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ABSTRACT

Analogue recordings pose specific problems during automatic alignment, such as distortion due to physical
degradation, or differences in tape speed during recording, copying, and digitisation. Oftentimes, recordings
are incomplete, exhibiting gaps with different lengths. In this paper we propose a method to align multiple
digitised analogue recordings of same concerts of varying quality and song segmentations. The process includes
the automatic construction of a reference concert timeline. We evaluate alignment methods on a synthetic dataset
and apply our algorithm to real-world data.

1 Introduction

Prior to the widespread adoption of digital recording
technology many live music concerts in the second half
of the 20th century were recorded on analogue tape,
either directly from the mixing desk or with amateur
equipment by audience members. The alignment of
different recordings of the same concert pose specific
problems not occurring in the digital domain. These
include distortion due to physical degradation, as well
as inconsistent tape speed during recording and digiti-
sation. Moreover, live recordings often include crowd
noise and many recordings are incomplete with gaps
of different lengths, varying from brief interruptions,
e.g. due to turning over a tape, to longer gaps in partial
recordings.

In this paper we propose a method to align such record-
ings which differ in coverage and song segmentation,
and construct a reference timeline for the visualisation
and convenient comparison of the recordings, both by
listening and visual information. We propose a method
based on iterative application of Subsequence Dynamic
Time Warping (S-DTW), and evaluate different vari-
ants of the technique for the alignment on a constructed
dataset and a real-world dataset taken from the Grateful
Dead Collection of the Live Music Archive (LMA)1.
Our work builds on previous work aligning and clus-
tering individual songs from historic live music record-
ings based on various audio characteristics and editorial
metadata, to create an immersive virtual space that can
be imported into a multichannel web or mobile audio

1https://archive.org/details/GratefulDead
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application [1]. We illustrate how the alignment of
concert recordings works for a large database and how
it can be used in a novel Web application for the ex-
ploration of collections such as the one we used in our
experiment. Furthermore, the analysis data can help to
correct and add missing editorial metadata about the
live music events.

The rest of this paper is structured as follows. In Sec-
tion 2 we give an overview of the background to our
research including digitised analogue live music record-
ings, related work in the field of audio alignment and
the Dynamic Time Warping (DTW) algorithm. This is
followed by a description of the alignment algorithm
used in our experiments (Section 3). We evaluate the
algorithm both on a synthetic dataset (Section 4.1) and
on a real-world example (Section 4.2). In a separate
Section (5), we describe the construction of the con-
cert timeline from the results of the alignment of the
individual tracks of the different recordings. Before
concluding we discuss our algorithm and discuss future
work for the optimisation of the alignment procedure
(Section 6).

2 Background

2.1 Digitised Analog Live Music Recordings

Before the advent of portable digital recording devices,
recordings were made on analog tape which poses
several problems for the curation and distribution of
archival material: Over time, analog recording suffer
from degradation, and generation loss occurs when
copying the recordings to compact cassette [2, 3]. Fur-
thermore, the recordings of a concert may exhibit dif-
ferent speeds, resulting in changes of temporal and
spectral information. Live music recorded by members
of the audience may include applause and crowd noise,
further complicating the automated analysis using MIR
techniques [4]. Sturm [5] discusses incorrect and in-
complete editorial metadata and repetitions in music
corpuses on machine learning tasks in the context of
genre classification.

We apply our alignment approach on material from the
LMA, a collection of over 200,000 concert recordings.
The content is provided by members of the etree2 com-
munity, dedicated to the preservation and trading of
legally tradeable concert recordings in lossless digital

2http://wiki.etree.org/

audio formats. At the time of writing, the Grateful
Dead collection of the LMA holds more than 13,000
recordings of over 2,000 shows spanning the years 1965
to 1995. The improvisatory nature of Grateful Dead
performances and the continued interest by both fans
and scholars in the band’s music and cultural impact
[6] makes this collection particularly interesting for our
work.

2.2 Alignment of Unsynchronised Audio
Sequences

Related work includes several methods proposed for the
alignment of crowd-sourced digital audio/video record-
ings [7, 8, 9, 10]. Many proposed techniques are based
on audio fingerprinting [11, 12, 13], a method to extract
compact content-based signatures from perceptually
relevant features of audio material [14]. Kennedy and
Naaman [13] and Subramanian and Lerch [15] specifi-
cally focus on the alignment of rock concerts. Basaran
et al. [10] employ a graph-based approach using se-
quential Monte Carlo samplers to align unsynchronised
user generated audio recordings. For a comprehensive
review of audio synchronisation techniques see [9, 10].

