
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier ...

Data-driven model of the power-grid
frequency dynamics
LEONARDO RYDIN GORJÃO, 1,2, MEHRNAZ ANVARI3, HOLGER KANTZ3, CHRISTIAN
BECK4, DIRK WITTHAUT, 1,2, MARC TIMME5,6,7, BENJAMIN SCHÄFER,4,5,6,7
1Forschungszentrum Jülich, Institute for Energy and Climate Research - Systems Analysis and Technology Evaluation (IEK-STE), 52428 Jülich, Germany
2Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany
3Max–Planck Institute for the Physics of Complex Systems (MPIPKS), 01187 Dresden, Germany
4School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
5Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, Technical University of Dresden, 01062
Dresden, Germany
6Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
7Contributed equally

Corresponding author: Leonardo Rydin Gorjão (e-mail: l.rydin.gorjao@fz-juelich.de).

We gratefully acknowledge support from the Federal Ministry of Education and Research (BMBF grant no. 03SF0472 and 03EK3055), the
Helmholtz Association (via the joint initiative Energy System 2050 - A Contribution of the Research Field Energy, the grant No.
VH-NG-1025,the German Science Foundation (DFG) by a grant toward the Cluster of Excellence Center for Advancing Electronics
Dresden (cfaed), and the STORM - Stochastics for Time-Space Risk Models project of the Research Council of Norway (RCN) No. 274410.
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie

Skłodowska-Curie grant agreement No. 840825.

ABSTRACT The energy system is rapidly changing to accommodate the increasing number of renewable
generators and the general transition towards a more sustainable future. Simultaneously, business models
and market designs evolve, affecting power-grid operation and power-grid frequency. Problems raised by
this ongoing transition are increasingly addressed by transdisciplinary research approaches, ranging from
purely mathematical modelling to applied case studies. These approaches require a stochastic description
of consumer behaviour, fluctuations by renewables, market rules, and how they influence the stability
of the power-grid frequency. Here, we introduce an easy-to-use, data-driven, stochastic model for the
power-grid frequency and demonstrate how it reproduces key characteristics of the observed statistics
of the Continental European and British power grids. Using data analysis tools and a Fokker–Planck
approach, we estimate parameters of our deterministic and stochastic model. We offer executable code
and guidelines on how to use the model on any power grid for various mathematical or engineering
applications.

INDEX TERMS Stochastic modelling, Power-grid frequency, Swing equation, Control systems, Param-
eter estimation, Fokker–Planck equation, data-driven model

I. INTRODUCTION

The energy system is currently undergoing a rapid transition
towards a more sustainable future. Greenhouse gas emis-
sions are reduced by implementing distributed renewable-
energy sources at ever growing rates in the world [1]. Simul-
taneously, new policies, technologies, and market structures
are being implemented in various regions in the energy
systems [2]. These new market structures are not necessarily
benefiting the stability of the power grid: A control power
shortage in the German grid in June 2019 was potentially

caused by unknown traders exploiting the energy market
structure [3], [4].

The field of energy research itself is quickly developing
and attracting researchers from various disciplines working
towards new control systems, new market models, and
new technologies every year [5], [6]. Regardless of the
specific aspect of the energy system, one element remains
unchanged: The electrical power system and the stability of
its frequency are critical for a stable operation of our society
[7].
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The power-grid (mains) frequency dynamics mirrors the
balance of supply and demand of the power grid: An
excess of generation leads to an increased frequency and a
shortage of generation leads to a reduced frequency value.
The power grid is stabilised by controlling the frequency
and maintaining it at a nominal frequency [8]. But the
task of maintaining a set frequency across an entire power-
grid system is not a simple one: systems vary in size
and structure, energy sources are possibly volatile in their
output, as for example are wind or photo-voltaic generators
[9], [10], and the dispatch of electrical energy and market
activity have an impact on the overall dynamics.

Understanding the intricacies of the frequency dynamics
becomes of great importance, both to control the current
power grid [8], [11] but also for implementing real-time
pricing schemes [12], [13] or smart grids in the future [14].
Solid estimates of fluctuations are essential for example
when dimensioning back-up or control options, such as
determining the capacity of batteries or other energy stor-
age to balance periods with highly fluctuating demand or
times without renewable generation [15]. Similarly, when
establishing new power grid types, such as smart grids with
potentially novel electricity market structure, the market
design should ideally support the stability of the grid.

While both the power-grid frequency dynamics and the
stochastic nature of the power-grid frequency have been
intensely studied, we require a better understanding of
the interaction of frequency dynamics with both stochastic
fluctuations and market behaviour. The dynamics of the
power-grid variables, including frequency, voltage, reactive
power, etc., may be modelled with arbitrary complexity
based on various models [8], [16], [11], [17], [18], [19].
Simultaneously, stochastic modelling of fluctuations within
the power grid [18], [20] still often uses Gaussian noise
models [21], [14], [22], while non-Gaussian statistics [9],
[23] as well as deterministic events caused by trading [24]
are rarely included.

Existing literature that explicitly deals with realistic fore-
casts of the power grid frequency often focuses on inverter
control [25] or the power interface between grid layers [26].
Alternatively, forecasts are done for electricity consumption
[27] or for renewable generation, such as solar generators
[28]. In contrast, models that predict or even give stochastic
characteristics of the power-grid frequency are very rare
[29].

Here, we propose an accessible and easy-to-use stochastic
model that seeks to describe the dynamics of the power-grid
frequency in a reduced framework combining stochastic and
deterministic factors acting on the power-grid frequency. We
focus on the intermediate time scale of several seconds to
few hours, leaving very short or very long time scale for fu-
ture work. Simultaneously, our modelling approach balances
the benefits of realistic case studies, generally applicable and
abstract stochastic models as well as application-oriented
data-driven approaches.

We first review the factors influencing the power-grid
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FIGURE 1. The frequency dynamics is influenced by both stochastic and
deterministic aspects. The trajectory of the power-grid frequency is
substantially influenced by stochastic effects, as seen by the erratic motion. In
addition, we observe deterministic behaviour: Every 15 minutes (vertical lines)
the frequency abruptly decreases and then slowly trends upwards for the next
15 minutes. The plot uses the TransNetBW data [30] from the European
Central power grid CE, from January, 10th 2019, 20:45 to 21:45.

frequency dynamics, based on frequency recordings from
European grids. Next, we introduce a general stochastic
model and discuss three particular cases of how the model
may be implemented. For each case we estimate the system
parameters, such as control strength and noise amplitude
using stochastic theory and data-driven approaches.

We compare the frequency statistics of the models with
real-world measurements to showcase how they reproduce
characteristic features. Overall, our modelling approach is
very flexible and easily applicable to many different power
grids and could be used for planning purposes, e.g. when
setting security operational limits or designing markets. We
provide executable code for the model in the supplementary
material.

II. FACTORS IMPACTING THE POWER-GRID
FREQUENCY
To construct a model describing the intermediate time scale
dynamics and characteristics of the power-grid frequency,
we must first recall the nature and the intricate details of
the power-grid frequency dynamics, both deterministic and
stochastic, as we observe them in frequency trajectories [30],
see Fig. 1.

The power-grid frequency is not following a simple Gaus-
sian process but displays heavy tails and regular correlation
peaks, see Fig. 2 and [23], [31], [32] for more detailed
analysis. To get a better understanding of the different
factors impacting the grid frequency, we give an overview of
these: First, we review the innate and humanly devised con-
trol systems, continue with the market and power dispatch
design and close the section with a stochastic description of
the noise acting on the power grid.

