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This Supplementary Information is organized as follows. In Section I, we describe the details of the protocol
used for the numerical simulations of the microscopic model (1). In Section II, we present ideas and mathematical
tools to derive the coarse-grained description of the tracer dynamics in terms of the coloured Poisson model (3)
within the framework of the kinetic theory of dilute gases. Specifically, we derive the collision rule and the intensity
of the underlying Poisson process in Section II A, we discuss how to solve perturbatively the two-body swimmer-
tracer scattering problem in Section II B, and we derive asymptotic formulas for the force shape function (FSF)
in Sections II C, II D. In Section III, we characterize the coloured Poisson noise (3) by means of its characteristic
functional. This is a fundamental mathematical tool that allows us to study the tracer displacement statistics, in
terms of its probability distribution function (PDF), mean square displacement (MSD), and non-Gaussian parameter
(NGP). Asymptotic formulas in both the Holtsmark and scattering regimes are also presented for all these quantities
(Sections III A and III B respectively). In Section III C we discuss the generalisation of the theory to D-dimensions
and more general non-dipolar hydrodynamic flows; in particular, we derive general formulas for the scaling exponents
of the tracer displacement PDF. In Section IV we review the definition of Lévy processes and relate it to the context
outlined in the manuscript. In Section V, we discuss some ambiguities arising during the assessment of the scaling
behaviour of the tracer displacement statistics from experimental data, and highlight how statistical sampling may
need to be improved to resolve them. Finally, Section VI contains all the technical calculations. In details, we derive
the FSF for the specific case of the stresslet hydrodynamic force in Section VI A. In Section VI B, we derive the
characteristic functional of the coloured Poisson noise. In Section VI C, we discuss the consistency between our own
description of the tracer statistics and that provided by the static Holtsmark theory at short timescales. Sections VI D,
VI E, and VI F contain the derivation of the asymptotic formulas for the tracer displacement PDF respectively in the
Holtsmark, scattering and central limit theorem (CLT) regimes, while those for the MSD and the NGP are reported
in Sections VI G and VI H. Details on the derivation of the asymptotic tail behaviour of Lévy-type distributions are
provided in Section VI I. The summary of this Supplementary Information is given by Table S1.

I. PROTOCOL FOR NUMERICAL SIMULATIONS

To confine the tracer and the active swimmers in the square box, we add wall-potentials Uwall = ewallr
−12
wall/12

near the boundaries 0 < rwall < 2b∗ to Eqs. (1), where we define the distance from the boundary rwall and we set
ewall/(ΓvAb

∗) = 1.0 × 103. In the large system size limit L → ∞, the detail of the wall (i.e., the value of ewall) is
irrelevant to the main results. Thus our model has the following four independent parameters: (p/Γ, vA, d, ρ), where

we note that p always appears in the form of p/Γ. Considering the definitions b∗ ≡
√
|p|/(ΓvA) and τH ≡ b∗/vA, we

can take a set of independent parameters (b∗, τH, d, ρ) and the sign of p (i.e., pusher or puller). In the following, we
choose the units of length and time by setting b∗ = 1 and τH = 1. The equations of motion are integrated by the
Adams-Bashforth method [36] after rescaling them appropriately with the time step 1.0× 10−2τH. We note that the
action-reaction principle is not incorporated in the model (1), as we are interested in the degrees of freedom of passive
and active particles only (for the whole system, i.e., including also those of the fluid, it should be accounted for).

a. For pusher swimmers. Here we summarize parameters adopted in the numerical simulation for Fig. 1b, 2, and
3 in the main text for pusher swimmers (p < 0). We set b∗/d = 1.0 and m = 80 with the number of swimmers m.
The box size is set to be L/d = 1600 in Fig. 3a, whereas it is varied among L/d = 1000, 1200, and 1600 in Fig. 3b
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Section in SI Contents Related figures/equations in main text

Sec. I Details of the numerical simulations Figs. 1–3

Sec. II Kinetic framework for the coloured Poisson model Eq. (3) and Figs. 2–3
Sec. II A Collision rule and intensity Eq. (3) and Figs. 1c and 2a
Sec. II B Two-body scattering problem Figs. 1c and 2
Sec. II C Asymptotic method for the force shape function Eq. (3) and Figs. 1c and 2
Sec. II D Force shape function for the stresslet force Eq. (3) and Figs. 1c and 2

Sec. III Framework of characteristic functional analysis Eq. (4) and Fig. 3
Sec. III A Mean square displacement formula Fig. 3b
Sec. III B Non-Gaussian parameter formula Fig. 3c
Sec. III C Derivation of the scaling exponents for general D-dimensional active flows Eq. (4)

Sec. IV A brief review on Lévy processes Eqs. (3) and (4)

Sec. V Discussion on experimental validation of power-law scaling Eq. (4) and Fig. 3a

Sec. VI Technical Calculations Eqs. (3) and (4)
Sec. VI A Derivation of the force shape function for the stresslet force Eqs. (3) and Figs. 2b and 2c
Sec. VI B Characteristic functional for the coloured Poisson model Eq. (4) and Fig. 3
Sec. VI C Predictions by the Holtsmark theory Eq. (4) and Fig. 3a
Sec. VI D Short-time behaviour for displacement statistics Eq. (4) and Fig. 3a
Sec. VI E Intermediate-time behaviour for displacement statistics Eq. (4) and Fig. 3a
Sec. VI F Long-time behaviour for displacement statistics Eq. (4) and Fig. 3a
Sec. VI G Detailed calculation for the mean square displacement Fig. 3b
Sec. VI H Detailed calculation for the non-Gaussian parameter Fig. 3c
Sec. VI I Derivation of the asymptotic tail behaviour of Lévy-type distributions Eq. (4) and Sec. VI D and VI E

TABLE S1: Summary of the Supplementary Information

and 3c. The simulation time was 1.01τC for the PDF (0.10−0.41τC for the MSD and NGP) in the main text. We run
the simulation from different initial conditions 960 times for the PDF (64 times for MSD and NGP) and the errorbar
represents the standard error among the ensembles.

b. For puller swimmers. We performed a numerical simulation for puller swimmers (p > 0) as shown in Fig. S1.
We set b∗/d = 0.25 and m = 80. The box size is set to be L/d = 800 in Fig. S1a, whereas it is varied among
L/d = 800, 1000, and 1200 in Fig. S1b and S1c. The simulation time step was 8.04τC for the PDF (0.23 − 0.80τC
for the MSD and NGP). We run the simulation from different initial conditions 640 times for the PDF (64 times for
MSD and NGP) and the errorbar represents the standard error among the ensembles.

We note that an instability of the simulation was observed if p/Γ is set to be much larger than realistic values
used in experiments, since the puller interaction is attractive around the core (i.e., the tracer particle can be trapped
by the attractive force for sufficiently large p and consequently be dragged through a long distance by a swimmer).
This numerical artefact is avoided by imposing the condition p/d2 < vAΓ, which is equivalent to d > b∗, whereby
the propelling force of the swimmer is always stronger than the attractive force and thus the tracer cannot catch up
with the swimmer finally. We note that this condition is consistent with the estimated values in real experiments as
discussed in the main text.

c. Numerical scheme for integration. We numerically integrate the equations of motion up to the time 1.01τC
by using the super computer (Cray XC40) system at the Yukawa Institute for Theoretical Physics (Kyoto University,
Japan) and calculate the statistics of tracer displacement with different time windows ∆t and 64−960 different initial
conditions.

To validate that the results are insensitive to the choice of m, we perform the simulation for pusher swimmers
varying m, fixing the density ρb∗3/L3 = 1.95× 10−8. In Fig. S2, we plot the numerical results of CDF for (a) m = 40,
(b) m = 80, (c) m = 160. We average the data between (a, b) 640 and (c) 320 different initial conditions and the
errorbar represents the standard error among the ensembles.

We verified that the tracer statistics is insensitive to the choice of boundary conditions by increasing L and m,
while keeping fixed the number density of active swimmers ρ = m/L3. In contrast, increasing the density or the area
fraction (2D) significantly affects the dynamics of the tracer. In particular, we expect to observe cage effects which
slow down the motion of the tracer. However, detailed investigation of these effects goes beyond the scope of the
present letter, and will be addressed in future publications.

We refer to the Supplementary Movie as visualization of the dynamics of our numerical simulation for pusher
swimmers. To generate the Supplementary Movie, the equations of motion are integrated up to the time 1.57×10−4τC.
The size of the simulation box is set to be L/d = 6400. The rest of parameters are fixed to be the same as above.
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FIG. S1: Numerical simulation for puller swimmers. (a) The complementary cumulative probability distribution (CDF)
for the displacement |∆X|, defined by P>∆t(|∆X|) ≡

∫∞
|∆X| d(∆X ′)P (|∆X ′|). P>∆t(|∆X|) shows the power-law behaviour

P>∆t(|∆X|) ∝ |∆X|
−αH+1 for short time ∆t � τH and P>∆t(|∆X|) ∝ |∆X|

−αS+1 for intermediate time τH � ∆t � τC with
αH = 5/2 and αS ≡ 5/3 for large ∆X. For a long time τC � ∆t, the CDF converges to the Gaussian due to the central
limit theorem. (b) The MSD exhibits the crossover from ballistic to diffusive behaviour and the data collapse upon rescaling
by 1/(ρb∗ 5). (c) The NGP decreases according to ∆t−1, showing the data collapse upon rescaling by ρb∗ 3. Therefore, the
theory does not predict any qualitative difference in the tracer displacement statistics between suspensions of puller and pusher
swimmers in dilute condition. Error bars denote ±1 s.e.m..
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FIG. S2: Numerical simulation for pusher swimmers with differentm but fixed ρ. We have plotted the CDF for the displacement
|∆X| for (a) m = 40, (b) m = 80, and (c) m = 160. Error bars denote ±1 s.e.m..

II. KINETIC DERIVATION OF THE COLOURED LÉVY PROCESS

The microscopic dynamics specified by Eqs. (1) includes the self-propelling force for the swimmers, that clearly
drives the system out of equilibrium. Therefore, the conventional framework of equilibrium statistical mechanics
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FIG. S3: (a) Schematic of the force time series exerted on the tracer by the active swimmers for high-density conditions.
Here, many-body interactions between tracer and swimmers cannot be neglected. (b) In the low-density case, instead, two-
body interactions become dominant and the tracer dynamics is effectively described by a succession of two-body scattering
events at random time points {τi}. The force exerted on the tracer during each scattering, i.e., the force shape function
fb(t), is specified by solving the two-body scattering problem perturbatively. Its functional form depends on the scattering
characteristic parameters b ≡ (b, θ, φ, φ′). For simplicity, here it is assumed Gaussian. The effect of different observation
timescales is pictorially shown. For ∆t � τH (Holtsmark regime), the tracer only feels static forces (because the motion of
active particles can be effectively neglected), whose strength depends on the initial distribution of the swimmers. Only for
longer timescales τH . ∆t� τC the tracer can appreciate the full time evolution of the scattering events. (c) For τH � ∆t� τC
(scattering regime), the force shape function can be approximated as the Dirac δ-function with varying amplitudes. Therefore,
at this timescale our model reduces to a Markovian compound Poisson process with power-law distributed jump lengths,
effectively equivalent to a Lévy flight (See Section IV).

