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Abstract 

Cholecystokinin (CCK) is a neuropeptide that modulates processes such as 

digestion, satiety and anxiety. CCK-type peptides have been characterized in jawed 

vertebrates and invertebrates, but little is known about CCK-type signalling in the most 

ancient group of vertebrates, the agnathans. Here we have cloned and sequenced a 

cDNA encoding a sea lamprey (Petromyzon marinus L.) CCK-type precursor 

(PmCCK), which contains a CCK-type octapeptide sequence (PmCCK-8) that is highly 

similar to gnathostome CCKs. Using mRNA in situ hybridization, the distribution of 

PmCCK-expressing neurons was mapped in the CNS of P. marinus. This revealed 

PmCCK-expressing neurons in the hypothalamus, posterior tubercle, prethalamus, 

nucleus of the medial longitudinal fasciculus, midbrain tegmentum, isthmus, 

rhombencephalic reticular formation and the putative nucleus of the solitary tract. Some 

PmCCK-expressing neuronal populations were only observed in adults, revealing 
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important differences with larvae. We generated an antiserum to PmCCK-8 to enable 

immunohistochemical analysis of CCK expression, which revealed that GABA or 

glutamate, but not serotonin, tyrosine hydroxylase or neuropeptide Y, are co-expressed 

in some PmCCK-8-immunoreactive (ir) neurons. Importantly, this is the first 

demonstration of co-localization of GABA and CCK in neurons of a non-mammalian 

vertebrate. We also characterized extensive cholecystokinergic fibre systems of the 

CNS, including innervation of habenular subnuclei. A conspicuous PmCCK-8-ir tract 

ascending in the lateral rhombencephalon selectively innervates a glutamatergic 

population in the dorsal isthmic grey. Interestingly, this tract is reminiscent of the 

secondary gustatory/visceral tract of teleosts. In conclusion, this study provides 

important new information on the evolution of the cholecystokinergic system in 

vertebrates. 

 

Keywords (4 to 6) 
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Introduction 

Cholecystokinin (CCK) is a peptide of the gastrin/cholecystokinin family that 

was originally isolated from jejunal extracts as a gastrointestinal hormone that induced 

gallbladder contraction (Ivy and Oldberg 1928; Rehfeld 2017). A component of pig 

intestine extracts, originally known as pancreozymin (stimulates secretion of pancreatic 

enzymes) also exhibited CCK-type activity causing gallbladder contraction. In 1962, a 

33-amino acid peptide isolated from pig intestines was reported to activate both 

gallbladder contractions (CCK action) and pancreatic enzyme secretion (pancreozymin 

action) and the sequence of porcine CCK/pancreozymin was determined in 1968 (Mutt 

and Jorpes 1968). Subsequent studies have revealed that CCK also regulates feeding 

behaviour by mediating mechanisms of satiety (Rehfeld 2017). Furthermore, CCK is 

widely distributed in the central and peripheral nervous system (Larsson and Rehfeld 

1979) and in several endocrine glands (Hansen 2001; Rehfeld 2017) of mammals. 

Genes encoding the rat, human and mouse CCK have been sequenced 

(Deschenes et al. 1985; Takahashi et al. 1986; Vitale et al. 1991). In these species the 

CCK transcriptional unit is about 7 kilobases in length, is interrupted by several introns 

(Hansen 2001) and encodes a 115 amino acid precursor CCK. This precursor protein 

comprises an N-terminal signal peptide and is cleaved by proteases to liberate mature 
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peptide fragments of various lengths (CCK-58 to CCK-5) that share a C-terminal 

bioactive GWMDFamide sequence. Furthermore, an important feature of CCK-type 

peptides is the presence of a sulfated tyrosine at the seventh amino acid residue from the 

C-terminus (Rehfeld 2017). The major isoform of CCK in the brain is sulfated CCK-8 

(Agersnap et al. 2016). 

Another member of the gastrin/CCK family present in mammals and other 

jawed vertebrates is gastrin (Roelants et al. 2010), which shares a C-terminal 

tetrapeptide with CCK and has an O-sulfated tyrosine (Rehfeld 2017). The gastrin-CCK 

family also includes the peptide cionin in the invertebrate chordate Ciona intestinalis 

(Conlon et al. 1988; Monstein et al. 1993) and the frog skin venoms caerulein and 

phyllocaerulein, all of which share the same C-terminal amidated tetrapeptide sequence 

and sulfated tyrosines (Roelants et al. 2010; Rehfeld 2017). CCK-type neuropeptide 

precursors have been identified in deuterostomian invertebrates (starfish, sea urchin, 

acorn worm: Semmens et al. 2016) and CCK-type peptides known as sulfakinins have 

been identified in insects and other arthropods (Nachman et al. 1986a, 1986b). 

Interestingly, CCK-type peptides and receptors appear to have been lost in 

cephalochordates (Mirabeau and Joly 2013).  

 The distribution of CCK-expressing neurons in the mammalian CNS has been 

thoroughly studied using antibodies raised against CCK (Larson and Rehfeld 1979; 

Hökfelt et al. 1980; Dockray 1980; Vanderhaeghen et al. 1980; Kubota et al. 1983; Cho 

et al. 1983; Fox et al. 1991) and with mRNA in situ hybridization (ISH) (Burgunder and 

Young 1989a, 1989b, 1990a, 1990b; De Belleroche et al. 1990; Jayaraman et al. 1990; 

Hermanson et al. 1998). In rats, CCK immunoreactivity is present in numerous cells 

distributed in the olfactory bulb, cortex, hippocampus, amygdala, preoptic region, 

hypothalamus, thalamus, midbrain tegmentum, inferior colliculus, and some hindbrain 

nuclei (Vanderhaeghen et al. 1980; Kubota et al. 1983; Tohyama and Takatsuji 1998). 

Moreover, studies on the rat brain indicate that CCK is a 

neurotransmitter/neuromodulator with a variety of functions that include regulation of 

feeding (satiety), locomotion, self-stimulation, anxiety and learning and memory (for 

review, see Morley 1982; Rehfeld 2017). CCK exerts its effects via two G-protein 

coupled receptors (CCKAR and CCKBR) that exhibit differential distribution in the 

CNS: both receptor types are expressed in the cortex, olfactory regions, hippocampal 

formation, septum, and interpeduncular nucleus, whereas the medial preoptic area and 

some hypothalamic nuclei (paraventricular nucleus and arcuate nucleus) only express 
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CCKAR, and most amygdaloid nuclei only express CCKBR (Honda et al. 1993; 

Bowers and Ressler 2015). CCKAR and CCKBR signaling appear to act synergistically 

during development (Nishimura et al. 2015). 

 The family of CCK/gastrin-type peptides has also been characterized by 

biochemical assays and gene sequencing in most non-mammalian vertebrate groups 

(Johnsen et al. 1997; Roelants et al. 2010; Dupré and Tostivint 2014). In 

elasmobranchs, both peptides (gastrin and CCK) are present, and their genes have been 

cloned, indicating that these two related genes evolved by gene duplication more than 

500 million years ago (Johnsen et al. 1997; Roelants et al. 2010). Moreover, CCK is 

mainly expressed in the brain of elasmobranchs (MacDonald and Volkoff 2009a, 

2009b; Dupré and Tostivint 2014). In teleosts, gastrin and two or three CCK genes have 

been cloned and several studies have shown that CCK genes are expressed in the brain 

(see Jensen et al. 2001; Kurokawa et al. 2003; Murashita et al. 2009). The distribution 

of cholecystokinergic neurons in the brain of non-mammalian vertebrates has been 

mainly studied by immunohistochemistry with antibodies raised against mammalian 

CCKs (lampreys: Brodin et al. 1988; teleosts: Batten et al. 1990; Moons et al. 1992; 

frog: Petkó and Kovács 1996) or by ISH (birds: Maekawa et al. 2007; Lovell and Mello 

2011; Atoji and Karim 2014). Investigations of CCK function in fishes have reported 

changes in CCK mRNA expression between fasting and feeding, or changes in feeding 

behaviour after administration of CCK (Volkoff et al. 2005; Murashita et al. 2009; 

MacDonald and Volkoff 2009a, 2009b). 

 CCK-type peptides have been studied in lampreys since early 1970’s. Extracts of 

lamprey gut have secretin-like and pancreozymin-like actions on the rat pancreas 

(Barrington and Dockray 1970) and these extracts also cross-react with antisera specific 

for the C-terminus of mammalian gastrin or CCK (Dockray 1977). Holmquist et al. 

(1979) used chromatographic techniques and radioimmunoassay with antisera specific 

for different regions of mammalian gastrin and CCK to investigate the properties of 

CCK-like peptides in lampreys. In both the brain and intestine two factors that cross-

react with antisera specific for gastrin or CCK were detected. In the gut epithelium of 

lampreys, gastrin/CCK-like immunoreactivity was observed in flask-shaped endocrine 

cells (Van Noorden and Pearse 1974; Brodin et al. 1988; Yui et al. 1988). 

The presence of CCK-like peptides in brain extracts of lampreys (Lampetra 

tridentata and Lampetra fluviatilis) was first reported by Holmquist et al. (1979). 

Shortly after, the presence of CCK-like-ir neurons and fibres was reported in the 
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lamprey spinal cord (van Dongen et al. 1985; Buchanan et al. 1987), and then in the 

brain (Ohta et al. 1988; Brodin et al. 1988). The origin of some CCK-like-ir spinal cord 

fibres has been traced to CCK-like-ir reticulospinal neurons in the posterior 

rhombencephalic reticular nucleus (Ohta et al. 1988; Brodin et al. 1988). The 

distribution of CCK-like-ir neurons in the lamprey spinal cord and brain (in the middle 

rhombencephalic reticular nucleus, the reticular nucleus of the mesencephalon, and the 

hypothalamus) was investigated using anti-mammalian CCK antisera with different 

properties (Brodin et al. 1988). In the spinal cord, three separate CCK-like systems were 

revealed: a ventral and lateral fibre system arising from neurons in the posterior 

rhombencephalic reticular nucleus, a dorsal root-dorsal column system of fibres 

originating from cells in the dorsal root ganglia, and an intraspinal system of 

CCK/serotonin (5-HT) positive neurons located below the central canal, with the latter 

two systems probably non-specifically labelled by some of the CCK 

antisera. Furthermore, in the retina of Lampetra japonica CCK-ir fibres, but not 

perikarya, are present in the inner plexiform layer (Neghisi et al. 1986).  

