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Abstract

Research has shown that high blood glucose levels are important predictors of incident diabetes.

However, they are also strongly associated with other cardiometabolic risk factors such as high blood

pressure, adiposity and cholesterol which are also highly correlated with one another. The aim of this

analysis was to ascertain how these highly correlated cardiometabolic risk factors might be associated

with high levels of blood glucose in older adults aged 50 or older from wave 2 of the English Longitudinal

Study of Ageing. Due to the high collinearity of predictor variables and our interest in extreme values

of blood glucose we proposed a new method, called quantile profile regression, to answer this question.

Profile regression, a Bayesian non-parametric model for clustering responses and covariates simulta-

neously, is a powerful tool to model the relationship between a response variable and covariates, but the

standard approach of using a mixture of Gaussian distributions for the response model will not iden-

tify the underlying clusters correctly, particularly with outliers in the data or heavy tail distribution of

the response. Therefore, we propose quantile profile regression to model the response variable with an

asymmetric Laplace distribution, allowing us to model more accurately clusters which are asymmetric

and predict more accurately for extreme values of the response variable and/or outliers.

Our new method performs more accurately in simulations when compared to Normal profile regression

approach as well as robustly when outliers are present in the data. We conclude with an analysis of the

English Longitudinal Study of Ageing.

Keywords: Asymmetric Laplace distribution, Bayesian inference, clustering, Dirichlet process mixture

model, profile regression, quantile regression.

1



1 Introduction

The English Longitudinal Study of Ageing (ELSA) is a longitudinal cohort study of adults aged 50 or older

which commenced in 1998, with data collection taking part every two years (Steptoe et al., 2012). The aim

of the applied portion of our study is to ascertain how cardiometabolic risk factors might be associated with

high blood glucose in people who do not currently have a diagnosis of diabetes. Research has shown that

high blood glucose levels are an important predictor of incident diabetes (Tabák et al., 2012). However,

it has been shown that only considering high blood glucose in prediction of diabetes risk may be overly

simplistic as many other cardiometabolic risk factors that are highly correlated with high blood glucose

(Haffner et al., 1990; Li et al., 2009) are also associated with diabetes risk (Ford, 2005; Kolberg et al., 2009).

Thus we wanted to determine how cardiometabolic risk predictors may cluster together with an outcome of

high blood glucose in people who do not have a current diagnosis of diabetes.

Because our interest is in modelling most accurately the patients with the highest levels of blood glucose,

quantile regression models provide the appropriate framework to model the upper tail of the distribution of

the response variable while also being robust to outliers. Quantile regression models were first introduced by

Koenker and Bassett (1978) and have been applied to a wide range of applications in biostatistics, including

survival analysis, ecology, earnings inequality and mobility, income and wealth distribution, value at risk

and mutual fund investment styles (Knight and Ackerly, 2002; Geraci and Bottai, 2007). Quantile regression

models aim at estimating either the conditional median or other quantiles of the response variable. Their main

advantage over least-squares regression is their flexibility for modelling data with heterogeneous conditional

distributions. Moreover, quantile regression models provide a richer characterization of the data, allowing us

to consider the impact of predictors on quantiles of the response variable, not merely its conditional mean,

and thus these models are robust to outliers. See Davino et al. (2013) for a more in-depth discussion of the

advantages of quantile regression. However, collinearity (that is, high correlations among predictor variables)

in quantile regression models leads to unreliable and unstable estimates of parameters.

Cardiometabolic risk predictors are usually highly correlated and therefore create collinearity problems

when used in a standard multiple regression model, a well known issue in many statistical applications when

trying to assess meaningful relationships between predictors and response variables. A common approach

in this case is to examine each predictor separately, to avoid instability in the estimates, but compromising

the possibility of learning about the complex relationships involving several predictors at the same time.

An alternative approach is to combine the correlated variables into summary indexes and to assess the

relationship of these with the outcome of interest, but this approach loses information on the single variables

included in the summary. In this paper we discuss a third approach, which identifies subgroups of the

observations such that the main outcome variable is related to (some of) the covariates (or profiles) that

have been collected. More specifically, clinicians may be interested in identifying suitable subgroups of
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patients presenting similar features; this categorisation can be used, for example, to suitably apply the

optimal treatment for the (sub)population that will benefit the most. One class of suitable clustering model

that has been proposed as an alternative to regression models when dealing with collinearity are Dirichlet

process mixture models (Dunson et al., 2008). In particular we will consider profile regression: first proposed

by Molitor et al. (2010), it is a semi-parametric Bayesian method where covariate profiles are allocated to

clusters and associated via a regression model with a relevant outcome. This method was implemented by

Liverani et al. (2015) in the R package PReMiuM and applied in a variety of areas, including, for example,

epidemiology (Hastie et al., 2013; Molitor et al., 2014; Pirani et al., 2015; Mattei et al., 2016; Liverani et al.,

2016; Coker et al., 2016, 2018) and genetics (Papathomas et al., 2012).