A. THE FUNDAMENTAL CONTROL SCHEMES
The power supply of the grid is designed so that the
frequency of the alternating current is kept steadily at a
fixed nominal value, i.e., 50 Hz in Europe and many parts
of the world, or 60 Hz in the Americas, Southern Japan
and some other regions. The electrical frequency of e.g.
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50 Hz corresponds to large mechanical generators rotating
in synchrony at this frequency (or integer multiples of it)
across each synchronous region, such as the Continental
European grid. How is this frequency kept fixed when facing
fluctuations or larger disturbances?

Suppose a large generator disconnects from the grid
while the power demand in the region stays constant. The
missing energy cannot be drawn from the grid itself, as it
cannot store any energy directly [34]. Instead, power is first
provided by inertial energy until primary, secondary, and
potentially tertiary control set in to ensure the provision
of the missing power [34]. In the first moments after the
disturbance, the missing power is drawn from the kinetic
energy of the large rotating machines. Their kinetic energy
is converted into electrical energy and the generators are
slowed down, thereby reducing the overall frequency in the
grid. This inertial response ensures the system does not drift
off from its designed nominal frequency too rapidly and
smoothens any disturbances. Nevertheless, the generators
continue to slow down. Moments later, primary control
activates: Dedicated power plants, and recently also battery
stacks [35], measure the deviation of the frequency from the
reference and insert additional power into the grid propor-
tional to the frequency deviation. This power influx prevents
a further decrease of the frequency and stabilises it at a fixed
but lower frequency, which is not desired for operation, as
any further problems might cause the frequency to leave the
stable operational limits [34], [8]. While the primary control
compensates for the missing power, the kinetic energy of the
rotors is still lower than initially and thereby the frequency
is not at the reference value. To restore the frequency back
to the reference frequency an integrative control, secondary
control, is necessary. A few minutes after the disturbance,
this control fully restores the energetic state and the grid is
brought back into a new stable state at its nominal frequency
(i.e., 50 Hz or 60 Hz, depending on the grid in question). On
even longer time scales of potentially hours, tertiary control,
often operated manually, sets in [36]. As this tertiary control
sets in, primary and secondary control can be reduced to
become available for further control actions.

Here, we focus on the effects of inertia, as well as
primary (proportional) and secondary (integrative) control
in our synthetic model. The time scales of these three
controls are significantly different, and they functionally
react to deviations of different variables of the system:
Where primary control stabilises the grid based on the
frequency deviations of the system, the secondary control
balances the total power to ensure stability based on an
integral of the frequency, i.e., an angle.

As a recent challenge, the replacement of conventional
power generators with renewable generators reduces the
overall system inertia [37] and thereby makes comple-
mentary control mechanisms or virtual inertia increasingly
important [38].

B. ELECTRICITY DISPATCH AND MARKET

While the control schemes keep the frequency close to
the reference for small and unforeseen changes of supply
and demand, an electricity market has been established to
coordinate longer-term power dispatches dealing with large
and predictable variations.

The effective demand acting on the power grid is the
aggregation of millions of consumers throughout the syn-
chronous region. This aggregated demand is continuously
changing over time since consumption during the day tends
to be higher then during the night and industrial activities
during the week lead to higher consumption than during the
weekends [34].

The continuously changing demand has to be met with
sufficient supply of electrical power in the same syn-
chronous grid. Therefore, power plant operators have to
adjust their generation according to the needs of the con-
sumers. While some power plants, such as gas turbines, can
ramp their generation up or down very fast, other plants,
such as coal or nuclear power plants, require more time
and therefore prefer to commit generation for longer time
periods [39], [36]. Demand response schemes, where con-
sumers shift their demand to periods of higher generation,
bring additional flexibility to the grid [40].

To reach an economic optimum on who is supplying and
when, power-plant operators bid on spot markets to offer
power generation [36]. This includes a day-ahead market to
fulfil the expected power demand, and an intra-day market
acting on time scales of few hours to several minutes, to
balance short-term mismatches, amongst other [41]. This
bidding on the market takes place in discrete time-slots:
Any power provided by one operator is provided for a fixed
interval, e.g. one hour, half an hour, or 15 minutes, as is
often the case, such as in the European Energy Exchange
(EEX) [42].

An important consequence of the fixed intervals of gen-
eration is that it does not perfectly fit the smooth demand
curve. If we approximate a monotonically increasing de-
mand function (such as during the early morning hours)
with a step function assuming the mean for a given time
interval, we will initially overestimate the demand, which is
still growing. After some time, supply and demand perfectly
match but then the demand surpasses the supply again. This
leads to the balance between supply and demand being
approximately a sawtooth function, see Fig. 3.

Indeed, we also observe the consequences of the intervals
when analysing the frequency trajectory [24] or its autocor-
relation in the Continental European grid. The frequency
displays regular surges and sags approximately every 15
minutes, where the supply updates to the new demand
interval. At full hours these effects are more pronounced
since the total dispatch and trading volume is higher at full
hours compared to other 15 minute intervals [43]. Not only
the frequency trajectory displays these jumps and sags, see
Fig. 1 but also the autocorrelation function of the power-
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FIGURE 2. The power-grid frequency is heavy-tailed and has regular correlation peaks. (a) The frequency histogram displays heavy tails, which are
quantified by a kurtosis κ that is much larger than the Gaussian value of κGaussian = 3. Consistently, the best-fitting Gaussian distribution (dashed line) does not
capture the tails. (b) The autocorrelation function of the grid frequency decays exponentially within the first minutes, which is a typical behaviour for many stochastic
processes [33]. In addition, the autocorrelation peaks every 15 minutes due to trading activity. The plots use the TransNetBW data from January 2019 [30].

grid frequency c(∆t) reveals distinct peaks at 15, 30, 45
and 60 minutes, see Fig. 2 and [23], [31].

We will include the market influence by employing a de-
terministic power-mismatch model in our stochastic model.
But more importantly, we can extract vital information by
observing this phenomenon, as we will highlight below.

C. NOISE
So far, we have introduced the two deterministic elements
of our model: Control in the form of inertia, primary
and secondary control, and electricity trading occurring at
fixed times. We are only missing the stochastic element
of the model, i.e., the noise acting on the system. Noise
here is meant as any form of stochastic fluctuation. Its
sources are plentiful, ranging from demand fluctuations
[44], [40] to intermittency in the renewable generators [45],
[9], thermal fluctuations, and others, many of which are
typically unknown [23]. However, the precise origin of
the noise is not essential for our modelling approach. In
fact, we only observe the cumulative effect of the noise
in how it influences the power-grid frequency, regardless
whether it originates from local disturbances or system-
wide variations. Aggregating all sources of noise allows it
to be handled as a stochastic process, see also [32] for more
details.

As a first approximation for the noise, we will assume
white Gaussian noise, based on two important observations.
First, Gaussian noise arises naturally in many settings due
to the Central Limit Theorem. In its simplest form it states
that the sum of randomly drawn numbers, in our case the
aggregation of renewable, demand and any other form of
fluctuation, approximates a Gaussian distribution if suffi-
ciently many contributions are summed up [33]. Second, we
note that non-Gaussian frequency distributions can easily be
described by super-imposed Gaussian distributions, follow-
ing superstatistics [23], [46], [38], where parameters, such
as the standard deviation change over time. Moreover, the
above mentioned trading intervals are known to contribute
significantly to these tails [31].

If so desired, employing another form of noise is left
open in the model, without any fundamental change of the

model itself. There are plenty of non-Gaussian sources of
noise impacting the power grid, such as jump noise from
solar panels [9] or turbulence from wind turbines [47], [20].
Instead of Gaussian noise, we could include for example
non-Gaussian effects via Lévy-stable distributions or q-
Gaussian distributions [48], [38].