Lampreys are extant relatives of the earliest group of vertebrates, the agnathans, 

which diverged from the rest of vertebrates more than 450 million years ago. During the 

life cycle of lampreys, large changes in lifestyle and feeding behaviour are reflected in 

differences in the relative size of the major brain subdivisions and digestive organs (see 

Salas et al. 2015). With the aim to further contribute to our knowledge of the evolution 

and development of the cholecystokinergic system in vertebrates, here we have cloned 

and sequenced a cDNA encoding the sea lamprey P. marinus CCK precursor (PmCCK). 

This then enabled analysis of the expression of PmCCK in the brain and spinal cord of 

larval and adult lampreys using ISH. The predicted sequence of the mature CCK-8 

peptide of the sea lamprey (PmCCK-8) was determined and an antibody specific for the 

sulfated version of PmCCK-8 was generated. Then the anti-PmCCK-8 antiserum was 

used to characterize the distribution of immunoreactive cells and fibres in the central 

nervous system of larvae and adults. PmCCK-8 immunohistochemistry was combined 

with immunohistochemical labelling of neurotransmitters (glutamate, GABA, 5-HT), 

the catecholamine-synthesizing enzyme tyrosine hydroxylase (TH) and the orexigenic 

peptide neuropeptide-Y (NPY) or with tract-tracing from the spinal cord. This study 

provides the first identification of a CCK-type precursor in a jawless vertebrate and an 

extensive anatomical characterization of the cholecystokinergic system in the sea 
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lamprey CNS, including the occurrence of notable differences between larvae and 

adults. 

 

Material and methods 

Animals  

Larval (n = 31), downstream migrating young adult (post-metamorphic 

juveniles; n = 10) and upstream migrating adult (n = 6) sea lampreys, P. marinus, were 

used for this study (see Table 1 for details on the animals used in each of the 

experiments). Downstream migrating young adults and larvae (ammocoete: lengths 

comprised between 80 and 110 mm, 4-7 years old) were collected from the River Ulla 

(Galicia, Spain) with permission from the Xunta de Galicia. Upstream migrating adults 

were acquired from local suppliers. Adults were fixed freshly, and larvae were 

maintained in aquaria containing river sediment and with appropriate feeding, aeration 

and temperature conditions until the day of use. Before all experiments, animals were 

deeply anesthetized with 0.1% tricaine methanesulfonate (MS-222; Sigma-Aldrich, St. 

Louis, MO, USA) in fresh water and killed by decapitation. All experiments were 

approved by the Bioethics Committee at the University of Santiago de Compostela and 

the Consellería do Medio Rural e do Mar of the Xunta de Galicia (license Ref. 

JLPV/IId) and were performed in accordance with European Union and Spanish 

guidelines on animal care and experimentation.  

 

Cloning and sequencing of the P. marinus cholecystokinin precursor cDNA 

Larvae were anesthetized by immersion in MS-222 (Sigma; see above) and the 

brain and spinal cord were dissected out under sterile conditions. Total RNA was 

isolated from these tissues using the TriPure reagent (Roche, Mannhein, Germany). The 

first-strand cDNA synthesis reaction from total RNA was catalysed with Superscript III 

reverse transcriptase (Invitrogen, Waltham, MA, USA) using random primers 

(hexamers; Invitrogen). For polymerase chain reaction (PCR) cloning, specific 

oligonucleotide primers (forward: 5’-TCTCTCTACCTGGGCTGGCT-3’; reverse: 5’-

ATTCTTCATCCATAGCACTGCGTT-3’) were designed based on the PmCCK 

precursor cDNA sequence that was deposited in GenBank in 2009 by Dr. Y. Su (Jinling 

Institute of Technology) with accession number GQ421360.1. The amplified fragments 

were cloned into pGEM-T easy vectors (Promega, Madison, WI, USA) using standard 

protocols and sequenced by GATC Biotech (Cologne, Germany) using Sanger 
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sequencing. To identify the gene encoding the PmCCK precursor a BLAST search of 

the P. marinus genome (Smith et al. 2013) was conducted using the Ensembl database. 

 

Alignment of the PmCCK precursor sequence with CCK precursor sequences from 

other chordates and phylogenetic analyses  

 The PmCCK cDNA sequence was translated to the corresponding amino acid 

sequence and analysed in the ExPASy website using SignalP 4.1 (Petersen et al. 2011) 

to predict putative signal peptides, PeptideCutter (Gasteiger et al. 2005) to predict 

potential cleavage sites and The Sulfinator (Monigatti et al. 2002) to predict putative 

tyrosine sulfation sites. To further investigate the relationship of PmCCK with CCK-

type precursors from other species a phylogenetic analysis was performed using the 

neighbour-joining method. The amino acid sequence of PmCCK was aligned with 

precursors from other species using MUSCLE (10 iterations; substitution matrix 

BLOSUM62; see Supplementary Figure 1 for the alignment used for the tree and for the 

accession numbers of the sequences). The tree was constructed in MEGA 7. The 

percentage of replicate trees in which the associated taxa clustered together in the 

bootstrap test (5000 iterations) are shown next to the branches. The substitution model 

used was the Jones-Taylor-Thornton model. The tree is drawn to scale, with branch 

lengths in the same units as those of the evolutionary distances used to infer the 

phylogenetic tree. The C-terminal region of the precursor protein alignment was used to 

identify potential CCK-type peptides derived from PmCCK, as shown in Figure 1. 

Conserved residues were highlighted using the software BOXSHADE 

(www.ch.embnet.org/software/BOX_form.html) with 70% conservation as the 

minimum for highlighting. 

 

 In situ hybridization 

Templates for in vitro transcription were prepared by PCR amplification as 

follows. A 421-base pair (bp) fragment of the PmCCK precursor sequence was obtained 

using the primers mentioned above. In this case, the reverse primer included the 

sequence of the universal T7 promoter 

(TAAGCTTTAATACGACTCACTATAGGGAGA). For the generation of sense 

probes, the sequence of the T7 promoter was included in the forward primers. 

Digoxigenin (DIG)-labelled riboprobes were synthesized using the amplified fragments 
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as templates and following standard protocols using a T7 polymerase (Nzytech, Lisbon, 

Portugal). 

ISH experiments were performed as previously described for TH or 5-ht1a 

receptor riboprobes (Barreiro-Iglesias et al. 2010a; Cornide-Petronio et al. 2013). 

Briefly, the brains/rostral spinal cords of larvae and young and mature adults were 

dissected out and fixed by immersion for 12 hours in 4% paraformaldehyde (PFA) in 

phosphate-buffered saline (PBS) at 4 ºC. Then, they were cryoprotected with 30% 

sucrose in PBS, embedded in Tissue Tek (Sakura, Torrance, CA, USA), frozen in liquid 

nitrogen-cooled isopentane, and cut serially on a cryostat (14 µm thickness) in 

transverse planes. Sections were mounted on Superfrost® Plus glass slides (Menzel, 

Braunschweig, Germany). The sections were incubated with the PmCCK DIG-labelled 

antisense or sense riboprobes (2 µg/mL) at 70 ºC overnight in hybridization mix and 

treated with RNAse A (Sigma) in the post-hybridization washes. Then the sections were 

incubated with a sheep anti-DIG antibody conjugated to alkaline phosphatase (1:2000; 

Roche) overnight at 4 ºC. Staining was conducted in BM Purple (Roche) at 37 ºC until 

the signal was clearly visible. Finally, the sections were mounted in Mowiol® (Sigma). 

No staining was observed in the sections incubated with the sense probe. 

 

Generation of a novel anti-PmCCK-8 antibody 

A modified PmCCK-8 peptide (CDY(SO3)IGWMDF-NH2) with the addition of 

a cysteine residue to the N-terminus was synthesized by Biomedal (Sevilla, Spain) to 

enable coupling to KLH. A rabbit (8 weeks old, New Zealand White) was first 

immunized subcutaneously with the peptide-KLH conjugate (400 mg) emulsified in 

Freund’s complete adjuvant. After four weeks, the rabbit was immunized once weekly 

for 2 weeks by intramuscular injection of the peptide-KLH conjugate (200 mg) 

emulsified in Freund’s complete adjuvant. Pre-immune (negative control with no 

antibodies present) and post-immunization bleeds were collected. 2.5 mL of antiserum 

from the final bleed were purified using a protein A-sepharose column (GE Healthcare, 

Little Chalfont, UK) and the purified antibodies were used for the immuhistochemical 

analyses. 

 

Tissue processing for immunohistochemistry 

For single or double immunohistochemistry, the heads or brains of larvae and 

brains of adults were fixed by immersion in 4% PFA in 0.05 M Tris-buffered saline pH 
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7.4 (TBS) for 4 to 12 hours or in freshly prepared 5% glutaraldehyde and 1% sodium 

metabisulfite in TBS for 16 hours at 4 ºC. The samples were then rinsed in TBS (PFA 

fixed samples) or TBS with 1% sodium metabisulfite (glutaraldehyde fixed samples), 

cryoprotected with 30% sucrose in TBS, embedded in Tissue Tek (Sakura), frozen in 

liquid nitrogen-cooled isopentane, and cut serially on a cryostat (14 µm thickness) in 

transverse planes. Sections were mounted on Superfrost® Plus glass slides (Menzel). 

Some samples of gut from lamprey larvae were processed in parallel. 

 

PmCCK-8 and TH, GABA or glutamate double immunofluorescence experiments  

Some samples fixed with 4% PFA were incubated with the purified rabbit 

polyclonal anti-PmCCK-8 antibody (dilution 1:200) at 4 ºC for 72 hours (Table 2). 

