
 

-1- 

Robust Heart Rate Estimation from Facial Video Using 

Project_ICA 

Lin Qi1, Huidong Yu1, Lisheng Xu1,2*, Ramadhani Selemani Mpanda1 and Stephen E. 

Greenwald3 

1 Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, 

Liaoning, China  

2 Key Laboratory of Medical Image Computing, Shenyang, Ministry of Education, China 

3 Blizard Institute, Barts & The London School of Medicine &Dentistry, Queen Mary University 

of London, United Kingdom 
 

* Corresponding author 

E-mail: xuls@bmie.neu.edu.cn  

Keywords: remote photoplethysmography, dichromatic reflection model, independent component 

analysis 

 

Abstract 

Remote photoplethysmography (rPPG) can achieve non-contact measurement of heart 

rate (HR) from a continuous video sequence by scanning the skin surface. However, 

practical applications are still limited by factors, such as non-rigid facial motion and 

head movement. In this work, a detailed system framework for remotely estimating 

heart rate from facial video under various movement conditions is described. After the 

rPPG signal is obtained from a defined region of the facial skin, a method, termed 

“Project_ICA”, based on a skin reflection model, is employed for extracting the pulse 

signal from the original signal. To evaluate the performance of the proposed algorithm, 

a dataset was created from 28 participants, containing 112 videos that include the 

challenges of various skin tones, body motion and HR recovery after exercise. The 

results show that Project_ICA, when evaluated by several criteria provides a more 

accurate and robust estimate of HR than most existing methods, although problems 

remain in obtaining reliable measurements from subjects with dark skin. 

 

1. Introduction 

Heart rate is one of the most important indicators of cardiovascular health. Studies have 

confirmed that an increase in resting HR is an independent risk factor for predicting the onset, 

progression and mortality of cardiovascular disease (CVD). Thus its daily monitoring can 
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contribute greatly to the prevention of cardiovascular disease as well as assessing progress in 

the rehabilitation of chronic disease(Cook et al., 2006). Currently, the gold standard for HR 

measurement is ECG, which is highly accurate but requires electrodes to be attached to the 

subject. To avoid the discomfort and inconvenience of this procedure, optical methods such as 

photoplethysmography (PPG) have been developed(Allen, 2007). The technique of PPG is 

based on the difference in optical properties between blood and surrounding tissue and hence, 

by detecting changes in transmission through, for example, a finger; or by measuring changes 

in reflectance of the skin(Verkruysse et al., 2008), variations in blood volume, synchronous 

with the heart rate, can be measured. Furthermore, research has found that the PPG signal can 

be detected using a video camera to measure changes in facial color during the cardiac cycle. 

(Poh et al., 2010b; Sun et al., 2012; Sun et al., 2013). 

Using this technology, minute variations in light reflected from the skin can be used to 

extract physiological signals(Takano and Ohta, 2007), and the field of remote physiological 

measurement has developed extensively over the past decade. The methodology can be divided 

into two categories: ballistocardiography (BCG) and PPG. For the BCG approach, HR is 

measured by estimating the minute head motion produced by the pulse during each cardiac 

cycle. It was first applied to measure HR by Balakrishnan et al. in 2013(Balakrishnan et al., 

2013). Subsequently, Haque et al.(Haque et al., 2016) developed a new approach to improve 

the system shortcomings, which extracted facial landmark points using a supervised descent 

method and generated stable trajectories of these points for HR estimation. However, the signal 

was strongly affected by the participants’ overall movement, thus seriously impeding further 

development of this method. 

PPG, the alternative optical approach, has on the other hand, shown more promise and has 

been more widely adopted. In 2008, Verkruysse et al.(Verkruysse et al., 2008) were the first to 

propose that rPPG could detect the pulse using ambient light alone. The favored analysis 

approach has been Blind Source Separation (BSS), using Independent Component Analysis 

(ICA)(Poh et al., 2010b) or Principal Components Analysis (PCA)(Lewandowska et al., 2011) 

to extract a periodic pulse signal from the original rPPG signal. De Haan and Jeanne (De and 

Jeanne, 2013) found that multiple color channels can be combined with chrominance weight to 

enhance the pulse signal quality. Based on that idea, De Haan and Arno (De Haan and Arno, 

2014) extended the work using the ‘blood volume pulse signature’ derived from knowledge of 

camera characteristics, skin reflectance and ambient illumination, to refine the rPPG signal. 

These two methods were influential on subsequent research. In 2014, McDuff et al.(Mcduff et 

al., 2014) proposed an improvement to the optical properties of the digital camera using a 

five-band lens. Subsequently, Li et al.(Li et al., 2014) proposed a framework which utilized 

face tracking and adaptive filtering methods to rectify background illumination and improve 

precision. Meanwhile, several supervised learning methods, such as Support Vector Regression 

(SVR)(Hsu et al., 2014) and the K-Nearest Neighbors algorithm (KNN)(Monkaresi et al., 

2014), were used to generate accurate HR values by using signal features to inform regression 
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analysis. However, these user-independent models require retraining with new participants. 

