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SUMMARY 
 
Background 
 
Genome-wide association studies (GWASs) in Parkinson’s disease (PD) have increased the 
scope of biological knowledge about the disease over the past decade.  We sought to use the 
largest aggregate of GWAS data to identify novel risk loci and gain further insight into disease 
etiology. 
 
Methods 
 
We performed the largest meta-GWAS of PD to date, involving the analysis of 7.8M SNPs in 
37.7K cases, 18.6K UK Biobank proxy-cases (having a first degree relative with PD), and 1.4M 
controls. We carried out a meta-analysis of this GWAS data to nominate novel loci. We then 
evaluated heritable risk estimates and predictive models using this data. We also utilized large 
gene expression and methylation resources to examine possible functional consequences as 
well as tissue, cell type and biological pathway enrichments for the identified risk factors.  
Additionally we examined shared genetic risk between PD and other phenotypes of interest via 
genetic correlations followed by Mendelian randomization. 
 
Findings 
 
We identified 90 independent genome-wide significant risk signals across 78 genomic regions, 
including 38 novel independent risk signals in 37 loci. These 90 variants explained 16-36% of 
the heritable risk of PD depending on prevalence. Integrating methylation and expression data 
within a Mendelian randomization framework identified putatively associated genes at 70 risk 
signals underlying GWAS loci for follow-up functional studies.  Tissue-specific expression 
enrichment analyses suggested PD loci were heavily brain-enriched, with specific neuronal cell 
types being implicated from single cell data. We found significant genetic correlations with brain 
volumes, smoking status, and educational attainment. Mendelian randomization between 
cognitive performance and PD risk showed a robust association. 
 
Interpretation 
 
These data provide the most comprehensive understanding of the genetic architecture of PD to 
date by revealing many additional PD risk loci, providing a biological context for these risk 
factors, and demonstrating that a considerable genetic component of this disease remains 
unidentified.  
 
Funding 
 
See supplemental materials (Text S2). 



 

 

 
RESEARCH IN CONTEXT 
 
Evidence before this study 
 
Previous studies such as Chang et al. 2017 and its predecessors have utilized GWAS methods 
to discover 42 independent risk loci associated with PD (1). Some of these loci harboring 
common risk variants also include rare variants implicated in familial PD risk such as SNCA, 
LRRK2 or GBA. Earlier studies like Keller et al. 2012 have attempted to quantify how much 
heritable risk is captured by common variation that can be easily imputed using commercial 
genotyping arrays and estimate the amount of risk explained by GWAS (2). As far back as Nalls 
et al. 2011, GWAS studies of PD have integrated expression and methylation datasets to 
evaluate possible candidate genes for follow-up at PD loci (3). Many epidemiological and 
observational studies have attempted to assess risk of PD and various exposures like smoking, 
caffeine or occupational hazards, with a mixed track record of success at validating putative 
associations. 
 
Added value of this study 
 
The primary deliverable of this study was increasing the count of independent common genetic 
risk factors for PD to 90. We added 38 novel risk variants not identified as genome-wide 
significant in previous reports. We refined heritability estimates and genetic risk predictions 
suggesting that common genetic variants account for approximately 22% of PD risk on the 
liability scale, with a range of 16-36% of that risk being explained by GWAS loci in this study. 
These updated risk predictions also suggested that polygenic risk scoring can be used to 
achieve an area under the curve of near 70%, although this prediction uses many more variants 
than just the 90 independent risk factors identified in this report. Of the 90 risk variants we have 
characterized here, we have nominated at least one possible candidate gene for follow-up 
functional studies in 70 of these genomic regions by mining recently available expression and 
methylation reference datasets on a scale not possible just a few years ago. We have 
additionally mined single cell RNA sequencing data from mice to identify tissue-specific 
signatures of enrichment relating to PD genetic risk, showing a major focus on neuronal cell 
types. We also utilized the massive amount of publicly available GWAS results to survey genetic 
correlations between PD and other phenotypes showing significant correlations with smoking, 
education and brain morphology. Subsequent analyses using Mendelian randomization (MR) 
methods showed that there are likely causal links between increased cognitive performance and 
PD risk on a genetic level. 
 
Implications of all available evidence 
 
First and foremost, this study increased the scope of our knowledge of PD genetics by adding 
38 novel risk factors, directly broadening our knowledge base of disease etiology. Using 
updated heritability estimates and risk predictions, we took preliminary steps down the long path 
to early detection. In future studies, combining genetic and clinico-demographic risk factors may 
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lead to earlier detection and refined diagnostics, which may help improve clinical trials (4). The 
generation of copious amounts of public summary statistics created by this effort relating to both 
the GWAS and subsequent analyses of gene expression and methylation patterns may be of 
use to investigators planning follow-up functional studies in stem cells or other cellular screens, 
allowing them to prioritize targets more efficiently using our data as additional evidence. We 
hope our findings may have some downstream clinical impact in the future such as improved 
patient stratification for clinical trials and genetically informed drug targets.  
 
INTRODUCTION 
 
Parkinson’s disease is a neurodegenerative disorder, affecting approximately 1 million 
individuals in the United States alone (5). PD patients suffer from a combination of progressive 
motor and non-motor symptoms affecting daily function and quality of life. The prevalence of PD 
is projected to double in some age groups by 2030, creating a substantial burden on healthcare 
systems (5). 
 
Early investigations into the role of genetic factors in PD focused on the identification of rare 
mutations underlying familial disease, (6,7) over the past decade there has been a growing 
appreciation for the contribution of genetics in sporadic disease(1,8). Genetic studies of 
sporadic PD have altered the foundational view of disease etiology.  
 
We executed a series of experiments to explore the genetics of PD (summarized in Figure 1). 
We performed the largest-to-date GWAS for PD, including 7.8M SNPs, 37.7K cases, 18.6K UK 
Biobank (UKB) “proxy-cases”  (individuals without PD that have a family history of PD) and 1.4M 
controls. We identified mechanistic candidate genes for PD, providing valuable therapeutic 
targets. We assessed the function of these potential risk genes via Mendelian randomization, 
expression enrichment, and protein-protein interaction network analysis. We estimated PD 
heritability, developed a polygenic risk score that predicted a substantial proportion of this 
heritability, and leveraged these results to inform future studies. Finally, we identified candidate 
PD biomarkers and risk factors using genetic correlation and Mendelian randomization. 
 
SUMMARY OF METHODS 
 
GWAS Study design and risk locus discovery 
 
Three sources of data were used for discovery analyses, these include three previously 
published studies, 13 new datasets, and proxy-case data from the UK BioBank (UKB). Previous 
studies include summary statistics published in Nalls et al. 2014, GWAS summary statistics 
from the 23andMe Web-Based Study of Parkinson's Disease (PDWBS) in Chang et al. 2017, 
and the publicly available NeuroX dataset from the International Parkinson’s Disease Genomics 
Consortium (IPDGC) previously used previously as a replication sample. These cohorts have 
been reported in detail (1,9). We included 13 new case-control sample series for meta-analyses 
through either publicly available data or collaborations (please see Supplementary Table S1 for 
details regarding these studies). All samples from the 13 new datasets underwent similar 
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standardized quality control for inclusion, mirroring that of previous studies. We attempted to 
generate summary statistics for GWAS meta-analyses as uniformly as possible. This analysis 
utilized fixed-effects meta-analyses as implemented in METAL to combine summary statistics 
across all sources (10). 
 
Conditional-joint analysis to nominate variants of interest 
 
To nominate variants of interest, we employed a conditional and joint analysis strategy (COJO, 
http://cnsgenomics.com/software/gcta/) to algorithmically identify variants that best account for 
the heritable variation within and across loci (11). Additional analyses described below were 
utilized to further scrutinize putative associated variants and account for possible differential 
linkage disequilibrium (LD) signatures, including using the massive single site reference data 
from 23andMe in more conditional analyses. If a variant nominated during the COJO phase of 
analysis was greater than 1Mb from any of the genome-wide significant loci nominated in Chang 
et al. 2017, we considered this to be novel. We defined nominated risk variants as from a single 
locus if they were within +/- 250kb of each other. We instituted two filters after fixed-effects and 
COJO analyses, excluding variants that 1) had a random-effects P value across all datasets > 
4.67E-04 and 2) a conditional analysis P > 4.67E-04 using participant level 23andMe genotype 
data. Please see Supplementary Table S2 summarizing all variants nominated plus the 
Methods and Results Supplement.   
 
Refining heritability estimates and determining extant genetic risk 
 
We used the R package PRSice2 for risk profiling (12), this carries out polygenic risk score 
(PRS) profiling in the standard weighted allele dose manner (1,9,13–15). In addition, PRSice 
incorporates permutation testing where case and control labels are swapped in the withheld 
samples to generate an empirical P. This workflow identifies the best P thresholds for variant 
inclusion while carrying out LD pruning. In many cases this best P threshold for PRS 
construction does not meet what is commonly regarded as genome-wide signfiicance. 
 