Other samples fixed in 4% PFA were processed for double immunofluorescence 

experiments using a cocktail of a mouse monoclonal anti-tyrosine hydroxylase (TH) 

antibody (dilution 1:1,000; Millipore, Temecula, C; Cat# MAB318; lot 0509010596; 

RRID: AB_2201528; immunogen: TH purified from PC12 cells) (Table 2) in 

combination with the anti-PmCCK-8 antibody. Samples fixed in 5% glutaraldehyde 

were processed for double immunofluorescence experiments using a cocktail of a 

mouse monoclonal anti-GABA antibody (dilution 1:1,200; Sigma; Cat# GB-69; RRID: 

AB_2314453; lot. 075K4795; immunogen: purified GABA conjugated to BSA) or a 

mouse monoclonal anti-glutamate (Glu) antibody (dilution 1:1,000; Swant, Bellinzona, 

Switzerland; Cat# mAB; RRID: AB_10013460; immunogen: purified L-Glu conjugated 

to BSA) (Table 2) in combination with the anti-PmCCK-8 antibody. Primary antibodies 

were diluted in TBS (PFA fixed samples) or TBS with 1% metabisulfite (glutaraldehyde 

fixed samples) containing 15% normal goat serum and 0.2% Triton as detergent. 

For double detection of PmCCK-8 and TH, GABA or Glu by indirect 

immunofluorescence, the sections were rinsed in TBS and incubated for 1 hour at room 

temperature with a cocktail of Cy3-conjugated goat anti-rabbit (1:200; Millipore; 

Burlington, MA) and FITC-conjugated goat anti-mouse (1:100; Millipore) antibodies 

(Table 2). Sections were rinsed in TBS and distilled water and mounted with Mowiol 

(Sigma). 

 

PmCCK-8 and 5-HT or neuropeptide Y double immunofluorescence using two primary 

rabbit polyclonal antibodies 



 

11 
 

For the simultaneous detection of PmCCK-8 and 5-HT, or PmCCK-8 and 

neuropeptide Y (NPY), we adapted a microwaving method for double indirect 

immunofluorescence with primary antibodies from the same species (Tornehave et al. 

2000) as previously described (Barreiro-Iglesias et al. 2017). Some samples fixed with 

4% PFA were incubated with the rabbit polyclonal anti-PmCCK-8 antibody (dilution 

1:200) at room temperature overnight, rinsed in TBS and incubated with the Cy3-

conjugated goat anti-rabbit antibody (1:200) at room temperature for 1 hour. After 

PmCCK-8 immunofluorescence, samples were submerged in 10 mM citrate buffer (pH 

6.0) in plastic jars placed in a recipient with water and microwaved at 700 W for 5 

minutes in a microwave oven (NVR 6124M, Nevir, Madrid, Spain). This treatment was 

repeated five times replacing the citrate buffer each time. After microwaving, the slides 

were left in the citrate buffer at room temperature for 20 minutes. Then, the sections 

were incubated with either a rabbit polyclonal anti-5-HT antibody (dilution 1:2,500; 

Immunostar, Still Water, MN; code 20080; lot 431001; RRID: AB_572263; 

immunogen: 5-HT-formaldehyde-BSA conjugate) (Table 2) or a rabbit polyclonal anti-

NPY antibody (dilution 1:600; Sigma, Cat# N9528; lot 057K4869; RRID: AB_260814; 

immunogen: synthetic porcine NPY conjugated to KLH) (Table 2) at room temperature 

overnight, rinsed in TBS and incubated for 1 hour at room temperature with an Alexa 

Fluor 488-conjugated donkey anti-rabbit antibody (diluted 1:100; Thermo Fisher 

Scientific Inc., Waltham, MA) (Table 2). Slides were rinsed in TBS and distilled water 

and mounted with Mowiol (Sigma). 

 

Antibody characterization  

The antiserum and the purified fraction of anti-PmCCK-8 antibody were tested 

for specificity with an enzyme-linked immunosorbent assay (ELISA) using standard 

methods. The antiserum, the purified antibody (at concentrations from 1:1,000 to 

1:100,000) and the pre-immune serum (1:1,000) were tested against the synthetic 

PmCCK-8 peptide without KLH (at a concentration of 1 mM) in the ELISA. Both the 

antiserum and the purified fraction gave a positive signal at all the tested concentrations, 

while the very low signal registered with the pre-immune serum was the same as the 

one obtained in the negative controls with PBS only. Moreover, immunostaining of 

sections was completely abolished after pre-adsorption of the anti-PmCCK-8 antibody 

with the synthetic peptide without KLH (at a concentration of 20 µM overnight at 4 ºC 

before the primary antibody incubation of the sections). In addition, the pattern of 
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PmCCK-8-ir neuronal populations in the CNS matches the pattern of PmCCK transcript 

expressing populations seen by ISH (see results), which further supports the specificity 

of the antibody. 

The specificity of the anti-TH antibody was tested by the supplier. This antibody 

has been used in immunohistochemical studies of lamprey brain and retina (Pierre et al. 

1997; Villar-Cerviño et al. 2006; Barreiro-Iglesias et al. 2010a, 2017). The anti-TH 

antibody was tested in Western blots of sea lamprey and rat brain protein extracts in our 

laboratory, which revealed bands of similar size for the sea lamprey and rat TH 

enzymes (Barreiro-Iglesias et al. 2008b). 

The monoclonal anti-GABA antibody has been evaluated for activity and 

specificity by the supplier, by dot-blot immunoassay. No cross-reaction was observed 

with BSA, L-alpha-aminobutyric acid, L-glutamic acid, L-aspartic acid, glycine, delta-

aminovaleric acid, L-threonine, L-glutamine, taurine, putrescine, L-alanine or 

carnosine. The antibody showed weak cross-reaction with beta-alanine. Furthermore, 

the sections of the brain and retina of sea lamprey incubated with this antibody revealed 

the same pattern of immunostaining observed in studies with other anti-GABA 

antibodies (Villar-Cerviño et al. 2006; Robertson et al. 2007). In addition, the antibody 

has been tested in our laboratory in Western blots of sea lamprey brain protein extracts 

(Villar-Cerviño et al. 2008). No protein band was stained in these blots. Moreover, pre-

absorption of this GABA antibody with BSA did not block immunostaining in lamprey 

and immunostaining of sections was completely abolished after pre-absorption of the 

diluted anti-GABA antibody with a GABA-BSA conjugate (Barreiro-Iglesias et al. 

2009a; Villar-Cerviño et al. 2009). 

The mouse monoclonal anti-Glu antibody was raised against a glutaraldehyde-

linked L-glutamate-BSA conjugate by Dr P. Streit (Liu et al. 1989), and this clone was 

made commercially available through Swant. This antibody has been characterized with 

respect to cross-reactivity by antibody dilution experiments as well as by pre-absorption 

experiments (Adám and Csillag 2006) and it has been used in previous studies of the 

sea lamprey brain and spinal cord (Fernández- López et al. 2012, 2016, 2017; Barreiro-

Iglesias et al. 2017). The monoclonal anti-Glu antibody used in the present investigation 

showed the same pattern of glutamatergic neuronal populations in the adult sea lamprey 

brain as that previously described when using two different polyclonal anti-Glu 

antibodies. More importantly, all these anti-Glu antibodies reveal the same distribution 
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of glutamatergic neuronal populations observed by vesicular glutamate transporter 

(VGlut) ISH (Villar-Cerviño et al. 2011, 2013). 

The specificity of the anti-5-HT antibody was tested by the supplier, who 

reported no detectable cross-reactivity with tryptamine, 5-methoxytryptamine, L-

tryptophan, 5-hydroxytryptophan, dopamine, norepinephrine or adrenaline. The 5-HT 

antibody used was tested in Western blots of sea lamprey brain extracts in our 

laboratory (Villar-Cerviño et al. 2006). No protein band was detected in these blots. 

Moreover, immunostaining of sections was completely abolished after pre-adsorption of 

the anti-5-HT antibody with 5-HT-BSA conjugates (Abalo et al. 2007). 

The anti-NPY antibody reacts with human NPY conjugated to BSA in dot blots. 

The antiserum shows no cross-reactivity in dot blots with substance P, neurokinin A, 

neurokinin B, vasoactive intestinal peptide, calcitonin gene-related peptide (rat), 

calcitonin and somatostatin conjugated to BSA, or BSA. The anti-NPY antibody cross-

reacts with porcine PYY-BSA conjugates in dot blots; however, cross-reactivity of 

porcine PYY with respect to porcine NPY (100%) was lower than 1%, as determined by 

radioimmunoassay (manufacturer’s technical information). The mature lamprey NPY 

and PYY peptides display 83% (30 out of 36 positions) and 69% (25 out of 36) identity 

with mammalian NPY, respectively (Söderberg et al. 1994; Montpetit et al. 2005). 

Moreover, the staining pattern observed in the spinal cord with this antibody is similar 

to that reported by Brodin et al. (1988) with a different NPY antibody and clearly 

differed from that observed by these authors with a PYY antibody. We further tested the 

specificity of this antibody in lamprey by pre-absorption experiments with NPY, PYY 

and PP (Barreiro-Iglesias et al. 2010b). Immunostaining of sections was completely 

abolished after pre-absorption of the diluted anti-NPY antibody with 10 µM porcine 

NPY (Sigma). However, the anti-NPY antibody immunostaining was not abolished 

after pre-absorption with 10 µM porcine PYY (Sigma) or 10 µM avian PP (Sigma), and 

the neuronal distribution of immunoreactivity in these pre-absorption experiments 

matched with that observed using non-absorbed anti-NPY antibody in parallel series of 

sections (Barreiro-Iglesias et al. 2010b). 

As general controls for the secondary antibodies, sections were processed as 

above, except that the primary antiserum was omitted. No staining was observed in 

these controls. 

 

Retrograde tract-tracing study of spinal cord-projecting PmCCK-8-ir neurons 
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The origin of PmCCK-8-ir fibres observed in the spinal cord was investigated by 

neuronal tract tracing combined with immunofluorescence. Tract-tracing experiments 

were performed in larval samples to label descending neurons that innervate the spinal 

cord. Neurobiotin (NB, 322.8 Da molecular weight; Vector; Burlingame, CA) was used 

as a tracer. The larval spinal cord was exposed by a longitudinal incision made in the 

dorsal region of the body at the level of the fifth gill and completely cut with 

Castroviejo scissors. The tracer was applied in the rostral stump of the spinal cord with 

the aid of a minute pin (#000). The animals were allowed to recover at 19.5 ºC with 

appropriate aeration conditions for 7 days to allow transport of the tracer from the 

application point to the neuronal soma of descending neurons. Brains of these larvae 

were fixed with 4% PFA as above and processed for PmCCK-8 immunofluorescence. 