Subsequently Kumar et al.(Kumar et al., 2015) proposed a new camera-based HR estimation 

algorithm named DistancePPG which can use multiple regions of interest (ROI) to optimize the 

source signal and address some challenges pertaining to low lighting conditions and subjects 

with dark skin. Following this, algorithms like Joint Blind Source Separation (JBSS)(Qi et al., 

2017) and Ensemble Empirical Mode Decomposition (EEMD)(Cheng et al., 2016) were used 

to decompose the source signal and derive an accurate estimate of the pulse rate. Wang et 

al.(Wang et al., 2015; Wang et al., 2016; Wang et al., 2017a) proposed a series of PPG-based 

core algorithms for HR estimation, such as spatial subspace rotation (2SR) and plane 

orthogonal to skin (POS). 2SR defines a spatial subspace of skin-pixels and measures its 

temporal rotation for pulse signal extraction; POS is designed to extract the pulse signal based 

on a skin reflection model. Furthermore, Wang et al. extended their work to develop the 

Sub-band rPPG method to suppress different distortion-frequencies arising from subject 

motion during exercise(Wang et al., 2017b). 

Although many camera-based methods for measuring HR with high accuracy have been 

reported, there are still many challenges that affect measurement results, such as motion artifact 

and variation in illumination(Hassan et al.). Thus, there is scope for further work to solve these 

problems and thus to improve the technology for clinical monitoring. 

This paper proposes a non-contact, robust and real-time system framework for estimating 

HR using facial video, which builds on some of the previous research (Feng et al., 2015; 

Prakash and Tucker, 2018; Tulyakov et al., 2016). Our key contribution is a new algorithm, 

termed Project_ICA, which can robustly extract the pulse signal in the face of movement 

artefacts, poor illumination and dark skin colour. We identify three contributions. Firstly, a fast 

method to obtain the raw rPPG signal based on face tracking and skin region detection, which 

significantly improves the speed of face detection compared to other methods, even under 

illumination variation, dark skin and subject movement. Secondly, a new algorithm to extract 

an accurate pulse signal from the raw rPPG signal. This method projects the original 

three-channel rPPG signals onto a predefined plane to form two-channel signals with 

independent dimensions, and uses a skin reflection model to eliminate illumination variation. 

Following this, the projected signal is used to extract an accurate pulse signal using the Project_ 

ICA algorithm. Thirdly, a dataset containing various challenges, such as different skin tones 

and several subject motion scenarios is used to evaluate the performance of the algorithms. 

The remainder of this paper is structured as follows. Signal acquisition and processing are 

presented in section 2. The experimental setup and validation tests are described in sections 3 

and 4. Finally, some conclusions are offered in section 5. 
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2. Signal acquisition and processing 

A framework for overcoming challenges, such as motion artifacts, illumination changes and 

camera noise, is outlined in Figure 1. The details of each part are presented in the following 

sections. 

 

Figure 1 Outline of the system framework. 

2.1 Acquisition of rPPG signal 

During the first stage of the proposed data processing procedure the rPPG signal is obtained 

from the customized ROI as green boundary as shown in the rightmost panel of Figure 2 (a). In 

most previous research, face detection and tracking have been implemented by using the 

Viola-Jones (VJ) face detector applied to each frame(Viola and Jones, 2001). However, this 

process has proved to be time consuming and prone to misdetection(Tran et al., 2015). In this 

study, we have developed a fast and efficient method to extract the rPPG signal, which reduces 

the computational burden. Figure 2 illustrates the process. 

Firstly, the VJ algorithm is used to detect only an initial rectangular facial region which is 

regarded as the ROI in the first video frame. The feature points in the ROI are detected using the 

minimum eigenvalue algorithm and are shown as the green points within the yellow facial box 

in the middle panel of Figure 2 (a). 

Secondly, to produce a stable ROI for subsequent frames, the Kanade-Lucas-Tomasi 

feature tracker (KLT)(Tomasi, 1991) is used to track detected feature points and produce 

matching point pairs between the previous and the current frames. For the n-th frame, the 

locations of the detected feature points, 𝑷𝒏 ∈ 𝑅2×𝑘 (green crosses), are shown in Figure 3 (a), 

where k is the number of detected feature points in this frame. The corresponding feature 

points 𝑷𝒏+𝟏 (red circles) in the (n+1)-th frame can be found using KLT as Figure 3 (b) 

shows. Next, a geometric transformation matrix 𝑨 ∈ 𝑅2×2 is defined between 𝑷𝒏 and 𝑷𝒏+𝟏, 

such that the relationship can be denoted as 𝑷𝒏+𝟏 = 𝑨𝑷𝒏. Subsequently, the ROI coordinates 

in the (n+1)-th frame can be computed using the matrix product of 𝑨 and the coordinates of 

the ROI boundary points in the n-th frame. This method improves face detection and tracking 

speed significantly, compared to other methods. 

Thirdly, the ROI is redefined by detecting skin pixels within the detected ROI. To achieve 

rapid skin detection, the detected facial region is converted from RGB to YCrCb(Tsouri and Li, 
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2015) and the skin region is extracted using a predefined threshold of skin color (as shown by 

the area between the outer and inner green lines in the rightmost panel of Figure 2 (a)). With 

skin pixels detected, background interference is removed and only skin pixels are further 

analysed. 

Finally, the redefined ROI is separated into its RGB channels as shown in Figure 2 (b), and 

the raw rPPG signal 𝐶(𝑡) = {𝑅(𝑡), 𝐺(𝑡), 𝐵(𝑡)} is formed by averaging all skin pixel values 

within the ROIs from the RGB channels for each frame as, 

𝐶(𝑡) = {𝑅(𝑡), 𝐺(𝑡), 𝐵(𝑡)} = {
∑ 𝐼𝑐ℎ(𝑥,𝑦,𝑡)𝑥,𝑦∈𝑆𝑠𝑘𝑖𝑛

𝑀
}                     (1) 

where 𝑆𝑠𝑘𝑖𝑛 represents the redefined skin ROI, 𝐼𝑐ℎ(𝑥, 𝑦, 𝑡) is the pixel value in 𝑆𝑠𝑘𝑖𝑛 from 

the R/G/B channel at time 𝑡, and 𝑀 is the number of detected skin pixels in 𝑆𝑠𝑘𝑖𝑛. 

