MΦ3

MΦ

]p
. (26)

Hence,

1 ≤ Mp+1
Φ ≤ rp3 M

p
Φ3
, (27)

for some positive constant r3 > 0 which depend only on Φ,Φ2,Φ3 and the ordering

constants. But note that LΨ3(G/K) = Lp′(G/K), where p′ = 2p(p + 1) ≥ 2. It follows

from Theorem 2.1 that MΦ3 ≤ r4 < ∞, for a positive constant r4 depending on c0 and r.

Therefore (27) gives

1 ≤ MΦ ≤ r5 < ∞

where r5 = (r3r4)
p

p+1 , which is independent of Λ.

STEP III. By setting r̄0 = r5, equations (11) immediately give the required inequality

in (10). Since Ψ2 and Ψ3 depend on the complimentary Young function Ψ of Φ, all the

constants involve depend on Φ and the ordering Φ ≺ Φ0, and perhaps on c0 and p. This

completes the proof of the lemma. �

Now, we are ready to prove the Hausdorff-Young inequality for Orlicz spaces on compact

homogeneous manifolds.

Theorem 3.2. Let G/K be a compact homogeneous manifold with the normalized measure

µ and let (Φ,Ψ) be a pair of continuous normalized Young functions such that

(i) Φ ≺ Φ0, where Φ0(t) =
1
2
t2,

(ii) Ψ′(t) ≤ c0 t
p, t ≥ 0, for some p ≥ 1,
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where c0 is a positive constant. If f ∈ LΦ(G/K) then there is r0 ≥ 1 such that

NΨ(Ff ) ≤ r0NΦ(f).

Proof. Let f ∈ LΦ(G/K) and let Λ be a finite subset of Ĝ0. Suppose f̃Λ is given by (9)

where cπi,j = f̂(π)i,j. The set {f̃Λ : Λ ⊂ Ĝ0} is the collection of all simple functions which,

in particular, contains the set of all matrix coefficients of type I representation of G and

therefore it is dense in LΦ(G/K) ⊂ L2(G/K). We have limΛ⊂Ĝ0
NΦ(f − f̃Λ) = 0 and

therefore, c̃πij = f̂Λ(π)ij → f̂(π)ij = c̃πij. Consequently, we have

lim
Λ⊂Ĝ0

NΨ(Ff̃Λ
) = NΨ(Ff ),

where the limit as Λ varies in Ĝ0 is taken using the partial order defined by inclusion

of subsets of Ĝ0. Now, by using this with the inequality NΨ(FfΛ) ≤ r̄0NΦ(fΛ) of (10) of

Lemma 3.1, we get NΨ(Ff) ≤ r0NΦ(f), where r0 = r̄0. This completes the proof. �

Remark 1. (i) For the Lebesgue space, we have that constant r0 = 1 (see Theorem

2.1); however it is clear from the proof of Lemma 3.1 that the constant r0 in

Theorem 3.2 is greater or equal to 1.

(ii) We give an example of a pair of Young functions (Φ,Ψ) satisfying the condition of

Theorem 3.2 such that the corresponding Orlicz spaces are not Lebesgue spaces.

This example is taken from the [22] which was originally discovered by Riordan

[24]. For 1 < p < 2, we define function Φ(x) = xp

p
ln(x) ln(ln x) for x ≥ x0 and

Φ(x) = xp

p
ln( 1

x
) ln(ln 1

x
) for x ≤ x1. We choose x0 large enough and x1 small

enough so that Φ(x) gives a convex function by joining the points (x1,Φ(x1))

and (x0,Φ(x0)) by a straight line. If q denotes the Lebesgue conjugate of p, that

is, q = p
p−1

then the function Ψ is given by Ψ(x) = xq

q
L(x)

q

p , where L(x) =

ln(x) ln(ln x) for x ≥ x′
0 and ln( 1

x
) ln(ln 1

x
) for x ≤ x′

1. Then we again choose x′′
0

large enough and x′
1 small enough so that Φ(x) gives a convex function by joining

the points (x1,Φ(x1)) and (x0,Φ(x0)) by a straight line. Although, Ψ may not be

the complementary function but it is equivalent to the complimentary function.

(iii) For 1 < p ≤ 2, if Φ(x) = xp

p
and Ψ(x) = xq

q
with q = p

p−1
, then using the

above method we can get usual Hausdorff-Young inequality for Lebesgue spaces on

compact homogeneous manifolds. In fact, this method was used to solve maximal
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problem in the case for compact groups by Hirschman [12] using the same norm

on Lebesgue spaces as we considered in this paper .
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