Then, the sections were incubated at room temperature with Avidin D-FITC conjugated 

(dilution 1:1,000; Vector; Cat#: A-2001) diluted in TBS containing 0.3% Triton X-100 

for 4 hours to reveal the presence of neurobiotin. Slides were rinsed in TBS and distilled 

water and mounted with Mowiol (Sigma). 

 

Nuclear counterstain  

Nuclear counterstain was carried out after immunofluorescence by immersing 

the slides in 0.5 µg/mL bisbenzimide (Sigma) in TBS for 10 seconds before mounting. 

 

Image acquisition and montage 

Confocal photomicrographs were taken with TCS-SP2 spectral confocal laser 

microscope (Leica Microsystems, Wetzlar, Germany). Data was acquired by use of 

appropriate laser lines and narrow spectral windows tuned to the specific absorption and 

emission wavelengths of each fluorescent marker (bisbenzimide, FITC or Cy3). 

Confocal projections of stacks were done with the LAF suite (Leica) or with ImageJ 

(NIH free software). Fluorescence photomicrographs were obtained with an AX70 

epifluorescence microscope equipped with a DP70 digital camera (Olympus, Tokyo, 

Japan). Plates of photomicrographs and minimal bright/contrast adjustments were 

composed with Photoshop CS (Adobe). For plate presentation, some red fluorescent 

photomicrographs were changed to grey scale, inverted and adjusted for brightness and 

contrast with Photoshop. Drawings were done with CorelDraw 12. 

 

Results 
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Identification and cloning of the PmCCK precursor 

 A putative PmCCK cDNA sequence (441 bp) was deposited in GenBank in 2009 

(accession number GQ421360.1). We used this sequence to perform a BLAST search of 

the sea lamprey genome (version 7.0) in the Ensembl database and found the same 

sequence in contig AEFG01025968 (scaffold GL476732: 308,169-310,751) encoded by 

two exons. Then, a fragment of the PmCCK cDNA (421bp) was amplified by PCR, 

cloned and sequenced, further confirming the sequence previously submitted to 

GenBank (Fig. 1a). 

 The corresponding amino acid sequence of PmCCK (146 amino acids; Fig. 1a) 

was analysed using the SignalP, Peptide Cutter and Sulfinator tools, which revealed the 

presence of a 22 amino acid N-terminal signal peptide sequence, a dibasic cleavage site 

in the C-terminal region and a tyrosine sulfation site in the putative PmCCK-8 mature 

peptide (Fig. 1a). 

 An alignment of the C-terminal region of PmCCK with CCK-type precursors 

from other vertebrates revealed many conserved sites. Importantly, there are several 

cleavage sites that are conserved in relation to the mammalian precursors. Cleavage of 

mammalian CCK-type precursors gives rise to peptides with different lengths, including 

CCK-58, CCK-33, CCK-22 and CCK-8 (Chandra and Liddle 2007). The alignment 

shows that many of the cleavage sites that produce these peptides in mammals can be 

found with different levels of conservation across the vertebrate species. The most 

conserved cleavage site is the one that gives rise to the CCK-8 peptide, which is found 

in mammals and all other vertebrate species. The putative CCK-8 mature peptide of 

lampreys only has one amino acid substitution by comparison with CCK-8 peptides 

from most jawed vertebrates, including humans (I for M; Fig. 1b).  The cleavage site 

that gives rise to the CCK-22 is present only in mammals. However, a basic residue (R) 

was found in a residue adjacent to where the cleavage site for CCK-22 is located in 

mammals, which may result generation of a CCK-21 peptide in the sea lamprey and in 

some other vertebrate species. The residue that gives rise to the CCK-33 is absent in the 

lamprey CCK precursor but is conserved in other vertebrates. The residue that provides 

the cleavage site for CCK-39 is conserved across vertebrates, including lampreys. 

However, if cleavage occurs at this site in the lamprey the peptide generated would be 

shorter than CCK-39 (37 amino acids) due to absence of some neighbouring residues. 

The residue that provides the cleavage site for the largest CCK-type peptide in 

mammals, CCK-58, is also conserved in the lamprey precursor and if used would 
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generate a 63-residue peptide. The alignment also shows that a C-terminal FG motif, 

indicative of a C-terminal amidated phenylalanine in the mature peptides, is a conserved 

feature across all representative species (Fig. 1b). Based on an alignment of 16 selected 

CCK-type precursor protein sequences, a phylogenetic reconstruction was made using 

the neighbour-joining method and the tree was rooted using the sequence of the cionin 

precursor from the urochordate Ciona intestinalis. As shown in Figure 1c, the PmCCK 

is grouped together with the CCK precursor from Lethenteron camtschaticum to form 

an agnathan clade (Fig. 1c). Furthermore, the position of the agnathan CCK-type 

precursor clade in the tree is consistent with the phylogenetic position of aganthans as 

the most basal extant vertebrates (Satoh et al. 2014; Delsuc et al. 2018). 

 

Distribution of CCKergic cell populations in the lamprey brain 

 We studied the distribution of CCKergic cell populations in the brain of the sea 

lamprey using both ISH and immunofluorescence, employing specific PmCCK probes 

and antibodies against PmCCK-8. Immunofluorescence also revealed a number of 

labelled fibres distributed throughout most brain regions. Schematic drawings of 

transverse sections of brains of larvae and adults showing a composite view based on 

both ISH and immunofluorescence results are presented in Figures 2 and 3. The 

terminology employed in this study for the various regions, nuclei, tracts and identified 

neurons followed those used in other studies of our group (see Barreiro-Iglesias et al. 

2017). Note that for descriptions of CCK populations in the hypothalamus we use 

topographical names (dorsal, ventral) in order to facilitate comparison with most studies 

of this region in vertebrates, although according the prosomeric model (Pombal and 

Puelles 1999) these actually correspond to caudal and rostral regions, respectively, 

owing to the brain axis curvature at this region. 

 

PmCCK transcript expression in the brain of larval sea lampreys 

Analysis of the distribution of PmCCK mRNA-positive (PmCCK+) neurons was 

done by ISH in larvae of total body lengths between 80 and 110 mm. No PmCCK+ 

neurons were observed in the telencephalic hemispheres (Fig. 2a) and preoptic region of 

larvae. In the hypothalamus, a group of small PmCCK+ cells was observed in the 

nucleus of the postoptic commissure, which is located in the wall of the postoptic 

(anterior infundibular) recess (Figs. 2b, 4a). These PmCCK+ cells are located in outer 

cell rows of the thick mantle of periventricular cells. Some PmCCK+ cells are also 
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present in the ventral hypothalamus and a few in the dorsal hypothalamus (Figs. 2c, 

4b,c). In the alar diencephalon, a group of PmCCK+ cells is located in the prethalamus 

close to the ventral end of the thick cell rows of the thalamus (Fig. 4c,d). In the ventral 

part of the posterior tubercle, small PmCCK+ cells form a U-shaped arch below the 

ventricle. Larger PmCCK+ cells were found in the Schober’s M5 nucleus of the 

mesencephalon (Schober 1964; Rodicio et al. 1995). Abundant small cells were also 

observed ventrally in the perioculomotor region (Figs. 2d, 4e,f) of the mesencephalon. 

In the hindbrain, PmCCK+ cells are present medially over and lateral to the medial 

longitudinal fasciculus (Figs. 2g,h, 4h,i) and more laterally near the sulcus limitans 

associated with the visceromotor column, extending between levels of the caudal 

trigeminal motor nucleus to the glossopharyngeal motor nucleus (Figs. 2g, 4g-h). These 

two populations form elongated columns with 1-4 cells in most sections on each side 

(about 80-110 cells in total for each population). Occasional PmCCK+ cells were also 

observed over the sulcus limitans. Unlike in adults (see below), no PmCCK+ cells were 

observed in the isthmus (Fig. 2e) or in the region of the nucleus of the solitary tract of 

the caudal hindbrain (Fig. 2h). 

 

PmCCK transcript expression in the brain of adult sea lampreys  

We searched for possible changes in the PmCCK+ populations after 

metamorphosis and sexual maturation by analysing brains of young downstream pre-

migratory adults (about 17 cm in length) and upstream migrating sexually mature sea 

lampreys (about 85 cm in length, about two years after transformation) (Figs. 3, 5-8). 

Young adults 

In the brain of young adults, numerous PmCCK+ neurons were observed in the 

hypothalamus, diencephalon, mesencephalon and rhombencephalon (Figs. 3, 5-7). Most 

populations correspond with those reported above in larvae, but new PmCCK+ 

populations were also observed in the rostral (isthmus) and caudal hindbrain.  

The most rostral PmCCK+ populations were observed in the walls of the 

anterior infundibular (postoptic) recess. Two groups of PmCCK+ cells were 

distinguished (Figs. 3e, 5a, 7a). One of them forms an inverted U-shaped band over the 

recess, which corresponds with the nucleus of the postoptic commissure seen in larvae. 

Caudally to the postoptic commissure, this group appears in continuity with a bilateral 

band extending in the dorsal hypothalamus (Figs. 3f, 5b, 7b). These cells occupy a 
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peripheral region of the thick periventricular band of cells. Other PmCCK+ cells are 

located more ventrally in the periventricular region, mostly in the inner cell rows of the 

periventricular region of the ventral hypothalamus (Figs. 3e,f, 5a, 7a). 

In the prethalamus (alar prosomere 3; p3; see Pombal and Puelles 1999) a small 

and scattered group of PmCCK+ cells was observed in outer rows of the thickened band 

of cells of this region, clearly separated from the hypothalamic positive populations 

(Figs. 3f, 5d, 7c). A U-shaped band of PmCCK+ cells is also found at the level of the 

nucleus of the posterior tubercle (Figs. 3g,h, 5e, 7d). More caudally, a group of 

intensely stained PmCCK+ cells was observed in the basal region of prosomere 1 (p1) 

dorsally to the giant M2 cell (nucleus of the medial longitudinal fasciculus; Figs. 3h, 

7e). In the midbrain dorsal tegmentum, a large group of PmCCK+ cells was observed in 

the Schober’s M5 nucleus (Schober 1964) (Fig. 3i,j, 5g-i, 7f). A population of smaller 

PmCCK+ cells was also found in the perioculomotor ventral tegmentum till the level of 

the oculomotor nucleus (dorsomedial subnucleus) (Figs. 3i, 5h-i, 7g).  