 
Figure 2 Extraction of raw rPPG signal by spatial pixel averaging. (a) Face detection tracking and skin 

region detection in the facial area (Green lines represent the detected skin boundary). (b) Frame images 

are separated into RGB channels. (c) Raw rPPG signal in each colour channel. 

Referring to a previous study(Poh et al., 2010b), the longer the duration of the raw rPPG 

signal, the more pulse information there is in it. Therefore, in subsequent analysis, the raw 

rPPG signal was processed by using a moving window of duration 30s and a 29s overlap (with 

1s moving increment). Thus, 31 moving time windows will be produced for each minute of 

signal acquisition. Figure 4 illustrates the procedure. 
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Figure 3 (a) Green crosses represent detected feature points 𝑷𝒏 in the n-th frame. (b) The red circles 

indicate the feature points 𝑷𝒏+𝟏 in the (n+1)-th frame generated by KLT, which match those in the 

n-th frame. 

 
Figure 4 The moving time windows. 

2.2 Extraction of the pulse signal 

After obtaining the raw rPPG signal, Project_ICA is employed to extract the pulse signal from 

it. In the next section, for clarity and brevity we use boldface upper- and lower-case U and u to 

represent a matrix and column vector, respectively. 1 represents the unit vector[1, 1, 1]. 

2.2.1 Simplified skin dichromatic reflection model 

Skin is a multilayered and inhomogeneous organ, composed of epidermis, dermis and 

subcutis(Krishnaswamy and Baranoski, 2004). In previous work(Xu et al., 2014; Lam and 

Kuno, 2016; Wang et al., 2017a), the Lambert-Beer law or Shafer’s dichromatic reflection 

model(Shafer, 1985) have been used to extract physiological variables from skin images. In this 

study, a simplified skin reflection model(Wang et al., 2017a) was used, as shown in Figure 5. 

(a) (b) 
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Figure 5 Simplified skin reflection model. 

Based on the simplified skin reflection model, the skin pixel value of every frame can be 

defined as a time-varying function: 

𝒄𝒊(𝑡) = 𝐼(𝑡) ∙ (𝒗𝒔(𝑡) + 𝒗𝒅(𝑡)) + 𝒗𝒏(𝑡)                 (2) 

where 𝒄𝑖(𝑡) is the i-th skin pixel intensity, which can be rewritten as {𝑅𝑖(𝑡), 𝐺𝑖(𝑡), 𝐵𝑖(𝑡)}; 

𝐼(𝑡) denotes the luminance intensity level, which depends on light source and distance changes 

between light source, skin tissue and camera; 𝒗𝒔(𝑡) represents the specular component of the 

reflections from the skin surface; 𝒗𝒅(𝑡) represents diffuse component caused by scatter and 

absorption of light in skin tissue; 𝒗𝒏(𝑡) denotes the quantization noise of the camera sensor. 

Furthermore, (2) can be expanded to extract the pulse as follows. 

𝒄𝒊(𝑡) = 𝐼0 ∙ (1 + 𝑖(𝑡))(𝒖𝒔 ∙ 𝑠(𝑡) + 𝒖𝒄 ∙ 𝑐0 + 𝒖𝒑 ∙ 𝑝(𝑡)) + 𝒗𝒏(𝑡)     (3) 

where 𝐼0 ∙ (1 + 𝑖(𝑡)) denotes illumination containing a stationary and a time-varying part. 

𝒖𝒔 ∙ 𝑠(𝑡)  and 𝒖𝒑 ∙ 𝑝(𝑡) are time-varying signals of the specular and diffuse components, 

respectively. Also, there are various constant components in the reflected signal, so the color 

vector of skin reflection is denoted as 𝒖𝒄 and∙ 𝑐0 is the reflection strength. Subsequently, 

quantization noise is eliminated by spatially averaging skin pixels in the RGB channels every 

frame. Because the time-varying components are much smaller than the static components, the 

reflection model can be simplified by eliminating the products of the time-varying components. 

𝒄(𝑡) = 𝐼0 ∙ 𝒖𝒄 ∙ 𝑐0 ∙ (1 + 𝑖(𝑡)) + 𝒖𝒔 ∙ 𝐼0 ∙ 𝑠(𝑡) + 𝒖𝒑 ∙ 𝐼0 ∙ 𝑝(𝑡)     (4) 

The signal can be processed by temporal normalization to eliminate the static component 

further thus simplifying the expression to: 

𝒄𝐧(𝑡) = 𝟏 ∙ (1 + 𝑖(𝑡)) + 𝑫 ∙ 𝒖𝒔 ∙ 𝐼0 ∙ 𝑠(𝑡) + 𝑫 ∙ 𝒖𝒑 ∙ 𝐼0 ∙ 𝑝(𝑡)     (5) 

where 𝑫 ∈ 𝑅3×3 denotes the diagonal matrix and is used to normalize the steady component, 

and 𝑝(𝑡) presents the pulse signal, from which HR can be estimated. From the foregoing, a 
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core algorithm, called Project_ICA, is developed to extract 𝑝(𝑡) from the normalized rPPG 

signal. The detailed implementation of the proposed method is discussed in the next section. 