A two stage design was also employed, training on the largest single array study (NeuroX-
dbGaP) and then tested on the second largest study (HBS) using the same array.  These two 
targeted array studies were chosen for three reasons: precedent in the previous publications 
where the NeuroX-dbGaP dataset was used in PRS; direct genotyping of larger effect rare 
variants in GBA and LRRK2; participant level genotypes for these datasets are publicly 
available.  
 
To calculate heritability in clinically defined PD datasets, we used LD score regression (LDSC) 
employing the LD references for Europeans provided with the software (16). This workflow was 
also repeated on a per cohort level (see Supplementary Appendix). 
 
Functional causal inferences via Quantitative Trait Loci (QTL) 
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We used MR to test whether changes in DNA methylation and/or RNA expression of genes 
physically proximal to significant PD risk loci were causally related to PD risk. To nominate 
genes of interest for MR analyses, we took our putative 90 loci in the large LD reference used 
for the COJO phase of analysis and identified SNPs in LD with our SNPs at an r2 > 0.5 within +/- 
1MB (Supplementary Table S5). MR was used by integrating discovery phase summary 
statistics with quantitative trait locus (QTL) association summary statistics across well-curated 
methylation and expression datasets. We used the curated versions of Qi et al., 2018 brain 
methylation and expression summary statistics (multi-study and multi-tissue meta-analysis), as 
well as a specific focus on substantia nigra data (GTEx), we made use of the blood expression 
data from   sa et al. 2018 (eQTLGen, all available here 
http://cnsgenomics.com/software/smr/#Overview and here http://www.eqtlgen.org) (17–21). For 
all QTL analyses, we utilized the multi-SNP summary-based Mendelian randomization (SMR) 
method as a framework to carry out MR. All MR effect estimates are reported on the scale of a 
standard deviation increase in the exposure variable relating to a similar change in PD risk. 
Simply, these MR analyses compare the local polygenic risk of an exposure (methylation or 
expression) to similar polygenic risk in an outcome (PD), inferring causal associations under the 
assumption that there is no intermediate confounder associated with both parameters and that 
the association is not simply due to LD. 
 
To further investigate expression enrichment across cell types in PD, we integrated GWAS 
summary statistics with expression and network data from the FUMA webserver 
(https://fuma.ctglab.nl/, version 1.3.1) (22). 
 
Rare coding variant burden tests 
 
A uniformly quality controlled and imputed dataset from the IPDGC was used to carry out 
burden tests for all rarer coding variants successfully imputed in an average of  85% of the 
sample series (17,188 cases and 22,875 controls).  These analyses include all variants at a 
hard call threshold of imputation quality > 0.8. After annotation with annovar, we had a total of 
37,503 exonic coding variants (nonsynonymous, stop or splicing) at MAF < 5% and a subset of 
29,016 at MAF < 1% (23). For inclusion in this phase, a gene must have contained at least 2 
coding variants.  After assembling this subset of 113 testable genes, we used the optimized 
sequence kernel association test to generate summary statistics at maximum MAFs of 1% and 
5% (24).  
 
LD score regression and causal inference 
 
To investigate correlations of PD genetics with that of multiple traits and diseases, we employed 
bivariate LDSC (16). These analyses were carried out using data from the 757 GWAS available 
via LD Hub and biomarker GWAS summary statistics on c-reactive protein and cytokine 
measures; LD Hub was accessed on June 20th, 2018 (version 1.2.0) (25–27). P values from the 
bivariate LDSC were adjusted for FDR to account for multiple testing. Traits showing significant 
genetic correlations with PD were analyzed using MR methods. We excluded the UKB data 
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when a nominated trait was from summary statistics derived from the UKB or if the UKB was 
included as part of a meta-analysis.  
 
When complete GWAS summary statistics were available for traits of interest (relating to 
smoking and education), we used the more powerful bi-directional generalized summary-data-
based Mendelian Randomization (GSMR). We analyzed GWAS summary statistics for smoking 
initialization (453,693 records from a self-report survey with 208,988 regular smokers and 
244,705 never regular smokers) and current smoking (CS) within the UKB, CS contrasted 
47,419 current smokers versus 244,705 never regular smokers. The same analysis was carried 
out incorporating recent GWAS data regarding educational attainment (N = 766,345) from self 
report in the UK and cognitive performance (N = 257,828) as measured by the g composite 
score (28). These were analyzed using methods to mirror that of the UKB PD GWAS dataset. 
Combined left and right putamen volume from a T2 magnetic resonance imaging GWAS 
available from Oxford Brain Imaging Genetics (BIG) Server (accessed December 28th, 2018) 
(29). All MR analyses included GWAS on the scale of tens of thousands of samples and 
overcame the considerable power demands of the methodology. 
 
For additional quality control, methods details and ancillary results, see the Methods 
Supplement.  
 
The funder of the study had no role in study design, data collection, data analysis, data 
interpretation, or writing of the report. The corresponding author had full access to all of 
the data and the final responsibility to submit for publication. 
 
RESULTS 
 
To maximize our power for locus discovery we used a single stage design, meta-analyzing all 
available GWAS summary statistics. Supporting this design, we found strong genetic 
correlations using PD cases ascertained by clinicians compared to 23andMe self-reported 
cases (genetic correlation from LDSC (rG) = 0.85, SE = 0.06) and UKB proxy cases (rG = 0.84, 
SE = 0.134).  
 
We identified a total of 90 independent genome-wide significant association signals through our 
analyses of 37,688 cases, 18,618 UKB proxy-cases and 1,417,791 controls at 7,784,415 SNPs 
(Figure 2, Table 1, Supplementary Appendices, Table S1, Table S2). Of these, 38 signals are 
new and more than 1MB from loci described previously (1) (Table S3). 
 
We detected 10 loci containing more than one independent risk signal (22 risk SNPs in total 
across these loci), of which nine had been identified by previous GWAS, including multi-signal 
loci in the vicinity of GBA, NUCKS1/RAB29, GAK/TMEM175, SNCA and LRRK2. The novel 
multi-signal locus comprised independent risk variants rs2269906 (UBTF/GRN) and rs850738 
(FAM171A2). Detailed summary statistics on all nominated loci can be found in Table S2, 
including variants filtered out during additional quality control. 
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To quantify how much of the genetic liability we have explained and what direction to take with 
future PD GWAS we generated updated heritability estimates and PRS. Using LDSC on a meta-
analysis of all 11 clinically-ascertained datasets from our GWAS and estimated the liability-scale 
heritability of PD as 0.22 (95% CI 0.18 - 0.26), only slightly lower than a previous estimate 
derived using GCTA (0.27, 95% CI 0.17 - 0.38) (2,16,30). LDSC is known to be more 
conservative than GCTA, however, our LDSC heritability estimate does fall within the 95% 
confidence interval of the GCTA estimate. 
 
To determine the proportion of SNP-based heritability explained by our PD GWAS results using 
PRS, we used a two-stage design, with variant selection and training in the NeuroX-dbGaP 
dataset (5,851 cases and 5,866 controls) and then validation in the Harvard Biomarker Study 
(HBS, 527 cases and 472 controls). Using equations from Wray et al. 2010 and our current 
heritability estimates, the 88 variant PRS explained a minimum 16% of the genetic liability of PD 
assuming a global prevalence of 0.5% (2,31). The 1805 variant PRS explained roughly 26% of 
PD heritability. In a high-risk population with a prevalence of 2%, the 1805 variant PRS 
explained a maximum 36% of PD heritable risk (2,31) (Table S4). 
 
We then attempted to quantify strata of risk in our more inclusive PRS. Compared to individuals 
with PRS values in the lowest quartile , the PD odds ratio for individuals with PRS values in the 
highest quartile was 3.74 (95% CI = 3.35 - 4.18) in the NeuroX-dbGaP cohort and 6.25 (95% CI 
= 4.26 - 9.28) in the HBS cohort (Table 2, Figure 3, Figure S1). 
 
Variants in the range of 5E-08 < P < 1.35E-03 (used in the 1805 variant PRS) were rarer and 
had smaller effect estimates than variants reaching genome-wide significance. These sub-
significant variants had a median minor allele frequency of 21.3% and a median effect estimate 
(absolute value of the log odds ratio of the SNP parameter from regresion) of 0.047. Genome-
wide significant risk variants were more common with a median minor allele frequency of 25.1%, 
and had a median effect estimate of 0.081. Here we assume that the lower minor allele 
frequencies and smaller effect size estimates are typical and representative of variants 
contributing to our more inclusive PRS and represent future GWAS hits. We performed power 
calculations to forecast the number of additional PD cases needed to achieve genome-wide 
significance at 80% power for a variant with a minor allele frequency of 21.3% and an effect 
estimate of 0.047 (32). Assuming that future data is well-harmonized with current data and that 
disease prevalence is 0.5%, we estimated that we would need a total of ~99K cases, ~2.3 times 
more than this work for these to reach genome-wide significance. These variants already 
contribute towards the current increases in AUC when considering the 1805 variant PRS 
outperforms the 88 variant PRS. Expanding future studies to this size will invariably identify new 
loci and improve the AUC for a genetic predictor in PD (maximum potential AUC estimated at 
85% using the equations from Wray et al. 2010) (31).  
 