Therefore, in this paper we propose a new profile regression model with a quantile regression submodel

to allow a careful modelling of the data when the interest is on lower or upper tails of the distribution of the

response profiles rather than their mean. We name this new method ‘quantile profile regression’. Quantile

profile regression includes a mixture of asymmetric Laplace distributions (ALD), which were proposed by

Yu and Moyeed (2001) for quantile regression in a Bayesian framework based on a ‘working likelihood’. The

closest work to ours is by Kottas and Kranjajić (2009) who developed a Dirichlet process mixture model

of ALDs for the error distribution of a quantile regression. However their interest was in the errors and

their mixture over the scale parameters, while we are interested in using a mixture of ALDs for the response

which links covariate profiles to clusters (not a direct regression function of covariates) and other possible

fixed factors via a regression model. Covariates and fixed effects are differentiated by their link to the

response: covariates have cluster-specific parameters, while fixed effects have global (ie. non cluster-specific)

parameters.

Another close proposal is by Franczak et al. (2014). They proposed the use of shifted asymmetric Laplace

distributions for model-based clustering and provided an Expectation-Maximisation algorithm. Their mix-

ture model was multivariate and aimed at classical classification problems, and for certain selected examples

they outperform the Gaussian mixture models. They did not study the potential relationship between pre-

dictors and covariates, while we assume the distribution of the response variable and the covariates to be

cluster dependent.

The inference for quantile profile regression is carried out by Markov chain Monte Carlo (MCMC). We

have implemented three types of samplers for sampling of the Dirichlet process (DP) for profile regression: the

truncated sampler by Jara et al. (2011), the slice independent by Kalli et al. (2011) and the slice dependent

by Papaspiliopoulos (2008). We have added a Gibbs sampler to this implementation for the parameters

of the quantile extension. Our novel mixture modelling approach is demonstrated on both simulated and

real data. In these analyses, our mixture of asymmetric Laplace distributions performs favourably when

compared to Gaussian profile regression.
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The paper is organised as follows. Section 2 of the paper gives a brief overview of quantile regression and

the asymmetric Laplace distribution. Section 3 describes the Dirichlet process mixture model for Bayesian

clustering. Profile regression employing a likelihood function that is based on the asymmetric Laplace

distribution is developed in Section 4. In Sections 5 and 6.1 simulated data and a well-known real dataset

are used to validate our model, which is then applied to the analysis of the ELSA dataset in Section 6.2.

2 Quantile Regression and Asymmetric Laplace Distribution

Consider a standard linear quantile regression model

Y = UT γ + ε, (1)

where Y is the response variable, U is a d× 1 covariate vector, γ is a d× 1 regression coefficient vector and

ε is the error term whose pth (0 < p < 1) quantile, denoted by Qp(ε|U), is zero. Then the pth conditional

quantile of Y given U is given by

Qp(Y |U) = UT γ(p). (2)

Given i.i.d. observations {Ui, Yi}ni=1, the regression coefficient γ(p) now depends on the quantile of

interest and it can be estimated by minimising the following objective function,

min
γ

n∑
i

ρp
(
Yi −UT

i γ(p)
)
, (3)

where the loss function is the piecewise linear ‘check function’,

ρp(u) = u (p− I(u < 0)) (4)

with the indicator function I(·).

Note that minγ
∑n
i ρp

(
Yi −UT

i γ(p)
)

= maxγ
∏n
i exp(−ρp

(
Yi −UT

i γ(p)
)
). Therefore, the link between

the minimisation of the loss function (4) and the maximum an ALD-based likelihood function can be con-

structed with the ALD(µ, σ; p) as

fp(v|µ, σ) =
p(1− p)

σ
exp

{
−ρp

(
v − µ
σ

)}
(5)

for 0 < p < 1, where µ and σ are location and scale parameters respectively. Based on this ALD-based

likelihood function, Yu and Moyeed (2001) and Yu and Stander (2007) and among others introduced Bayesian

quantile regression. Sriram et al. (2013) provided posterior consistency of this Bayesian quantile regression

method under misspecification. Hu et al. (2013) has also shown that Bayesian quantile regression methods

are not sensitive to this ALD-based likelihood assumption.
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3 Dirichlet Process Mixture Model

Dirichlet process mixture models are defined for data Y = (Y1, Y2, . . . , Yn), regarded as exchangeable or as

independently drawn from an unknown distribution. This distribution is modelled as a mixture of distribu-

tions of the form F (θ), with the mixing distribution over θ being G. The prior for this mixing distribution

is a Dirichlet process with concentration parameter α and base distribution G0 (Ferguson, 1973):

Yi|θi ∼ F (θ) (6)

θi|G ∼ G (7)

G ∼ DP (G0, α). (8)

An infinite mixture model will not face the misspecification of parameters in contrast to finite models,

especially when using a model structure which is far from the real one, and hence will generate more stable

solutions.

3.1 Profile regression

We will focus on the Dirichlet process mixture model described in Liverani et al. (2015). This model links a

response vector Y with the covariate metrix X = (X1,X2, . . . ,Xd) nonparametrically through their cluster

membership. Also, the approach enables the potential supplemental fixed effects W, which have an effect

on the response which is the same for all clusters (also referred to as a global effect). It is worth noting that

the allocated clusters are based on the joint effects of X and Y, implicitly handling latent high dimensional

interactions which would be quite challenging to capture via classical approaches.