III. DATA-DRIVEN MODEL
Now, we formulate a simple dynamical model for the
frequency dynamics that includes all factors influencing
the power-grid frequency. First, we present the model and
explain how the above-mentioned factors enter the model.
We then discuss special cases of how some parameters could
be set as constants or as time-dependent. We close the
section by proving the theory to estimate the parameters
of the model.

For simplicity, we do not use the frequency f as the
variable but the bulk angular velocity ω = 2π (f − fref),
with reference frequency fref = 50 or 60 Hz, i.e., we move
into the rotating reference frame. In this frame, the dynamics
of the angular velocity ω and the bulk angle θ may be
modelled in an aggregated swing equation [49] as

dθ

dt
= ω,

M
dω

dt
= −c1ω − c2θ + ∆P + εξ.

(1)

The factor M gives the inertial constant of the system and
sets the time scale it reacts to changes. For simplicity, we
absorb it in the remaining constants and set M = 1 in the
following, i.e., c1 → c1/M , c2 → c2/M ,∆P → ∆P/M
and ε→ ε.

The term −c1ω models primary control and general
damping acting on the system [34], [16]. The larger the
deviation from the nominal frequency, i.e., the larger ω, the
larger the damping and control force.

The expression −c2θ models the secondary control [50],
[51]. If the system deviates from the nominal frequency,
e.g. because ω > 0 for a long time, then the bulk angle θ
increases more and more and thereby the secondary control
increases and acts as an increasing force to return the system
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FIGURE 3. The effective power balance approximates a sawtooth function over time. We schematically depict the interplay between generation, demand and
the resulting power imbalance: (a) While the demand curve is approximately smooth, the scheduled generation approximates the curve using step functions. (b)
The resulting power balance is approximately a sawtooth function with jumps upwards and ramps downwards if the demand rises and ramps upwards and jumps
downwards if the demand decreases. Here, we display all jumps with the same height for simplicity. In our model, we use different jump heights of the Heaviside and
thereby also of the sawtooth function for hourly, half- or quarter-hourly jumps.

towards the nominal frequency. We use the simplest integral
control, whereas other secondary control implementations
[50], [52], [53], [54], [55], [56] might be considered in the
future. Typically, the magnitude of the primary control pa-
rameter is much larger than the secondary control parameter
c1 � c2 to implement that primary control acts faster than
secondary control.

The power mismatch is given as ∆P . It contains only
the deterministic mismatch between supply and demand.
If generation surpasses consumption, ∆P becomes positive
and vice versa. In our market model, we will employ a time-
dependent ∆P , inspired by empirical power trajectories, see
Fig. 3.

Finally, εξ denotes the aggregated noise acting on the
system. As pointed out in the previous section, we assume
ξ to be white Gaussian noise, i.e., its time average is zero
〈ξ(t)〉 = 0 and its correlation is zero for non-identical
times, i.e., it is a delta function 〈ξ(t)ξ(t′)〉 = δ(t− t′) [33].
Extensions using correlated or non-Gaussian noise are also
possible in the same framework and can prove very useful
if the noise function or its characteristics are known. From
an a priori point-of-view, employing coloured noise would
required an explicit knowledge of its presence in power-
grid frequency systems and would complicate the parameter
extraction.

The model (1) is very general as we have not yet specified
the parameters c1, c2, ε or the function ∆P . Note again the
different roles of primary and secondary control: Assume
∆P = P0 > 0, this will increase the angular velocity ω and
thereby the angle θ. Without secondary control and noise,
i.e., c2 = ε = 0, the new quasi–steady state becomes ω∗ ≈
P0/c1 > 0. The full fixed point ω = 0 can only be restored
with an additional (integrative) secondary control.

A. CASES
We consider some special cases of parameter choices for
model (1) here. Theoretically, the model proposed so far
would allow that the three parameters c1, c2, and ε are
chosen as zero or non-zero constants, time-dependent func-
tions, or to follow their own stochastic process. Similarly,

the power mismatch ∆P could be any function, as long
as the differential equation is still well-defined. We review
three cases, see also Fig. 4 for an overview.

The distinguishing factor between those cases is the role
of secondary control c2 and power imbalance ∆P : Any
non-zero power imbalance ∆P will be compensated by
secondary control if c2 > 0. This means from a data-analysis
it is virtually impossible to distinguish cases where ∆P = 0
and no secondary control is active or ∆P 6= 0 and secondary
control restored the frequency or a case where a slowly
changing ∆P restored the frequency on its own without
secondary control active. Complementary, large and rapid
changes in the power imbalance are clearly visible in the
frequency trajectory and always have to be included in the
models.

Case A: A simple starting point is to set c1, c2, and ε
all as non-zero constants. By including an active secondary
control, we neglect slow changes in the power imbalance
∆P and assume that secondary control is the main restoring
force following a sudden jump. Specifically, we assume that
the power mismatch ∆P is given as a piece-wise constant
function, i.e., a Heaviside function. This model has the
advantage that we can easily estimate all parameters from
the trajectory.

Case B: Alternatively, we may neglect the effects of
secondary control, setting c2 = 0. To balance the frequency,
we then require a balanced power dispatch on average,
i.e., 〈∆P 〉 = 0. A simple function to realise this, while
maintaining the jumps, which are visible form the frequency
trajectories, is a sawtooth function, i.e., piecewise linearly
increasing or decreasing over time. Similar to Case A, we
still use constant non-zero c1 and ε.

Case C: We again repeat Case A but instead of estimating
the power mismatch ∆P from frequency trajectories, we use
historic demand data of Germany, based on data published
by ENTSO-E [57].

B. ESTIMATING PARAMETERS
To generate a synthetic trajectory approximating real data,
we need to estimate suitable parameters for our model. Here,
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FIGURE 4. We consider three different cases to model the power-grid frequency based on the model (1). In Case A, we apply constant primary and
secondary control, white Gaussian noise with constant amplitude ε and a Heaviside power mismatch ∆P . In contrast, Case B uses no secondary control and
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trajectory. As in Fig. 3, we display all jumps with the same height for simplicity.

we present the mathematical background and basics that
allow this parameter estimation as well as illustrations of
the procedure in Figs. 5, 6 and 7. We provide additional
guidance and code on how the estimators can be applied in
practice in the Supplemental Material.

We estimate the parameters of the synthetic model as
follows: The primary control c1 and the noise ε are obtained
from using the first and second Kramers–Moyal coefficient
respectively. Next, the power mismatch ∆P and the sec-
ondary control c2 are determined from the trajectory at the
trading times.

1) Kramers–Moyal and Fokker–Planck
Let us briefly review some relevant stochastic theory nec-
essary to estimate the parameters. The synthetic model (1)
includes stochastic and deterministic dynamics. Assuming
that the deterministic contribution given by ∆P and the
secondary control c2 are either very small or subtracted from
the trajectory, we are left with a purely stochastic process
for ω in the form of a Langevin equation. Such an equation
cannot be solved deterministically but we may formulate
the Fokker–Planck equation of the stochastic system instead
[33]:

∂p

∂t
=− ∂

∂ω
(−c1ωp) +

ε2

2

∂2p

∂ω2

− ∂

∂ω
D(1)p+

∂2

∂ω2
D(2)p.

(2)

This Fokker–Planck equation is a partial differential
equation for the probability density function p(ω, t) of the
system. Solving this Fokker–Planck equation thereby returns
the probability p(ω, t) to observe the system in state ω at
time t, see e.g. [33] for an introduction to Fokker-Planck
equations.