There were 305 genes within the 78 GWAS loci. We sought to identify the likely causal gene(s) 
in each locus using large QTL datasets and summary-data-based Mendelian randomization 
(Table 3, Table S5, Table S6) (33). This method allows for functional inferences between two 
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datasets to be made in an analogous framework to a randomized controlled trial, treating the 
genotype as the randomizing factor.  
 
Of the 305 genes under linkage disequilibrium (LD) peaks around our risk variants of interest, 
237 were possibly associated with at least one QTL in public reference datasets and were 
therefore testable via SMR (Methods Supplement, Table S6). The expression or methylation of 
151 of these 237 genes (63.7%) was significantly associated with a possible causal change in 
PD risk.  
 
Of the 90 PD GWAS risk variants, 70 were in loci containing at least one of these putatively 
causal genes after multiple test correction (Table 3). For 53 out of these 70 PD GWAS hits 
(75.7%), the gene nearest to the most significant SNP was a putatively causal gene (Table S2). 
Most loci tested contained multiple putatively causal genes. Interestingly, the nearest putatively 
causal gene to the rs850738/FAM171A2 GWAS risk signal is GRN, a gene known to be 
associated with frontotemporal dementia (FTD) (34). Mutations in GRN have also been shown 
to be connected with another lysosomal storage disorder, neuronal ceroid lipofuscinosis (35). 
 
As an orthogonal approach for nominating genes under GWAS peaks we carried out rare 
coding variant burden analyses. We performed kernel-based burden tests on the 113 genes out 
of the 305 under our GWAS peaks that contained two or more rare coding variants (MAF< 5% 
or MAF < 1%). After Bonferroni correction for 113 genes, we identified 7 significant genes: 
LRRK2, GBA, CATSPER3 (rs11950533/C5orf24 locus), LAMB2 (rs12497850/IP6K2 locus), 
LOC442028 (rs2042477/KCNIP3 locus), NFKB2 (rs10748818/GBF1 locus), and SCARB2 
(rs6825004 locus). These results suggest that some of the risk associated with these loci may 
be due to rare coding variants or that these are pleomorphic risk loci. The LRRK2 and NFKB2 
associations at MAF < 1% remained significant after correcting for all ~20,000 genes in the 
human genome (P = 2.15E-10 and P = 4.02E-07, Table S7, Table S5).  
 
We tested whether genes of interest were enriched in 10,651 biological pathways(from gene 
ontology annotations) using Functional Mapping and Annotation of Genome-Wide Association 
Studies (FUMA) (22,36). We found 10 significantly enriched pathways (FDR-adjusted P < 0.05, 
Table S8), including four related to vacuolar function and three related to known drug targets 
(calcium transporters: ikeda_mir1_targets_dn and ikeda_mir30_targets_up, kinase signaling: 
kim_pten_targets_dn). At least three candidate genes within novel loci are involved in lysosomal 
storage disorders (GUSB, GRN, and NEU1), a pathway of keen interest in PD (37). Our GWAS 
results also include candidate genes VAMP4 and NOD2 from the endocytic pathway (38). 
 
To determine the tissues and cell types most relevant to PD etiology using FUMA (22,36) we 
tested whether the genes highlighted by our PD GWAS were enriched for expression in 53 
tissues from across the body. We found 13 significant tissues, all of which were brain-derived 
(Figure S2A), in contrast to what has been seen in Alzheimer’s disease which shows a strong 
bias towards blood, spleen, lungs and microglial enrichments (39). To further disentangle the 
enrichment in brain tissues, we tested whether our PD GWAS genes were enriched for 
expression in 88 brain cell types using single cell RNA sequencing reference data from mouse 
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brains (http://dropviz.org)(40). After FDR correction we found seven significant brain cell types, 
all of which were neuronal (Figure S2B). The strongest enrichment was for neurons in the 
substantia nigra (SN) at P = 1.0E-06, with additional significant results at P < 5.0E-4 for the 
globus pallidus (GP), thalamus (TH), posterior cortex (PC), frontal cortex (FC), hippocampus 
(HC) and entopeduncular nucleus (ENT).  
 
Next, we used cross-trait genetic correlation and MR to identify possible PD biomarkers and risk 
factors by comparing with 757 other GWAS datasets curated by LD hub (41). We found four 
significant genetic correlations (FDR-adjusted P < 0.05, Table S10) including positive 
correlations with intracranial volume and putamen volume (42), and negative correlations with 
current tobacco use and “academic qualifications: National  ocational Qualifications (N Q) or 
Higher National Diploma (HND) or Higher National Certificate (HNC) or equivalent” (43). The 
negative association with one’s academic qualifications suggests that individuals without a 
college education may be at less risk of PD. The correlation between PD and smoking status 
may not be independent from the correlation between PD and education as smoking status and 
years of education were significantly correlated (44).  
 
We used MR to assess whether there was evidence of a causal relationship between PD and 
five phenotypes related to academic qualification, smoking, and brain volumes described above 
(Figure S4). Cognitive performance had a large, significant causal effect on PD risk (MR effect = 
0.213, SE = 0.041, Bonferroni-adjusted P = 8.00E-07), while PD risk did not have a significant 
causal effect on cognitive performance (Bonferroni-adjusted P = 0.125). Educational attainment 
also had a significant causal effect on PD risk (MR effect = 0.162, SE = 0.040, Bonferroni-
adjusted P = 2.06E-04), but PD risk also had a weak but significant causal effect on educational 
attainment (MR effect = 0.007, SE = 0.002, Bonferroni-adjusted P = 7.45E-3). There was no 
significant causal relationship between PD and current smoking status (forward analysis: MR 
effect = -0.069, SE = 0.031, Bonferroni-adjusted P = 0.125; reverse analysis: MR effect = 0.004, 
SE = 0.010, Bonferroni-adjusted P = 1). Smoking initiation (the act of ever starting smoking) did 
not have a causal effect on PD risk (MR effect = -0.063, SE = 0.034, Bonferroni-adjusted P = 
0.315), whereas PD had a small, but significantly positive causal effect on smoking initiation 
(MR effect = 0.027, SE = 0.006, Bonferroni-adjusted P = 1.62E-05). Intracranial volume could 
not be tested because its GWAS did not contain any genome-wide significant risk variants. 
There was no significant causal relationship between PD and putamen volume (P > 0.05 in both 
the forward and reverse directions). 
 
DISCUSSION 
 
Our work marks a significant step forward in our understanding of the genetic architecture of PD 
and provides a genetic reference set for the broader research community. We identified 90 
independent common genetic risk factors for PD, nearly doubling the number of known PD risk 
variants. We re-evaluated the cumulative contribution of genetic risk variants, both genome-
wide significant and not-yet discovered, in order to refine our estimates of heritable PD risk. We 
also nominated likely genes at each locus for further follow-up using QTL analyses and rare 
variant burden analyses. Our work has highlighted the pathways, tissues, and cell types 
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involved in PD etiology. Finally, we identified intracranial and putaminal volume as potential 
future PD biomarkers, and cognitive performance as a PD risk factor. Altogether, the data 
presented here has significantly expanded the resources available for future investigations into 
potential PD interventions. 
 
We were able to explain 16%-36% of PD heritability, the range being directly related to 
prevalence estimates varying (0.5% to 2%). Power estimates suggest that expansions of case 
numbers to 99K cases will continue to reveal additional insights into PD genetics. While these 
risk variants will have relatively small effects and/or be quite rare, they will help to further 
expand our knowledge of the genes and pathways that drive PD risk.  
 
Population-wide screening for individuals who are likely to develop PD is currently not feasible 
using our 1805 variant PRS alone. There would be roughly 14 false positives per true positive 
assuming a prevalence of 0.5%. While large-scale genome sequencing and non-linear machine 
learning methods will likely improve these predictive models, we have previously shown that we 
will need to incorporate other data sources (e.g. smell tests, family history, age, sex) in order to 
generate algorithms that have more possible value in population-wide screening (4). 
 
Evaluating these results in the larger context of pathway, tissue, and cellular functionality 
revealed that genes near PD risk variants showed enrichment for expression in the brain, 
contrasting with previous work in Alzheimer’s disease. Strikingly, we showed that the expression 
enrichment of genes at PD loci occurred exclusively in neuronal cell types. We also found that 
PD genes were enriched in chemical signaling pathways and pathways involving the response 
to a stressor. We believe that this contrast, in which the pathway enrichment analyses suggest 
at least some immune component to PD and the expression enrichment analysis does not 
suggest any significant immune related tissue component should be viewed with a critical eye. 
In particular, the marginal P values of most immune related pathways in our recent analyses 
after multiple test correction reinforce this moderate view. These observations may be 
informative for disease modeling efforts, highlighting the importance of disease modeling in 
neurons and possibly incorporating a cellular stress component. This information can help 
inform and focus stem cell derived therapeutic development efforts that are currently underway. 
 