The PmCCK+ cell populations of the hindbrain are separated from those of the 

midbrain by a region without PmCCK+ cells. Unlike in larvae, the rostral isthmus 

shows a large group of intensely stained PmCCK+ cells located in the dorsal 

periventricular region (Figs. 3k, 6a, 7h). From this periventricular nucleus, intermediate 

and lateral populations of PmCCK+ cells extend laterally in direction to the entrance of 

the trigeminal nerve. All together, these populations are part of the dorsal isthmic grey 

(Fig. 7h). The periventricular PmCCK+ population is not observed at levels caudal to 

the giant I1 Müller cell. The scattered PmCCK+ cells of the intermediate and lateral 

populations are larger and have a smaller rostrocaudal extension than the periventricular 

population. In the caudal isthmic tegmentum, a fairly numerous PmCCK+ population is 

present in the small-celled region ventral to large reticular cells and over the 

interpeduncular nucleus, extending caudally till rostral trigeminal levels (i.e. the region 

showing the rostral trigeminal motoneurons) (Figs. 3k,l, 6b-c, 7i). 

More caudally in the hindbrain, a long reticular population of small PmCCK+ 

reticular cells is located over and medial to the giant axons of the medial longitudinal 

fasciculus (note that along the hindbrain these fibres are much thinner than in the spinal 

cord) (Figs. 3o-q, 6f-h, 7k). These PmCCK+ cells are found both in clusters and 

intermingled among much larger reticulospinal neurons that are PmCCK-negative. 

These PmCCK+ cells are not observed at the level of the obex. In a young adult, we 

counted about 165 positive cells in this reticular population. A few PmCCK+ reticular 
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neurons are found at intermediate levels between the vagal motor nucleus and the large 

(PmCCK-negative) medial reticular neurons (Fig. 6e). Other PmCCK+ cells are 

associated with the different parts of the visceromotor column (Figs 3n-p, 6g,h, 7j,k). 

Scattered PmCCK+ cells are associated with the lateral part of the trigeminal motor 

nucleus (lateral reticular region) and the rostral level of the facial motor nucleus. More 

caudally, some PmCCK+ cells are observed close to the glossopharyngeal and vagal 

motor nuclei. In the caudal hindbrain, at levels close to the obex, a group of intensely 

PmCCK+ cells is present in the periventricular cell mantle just ventral to the dorsal 

column nucleus/descending trigeminal nucleus (Figs. 3q, 6h-i, 7l). We considered that 

these caudal neurons pertain to the nucleus of the solitary tract (see discussion). 

 

Sexually mature upstream migrating sea lamprey 

The general distribution of PmCCK+ cells in mature adult lampreys is similar to 

that of young adults, although some changes in the appearance of populations were 

noted (Fig. 8). As observed in young adults, the most rostral PmCCK+ cells were 

observed in the walls of the postoptic recess (Fig. 8a-b). The PmCCK+ cells of the 

nucleus of the postoptic commissure showed faint to moderate signal and occupied 

outer periventricular regions (Fig. 8a-c). This population extends caudally in the dorsal 

hypothalamus (Fig. 8d). Instead, the ventral hypothalamic PmCCK+ cells were 

intensely stained, and most were found in the inner cell rows of the periventricular 

region of the ventral hypothalamus (Fig. 8a-c). The number of cells in these nuclei 

increased with respect that of young adults.  

The PmCCK+ cells of the prethalamic group were scattered through a wider 

region than in young adults (Fig. 8d). From the nucleus of the posterior tubercle a U-

shaped band of PmCCK+ cells extends caudally till the perioculomotor region (Fig. 

8e,f). A scarce group of intensely stained PmCCK+ cells is present in the basal region 

of p1 dorsally to the M2 cell (Fig. 3h). In the midbrain, the group of PmCCK+ cells 

located below the torus semicircularis (M5 nucleus of Schober 1964) shows intense 

staining (Fig. 8f). 

In the dorsal isthmic grey, the periventricular group shows faintly stained small 

PmCCK+ cells and small groups of migrated PmCCK+ cells extend laterally (not 

shown). In the caudal isthmic tegmentum and the rostral region of the trigeminal motor 

nucleus, abundant PmCCK+ cells are intensely stained in the small-celled ventral 

reticular population of this region (Fig. 8g). At levels of the glossopharyngeal nerve 



 

20 
 

entrance and motor nucleus, intensely stained PmCCK+ reticular neurons are observed 

in the medial region of the posterior reticular formation over the medial longitudinal 

fasciculus giant axons (Fig. 8i). In the lateral reticular formation, scattered small 

PmCCK+ reticular cells are associated with the caudal portion of the trigeminal motor 

nucleus (Fig. 8h) till rostral levels of the facial motor nucleus. More caudally some 

PmCCK+ cells are observed laterally close to the glossopharyngeal motor nucleus. At 

levels of the vagal motor nucleus, intermediate PmCCK+ reticular neurons are present 

medially to the visceromotor column. In the caudal hindbrain, at levels close to the 

obex, intensely stained PmCCK+ cells of the nucleus of the solitary tract noted in 

young adults extend in the periventricular cell mantle below the dorsal column 

nucleus/descending trigeminal nucleus (Fig. 8j). 

 
 
Localization of PmCCK-8 immunoreactivity in the sea lamprey CNS 

 Immunohistochemistry with antibodies raised against the PmCCK-8 peptide 

revealed perikarya and a number of immunoreactive processes distributed throughout 

most brain regions (Figs. 2, 3). In general, the distribution of PmCCK-8-ir perikarya in 

larval and adult lampreys was similar to that reported above with PmCCK ISH in the 

same stages. In addition, immunohistochemistry revealed a rich innervation of most 

brain regions by PmCCK-8-ir processes, as schematically indicated in larval and adult 

brains (Figs. 2, 3). Although in most brain regions fibres were scattered in neuropil 

areas, a conspicuous PmCCK-8-ir tract was observed in the hindbrain of larvae and 

adults. The pattern of PmCCK-8-ir innervation will be described in some detail in only 

a few brain regions (striatum, habenula, optic tectum, isthmus). It should also be noted 

that in adults the cell nuclei of large PmCCK-negative neurons showed weak 

autofluorescence signal but not their cytoplasm or processes. This autofluorescent signal 

was easily distinguishable from that of true PmCCK-8-ir cells, which show an intensely 

immunopositive fine granular material in their cytoplasm. 

 

PmCCK-8-ir neurons in larval sea lamprey 

In larval brains, PmCCK-8-ir neurons were observed in the hypothalamus, 

nucleus of the medial longitudinal fasciculus, midbrain tegmentum and in hindbrain 

medial and lateral reticular populations (Figs. 2, 9, 10). In the hypothalamus, some 

small PmCCK-8-ir neurons were observed in the outer rows of the periventricular cell 
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layer of the ventral hypothalamus (Figs. 2c, 9a,f, 10b,d). Some of these PmCCK-8-ir 

cells show long and thin apical dendrites ending in a small intraventricular club, i.e. 

they are cerebrospinal fluid-contacting (CSF-c) cells. In the neuropil lateral to these 

bipolar cells there are numerous PmCCK-8-ir beaded processes. In addition to ventral 

hypothalamic neurons, a few PmCCK-8-ir cells were observed in the dorsal 

hypothalamus (Fig. 10a). In the posterior tubercle and region of the nucleus of the 

medial longitudinal fasciculus, numerous small PmCCK-8-ir neurons were observed in 

the periventricular region of the ventricle floor (Fig. 9b, 14e). Caudally, PmCCK-8-ir 

cells were also observed in the M5 nucleus and perioculomotor region in the midbrain 

(Fig. 2d, 9g, 14d). 

In the hindbrain of larvae, some PmCCK-8-ir neurons are associated with the 

lateral region of the facial motor nucleus and the caudal portion of the trigeminal motor 

nucleus (Figs. 2g, 9h, 14b). These PmCCK-8-ir cells are clearly larger than those of the 

midbrain and show a few dendrites and axons coursing ventrolaterally. In the reticular 

region of the hindbrain, a few spindle-shaped or triangular small PmCCK-8-ir neurons 

are associated with the medial longitudinal fasciculus near the midline (Figs. 2h, 9e,i, 

14a).  

 

PmCCK-8-ir neurons in adult sea lamprey 

The PmCCK-8-ir neuronal populations observed in young adults and upstream 

migrated adults are roughly similar. Accordingly, they will be described together but 

highlighting the main differences observed between them (Figs. 3, 11). In general, the 

location of the PmCCK-8-ir populations coincide with those expressing the PmCCK 

precursor transcript, but some cells lack or exhibit only faint PmCCK-8 

immunoreactivity. As noted with the expression of the PmCCK precursor, some 

PmCCK-8-ir populations of adults were not observed in larvae. 

In young adults, the preoptic nucleus shows numerous small PmCCK-like-ir 

cells dorsal and lateral to the optic recesses, which do not correspond with any 

PmCCK+ population described in adults or larval lampreys (see above). These cells 

mainly form a compact band separated from the ependymal layer by a fibrous layer, 

with a few neurons displaced at periependymal location (not shown). The perikarya of 

this region were PmCCK-8-negative in mature adults. In the hypothalamus of adults, a 

large dorsal population of small PmCCK-8-ir cells is distributed in the outer rows of 

periventricular cells (Fig. 3f). Ventrally, the PmCCK-8-ir cells are located in the inner 
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periventricular row or among ependymocytes and show plump perikarya with a short 

conical ventricular dendrite (Fig. 3f, 11a). These ventral cells are larger than dorsal 

ones, and this ventral-dorsal difference is more conspicuous in mature migrating adults. 