Terms subject to first derivatives are known as drift
terms D(1), while terms subject to second derivatives are
called diffusion terms D(2) [33]. Drift terms describe the
deterministic behaviour of the full stochastic system, e.g. the
movement of a particle within a potential or in our case the
control and damping forces acting within the power grid,
causes a “drift” towards the stable state. Complementary,
the diffusion terms determine the stochastic part of the
trajectory. Random noise makes state of the grid “diffuse”
through the available state space and typically leads to a
broadening of the probability distribution p [33]. We can
read off the drift and the diffusion terms of the angular
velocity ω as D(1) = −c1ω and D(2) = ε2

2 respectively.
These drift and diffusion terms of the Fokker–Planck equa-
tion are also known as the Kramers–Moyal coefficients from
the Kramers–Moyal expansion of the fundamental master
equation of the system. Only this approximation allows us
to write the Fokker–Planck equation [58], [59]. From these
coefficients we estimate the mentioned parameters.

From a data-driven perspective, we can recover the drift
D(1) and diffusion D(2) coefficients strictly from the data
by employing a histogram regression or a Nadaraya–Watson
kernel estimator. This approach is particularly useful when
the fundamental equations of motion are not known but we
also use it here to approximate the functional form of the
Fokker–Planck equation and recover the primary control c1
and noise amplitude ε, as given by (3) and , respectively.
The drift and diffusion coefficients are the two lowest-
order Kramers–Moyal coefficients. Further information on
Fokker–Planck equations, Kramers–Moyal expansion, and
stochastic modelling is available in [58], [33], [59].
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FIGURE 5. The primary control c1 is computed from fluctuations around
the trend. To estimate the primary control c1, we first detrend the data by
applying a Gaussian kernel and then compute the drift coefficient. (a): We
display a snippet of the power-grid frequency trajectory from the CE data from
January 2019, as in Fig. 1, alongside with the 60 seconds window Gaussian
kernel detrending, that captures the deterministic and slowly changing
contributions of the power-grid frequency. (b): We extract the stochastic motion
by subtracting the deterministic trend from the power-grid frequency. What is
left is a stochastic trajectory resembling approximately an Ornstein–Uhlenbeck
process. (c): We compute the first Kramers–Moyal coefficient, known as the
drift coefficient, of the now purely stochastic process. The slope of the drift
coefficient is equal to the primary control −c1.

2) Estimating the primary control c1
Having set out the theory of Fokker–Planck equations
and Kramers–Moyal coefficients, we now apply them to
determine the primary control c1, by applying a two-step
process: We first subtract the deterministic and slow time
scale components from the trajectory and then determine
the first Kramers–Moyal coefficient.

We first remove the driving deterministic characteristics
of the model (1) from any trajectory we analyse. To do so,
we filter the data with a Gaussian kernel filtering, with a
window of 60 seconds, to remove the deterministic trend
and any slow process, such as secondary control, and thus
remain solely with the stochastic component of the process.
A window too small (e.g. 5 seconds) would still contain
noise contributions, while a large window (e.g. 300 seconds)
leads to an almost flat signal. The procedure is independent
of the specific driving method (cf. Case A and Case B).
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FIGURE 6. The noise amplitude ε is obtained using the diffusion
coefficient. We display the diffusion coefficient, or second Kramers–Moyal
coefficient around 50 Hz for the CE grid for the month of January 2019. By
taking the value at 50 Hz, indicated on the plot, and by using relation (4), we
obtain the noise ε.

The detrending is illustrated in Fig. 5: The same snippet
of data from Fig. 1 is shown alongside with the Gaussian
kernel detrending. In panel (b) the subtraction of the de-
trending on the data yields the purely stochastic process
governing the power-grid frequency dynamics without de-
terministic or slow time scale influences. Finally, we extract
the first Kramers–Moyal coefficient in panel (c):

D(1)(ω) =
1

∆t
〈(ω(t+ ∆t)− ω(t))|ω(t)=ω〉 = −c1ω, (3)

where ∆t is the sampling rate of the process at hand, which
is ∆t = 1 s for our data sets. Furthermore, 〈...|ω(t)=ω〉
denotes the following: A spatial average of the difference
(ω(t+∆t)−ω(t)) is taken at the point of evaluation ω(t) =
ω, i.e., at a particular frequency ω all differences (ω(t +
∆t)−ω(t)) are evaluated and the diffusion D(1) is obtained
as a function of ω. Based on our modelling assumptions,
we presume this function to be linear in ω. And, when we
apply this to the real data in Fig. 5, we notice that the
numerically extracted drift term is indeed well described as
a linear function with slope −c1.

3) Estimating the noise amplitude ε
The noise amplitude ε is unravelled from data by studying
the second Kramers–Moyal coefficient. In our case, we
obtain the second conditional moment as

D(2)(ω) =
1

∆t
〈(ω(t+ ∆t)− ω(t))2|ω(t)=ω〉 =

ε2

2
, (4)

where ∆t is again the sampling rate of the process and the
empirical D(2)(ω) is assumed to approximately constant,
based on our model. Computing the second conditional
moment D(2) thereby yields the noise amplitude ε. Empir-
ically, we note that the de-trending is not even necessary
to determine the correct diffusion coefficient. So we instead
compute the diffusion from the original data directly.

We display the diffusion coefficient, i.e., the second
Kramers–Moyal coefficient, as a function of the frequency
in Fig. 6 for the month of January 2019 for the CE grid.
We determine the diffusion coefficient value at 50 Hz and
by using (4) thus determine the noise amplitude ε.
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FIGURE 7. Power imbalance ∆P and secondary control c2 are
determined from trading peaks. We investigate the frequency trajectory at a
trading peak: The power imbalance ∆P is obtained from the initial slope, i.e.,
the rate of change of frequency (ROCOF) and the secondary control c2 from
the following exponential decay, see (6). The frequency trajectory is using the
CE data from January 10 2019.

4) Estimating the market impact ∆P
To determine both ∆P and c2, we have a closer look at the
frequency behaviour following a sudden power imbalance.
Assuming that the power imbalance is large enough, we can
neglect the noise amplitude ε ≈ 0 as the dynamics close to
the power jump are approximately deterministic. Before the
power imbalance, we assume that the system is close to
the nominal frequency, i.e., ∆P = 0, θ ≈ 0 and ω ≈ 0.
Next, we introduce a power imbalance, e.g. due to trading
by setting ∆P = P0. The equations of motion then are

dθ

dt
= ω,

dω

dt
= −c1ω − c2θ + P0.

(5)

A full solution of this driven, damped harmonic oscillator
is given by

ω(t) =
P0e
− 1

2 t
(√

c21−4c2+c1
)

√
c21 − 4c2

[
et
√
c21−4c2 − 1

]
. (6)

We evaluate the rate of change of frequency (ROCOF) at
the jump time, i.e., at t = 0 to be

dω

dt

∣∣∣∣
t=0

= P0, (7)

and thereby determine the jump height P0, which gives us
the power imbalance ∆P , again assuming θ(0) = ω(0) ≈ 0.
Recall that we rescaled all variables with the inertia M so
that the ROCOF depends on the change of power and the
inertia as expected.

Note, while the solution (6) explicitly used the Heaviside
function with secondary control (Case A), the ROCOF
also determines the power jump in the case of a sawtooth
function (Case B). The reason is that the derivative at t = 0
is independent of what happens for t > 0 and also does not
depend on c1 or c2.

5) Estimating the secondary control c2
The estimation of c2 is only necessary for models that in-
clude it, such as Case A with its simple Heaviside function.

We know how the trajectory of the angular velocity ω, given
by (6), develops following a jump: Initially, the value of ω
increases and then decays approximately exponentially back
to the reference value.