We found four phenotypes that were genetically correlated with PD. Putamen and intracranial 
volumes may prove to be valuable in future PD biomarker studies. Our bi-directional GSMR 
results suggest a complex etiological connection between smoking initiation and PD that will 
require further follow-up. One of the implications of this work is that PD trials of nicotine or other 
smoking-related compound(s) may be less likely to succeed. The strong causal effect of 
cognitive performance on PD is supported by observational studies (45). 
 
While this study marks major progress in assessing genetic risk factors for PD, there remains a 
great deal to be done. No defined external validation dataset was used, which may be seen as a 
limitation. Also, external replication of the novel associations we present will be difficult simply 
due to the sample sizes needed. Simulations have suggested that without replication variants 
with P values between 5E-08 and 5E-9 should be interpreted with greater caution (46,47). We 
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found 16 risk variants in this range, including two known variants near WNT3 (proximal to the 
MAPT locus) and BIN3. To a degree, the fact that we filtered our variants with a secondary 
random-effects meta-analysis may make our 90 PD GWAS hits somewhat more robust due to 
the conservative nature of random-effects.  
 
This study focused on PD risk in individuals of European ancestry. Adding datasets from non-
European populations would be helpful to further improve our granularity in association testing 
and ability to fine-map loci through integration of more variable LD signatures while also 
evaluating population specific associations. Also, risk predictions may not generalize across 
populations in some cases and ancestry specific PRS should be investigated. Additionally, large 
ancestry-specific PD LD reference panels, such as those for Ashkenazi Jewish patients, will 
help us further unravel the genetic architecture of loci such as GBA and LRRK2. This may be 
particularly crucial at these loci where LD patterns may be variable within European populations, 
accentuating the possible influence of LD reference series on conditional analyses in some 
cases (48). Finally, our work utilized state-of-the-art QTL datasets to nominate candidate genes, 
but many QTL associations are hampered by both small sample size and low cis-SNP density. 
Larger QTL studies and PD-specific network data from large scale cellular screens would allow 
us to build a more robust functional inference framework. 
 
As the field moves forward there are some critical next steps that should be prioritized. First, 
allowing researchers to share participant-level data in a secure environment would facilitate 
inclusiveness and uniformity in analyses while maintaining the confidentiality of study 
participants. Our work suggests that GWASes of increasing size will continue to provide useful 
biological insights into PD. In addition to studies of the genetics of PD risk, studies of disease 
onset, progression, and subtype will be important and will require large series of well-
characterized patients(49). We also believe that work across diverse populations is important, 
not only to be able to best serve these populations but also to aid in fine mapping of loci. 
Notably, the use of genome sequencing technologies could further improve discovery by 
capturing rare variants and structural variants, but with the caveat that very large sample sizes 
will be required. While there is still much left to do, we believe that our current work represents a 
significant step forward and that the results and data will serve as a foundational resource for 
the community to pursue this next phase of PD research.  
 
DATA ACCESS 
 
GWAS summary statistics for 23andMe datasets (post-Chang and data included in Chang et al. 
2017 and Nalls et al. 2014) will be made available through 23andMe to qualified researchers 
under an agreement with 23andMe that protects the privacy of the 23andMe participants. 
Please visit research.23andme.com/collaborate/#publication for more information and to apply 
to access the data. An immediately accessible version of the summary statistics is available 
here excluding Nalls et al. 2014, 23andMe post-Chang et al. 2017 and Web-Based Study of 
Parkinson's Disease (PDWBS) but including all analyzed SNPs. After applying with 23andMe, 
the full summary statistics including all analyzed SNPs and samples in this GWAS meta-
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analysis will be accessible to the approved researcher(s). Underlying participant level IPDGC 
data is available to potential collaborators, please contact ipdgc.contact@gmail.com. 
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Table 2: Summary of genetic predictive model performance. 
These are estimates of performance for predictive models including single study estimates, 
estimates from meta-analyses across studies, as well as a two stage design. Here the best P 
value threshold column denotes the filtering value for SNP inclusion to achieve the maximal 
pseudo (Nagelkerke's) R2. The odds ratio (OR) colum is the exponent of the regression 
coefficient (beta) from logistic regression of the polygenic risk score (PRS) on case status, with 
the standard error (SE) representing the precision of these estimates. These same metrics are 
derived across array types and datasets using random-effects meta-analyses. The area under 
the curve (AUC) is included as the most common metric for predictive model performance. In 
the table, * denotes R2 approximation adjusted for an estimated prevalence of 0.5%, equivalent 
to roughly half of the unadjusted R2 estimates for the PRS. All calculations and reported 
statistics include only the PRS and no other parameters after adjusting for principal components 
1-5, age and sex at variant selection in the NeuroX-dbGaP dataset. 
 
Table 3: Summary of significant functional inferences from QTL associations via 
Mendelian randomization for nominated genes of interest.  
Multi-SNP eQTL Mendelian randomization results focusing only on the most significant 
association per nearest gene to the PD risk variant of interest after Bonferroni correction. If a 
locus was significantly associated with both brain and blood QTLs after multiple test correction, 
we opted to show the most signficant brain tissue derived association here after filtering for 
possible polygenicity (HEIDI P > 0.01). Effects with significant HEIDI P values may indicate a 
possible effect complicated by LD and are less likely to be a true causal association. All tested 
QTL summary statistics can be found in Supplementary Table S6. Effect estimates represent 
the change in PD odds ratio per one standard deviation increase in gene expression or 
methylation. 
 
FIGURES 
 
Figure 1: Workflow and rationale summary. 
This figure describes study design and rationale behind the analyses included in this report. 
 
Figure 2: Manhattan plot. 
The nearest gene to each of the 90 significant variants are labeled in green for previously-
identified loci and in blue for novel loci. –log10 P values were capped at 40. Variant points are 
color coded red and orange, with orange representing significant variants at P 5E-08 and 5E-9 
and red representing significant variants at P < 5E-9. The X axis represents the base pair 
position of variants from smallest to largest per chromosome (1-22). 
 
Figure 3: Predictive model details.  
A. The odds ratio of developing PD for each quartile of polygenic risk score (PRS) compared to 
the lowest quartile of genetic risk. B. PRS receiver-operator curves for the more inclusive 1805 
variant PRS in the validation dataset as well as in the corresponding training dataset that was 
used for PRS thresholding and SNP selection.  
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SUPPLEMENTARY MATERIALS 
 
METHODS SUPPLEMENT 
 
GWAS Study design and risk locus discovery 
 
Three primary sources of data were used for discovery analyses, these include three previously 
published studies, 13 new datasets, and proxy-case data from the UK BioBank (UKB). Previous 
studies include summary statistics from the meta-analyses of GWAS published in Nalls et al. 
2014, GWAS summary statistics from the 23andMe Web-Based Study of Parkinson's Disease 
(PDWBS) cohort described in Chang et al. 2017, and the publicly available NeuroX dataset from 
the International Parkinson’s Disease Genomics Consortium (IPDGC) that had been used in the 
two prior publications as a replication sample. These cohorts have been reported in detail 
elsewhere (1,2). We also included 13 new case-control sample series for meta-analyses 
through either publicly available data or collaborations (please see Supplementary Table S1 for 
details regarding these studies). All new samples from the 13 new datasets underwent similar 
standardized quality control for inclusion, mirroring that of the previous studies (3).  
 
For each dataset we attempted to generate summary statistics for GWAS meta-analyses as 
uniformly as possible. We used additive allele dosages from imputation in a logistic regression 
framework adjusting for age at onset in cases (age at most recent examination for controls), 
biological sex and up to the first five principal components from stepwise modeling per cohort to 
account for population substructure. The System Genomics of Parkinson’s Disease (SGPD) 
study did not use logistic regression, instead mixed modeling was used due to sample 
relatedness. UKB data was analyzed slightly differently from standard case-control GWAS 
because of the use of proxy cases. In the UKB, genome-wide association study by proxy 
(GWAX) was carried out as per Liu (4), adjusting for age, sex, the first ten principal components, 
genotyping batch and Townsend index(5). Similar to previous publications, study-level summary 
statistics were filtered for inclusion criteria of imputation quality score > 0.3 and MAF > 1% 
(1,2,6).  We retained 2 variants for study below the MAF minimum of 1%, these include known 
coding risk factors rs34637584 (LRRK2, p.G2019S) and rs76763715 (GBA, p.N370S). Our 
GWAS meta-analyses spanned all three data sources (previously published case-control 
datasets, new case-control datasets and proxy-case data from the UKB) including 37,688 
cases, 18,618 proxy-cases and 1,474,097 controls with data for 7,784,415 SNPs that passed 
inclusion filtering. This analysis utilized fixed-effects meta-analyses as implemented in METAL 
to combine summary statistics across all sources (7). 
 