In many cases, the proposed algorithms involve cross-
correlation of sequences of audio feature vectors which
assume the audio sequences to be continuous and of
the same pitch and speed, which may not be the case
for digitised analog recordings that may exhibit tem-
poral differences due to tape speed and local temporal
variations due to errors in the tape playback. Despite
its robustness against noise and distortion audio finger-
printing has been shown to be inadequate for collec-
tions whose material exhibits greater fluctuation and
variance in playback speed [1, 15].

2.3 Dynamic Time Warping

Dynamic Time Warping (DTW), first introduced by
Sakoe and Chiba [16] in the context of speech recog-
nition, is a method to compare two time-dependent
sequences and has been successfully applied to the
alignment of audio recordings [17, 18]. For music
alignment applications the sequences are usually audio
feature vectors, for instance based on chroma features
of two different performances of the same piece that
differ in length and exhibit local temporal and spectral
variations.

The classic DTW algorithm can be explained as fol-
lows. Let X = (x1,x2, ...,xI) with length I ∈ N and
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Y = (y1,y2, ...,yJ) with length J ∈ N. In order to com-
pute the optimal warping path between X and Y , the
minimal distances are obtained from a cost matrix I×J.
The cost matrix is computed by evaluating the local
cost measure based on a given distance measure for
each pair of elements of X and Y . In classic DTW there
are three constraints on the construction of the warping
path w = (w1, ...,wN) of length N [19]:

• Boundary condition. x1 must be mapped with y1
and xN must be matched with yJ , i.e. the warping
path spans the lengths of both sequences:

(w1 = (1,1))∧ (wN = (I,J)) (1)

• Monotonicity condition. The warping path is
monotonically increasing for both X and Y :

(i1 ≤ i2 ≤ ...≤ iN)∧ ( j1 ≤ j2 ≤ ...≤ jN) (2)

• Step size condition. While each element of X must
be matched with at least one element Y and vice
versa, all index pairs must be pairwise distinct:

wn +1−wn ∈ {(1,0),(0,1),(1,1)}
| n ∈ [1 : N−1]

(3)

There are several techniques to modify the DTW, for
instance constraining the slope of the warping paths or
defining local weights to introduce a bias in favour of
paths of a specified direction. Global constraints limit
the admissible values for the warping path to a subset
of [1 : I]× [1 : J].

3 Alignment Algorithm

The alignment algorithm used in our experiments con-
sist of the following steps:
1) Identifying the longest available recording of a given
concert to be used as the initial reference timeline.
2) Establishing the relative difference in tape speed of
another recording and the reference by computing the
tuning difference and resampling the audio according
to the information obtained.
3) Computing the alignment between the segmented
tracks of a recording with a concatenated reference
recording using a S-DTW with chroma feature vectors.
4) Finding a consensus between the individual align-
ment results and constructing a reference timeline along
which all of them can be placed (see Section 5).
In this section we describe the modified S-DTW algo-
rithm we apply to the audio data.

3.1 Chroma Features

The S-DTW is applied on chroma vectors correspond-
ing to the audio signals. Chroma features are computed
by adding up the subbands obtained from a spectral
representation, such as fast fourier transform (FFT)
or constant-Q transform (CQT), that correspond to a
defined pitch-class. For example, for the western equal-
tempered scale we use in our work, we construct a
12-dimensional vector for every window, where the di-
mensions represent the notes C to B in semitone steps.
The window length in our experiments is 512 samples
corresponding to 23.2ms at 22.05kHz.

We test our algorithm with three different chroma rep-
resentations. In addition to the CQT based chroma
(chroma CQT), we use the Chroma Energy Normalised
Statistics (CENS) feature, a chroma variant developed
by Müller et al. [17] to increase the robustness against
temporal microdeviations and local variations in dy-
namics, timbre and articulation in audio alignment
tasks. The construction of the CENS features involves
the following steps:

1. L1-Normalisation across each chroma vector

2. Quantisation of the amplitudes based on logarith-
mic amplitude thresholds

3. Smoothing with sliding window

Additionally, In our experiments we smoothed the fea-
tures over a length of 21 (CENS 21) and 41 (CENS 41)
windows.