Consider a response variable Yi and a covariate profile Xi = (xi,1, ..., xi,d) for i in 1, 2, . . . , n. The observed

data follows an infinite mixture distribution, where mixture component c has density conditional on some

component specific parameters Θc and global parameters Λ. Therefore, the proposed model is given by a

joint probability model for the outcome Yi and profile Xi, where these probability models are conditionally

independent within clusters:

f(Yi, Xi|Θ,Λ,Wi) =

∞∑
c=1

ψcf(Yi|Θc,Λ,Wi)f(Xi|Θc,Λ) (9)

where Θ = (ψ1,Θ1, ψ2,Θ2, · · · ), and the weight of mixture component c is given by ψc. The mixture weights

ψ = {ψc, c ≥ 1} follow a stick breaking distribution which is given by

ψc = Vc
∏
l<c

(1− Vl) for c ∈ Z+ \ {1} (10)

ψ1 = V1 (11)

Vc ∼ Beta(1, α) i.i.d. for c ∈ Z+. (12)
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In order to help identify the specific cluster a data point belongs to and simplify the likelihood, it is common

and convenient to bring in a vector of latent allocation variables Z = (Z1, . . . , Zn), such that Zi = c identifies

the allocation of individual i to cluster c.

There is a wide range of choices for the response sub-model f(Yi|Θc,Λ,Wi) and the profile sub-model

f(Xi|Θc,Λ), including Gaussian, Bernoulli, Binomial, Poisson, Multinomial and Weibull distributions (Liv-

erani et al., 2015). For example the case where for each individual i, Di = Xi is a vector of J locally inde-

pendent discrete categorical random variables, where the number of categories for covariate j = 1, 2, . . . , J

is Kj . Then we can write Θc = Φc = (Φc,1,Φc,2 . . . ,Φc,J) with Φc,j = (φc,j,1, φc,j,2, . . . , φc,j,Kj ) and

f(Xi|Θc,Λ) =

J∏
j=1

φZi,j,Xi,j . (13)

In this case there are no global parameters Λ. We let Θ0 = a = (a1, a2, . . . , aJ), where for j = 1, 2, . . . , J,

aj = (aj,1, aj,2, . . . , aj,Kj ) and we adopt conjugate Dirichlet priors Φc,j ∼ Dirichlet(aj).

As another example, continuous response data is modelled by a Gaussian distribution. The parameter

Θc is extended to contain θc for each cluster c. As before Λ contains β, but also σ2
Y . These parameters allow

us to write the response model as:

f(Yi|Θc,Λ,Wi) =
1√

2πσ2
Y

exp

{
− 1

2σ2
Y

(Yi − λi)2
}
,

where λi = θZi + β>Wi. We impose the same prior settings as for the discrete response models, with the

additional prior on τY = 1/σ2
Y being Gamma(sτY , rτY ), where sτY and rτY are the shape and rate hyper

parameters that extend Θ0. We will refer to the profile regression model with the Gaussian distribution for

the response sub-model as Gaussian profile regression.

As seen above, the parameters of the covariates are cluster specific, so each cluster will be differentiated

by the values taken by the parameters of the covariates. Fixed effects have global parameters, so the effect

of variables included in the model as fixed effects will be the same for all observations, regardless of which

cluster they belong to. Therefore, covariates are the variables of interest for the inference, while fixed effects

are variables which we are controlling for.

Posterior inference on Z offers us with information concerning the clustering of the observations. We

carry out inference via Markov Chain Monte Carlo using the stick-breaking construction of the Dirichlet

process and the slice independent sampler proposed by Kalli et al. (2011). As in this type of models the

posterior distribution is invariant to switching component labels, our implementation includes also label

switching moves, which greatly improve the convergence rate of the MCMC (Hastie et al., 2015). Moreover,

we have implemented in the R package PReMiuM (Liverani et al., 2015) a range of post-processing functions

which deduce the clustering structure from the rich MCMC output.
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4 Quantile Profile Regression

We extend profile regression to allow for asymmetric Laplace distributions for the response variable. We

name this model Bayesian profile quantile regression. Let the response sub-model be

f(Yi|ΘZi ,Λ,Wi) = f(Yi|θZi , β, σY ,Wi) =
p(1− p)
σY

exp

{
−ρp

(
Yi − λi
σY

)}
(14)

that is, Yi|Zi,ΘZi ,Λ,Wi ∼ ALD(λi, σY ; p), where λi = θZi + βTWi and Λ = (β, σY ) contains the global

parameters, which take the same values for all clusters, and ΘZi = (θZi) contains the cluster-specific pa-

rameters. The parameter p refers to the quantile of interest and it is set, not estimated from the model,

depending on the aims of the analysis. For example, if a population of males has the 90% quantile of the

weight distribution corresponding to obesity and we aim to investigate how some correlated predictors are

related to obesity, then we could set p = 0.9.

For each cluster c, we adopt a t location-scale distribution for θc, with hyperparameters µθ and σθ with

7 degrees of freedom, as discussed by Molitor et al. (2010) and Gelman et al. (2008). For each fixed effect

l, which is an element of the vector β, we adopt the same prior for βl, but with hyperparameters µβ and

σθ. Additionally, we set the prior distribution of σY to be an inverse Gamma with parameters sσY and

rσY , which are respectively the shape and scale parameters. Adopting this conjugate prior, updates for σY

are simple Gibbs updates, as shown in the next section. See Liverani et al. (2015) for details on the prior

distributions for the other parameters.