Samples and quality control 
 
Initial sample inclusion criteria include: age at disease onset or last examination at 18 years of 
age or older, minimum sample call rate of >95%, majority European ancestry confirmed through 
principal-components, no genetically ascertained relation to other samples in the meta-analysis 
(proportional sharing at a maximum of 12.5%) at the cousin level or closer (except in the case of 
the System Genomics of Parkinson's Disease (SGPD) which utilized mixed modeling to account 
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for related samples) and no heterozygosity outliers past +/- 15% (quantified by F estimates in 
PLINK)(8) . Studies from IPDGC collaborators (including previously published series) and those 
in publicly available databases were checked for relatedness and duplicates using identity-by-
descent filtering to remove related samples both within and across datasets contributing to this 
effort (also using PLINK to generate PI_HAT estimates of relatedness and excluding samples 
with > 12.5% PI_HAT). All publicly available datasets and newly genotyped IPDGC datasets 
were clustered to identify cryptically related samples between each other as well as the UKB 
using similar methods in PLINK.  These studies screened for relatedness at the National 
Institute on Aging site include: Baylor College of Medicine / University of Maryland, Finnish 
Parkinson's, Harvard Biomarker Study (HBS), McGill Parkinson's, Oslo Parkinson's Disease 
Study, Parkinson's Disease Biomarker's Program (PDBP), Parkinson's Progression Markers 
Initiative (PPMI), Spanish Parkinson's (from IPDGC), Tubingen Parkinson's Disease cohort 
(CouragePD), Vance (dbGap phs000394), UK PDMED (CouragePD), UK BioBank (UKB), 
IPDGC (Nalls et al. 2014 discovery phase) and NeuroX - dbGaP (phs000918.v1.p1). If a sample 
overlapped in two studies, it was removed from the larger study.  Samples derived from 
23andMe were checked internally for relatedness both among themselves and publicly available 
PD datasets using similar methods as previously described in earlier publications before being 
incorporated into this analysis (studies included in Nalls et al 2014, as well as the NeuroX-
dbGaP, HBS, PPMI, PDBP, UKB) (1,9).  There is a low likelihood for overlap between the 
SGPD and IPDGC samples due to geographic differences in sample collection (Australia versus 
Europe and North America). This is summarized in Supplementary Table S1. 
 
For case diagnosis, all of the new cases, except for the post-Chang et al. dataset from 
23andMe, conformed to the generally used criteria of a clinic visit and standard UK Brain Bank 
criteria with a modification to allow the inclusion of cases that had a family history of PD. In the 
most recent dataset from 23andMe (post-Chang et al.) cases were ascertained via the criteria of 
self-report of diagnosis, similar to previous publications (1,9,10). Status as “post-Chang” is 
denoted by enrollment as a case at a time after the analysis for the PDWBS closed. Post-Chang 
23andMe samples were imputed using a combination of Finch for phasing (an in-house 
developed fork of Beagle) and miniMac2 for imputation with all-ethnicity samples from the 
September 2013 release of 1000 Genomes Phase1 as reference haplotypes(11–13).  Both the 
Finnish Parkinson's study and post-Chang sample series used population controls to some 
degree, with inclusion criteria of no self-report of neurological disease, memory loss, tremor or 
family history of PD when available. UKB proxy-cases were defined as the report of a first 
degree relative with PD and no International Classification of Diseases (ICD-10) or self-report of 
actual PD. UKB cases with self-reported PD were excluded, this includes 727 cases that self-
reported PD without family history to keep the GWAX analysis homogenous and parsimonious. 
UKB controls were free of first degree family history of PD or PD by self-report or ICD-10 
designation. No censoring was made on parent age in the UKB. Additional summary statistics 
were generated for the UKB censoring on those who answered “Do not know” or “Prefer not to 
answer” to any of the possible illnesses.  This reduced control counts down to 369,711. The 
reduced UKB results were highly correlated with the larger set included in all analyses (rG = 
0.9865, SE = 0.0011), so we opted to utilize the results including more samples. All participants 
donated DNA samples and provided informed consent for participation in genetics studies. 
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Prior to imputation, SNPs were filtered using similarly uniform criteria for inclusion, such as: 
minimum genotype call rate of >95%, a minor allele frequency (MAF) of >0.1%, a Hardy-
Weinberg equilibrium P values >1 E-04 in controls (1% MAF and HWE p>1E-06 for SGPD), and 
non-random missingness by phenotype or haplotype at P values of >1E-04. Palindromic SNPs 
were also removed. The Nalls et al. 2014 and Chang et al. 2017 samples were imputed with 
Minimac2 using 1000 Genomes phase 1 haplotypes (13). All additional sample series except for 
the post-Chang et al. 2017 samples from 23andMe were imputed using the Haplotype 
Reference Consortium (HRC) on the University of Michigan imputation server under default 
settings with Eagle v2.3 phasing and minimac4 imputation based on reference panel HRC r1.1 
2016(14,15). UKB genotype data for proxy-cases and controls was downloaded in April 2018 as 
provided by the analysis group at the Wellcome Trust Centre for Human Genetics at the 
University of Oxford and is fully detailed at http://biobank.ctsu.ox.ac.uk(16). 
 
Study-level analyses and meta-analyses  
 
Summary statistics for each study were generated uniformly using additive allele dosages from 
imputation in a logistic regression framework adjusting for age at onset in cases (age at most 
recent examination for controls), biological sex and up to the first five principal components from 
stepwise modeling per cohort. The SGPD study did not use logistic regression, as an inclusion 
of related samples required mixed modeling. The Finnish Parkinson's study was unable to 
include age as a covariate due to collinearity issues as the controls were significantly older than 
the cases. Age at onset or last exam data was not available for the UK PDMED dataset. Age at 
last exam was used for the Oslo Parkinson's Disease Study dataset.  
 
UKB data was analyzed slightly differently from standard case-control GWAS because 
phenotypes were available on relatives of the individuals with genotypes. Genome-wide 
association study by proxy (GWAX) was carried out as per Liu (4), adjusting for age, sex, the 
first ten principal components, genotyping batch and Townsend index(5). GWAX is a analysis 
method shown to carry out reliable and generalizable association analyses on biobank / 
population scale data utilizing at-risk samples instead of true cases.  Summary statistics were 
also filtered at a MAF > 1% for inclusion. Per SNP effect estimates were transformed using the 
method from Lloyd-Jones et al. assuming the lifetime probability of disease (K) at 0.02 and then 
converted to standard case-control scale (with the total proxy cases equivalent to ~4.5K cases) 
(17). 
 
Similar to previous publications, study-level summary statistics were filtered for inclusion criteria 
of reasonable beta estimates imputation quality score > 0.3 and MAF > 1% (1,6,9).  We retained 
2 variants for study below the MAF minimum of 1%, these include known coding risk factors 
include rs34637584 (LRRK2, p.G2019S) and rs76763715 (GBA, p.N370S). Our GWAS meta-
analyses spanned all three data sources (previously published case-control datasets, new case-
control datasets and proxy-case data from the UKB) including 37,688 cases, 18,618 proxy-
cases and 1,474,097 controls with data for 7,784,415 SNPs that passed inclusion filtering. 
Inclusion filtering included variants seen in at least five of the 17 sets of summary statistics and 
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differences in the per variant minimum and maximum MAFs across all studies at less than the 
99th percentile (< 15% frequency differences). Four of the studies involved in our meta-analysis 
were genotyped using the NeuroX array, which is enriched for PD risk loci (see Supplementary 
Table S1) (18). The motivation for choosing five out of 17 studies was to reduce potential bias 
due to targeted genotyping in the four NeuroX array studies.  
 
Overall genomic inflation was minimal with a raw lambda estimate of 1.170 and a lambda scaled 
to 1,000 cases and 1,000 controls at 1.002(18–20).  Well behaved lambda estimates in 
conjunction with an LD score intercept of 0.991 and a number of well replicated risk loci 
spanning larger tracts of the genome (i.e. MAPT and HLA/MHC), led us to not implement 
genomic control on the meta-analysis level. All quality control metrics on a per study basis 
including lambda estimates across strata of minor allele frequencies are summarized in 
Supplementary Table S1. 
 
As previously stated, we did not correct for genomic control. Both the previous datasets and 
new datasets exhibited LD score regression intercepts close to 1, with 0.988 for the previous 
datasets and 0.975 for the new datasets, suggesting that our results are unlikely to be due to 
population stratification (21).  As detailed in Supplementary Table S1, scaled lambdas were 
acceptable across the allele frequency spectrum with minor inflations for studies using 
genotyping arrays with targeted PD-centric content.  
 
We also queried the 17 novel variants of interest from Chang et al., 2017 for their inclusion 
under GWAS peaks from this report(9). We identified proxy variants tagging genome-wide 
significant peaks in this report (Supplementary Tables S2).  Pairwise linkage disequilibrium was 
calculated from the European subset of the 1000 genomes data. Proxies are summarized in 
Supplementary Table S3. Four loci are directly validated using the same SNPs, 6 are tagged by 
a strong proxy (r2 > 0.8), 4 tagged by a weaker proxy (0.2 < r2 < 0.5) and an additional 3 with no 
genome-wide significant proxy within 500kb observed (rs353116, rs143918452 and 
rs78738012).  One missing variant, rs78738012, is tagged under one of our peaks of interest by 
a SNP not passing genome-wide significance near the gene CAMK2D. The two untagged 
variants are likely due to expanding our analysis past genotyped SNPs from the NeuroX array 
and utilizing updated imputation references. 
 