2.2.2 Project_ICA 

Traditional ICA(Stone, 2004) is a computational method for separating multivariate signals 

into additive subcomponents. It has been widely used for image-based physiological parameter 

measurement (Poh et al., 2010b, a; Shan and Yu, 2014). 

Based on (5), 𝑖(𝑡), 𝑠(𝑡) and 𝑝(𝑡) can be separated from the raw rPPG signal using ICA. 

However, there is a correlation between the time varying luminance signal 𝑖(𝑡) and the 

specular component𝑠(𝑡) , because they are simultaneously affected by head motion, thus 

interfering with the performance of ICA. Project_ICA has been developed to resolve this 

interference and obtain a more robust pulse signal. 

To reduce the signal dimension and eliminate extra noise 𝑖(𝑡), the raw three-dimensional 

normalized signal would be projected onto a specific plane. In order to determine two 

projection-axes on this plane, a large number of trials were conducted to study how the 

projection-axes on the projected plane affected the quality of the projected signal. The results 

showed that the primary selection criterion was that the projection-axes should be orthogonal to 

the unit vector 𝟏 , which can eliminate 𝑖(𝑡)  in (5) . Furthermore, through experiment, 

although the number of planes orthogonal to 1 is infinite, the HR measurement remained stable 

with changes of the orthogonal projection plane Therefore, in this study, two projection-axes 

were defined in this study as: 

𝐏 = [
𝒑𝟏

𝒑𝟐
] = (

−0.4082 −0.4082 0.8165
0.7071 −0.7071 0

)                  (6) 

𝒑𝟏 and 𝒑𝟐 are orthogonal to each other and 1. Through this projection, the residual signal 

contains only the specular component signal and the pulse signal as follows. 

𝑺(𝒕) = [
𝑆1(𝑡)

𝑆2(𝑡)
] = 𝑷 ∙ 𝒄𝒏(𝒕) = 𝑷 ∙ 𝑫 ∙ 𝒖𝒔 ∙ 𝐼0 ∙ 𝑠(𝑡) + 𝑷 ∙ 𝑫 ∙ 𝒖𝒑 ∙ 𝐼0 ∙ 𝑝(𝑡) (7) 

where 𝑺(𝒕) denotes the projected signal with two components 𝑆1(𝑡) and 𝑆2(𝑡), as shown in 

Figure 6 (a) and (b). Here the original three-dimensional signal has been reduced to two 

dimensions with the elimination of the illumination variation component. Most importantly, the 

generated signal after projection contains two components 𝑆1(𝑡) and 𝑆2(𝑡) that are assumed 

to be independent. Therefore, they can be decomposed to get 𝑝(𝑡) using ICA. 

The projected signal contains only the specular component signal 𝑠(𝑡) and the pulse 

signal 𝑝(𝑡), which are more strongly independent of each other than the sub-components of the 

raw rPPG signal. When combined with (7), the ICA model can be rewritten as follows: 

[
𝑠(𝑡)

𝑝(𝑡)
] = 𝑾 ∙ 𝑺 = 𝑾 ∙ [

𝑆1(𝑡)
𝑆2(𝑡)

]                      (8) 



 

-9- 

where 𝑾 ∈ 𝑅2×2 is the demixing matrix used to extract the hidden variables 𝑠(𝑡) and 𝑝(𝑡). 

The signal after ICA processing is shown in Figure 6 (c) and (d). However, there is no ordering 

of the ICA output components. Therefore, in this paper the POS signal(Wang et al., 2017a) is 

built as a reference pulse signal. Then, the two output ICA components are sorted in descending 

order according to the magnitude of the correlation coefficients with the reference function. 

Finally, the first component is selected as the desired pulse signal. 

 

Figure 6 Illustration of normalized rPPG signal after projection, panels a and b; and ICA, panels c and 

d. 

2.3 Calculation of heart rate 

In this step, two temporal filters are used to refine the pulse signal and exclude the frequencies 

which are not related to that of HR. Firstly, we used a 5-point moving-average filter, which 

removes random noise using a temporal average of adjacent frames. In addition, to eliminate 

the components which are unrelated to that of HR, we employed a Hamming window-based 

band-pass filter with cutoff frequencies of 0.7 Hz and 4 Hz. This range corresponds to the 

normal human HR range of 42 to 240 beats per minute (bpm)(Li et al., 2014). Finally, we 

applied a 1024-point FFT to the filtered pulse signal with a frequency resolution of 0.033 Hz, 

using 30s rectangular time-window without overlap, and the frequency that corresponds to the 

maximum power of the spectrum was selected as the HR. The filtered signal and the 

corresponding FFT result are shown in Figure 7. 

(b) Second component 𝑆2(𝑡) of projected signal 𝑺(𝒕) 

(c) First component of signal after ICA analysis (d) Second component of signal after ICA analysis 

(a) First component 𝑆1(𝑡) of projected signal 𝑺(𝒕) 
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Figure 7 (a) Filtered signal. (b) FFT of the filtered pulse signal. 

3. Experiment setup and datasets 

The signal processing was implemented in MATLAB® 2016b (The MathWorks, Inc.) and run 

on a laptop with an Intel Core i5 2.5 GHz CPU and 8 GB RAM. 