4.1 Inference for quantile profile regression

We discuss here the details of the sampling from the posterior distribution of the new parameter σY in-

troduced by the ALD. See Liverani et al. (2015) for details of the samplers for all other parameters of the

model.

We can derive a Gibbs sampler for the global parameter σY . The posterior distribution of f(σY |D), with

D = (Y,X), is given by:

f (σY |D) ∝

{
n∏
i=1

f(Yi|θZi , β, σY ,Wi)

}
p(σY )

∝

{
n∏
i=1

1

σY
exp

{
− 1

σY
(Yi − λi) (p− I(Yi < λi))

}}
1

σ
sσY +1

Y

exp

{
−rσY
σY

}

∝ 1

σ
sσY +n+1

Y

exp

{
− 1

σY

(
rσY +

n∑
i=1

(Yi − λi)(p− I(Yi < λi))

)}

so we have that

σY |D ∼ IG

(
sσY + n, rσY +

n∑
i=1

(Yi − λi) (p− I (Yi ≤ λi))

)
(15)

7



4.2 Posterior Predictive Distribution

As for profile regression, we can sample the posterior predictive distribution of pseudo-profiles. The pseudo-

profiles are predictive scenarios determined by the covariates. At each iteration the predictive subjects are

allocated to one of the existing clusters in accordance with their own covariate profiles. We can then derive

the posterior predictive distribution of the response variable for each pseudo-profile. We compute the full

posterior predictive distribution of the pseudo-profiles and then compute the quantile of interest. p.

Let Xn+1 be a covariate profile for which we are interested in predicting the response variable, and let

Z̃rn+1 = c if the pseudo-profile n+ 1 is allocated to cluster c at the sweep r of the MCMC sampler. We can

then compute the posterior probability p(Z̃rn+1 = c|Xs, Θ̃
r
, Λ̃

r
,D,W) for each pseudo-profile, where Θ̃

r
are

the cluster specific parameters and Λ̃
r

the global parameters sampled at the sweep r of the MCMC sampler.

We can compute p(Z̃rn+1 = c|Xs, Θ̃
r
, Λ̃

r
,D,W) using the slice sampler based on the covariate profile Xn+1.

Essentially, the pseudo-profile is assigned to a cluster at each iteration of the MCMC based on the similarity

to the covariate profiles in the existing clusters. Unlike the training data D, the pseudo-profiles are never

allocated to empty clusters. This is because we have no data for the empty clusters, and their parameters

are draws from their prior distributions. However, this can lead to a spurious allocation if the covariate

profile is significantly different from the covariate profiles of the training data.

Once the covariate profile is associated to a cluster c at sweep r, we can estimate the predictive density

of a future observation as follows,

f (Yn+1|Xn+1 = X,φ,Θ,Λ,W,V,D)

= f (Yn+1|Zn+1 = c,Θ,Λ,W,V,D) f (Zn+1 = c|Xn+1 = X,φ,Θ,Λ,W,V,D)

= ψc(X)f (Yn+1|Zn+1 = c,Θ,Λ,W,V,D)

= ψc(X)ALD(Yn+1;Zn+1 = c).

(16)

We obtain a posterior predictive distribution based on the allocation of the covariate profile of interest at

each sweep.

5 Simulation Study

We have implemented and released quantile profile regression in the R package PReMiuM. Here, we provide

the results of the application of quantile profile regression on simulated data. First we simulate data from

the ALD and show that the method proposed is more effective than Gaussian profile regression to retrieve

generating parameters for skewed data. Then we show that if we are interested in a specific quantile of

the distribution, even when the generating mechanism is Gaussian, quantile profile regression makes more

accurate predictions than Gaussian profile regression.
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We simulate data from an ALD using the methods in Yu and Zhang (2005): if ξ and η are independent

and identical standard exponential distributions, then

ξ

p
− η

1− p
∼ ALD(0, 1; p)

and if A ∼ ALD(0, 1; p) then B ∼ ALD(µ, σ; p) when B = µ+ σA. Five clusters were generated by drawing

independent samples from the ALD for the outcome Y and the Gaussian distribution for the covariate X as

follows.

Yi ∼ ALD(θZi + βTWi, σY ; q) (17)

Xi ∼ Normal(µZi , τ
2
Zi) (18)

with q = 0.05 and i = 1, 2, . . . , 300. As the profile sub-model f(Xi|ΘZi ,Λ) is Gaussian with parame-

ters µZi and τ2Zi , the cluster-specific parameters contained in Θ are (θ1, θ2, . . . , θ5) = (−200, 0, 3, 40, 150),

(µ1, µ2, . . . , µ5) = (0, 6,−8,−3, 5) and (τ21 , τ
2
2 , . . . , τ

2
5 ) = (6, 7, 4, 10, 17). When the observation i belongs to

cluster c, the allocation variable Zi = c. The sizes of the five simulated clusters were 600, 200, 400, 300 and

800 observations respectively. The coefficients β were set equal to 0, therefore omitting the fixed effects. We

set σY = 1. Figure 1 shows the first set of simulated data.