Since the primary control parameter c1 is typically much
larger than the secondary control parameter c2, we make
use of the following approximation:

√
c21 − 4c2 ≈ c1− 2c2

c1
.

Thus (6) reduces to

ω(t) =
P0e
−t c2c1

c1 − 2c2
c1

[
1− e−t

(
c1− 2c2

c1

)]
. (8)

For larger times t � 1s, the second term in (8) decays
much faster than the first term. We can therefore further
approximate the angular velocity ω as

ω(t) ∼ exp

(
−c2
c1
t

)
, (9)

which allows an estimate of the secondary control c2, taken
we determined the primary control c1 earlier. We only need
to determine the exponent of the exponential decay, as
depicted in Fig. 7. Note that the exponential decay constant
does not depend on which trading interval we analyse. For
more robust analysis, we perform the fits using the decay
following hourly jumps, see also Supplemental Material.

This sequence of parameter estimations allows us to
uncover all underlying parameters of the system directly
from power-grid frequency measurements. In fact, a single
measurement of 60 minutes of data already entails a good
ground for estimation but naturally employing as much data
as possible yields more reliable parameter estimations, as
well as the possibility of error estimation in an efficient
way.

IV. CASE STUDY: CONTINENTAL EUROPEAN GRID
With the model properly defined, we now show how it
approximates the stochastic behaviour of real frequency
trajectories in Europe. The frequency statistics and also
market setting differ substantially between different power
grids [23]. So, instead of applying each case to all potential
power grids, we showcase it on one power grid example
where the statistics are well approximated.

Hence, we first apply Case A to data from Continental
Europe, Case B to data from Great Britain and finally show
that we can also import and utilize real dispatch data to
further improve the model predictions in Case C.

A. CASE A: PARAMETER EXTRACTION FOR JANUARY
2019, CENTRAL EUROPE
We analyse power-grid frequency data for the month of
January 2019, using measurements provided by the trans-
mission system operator TransnetBW GmbH who operates
the German grid in the state Baden-Württemberg [30]. For
this month, we estimate the following parameters:
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FIGURE 8. Case A: Heaviside dispatch approximates CE trajectories. We
compare two days of the power-grid frequency of the Central European (CE)
power grid in January 2019 with synthetic data generated by our model (1).
For this particular analysis, we utilise Case A that relies on a step function
mimicking the jumps of the power mismatch ∆P . The four governing
parameters: Noise ε, primary c1 and secondary c2 control, and power
mismatch ∆P parameters are given in Section IV-A, further details are given
in the Supplemental Material. (a) We plot a snippet of the power-grid
frequency trajectory from the CE data, the model, and the surrogate model
without power dispatch. The 15 minute trading intrinsic to the model and the
data is highlighted with grey lines. (b) We display the probability density
function of the CE data (histogram), the model data (solid line), and the
surrogate model data without dispatch (dashed line). Standard deviation and
kurtosis of each process are indicated in the legend. (c) We display the
autocorrelation of the processes for a time window of 75 minutes, noting the
initial exponential decay and regular peaks.

Central Europe, January, 2019.
ε [s−2] c1 [s−1] c2 [s−2]

0.00105 0.008311 0.000030

For simplicity, we considered the dispatch at the hourly
mark as the reference, as can be seen in Fig. 1 to be the
strongest driver of the system.

Case A: CE P0, January, 2019
at :00 at :30 at :15, :45

P0 [s−2] 0.001641 0.000547 0.000273

Extracting the value, as described, of the ∆P for the
hourly mark, we considered the half-hour and quarter-hour
trading windows to be 1/3 and 1/6 of the hourly value
of ∆P . Notice that there is no limitation in calculating this

from data but the results can prove unreliable given the small
differences in dispatch. Furthermore, to mimic the structure
of the dispatch [24], we take a naïve 6-hour window where
the P0 jumps are positive values, followed by an equivalent
6-hour window with negative peaks. This should approx-
imate the daily cycles of human daily activity: The work
schedule begins: demand increases; Work schedule ends:
demand decreases; Private consumption at home begins:
demand increases; Night time begins, demand decreases.

Having these parameters at hand, we can now employ
our model (1) to integrate synthetic power-grid frequency
trajectories. We employ an Euler–Mayurama stochastic in-
tegrator, with a time sampling of 0.001 seconds, for a total
length of two days, and make use on a step function with
changing values every 15 minutes, as formulated in Case A,
to mimic the power dispatch curve.

We compare the data, the synthetic model based on (1)
and surrogate model without the market structure, i.e., where
we set ∆P = 0, in Fig. 8. The introduction of the model
without the market allows us to understand concisely the
influence of the dispatch on the trajectory of the power-grid
frequency, as well as the influence it has on the statistical
behaviour of the system.

Several distinct features of the market effect can be seen
in Fig. 8: While the surrogate only fluctuates randomly
close to the reference frequency, both the real and the
synthetic trajectory display surges of the frequency close
to the 15 minute trading windows, see panel (a). These
large surges lead to a non-Gaussian probability distribution
of the power-grid frequency, evidenced in panel (b). Both
the data and the synthetic model with the market display a
high kurtosis (κ > 3), while the surrogate model without any
market is essentially Gaussian. This indicates that the market
activity has a considerable impact on the distribution of the
frequency, specifically its tails. With the market, the system
reaches critical values much more often than what would
be expected by a normally distributed process. We finally
compare the autocorrelation functions of the power-grid
frequency for the CE data of January 2019, the modelled
data, and the surrogate model in panel (c). We note that
the system’s scheduled trading/dispatch windows generate
defined peaks at exactly 15, 30, 45, and 60 minutes. By
comparison, a surrogate system without a market structure
displays no correlation peaks at any time lag. Moreover, it
is importance to notice that all peaks in the autocorrelation
function are positive valued, both for the synthetic and
the real data. This indicates that the system’s dispatch
is not an uncorrelated random process but the direction
of the frequency change is correlated: Frequency surges
are more likely followed by more frequency surges and
vice versa for frequency sags. The modelled data mimics
this with accuracy by implementing an over-simplistic yet
successful heuristic argument based on human daily cycles,
as explained before.
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FIGURE 9. Case B: Sawtooth dispatch approximates GB trajectories. We
compare two days of the power-grid frequency of the British (GB) power grid in
January 2019 with synthetic data generated by our model (1). Here, a
sawtooth function is used to describe the mismatch in power ∆P , see Fig. 4,
Case B. Noise amplitude ε, primary c1 control, and power mismatch ∆P are
given in Section IV-B, see also Supplemental Material for details on parameter
estimation. Note that Case B does not use secondary control. (a) We plot
snippet of the power-grid frequency trajectory from the GB data, the model,
and the surrogate model without power dispatch. (b) We display the probability
density function of the GB data (histogram), the model data (solid line), and
the surrogate model data without dispatch (dashed line). Standard deviation
and kurtosis of each process are indicated in the legend. (c) We display the
autocorrelation of the processes for a time window of 75 minutes, noting the
initial exponential decay and regular peaks. Contrary to the Heaviside function
of Case A, the sawtooth function forces a negative correlation of the system by
first driving the system driven to one state and then inverting this trend at the
trading interval.

B. CASE B: PARAMETER EXTRACTION FOR JANUARY
2019, GREAT BRITAIN

Analogously, we analyse data from Great Britain for the
month of January 2019, obtained from the British transmis-
sion system operator National Grid ESO [60]. Applying the
discussed methods, we derive the following parameters

Great Britain, January, 2019
ε [s−2] ∆P [s−2] c1 [s−1] c2 [s−2]

0.00205 0.00204 0.00606 #

where in this case we set the value of the secondary control
c2 to be zero. Here, we apply Case B, for two reasons: First,
we wish to show that it is also capable of capturing the

frequency distributions of a given grid. Second, the British
frequency trajectory does not display any clear exponential
decay following the trading activity. This is likely caused
by a smaller relative trading volume and a larger relative
noise amplitude [23]. Both effects also contribute to much
smaller autocorrelation peaks at the trading intervals.