(e.g., the Gibbs ensemble formulation) cannot be applied to understand the resulting nonequilibrium dynamics of
the tracer. Nevertheless, the framework of the kinetic theory of dilute gases [37] remains available even for such an
out-of-equilibrium state when the active bath, which plays the role of the gas here, is sufficiently dilute.

To understand this idea, we consider a gedanken-experiment where we change the density of swimmers from the
dense to the dilute regime and study the resulting stochastic dynamics of the tracer (Fig. S3). When the swimmers are
dense, the tracer motion is driven by its generally multi-body interactions with the swimmers, such that it typically
exhibits a complex dynamical behaviour (see schematics in panel a). Conversely, when the swimmers are sufficiently
dilute, the two-body interactions become dominant to leading-order approximation, and thus the tracer exhibits a
much simpler dynamics (see schematics in panel b), where scattering times (i.e., the time when a swimmer passes by
the tracer with its velocity orthogonal to the swimmer-tracer distance vector) can be identified individually.

Within the framework of kinetic theory, these events that are associated with two-body swimmer-tracer interactions
can be mathematically captured as a Poisson injection process characterised by a sequence of collision times {τi} for
i = 1, . . . , N(t), where the Poisson process N specifies the number of scatterings up to time t, and by the force-shape
function (FSF) fbi(t) with bi ≡ (bi, θi, φi, φ

′
i), which describes the force exerted on the tracer during the two-body

scattering event and whose functional form is specified by the scattering impact parameter bi and injection angles
(θi, φi, φ

′
i). Here the scattering point is identified by the spherical coordinate system (b, θ, φ) and the injection angle of

the swimmer is identified by φ′ on the plane spanned by eθ and eφ (see Fig. S4b). We note that the Poisson injection
is characterized by the intensity λ(b) conditional on b ≡ (b, θ, φ, φ′). Both λ and the FSF fb(t) need to be specified
from the microscopic dynamics (1) (see below). We anticipate here that λ(b)db ∝ b, such that limL→∞

∫
dbλ(b) =∞.

Therefore, this noise is a non Markovian Poisson process with infinite intensity, a generalisation of the widely known
Campbell process [29].

The pictorial description of the tracer coarse-grained dynamics shown in panel (b) also elucidates the role played
by the observation timescale on the measured statistics of the tracer displacements. In fact, for timescales short
enough that the motion of the swimmers can be effectively neglected, i.e., for ∆t� τH (Holtsmark regime), the tracer
only feels static forces from its surrounding medium, whose strength depends on its distance from each of the active
particles that generate such forces. As the active particles are initially randomly distributed, this is equivalent to
considering an isotropic distribution of static forces [10, 23, 24], as previously discussed by Holtsmark in the context
of gravitation [25]. On the contrary, for timescales long enough that the tracer can appreciate the full time evolution
of the scattering events, i.e., for τH � ∆t � τC (scattering regime), the statistical features of its dynamics are
only captured by the kinetic picture outlined above. At this timescale the theory predicts that the coloured Poisson
process is equivalent to a compound Poisson process with power-law distributed jump lengths (see panel c), which
thus suggests that the well known Lévy flight model [38] is valid as an effective description of the tracer dynamics.



5

a b c

x

y

z

φ

b
θ

φʹ
eθ

eφ

eb

eb

eφ

eθ

b sin θ dφ
b dθ

db

vi

FIG. S4: (a) Scattering event within the domain D. A scattering occurs when the velocity of the active particle is orthogonal
to the radial vector from the passive tracer, i.e., [xi −X] · vi = 0 and xi ∈ D. (b) Spherical coordinate system used in this SI.
Auxiliary orthogonal unit vectors eb, eθ and eφ are also defined. Considering the scattering condition, the swimmer moves on
the plane spanned by eθ and eφ. The scattering point (i.e., the nearest point during the passing-by process) and the injection
angle in this plane are designated by (b, θ, φ) and φ′ respectively. (c) Intensity of scattering events within the infinitesimal
domain DS , whose volume element is given by dxi = b2 sin θ db dθ dφ.

We remark that a natural truncation of this jump length distribution appears for finite d at every timescale ∆t:
large displacements are caused by large hydrodynamic forces, whose amplitudes are widely distributed because of the
power-law nature of the interaction force (2). However, its maximum amplitude has the order of p/d2 for finite d,
which is natural since a swimmer cannot generate an infinitely strong hydrodynamic force. This truncation in the
force amplitude induces a corresponding truncation in the displacement PDF and thus implies that the variance of
the tracer displacements is always finite.

Finally, at long timescales ∆t � τC, interaction events between the tracer and the swimmers at distances smaller
than the characteristic lengthscale d become more and more relevant (in a probabilistic sense). For these events the
interaction force is characterised by hydrodynamic non-dipolar near-field contributions and hard-core interactions,
which induce a different displacement on the tracer than what is predicted by our coloured Poisson process. At the
same time, for such long timescales, the tracer displacement is due to an accumulation of a large number of interaction
events between the tracer and the swimmers that can be captured quantitatively in terms of the central limit theorem.
We thus expect the tracer displacement statistics to converge to a Gaussian at such timescales (see Section VI F).

A. Scattering rule and intensity of the Poisson injection process

Here we derive the intensity of scattering events by active swimmers based on kinetic theory. Let us consider
scattering events within a domain D; these are specified for an active particle by the condition

[xi(τi;j)−X(τi;j)] · vi(τi;j) = 0, xi(τi;j) ∈ D (S1)

with the j-th scattering time τi;j exerted by the i-th active swimmer (see Fig. S4a). The intensity of the Poisson noise
is thus given by the following formula

λD =

〈
m∑
i=1

∞∑
j=1

δ(t− τi;j)

〉
(S2)

with 〈·〉 the average over the position-velocity distribution of active particles. Here we use an identity of the δ-function:

δ(g(t)) =
∑
j

δ(t− τj)
|g′(τj)|

, (S3)

where τj satisfies the equation g(τj) = 0 and τj < τj+1. Setting g ≡ (xi −X) · vi, we find that g′(τi;j) = |vi|2, such
that the identity yields the following relation

∞∑
j=1

δ(t− τi;j) = |vi|2δ((xi −X) · vi), (S4)
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which leads to

λD = m|vi|2 〈δ([xi −X] · vi)〉 = m|vi|2
∫
D

dxi

∫
R3

dviδ((xi −X) · vi)P (xi,vi). (S5)

As position and velocity of active particles are independent random variables, their joint distribution can be factorised.
We further assume that the marginal position distribution for the ith active particle is spatially uniform and similarly
that the marginal velocity distribution is spherically uniform, i.e.,

P (xi,vi) =
1

4πv2
AL

3
δ(|vi| − vA). (S6)

By taking the thermodynamic limit L→∞ with the density kept constant ρ = m/L3, we obtain

λD =
ρ

4π

∫
D

dxi

∫
R3

dviδ((xi −X) · vi)δ(|vi| − vA). (S7)

We next introduce the spherical coordinate system (b, θ, φ) to designate the scattering point xi (Fig. S4b):

xi −X =

b sin θ cosφ
b sin θ sinφ
b cos θ

 (S8)

with b ∈ [0,∞), θ ∈ [0, π], and φ ∈ (−π, π]. We also define orthogonal unit vectors related to the spherical coordinates,

eb ≡
∂(xi −X)

∂b
=

sin θ cosφ
sin θ sinφ

cos θ

 , eθ ≡
1

b

∂(xi −X)

∂θ
=

cos θ cosφ
cos θ sinφ
− sin θ

 , eφ ≡
1

b sin θ

∂(xi −X)

∂φ
=

− sinφ
cosφ

0

 , (S9)

which satisfy the orthogonal condition eb · eθ = eb · eφ = eθ · eφ = 0. Based on the formula (S7), we calculate the

intensity of scattering events within the infinitesimal domain DS ≡ {[xi−X](b̃, θ̃, φ̃)|b̃ ∈ [b, b+ db), θ̃ ∈ [θ, θ+ dθ), φ̃ ∈
[φ, φ + dφ]} (Fig. S4c). By introducing another spherical coordinate system (vi, θ

′, φ′) with vi ∈ [0,∞), θ′ ∈ [0, π],
and φ′ ∈ (−π, π] for vi such that

vi = vi sin θ′ cosφ′eθ + vi sin θ′ sinφ′eφ + vi cos θ′eb, (S10)

we obtain

λDS =
ρ

4π
b2 sin θ dbdθ dφ

∫ ∞
0

v2
i dvi

∫ π

0

dθ′
∫ 2π

0

dφ′δ(bvi cos θ′)δ(vi − vA) =
ρvA

2
b sin θ dbdθ dφ, (S11)

where we used the relations dxi = b2 sin θ dbdθ dφ and δ(bvi cos θ′) = (bvi)
−1δ(θ′ − π/2) (valid for θ′ ∈ [0, π]).