3.1 Benchmark dataset for the experiment 

112 video sequences (with 201600 frames) were recorded using a standard RGB camera C270i 

(Logitech Inc., Newark, CA, USA) in a 24-bit RGB color format at 30 frames per second with 

an image size of 640×480 pixels. All videos were saved in uncompressed AVI format on the 

laptop. After giving written informed consent and receiving instructions, 28 participants (7 

females, 21 males) with a range of skin tones were enrolled in the study. In previous studies 

(Kumar et al., 2015; Wang et al., 2016; Wang et al., 2017a), various skin types resulted in 

different strengths of rPPG signals and it was confirmed that both dark skin and bright skin 

were representative subjects to study the accuracy of HR measurement using rPPG. Therefore, 

in this study, 18 people with “pale” (i.e. East Asian) skin and 10 people with dark skin were 

employed to create our dataset. In parallel with the rPPG recording, we synchronously recorded 

pulse-oximeter data from a transmissive finger pulse-oximeter (YUWELL™ YX303, Yuyue 

medical equipment & supply Co., Ltd., Jiangsu, China.) as the reference HR signal. 

Experiments were conducted indoors with the subjects seated in front of the camera at a 

distance of 0.5 m as shown in Figure 8, the only illumination source was external daylight and 

each recording lasted for 1 minute. Furthermore, any variations in external illumination due 

for instance to the movement of clouds could have caused transient changes in illumination 

which the signal processing would have rejected. Slower changes due to gradual changes in 

weather would have little effect over the 30 seconds measurement time. 

(a) (b) 

𝑓𝐻𝑅 

𝐻𝑅 = 𝑓𝐻𝑅 × 60 
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Figure 8 Experimental setup. 

To simulate various motion scenarios that might be encountered in daily life, we designed 

four different experimental protocols based on the set-up shown in Figure 8. 

Stationary scenario: In this section, all participants were asked to sit still with their faces 

unobstructed and to look at the camera without moving for 1 minute. This experiment was 

considered as the ideal measurement environment, thus providing a base line against which the 

other movement scenarios can be compared.  

Interaction with computer scenario: To simulate a typical scenario in which the subject moves 

in a limited way, the computer screen in front of subject showed a computer game and the 

participants were required to freely play the game. They were able to move their heads slightly 

with freedom to vary their facial expression and to talk to others. In this setup while restricting 

gross movement of subject, slight head and facial movement were deliberately introduced as a 

source of noise. 

Swinging heads scenario: In this section, subjects were asked to swing their heads from side to 

side at a rate of around 10 times per minute. This was regarded as a more challenging 

environment in which to assess the robustness of the HR detection algorithm. Some recording 

snapshots are shown in Figure 9. 

 

Figure 9 Examples of head swinging. 

Exercise recovery scenario: In this section, all participants were required to do 20 squats in 

approximately 2 minutes to induce a large change in HR. Immediately after the end of the 

exercise period, the subjects were again seated as shown in Figure 8 and the recording was 

started. The subjects were asked to keep as still as possible during the recording. The purpose of 

this scenario was to investigate the accuracy of HR measurements while the rate itself was 

changing. This ability is essential for investigating and analyzing heart rate variability, a 

parameter of clinical significance in the study of heart disease. 
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3.2 Evaluation metrics 

To quantitatively assess the accuracy of the proposed method, we used three statistical metrics 

to investigate the error between the estimated HR and the reference. These were mean absolute 

deviation (MAD), root mean square error (RMSE) and Pearson correlation coefficient (r). The 

HR estimated from the facial video and the reference HR measured by pulse oximetry were 

denoted as 𝐻𝑅𝑒𝑠𝑡  and 𝐻𝑅𝑟𝑒𝑓 respectively.  

3.3 Comparison with other prevalent methods 

The method presented in this paper involves a new framework for estimating HR from rPPG 

measurements. For a thorough evaluation comparison, we have benchmarked it against the four 

existing rPPG methods listed in Table 1. All these methods have been applied to the same 

dataset and computational environment. 

Table 1 rPPG methods used for comparison with Project_ICA. 

Methods Description 

ICA(Poh et al., 2010b) A classical method based on BSS 

CHROM(De and Jeanne, 2013) A motion robust method based on chrominance 

2SR(Wang et al., 2016) A data-driven method based on the statistical distribution of the 

skin-pixels 

POS(Wang et al., 2017a) A method based on signal projection onto the plane orthogonal 

to the skin-tone vector 

4. Results and discussion 

To assess the performance of Project_ICA and the other methods mentioned in section 3.3, the 

metrics in section 3.2 were used for a detailed analysis of the dataset. The 𝐻𝑅𝑒𝑠𝑡  results 

estimated in each time window for each metric, from all 28 subjects measured in each of the 4 

environmental scenarios are summarized in Table 2. The optimal values for each condition are 

shown in bold italics, indicating that Project_ICA performs as well as or better than the POS 

method for most scenarios and outperforms the other three methods for all scenarios. 

Table 2 𝐻𝑅𝑒𝑠𝑡  comparison among different methods on the dataset created in this study. 

Conditions Metrics ICA CHROM 2SR POS Project_ICA 

Stationary 

MAD (bpm) 4.96 5.49 32.60 3.36 3.30 

RMSE (bpm) 9.18 9.45 59.49 8.64 7.21 

r 0.69 0.50 0.12 0.74 0.76 

Interaction 

with 

computer 

MAD (bpm) 6.42 6.58 17.42 4.50 3.93 

RMSE (bpm) 14.24 10.32 35.19 9.13 7.10 

r 0.14 0.46 0.29 0.64 0.74 

Swinging 

heads 

MAD (bpm) 7.06 7.11 19.47 5.03 5.41 

RMSE (bpm) 10.44 10.70 39.72 8.37 8.70 

r 0.49 0.41 -0.17 0.68 0.69 

Exercise MAD (bpm) 16.86 22.10 27.27 10.07 9.80 
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recovery RMSE (bpm) 24.89 28.09 47.47 17.90 17.88 

r 0.13 0.24 -0.05 0.49 0.47 

Specifically, Project_ICA is more accurate than the other methods under the stationary, 

interaction with computer and exercise recovery scenarios. In the other scenarios, the accuracy 

of the estimation is comparable to the state-of-the-art POS method, and indeed Project_ICA 

shows the highest correlation between the 𝐻𝑅𝑒𝑠𝑡  and 𝐻𝑅𝑟𝑒𝑓 . More detailed comparisons 

between all methods under different experimental conditions are discussed in the following 

sections. 