We use quantile profile regression and Gaussian profile regression, both available in the R package PRe-

MiuM. We set the same priors for both models and keep the hyperparameters constant. The parameters

θc have a t-distribution with 7 degrees of freedom, mean 0 and scale 2.5. The shape and scale of σY and

τ2 are 2.5 and 2.5 respectively. The prior on the mean vector for µc has the empirical covariate means

as mean and the inverse of the diagonal matrix with elements equal to square of empirical range for each

covariate, multiplied by the number of covariates, as precision matrix. The Gamma prior on the Dirichlet

parameter α has a shape parameter of 2 and rate of 1. For all simulations below, we ran 10,000 iterations of

burn-in and 10,000 iterations after that. We obtain good convergence diagnostics on the trace, density and

autocorrelation for various parameters (not shown). See Hastie et al. (2015) for more details on convergence

for this type of model.
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Figure 1: Data simulated as by Equations (17) and (18). The five generating clusters can be identified by

the different symbols used for the data points.

We initially simulated the ALD data with q = 0.05 and run the algorithm using different settings of the

parameter p. Table 1 shows the mean of the posterior distributions of θ applying the proposed quantile

profile regression (with p = 0.05) and Gaussian profile regression, averaged over 50 repetitions. Quantile

profile regression provides more accurate estimations of the generating parameters. On the other hand, when

the data is generated with q = 0.95 (simulations and results not shown), the accuracy is highest for p = 0.95.

As the choice of p is driven by the application and chosen at priori, we only show results for q = 0.05 below,

without loss of generality.

Table 1: Posterior means of θ, averaged over 50 repetitions. The first row gives the generating values of the

parameter θ for the five clusters. The second row gives the posterior means for the clusters obtained applying

quantile profile regression with parameter p = 0.05 and the last row applying Gaussian profile regression.

1 2 3 4 5

θ -200.00 0.00 3.00 40.00 150.00

quantile p=0.05 -199.94 5.61 27.18 32.00 122.77

Normal -177.57 -11.83 44.04 69.80 106.51
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Figure 2: Boxplots of the posterior mean of θ1 over 50 runs for quantile profile regression with p = 0.05 and

Gaussian profile regression, repeated for different generating values of q = 0.05, 0.10, 0.025. The horizontal

dashed line marks the generating value θ1 = −200.
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Figure 3: Boxplots of the posterior mean of θ1 over 50 runs for quantile profile regression with p = 0.05 and

Gaussian profile regression, comparing the results on the original data and adding an outlier at x = 15 and

y = −320. The horizontal dashed line marks the generating value θ1 = −200.
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Figure 4: The two datasets with the response variable Y simulated from a mixture of Gaussian distributions

(left hand side) and from a mixture of Gamma distributions (right hand side). The circled observations are

the ones of interest for prediction.

Therefore, as we are in a setting where our interest is in the lowest quantiles of the data, we concentrate on

the estimation of θ1, the parameter of the cluster corresponding to the lowest values of the outcome Y . Figure

2 shows the boxplots of the posterior mean of θ1 over 50 runs of quantile profile regression and Gaussian

profile regression against its generating value of -200. Quantile profile regression consistently performs more

accurately than the alternative method. This is not due to the unfair advantage of knowing the generating

value q = 0.05, as the same plot shows also that quantile profile regression outperforms Gaussian profile

regression also for q = 0.1 and q = 0.025.

Moreover, the results were also robust to the addition of an outlying observation which took the values

x = 15 and y = −320. The results are shown in Figure 3.

To test whether our proposed method works well when the data generating mechanism is unknown, we

simulated two additional datasets. In the first simulated dataset Y is simulated from Gaussian distributions

as follows

Yi ∼ Normal(θZi + βTWi, σ
2
Y ) (19)

with i = 1, 2, . . . , 300 with σ2
Y = 1. In the second simulated dataset Y is simulated from (skewed) Gamma

distributions as follows

Yi ∼ Gamma(θZi + βTWi, α) (20)

with i = 1, 2, . . . , 300 and the rate α = 1. The cluster-specific parameters are (θ1, θ2, . . . , θ5) = (−6,−2, 0, 3, 6)

for both simulated datasets. The sizes of the five simulated clusters were 300, 600, 200, 400 and 800 obser-
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vations respectively for both simulated datasets, as for the previous simulation. The coefficients β were set

equal to 0, therefore omitting the fixed effects. For both simulated datasets, the covariates are simulated

from Xi ∼ Normal(µZi , τ
2
Zi

) with (µ1, µ2, . . . , µ5) = (−3, 0, 6,−8, 5) and (τ21 , τ
2
2 , . . . , τ

2
5 ) = (10, 6, 7, 4, 17).

The data is shown in Figure 4.