Conditional-joint analysis to nominate variants of interest 
 
To nominate variants of interest, we employed a conditional and joint analysis strategy (GCTA-
COJO, http://cnsgenomics.com/software/gcta/) as a means to algorithmically identify variants 
that best account for the heritable variation within and across nearby loci(22). This is particularly 
useful in scenarios where only basic summary statistics are available for a majority of samples 
in a meta-analysis and additional participant level analyses are logistically prohibitive. For this 
analysis, we used the full meta-analysis summary statistics in conjunction with the largest single 
site collection of HRC-level imputed PD and control data as a reference for linkage 
disequilibrium patterns in the conditional-joint workflow (described below and in the Methods 
Supplement). 
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Using the consensus IPDGC data cleaning and imputation workflow, we assembled a reference 
set of 17,188 cases and 22,875 controls at variants overlapping with the locus discovery 
analysis results that passed quality control on average in 74.3% of samples incorporating soft 
call genotypes at a minimum imputation quality of 0.30. This set includes data from all samples 
described in Supplementary Table S1, except the 23andMe post-Chang et al., SGPD, UK 
PDMED and UKB sample series. This aggregate dataset included previously described samples 
series such as the Dutch GWAS, German, UK and US IPDGC series plus the NeuroX-dbGaP 
and Myers-Faroud datasets from dbGaP(18,23,24). We assembled this large PD-specific LD 
reference to help better ascertain LD patterns at PD loci, particularly the LRRK2 and GBA regions where 
rarer risk variants are located. The COJO analysis was run using default analysis parameters 
including a significance threshold of P < 5E-8 and a window specification of 1 megabase.  
Additional analyses described below were utilized to further scrutinize putative associated 
variants and account for possible differential linkage disequilibrium (LD) signatures in multiple 
ways, including utilizing the massive single site reference data from 23andMe in further 
conditional analyses. If a variant nominated during the COJO phase of analysis was greater 
than 1 megabase from any of the genome-wide significant loci nominated in Chang et al. 2017, 
we considered this to be a novel locus. 
 
Additional filtering of nominated variants 
 
We instituted two additional filters after fixed-effects and COJO analyses. These additional 
filters exclude variants that 1) had a random-effects P value across all datasets > 4.67E-04 and 
2) a conditional analysis P > 4.67E-04 using participant level 23andMe genotype data. This 
Bonferroni multiple testing threshold is based on up to 107 nominated variants at this stage of 
filtering, of which 90 passed these criteria. Random-effects meta-analysis P values were 
generated under the residual maximum likelihood method using the R package metafor(25). 
Forest plots for all loci of interest are available in the Supplemental Appendix. Conditional 
analyses were carried out using 23andMe pooled data analyses including all available 23andMe 
data (from Nalls et al. 2014, PDWBS and the post-Chang et al. 2017 datasets combined). For 
the participant level conditional analyses in 23andMe, all nominated variants per chromosome 
were included in a single logistic regression model with appropriate covariates, then parameter 
estimates per variant were extracted. Conditional analyses on a per chromosome interval 
instead of a locus or megabase interval should adjust for possible longer range LD associations.  
For more information on variant filtering, please see Supplementary Table S2 summarizing all 
variants nominated.  We defined nominated risk variants as sharing a single locus if they are 
within +/- 250kb of each other. 
 
Additional sensitivity analyses 
 
Mirroring our previous workflows used in the initial meta-analysis, we conducted 17 “leave-one-
out” meta-analyses (LOOMA), excluding one dataset’s summary statistics each time. We also 
carried out a similar set of meta-analyses separately for previously published data versus the 
combined set of 14 unpublished case-control and proxy-case datasets. 
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We employed a number of sensitivity analyses to further investigate our data and results as 
opposed to using a two-stage study design in order to maximize discovery power. LD score 
regression was utilized to calculate the genetic correlation between the meta-analysis of 
previously published datasets and the meta-analysis of the 14 unpublished datasets(21).  
Additionally, all datasets described in Supplementary Table S1 were meta-analyzed using fixed-
effects, stratified by diagnostic criteria of either self-reported PD (post-Chang and PDWBS) or 
clinically ascertained PD (all other datasets excluding data from the UKB and Nalls et al. 2014).  
Summary statistics stratified by diagnosis were then used to compare genetic correlations 
across clinically defined, self-reported and proxy-case derived datasets using LD score 
regression. 
 
Due to the relatively small sample sizes of many of the datasets involved in this study, we could 
not run LD score regression on all combinations of LOOMAs. Instead, we opted to calculate 
linear regression models comparing the beta coefficients for the left-out dataset with the beta 
coefficients from a meta-analysis of the remaining (non-left out) datasets, stratified by all, novel 
and known PD risk loci. 
 
Similar to above, we calculated random-effects meta-analysis p-values using the residual 
maximum likelihood method in the R package metafor. We also generated forest plots from this 
analysis that reflect the distributions of effect estimates across studies per SNP, summarized by 
the index of heterogeneity (I2) statistics in Table 1 and Supplementary Table S2.  This statistic 
estimates possible variance accounted for by study heterogeneity.  
 
Final sensitivity analyses included “leave-one-out” meta-analyses (LOOMA) comparisons of 
each dataset to a meta-analysis of the remaining datasets. This analysis focused on comparing 
the log odds ratios (termed beta here) per SNP identified in  the GWAS analyses across all 
cohorts. After adjusting for multiple test correction for 17 tests (P < 0.003 for significance) in 
regressions of up to 90 betas per iteration, we noted only 5 departures from significant 
correlations between the withheld and included datasets. These non-significant results included 
only novel loci in the Baylor / University of Maryland dataset, the Finnish Parkinson’s dataset, 
the Harvard Biomarker Study (HBS), the Parkinson’s Disease Biomarkers Program (PDBP) and 
the Parkinson's Progression Markers Initiative (PPMI).  For these five studies, correlations were 
significant in the known and all loci strata of variants. This is likely be related to statistical power 
for detecting recently identified risk variants in this subset of smaller studies. While there may be 
some caution in utilizing UKB proxy-cases, our data shows that the UKB data was significantly 
representative of other datasets, with high r2 estimates across novel (r2 = 0.714, 38 variants), 
known (r2 = 0.897, 47 variants) and all variants strata (r2 = 0.866, 85 variants) in the LOOMAs. 
We view these LOOMAs as a means of detecting an outlier study and estimating generalizability 
in the context of the 90 nominated variants.  Forest plots included in the Supplemental Appendix 
compare each study on a per variant basis. 
 
Refining heritability estimates and determining extant genetic risk 
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The primary tool for risk profiling used here was the R package PRSice2(26). This package 
carries out polygenic risk score (PRS) profiling in the standard weighted allele dose manner as 
we have previously described (1,2,6,27–30). In addition, PRSice incorporates permutation 
testing where case and control labels are swapped in the withheld samples to generate an 
empirical P. This workflow identifies the best P thresholds for variant inclusion while 
simultaneously carrying out LD pruning. In many cases this best P threshold for PRS 
construction is below what is commonly regarded as genome-wide significant.This workflow 
also uses P value aware LD pruning to facilitate identifying the best P thresholds for variant 
inclusion into the PRS below what is commonly regarded as genome-wide significance levels.  
PRS analyses were conducted in sample series with readily accessible participant level IPDGC 
GWAS data. 
 
A two stage design was also employed, training on the largest single array study (NeuroX-
dbGaP) and then tested on the second largest study (HBS) using the same array.  These two 
targeted array studies were chosen for three reasons: precedent in the previous publications 
where the NeuroX-dbGaP dataset was used in PRS comparisons; direct genotyping of larger 
effect rare variants in GBA and LRRK2; participant level genotypes for these datasets are 
publicly available.  
 
To facilitate risk profiling analyses with less bias, we regenerated the meta-analysis summary 
statistics excluding the NeuroX-dbGaP and HBS datasets.  To select SNPs we ran the PRSice 
workflow, utilizing beta weights from the meta-analyses excluding our studies of interest. LD 
clumping was carried out under recommended default settings (window size = 250kb, r2 > 0.1). 
Next 10,000 permutations were used to generate empirical P estimates for each GWAS derived 
P threshold ranging from 5E-08 to 1E-04, by increments of 5E-08, then again with GWAS 
derived P thresholds from 1E-04 to 0.5 by increments of 1E-04. For each iteration of the 
permutation tests in the training dataset, Nagelkerke’s pseudo r2 estimates between the PRS 
and PD were estimated, after adjustment for an estimated prevalence of 0.5% and study-
specific eigenvectors 1-5, age and sex as covariates; this prevalence was chosen as a 
conservative estimate based on global estimates of disease (31). All variant clumping and P 
thresholding was done using the NeuroX-dbGaP dataset before testing the PRS in the HBS 
dataset. Then the summary statistics for these SNPs of interest (1805 overlapping with the HBS 
dataset after QC) were extracted from the meta-analysis excluding HBS to generate variant 
weights for the validation phase of analysis. Next the PRS was tested in the HBS dataset.  After 
this, we also reduced the PRS SNPs to just 90 variants reported as independent GWAS risk 
variants.  We then repeated this workflow using the 88 SNPs passing QC in HBS as an 
additional test. 
 