4.1 Comparison of subgroups with different skin-tones 

The metrics in section3.2 were used to evaluate the performance of the system on subjects with 

Skin-Tone1 (“dark” skin) and Skin-Tone2 (“pale” skin). The results are summarized in Tables 

3 and 4. 

Table 3 Analysis of results from subjects with Skin-Tone1. 

Conditions Metrics ICA CHROM 2SR POS Project_ICA 

Stationary 

MAD (bpm) 9.70 8.08 83.73 6.69 6.55 

RMSE (bpm) 13.92 11.53 96.54 13.83 11.45 

r 0.53 0.29 -0.01 0.57 0.50 

Interaction

with 

computer 

MAD (bpm) 12.37 9.29 41.31 8.79 7.39 

RMSE (bpm) 21.43 12.61 56.00 14.19 10.83 

r -0.36 0.32 0.31 0.37 0.48 

Swinging 

heads 

MAD (bpm) 10.31 6.15 50.55 5.62 5.42 

RMSE (bpm) 12.78 8.50 69.78 8.33 8.25 

r 0.15 0.66 -0.19 0.68 0.76 

Exercise 

recovery 

MAD (bpm) 28.03 22.89 66.77 20.06 17.09 

RMSE (bpm) 32.47 27.51 79.53 28.25 24.20 

r -0.27 0.26 -0.02 -0.02 0.15 

 

Table 4 Analysis of results from subjects with Skin-Tone2. 

Conditions Metrics ICA CHROM 2SR POS Project_ICA 

Stationary 

MAD (bpm) 2.09 3.90 1.36 1.32 1.31 

RMSE (bpm) 4.14 7.91 2.41 1.86 1.87 

r 0.90 0.64 0.97 0.99 0.98 

Interaction 

with 

computer 

MAD (bpm) 2.57 4.81 1.99 1.73 1.70 

RMSE (bpm) 6.04 8.51 3.21 2.63 2.65 

r 0.77 0.58 0.94 0.96 0.96 

Swinging 

heads 

MAD (bpm) 5.59 7.52 5.56 4.76 5.40 

RMSE (bpm) 9.19 11.53 10.31 8.37 8.89 

r 0.55 0.23 0.42 0.63 0.63 

Exercise 

recovery 

MAD (bpm) 10.65 21.65 5.33 4.51 4.09 

RMSE (bpm) 19.43 28.41 8.22 7.41 6.61 
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r 0.20 0.18 0.76 0.88 0.90 

Tables 3 and 4 show that all the signal processing methods and evaluation metrics reported 

here perform less effectively with Skin-Tone1 than Skin-Tone2 subjects. Nevertheless, for 

Skin-Tone2, Project_ICA outperforms the other methods in two of the 4 experimental 

scenarios, the exception being the stationary and swinging heads scenario, under which 

conditions the POS method was better. For Skin-Tone1 subjects (Table 4), the results are 

more variable, although in most cases where Project_ICA is outperformed (predominantly by 

POS) the differences between the two are minimal. We conclude, therefore, that overall, 

Project_ICA can reliably estimate HR in individuals irrespective of their skin color, although 

the errors arising from subjects with dark skin are greater than those from lighter skinned 

subjects. 

To further quantify the accuracy of the Project_ICA approach, Figure 10 shows the 

results of Bland-Altman analysis to compare 𝐻𝑅𝑒𝑠𝑡  and 𝐻𝑅𝑟𝑒𝑓  in Skin-Tone1 and 

Skin-Tone2 subjects. 

 

Figure 10 Bland-Altman plots of 𝐻𝑅𝑒𝑠𝑡  and 𝐻𝑅𝑟𝑒𝑓  under stationary conditions. Center solid line 

indicates mean difference and outer two thin lines refer to boundaries of 95% limits of agreement. 

Figure 10 (a) shows that the agreement between 𝐻𝑅𝑒𝑠𝑡  and 𝐻𝑅𝑟𝑒𝑓  in Skin-Tone1 

subjects is only moderate, with 95% limits of agreement ranging only from −23.65 to 21.02 

bpm although the mean bias is close to zero (-1.31 bpm). Results from Skin-Tone2 show that 

the 95% limits of agreement are narrower, ranging from −4.13 to 2.41 bpm, with mean bias 

again close to zero (-0.86 bpm) confirming the better performance. This difference can be 

explained by the optical properties of skin. Most of the incident light captured by the camera is 

from epidermal reflection. However, this signal does not contain pulsatile information. The 

remainder of the incident light enters the dermis where some is absorbed by melanin, 

hemoglobin etc., before emerging from the skin and travelling back to the camera. Only the 

small fraction of the light that interacts with the blood contains pulsatile information. Since the 

skin of subjects with Skin-Tone1 contains more melanin, most of the light entering the dermis 

is absorbed, which results in a pulsatile signal of lower amplitude. 