3.2 Subsequence DTW

As opposed to the comparison of two different perfor-
mances of the same piece, where it is assumed that the
two follow the same score with different timings and
articulation, in our case we compare the exact same
music recorded under different conditions. Thus, we
can assume a relatively constant slope close to 1 for
the warping path. However, due to the nature of au-
dio material on the LMA, we found the standard DTW
obeying the conditions described in Section 2.3 to be
unsuitable for our alignment task. In our work we base
the alignment algorithm on the subsequence DTW (S-
DTW), where successive DTW steps are applied on
the data to identify matching sequences of acoustic
frames [19]. We evaluate the individual matching paths
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Fig. 1: Combined S-DTW warping path indicating
skipping audio at around 500s on the x-axis.

using linear regression and omit paths where either
1.05 > slope > 0.95 or R2 < 0.99, where the tolerance
allows for local errors and time variations. When a seg-
ment is matched we first compare the next segment to a
shorter segment of the reference following the matched
time, which speeds up the process considerably.

The different recordings of a concert in the LMA vary
in completeness, for instance, a recording may not con-
tain all the songs, or pauses between songs are cut while
they are included in others. Moreover, the concerts
are segmented into different tracks with inconsistent
boundaries. We may also encounter recordings that
omit sections within one track, e.g. when a tape came
to and end in the middle of a song recording result-
ing in skipping the part of the song for the duration
in took to replace the tape. Such a case is illustrated
in Figure 1, where skipping occurs around 500 on the
x-axis. Since incomplete sequences are not anticipated
in classic DTW, we cannot assume that every element
of the sequences to be compared can be matched as
dictated by the boundary and step-size conditions (eq.
1 and 3).

Live music recorded in the audience may contain parts
that are predominantly crowd noise, resulting in audio
features not to be found in the reference recording. Fur-
thermore, analog tapes may have degraded over time
leading to sections of heavy distortion. These factors
make it difficult to obtain the correct warping path with
classic DTW, resulting in the matching of short features
from one time series with long features of the second
time-series. The monotonicity condition (eq. 2) of the
DTW prevents the warping path turning back on itself ,

Fig. 2: DTW producing unrealistic warping path with
noisy audio.

Fig. 3: Modified S-DTW warping path omitting invalid
subsequence paths.

thus, the optimal match for later sections may not be
found. Figure 2 shows the warping path computed with
standard DTW of two different recordings of the same
performance, one exhibiting a section of added noise
from approximately 160s to 240s into the signal. In
this example, as the spectral differences increase, the
path follows an unrealistic direction to such an extent
that the later parts of the sequences are not optimally
matched. Figure 3 shows the combined warping path
computed by the successive application of the S-DTW
with sections of 10s length. Warping paths that are
not within the slope constraints computed with linear
regression are omitted, resulting in a gap of the path
signifying large spectral differences between the two
sequences. The later parts of the sequences are matched
correctly.
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3.3 Resampling

As a first step prior to the feature extraction we re-
sample the audio material to compensate for varying
tape speeds during the recording and the transfer or
digitisation of the audio material. The speed difference
between the recordings is calculated from the estimated
tuning difference computed by comparing the chroma
features of a segment of the reference input with ro-
tated chroma features of a segment of the recording
to be aligned3. We also estimate the actual tuning of
the reference audio4 and adjust the pitch classes in
the computation of the chroma features for the DTW
accordingly.

4 Evaluation

In the following we test the our S-DTW algorithm un-
der different conditions. We evaluate the performance
using feature vectors constructed with different chroma
variants and subsequence lengths of 10s and 20s.

4.1 Synthetic Dataset

The artificial dataset is based on a soundboard record-
ing from the LMA5. First, we constructed a 10min
version, downsampled to 22.05kHz, of the concert by
concatenating 1min segments reflecting typical musical
content from the bands performances. This includes
sections of pauses between songs that includes tun-
ing and percussive music. To simulate recordings we
applied different audio effects to the recording to in-
vestigate how the different effects impact the S-DTW.
The effects include added row noise, lowpass filter (4-
pole), highpass filter (4-pole), reverberation , wow and
flutter. For the reverberation we used the IR_GreatHall
impulse response from the Audio Degradation Toolbox
by Mauch and Ewert [20] and controlled the level of
the non-direct sound. The wow and flutter effects are
also taken from the Audio Degradation toolbox, while
the filters are implemented with scipy versions of py-
dub6. We created 200 versions per effect applying the
transformations with incremental parameter settings.
The cutoff frequencies are increased on a logarithmic
scale. The effects and parameter ranges are given in

3https://github.com/cannam/tuning-difference
4http://www.isophonics.net/nnls-chroma
5https://archive.org/details/gd1982-10-10.sbd.fixed.miller.