As expected, for data simulated from Gaussian distributions, Gaussian profile regression outperforms

quantile profile regression when estimating the posterior distribution of θc and predicting the outcome Y

(not shown). However, the main aim of quantile profile regression is to predict extreme values of the

response variable Y . Therefore we will compare the prediction accuracy of Gaussian profile regression and

quantile profile regression when the prediction concerns the lowest values of Y for the datasets generated

from Gaussian and Gamma distributions. We do this by separating the entire sample into training data and

validation data. The latter dataset is formed by the points circled in Figure 4 (the extreme observations of Y

for different values of X). We then compute two measures of prediction accuracy for the validation dataset.

The first measure of prediction accuracy that we use to compare the predictive power of quantile profile

regression against Gaussian profile regression is the root mean square error (RMSE) of the predicted values

with respect to the observed outcome. This measure of goodness of fit is given by

RMSE =

√√√√∑n
i=1

(
Yi − Ŷi

)2
n

(21)

where Ŷi denotes the mean of the posterior predictive distribution for Yi. As well as measuring predictive

accuracy for point predictions using a scoring function like the RMSE, we also use a measure of predictive

accuracy for probabilistic prediction based on proper scoring rules, the continuous ranked probability score

(CRPS). We used the implementation by Jordan et al. (2018). For both these methods a lower score indicates

a better forecast. We find that quantile profile regression outperforms Gaussian profile regression.

The mean and standard deviation results for 50 repetitions of the methods are shown in Table 2. Profile

regression is clearly outperforming Gaussian profile regression in terms of prediction accuracy for both

simulated datasets. We also illustrate the performance of quantile profile regression with respect to standard

ordinary least squares regression analysis and CART. Classification and regression tree methods (CART) are

one of the most commonly used non-parametric methods that require no distributional assumptions. CART

uses tree building methods, a form of binary recursive partitioning, and classifies subjects or predicts the

outcome by selecting the most important risk factors available from the study population. Ordinary least

square (OLS) regression is the standard approach for estimating associations in epidemiology. Predictive

scoring rules could not be used for these comparisons because these methods do not produce probabilistic

forecasts. The results for the RMSE are given in Table 2. We conclude that quantile profile regression

outperforms Gaussian profile regression, CART and standard OLS regression significantly and consistently

when predicting in the tails of the distribution whether the data is symmetric (as for the dataset simulated
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from a mixture of Gaussian distributions) or asymmetric (as for the dataset simulated from a mixture of

Gamma distributions).

Table 2: The top table reports the results of the RMSE and the CRPS over 50 repetitions for data simulated

from a mixture of Gaussian distributions, while the bottom table reports the results of the RMSE and the

CRPS over 50 repetitions for data simulated from a mixture of Gamma distributions. In each table, each

row corresponds to one of the methods used for the predictions of observations marked by circles in Figure

4: quantile profile regression (with p = 0.05 and p = 0.95 respectively), Gaussian profile regression, OLS

and CART. Note that the first two methods are stochastic, and therefore we quote the mean and standard

deviation of 50 repetitions, while the latter two are deterministic.

Data: simulated mixture of Gaussian distributions

mean(RMSE) sd(RMSE) mean(CRPS) sd(CRPS)

quantile 0.05 2.40 0.07 1.14 0.01

Normal 5.11 0.00 4.18 0.00

OLS 6.11

CART 5.09

Data: simulated mixture of Gamma distributions

mean(RMSE) sd(RMSE) mean(CRPS) sd(CRPS)

quantile 0.95 7.85 0.04 6.02 0.02

Normal1 13.31 0.09 12.25 0.03

OLS1 13.79

CART1 13.49

Source code to reproduce the results is available as Supporting Information on the journal’s web page.

6 Applications to real datasets

6.1 Pima Diabetes Data Analysis

We present here an analysis of the Pima Diabetes dataset (Smith et al., 1988). This is a sample of native

American women of the Pima heritage, aged 21 or over. We aim to investigate whether the women show

signs of diabetes, which, according to the criteria of the World Health Organization, corresponds to checking

whether the 2-hour post-load plasma glucose was at least 200 mg/dl at any survey examination. We removed

missing values, remaining with data on 393 women. The other variables collected are highly correlated, so

we propose to use profile regression. These variables are: diastolic blood pressure (‘pres’), triceps skin fold
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thickness (‘skin’); 2-hour serum insulin (‘insu’); body mass index (‘mass’) and diabetes pedigree (‘pedi’).

The summary statistics of all these variables are provided in Table 3. We also adjust for age by including it

as a fixed effect. We will focus on the 95% quantile because we aim to determine the variables which may

link to hyperglycemia.

Table 3: Summary statistics for the variables included in the analysis of the Pima dataset: minimum, first

quartile, mean, third quartile, maximum and standard deviation.

Min Q1 Mean Q3 Max

pres 24.00 62.00 70.67 78.00 110.00

skin 7.00 21.00 29.12 37.00 63.00

insu 14.00 76.00 155.72 190.00 846.00

mass 18.20 28.40 33.07 37.10 67.10

pedi 0.09 0.27 0.52 0.69 2.42

age 21.00 23.00 30.84 36.00 81.00

We carry out the analysis using quantile profile regression and Gaussian profile regression. The response

submodel is given by p(Yi|ΘZi ,Λ,Wi) ≡ ALD(θZi + βTWi, σY ; p) for quantile profile regression and by

p(Yi|ΘZi ,Λ,Wi) ≡ Normal(θZi + βTWi, σ
2
Y ) for Gaussian profile regression. In both cases the covariate

submodel is given by p(Xi|ΘZi ,Λ) ≡ Normal(µZi , τ
2
Zi

). We used the same priors as for the simulated data

above and our results were not sensitive to the choice of prior. We ran 20,000 iterations of burn-in and 20,000

iterations after that. We obtain good convergence diagnostics on the trace, density and autocorrelation for

various parameters. We obtained posterior distributions for all parameters and the clusters obtained provide

an informative description of the dataset. The main results are included in Figure 5.
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Figure 5: Boxplots for the posterior distributions of the parameter θc and the posterior distribution of the

mean of each covariate for each cluster c.