(a) HR estimated on Skin-Tone1 (b) HR estimated on Skin-Tone2 
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Although, as Table 3 andTable 4 show, most of the signal processing methods described 

here perform with acceptable accuracy(Hassan et al., 2017) when the subjects are stationary, 

it is notable that the skin color has a strong effect on 𝐻𝑅𝑒𝑠𝑡 when using the 2SR method. This 

can be explained by the fact that the 2SR method is more sensitive to the spatial distribution of 

individual skin pixels and for the rPPG signal acquisition process, and skin pixel detection for 

Skin-Tone1 always introduces more distortion, thus leading to significant differences in 

measurement error between Skin-Tone1 and Skin-Tone2. 

4.2 Performance under interaction with computer and moving head scenarios 

Table 2 shows that, for each signal processing method the agreement between 𝐻𝑅𝑒𝑠𝑡 and 

𝐻𝑅𝑟𝑒𝑓 obtained under the interaction with computer and swinging head conditions was worse 

than that observed in the stationary scenario, presumably because of motion interference. 

Nevertheless, the results show that the performance of Project_ICA is comparable to that of 

the state-of-the-art POS approach, and better than that of the other methods. 

Table 3 and 4, again show that under the moving head and interaction with computer 

scenarios all methods show poorer agreement for Skin-Tone1 subjects than their lighter 

skinned counterparts, due as mentioned above, to reduced reflection from the darker skin 

giving less difference between the amplitudes of the RGB color channels. These observations 

are confirmed by the Bland-Altman plots in Figure 11, which compare 𝐻𝑅𝑟𝑒𝑓  and 𝐻𝑅𝑒𝑠𝑡 

from the Project_ICA signal analysis, and show that the mean bias for Skin-Tone1 is 2.87 

bpm (limits of agreement ranging from -12.36 to 18.10 bpm) and for Skin-Tone2 is 3.27 bpm 

(limits of agreement ranging from -12.94 to 19.48 bpm). 

 

Figure 11 Bland-Altman plots of 𝐻𝑅𝑒𝑠𝑡  and 𝐻𝑅𝑟𝑒𝑓  obtained during the head moving experiments. (a) 

HR estimated on Skin-Tone1; (b) HR estimated on Skin-Tone2. 

The measurements above the upper 95% confidence line in Figure 11 are assumed to be 

outliers. Possible reasons for the poor agreement are: firstly, the ROI boundary changes greatly 

because the feature points move with the head moving. Secondly, with head swing, changes in 

the area of facial skin blocked by hair at different angles results in errors during the acquisition 

of the raw signal. Both effects will cause the number of detected skin pixels to vary constantly 

and will lead to errors both in the original signal and in the subsequent processing. In some 

(a) HR estimated on Skin-Tone1 (b) HR estimated on Skin-Tone2 
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subjects whose head movements are more marked these effects will be more prominent, giving 

rise to the outliers. 

4.3 Effect of exercise recovery 

Under the exercise recovery scenario, the HR is expected to change markedly during the 

measurement period. Consequently, the raw signal was analyzed using 31 overlapping time 

windows in each minute of recording. Although it can be seen in Table 2 that the two error 

evaluation metrics for all HR estimation methods are larger in this scenario than the other three 

scenarios, Project_ICA outperforms the other methods with lower values of MAD and RMSE 

with 𝐻𝑅𝑟𝑒𝑓, and better correlation with 𝐻𝑅𝑟𝑒𝑓. 

Furthermore, to compare the performance of the HR estimation methods under these 

conditions of changing HR, Bland-Altman plots for the two skin-tone groups were constructed 

to show the results for all subjects. Project_ICA, POS and 2SR are selected in the comparison 

shown in Figure 12. 

 

(a) HR estimated for Skin-Tone1 by Project_ICA (b) HR estimated for Skin-Tone2 by Project_ICA 

(c) HR estimated for Skin-Tone1 by POS (d) HR estimated for Skin-Tone2 by POS  
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Figure 12. Bland-Altman plots of 𝐻𝑅𝑒𝑠𝑡 and 𝐻𝑅𝑟𝑒𝑓 under exercise recovery conditions. (a) and 

(b) show the limits of agreement between 𝐻𝑅𝑒𝑠𝑡 by Project_ICA and 𝐻𝑅𝑟𝑒𝑓 for skin-tone1 and 

skin-tone2 subjects respectively (c) and (d) show the limits of agreement between 𝐻𝑅𝑒𝑠𝑡 by POS 

and 𝐻𝑅𝑟𝑒𝑓 for the two skin tones (e) and (f) similarly, show the limits of agreement 2SR. 

Table 5 summarizes the limits of agreement and bias values derived from the 

Bland-Altman plots in Figure 12. It can be seen that firstly, for Skin-tone1, the 

dark-skinned subjects, there is poor agreement with the reference method and marked 

mean bias with all three analysis methods. On the other hand, for the paler Skin-tone2 

subjects the limits of agreement are narrower and the bias values are close to zero. 

Secondly, the limits of agreement for the Project_ICA and POS analyses are narrower 

than those of 2SR, and the performance of Project_ICA  is marginally better than that 

of POS. In short, obtaining reliable data at times when HR is changing rapidly is a 

challenge, especially with dark-skinned subjects. 

 

Table 5 Summary of consistency limits and deviations from Bland-Altman plots in Figures 12. 