So far we studied the intensity of scattering events within the domain DS . Here we generalize the formulation: let
us study the scattering intensity within DS conditional on the injection velocity vi = v, which is given by

λDS (v) =

〈
m∑
i=1

∞∑
j=1

δ(t− τi;j)δ(v − vi)

〉
=

ρ

4π
b2 sin θ dbdθ dφ δ((xi −X) · v)δ(|v| − vA). (S12)

By introducing spherical coordinates for v as in Eq. (S10), we obtain

λDS (v) =
ρb

4πvA
δ(v − vA)δ(θ′ − π/2) sin θ db dθ dφ. (S13)

Imposing the conservation of probability λDS (v)dv = λ(b, θ, φ, v, θ′, φ′)|Jb,θ,φ,v,θ′,φ′ |dbdθ dφdv dθ′ dφ′ with the Jaco-
bian factor for the transformation to spherical coordinates for both xi and v given by |Jb,θ,φ,v,θ′,φ′ | = b2v2 sin θ sin θ′

and the volume element dv = v2 sin θ′ dv dθ′ dφ′, we obtain

λ(b, θ, φ, v, θ′, φ′)|Jb,θ,φ,v,θ′,φ′ | =
ρvA
4π

b sin θδ(v − vA)δ(θ′ − π/2), (S14)

which overall leads to the reduced form of the intensity λ(b) ≡ λ(b, θ, φ, φ′) with b ≡ (b, θ, φ, φ′) as

λ(b)|Jb| ≡
∫ ∞

0

dv

∫ π

0

dθ′λ(b, θ, φ, v, θ′, φ′)|Jb,θ,φ,v,θ′,φ′ | =
ρvA
4π

b sin θ (S15)

with the Jacobian factor |Jb| = b2 sin θ. Note that the intensity λ(b) here is nonnegative and that (S15) is consistent
with (S11) as λDS = db dθ dφ

∫
dφ′λ(b)|Jb|.
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B. Two-body scattering problem

Let us consider the two-body scattering graphically represented in Fig. 1c. According to Eqs. (1), we formulate the
two-body scattering problem as the following set of differential equations:

dx1

dt
= vAn1, (S16a)

Γ
dX

dt
= F (x1 −X,n1), (S16b)

where the time when the swimmer-tracer distance is orthogonal to the swimmer’s velocity is arbitrarily set to zero
(i.e., x1(0)−X(0) = beb). The vector n1 ≡ cosφ′eθ + sinφ′eφ is the direction of the active swimmer, which satisfies
the scattering condition n1 · [x1(0)−X(0)] = 0. Equation (S16a) is then solved as

x1(t) = beb + vAtn1. (S17)

Equations (S16) are then reduced to the one-body problem

Γ
dX

dt
= F (beb + vAtn1 −X,n1). (S18)

The parameter set to characterize the scattering is finally given by

b ≡ (b, θ, φ, φ′). (S19)

The corresponding exact FSF is given by fb(t) ≡ F (beb + vAtn1 −X,n1), where X is the solution of Eq. (S18).
According to the definition of F in Eq. (2), the FSF can be divided for the outer or inner layers as

fb(t) ≡

{
fO
b (t) |x1 −X| > d

f I
b(t) |x1 −X| ≤ d

. (S20)

The outer layer FSF fO
b can be derived as a suitable asymptotic approximation in terms of b∗/b:

fO
b (t) = f

O(1)
b (t) + f

O(2)
b (t) + . . . , (S21)

that is valid for large impact parameter, in the sense that |fO(k+1)
b |/|fO(k)

b | � 1 for b∗/b� 1 with positive integer k.
This expansion is reasonable for observation times ∆t� τC, because most of the tracer displacement at this timescale
originates from such scattering events with high probability.

The inner layer FSF f I
b(t) is set to be zero as an approximation, as there is no interaction force within the tracer

core. This approximation is not exact but is expected valid to study the power-law tail of the displacement statistics,
since the inner layer mainly contributes to the truncation of the power law. Moments, on the other hand, may be
sensitive to the detail of the inner layer FSF. More refined approximations will be discussed in future publications.

Thus, we defined the FSF for the cases |b| ≤ d and |b| � b∗. Within the spirit of boundary layer analysis, as a
phenomenological approximation we connect these solutions as

fb(t) ≡

{
f

O(1)
b (t) + f

O(2)
b (t) |b| > d

f I
b(t) |b| ≤ d

. (S22)

To compute the tracer displacement statistics, we will focus on the projection along the x-direction ex ≡ (1, 0, 0).
The tracer stochastic dynamics in this direction is fully determined by the projected FSF fb(t) ≡ ex · fb(t).

C. Asymptotic expansion of the outer layer force shape function

The asymptotic expansion of fO
b for large impact parameters is obtained by first approximating the exact solution

of Eq. (S18) up to a second order Picard iteration and, secondly, by Taylor expanding the second iterate in terms
of the tracer displacement from its position X0 at the collision time t = 0. We denote X(0) = X0,X

(1), . . . ,X(n)
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successive approximations of the exact solution of Eq. (S18) obtained via Picard iteration. They satisfy the recursive
relation:

X(n+1)(t) = X0 +
1

Γ

∫ t

0

F (x1(t)−X(n)(t),n1) dt′. (S23)

Considering only the first and second iterations, we find

X(1)(t) = X0 +
1

Γ

∫ t

0

F (x1(t)−X0,n1) dt′, (S24)

X(2)(t) = X0 +
1

Γ

∫ t

0

F (x1(t)−X(1)(t),n1) dt′. (S25)

Taking the time derivative of Eq. (S24) yields

dX(1)(t)

dt
=

1

Γ
F (x1(t)−X0,n1). (S26)

After setting X0 = (0, 0, 0), we obtain the first order contribution to the FSF, i.e., the term f
O(1)
b in Eq. (S21).

We then define the tracer displacement at first order ∆X(1)(t) = X(1)(t) − X0. Upon rescaling length- and
timescales by b∗ and τH, respectively, by introducing dimensionless variables

x ≡ b

b∗
, y ≡ t

τH
, (S27)

the solution is given by

∆X(1)(y) =
p

|p|
b∗
∫ y

0

1

|xeb + y′n1 −X0|2

[
3

(ni · (xeb + y′n1 −X0))2

|xeb + y′n1 −X0|2
− 1

]
xeb + y′n1 −X0

|xeb + y′n1 −X0|
dy′. (S28)

Clearly, for large impact parameters b/b∗ � 1, which is equivalent to x � 1, |∆X(1)| ' 0. This is ultimately a
consequence of the long-range decay of the far-field hydrodynamic force. Therefore, the rhs of Eq. (S25) can be Taylor
expanded as

X(2)(t) = X0 +
1

Γ

∫ t

0

F (x1(t′)−X0,n1) dt′ +
1

Γ

∫ t

0

∆X(1)(t′) · ∇XF (x1(t′)−X0,n1) dt′

= X(1)(t) +
1

Γ

∫ t

0

∆X(1)(t′) · ∇XF (x1(t′)−X0,n1) dt′. (S29)

Taking its time derivative, we then obtain:

d

dt
[X(2)(t)−X(1)(t)] =

1

Γ
∆X(1)(t) · ∇XF (x1(t)−X0,n1). (S30)

As previously, setting X0 = (0, 0, 0) yields the second order contribution to the FSF, i.e., the term f
O(2)
b in Eq. (S21).

In summary, we derived the following equations:

f
O(1)
b (t) = F (x1(t),n1), (S31)

f
O(2)
b (t) = X(1)(t) · ∇XF (x1(t),n1), (S32)

where X(1)(t) =
∫ t

0
F (x1(t′),n1) dt′. These fully specify the asymptotic expansion of the outer layer FSF Eq. (S21).

D. Projected outer layer force shape function for the stresslet hydrodynamic force

Using Eqs. (S31, S32), we compute the FSF for the stresslet hydrodynamic force (2) projected in the direction ex.
Here the x axis can be fixed arbitrarily if the x, y, z axes are fixed orthogonally, since this system is isotropic. Details
of the calculation are presented in Section VI A. In the dimensionless variables (S27) this is given by

fO
b (t) ≡ ΓvAf

O
x (y), fO

x (y) ≡ g1(x, y)A(θ, φ, φ′) + g2(x, y)B(θ, φ, φ′), (S33)
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where x ≡ (x, θ, φ, φ′) and we define the auxiliary functions g1, g2 as

g1(x, y) ≡ 1

(x2 + y2)5/2

[
p

|p|
x(2y2 − x2) +

3y(2y2 − 3x2)

x2 + y2
+
xy(11x2 − 10y2)

(x2 + y2)3/2

]
, (S34)

g2(x, y) ≡ 1

(x2 + y2)5/2

[
p

|p|
y(2y2 − x2) +

x4 − 10x2y2 + 4y4

x(x2 + y2)
+
−x6 + 11x4y2 + 4x2y4 − 8y6

(x2 + y2)5/2

]
(S35)

and those dependent on the injection angles

A(θ, φ, φ′) ≡ sin θ cosφ, (S36)

B(θ, φ, φ′) ≡ cos θ cosφ cosφ′ − sinφ sinφ′. (S37)

The two functions g1 and g2 constitute a base representation of the general solution fO
x (y), which can be obtained in

full generality by their linear combinations weighted by the two functions A and B dependent on the injection angles.
Due to their fundamental significance to understand the mathematical structure of the FSF, we plot g1 and g2 in
Fig. 2b (main text). In addition, to assess the goodness of our analytical result, we arbitrarily select independent
scattering events from the time series of the force exerted on the tracer by the active swimmers, which are obtained
through numerical simulations of the microscopic model (1) (main text, Fig. 2a), and fit the extracted data by using
Eqs. (S33-S37). The fit parameters are the characteristic parameter set of the scattering b and the scattering time
τ . This latter parameter is necessary because the long-range nature of the hydrodynamic interactions in our system
allows interaction events at any time finite t after initialization to be significant for the tracer displacement statistics.
Two exemplary fits are presented in Fig. 2c (main text; black solid line) together with the corresponding simulation
data (coloured markers). The fitting is performed by using non-linear least squares method, which yields the following
results for the fit parameters: τ = 11726.35, b = 27.20, θ = 2.14, φ = 0.02, φ′ = 0.93 (top panel); τ = 75849.77,
b = 152.23, θ = 0.68, φ = 3.36, φ′ = 3.48 (bottom panel). The agreement between the simulation data and the fit
curves is very good, which thus supports the validity of our theoretical approximations and analytical formulas.