110784.flac16
6https://github.com/jiaaro/pydub

parameter range
crowd noise 0 to 80 dB SNR
flutter (100Hz) 0 to 0.2 intensity
wow (4Hz) 0 to 0.2 intensity
lowpass filter 2 to 11.025kHz cutoff
highpass filter 20 to 1500Hz cutoff
reverberation -80 to 0dB level

Table 1: Effects and parameter ranges for the creation
of the synthetic dataset.

Table 1. We also created a separate dataset of 500 ver-
sions applying all effects with randomised parameter
settings within the specified ranges.

Figures 4 to 7 visualise the results for the different
effects (20 degree polynomial fitting curve). The Y-
axes show the total matched time for the 600s recording
with the effect parameter setting given on the X-axes.
The values are Figures for flutter and lowpass filtering
are omitted since the effect did not impact the results,
which indicates that we could downsample the audio
further to speed up the algorithm. The graphs indicate
that the DTW with the CQT-based chroma vector in
most cases performs best. However, in the case of
high reverberation levels the the CENS chroma proves
to be more suitable. When interpreting the numbers
for the total matched time, we have to consider that
our algorithm omits all subsequence warping paths
that do not meet the restrictions described in Section
3. Therefore, when using 20s sequences instead of
10s sequences, each omitted path accounts for a larger
chunk of the audio material.

For the real-world application of algorithm the total
matched time is not the only factor to consider. For
instance, a small number of matched paths per track
may be enough for the alignment of the complete track,
while tracks with no subsequence match or false pos-
itives introduce additional problems leading to ambi-
guity when matching a complete concert segmented
into a number of tracks. The audio data processed with
reverberation and highpass filter led to false positives
(fpos) for subsequence warping paths and entire audio
files for which no match could be identified (no match).
The results are given in Table 2. Here, the CQT-based
S-DTW produced the highest number of false positives.
The CENS-based S-DTW with subsequences of 20s
length produced the most unmatched items (items with
no valid partial warping path).
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Fig. 4: Alignment performance on audio with added
crowd noise with decreasing signal-to-noise ra-
tio.

highpass reverberation
chroma type fpos no match fpos no match
chroma CQT 10s 30 3.6% 1 0%
chroma CQT 20s 44 5.6% 9 0%
CENS 41 10s 15 4.2% 0 0%
CENS 41 20s 1 6.2% 0 0%
CENS 21 10s 14 5.0% 0 0%
CENS 21 20s 5 5.8% 0 0%

Table 2: False positive sequences (fpos) and tracks
without any subsequence match (no match)
under highpass and reverberation conditions
using different chroma vectors.

4.2 Real-World Data

We applied the our algorithm to the Grateful Dead con-
cert of October 10th 1982. The recordings available in
the LMA for this date are given in Table 4. We choose
the longest recording as the reference against which
the tracks of the other recordings are compared. In
the experiment we used 10s segments and constructed
feature vectors with the CQT-based chroma and CENS
with 21 and 41 window smoothing. While we found
larger tuning differences during initial exploratory ex-
periments with concert recordings from the LMA, the
recordings in this experiment varied between -6 and
14 cents compared to the reference. As opposed to
the artificial dataset which does not exhibit any play-
back speed differences, for the real-world examples we
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Fig. 5: Alignment performance on audio with applied
wow effect with increasing intensity.

chroma type matched time fpos no match
chroma CQT 10s 37.4% 125 37.0%
chroma CQT 20s 40.3% 124 36.8%
CENS 21 10s 31.9% 8 37.8%
CENS 21 20s 35.5% 8 41.8%
CENS 41 10s 30.8% 9 36.8%
CENS 41 20s 37.0% 5 40.2%

Table 3: S-DTW performance for the synthetic dataset
with random parameter settings.

resampled the audio material as described in Section
3.3.