 

Skin-tone1 (bpm)  Skin-tone2 (bpm) 

Lower limit of 

agreement 

Upper limit of  

agreement 
Range Bias 

 Lower limit of 

agreement 

Upper limit of 

agreement 
Range Bias 

Project_ICA -42.7 62.5 105.2 9.9  -7.9 14.6 22.5 3.3 

POS -35.5 62.2 97.7 13.4  -9.7 16.3 26.0 3.3 

2SR -158.9 33.7 192.6 -62.6  -16.3 15.9 32.2 -0.2 

4.4 Effect of short-time HR estimation 

To demonstrate the ability of the proposed method for recognizing changes in instantaneous 

HR, the short-term response of 𝐻𝑅𝑒𝑠𝑡  was analyzed by decreasing the length of the time 

window to 10s with no overlap and recording for 1 minute. As aforementioned, measurements 

were carried out on Skin-Tone1 and Skin-Tone2 subjects, under the various movement 

scenarios, and the results were processed using the five methods and three error evaluation 

metrics described above. The results are summarized in Table 6 and Table 7. 

For every participant, HR estimation results were analysed for each time window in one 

minute and the statistical analysis of overall results is shown in Table 6 and Table 7. 

(e) HR estimated for Skin-Tone1 by 2SR (f) HR estimated for Skin-Tone2 by 2SR 
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Table 6 Short-time window analysis for Skin-Tone1 subjects. 

Conditions Metrics ICA CHROM 2SR POS Project_ICA 

Stationary 

MAD (bpm) 18.10 8.83 91.83 22.34 19.25 

RMSE (bpm) 34.02 11.17 102.17 35.60 30.81 

r 0.18 0.07 -0.02 0.29 0.22 

Interaction 

with 

computer 

MAD (bpm) 20.96 11.89 50.38 14.43 16.10 

RMSE (bpm) 31.71 14.43 63.46 22.94 24.80 

r 0.46 0.15 0.25 0.17 0.07 

Swinging 

heads 

MAD (bpm) 16.43 9.09 50.32 10.34 8.99 

RMSE (bpm) 21.73 11.42 70.43 14.70 12.07 

r -0.02 0.17 -0.11 0.49 0.40 

Exercise 

recovery 

MAD (bpm) 19.26 27.24 54.85 18.51 18.19 

RMSE (bpm) 22.82 30.51 68.91 25.11 25.16 

r -0.10 -0.09 -0.12 0.21 0.29 

Table 7 Short-time window analysis for Skin-Tone2 subjects. 

Conditions Metrics ICA CHROM 2SR POS Project_ICA 

Stationary 

MAD (bpm) 4.27 8.36 1.81 2.12 3.17 

RMSE (bpm) 8.33 12.55 2.67 3.02 4.90 

r 0.73 0.08 0.96 0.95 0.90 

Interaction 

with 

computer 

MAD (bpm) 5.75 4.16 3.84 3.12 3.10 

RMSE (bpm) 8.94 7.39 9.15 4.78 4.82 

r 0.61 0.75 0.61 0.86 0.86 

Swinging 

heads 

MAD (bpm) 7.08 10.38 5.12 7.40 7.06 

RMSE (bpm) 11.14 13.25 10.98 10.99 10.68 

r 0.51 0.11 0.54 0.49 0.52 

Exercise 

recovery 

MAD (bpm) 18.23 29.99 4.47 4.98 5.40 

RMSE (bpm) 25.92 35.18 6.70 9.75 10.15 

r -0.11 -0.08 0.89 0.79 0.77 

As shown in Table 6 for Skin-Tone1, Project_ICA outperforms the other algorithms under 

two conditions, the stationary scenario and exercise recovery scenario, giving lower values of 

MAD and RMSE and higher values of r, in accordance with the conclusions in section 4.1. For 

Skin-Tone2 (see Table 7), the Project_ICA, POS and 2SR algorithms yielded better results 

than the other methods for the three evaluation metrics. Previous work (Hassan et al., 2017) 

has stated that an acceptable margin of error in HR estimation is 5 bpm. Our results show that 

the accuracy of 𝐻𝑅𝑒𝑠𝑡  using Project_ICA meets or comes close to this requirement in 

Skin-Tone2 subjects; the results of short-time HR estimation on Skin-Tone1 show that 

Project_ICA performs poorly but better than the other 4 methods under most scenarios. We 

note that, the 2SR approach is better over the 10s time window than 30s, and the optimal time 

window length of 2SR is determined by the dynamic range of the subject’s HR and the video 

frame rate (Wang et al., 2016). The results show that Project_ICA can achieve robust 

short-time HR estimation among individuals with “pale” skin under various scenarios. 
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5. Conclusion 

In this study, we present a novel framework for rapidly and accurately recovering the HR signal 

from video recordings of the human face. The core idea of the proposed method is to project the 

normalized original signal onto a plane orthogonal to the unit vector and to use the ICA method 

to unmix the projected signal. In addition, some advanced techniques, such as feature point 

detection tracking and skin pixel detection, are utilized to suppress motion distortion and obtain 

a relatively pure raw signal. Experiments demonstrate that the proposed framework 

outperforms several classical methods, like the popular ICA-based approach, CHROM, 2SR 

and POS under the challenging conditions of poorly reflective skin, subject motion and heart 

rate recovery after exercise. Nevertheless, there are still major problems in obtaining reliable 

remote HR measurements in dark-skinned subjects. Further work will focus on improving the 

performance of the proposed method during heart rate recovery and for dark-skinned subjects. 

In addition, more experiments are needed under complex ambient environmental conditions 

with various light sources. 
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