Areas under the curve and related metrics for predictive models based on the PRS were 
generated by utilizing the best threshold of the receiver operator curve per study, denoted by 
the top-left most point of the curve, thus maximizing classification accuracy. To calculate 
heritability in clinically defined PD datasets, we also used LD score regression under default 
settings, also employing the LD references for Europeans provided with the software(21). This 
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workflow was also repeated on a per cohort level and is detailed in the Supplementary 
Appendix. 
 
To prevent bias, we estimated the effect size of each SNP contributing to the PRS using a 
meta-analysis of all PD GWAS datasets except NeuroX-dbGAP and HBS. Using permutation 
testing in the NeuroX-dbGAP training cohort, we found that the optimal P threshold for variant 
inclusion was 1.35E-03, which included 1809 variants after LD pruning. Two PRSs were tested 
in HBS, one limited to 88 of the 90 genome-wide significant variants (two variants failed to pass 
quality control in the HBS study), and the other incorporating 1805 variants from the training 
phase (four variants failed to pass quality control in HBS due to low imputation quality). The 88 
variant PRS had an area under the curve (AUC) of 0.651 (95% CI 0.617 - 0.684), while the 1805 
variant PRS had an AUC of 0.692 (95% CI 0.660 - 0.725) in the test data from HBS. The AUCs 
from our 88 variant PRS in both the NeuroX-dbGAP cohort and the HBS cohort were 
significantly larger than the AUCs in those same cohorts using a published PRS (Chang et al. 
2017, AUC = 0.624, P < 0.002 from DeLong’s test). Although the HBS cohort was used to 
discover the 90 PD GWAS risk variants, therefore potentially biasing our 88 variant PRS, all 90 
variants remained genome-wide significant in a meta-analysis of all GWAS datasets excluding 
the HBS study. A possible contributor to the higher AUC in the test set compared to training set 
is the higher frequency of the large effect LRRK2 p.G2019S variant carriers in the HBS dataset 
(0.50%) versus the NeuroX-dbGaP dataset (0.26%). Extended results for all included studies 
can be found in the Supplementary Appendix. 
 
Functional causal inferences via Quantitative Trait Loci (QTL)Mendelian randomization to 
infer functional consequences 
 
We used MR to test whether changes in methylation and RNA expression of genes physically 
proximal to genome-wide significant PD risk loci were causally related to PD risk. To nominate 
genes of interest for MR analyses, we took our putative 90 loci of interest in the large LD 
reference used for the COJO phase of analysis and identified SNPs in LD with our SNPs of 
interest at an r2 > 0.5 within +/- 1MB (Supplementary Table S5). Once these SNPs were 
identified, nearest genes were queried from the European Bioinformatics Institute (EMBL-EBI, 
https://www.ebi.ac.uk) and compiled into a list of 305 possible genes linked to PD risk loci. Note, 
because of slight annotation differences, the MAPT and GBA genes were forced into the list 
(their nearby pseudogenes were automatically added).This process nominates genes for QTL 
analyses that contain variants that are in LD with SNPs of interest and therefore are not only 
spatially proximal but likely associated with disease risk to some degree. 
 
MR was used to make functional inferences by integrating discovery phase summary statistics 
with quantitative trait locus (QTL) association summary statistics across well-curated 
methylation and expression datasets. We utilized the curated versions of Qi et al., 2018 brain 
methylation and expression summary statistics (GTEx derived), as well as a specific focus on 
GTEx substantia nigra data (GTEx), we also made use of the blood expression data from   sa 
et al. 2018 (eQTLGen), all available from the website for summary-data-based Mendelian 
randomization (SMR, http://cnsgenomics.com/software/smr/#Overview) or the eQTLgen 
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consortium (http://www.eqtlgen.org) (32–36). For all QTL analyses, we utilized the multi-SNP 
SMR method under default analysis settings as a framework to carry out MR analyses. In the 
analyses using SMR, the large LD reference set from our COJO phase of analysis was used. 
For each of the four QTL datasets, Bonferroni correctionfalse discovery rate (FDR) was used to 
adjust P values and account for multiple testing within each dataset. All MR effect estimates are 
reported on the scale of a standard deviation increase in the exposure variable relating to a 
similar change in PD risk. In its simplest description, these MR analyses compare the local 
polygenic risk of an exposure (significant changes in methylation or expression) to similar 
polygenic risk in an outcome (Parkinson’s disease) to infer causal associations under the 
assumption that there is no intermediate confounder associated with both parameters and that 
the association is not simply due to LD.  
 
Rare coding variant burden tests 
 
A uniformly quality controlled and imputed dataset from the IPDGC (described above) was used 
to carry out burden tests for all rarer coding variants successfully imputed in an average of  85% 
of the sample series (17,188 cases and 22,875 controls).  These analyses include all variants at 
a hard call threshold of imputation quality > 0.8. After annotation with annovar, we had a total of 
37,503 exonic coding variants (nonsynonymous, stop or splicing) at MAF < 5% and a subset of 
29,016 at MAF < 1%(37). We then extracted proximal genes for SNPs tagging any of our 90 loci 
using same the LD reference as in the COJO analysis (r2 > 0.5 within +/- 1MB, see 
Supplementary Table S5).  For inclusion in this phase of analyses, a gene must have contained 
at least 2 coding variants.  After assembling this subset of 113 testable genes, we used the 
optimized sequence kernel association test to generate summary statistics at maximum MAFs 
of 1% and 5%(38). All burden analyses were adjusted for the first 15 principal components 
(selected by backwards stepwise modeling) based on common unlinked variants, age, sex and 
study site.  Resulting P values were then adjusted via Bonferroni for the numbers of genes 
tested, we treated each MAF strata as a separate set of tests. 
 
Network analyses 
 
Two network-based approaches were utilized to assess connectivity across loci. The first 
focuses on integrating GWAS summary statistics with expression data (Functional Mapping and 
Annotation of Genome-Wide Association Studies, FUMA), the second focuses on protein 
interactions (webgestaltR). 
 
Functional mapping and annotation based on publicly available gene expression and ontology 
resources were made using FUMA version 1.3.1 (39). In brief, summary statistics were 
analyzed using MAGMA gene property tests to compare enrichment of the average gene 
expression per tissue in GTEx v7 (40,41). Bonferroni correction was applied to tissue 
enrichment analyses. In total 10,651 gene sets (Curated gene sets: 4734, GO terms: 5917) 
were tested. Curated gene sets were generated from nine data resources including KEGG, 
Reactome and BioCarta (see MSigDB for details, 
http://software.broadinstitute.org/gsea/msigdb/collections.jsp)(42). GO terms were comprised of 

http://www.eqtlgen.org/
https://paperpile.com/c/TZJnBA/mtGTY+DJlU+Ie3kx+vMsA+W17l
https://paperpile.com/c/TZJnBA/zgbd
https://paperpile.com/c/TZJnBA/0FbR
https://paperpile.com/c/TZJnBA/OY7Zx
https://paperpile.com/c/TZJnBA/WVeka+JNf7N
https://paperpile.com/c/TZJnBA/Sa1vh


the three standard categories, biological processes (bp), cellular components (cc) and 
molecular functions (mf). All parameters were set as default for the competitive test. We 
employed a more conservative version of the FDR correction for multiple testing by applying it to 
all pathways from various sources at once. Single cell RNA sequencing data from DropViz 
(http://dropviz.org) was also queried for enrichment using FUMA in an identical manner, 
spanning 88 possible tissue and cell type combinations (43). 
 
To investigate protein components related to genetic risk loci, we utilized the R package 
webgestaltR to build networks via its network topology analysis and random walk algorithm (44). 
The input data for this analysis was all genes found under the association peaks in our GWAS 
based on the LD structure in reference samples as described in the previous subsection. 
Ontologies were extracted from the Biogrid Protein-Protein Interaction Networks(45). FDR 
adjustment was used to adjust for multiple testing. 
Using webgestaltR (39,44) we found that the genes highlighted by our PD GWAS were enriched 
in six functional ontological networks (FDR-adjusted P < 0.1). The majority of these networks 
were related to chemical signaling pathways or response to some type of stressor. The most 
significant protein-protein interaction was related to response to interferon-gamma (Table S9, 
Figure S3A, Figure S3B). The strength of the results for protein-protein interactions should be 
interpreted with a degree of caution and will benefit from ongoing follow-up studies of high 
throughput proteomics in PD specific datasets to nominate potential mechanisms of interest. 
 