In the region of the nucleus of the posterior tubercle, scarce and small PmCCK-

8-ir cells are observed below the ventricle in the midline (Fig. 3g,h). At the level of the 

nucleus of the medial longitudinal fasciculus, some PmCCK-8-ir cells are also present 

in the lateral wall (Fig. 3h). These lateral cells are rather large and conspicuous in 

mature adults (Figs. 11b). More caudally, a group of intense PmCCK-8-ir cells with 

long lateral processes is observed in the cell rows of the Schober’s M5 nucleus 

separated from the ventricle by a thick periventricular fibrous layer (Fig. 3i,j). 

Ventrally, some PmCCK-8-ir neurons are observed in the perioculomotor region near 

the giant M3 cell (Figs. 3i, 11c). These cells are conspicuous in mature adults. 

Major differences between PmCCK-8-ir populations of larvae and adults are 

noted in the rostral hindbrain. In the isthmus of young adults, abundant PmCCK-8-ir 

periventricular cells are observed in dorsal regions over large isthmic reticular cells, and 

some migrated PmCCK-8-ir cells extend in a latero-ventral band (dorsal isthmic grey), 

as noted with PmCCK ISH in adults (Figs. 3k, 11d-f, 12b). In the caudal isthmic-rostral 

trigeminal region, groups of small PmCCK-8-ir cells are found in the tegmental ventral 

reticular region (Figs. 3k, 12d). More caudally, some PmCCK-8-ir cells are scattered 

lateral to the facial motor nucleus (Figs. 3n, 11g). Bipolar or tripolar PmCCK-8-ir cells 

are observed in a thick cell band below the dorsal column/trigeminal descending 

nucleus that are separated from the ependymal layer by a thick fibre/neuropil layer. This 

cell population corresponds to the location of the putative nucleus of the solitary tract 

(Figs. 3q, 11h). In the caudal hindbrain of adults, some reticular PmCCK-8-ir cells are 

also located over the medial longitudinal fasciculus near the midline (Figs. 3q, 11i, 12c). 

 

Brain innervation by PmCCK-8-ir fibres 

The brain of the sea lamprey shows abundant PmCCK-8-ir fibres innervating 

many brain regions in both larvae and adults (Figs 2, 3, 9-14). The distribution of 

PmCCK-8-ir fibres in the adult brain is represented schematically in the Figure 3, and 

examples of PmCCK-8-ir innervation of selected regions containing PmCCK-8-ir 

neurons are appreciable in Figures 11 and 13. Most abundant PmCCK-8-ir fibres were 

observed in the hypothalamus and tegmental regions. 
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In larval lamprey brains the telencephalic hemispheres are scarcely innervated 

by PmCCK-8-ir fibres excepting the striatum (Fig. 2a). PmCCK-8-ir fibres are abundant 

in the preoptic region and the hypothalamus (Figs. 10d,e). In the neurohypophysis, thin 

PmCCK-8-ir fibres are observed in inner zones (Fig 10b). The posterior tubercle and 

region of the nucleus of the medial longitudinal fasciculus are innervated by fairly 

abundant PmCCK-8-ir fibres (Figs. 14e). In the right habenula, dense innervation by 

PmCCK-8-ir fibres is found in the ventral region but not in the dorsal region, and 

numerous PmCCK-8-ir fibres also innervate the left habenula (Fig. 2b), an innervation 

pattern that is similar to that reported using alpha-transducin (Gαt-S) immunoreactivity 

(Barreiro-Iglesias et al. 2017). In the midbrain, PmCCK-8-ir fibres are mainly located in 

the tegmental region (Figs. 2d, 14d) but are mostly lacking in the optic tectum, which is 

poorly developed in larvae (Figs. 2d).  In the hindbrain, a conspicuous longitudinal tract 

of PmCCK-8-ir fibres courses in the ventrolateral region below the descending 

trigeminal root and extends rostrally to the dorsal isthmic region, where fibres of this 

tract bend medially and end on a small population of PmCCK-8-negative glutamatergic 

neurons in the periventricular region over the giant isthmic reticular cells (Figs. 2e-h, 

9c,d, 14c). These fibres appear to arise from the PmCCK-8-ir cells accompanying the 

visceral column at facial-glossopharyngeal levels. Fibres of this PmCCK-8-ir tract also 

course caudally through the hindbrain. In addition, scattered PmCCK-8-ir fibres are 

distributed throughout the hindbrain reticular area but they are scant or lacking in the 

octavolateralis region and in the nucleus of the dorsal column/descending trigeminal 

tract (Figs. 2f-i, 14b). 

In the telencephalon of adult lampreys, the striatum receives rich PmCCK-8-ir 

innervation (Figs. 3c,d, 13b), but fibres are scarce in the lateral and medial pallium 

(Figs. 3b,c, 13a,b) and almost lacking in the olfactory bulb (Fig. 3a).  A large number of 

PmCCK-8-ir fibres are observed in the preoptic region (which belongs to the 

subpallium) and the hypothalamus (Figs. 3d-h, 13c). In both young and mature adults, a 

compact tract of PmCCK-8-ir fibres decussates in the region of the postoptic 

commissure and can be followed towards the prethalamus and thalamus (not shown). In 

the habenula, conspicuous PmCCK-8-ir innervation is found in the same regions of 

larvae (ventral right habenula and left habenula), but these fibres are not present in 

dorsal habenular regions (Figs 3d,e, 13d,e). In the dorsal midbrain, fairly abundant 

PmCCK-8-ir fibres are observed in deep tectal layers (Figs. 3i,j, 13f), which is unlike 
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the larval tectum. Fairly abundant fibres are observed in midbrain tegmental regions 

(Figs. 3i,j, 13g).  

At rostral rhombencephalic levels, a thick band comprised of numerous 

PmCCK-8-ir fibres courses from the region of the entrance of the trigeminal nerve 

towards the dorsomedial isthmus over the dorsal isthmic grey, crossing the midline in a 

dorsal isthmic commissure (over the decussation of the trochlear nerve), whereas only 

scarce fibres course toward the PmCCK-8-ir periventricular cell population (Figs. 3k, 

11d). In mature adults both the PmCCK-8-ir lateral tract and the dorsal isthmic 

commissure are very conspicuous. The tract can be followed along the hindbrain on a 

ventrolateral region below the trigeminal descending tract, disappearing at the transition 

with the spinal cord (Fig. 3l-q). Moreover, PmCCK-8-ir fibres are fairly abundant in 

lateroventral hindbrain regions, but are lacking in the interpeduncular nucleus and are 

scarce in ventromedial reticular regions and in the octavolateralis area, trigeminal 

descending nucleus and dorsal column nucleus (Figs. 3k-q, 13h,i).  

 

Further characterization of PmCCK-8-ir neuronal populations by double 

immunofluorescence and tract tracing methods 

For further characterization of the PmCCK-8-ir neurons and to clarify their 

relation with other systems, we performed double immunofluorescence of PmCCK-8 

and some neurotransmitters (GABA, Glu, 5-HT), neuropeptides (NPY-like) or 

neurotransmitter synthesizing enzymes (TH) (Figs. 9, 10, 12). Most of these 

experiments were done in larvae. We also performed PmCCK-8 immunohistochemistry 

combined with tract tracing from the spinal cord in larvae (Fig. 14).  

 

Glutamate and PmCCK-8 

Glutamatergic neuronal populations are abundant in the brain of sea lamprey 

larvae (Villar-Cerviño et al. 2011, 2013), including cells in most regions containing 

PmCCK-8-ir cells. For investigating possible co-localization, we analysed sections of 

larval brains double immunostained for PmCCK-8 and Glu. In the ventral 

hypothalamus, abundant PmCCK-8-ir and Glu-ir CSF-c neurons are intermingled in the 

periventricular cell layer (Fig. 9a). Close inspection revealed that PmCCK-8 and Glu 

immunoreactivities are largely located in different perikarya, as well as in different 

intraventricular club endings, indicating that they form separated populations. Similar 

results (no co-localization) were obtained in the PmCCK-8-ir populations of the 
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posterior tubercle (Fig. 9b), nucleus of the medial longitudinal fasciculus, midbrain and 

the hindbrain lateral region associated with the trigeminal (Fig. 9d) and facial motor 

nuclei. Instead, in the medial part of the posterior rhombencephalic reticular nucleus 

double immunofluorescence revealed that most PmCCK-8-ir cells were also Glu-ir (Fig. 

9e). Interestingly, double immunofluorescence in larval brains revealed that the 

characteristic longitudinal tract of CCK-ir fibres of the hindbrain coursing towards the 

dorsal isthmus ends on a compact periventricular population of Glu-ir perikarya (Fig. 

9c).  

We also investigated possible co-localization of Glu and PmCCK-8 in young 

adult brains. A number of PmCCK-8-ir neurons of the ventral hypothalamus showed 

co-localization with Glu immunoreactivity in young adults (Fig. 12a). In the hindbrain, 

co-localization was observed in cells of the dorsal isthmic PmCCK-8-ir population of 

young adult brains (Fig. 12b), which was not present in larvae. A proportion of these 

PmCCK-8-ir neurons showed Glu immunoreactivity. Interestingly, the location of this 

double-labelled cell population appears to correspond with the above-mentioned Glut-ir 

periventricular populations receiving conspicuous CCKergic innervation in larvae. 

More caudally in the hindbrain, Glu/CCK co-localization was observed in small cells of 

the reticular region similar to those observed in larvae (Fig. 12c). 

 

GABA and PmCCK-8 

GABA-ir neurons are widely distributed in the brain of the sea lamprey 

(Meléndez-Ferro et al. 2002, 2003; Robertson et al. 2007; Villar-Cerviño et al. 2008, 

2009). We investigated the possibility of co-localization of GABA in PmCCK-8-ir 

neurons of the different larval brain regions where co-distribution was noted using 

double immunofluorescence and confocal microscopy. In the hypothalamus, numerous 

GABA-ir CSF-c cells are observed in the periventricular region containing PmCCK-8-ir 

cells. However, no co-localization of CCK and GABA in neurons was observed, and 

CCK-ir perikarya were in general located outwardly to GABA-ir cells in the cell layer 

(Fig. 9f). Similar results (co-distribution of GABA-ir and PmCCK-8-ir neurons but no 

co-localization in cells) were observed in the posterior tubercle, nucleus of the medial 

longitudinal fasciculus and midbrain PmCCK-8-ir populations of larvae (Fig. 9g). 