We recover the statistics of the British power-grid fre-
quency data with remarkable precision using a sawtooth
function for the power dispatch ∆P , see Fig. 9. The
GB data exhibits low kurtosis values (κ < 3), especially
when compared to the Continental European values. Our
employed model captures the process with high accuracy,
when we apply a sawtooth function for ∆P (Case B).
Notably, for the case of the surrogate model without market
activity, the probability distribution again approximates a
Gaussian distribution with kurtosis κ = 3. Although the
autocorrelation function exacerbates the peaks, it captures
the initial decay and the trend of regular peaks well. The
oversized oscillations arise since we assumed consistent
periods of six hours with the same jump and ramp behaviour.
In turn, the negative autocorrelation arises as the sawtooth
function suddenly changes the sign of the market effect.
Both assumptions arepart of a very simple but thereby easy-
to use model of the British grid, which still captures the
probability distribution (histogram) very well.

C. CASE C: USING REAL POWER DISPATCH FOR
CONTINENTAL EUROPE
Finally, we use real dispatch data from Germany, provided
by ENTSO-E [57], to determine the power mismatch ∆P
in our model (1) and compare synthetic and real trajectories
in Fig. 10. To this end, we simply set the power mismatch
∆P as a Heaviside function based on the real demand for
the German grid, i.e., we use the actual demand and assume
it stays constant for a given 15 minute interval. While the
autocorrelation and the rough shape of the histogram of the
model data closely match those of the real data set, we note
a substantial difference in the computed kurtosis values.
This discrepancy is likely caused by the large variations
in the volume of the dispatched power. Here we use data
from the German grid to allow a 15 minute resolution.
However, the full power dispatch affecting the Continental
European grid is given as the sum over all participating
countries and would likely be smoother and lead to lower
kurtosis values. As noted before, we only require the jump
height in ∆P , here as the demand, while the generation
enters as the simplified secondary control term −c2θ. We
chose the German data because its time resolution of ∆P
is 15 minutes, compared to 1 hour resolution for many
other countries. Using such real demand data breaks the
symmetrical and regular six hour patterns we have been
using so far in Cases A and B. Thereby, we also include
larger time scales in the synthetic frequency data since the
real demand naturally includes for example daily and weekly
cycles. Aside form ∆P , we use the same values as in Case A
for the other parameters, i.e., noise ε, primary and secondary
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FIGURE 10. Case C: Realistic dispatch trajectories better approximate the real frequency statistics. (a) We use the real dispatch trajectories of the demand
in Germany [57] to obtain the correct jumps for the Heaviside function (as in Case A) of the power mismatch ∆P and use our model (1) to generate a synthetic
trajectory. (b) The synthetic frequency trajectory statistically resembles the real trajectory for the two day period depicted here. Noise amplitude ε, primary c1 and
secondary c2 control were calculated as described in the Supplemental Material. (c) We display the probability density function of the CE data (histogram), the
model data (solid line), and the surrogate model data without dispatch (dashed line). Standard deviation and kurtosis of each process are indicated in the legend.
(d) We display the autocorrelation of the processes for a time window of 75 minutes, noting the initial exponential decay and regular peaks.

control c1 and c2. Comparing the synthetic trajectory and
derived measures with the real frequency trajectory, we not
that including the real demand data improves the approx-
imation further, see Fig. 10. For example the probability
density of the real frequency is even better approximated
by the synthetic data than in Case A.

V. DISCUSSION
We set out to devise a model to generate realistic synthetic
trajectories of the power-grid frequency to be used in
simulations of power and control system dynamics and to
assist planning and operation of today’s and future power
grids. To that end, we first showed that the frequency
trajectories show both deterministic and stochastic features,
leading to non-standard frequency statistics: Heavy tails
in the probability distributions and regular autocorrelation
peaks pose challenges to properly model the trajectories.

We proposed a simple model combining the deterministic
and stochastic aspects of the trajectories. Using stochastic
theory and data analysis we were able to extract all essential
parameters of the model from real trajectories. We specif-
ically highlighted how the model approximates probability
distributions and autocorrelation functions of realistic grids.
A more detailed analysis of the mathematical properties of
both real trajectories and the model is presented in [32].

The presented model was designed to be generally ap-
plicable, easily extendible and usable, which inevitably
requires several simplifications: It does not capture the
very short time scale when short-term noise, dynamical
behaviour of the rotation machines or switching delays play

an important role. Similarly, the model does also not include
the long time scale with effects such as synoptic or even
seasonal cycles, long-term trading commitment etc. Finally,
the model is a stochastic model, i.e., it is not suitable
for forecasting of the near future but instead it reproduces
critical statistical properties such as large frequency devia-
tions. Conceptually, our modelling approach bridges power
engineering, stochastic modelling and data analysis. Power
engineering serves as the inspiration to our model building
blocks like primary and secondary control. The universality
of stochastic modelling is used in formulating the Fokker–
Planck equation and deriving both the diffusion coefficient
and primary control. Finally, more data analysis tools are
necessary to estimate remaining parameters such as the
secondary control or the strength of the dispatch or market
actions.

Critically, we unveiled how much the market activity
influences the tails of the probability distribution, i.e., the
probability to observe large deviations from the reference.
Comparing models with and without market revealed that
just by including the market activity most large events can
be explained, consistent with earlier findings [43], [31]. This
emphasizes the role the market design has on the stability
of the power grid.

The explicit modelling of the market in the stochastic
model is specifically interesting when designing new market
rules or introducing new business models. As we have seen,
the market has a dramatic influence on the stability-defining
large deviations. Our model can easily predict the effects
on the frequency when shifting from 15-minute to 5-minute
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dispatch actions or when introducing real-time pricing. New
proposals of smart grids, the impact of demand-side man-
agement etc. can all be captured by appropriately modifying
the power dispatch ∆P of our model. Thereby, we provide
guidelines how new concepts and devices can be introduced
in the grid without destabilizing it but ideally providing
additional stability.

Concluding, our research offers a tool that can be used
by natural scientists, mathematicians, engineers, economists
or industry practitioners on various questions related to
the electricity system. It can be used to plan future grids,
such as setting up smart grids and microgrids by providing
guidelines on how control parameters should be set to
guarantee a certain frequency quality. Executable computer
code and easy-to-read pseudo-code of the model and the
parameter estimation are provided in the supplementary
material.

The model presented here can easily be extended in mul-
tiple directions: We could apply more advanced stochastic
measures to compare the synthetic trajectory with the real
trajectory, as partially done in [32]. Simultaneously, the
frequency dynamics considered here could be extended by
voltage amplitude dynamics. While we included primary
and secondary control, additional work is necessary if
tertiary control should be part of the model. Furthermore,
while we only considered constant Gaussian noise, this noise
could easily be extended: Either by including explicit non-
Gaussian noise [23], as it is observed from wind and solar
generators [9] or by making the noise or the control time-
dependent, leading to superstatistical modelling [46]. Fi-
nally, the proposed model and possible extensions should be
systematically compared to alternative power grid frequency
forecast methods and their performance versus historic data.
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VI. SUPPLEMENTAL MATERIAL
A. PARAMETER EXTRACTION GUIDELINES
Following the mathematical foundations presented in the
main text,we present hands-on instructions on how to extract
the parameters for the example of a month-long recording
of the power-grid frequency in Germany for the month of
January 2019. As we focus mainly on specific characteristics
of the power dynamics, we calculate, strictly from the data,
the noise amplitude ε, the power mismatch at the hourly
stamp ∆P , the primary and secondary control amplitudes
c1 and c2. The procedure follows in a simple manner:

• Noise amplitude ε: Utilise the second Kramers–Moyal
coefficient, i.e., the diffusion, to extract the noise
strength ε from the timeseries of the data. Use relation
(4) to obtain the value, by taking either the value of
the diffusion at f = 50 Hz or averaging in windows
around f = 50 Hz.