III. CHARACTERISTIC FUNCTIONAL OF THE COLOURED POISSON MODEL AND TRACER
DISPLACEMENT STATISTICS

To study the displacement statistics of the tracer projected in the direction ex, we employ the characteristic
functional method [39]. For the coloured Poisson noise F ≡ ex · F (see Eq. (3) for its definition), the characteristic
functional is given by

logχ[g(s)] = log
〈
ei

∫∞
−∞ g(s)F (s) ds

〉
=

∫ ∞
−∞

dt

∫
dbλ(b)

[
ei

∫∞
−∞ g(s)fb(s−t) ds − 1

]
, (S38)

where the FSF is prescribed as Eqs. (S22) and db ≡ |Jb|dbdθ dφdφ′ with λ(b)|Jb| as in Eq. (S15). The detailed
derivation of Eq. (S38) is reported in Section VI B. Here we also consider the contribution of thermal fluctuations
modelled by a three dimensional isotropic Brownian motion with variance 2kBΓT in Eq. (3) with kB the Boltzmann
constant and T the temperature of the bath at zero concentration of active swimmers. The characteristic functional
of the thermal noise is

logχ[g(s)] = log
〈
ei

∫∞
−∞ g(s)ξ(s) ds

〉
= −kBΓT

∫ ∞
−∞

[g(t)]2 dt. (S39)

Using these results, the Fourier transform of the tracer displacement distribution P∆t(∆X) is easily obtained by
setting g(s) = (k/Γ)Θ(∆t − s)Θ(s) (here Θ is a Heaviside function defined by Θ(x) = 1 for x > 0, Θ(x) = 1/2 for
x = 0, and Θ(x) = 0 for x < 0). This yields

log P̂∆t(k) =

∫ ∞
−∞

dt′
∫

dbλ(b)

[
exp

(
i
k

Γ

∫ ∆t

0

fb(s− t′) ds

)
− 1

]
− k2D0∆t (S40)

with D0 ≡ kBT/Γ the thermal diffusion coefficient.
The power-law scaling of the tails of the tracer displacement distribution is studied by asymptotically expanding

this formula for null truncation d ≈ 0 (see Sections VI D, VI E). The Gaussian scaling in the CLT regime is instead
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obtained for finite truncation (see Section VI F). Thus, we obtain asymptotic relations for the characteristic function

log P̂∆t(k) ≈


−CH∆t3/2|k|3/2 (∆t� τH)

−CS∆t|k|2/3 (τH � ∆t� τC)

−σ2∆t k2/2 (τC � ∆t)

, (S41)

with coefficients CH ≡ 0.96ρ(|p|/Γ)3/2, CS ≡ 0.21ρvA[|p|/(ΓvA)]4/3 and σ2 ≡ 2D0+σ2
a with the contribution due to the

active swimmers σ2
a ≡ 0.02(ρvA/d

4)[|p|/(ΓvA)]4. Here the Markovian approximation implies fb(s−t′) ≈ CM(b)δ(s−t′)
with CM(b) ≡

∫∞
−∞ dtfb(t) = −πp2B(θ, φ, φ′)/(16Γv2

Ab
3) for τH � ∆t� τC. These relations imply Eq. (4).

A. Mean square displacement of the coloured Poisson model

Because the tracer is initially at position X0 = (0, 0, 0), the MSD is the second moment of its displacement
distribution. For simplicity, we restrict our calculation to the motion along the x-axis. Employing the well known
formula for the general n-th cumulant of the displacement statistics [16]

〈∆Xn〉c =
dn

d(ik)n
log P̂∆t(k)

∣∣∣∣
k=0

, (S42)

we find straightforwardly that 〈∆X〉c = 0 (because
∫ 2π

0
dθfb = 0), such that 〈∆X2〉 = 〈∆X2〉c. Therefore, the MSD

is equal to the second order cumulant
〈
∆X2

〉
c
. Setting n = 2 in Eq. (S42), we obtain

MSD(∆t) =
1

Γ2

∫ ∞
−∞

dt

∫
dbλ(b)

2∏
i=1

∫ ∆t

0

dsifb(si − t) + 2D0∆t. (S43)

Applying similar arguments as for the displacement PDF, and neglecting at first the thermal contribution, we obtain
the asymptotic relations (see Section VI G)

MSD(∆t) ≈

{
DH∆t2 (∆t� τH)

DS∆t (τH � ∆t)
, (S44)

where the coefficients are defined as DH ∝ ρv2
A[|p|/(ΓvA)]3/2 and DS ∝ ρvA [|p|/(ΓvA)]

2
. Adding the thermal noise,

we see that the MSD is shifted by the time-dependent factor 2D0∆t. This term breaks the data collapse of the
MSD upon rescaling by 1/ρb∗5 (see main text) because the parameter D0, being independent on ρ and b∗, remains
unchanged upon such rescaling.

B. Non-Gaussian parameter of the coloured Poisson model

The non-Gaussian parameter (NGP) of the tracer displacement distribution is defined as

NGP(∆t) ≡ 〈∆X4〉
3〈∆X2〉2

− 1, (S45)

where the second moment of the displacement statistics has already been calculated and the fourth one is similarly
computed by using Eq. (S42). In particular, because the first cumulant is null, we find 〈∆X4〉 = 〈∆X4〉c + 3〈∆X2〉2c .
Therefore,

NGP(∆t) ≡ 〈∆X
4〉c

3〈∆X2〉2c
. (S46)

As in the previous sections, and neglecting at first the thermal contribution, we obtain the relations (see Section VI H)

NGP(∆t) ≈

{
BH (∆t� τH)

BS/∆t (τH � ∆t)
, (S47)
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where the coefficients are defined as BH ∝ [|p|/(ΓvA)]
−3/2

ρ−1 and BS ∝ (ρvA)−1[|p|/(ΓvA)]−1.
Adding now the thermal contribution, which has null fourth cumulant, we obtain

NGP(∆t) ≈

{
BH/(1 + 2D̃

(H)
0 /∆t)2 (∆t� τH)

BS/[(1 + 2D̃
(S)
0 )2∆t] (τH � ∆t)

, (S48)

with the rescaled thermal coefficients D̃
(H)
0 ≡ D0(ρv2

A)−1[|p|/(ΓvA)]−3/2/DH and D̃
(S)
0 ≡ D0(ρvA)−1[|p|/(ΓvA)]−2/DS.

Therefore, we observe that (a) the scaling behaviour ∝ ∆t−1 characteristic of the scattering regime is robust against
the addition of the thermal noise and (b), similarly to the MSD, the data collapse upon rescaling by ρb∗3 (see main
text) is no longer valid, because the thermal diffusion coefficient D0 is independent on these parameters, such that
the terms depending on D0 remain unchanged upon the rescaling.

C. Derivation of the scaling exponents for the tracer displacement statistics for general D-dimensional
active flows

The derivation of the Poisson intensity λ(b) presented in Sec. II A can be extended straightforwardly in D-
dimensions, thus yielding the relation

λ(b)|Jb| = bD−2w(Ω) (S49)

with the auxiliary function w specifying the angular structure.
For short timescales ∆t� τH, the tracer displacement statistics can thus be written as (here we neglect the thermal

contribution)

log P̂∆t(k) =

∫ ∞
−∞

dt

∫ ∞
d

db bD−2

∫
dΩw(Ω)

[
−1 + e i

k
Γ ∆tfb(t)

]
. (S50)

Let us consider a general hydrodynamic force F (ri,ni) ∝ r−nH
i (we recall that ri = xi −X and ni is the direction

of motion of the active swimmer). With these assumptions, the force shape function can be specified as

fO
b (t) = |p|b∗−nHfO

x (y) (S51)

with x ≡ (x,Ω), the dimensionless variables x, y defined in Eq. (S27) and the auxiliary function

fO
x (y) = x−nHfO

Ω (z). (S52)

Introducing the variable z = y/x allows to factorize out the scaling dependence in x of this function, which determines
the scaling exponents αH. In fact, rewriting Eq. (S50) in the variables (x, z) we obtain

log P̂∆t(k) = b∗D−1τH

∫ ∞
−∞

dz

∫ ∞
d/b∗

dxxD−1

∫
dΩw(Ω)

[
−1 + e ik̃∆y b∗ 2−nHx−nHfO

Ω (z)
]

(S53)

with k̃ = kb∗. The tail behaviour is obtained by considering d ≈ 0. Therefore,

log P̂∆t(k) = b∗D−1τH

∫ ∞
−∞

dz

∫ ∞
0

dxxD−1

∫
dΩw(Ω)

[
−1 + e ik̃∆y b∗ 2−nHx−nHfO

Ω (z)
]
. (S54)

Changing variables as x′ ≡ x[k̃∆y b∗ 2−nH ]−1/nH we obtain

log P̂∆t(k) = b∗D−1τH[k̃∆y b∗ 2−nH ]D/nH

∫ ∞
−∞

dz

∫ ∞
0

dx′ x′D−1

∫
dΩw(Ω)

[
−1 + e ix

′ −nHfO
Ω (z)

]
. (S55)

Therefore, we obtain the asymptotic formula

log P̂∆t(k) ≈ −ΥH b
∗−1+3D/nH τ

1−D/nH

H ∆tD/nH |k|D/nH −→ P∆t(|∆X|) ∝ |∆X|−(1+D/nH)
(S56)

with the numerical coefficient

ΥH =

∫ ∞
−∞

dz

∫ ∞
0

dx′ x′D−1

∫
dΩw(Ω)

[
−1 + e ix

′ −nHfO
Ω (z)

]
. (S57)
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For intermediate timescales τH � ∆t� τS, instead, we obtain

log P̂∆t(k) = ∆t

∫ ∞
d

db bD−2

∫
dΩw(Ω)

[
−1 + e i

k
Γy(b)

]
(S58)

with the total displacement of the tracer

y(b) = |p| τH b∗−nSx−nSy′(Ω). (S59)

Equation (S58) in dimensionless coordinates therefore becomes

log P̂∆t(k) = τHb
∗D−1∆y

∫ ∞
d/b∗

dxxD−2

∫
dΩw(Ω)

[
−1 + e i k b

∗ 3−nSx−nSy′(Ω)
]
. (S60)

As previously, the tail behaviour is obtained by assuming d ≈ 0. Thus, changing variables as x′ ≡ x(k b∗ 3−nS)−1/nS ,
we obtain

log P̂∆t(k) = τH∆yb∗ 3(D−1)/nS k(D−1)/nS

∫ ∞
d/b∗

dx′ x′D−2

∫
dΩw(Ω)

[
−1 + e i x

′ −nSy′(Ω)
]
. (S61)

Therefore, we obtain the asymptotic formula

log P̂∆t(k) ≈ −ΥS b
∗ 3(D−1)/nS ∆t|k|(D−1)/nS −→ P∆t(|∆X|) ∝ |∆X|−[1+(D−1)/nS]

(S62)

with the numerical coefficient

ΥS =

∫ ∞
0

dx′ x′D−2

∫
dΩw(Ω)

[
−1 + e ix

′ −nSy′(Ω)
]
. (S63)

IV. A BRIEF REVIEW ON LÉVY PROCESSES

The Lévy flight is part of a much larger class of processes known in the mathematical literature as “Lévy processes”
[38, 40, 41]. In the following we provide a brief introduction to Lévy processes and provide the precise definition of
the Lévy flight further below. The stochastic process Y with initial condition Y (0) = y0 is a Lévy process if (i) y0 = 0
almost surely, (ii) Y has independent increments, i.e., ∀n ≥ 2 and for each partition 0 ≤ t0 < t1 < . . . < tn ≤ t the
random variables {Y (tj)−Y (tj−1)} for j = 1, . . . , n are independent, (iii) Y has stationary increments, meaning that
for all 0 ≤ t1 < t2 ≤ t the random variable Y (t2)−Y (t1) has the same distribution as Y (t2− t1) and (iv) Y has càdlàg
(right-continuous with left limits) trajectories. Restricting the conditions (ii), (iv) by assuming Gaussian distributed
increments and continuous trajectories respectively recovers ordinary Brownian motion. As a consequence of properties
(ii) and (iii), Y can be written as an arbitrary sum of different independent and identically distributed random variables
X, i.e., Y is infinitely divisible. This result is particularly important as it allows to specify the characteristic function
of the process Y in terms of the Lévy-Khintchin formula for infinitely divisible random variables. In details