We are interested in high values of Y because they correspond to hyperglycemia. We can show the higher

accuracy of quantile profile regression over Gaussian profile regression when predicting values of Y for the

observations such that Y > 180. The RMSE and the CRPS obtained comparing these predictions to the

observed values are given in Table 4. As for simulated data, quantile profile regression proves to be more

accurate when predicting values around the quantiles of interest.

Table 4: Mean and standard deviation of the RMSE and the CRPS over 100 repetitions of the predictions

of the Y values such that Y > 180 applying quantile profile regression and Gaussian profile regression.

RMSE sd(RMSE) CRPS sd(CRPS)

quantile 0.95 23.48 1.50 16.16 1.59

Normal 46.49 2.11 40.63 1.98

Source code to reproduce the results is available as Supporting Information on the journal’s web page.
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6.2 Analysis of the English Longitudinal Study of Ageing (ELSA) dataset

We also conducted an analysis with data from the English Longitudinal Study of Ageing (ELSA). ELSA

is a longitudinal cohort study of adults aged 50 or older which commenced in 1998, with data collection

taking part every two years (Steptoe et al., 2012). The data used in our study are from the nurse visit

conducted at Wave 2 of ELSA (2004-2005). A total of 7,666 people took part in this visit where biological

data were collected for the first time. The data are available for download from the UK Data Service at

http://dx.doi.org/10.5255/UKDA-SN-5050-9.

The aim of this study is to ascertain how cardiometabolic risk factors might be associated with high blood

glucose in people who do not currently have a diagnosis of diabetes. Research has shown that high blood

glucose levels are important predictors of incident diabetes (Tabák et al., 2012). However, it has been shown

that only considering high blood glucose in prediction of diabetes risk may be overly simplistic as many other

cardiometabolic risk factors that are highly correlated with high blood glucose (Haffner et al., 1990; Li et al.,

2009) are also associated with diabetes risk (Ford, 2005; Kolberg et al., 2009). Thus we wanted to determine

how cardiometabolic risk predictors may cluster together with an outcome of high blood glucose in people

who do not have a current diagnosis of diabetes using quantile profile regression modelling. In theory we

would expect to see higher levels of blood glucose associated with higher cardiometabolic risk factors.

We removed erroneous data (such as values outside their expected range) and missing values as we needed

all relevant information to conduct our analysis. We also removed data for people with a current diagnosis

of diabetes (n = 333), leaving data for 2,859 participants. We included the following variables as covariates:

mean systolic blood pressure (‘SYSVAL’), mean diastolic blood pressure (‘DIAVAL’), mean arterial pressure

(‘MAPVAL’), cholesterol level (‘CHOL’), high-density lipoprotein level (‘HDL’), triglycerides level (‘TRIG’),

low-density lipoprotein level (‘LDL’), C-reactive protein level (CRP: ‘HSCRP’), mean waist (‘WSTVAL’),

mean waist/hip ratio (‘WHVAL’) and valid BMI (‘BMIVAL’). See Table 5 for summary statistics of these

variables.

Variables used in this analysis are highly correlated, as shown in Table 6, thus providing a strong rationale

for the use of quantile profile regression. These variables are all quantitative and continuous and they will be

included in our model as covariates. Within our model we adjusted for gender by including it as a fixed effect

in the model. We opted to focus on the 95% quantile because we wanted to determine how cardiometabolic

risk factors might link with high blood glucose. We are interested in high values of Y because they correspond

to high blood glucose.
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Table 5: Summary statistics for the variables included in the analysis of the ELSA dataset: minimum, first

quartile, mean, third quartile, maximum and standard deviation.

Min Q1 Mean Q3 Max SD

SYSVAL 80.00 121.00 133.74 144.50 214.00 18.19

DIAVAL 36.50 69.50 76.32 83.00 118.00 10.41

MAPVAL 51.50 87.50 95.46 103.00 144.00 11.77

CHOL 2.10 5.30 6.04 6.80 12.30 1.15

HDL 0.50 1.30 1.57 1.80 3.40 0.38

TRIG 0.40 1.00 1.52 1.90 4.50 0.71

LDL 0.70 3.10 3.78 4.40 9.20 0.97

HSCRP 0.20 0.80 3.51 3.70 151.00 6.43

WSTVAL 61.25 85.20 94.15 102.32 171.60 12.65

WHVAL 0.64 0.82 0.88 0.95 1.26 0.08

BMIVAL 16.02 24.45 27.52 30.05 55.97 4.54

Table 6: Correlation matrix for the covariates.