• Power mismatch ∆P (for the hourly jumps): Take
the first 10 seconds of data just after the hour, e.g.
from 12:00:00 to 12:00:10. Calculate the slope of the
frequency increase or decrease in this window with a
linear fit. Given that the process displays jumps up and
down, i.e., excess and lack of power supply, take the
absolute value to obtain the general power mismatch
∆P . Average to obtain the average effect.

• Primary control c1: This is a two-step process: Perform
a Gaussian kernel de-trending of the data, with a 60-
seconds window, to remove the effects of the market
and dispatch, so to capture the system’s stochastic
nature. The choice of a 60-second window ensures one
removes only the deterministic characteristics of the
frequency trajectory: a smaller window will mimic the
noise, a larger window will reflect the overall mean
of 50 Hz (60 Hz) of the process. Utilise now the
first Kramers–Moyal coefficient, i.e., the drift term,
to obtain a negatively tilted line: linearly fit the line
around f = 50 Hz (or 60 Hz) and extract the slope,
which is the drift coefficient of the governing Ornstein–
Uhlenbeck process. The slope is the negative primary
control −c1.

• Secondary control c2: This is the last parameter to cal-
culate, and it depends on the primary control c1. Take
900 seconds windows at every hourly jump, similarly
to the above calculations for the power mismatch ∆P .
Fit (8) to the data snippets (or (6), although strictly
mathematically correct, it is harder to fit). Obtain the
exponential decay made explicit in (9), i.e., the last
term of (8). Input the previously obtained value for
the primary control c1 (step above) to determine teh
secondary control c2.

Having concluded these four steps, we possess all the
necessary variables to numerically integrate a synthetic
version of the evaluated power-grid frequency.

The simplest and most straightforward method is to
implement an Euler–Mayurama integration scheme. This is

a scheme identical to a regular Euler integration scheme,
incorporating a noise function ξ. This is done by generating
a set of normally distributed values with mean µ = 0
and variance σ =

√
τ , with τ the employed time-step of

integration. Stochastic integration requires small time-steps,
thus we suggest using at least 0.01 seconds, or better even
0.001 seconds. From this store only the 1 second recording
to accurately compare with available real power-grid data (if
your temporal resolution is different, match it). Other more
integrators, such as Runge-Kutta integrators for stochastic
equations, can be used to ensure higher precision of the
numerical results.

To extract the Kramers–Moyal coefficients there are open
source Python (‘Python KM’) or R (‘Langevin’) packages,
see [61] and [62], respectively.

VII. PSEUDO-CODE
Pseudo-code for extracting the parameters from data, based
on the methodology implemented for the Central European
power grid. As Supplemental Material, a minimal python
code is attached. This was the code used for obtaining the
parameters from the data.

In the following we compartmentalise the code in four
sections, each corresponding to the parameter recovery of
each of the four parameters under analysis: Noise ε, primary
control c1, secondary control c2, and dispatch ∆P

For all cases below, the first step is naturally to import
the data

Import data
• Load data

IF data is recorded at 50 hz: data = data − 50

Retrieving the Noise ε
• Load module km to obtain Kramers–Moyal coefficients
• diffusion, space = km(data, coefficient = 2)
• find f=0 in space
• ε =

√
diffusion(space = 0)× 2

Retrieving the primary control c1
• Load module km to obtain Kramers–Moyal coefficients
• Load module filter to obtain the Gaussian kernel

filtering
• data_filtered = data − filter(data)
• drift, space = km(data_filtered, coefficient

= 1)
• find f=0 in space
• fit line to drift around space = 0
• c1 = −slope of fit
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Retrieving the dispatch ∆P

FOR every hour:

– fit line to data[first 10 secs]
– save slope to record

• Take absolute of record
• ∆P = mean(abs(record))

Retrieving the secondary control c2

FOR every hour

– fit curve of (8) to data[900 seconds]
– save exp. decay to record

• c2 = mean(record)×c1

It is advisable to discard the statistical outliers, since fitting
an exponential decay to the frequency data is especially
unreliable if the dispatch difference is very small for that
period.

VIII. PYTHON MINIMAL-WORKING CODE

Listing 1. Load libraries and data
1 # S e t o f r e q u i r e d py thon l i b r a r i e s
2 import numpy as np
3 from s c i p y . o p t i m i z e import c u r v e _ f i t
4

5 # L i b r a r y f o r t h e g a u s s i a n k e r n e l f i l t e r
6 from s c i p y . ndimage . f i l t e r s import

g a u s s i a n _ f i l t e r 1 d
7

8 # L i b r a r y f o r c a l c u l a t i n g Kramers−−Moyal
c o e f f i c i e n t s

9 from kramersmoyal import km
10

11

12 # P r e l i m i n a r i e s
13 # A l l o c a t e t h e power−g r i d f r e q u e n c y d a t a t o

a numpy a r r a y . Make s u r e t h e f i r s t
14 # e n t r y c o r r e s p o n d s t o t h e z e r o second of

an hour p e r i o d , e . g . d a t a [ 0 ] i s t h e
15 # s t a r t o f t h e d a t a a t some HH: 0 0 : 0 0
16

17 d a t a = np . r e a d t x t ( ’ l o c a t i o n / o f / d a t a . t x t ’ )
18

19 # i f t h e d a t a i s r e c o r d e d a t a r e f e r e n c e ( e
. g . 50 Hz ) , remove t h e r e f e r e n c e

20 d a t a = d a t a − 5 0 . 0

Listing 2. Noise ε
1 # Noise e p s i l o n
2 # In o r d e r t o c a l c u l a t e t h e n o i s e e p s i l o n

you need t o e x t r a c t t h e d i f f u s i o n te rm
3 # of t h e s t o c h a s t i c p r o c e s s e s . Employ t h e

km f u n c t i o n from t h e kramersmoyal
4 # l i b r a r y
5

6 # R e t r i e v e t h e d i f f u s i o n c o e f f i c i e n t
7 d i f f u s i o n , s p a c e = km( da ta , powers = [ 0 ,

2 ] , b i n s = np . a r r a y ( [ 6 0 0 0 ] ) , bw = 0 . 0 5 )
8

9 # f i n d t h e z e r o f r e q u e n c y
10 z e r o _ f r e q u e n c y = np . argmin ( s p a c e [ 0 ] * * 2 )
11

12 # e v a l u a t e t h e d i f f u s i o n a t t h a t p o i n t and
e x t r a c t e p s i l o n

13 e p s i l o n = np . s q r t ( d i f f u s i o n [ 1 ,
z e r o _ f r e q u e n c y ] * 2 )

Listing 3. Primary control c1
1 # Pr imary c o n t r o l c_1
2 # To c a l c u l a t e t h e p r i m a r y c o n t r o l c_1 we

need t o emply a two s t e p p r o c e s s .
3 # F i r s t remove t h e g e n e r a l t r e n d by a

g a u s s i a n k e r n e l f i l t e r i n g , t h e n employ
4 # a g a i n t h e km f u n c t i o n from t h e

kramersmoyal l i b r a y r t o o b t a i n t h e
d r i f t t e rm

5

6 d a t a _ f i l t e r = g a u s s i a n _ f i l t e r 1 d ( da t a , s igma
= 60)

7

8 # O bt a i n t h e d r i f t c o e f f i c i e n t
9 d r i f t , s p a c e = km( da ta−d a t a _ f i l t e r , powers

= [ 0 , 1 ] , b i n s = np . a r r a y ( [ 6 0 0 0 ] ) , bw =
0 . 0 1 )

10

11 # f i n d t h e z e r o f r e q u e n c y
12 m i d _ p o i n t = np . argmin ( s p a c e [ 0 ] * * 2 )
13

14 # C a l c u l a t e t h e s l o p e o f t h e d r i f t term ,
which g i v e s t h e p r i m a r y c o n t r o l c_1 .