〈eikY (t)〉 = e itη(k), η(k) = ibk − σ

2
k2 +

∫
R/{0}

[e iky − 1− iky1|y|<1(y)] ν(dy) (S64)

with real parameters b, σ ≥ 0, the indicator function 1A on the set A, which is defined as 1A(y) = 1 for y ∈ A or
1A(y) = 0 otherwise, and the Lévy (probability) measure ν on R/{0} satisfying

∫
R/{0}Max(|y|2, 1) ν(dy) < ∞. η is

called the Lévy symbol of the process Y .
Important examples of Lévy processes are (a) Brownian motion (as already mentioned) for which η(k) = ibk −

σ2k2/2; (b) the Poisson Process with rate λ that is obtained by setting b = σ = 0 and ν = λδ(y − 1) dy yielding
η(k) = λ (ei k − 1); and (c) the Compound Poisson Process. A Compound Poisson process on the interval [0, t]
is defined by sampling N(t) independent random variables {νi} distributed with some prescribed law ν(dy), where
N(t) is Poisson distributed ∀ t > 0. It is thus a sequence of jumps of random amplitudes occurring at exponentially
distributed random intervals ∆t with law P (∆t) = e−λ∆t (here the frequency λ is the inverse of the mean time
between the jumps). Its Lévy symbol is (we set b = σ = 0)

η(k) = λ

∫ ∞
−∞

(e iky − 1)ν(dy). (S65)
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Another important group is that of (d) stable processes, also known as the Lévy flights, which are Lévy processes with
increments sampled from a stable distribution. The stable distribution has the power-law tail, and thus the stable
process is a generalization of the random walks model with power-law jump size distribution for continuous time. We
refer to [42] for further details.

Let us now interpret the projected stochastic dynamics of the tracer X ≡ ex ·X as described by the coloured Poisson
model (3) to the theory just outlined. By comparing its characteristic function (S40) (here we neglect the thermal
Brownian contribution) and the general formula (S64) (which is also valid in higher dimensions), we understand
that this dynamics do not belong to the class of Lévy processes in general terms. In fact, the explicit dependence
on the timescale ∆t of the jump amplitudes, which is fundamentally due to the long-range decaying hydrodynamic
interaction, easily breaks properties (ii) and (iii) outlined above. Nevertheless, an equivalent description as Lévy
process is recovered when this dependence is negligible because ∆t is large enough that the interaction can be resolved
as an instantaneous shot within the effective picture of the Markovian approximation (scattering regime, see schematic
in Fig. S3c and Eq. (S112)). In this case, in particular, the dynamics predicted by the model (3) is equivalent to a
compound Poisson process with power-law distributed jump sizes. As a consequence of the infinite intensity of the
process, which causes an accumulation of an infinite number of such jumps, this process becomes effectively described
by the Lévy flight model endowed with a finite cutoff (see Section II A).

V. EXPERIMENTAL VALIDATION: POWER-LAW VS. EXPONENTIAL TAILS

Despite the vast literature on experimental studies of tracer motion in bacterial suspensions, some confusion still
persists about the type of scaling behaviour that the tails of its displacement statistics exhibit. While some authors
find clear evidence for power-law scaling [6, 10, 23], others claim to observe an exponential instead [4, 9]. Our
stochastic model of the tracer dynamics resolves this issue by predicting power-law scaling behaviour (see Eq. (S41)),
which is fundamentally due to the long-range hydrodynamic swimmer-tracer interactions. This is shown to be valid
in the main text for the displacement distribution (Fig. 3a). In Fig. S5, we clarify how this issue could be due to an
insufficient sampling of the distribution tails. In fact, our data could also be well fitted by a sum of a Gaussian and
an exponential function (dashed lines), if we restrict to about one/two orders of magnitude from the onset of the bulk
of the distribution (see the plateaus). The power-law scaling becomes clear if all the data are used for the fit (solid
lines). This discussion should serve as a suggestion that more refined experimental protocols need to be developed in
order to improve the statistics of tracer displacements, and thus obtain the correct scaling behaviour of its tails.

VI. TECHNICAL CALCULATIONS

A. Derivation of the outer layer force shape function for the stresslet hydrodynamic force

We consider the setup depicted in Fig. S6a, which is obtained by rotating that of Fig. 1b with the rotation matrix

M(θ, φ) ≡

 sin θ 0 cos θ
0 1 0

− cos θ 0 sin θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 . (S66)

Thus, fO
b is obtained by applying the inverse matrix

R(θ, φ) ≡M−1(θ, φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

sin θ 0 − cos θ
0 1 0

cos θ 0 sin θ

 (S67)

to the FSF obtained in this specific configuration. We assume the initial condition for the tracer X0 = (0, 0, 0) and
denote the position and direction of motion of the active particle as x, n respectively. This initial condition is selected
to simplify the apparent calculation. However, the generality of our setup is not lost under this assumption, since
only the relative position is relevant for two-body scattering problems between the tracer and swimmer. For the
setup specified, n = (0, sinφ′,− cosφ′) and the trajectory of the active particle is x(t) = (b, vAt sinφ′,−vAt cosφ′).

Consequently, we find: n · (x(t)−X0) = vAt and |x(t)−X0| =
√
b2 + v2

At
2. Substituting them in Eq. (2) yields

F (x(t)−X0, t) =
p

(b2 + v2
At

2)3/2

(
3v2

At
2

b2 + v2
At

2
− 1

) b
vAt sinφ′

−vAt cosφ′

 . (S68)
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FIG. S5: Tracer displacement distribution P∆t(|∆X|) obtained from numerical simulations of the model (1). The asymptotic
scaling behaviour of the tails predicted by Eq. (S41) is clearly confirmed (solid lines). Nevertheless, we show that our data are
also well fitted by employing a linear superposition of a Gaussian and an exponential function (dashed lines), if the analysis
is not pushed far into the tails (about up to two orders of magnitude from the onset of the plateau head of the distribution).
Error bars denote ±1 s.e.m..

Thus, the FSF at first perturbation order is given by

f
O(1)
b (t) ≡ [R(θ, φ)F ] =

p

(b2 + v2
At

2)3/2

(
3v2

At
2

b2 + v2
At

2
− 1

)(b sin θ + vAt cos θ cosφ′) cosφ− vAt sinφ sinφ′

(b sin θ + vAt cos θ cosφ′) sinφ+ vAt cosφ sinφ′

b cos θ − vAt sin θ cosφ′

 . (S69)

Its projection along the direction ex is then

f
O(1)
b (t) =

p

(b2 + v2
At

2)3/2

(
3v2

At
2

b2 + v2
At

2
− 1

)
[(b sin θ + vAt cos θ cosφ′) cosφ− vAt sinφ sinφ′]. (S70)

Its time integral over (−∞,∞), which determines the total displacement of the tracer during the scattering event, is
null in agreement with previous studies [18]. In fact, we can check that∫ ∞

−∞

vAt

(b2 + v2
At

2)3/2

(
3v2

At
2

b2 + v2
At

2
− 1

)
dt = 0, (S71a)∫ ∞

−∞

b

(b2 + v2
At

2)3/2

(
3v2

At
2

b2 + v2
At

2
− 1

)
dt = 0. (S71b)

By time integration of Eq. (S68) we obtain the trajectory of the tracer after the first Picard iteration:

X(1)(t) =
p

ΓvA

1

b

 0
sinφ′

− cosφ′

− 1

(b2 + v2
At

2)3/2

 bvAt
(b2 + 2v2

At
2) sinφ′

−(b2 + 2v2
At

2) cosφ′

 . (S72)

An exemplary plot of this trajectory is presented in Fig. S6b, where we plot the function X(1)(t) for t ∈ [−T, T ] for
p = 1, Γ = 1, b = 1, vA = 1. At this order of approximation, the tracer moves along a closed triangular trajectory
during the scattering event for T →∞ [18].

To compute the second order we need ∇XF , which is specified by the following equations (r ≡ x −X, r ≡ |r|;
numeric subscripts {1,2,3} denote the components along the axis {x,y,z} respectively):

∂

∂Xj
Fj(r, t) =

p

r3

[
1− 3

r2
j

r2
− 3

(n · r)(n · r + 2njrj)

r2
+ 15

r2
j (n · r)2

r4

]
, (S73)
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FIG. S6: (a) Schematic representation of the scattering event between active and passive particles employed to compute the
force shape function. The motion of the active particle is restricted to a plane parallel to zy. (b) Exemplary triangular shaped
loop-trajectories of the tracer during the scattering event after the first Picard iteration for different φ′ (see Eq. (S72)). The
trajectory of the active particles is also plotted (dashed straight lines). Parameters are p = 1, Γ = 1, b = 1, vA = 1.