Interestingly, double immunofluorescence in the caudal region of the trigeminal motor 

nucleus and the facial motor nucleus showed partial co-localization of GABA in 

PmCCK-8-ir neurons: some small lateral reticular cells associated to the visceromotor 
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column were GABA-ir/PmCCK-8-ir, while other cells were either only PmCCK-8-ir or 

GABA-ir (Fig. 9h).  Moreover, PmCCK-8-ir cells of this region appear to give rise to 

fibres coursing to the dorsal isthmic grey. Here, some of the PmCCK-8-ir fibres ending 

on the isthmic periventricular population were doubly labelled with the anti-GABA 

antibody (not shown). In the medial reticular formation of the posterior hindbrain, a few 

small reticular cells were also GABA-ir/PmCCK-8-ir (Fig. 9i). 

We also investigated possible co-localization of GABA in PmCCK-8-ir isthmic 

populations of young adult brains that were not present in larval brains. These isthmus 

PmCCK-8-ir neurons did not show GABA immunoreactivity (Fig. 12d). 

 

Serotonin (5-HT) and PmCCK-8 

In larval sea lamprey brains, some PmCCK-8-ir neurons were observed in 

hypothalamic and hindbrain regions containing 5-HT-ir neurons (Abalo et al. 2007; 

Barreiro-Iglesias et al. 2009a; Cornide-Petronio et al. 2013). Double 

immunofluorescence in the hypothalamus revealed that 5-HT-ir and PmCCK-8-ir cells 

are partially co-distributed, but no double-labelled neuron was observed in this region 

(Fig. 10a,b). In general, PmCCK-8-ir cells occupied outer parts of the periventricular 

cellular region, whereas 5-HT-ir perikarya were closer to the ventricle. Both types of 

cells showed ventricular processes ending in small intraventricular clubs (i.e. CSF-c 

cells). In the dorsal hypothalamus, the number of 5-HT-ir cells is higher than that of 

PmCCK-8-ir cells. In the caudal hindbrain of larvae, small 5-HT-ir cells and PmCCK-8-

ir cells are co-distributed in the medial region over the medial longitudinal fasciculus, 

but again no double-labelled cells were observed (Fig. 10c). 

 

PmCCK-8 and neuropeptide Y (NPY) 

In larvae, some PmCCK-8-ir neurons are located in brain regions containing 

NPY-like-ir neurons, such as the ventral hypothalamus and posterior tubercle (Barreiro-

Iglesias et al. 2010b). Double immunofluorescence for PmCCK-8 and NPY showed no 

co-localization of both substances in the ventral hypothalamus, although NPY-like-ir 

and PmCCK-8-ir cells are numerous and appear partially co-distributed (Fig. 10d,e). In 

the posterior tubercle and nucleus of the medial longitudinal fasciculus, NPY-like-ir 

cells are located close but dorsal to the U-shaped band of PmCCK-8-ir cells (Fig. 10f). 

The NPY-like-ir cells observed in the dorsal isthmus were ventral to the periventricular 

region innervated by PmCCK-8-ir fibres (not shown). 
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PmCCK-8 and tyrosine hydroxylase (TH) 

We investigated possible co-localization of PmCCK-8 and TH 

immunoreactivities in adult brain regions that show both TH-ir (dopaminergic) 

(hypothalamus, posterior tubercle; see Barreiro et al. 2010a) and CCK-ir (present 

results) cells. No co-localization of CCK and TH immunoreactivity was observed in 

cells of these populations (not shown). 

  

Spinal cord PmCCK-8-ir fibres and tract-tracing in larval lampreys 

Since PmCCK+ or PmCCK-8-ir perikarya were not observed in the spinal cord, 

we hypothesized that spinal PmCCK-8-ir fibres must originate from brain neurons. In 

order to identify the cells of origin of these fibres, we applied neurobiotin to the larval 

spinal cord at the level of the fifth branchial cleft. After appropriate transport time, brain 

sections were immunostained for PmCCK-8 and then were analysed for the presence of 

neurobiotin. This procedure led to the neurobiotin labelling of well-characterized 

populations of brain-spinal neurons, which are distributed from the diencephalon to the 

hindbrain (McClellan 1992; Barreiro-Iglesias et al. 2008a,b; Cornide-Petronio et al. 

2011). Of the various neurobiotin-labelled brain-spinal projection neurons co-

distributing with PmCCK-8-ir cells (Fig. 14a-e), only a few small cells in the medial 

reticular region of the caudal hindbrain were double labelled with PmCCK-8, pointing 

to this population as the origin of PmCCK-8-ir spinal fibres (Fig. 14a). These tract 

tracing experiments also revealed the location of some trigeminal-facial PmCCK-8-ir 

neurons close to the lateral dendrite of the retrogradely-labelled Mauthner neuron (Fig. 

14b), and the location of small PmCCK-8-ir cells with regards to diencephalic and 

mesencephalic giant Müller cells (Fig. 14d,e). Dendrites of these giant neurons branch 

in regions containing numerous PmCCK-8-ir fibres, suggesting they may receive 

contacts from these fibres. In the isthmus, experiments reveal the location of the main 

target of the PmCCK-8-ir tract dorsal to the group of large isthmic reticulospinal 

neurons and also show that dendrites of these large cells course in a region rich in 

PmCCK-8-ir fibres (Fig. 14c). 

 

Presence of PmCCK-8-ir neuroendocrine cells in the larval sea lamprey gut 
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Some gut samples from larval lamprey were processed for immunofluorescence 

with the PmCCK-8 antibody. These samples included the intestine with the typhlosole. 

Slender bipolar PmCCK-8-ir cells extended radially throughout the height of the 

intestinal epithelium (not shown), confirming the presence of cholecystokininergic 

endocrine cells (Van Noorden and Pearse 1974). 

 

Discussion 

Identification of a CCK-type precursor in the sea lamprey 

Here we report the cloning and sequencing of a cDNA encoding the PmCCK 

precursor. Although we also searched for a gastrin precursor sequence in available 

sequence data for P. marinus, this search did not reveal any sequences resembling 

gastrin precursors from jawed vertebrates. Since both CCK and gastrin genes have been 

reported in all jawed vertebrate groups investigated so far (Roelants et al. 2010), our 

results suggest that the gene duplication that gave rise to these two genes may have 

occurred after the separation of jawless and jawed fishes, although other possibilities 

cannot be ruled out (e.g. that the gastrin gene was lost in extant agnathans). Analysis of 

the PmCCK precursor protein sequence predicts the presence of a 22 amino acid N-

terminal signal peptide, a dibasic cleavage site in the C-terminal region and a tyrosine 

sulfation site in the mature PmCCK-8 peptide. The pro-peptide is 146 residues in 

length, which is in the upper range of lengths of CCK pro-peptides reported in other 

vertebrates. The lengths of CCK-type precursor proteins predicted from reported gene 

sequences (searched in GenBank) are 114-115 residues in most eutherian mammals, 

126-129 residues in metatheria, 122-130 residues in reptiles, 129-130 residues in birds 

(Lovell and Mello 2011) and 128-130 residues in frogs. The predicted sequences of the 

two or more precursor CCKs reported in teleosts are more variable in length, ranging 

from 117 to 138 residues (GenBank), whilst in cartilaginous fishes the reported CCK-

type precursor sequences are between 125 and 130 residues (GenBank). Comparison of 

the sequence of the C-terminal region of PmCCK with this region of CCK-type 

precursors from other vertebrates (including another lamprey species) revealed high 

conservation of the CCK-8 motif, with only a single amino acid change in the third 

position in lampreys by comparison with the CCK-8 sequence reported in mammals, 

other tetrapods and elasmobranchs. Sequence variations in this third position and 

duplications of the CCK gene found in teleosts are probably derived characteristics 

(Kurokawa et al. 2003; Roelants et al. 2010).  Furthermore, based on the presence of 
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putative cleavage sites, the existence of longer isoforms of CCK in the sea lamprey is 

predicted. 

Comparison of the complete CCK precursor sequences allowed the 

reconstruction of a phylogenic tree, the topology of which is generally in agreement 

with chordate phylogeny. In the tree, the CCK precursors of lampreys are closely 

related and form an out-group to all gnathostome precursors, which divide into 

chondrichthyan and osteichthyan (bony fishes and land vertebrates) clades. However, 

the structure of the osteichthyan clade of the tree, with mammalian sequences not 

clustering with other tetrapod sequences, may be influenced by variation in preprotein 

lengths (for a more detailed tree of CCK precursors from teleosts, see Murashita et al. 

2009).   

 Biochemical studies using radioimmunoassay methods to analyse gut and brain 

extracts and immunochemistry using anti-CCK antibodies with different affinities 

indicated the possible existence of two or more CCKs in lampreys (Holmquist et al. 

1979; Van Dongen et al. 1985), although these “CCKs” were never identified. The 

major CCK-like component detected by radioimmunoassay was similar, but not 

identical, to the C-terminal fragments of mammalian CCK precursors (Holmquist et al. 

1979), which may be due to the differences in the sequences of PmCCK-8 and 

mammalian CCK-8 reported here. Our analysis of the sea lamprey CCK precursor 

sequence clearly indicated the presence of a 22-residue signal peptide and predicted a 

highly probable dibasic cleavage site. Sequence comparison with CCKs from other 

vertebrates also revealed the presence of a highly conserved monobasic cleavage site. 

Cleavage at these sites would generate the PmCCK-8 peptide, which may be the main 

product of CCK pro-peptide processing in the sea lamprey. In addition, sequence 

analyses also revealed the presence of a tyrosine sulfation site, which suggests that 

sulfated PmCCK-8 is the main mature peptide in the CNS of lampreys, as in other 

vertebrates (Agersnap et al. 2016). Accordingly, we observed strong immunoreactivity 

in the sea lamprey CNS with an antibody generated against the sulfated version of Pm-

CCK-8 (see below). 