Table 5 shows the combined matched time and the
number of tracks with no valid subsequence for all
recordings using 10s segments in the S-DTW. The to-
tal number of tracks compared with the reference is
249. It should be noted that the unmatched tracks un-
der "no match" songs also include songs that cannot be
matched because they are not present in reference. For
instance some audience recordings contain a separate
first track containing the tuning of instruments by the
band not present in the reference soundboard record-
ing. Nevertheless, the results show that the CENS 21
chroma based DWT produces the fewest unmatched
items, while performing better than CENS 41 with re-
spect to total matched time. The experiment further
reveals that the S-DTW performs better on the real-
world data than on our synthetic dataset. This maybe
explained with the fact that the intensity of the audio
degradation in the synthetic dataset is often greater than
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etree ID length tracks type
gd1982-10-10.nak700.anon-poris.LMPP.95682.flac16 3h:06m:41s 26 AUD
gd1982-10-10.nak700.wagner.miller.109822.flac16 3h:03m:57s 26 AUD
gd1982-10-10.sonyecm220T.keshavan.miller.93732.sbeok.flac16 3h:03m:12s 26 AUD
gd1982-10-10.beyers.stankiewicz.128808.flac16 3h:03m:08s 26 AUD
gd1982-10-10.123624.senn421.gans.miller.flac16 3h:03m:01s 25 AUD
gd1982-10-10.sony-ecm220.keshavan.tzuriel.29315.sbeok.flac16 3h:01m:40s 23 AUD
gd1982-10-10.aud.keshavan.bertha.77325.sbeok.flac16 3h:01m:10s 23 AUD
gd1982-10-10.111039.nak300.hoey.flac16 2h:59m:41s 24 AUD
gd1982-10-10.sbd.fixed.miller.110784.flac16 2h:58m:37s 25 SBD
gd1982-10-10.sbd.tetzeli.ayers.79903.sbeok.flac16 2h:58m:26s 26 SBD
gd1982-10-10.sbd.miller.110626.flac16 2h:58m:13s 25 SBD

Table 4: Audience (AUD) and soundboard (SBD) recordings of the Grateful Dead concert, October 10 1982.
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Fig. 6: Alignment performance on audio with applied
high pass filter with increasing cutoff fre-
quency.

what we encounter in the recordings of the LMA.

Since a low number of unmatched tracks is a crucial
factor in the alignment of the complete recording, we
use CENS 21 feature vectors for the timeline construc-
tion described in Section 5 .

5 Timeline Construction

Our next task is to find a consensus between the local
pairwise alignments obtained as described above. The
goal is to construct a reference timeline along which
we can situate all the time points occurring in the set
of analysed recordings. After applying the process
described in Section 3.2 to N recordings R0, . . . ,RN
including reference recording R0, each recording Ri
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Fig. 7: Alignment performance on audio with ap-
plied reverberation with increasing reverbera-
tion level.

being composed of a sequence of ni tracks ri
0, . . . ,r

i
ni

,
we obtain for each aligned track ri

j a sequence of ki, j

continuous aligned segments si, j
0 , . . . ,si, j

ki, j
consisting of

pairs of time points ∈ Ri×R0, typically over a length
of a multiple of 10 seconds.

While the points in each of the segments si, j
0 , . . . ,si, j

ki, j

for track ri
j are distributed very closely to a line of slope

1 (Section 3.2), they may have different intercepts, for
example due to a cut in either of the recordings Ri or
R0, as in the alignment shown in Figure 1. We thus
first use another application of linear regression to split
every track’s segments into partitions of adjacent seg-
ments with the same intercept. This can be done using
a recursive algorithm, each application of which di-
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chroma type matched time no match
CENS 21 83.4% 2.4%
CENS 41 75.4% 2.8%
chroma CQT 88.6% 5.2%

Table 5: S-DTW performance (10s subsequences) for
the concert recordings.

vides a given sequence of segments s = (s0, . . . ,sk) into
two partitions p0 = (s0, . . . ,sd) and p1 = (sd , . . . ,sk)
for which the linear regression r value is maximal,
i.e. argmax0≤d≤k(max(rval(p0),rval(p1))). The re-
cursion’s base case is reached if no r value is greater
than the one over all input segments s.