∂

∂Xl
Fj(r, t) =

p

r5

[
rlrj

(
15

(n · r)2

r2
− 3

)
− 6nlrj(n · r)

]
(l 6= j). (S74)

Further substituting x and X0, we obtain:

∂

∂X1
F1(x−X0, t) =

p

(b2 + v2
At

2)3/2

[
15

b2v2
At

2

(b2 + v2
At

2)2
− 2

]
, (S75a)

∂

∂X2
F2(x−X0, t) =

p

(b2 + v2
At

2)3/2

[
1− 3(1 + 3 sin2 φ′)

v2
At

2

b2 + v2
At

2
+ 15 sin2 φ′

v4
At

4

(b2 + v2
At

2)2

]
, (S75b)

∂

∂X3
F3(x−X0, t) =

p

(b2 + v2
At

2)3/2

[
1− 3(1 + 3 cos2 φ′)

v2
At

2

b2 + v2
At

2
+ 15 cos2 φ′

v4
At

4

(b2 + v2
At

2)2

]
, (S75c)

∂

∂X1
F2(x−X0, t) =

3p(bvAt) sinφ′

(b2 + v2
At

2)5/2

(
5

v2
At

2

b2 + v2
At

2
− 1

)
(S75d)

∂

∂X1
F3(x−X0, t) =

3p(bvAt) cosφ′

(b2 + v2
At

2)5/2

(
1− 5

v2
At

2

b2 + v2
At

2

)
, (S75e)

∂

∂X2
F1(x−X0, t) =

3p(bvAt) sinφ′

(b2 + v2
At

2)5/2

(
5

v2
At

2

b2 + v2
At

2
− 3

)
, (S75f)

∂

∂X3
F1(x−X0, t) =

3p(bvAt) cosφ′

(b2 + v2
At

2)5/2

(
3− 5

v2
At

2

b2 + v2
At

2

)
, (S75g)

∂

∂X2
F3(x−X0, t) =

∂

∂X3
F2(x1 −X0, t) =

3p(v2
At

2) cosφ′ sinφ′

(b2 + v2
At

2)5/2

(
3− 5

v2
At

2

b2 + v2
At

2

)
. (S75h)

Substituting Eqs. (S72, S75) into Eq. (S32), we obtain:

X(1) · ∇XF1 =
p2

ΓvA

1

(b2 + v2
At

2)5/2

[
3vAt(2v

2
At

2 − 3b2)

b2 + v2
At

2
+
bvAt(11b2 − 10v2

At
2)

(b2 + v2
At

2)3/2

]
, (S76)

X(1) · ∇XF2 =
p2

ΓvA

sinφ′

(b2 + v2
At

2)5/2

[
b4 − 10b2v2

At
2 + 4v4

At
4

b(b2 + v2
At

2)
+
−b6 + 11b4v2

At
2 + 4b2v4

At
4 − 8v6

At
6

(b2 + v2
At

2)5/2

]
, (S77)

X(1) · ∇XF3 =
p2

ΓvA

(− cosφ′)

(b2 + v2
At

2)5/2

[
b4 − 10b2v2

At
2 + 4v4

At
4

b(b2 + v2
At

2)
+
−b6 + 11b4v2

At
2 + 4b2v4

At
4 − 8v6

At
6

(b2 + v2
At

2)5/2

]
. (S78)
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Applying the inverse rotation matrix to X(1) · ∇XF we obtain the FSF for the general scattering event in Fig. 1b

f
O(2)
b (t) =

sin θ cosφ[X(1) · ∇X ]F1 − sinφ[X(1) · ∇X ]F2 − cos θ cosφ[X(1) · ∇X ]F3

sin θ sinφ[X(1) · ∇X ]F1 + cosφ[X(1) · ∇X ]F2 − cos θ sinφ[X(1) · ∇X ]F3

cos θ[X(1) · ∇X ]F1 + sin θ[X(1) · ∇X ]F3

 . (S79)

We write explicitly only its projection along the direction ex. Using Eqs. (S76–S78) and (S79) we obtain

f
O(2)
b (t) =

p2

ΓvA

1

(b2 + v2
At

2)5/2

{[
3vAt(2v

2
At

2 − 3b2)

b2 + v2
At

2
+
bvAt(11b2 − 10v2

At
2)

(b2 + v2
At

2)3/2

]
A(θ, φ, φ′)

+

[
b4 − 10b2v2

At
2 + 4v4

At
4

b(b2 + v2
At

2)
+
−b6 + 11b4v2

At
2 + 4b2v4

At
4 − 8v6

At
6

(b2 + v2
At

2)5/2

]
B(θ, φ, φ′)

}
. (S80)

with the auxiliary functions A,B defined in Eqs (S36, S37). Its time integral is given by∫ ∞
−∞

dtf
O(2)
b (t) = − π

16

p2

b3Γv2
A

B(θ, φ, φ′). (S81)

Thus, the tracer total displacement during the scattering event is generally non null at second order approximation,
because its trajectory is not a closed loop. Only for injection angles {θ, φ, φ′} satisfying the condition B(θ, φ, φ′) = 0,
fOb is symmetric and its time integral, as well as the total displacement of the tracer in the direction ex, is null.
Combining Eqs. (S70, S80) yields the force shape function up to second perturbation order

fOb (t) =
p

(b2 + v2
At

2)5/2

{[
b(2v2

At
2 − b2) +

p

ΓvA

(
3vAt(2v

2
At

2 − 3b2)

b2 + v2
At

2
+
bvAt(11b2 − 10v2

At
2)

(b2 + v2
At

2)3/2

)]
A(θ, φ, φ′)

+

[
vAt(2v

2
At

2 − b2) +
p

ΓvA

(
b4 − 10b2v2

At
2 + 4v4

At
4

b(b2 + v2
At

2)
+
−b6 + 11b4v2

At
2 + 4b2v4

At
4 − 8v6

At
6

(b2 + v2
At

2)5/2

)]
B(θ, φ, φ′)

}
. (S82)

Introducing the dimensionless variables (S27), Eq. (S82) yields Eqs. (S33-S35).

B. Characteristic functional of the coloured Poisson noise

We assume to observe N random scattering events at times {τj} specified by the set of parameters {bj} with
j = 1, . . . , N in the time interval [−T, T ]. Each bj contains an impact parameter bj ∈ (0,∞) and a sequence of
injection angles that specifies the geometry of the scattering. For instance, in 3D these are {θj , φj , φ′j} (θj ∈ [0, π] and
φj , φ

′
j ∈ [0, 2π]) (see Fig. S4b). If no other events occur, the total force at time t > T projected along the direction

ex is

ex · F (t) =

N∑
j=1

fbj (t− τj). (S83)

Its characteristic function is then given by (g is a generic test function) [43]

χd[g(s)] = exp

i N∑
j=1

∫ T

−T
g(s)fbj (s− τj) ds

. (S84)

However, the quantities {τj , bj} are in general random. We assume different parameter sets {bj} to be independent
between themselves and of τj , but we allow each of their components to be dependent for fixed j. We then call λ(b) db
with the volume element db ≡ |Jb|dbdθ dφdφ′ the probability of sampling one such parameter set and assume that
{τj} are independent and uniformly distributed in [−T, T ]. Upon averaging over their realizations, the characteristic
function of the projected force (S83) becomes

χ[g(s)] =

N∏
j=1

1

2T

∫ T

−T
dτj

∫
dbjλ(bj) exp

(
i

∫ T

−T
g(s)fbj (s− τj) ds

)
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=

[
1

2T

∫ T

−T
dτ

∫
dbλ(b) exp

(
i

∫ T

−T
g(s)fb(s− τ) ds

)]N
. (S85)

Note that the second equality holds because of the independence of the random variables {τj , bj}. Finally, the total
number of events N occurring is also random. In details, we assume N to be Poisson distributed with constant
mean rate c. This assumption is justified by the following properties [43]: (i) the occurrence of a scattering event
is independent of the occurrence of any other event; and (ii) all the scattering events happen at a constant rate
per unit time. These assumptions are most natural in the dilute and isotropic experimental conditions where the
theory holds. Thus, the characteristic function is weighted by the probability of having N events, i.e., χ[g(s)] =
χ[g(s)]e−2cT [2cT ]N/N !. If we average over all the possible number of events, i.e., by summing N to infinity, we obtain
the series expansion of an exponential. Consequently, the characteristic functional of ex · F (t) is

logχ[g(s)] = c

∫ T

−T
dτ

∫
dbλ(b)

(
−1 + ei

∫ T
−T g(s)fb(s−τ) ds

)
. (S86)

The previous equation describes the statistics of ex · F if the force shape function fb is short-range. In our model,
instead, it is long-range (see Section VI A), such that ex · F naturally depends also on future (and past) events
happened for t > T (t < −T ). These are properly accounted for by taking the limit T →∞. In this limit we can no
longer think in terms of a finite Poisson rate, because the number of events diverges as 2cT →∞. Nevertheless, the
quantity cdt still specifies the probability that a scattering event occurs in an infinitesimal time interval. Assuming
that distinct scattering events do not overlap, we can fix c = 1. Therefore, we obtain

logχ[g(s)] =

∫ ∞
−∞

dτ

∫
dbλ(b)

(
−1 + ei

∫∞
−∞ g(s)fb(s−τ) ds

)
. (S87)

The function λ(b) depends on the specific problem at hand and was derived in Section II A for our case.

C. Consistency with the Holtsmark-type theory for short timescales

The theoretical argument underlying the Holtsmark theory is the following: Consider a physical body that is
surrounded by m other bodies, each generating a static force field Fi. Thus, the reference body is displaced by the
superposition of the singular static force fields F ≡

∑
i Fi. This theory was originally proposed to model the motion

of gravitational bodies [44], but recently it was also adapted to model passive tracers in active suspensions [10, 24].
Below we outline this theory in the context of active suspensions and in particular we derive the tail scaling behaviour
of the tracer displacement statistics.

We assume that the tracer particle is located at X0 = (0, 0, 0) at the initial time t = 0 and that m particles are
randomly distributed around it in the volume L3. Their direction of motion is specified by vi satisfying |vi| = vA.
The distribution of each active particle is assumed to be spatially uniform for xi and spherically uniform for vi:

P (xi,vi) =
1

4πv2
AL

3
δ(|vi| − vA). (S88)

Here we introduce a spherical coordinate system for xi as

xi ≡ bi

sin θi cosφi
sin θi sinφi

cos θi

 . (S89)

We also introduce a set of orthogonal vectors as

ebi ≡
∂xi
∂bi

=

sin θi cosφi
sin θi sinφi

cos θi

 , eθi ≡
1

bi

∂xi
∂θi

=

cos θi cosφi
cos θi sinφi
− sin θi

 , eφi ≡
1

bi sin θi

∂xi
∂φi

=

− sinφi
cosφi

0

 . (S90)

The velocity vector vi is decomposed into the following form:

vi = vi sin θ′i cosφ′ieθ′i + vi sin θ′i sinφ′ieφ′i + vi cos θ′iebi , (S91)
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which corresponds to a spherical-coordinate representation by (vi, θ
′
i, φ
′
i). The force exerted by the active particles is

then represented by

F =

m∑
i=1

p

b2i

[
3

(vi · xi)2

v2
i b

2
i

− 1

]
xi
bi

=

m∑
i=1

p

b2i

[
3 cos2 θ′i − 1

] xi
bi

(S92)

with bi ≡ |xi −X0| = |xi|. Because the random variables {(xi,vi)} are independent, the characteristic function of
the x-component of F is given by

p̂(k) = 〈eikF ·ex〉 = 〈eik
∑m
i=1 p[3 cos2 θ′i−1](xi·ex)/b3i 〉 =

(
〈eikp[3 cos2 θ′i−1](xi·ex)/b3i 〉

)m
. (S93)

By taking the thermodynamic limit L → ∞ with the density kept constant (ρ = m/L3 =const.) and by writing out
the ensemble averages with the Jacobian relations dxi = b2 sin θi dbdθi dφi and dvi = v2

A sin θ′i dbdθ′i dφ′i, we obtain

p̂(k) =

{
1 +

1

m

[
m(〈eikp[3 cos2 θ′i−1](xi·ex)/b3i 〉 − 1)

]}m
≈ exp

[
m
(
〈eikp[3 cos2 θ′i−1](xi·ex)/b3i 〉 − 1

)]
≈ exp

[
ρ

4π

∫ ∞
0

b2 db

∫ π

0

sin θ dθ

∫ 2π

0

dφ

∫ π

0

sin θ′ dθ′
∫ 2π

0

dφ′
(

exp

[
ikp

b2
{3 cos2 θ′ − 1} sin θ cosφ

]
− 1

)]
.