SYSVAL DIAVAL MAPVAL CHOL HDL TRIG LDL HSCRP WSTVAL WHVAL

SYSVAL 1

DIAVAL 0.64 1

MAPVAL 0.89 0.92 1

CHOL 0.08 0.12 0.11 1

HDL 0.00 0.02 0.02 0.42 1

TRIG 0.10 0.12 0.12 0.25 -0.34 1

LDL 0.06 0.09 0.08 0.94 0.22 0.10 1

HSCRP 0.06 0.02 0.04 -0.04 -0.11 0.05 -0.02 1

WSTVAL 0.17 0.20 0.21 -0.10 -0.42 0.31 -0.06 0.16 1

WHVAL 0.16 0.14 0.17 -0.13 -0.42 0.27 -0.08 0.11 0.78 1

BMIVAL 0.16 0.22 0.21 -0.01 -0.28 0.27 0.00 0.16 0.79 0.35 1

We carry out the analysis using quantile profile regression and Gaussian profile regression, with the same

response and covariates models and priors above as for the simulated data. We ran 30,000 iterations of

burn-in and 30,000 iterations after that. We obtain good convergence diagnostics on the trace, density and

autocorrelation for various parameters.

Quantile profile regression identified four clusters of 1,432, 436, 760 and 231 observations respectively.

Figure 6 shows boxplots of the posterior distribution for θc.
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We are interested in high values of Y because they correspond to high blood glucose. When examining

values of Y, values of blood glucose ≥ 5.6 mmol/L are considered as high risk for the development of diabetes

(Centers for Disease Control and Prevention, 2011). The blood glucose levels of clusters two, three and four

(with credible intervals) were all higher than 5.6 mmol/L indicating these three groups could be considered

high risk for diabetes. The 95% credible interval for β, which quantifies the linear relationship between

gender and the response, is (−0.39, 0.10).

In assessing the cardiometabolic profile of each cluster we can look to Figure 7, showing boxplots of

the posterior distributions of µc, so we can now examine in detail the relationship between the response

variable and the covariates. Cluster 1 (lowest blood glucose levels) generally showed low cardiometabolic

risk. Cluster 2 (who had moderately high levels of blood glucose) showed a relatively high risk profile for

other cardiometabolic risk factors, with high levels of cholesterol, triglycerides, CRP and blood pressure

with borderline/high anthropometric indicators. Cluster 3 (who showed a high blood glucose profile) had

borderline blood pressure and anthropometric indicators but a high risk cholesterol and triglyceride profile.

Cluster 4 (the highest blood glucose levels) showed very high levels of all cardiometabolic indicators. These

results indicate that quantile profile regression modelling is able to discriminate between different levels of

blood glucose based on the presence of cardiometabolic risk factors in a way that is theoretically sound

(i.e., low blood glucose levels are associated with low cardiometabolic risk and high blood glucose levels are

associated with higher cardiometabolic risk) while also being sensitive enough the reveal different groups

that could be of clinical interest (e.g., cluster 4 indicated levels of extremely high inflammation through

raised CRP which could be of interest to clinicians).

These data indicate that quantile profile regression could be a useful tool for identifying clusters of people

based on shared cardiometabolic risk factors. As this analysis was cross sectional we cannot infer whether

these clusters would predict incidence of type 2 diabetes, however this modelling tool shows promise for

application in the context of illness risk.
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The horizontal dashed line is the overall posterior mean.
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Figure 7: Boxplots of the posterior distribution of µc for the four clusters identified by quantile profile

regression. The horizontal dashed line is the overall posterior mean for each covariate.

Finally, we can show the higher accuracy of quantile profile regression over Gaussian profile regression

when predicting extreme values of Y . We do this by including the observations with Y >= 6 in a validation

dataset. The RMSE and the CRPS obtained comparing these predictions to the observed values are given in

Table 7. Quantile profile regression proves to be more accurate when predicting values around the quantiles

of interest.

Source code to reproduce the results is available as Supporting Information on the journal’s web page.
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Table 7: Mean and standard deviation of the RMSE and the CRPS over 100 repetitions of the predictions

of the Y values such that Y >= 6 applying quantile profile regression and Gaussian profile regression.

RMSE sd(RMSE) CRPS sd(CRPS)

quantile 0.95 25.56 3.75 16.86 2.50

Gaussian 47.20 0.11 40.61 0.21

7 Conclusions and future work

We have proposed a new method for collinear data which is robust when outliers are present and more

accurate than existing methods when the modelling interest is in the tails of the distribution. The method

is an extension of profile regression, a Bayesian clustering model, and it was applied to simulated and real

data and it provided a significant increase in accuracy with considerable reduction in the residuals, especially

under extreme quantiles, compared to an estimation with a Gaussian mixture model.

This method allows to explain the complex relationships between predictors and the response variables,

as demonstrated in Sections 5 and 6. Profile regression is able to disentangle the complex relationships

between predictors and response variables and can be used to evaluate how changes in the predictors might

affect the response variable.

One limitation of the model proposed in its present form is that the asymmetric Laplace distribution is

included for the response variable but not for the predictors, so it does not account for interest in the tails

of the distribution of the covariates. This is the topic of future work.
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