LD score regression and causal inference 
 
 
To investigate shared genetic correlations of PD with multiple traits and diseases, we employed 
bivariate LD score regression (LDSC) (21). These analyses were carried out under the default 
settings as previously discussed, using data from the 757 GWAS available via LD Hub as well 
as biomarker GWAS summary statistics from two additional publications of interest focusing on 
c-reactive protein and cytokine measures; LD Hub was accessed on June 20th, 2018 (version 
1.2.0)(46–48). P values from the bivariate LDSC were adjusted for FDR to account for multiple 
testing. We acknowledge that for some traits of interest there is a minor overlap with samples 
derived from the CHARGE studies utilized in a small portion of discovery data in Nalls et al. 
2014 which may influence results slightly in downstream MR analyses (1). For evaluation of 
genetic correlations between PD and UKB derived GWAS, we utilized PD summary statistics 
with the UKB data excluded to reduce bias. The curated data on LD Hub includes GWAS meta-
analyses of over 5,000 European ancestry samples each, and are well powered to ascertain 
genetic correlations. 
 
Traits showing significant genetic correlations with PD were analyzed using MR methods. We 
excluded the UKB data when a nominated trait was from summary statistics derived from the 
UKB or if the UKB was included as part of a meta-analysis.  
 
When complete GWAS summary statistics were available for traits of interest (relating to 
smoking and education), we utilized the more powerful bi-directional generalized summary-data-
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based Mendelian Randomization (GSMR). This approach utilized bi-directional GSMR under 
default settings with the exception of more stringent HEIDI outlier removal options (global HEIDI 
threshold at 0.05)(49). For all MR results (both here and below), effect estimates where PD is 
the outcome are interpreted as the change in the log odds ratio (beta) of PD for a single 
standard deviation increase in the polygenic risk score for the exposure.  
 
Summary statistics for PD excluded UKB data at this stage. The previously described PD 
reference datasets for estimating LD was used, excluding samples with missing data for SNPs 
of interest. We analyzed GWAS summary statistics for smoking initialization (453,693 records 
from a self-report survey with 208,988 regular smokers and 244,705 never regular smokers) 
and current smoking within the UKB Current smoking (CS) contrasted 47,419 current smokers 
versus 244,705 never regular smokers. The same analysis was carried out incorporating recent 
GWAS data regarding educational attainment (N = 766,345) from self report in the UK and 
cognitive performance (N = 257,828) as measured by the g composite score(50). These 
outcomes were analyzed using methods to mirror that of the UKB PD GWAS dataset. 
Combined left and right putamen volume from a T2 magnetic resonance imaging GWAS 
available from Oxford Brain Imaging Genetics (BIG) Server (accessed December 28th, 2018) 
(51). All MR analyses included GWAS on the scale of tens of thousands of samples and 
overcame the considerable power demands of the methodology. 
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Due to formatting and display issues for large tables as well as facilitating a more 
detailed examination of the supplements, all additional tables, figures and text are 
availible at the following web address … 
https://drive.google.com/file/d/1VUU_-tYl-ew08vupEVRuNEPDpTpWWom_/view?usp=sharing. 
 
Figure S1: The odds ratio of developing PD for each decile of PRS, comparing each decile to 
all others for all samples in this analysis. 
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Figure S2: Results of FUMA analysis for tissue and cell type specific expression enrichment. A. 
Tissue enrichment. B. Cell type-specific enrichment. Red bars indicate levels of significance 
surpassing multiple test correction. 
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Figure S3: Panel A: Gene ontology term connectivity within protein-protein networks. This panel 
shows network of gene ontology (GO) terms from pathway analyses. Most significant GO terms 
are shown in green. Panel B: Gene level connectivity within protein-protein networks. This panel 
shows connectivity between genes across enriched pathways. 
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Figure S4: Comparison of regression coefficients in Mendelian randomization analyses across 
traits. Each cross represents a SNP, with the dashed lines representing the trend across all 
variants. Axes position are regression coefficients from GWAS for significant SNPs from either 
GWAS. Panel A includes results for cognitive performance, panel B includes results for 
educational attainment, panel C includes results for putamen volume, panel D includes results 
for smoking initiation and panel E includes results for current smoking status. 
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Table S1: Descriptive statistics and quality control summaries for meta-analyzed genome-wide 
association studies. ! denotes age at exam for both cases and controls. $ denotes age at death, 
onset not available. * based on 599 PD cases and 715 controls. ^ denotes samples checked for 
overlap across datasets as per Nalls et al. 2014 and Chang et al. 2017, ^^ denotes checked for 
overlap within IPDGC sample series, ^^^denotes a combination of both workflows for identifying 
sample overlap. 
 
Table S2: Summary statistics for all nominated risk variants, known and novel. For binary 
variables, 0 = negative and 1 = positive. Some specific notes include: delineations of all studies, 
new studies and previous studies as discussed in the methods section. Betas and standard 
errors (StdErr) refer to effect estimates per SNP from logistic regression or fixed-effects meta-
analyses.I2 is the index of heterogeneity. QTL Nominated Gene = genes which represent the 
nearest cis-QTL for that locus significant in MR. 
 
Table S3: Comparison with novel results from Chang et al., 2017. This table summarizes 
linkage disequilibrium estimates between Chang et al., 2017 novel loci and variants passing 
quality control in this report. 
 
Table S4: Estimates of genetic liability explained in different scenarios. 
Here we compare how different AUC estimates and prevalence rates change the amount of 
genetic liability (h2) explained by GWAS. 
 
Table S5: SNPs of interest tagging genes for functional inferences and networks analysis. 
Nominated genes and SNPs for follow-up analyses based on minimum r2 > 0.5 within +/- 1MB of 
one of our 90 risk loci. 
 
Table S6: Complete summary statistics for QTL Mendelian randomization. Output from the 
SMR package for all QTLs of interest. Additional columns include QTL reference dataset, 
dataset-level Bonferroni corrected P values and a binary indicator if a candidate association 
passed multiple test correction. All columns prefixed by SMR indicate multi-SNP SMR results. 
 
Table S7: Rare coding variant burden analyses for genes under GWAS peaks. Detailed results 
of burden tests for genes proximal to risk loci. This includes variant counts, test statistics (rho, q, 
P, adjusted P) for each gene of interest. 
 
Table S8: FUMA expression pathway enrichment analysis results. 
Pathway enrichment from collapsed GWAS summary statistics. 
 
Table S9: Protein network analysis for linked genes under association peaks. Gene ontology 
terms passing false discovery rate adjustment. 
 
Table S10: Bivariate LDscores. Default output from LD Hub. Abbreviations defined in main text 
and methods section. 
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Supplemental Appendix: This appendix is split into four sections detailing: first comparisons of 
effect estimates across GWAS cohorts (beta~beta plots), second forest plots for each significant 
variant, thirdly locus plots showing regional GWAS results, and QTL and burden associations 
for each variant, finally the fourth section including extended PRS results. Beta~beta plots 
compare the regression coefficients for up to 90 of the significant variants in one study to a 
meta-analysis of all others via linear regression. Forest plots communicate similar sensitivity 
analyses, for each of the 90 variants of interest. In the forest plots, box size indicates relative 
sample size for that study, and the width of the diamond representing the meta-analysis effect 
estimates indicate the 95% confidence interval. The locus plots are a zoomed-in version of 
Figure 2 for each of the 90 significant variants. These plots are truncated at a -log10 P value of 
50 for display purposes and include the most significant burden test and QTL analysis results 
per gene denoted by label color-coding in each figure. In each locus plot, R2 is measured in our 
in-house LD reference dataset and shows the correlation between the most significant local 
SNP and all other proximal SNPs. Additional detailed PRS results for a subset of cohorts are 
available in the appendix summarizing PRS estimates at varied P thresholds. Each cohort 



specific PRS in the appendix is based on meta-analyses excluding that cohort when calculating 
SNP weights. A smaller table summarizing PRS associations at the P threshold with the highest 
r2 is also included. Column headers in the PRS section of the appendix mirror that of Table 2. 
 
 



FIRST LAST IPDGC 23andMe SGPD
Astrid D Adarmes-Gómez X
Miquel Aguilar X
Akbota Aitkulova X
Vadim Akhmetzhanov X
Roy N Alcalay X
Ignacio Alvarez X
Victoria Alvarez X
Sara Bandres-Ciga X
Francisco Javier Barrero X
Jesús Alberto Bergareche�Yarza X
Inmaculada Bernal-Bernal X
Kimberley Billingsley X
Cornelis Blauwendraat X
Marta Blazquez X
Marta Bonilla-Toribio X
Juan A Botía X
María Teresa Boungiorno X
Jose Bras X
Alexis Brice X
Kathrin Brockmann X
Vivien Bubb X
Dolores Buiza-Rueda X
Ana Cámara X
Fátima Carrillo X
Mario Carrión-Claro X
Debora Cerdan X
Viorica Chelban X
Jordi Clarimón X
Carl Clarke X
Yaroslau Compta X
Mark R Cookson X
Jean-Christophe Corvol X
David W Craig X
Fabrice Danjou X
Monica Diez-Fairen X
Oriol Dols-Icardo X
Jacinto Duarte X
Raquel Duran X
Francisco Escamilla-Sevilla X
Valentina Escott-Price X
Mario Ezquerra X
Faraz Faghri X

Table of authors for pubmed indexing.