(S94)

Here we use identities,∫ 2π

0

[eik cosφ − 1] dφ = 2π[J0(|k|)− 1],

∫ π

0

[J0(|k sin θ|)− 1] sin θ dθ = 2

(
sin |k|
|k|

− 1

)
(S95)

with J0 the Bessel function of first kind. We then obtain

log p̂(k) ≈ πρ
∫ ∞

0

b2 db

∫ π

0

sin θ dθ

∫ π

0

sin θ′ dθ′
[
J0

(
|pk{3 cos2 θ′ − 1} sin θ|

b2

)
− 1

]
≈ 2πρ

∫ ∞
0

b2 db

∫ π

0

sin θ′ dθ′
[

b2

|pk|{3 cos2 θ′ − 1}|
sin

(
|pk|{3 cos2 θ′ − 1}|

b2

)
− 1

]
≈ 4πρ|pk|3/2

∫ ∞
0

x2 dx

∫ 1

0

dy

[
x2

|{3y2 − 1}|
sin
|{3y2 − 1}|

x2
− 1

]
≈ −C̃Hρ|pk|3/2 (S96)

with y ≡ cos θ′, x ≡ (|pk|)−1/2b, and the coefficient

C̃H ≡ −4π

∫ ∞
0

x2 dx

∫ 1

0

dy

[
x2

|{3y2 − 1}|
sin
|{3y2 − 1}|

x2
− 1

]
≈ 3.21. (S97)

Given that the displacement ∆X is related to the force Fx by ∆X/∆t = Fx/Γ for the overdamped regime for short
time ∆t, the cumulant function for the tracer displacement for x-direction is given by

log P̂∆t(k) ≈ −C̃Hρ
(
|p|
Γ

)3/2

∆t3/2|k|3/2. (S98)

This result is consistent with Eq. (4) derived from our coloured Poisson model, not only for the scaling exponent but
also for the coefficient (see Eqs. (S108, S109)).

The consistency between the Holtsmark-type static theory and our dynamical approach is not trivial: The Holtsmark
theory in fact relies on a specific assumption, namely that all particles are uniformly and independently distributed at
any time and that their dynamics can be effectively neglected. Our dynamical theory based on the coloured Poisson
model can thus be regarded as the foundation of such a static approach.

D. Asymptotic behaviour of displacement statistics for short timescales

For short timescale ∆t � τH we can make the approximation
∫∆t

0
fb(s − t) ds ≈ ∆tfb(−t) in the exponential of

Eq. (S40), where the FSF is prescribed as in Eq. (S22). Expressing Eq. (S40) in the dimensionless coordinates (S27)
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by using the exact rescaled expression of fOb given in Eq. (S33) and neglecting the thermal contribution, we obtain

log P̂∆t(k) =
ρb∗3

4π

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

∫
dΩ
[
−1 + e ik̃∆yfO

x (y)
]
, (S99)

where k̃ = kb∗, ∆y = ∆t/τH and dΩ ≡ sin θ dθ dφdφ′. To get its asymptotic behaviour, we perform a second
coordinate change z = y/x. Eqs. (S34, S35) then become

g1(x, z) =
p

|p|
1

x2

(2z2 − 1)

(1 + z2)5/2
+

1

x4

[
3z(2z2 − 3)

(1 + z2)7/2
+
z(11− 10z2)

(1 + z2)4

]
, (S100)

g2(x, z) =
p

|p|
1

x2

z(2z2 − 1)

(1 + z2)5/2
+

1

x4

[
−1 + 11z2 + 4z4 − 8z6

(1 + z2)5
+

1− 10z2 + 4z4

(1 + z2)7/2

]
. (S101)

Keeping only terms of order x−2, we then obtain:

fO
x (y) ≈ p

|p|
1

x2

(2z2 − 1)

(1 + z2)5/2
[A(θ, φ, φ′) + zB(θ, φ, φ′)]. (S102)

Using this approximation and the identity∫ 2π

0

[eik(a cosφ+b sinφ) − 1] dφ = 2π[J0(|k|
√
a2 + b2)− 1], (S103)

the displacement PDF simplifies to

log P̂∆t(k) ≈ ρb∗3

4π

∫ ∞
−∞

dz

∫ ∞
d/b∗

dxx2

∫
dΩ

{
−1 + exp

[
i
p

|p|
k̃∆y

x2

(2z2 − 1)

(1 + z2)5/2
(A(θ, φ, φ′) + zB(θ, φ, φ′))

]}

≈ ρb∗3

2

∫ ∞
−∞

dz

∫ ∞
d/b∗

dxx2

∫ π

0

dθ sin θ

∫ 2π

0

dφ′

[
−1 + J0

(
|k̃|∆y
x2

|2z2 − 1|
(1 + z2)5/2

h(z, θ, φ′)

)]
(S104)

with the auxiliary function

h(z, θ, φ′) ≡
√

(z sinφ′)2 + (sin θ + z cos θ cosφ′)2. (S105)

Neglecting the truncation, i.e., setting d ≈ 0, and performing the change of variable x′ = x/

√
|k̃|∆y yields

log P̂∆t(k) ≈ ρb∗3

2
(|k̃|∆y)3/2

∫ ∞
−∞

dz

∫ ∞
0

dx′x′ 2
∫ π

0

dθ sin θ

∫ 2π

0

dφ′
[
−1 + J0

(
1

x′ 2
|2z2 − 1|

(1 + z2)5/2
h(z, θ, φ′)

)]
. (S106)

The remaining integral is now only a numerical factor. Therefore, we write

log P̂∆t(k) ≈ −C̃Hρb
∗3∆y3/2|k̃|3/2 (S107)

where the coefficient C̃H is equal to

C̃H ≡
1

2

∫ ∞
−∞

dz

∫ ∞
0

dx′x′ 2
∫ π

0

dθ sin θ

∫ 2π

0

dφ′
[
1− J0

(
1

x′ 2
|2z2 − 1|

(1 + z2)5/2
h(z, θ, φ′)

)]
≈ 3.21. (S108)

Transforming back to dimensional coordinates yields the scaling equation (S41) (see Eq. (S143) for details on the
asymptotic formula)

log P̂∆t(k) ≈ −C̃Hρ

(
|p|
Γ

)3/2

∆t3/2|k|3/2 −→ P∆t(|∆X|) ≈ 0.96ρ

(
|p|
Γ

)3/2

∆t3/2 |∆X|−5/2
. (S109)
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E. Asymptotic behaviour of displacement statistics in the Markovian regime

For the intermediate timescale τH � ∆t� τC, the integral of the FSF can be approximated as∫ ∆t

0

fb(s− t′) ds ≈ y(b)Θ(t′)Θ(∆t− t′), (S110)

where y(b) ≡
∫∞
−∞ fb(s) ds is the total displacement of the tracer after the scattering. Using Eqs. (S22, S81), we

obtain

y(b) ≡

{
− π

16
p2

Γv2
A

B(θ,φ,φ′)
|b|3 |b| > d

0 |b| ≤ d
. (S111)

Applying it to Eq. (S40) (where for simplicity we neglect the thermal contribution) and writing the result in the
dimensionless coordinates (S27) yields

log P̂∆t(k) ≈ ρb∗ 3

4π
∆y

∫ ∞
d/b∗

dxx

∫
dΩ [−1 + eik̃y(x)], y(x) ≡ − π

16

B(θ, φ, φ′)

x3
, (S112)

with k̃ = kb∗, ∆y = ∆t/τH. Neglecting the truncation, we can study the power-law part of the distribution: Employing
the identity (S103), we obtain

log P̂∆t(k) ≈ ρb∗ 3

2
∆y

∫ ∞
0

dxx

∫ π

0

dθ sin θ

∫ 2π

0

dφ′

[
−1 + J0

(
π

16

|k̃|
x3

√
1− (sin θ cosφ′)2

)]

≈ ρb∗ 3

2

( π
16
|k̃|
)2/3

∆y

∫ ∞
0

dx′x′
∫ π

0

dθ sin θ

∫ 2π

0

dφ′
[
−1 + J0

(
x′ −3

√
1− (sin θ cosφ′)2

)]
, (S113)

where in the second line we change variable as x′ = x/
(
π
16 |k̃|

)1/3

. The remaining integral is just a numerical

coefficient. Therefore, we can write

log P̂∆t(k) ≈ −CSρb
∗3∆y|k̃|2/3 (S114)

with the numerical coefficient (we make the change of variables s1 = cos θ, s2 = cosφ′)

CS ≡ 4
( π

16

)2/3
∫ ∞

0

dx′x′
∫ 1

0

ds1

∫ 1

0

ds2√
1− s2

2

[
1− J0

(
x′ −3

√
1− s2

2 + s2
1s

2
2

)]
≈ 0.85. (S115)

Transforming back to dimensional coordinates yields Eq. (S41) (see Eq. (S143) for details on the asymptotic formula)

log P̂∆t(k) ≈ −CSρvA∆t

(
|p|

ΓvA

)4/3

|k|2/3 −→ P∆t(|∆X|) ≈ 0.21ρvA∆t

(
|p|

ΓvA

)4/3

|∆X|−5/3
. (S116)

F. Asymptotic behaviour of displacement statistics in the Central Limit Theorem regime

For the timescale τC � ∆t, the truncation in Eq. (S112) has to be considered. Expanding the Bessel function at

first non null order in k̃, we obtain

log P̂∆t(k) ≈ −ρb
∗ 3

8

( π
16

)2

|k̃|2∆y

∫ ∞
d/b∗

dx

x5

∫ π

0

dθ sin θ

∫ 2π

0

dφ′[1− (sin θ cosφ′)2]

≈ −4

3

( π
16

)3

ρb∗ 3

(
b∗

d

)4

∆y|k̃|2. (S117)

We rewrite this result as

log P̂∆t(k) ≈ −Σ2

2
∆y|k̃|2, Σ2 ≡ 8

3

( π
16

)3

ρb∗3
(
b∗

d

)4

. (S118)
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Transforming back to dimensional coordinates yields

log P̂∆t(k) ≈ −σ
2
a

2
∆t |k|2 −→ P∆t(|∆X|) ∝ e−∆X2/(2σ2

a), (S119)

with the positive parameter

σ2
a ≡

8

3

( π
16

)3 ρvA

d4

(
|p|

ΓvA

)4

. (S120)

Including the contribution of the thermal noise finally yields Eq. (S41)

log P̂∆t(k) ≈ −σ2∆t|k|2 −→ P∆t(|∆X|) ∝ e−∆X2/(2σ2) (S121)

with σ2 ≡ 2D0 + σ2
a.