We then infer positions for all the parts of the recordings
for which there is no match. First, we search for all
subsequent pairs of partitions between which there is a
gap, i.e. all pairs p with last time point (x1,y1) and q
with first time point (x2,y2) where x1 < x2, and append
a point (x2,y1 +(x2− x1)/2) to the last segment of p
and prepend a point (x2,y2− (x2− x1)/2) to the first
segment of q, assuming p and q to continue on with
slope 1 and the break point to be in the middle of the
gap. Similarly, we fill the gaps before the first partition
p f and after the last partition pl of each track with track
length l by prepending a point (0,y1− x1) to the first
segment of p f , (x1,y1) being the previous first point of
p f , and by appending a point (l,y2 +(l− x2)) to the
last segment of pl , (x2,y2) being the previous last point
of pl .

Finally, we map all points ∈ Ri×R0 to a new space
Ri×T where T is a new global reference timeline. This
can be done satisfactorily using a simple algorithm that
iterates through all subsequent pairs of partitions p,q
of each recording and finds all places where p and q
overlap. First, for each point in Ri×R0 with i 6= 0
we initialise a corresponding point in Ri×T and for
each track in R0 we initialise segments with two points
((ts, ts),(te, te)) in R0×T , one for the start point ts and
one for the end point te of each track.

Then, for each overlapping p = (. . . ,(. . . ,(x1,y1))) and
q = (((x2,y2), . . .), . . .) with x2 < x1 we push back all
partitions of the current recording with first time point
≥ x2 which includes q by adding x1− x2 to their posi-
tions in T . We do the same for all partitions in other
recordings including R0 whose average position be-
tween first and last point is > x2, i.e. the majority of
the partition occurs after x2.

Fig. 8: The recordings from Table 4 situated along the
constructed reference timeline. Odd-numbered
tracks red, even-numbered tracks blue, gaps
between tracks or track partitions white.

Figure 8 visualises the positions of all partitions of
the recordings in our example real-world data set from
Section 4.2 along the constructed reference timeline.
One can identify three positions where a significant
part was missing in R0 resulting in a gap in the first
row. Major gaps can also be observed occurring simul-
taneously in all recordings between the different sets
of the concert and before the encore section (last two
songs). Furthermore, one can see the different ways in
which recordings are partitioned into tracks, e.g. two
songs are merged into one at two different locations in
the keshavan.tzuriel and keshavan.bertha recordings,
visible as large blue and red areas around 4000 and
6000 seconds. Many recordings also have short in-
serted segments which often include parts where the
band is tuning instruments or addressing the audience.

Note that this algorithm cannot guarantee that all pairs
of points between tracks be aligned, for which we
would need to calculate further pairwise alignments
between pairs of tracks where overlaps occur and be-
tween overlapping tracks and recordings other than ref-
erence recording R0 which may contain relevant audio
material that may be missing in R0. Also, tracks that
are completely displaced or mislabeled may not be dis-
covered since nonaligned tracks are simply prepended
or appended in their respective recordings. Again, ad-
ditional alignments could solve this problem.

However, if one is ready to accept these deficiencies,
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this procedure is highly efficient for real world situa-
tions due to the fact that every recording only needs to
be aligned once with the reference recording R0. It can
thus be applied to large collections of audio recordings
if they are decently well organised and labeled.

6 Conclusions and Future Work

In this paper we have shown that we can align differ-
ent digitised analogue recordings of the same concert
using the modified S-DTW described in this work. In
future work we aim to optimise several parts of the
process. For instance, the application of the S-DTW
can be optimised by not aligning all tracks with en-
tire concerts, but pairwise with individual tracks in an
iterative way, which would significantly speed up the
procedure and reduce the memory load. The robustness
against lowpass filtering indicates that we can furher
downsample the audio material which would further
lower the computational cost.

The process of identifying connected aligned parts with
the same intercept can be simplified and done in one
step instead of first identifying short continuous seg-
ments (Section 3.2) and then merging them into parti-
tions (Section 5). Moreover, adding additional steps
of comparison between the different recordings other
than the reference recording can increase the precision
in the construction of the timeline. In order to improve
the alignment accuracy beyond the window length of
the feature analysis Subramanian and Lerch [15] addi-
tionally applies cross-correlation over a short segment
around detected overlaps.

Moreover, a formal evaluation of the proposed time-
line construction algorithm can be conducted with a
synthetic dataset of segmented audio material. Finally,
we will integrate an audio player for the playback of
synchronised recordings in the Web application for the
exploration of Grateful Dead concerts extending the
work described in [21, 22].
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