15 # The f i t i n g i s t o a l i n e o f i n t e r c e p t a
and s l o p e b . T

16 c_1 = c u r v e _ f i t ( lambda t , a , b : a − b* t ,
s p a c e [ 0 ] [ m i d _ p o i n t − 500 : m i d _ p o i n t +
5 0 0 ] ,

17 d r i f t [ 1 , m i d _ p o i n t − 500 : m i d _ p o i n t +
500] , p0 = ( 0 . 0 0 0 2 , 0 . 0 0 5 ) ,

18 maxfev =10000
19 ) [ 0 ] [ 1 ]
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Listing 4. ∆P

1 # D e l t a P / RoCoF
2 # To c a l c u l a t e t h e d i s p a t c h D e l t a P

e v a l u a t e t h e p r o c e s s a t e v e r y h o u r l y
jump .

3 # I f t h e r e i s a d i f f e r e n t d i s p a t c h seems ,
change t h e e v a l u a t i o n t o t h a t p e r i o d .

4 # In p r i n c i p l e t h i s can be c a l c u l a t e d f o r
any i n t e r v a l o f power d i s p a t c h b u t

5 # t o e n s u r e a good f i t , b i g g e r jumps =
b i g g e r d i s p a t c h = b e t t e r f i t

6

7 # De f i ne window of jumps . In t h i s case ,
e v a l u a t e t h e D e l t a P e v e r y hour

8 window = 3600 # 3600 s e c o n d s = 1 hour
9

10 # S e t t h e t o t a l l e n g t h t o e v a l u a t e
11 d a t a _ r a n g e = d a t a . s i z e / / window
12

13 # I n i t i a l i s e an a r r a y t o r e c o r d t h e D e l t a P
14 D e l t a _ P _ s l o p e s = np . z e r o s ( d a t a _ r a n g e )
15

16 # The jumps a r e t o be e v a l u a t e a t t =0 b u t
s i n c e we have n o i s e da t a , we f i t t h e

17 # f i r s t 10 s e c o n d s t o c a l c u l a t e t h e s l o p e
18 f o r j in range ( d a t a _ r a n g e ) :
19 D e l t a _ P _ s l o p e s [ j ] = c u r v e _ f i t ( lambda t ,

a , b : a + b* t , np . l i n s p a c e ( 0 , 9 , 1 0 ) ,
20 d a t a [ 3 6 0 0 * ( j )

: 3 6 0 0 * ( j ) +10] ,
p0 = ( 0 . 0 , 0 . 0 ) ,

21 maxfev =10000
22 ) [ 0 ] [ 1 ]
23 # Th i s r e s u l t s i s an a r r a y wi th p o s i t i v e

and n e g a t i v e s l o p e s , s i n c e some
24 # f r e q u e n c y changes a r e p o s i t i v e ( e x c e s s

e ne rg y ) , some a r e n e g a t i v e . F ind t h e
25 # a b s o l u t e v a l u e f o r them and t a k e t h e

a v e r a g e as t h e r e f e r e n c e D e l t a P .
26

27 # Th i s i s t h e mean D e l t a P
28 Del t a_P = np . mean ( np . abs ( D e l t a _ P _ s l o p e s ) )

Listing 5. Secondary control c2
1 # Secondary c o n t r o l c_2
2 # To c a l c u l a t e t h e s e c o n d a r y c o n t r o l c_2 we

w i l l need , j u s t a s above , s n i p p e t s
3 # of t h e h o u r l y jumps and t h e s u b s e q u e n t

decay of t h e f r e q u e n c y back t o t h e
4 # nomina l v a l u e s . Due t o t h e c o m p l i c a t e d

f r e q u e n c y b e h a v i o u r , we w i l l f i t an
5 # e n t i r e c u r v e t o t h e 900 s e c o n d s b u t we

s h a l l on ly e x t r a c t t h e decay r a t e
6

7 # De f i n e window of jumps . In t h i s case ,
e v a l u a t e t h e s e c o n d a r y c o n t r o l c_2
e v e r y

8 # hour
9 window = 3600 # 3600 s e c o n d s = 1 hour

10

11 # S e t t h e t o t a l l e n g t h t o e v a l u a t e
12 d a t a _ r a n g e = d a t a . s i z e / / window
13

14 # I n i t i a l i s e an a r r a y t o r e c o r d t h e D e l t a P
15 c_2_decays = np . z e r o s ( d a t a _ r a n g e )
16

17 # S i n c e we have up and down jumps , we have
t o s e p a r a t e t h e t r a j e c t o r i e s t h a t

18 # move up and t h o s e t h a t move down b u t we
s t i l l c a l c u l a t e t h e same decay

19 # b e h a v i o u r o f bo th
20 f o r j in range ( d a t a _ r a n g e ) :
21 # i f t h e f r e q u e n c y t r a j e c t o r y moves

p o s i t i v e l y
22 i f np . sum ( ( np . d i f f ( d a t a [ 3 6 0 0 * ( j ) : 3 6 0 0 * (

j ) + 1 0 ] ) ) ) > 0 :
23 c_2_decays [ j ] = c u r v e _ f i t ( lambda t ,

a , b , c :
24 a *np . exp(−b* t ) *(1−np . exp(−c * t

+2*b* t ) ) ,
25 np . l i n s p a c e ( 0 , 8 9 9 , 9 0 0 ) , d a t a

[ 3 6 0 0 * ( j ) : 3 6 0 0 * ( j ) +900] ,
26 p0 = ( 0 . 0 8 , . 0 0 4 5 , 0 . 0 3 5 ) , maxfev

=10000
27 ) [ 0 ] [ 1 ]
28 e l s e :
29 c_2_decays [ j ] = c u r v e _ f i t ( lambda t ,

a , b , c :
30 −a *np . exp(−b* t ) *(1−np . exp(−c * t

+2*b* t ) ) ,
31 np . l i n s p a c e ( 0 , 8 9 9 , 9 0 0 ) , d a t a

[ 3 6 0 0 * ( j ) : 3 6 0 0 * ( j ) +900] ,
32 p0 = ( 0 . 0 8 , . 0 0 4 5 , 0 . 0 3 5 ) , maxfev

=10000
33 ) [ 0 ] [ 1 ]
34

35 # We have t h u s s t o r e d t h e decay r a t e b o f
e v e r y power mismatch i n t h e sys tem .

36 # Due t o s t a t i s t i c a l o u t l i e r s , d i s c a r d 20%
of t h e d a t a

37

38 # S o r t t h e a r r a y and d i s c a r d 20% of t h e
l a r g e s t v a l u e s

39 t emp_c_2_decays = c_2_decays [ np . a r g s o r t (
c_2_decays ) ] [ : − c_2_decays . s i z e / / 5 ]

40

41 # R e c a l l h e r e t h a t t o c a l c u l a t e c_2 you
need t o know c_1

42 c_2 = np . mean ( temp_c_2_decays ) * c_1
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