G. Asymptotic scaling behaviour of the mean square displacement

For convenience, we consider only the athermal term in the rhs of Eq. (S43). In dimensionless coordinates this is
written as

MSD(∆y) =
ρb∗5

4π

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

∫
dΩ

[∫ ∆y

0

dy′fOx (y′ − y)

]2

, (S122)

where the FSF is specified by Eqs. (S33-S35), x ≡ (x, θ, φ, φ′) and dΩ ≡ sin θ dθ dφdφ′. Using these defi-
nitions and integrating out the angular variables, we obtain (

∫
dΩ [A(θ, φ, φ′)]2 =

∫
dΩ [B(θ, φ, φ′)]2 = 8π2/3,∫

dΩ [A(θ, φ, φ′)B(θ, φ, φ′)] = 0)

MSD(∆y) =
2π

3
ρb∗5

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

2∑
i=1

[∫ ∆y

0

dy′gi(x, y
′ − y)

]2

. (S123)

Adopting coordinate z′ = (y′ − y)/x, the equation is further simplified as

MSD(∆y) =
2π

3
ρb∗5

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

2∑
i=1

[∫ (∆y−y)/x

−y/x
dz′g̃i(x, z

′)

]2

, (S124)

where the auxiliary functions are defined as g̃i(x, z) = xgi(x, z), and gi(x, z) are given in Eqs. (S100, S101).
The coefficient for small ∆y is then obtained as follows: For ∆y � 1, we have∫ (∆y−y)/x

−y/x
dz′g̃i(x, z

′) ≈ ∆y

x
g̃i

(
x,−y

x

)
, (S125)

such that the MSD becomes

MSD(∆y) ≈ 2π

3
ρb∗5∆y2

∫ ∞
−∞

dy

∫ ∞
d/b∗

dx

x

2∑
i=1

[
g̃i

(
x,−y

x

)]2
. (S126)

Switching the order of integration and changing coordinates as z = y/x, we can rewrite it as

MSD(∆y) ≈ 2π

3
ρb∗5∆y2

∫ ∞
d/b∗

dx

∫ ∞
−∞

dz

2∑
i=1

[g̃i(x,−z)]2 . (S127)

The remaining integrals can be performed exactly. In fact, we obtain

MSD(∆y) ≈ D(2)
H ρb∗5∆y2, D

(2)
H ≡ 5π2

24

(
b∗

d

)
+

(
−6656π

5775
+

2879π2

7680

)(
b∗

d

)5

. (S128)
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In dimensional coordinates, Eq. (S128) yields the scaling behaviour predicted by Eq. (S44) in the Holtsmark regime.
For large ∆y instead we apply the approximation Eq. (S110) to Eq. (S122). Therefore, we obtain

MSD(∆y) ≈ ρb∗5

4π
∆y

∫ ∞
d/b∗

dxx

∫
dΩ[y(x)]2

≈ ρb∗5

4π

( π
16

)2

∆y

∫ ∞
d/b∗

dx

|x|5

∫
dΩ[B(θ, φ, φ′)]2, (S129)

where we used the definition of the function y in Eq. (S112). Solving the remaining integrals analytically, we obtain

MSD(∆y) ≈ D(2)
S ρb∗5∆y, D

(2)
S ≡ 8

3

( π
16

)3
(
b∗

d

)4

. (S130)

In dimensional coordinates, Eq. (S130) yields the scaling behaviour predicted by Eq. (S44) in the scattering regime.

H. Asymptotic scaling behaviour of the non-Gaussian parameter

Because the asymptotic formulas for the second cumulant have already been computed in the previous section, it
remains to calculate those for the fourth cumulant. In dimensionless coordinates, this is given by

〈∆X4〉c =
ρb∗7

4π

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

∫
dΩ

[∫ ∆y

0

dy′fOx (y′ − y)

]4

, (S131)

where the FSF is specified by Eqs. (S33-S35), x ≡ (x, θ, φ, φ′) and dΩ ≡ sin θ dθ dφdφ′. Using these definitions
and integrating out the angular variables, we obtain (note that

∫
dΩ [A(θ, φ, φ′)]4 =

∫
dΩ [B(θ, φ, φ′)]4 = 8π2/5,∫

dΩ [A(θ, φ, φ′)]3B(θ, φ, φ′) =
∫

dΩA(θ, φ, φ′)[B(θ, φ, φ′)]3 = 0 and
∫

dΩ [A(θ, φ, φ′)]2[B(θ, φ, φ′)]2 = 8π2/15)

〈∆X4〉c =
4π

5
ρb∗7

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

1

2

2∑
i=1

[∫ ∆y

0

dy′gi(x, y
′ − y)

]4

+

2∏
i=1

[∫ ∆y

0

dy′gi(x, y
′ − y)

]2
 . (S132)

Adopting coordinate z′ = (y′ − y)/x, the equation is further simplified as

〈∆X4〉c =
4π

5
ρb∗7

∫ ∞
−∞

dy

∫ ∞
d/b∗

dxx

1

2

2∑
i=1

[∫ (∆y−y)/x

−y/x
dz′g̃i(x, z

′)

]4

+

2∏
i=1

[∫ (∆y−y)/x

−y/x
dz′g̃i(x, z

′)

]2
 , (S133)

with auxiliary functions again defined as g̃i(x, z) = xgi(x, z), where gi(x, z) are given in Eqs. (S100, S101).
For ∆y � 1, this equation can be solved analytically by employing the approximation (S125). In detail, we obtain

〈∆X4〉c ≈
4π

5
ρb∗7∆y4

∫ ∞
−∞

dy

∫ ∞
d/b∗

dx

x3

{
1

2

2∑
i=1

[
g̃i

(
x,−y

x

)]4
+

2∏
i=1

[
g̃i

(
x,−y

x

)]2}
. (S134)

Switching the order of integration and changing coordinates as z = y/x, we can rewrite it as

〈∆X4〉c ≈
4π

5
ρb∗7∆y4

∫ ∞
d/b∗

dx

x2

∫ ∞
−∞

dz

{
1

2

2∑
i=1

[g̃i(x,−z)]4 +

2∏
i=1

[g̃i(x,−z)]2
}
. (S135)

The remaining integral in the rhs can be solved analytically in x and numerically in z. Thus, we write

〈∆X4〉c ≈ 3D
(4)
H ρb∗7∆y4, D

(4)
H ≈ 4π

15

[
0.0462

(
b∗

d

)5

+ 0.0124

(
b∗

d

)9

+ 0.0005

(
b∗

d

)13
]
. (S136)

Combining Eqs. (S128, S136), we finally obtain

NGP(∆y) ≈ 1

ρb∗3
D

(4)
H

[D
(2)
H ]2

. (S137)
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In dimensional coordinates, Eq. (S137) yields the scaling behaviour predicted by Eq. (S47) in the Holtsmark regime.
Conversely, for ∆y � 1 we apply the approximation presented in Eq. (S110). In detail,

〈∆X4〉c ≈
ρb∗7

4π
∆y

∫ ∞
d/b∗

dxx

∫
dΩ [y(x)]

4
,

≈ ρb∗7

4π

( π
16

)4

∆y

∫ ∞
d/b∗

dx

|x|11

∫
dΩ[B(θ, φ, φ′)]4, (S138)

where we used the definition of y in dimensionless coordinates given in Eq. (S112). Solving the integrals yields

〈∆X4〉c ≈ 3D
(4)
S ρb∗7∆y, D

(4)
S ≡ 16

75

( π
16

)5
(
b∗

d

)10

. (S139)

Finally, employing both Eqs. (S130, S139), we find

NGP(∆y) ≈ 1

ρb∗3∆y

D
(4)
S

[D
(2)
S ]2

. (S140)

In dimensional coordinates, Eq. (S140) yields the scaling behaviour predicted by Eq. (S47) in the scattering regime.

I. Asymptotic tail behaviour of the Lévy distributions (S109, S116)

The characteristic functions of the probability densities (S109, S116) have the asymptotic form P̂∆t(k) ∝ e−c|k|
α

with 0 < α ≤ 2, c > 0 that corresponds to a symmetric Lévy distribution [41]. Exact analytical expression for this
density only exists for a few specific values of α. To derive the asymptotic scaling of the distribution tails, we use the
symmetry properties of the characteristic function and write the Fourier inverse transform as

P∆t(∆X) =
1

π

∫ ∞
0

dk cos (k|∆X|)e−ck
α

=
αc

π|∆X|

∫ ∞
0

dk sin (k|∆X|)kα−1e−ck
α

=
c

π|∆X|1+α

∫ ∞
0

dy sin (y1/α)e−cy/|∆X|
α

, (S141)

where we integrated by parts in the second line and performed the change of variables y = (k|∆X|)α in the third one.
The remaining integral in its rhs can be solved formally, such that we obtain the power series expansion [45]

P∆t(∆X) =
αc

π|∆X|1+α

∞∑
n=0

(−1)n

n!

(
c

|∆X|α

)n
Π(α− 1 + αn) sin

(π
2

(1 + n)α
)

(S142)

with Π(α) ≡
∫∞

0
tα−1e−t dt. For |∆X| � 1 the leading term is that with n = 0, i.e.,

P∆t(∆X) ≈ cΠ(α)

π|∆X|1+α
sin
(π

2
α
)
. (S143)

[36] Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. The art of scientific computing (1992).
[37] Résibois, P. & De Leener, M. Classical kinetic theory of fluids (1977).
[38] Shlesinger, M. F., Zaslavsky, G. M. & Frisch, U. Lévy flights and related topics in physics. Lecture notes in physics 450,

52 (1995).
[39] Caceres, M. O. & Budini, A. A. The generalized Ornstein-Uhlenbeck process. J. Phys. A 30, 8427 (1997).
[40] Hughes, B. D., Shlesinger, M. F. & Montroll, E. W. Random walks with self-similar clusters. Proc. Natl. Acad. Sci. 78,

3287–3291 (1981).
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