 

Cholecystokinergic neurons in the sea lamprey brain 

The anatomical distribution of CCK, neuropeptide Y (NPY), and galanin, which 

have central effects on feeding in mammals, has been reported in lampreys (Jiménez et 

al. 1996; Brodin et al. 1988; Barreiro-Iglesias et al. 2010b; present results). In 
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mammals, injection of NPY and galanin has orexigenic effects, whereas CCK 

suppresses feeding (Lee et al. 1994). In lamprey brains, these peptides show different 

distributions. Thus, galanin-like-ir perikarya are largely restricted to the hypothalamus 

and thalamus although fibres are distributed throughout most brain regions (Jiménez et 

al. 1996). In contrast, the brain distribution of both NPY and CCK neurons is more 

widespread, but in only a few regions (hypothalamus, posterior tubercle, lateral reticular 

region) these neurons are co-distributed and important regional differences in their 

populations were noted (Brodin et al. 1988; Barreiro-Iglesias et al. 2010b; present 

results). Moreover, the distribution of fibres immunoreactive for NPY and CCK also 

show important differences in various brain regions. This suggests that these peptides 

are differentially involved in various neural circuits of the sea lamprey. 

Previous studies of the cholecystokinergic system of lampreys were centred on 

the expression of CCK-like peptides in the reticular formation (Brodin et al. 1988), and 

in the functional analysis of CCK in spinal circuits (van Dongen et al. 1985; Buchanan 

et al. 1987; Ohta et al. 1988; Parker 2000). Our analysis in the sea lamprey brain with 

ISH using a probe for the PmCCK precursor reveal the presence of neurons expressing 

PmCCK mRNA in populations of neurons in the hypothalamus, posterior tubercle, 

prethalamus, the nucleus of the medial longitudinal fasciculus, midbrain tegmentum, 

isthmus, rhombencephalic reticular formation and the putative nucleus of the solitary 

tract. Moreover, comparison of PmCCK expression in larvae and adult sea lampreys 

indicates that some populations of PmCCK positive neurons are only observed in adults, 

highlighting notable differences between the cholecystokinergic systems of larvae and 

adults. We also investigated this system by using an antibody raised specifically against 

the PmCCK-8 peptide, which allowed further characterization of the sea lamprey 

cholecystokinergic system by revealing both perikarya and processes. Evidence of the 

antibody specificity is provided by the similar distribution of neurons exhibiting 

PmCCK-8-ir and neurons expressing the PmCCK precursor mRNA as revealed by ISH, 

including similar differences between larvae and adults. Some of these PmCCK-8-ir 

populations (posterior and middle rhombencephalic reticular nuclei, mesencephalic 

reticular nucleus, and hypothalamus) have been reported previously in adults of other 

lamprey species (Lampetra fluviatilis and Ichthyomyzon unicuspis) using various anti-

mammalian CCK antibodies (Brodin et al. 1988), but not the other PmCCK cell groups 

reported here. The finding in adult lampreys that a preoptic population exhibits 
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immunoreactivity to the PmCCK-8 antibody, but does not express PmCCK mRNA, 

could be explained by low transcript abundance in this population. 

 

Comparisons with other vertebrates 

Telencephalon 

 The telencephalon of mammals contains numerous CCK-positive neurons, 

mainly in the pallium (Burgunder and Young 1990b; Tohyama and Takatsuji 1998), and 

abundant CCK-positive populations have been also reported using ISH in the pallium of 

birds (Maekawa et al. 2007; Lovell and Mello 2011). The CCK-positive neurons of the 

pallium are part of intracortical circuits, adding to thalamo-cortical CCK-positive 

circuits (Burgunder and Young 1988, 1990a). For instance, in the telencephalon of 

birds, CCK is involved in higher neural functions such as imprinting after hatching 

(Maekawa et al. 2007) or song regulation (Lovell and Mello 2011). Instead, no CCK 

peptide or mRNA expression has been reported in cells of the pallium of frogs (Petkó 

and Kovács 1996; Rourke et al. 1997), and some teleosts (Batten et al. 1990; Murashita 

et al. 2009), which represents a significant difference with the pallium of amniotes. 

Although mRNA expression of two CCKs is prominent in the telencephalon of the 

rainbow trout (Jensen et al. 2001) and flounder (Kurokawa et al. 2003), these authors 

did not investigate the regional expression. In the sea lamprey, no CCK positive cells 

were observed in the pallium or subpallium with IHC or ISH (present results). This 

represents a difference with teleosts and frog, which show CCK-ir cells in the ventral 

telencephalic area (Poecilia: Batten et al. 1990; goldfish: Himick and Peter 1994; frog: 

Petkó and Kovács 1996). In Lampetra fluviatilis, Suryanarayana et al. (2017) also noted 

the absence of CCK-like-ir cells in the pallium. Other important differences among 

vertebrates are related with the presence of CCK-positive perikarya in the olfactory bulb 

of mammals (Ingram et al. 1989; Tohyama and Takatsuji 1998; Gutièrrez-Mecinas et al. 

2005). High CCK mRNA levels were detected in the goldfish olfactory bulb (Peyon et 

al. 1999). However, no CCK-positive neurons were observed in the sea lamprey 

olfactory bulb, suggesting that this peptide is not involved in olfactory functions. 

 

Preoptic region and hypothalamus 

 The preoptic area and the hypothalamus (supraoptic and paraventricular nuclei, 

dorsomedial hypothalamic nucleus) of mammals contain numerous CCK-ir neurons 

(Vanderhaeghen et al. 1980; Tohyama and Takatsuji 1998; Crosby et al. 2015). The 
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dorsomedial hypothalamic nucleus is a region implicated in satiety and stress control. It 

is known that application of exogenous CCK modulates food intake and neuropeptide 

expression (Crosby et al. 2015). CCK also exerts actions over oxytocinergic neurons of 

the paraventricular nucleus (Cano et al. 2003). In birds, intraventricular CCK 

application inhibits feeding and also exerts effects (activation of Fos-like 

immunoreactivity) on nuclei of the hypothalamus (Boswell and Li 1998). In the preoptic 

region and the hypothalamus of teleosts, the presence of CCK-ir perikarya was reported 

in the entopeduncular nucleus, preoptic nucleus, anterior or posterior periventricular 

nucleus, lateral recess nucleus and lateral tuberal nucleus (Poecilia: Batten et al. 1990; 

goldfish: Himick and Peter 1994). This is consistent with the finding that the highest 

CCK mRNA levels of the goldfish brain were detected in the hypothalamus (Peyon et 

al. 1999). In goldfish, intraperitoneal injection of CCK-8 significantly decreased feeding 

relative to saline-injected controls (Himick and Peter 1994). In the rainbow trout, Jensen 

et al. (2001) also reported CCK mRNA expression in the saccus vasculosus, a 

neurovascular structure present in elasmobranches and in some bony fishes but not in 

lampreys and tetrapods. Our results in the sea lamprey did not reveal PmCCK mRNA 

expression in neurons of the preoptic region, but we found abundant expression in three 

hypothalamic nuclei, the ventral and dorsal hypothalamic nuclei and the nucleus of the 

postoptic commissure, which exhibit notable differences among them in cell size and 

PmCCK expression. The first two nuclei comprise PmCCK-8-positive CSF-c neurons, a 

cell type that has been reported in the posterior periventricular nucleus of the goldfish 

(Himick and Peter 1994). The possible functional significance of these lamprey 

hypothalamic populations in relation to feeding control has not been investigated yet, 

but our results reveal that PmCCK-8 is strongly expressed in the ventral and dorsal 

hypothalamic populations of non-feeding adults, judging both the intensity of the 

PmCCK hybridization signal and PmCCK-8 immunoreactivity. Adult sea lampreys at 

the stages investigated (young animals caught in the river prior to downstream 

migration to the sea and the mature upstream migrating adults) do not feed, so we 

speculate that the abundance of PmCCK-8 in hypothalamic nuclei might be related to 

feeding inhibition in these stages. How CCK expression in the larval hypothalamus is 

related to the filter-feeding behaviour needs also be investigated. 

 

Posterior tubercle  
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PmCCK-expressing neurons are observed in the ventral region of the posterior 

tubercle of the sea lamprey, both in larvae and adults, from where CCK-positive 

populations extend to the midbrain tegmentum. In lampreys, the posterior tubercle 

contains dopaminergic populations that project to the striatum (Pombal et al. 1997), 

whereas dopaminergic populations are lacking in the caudal diencephalon and 

mesencephalic tegmentum (Pombal et al. 1997; Pierre et al. 1997; Barreiro-Iglesias et 

al. 2010a). It has been hypothesized that posterior tubercle dopaminergic populations of 

lampreys and teleosts are functionally equivalent to the ventral tegmental 

area/substantia nigra midbrain dopaminergic populations that project to the basal 

telencephalon in mammals (Pombal et al. 1997; Rink and Wullimann 2002), and 

recently this dopaminergic population in lampreys was named “substantia nigra pars 

compacta” (Stephenson-Jones et al. 2012; Pérez-Fernández et al. 2014), although the 

homonymous mammalian nucleus mainly originates in the mesencephalic tegmentum 

(Hayes et al. 2011; Panman et al. 2014). In mammals, CCK-immunoreactivity is co-

expressed in some dopaminergic neurons of the ventral tegmental area and CCK and 

dopamine are co-released on their telencephalic targets (Jayaraman et al. 1990). There, 

CCK modulates dopamine release and dopamine-mediated reward, which has major 

implications for neurologic and psychiatric diseases (Beinfeld 2001). Our results in the 

sea lamprey do not reveal PmCCK-8 immunoreactivity in dopaminergic (TH-positive) 

neurons of the hypothalamus/posterior tubercle, which suggests that rewarding circuits 

of the basal forebrain of lampreys and mammals differ with regard to the use of CCK.  

 

Thalamus 

The thalamus (dorsal thalamus) contains numerous CCK-expressing neurons in 

mammals (Voigt and Uhl 1988; Burgunder and Young 1988, 1989a; De Belleroche et 

al. 1990; Senatorov et al. 1997; Giacobini and Wray 2008) and birds (Lowell and Mello 

2011; Wang et al. 2017). In mammals, CCK cells of the auditory thalamus and cerebral 

cortex are reciprocally connected and might be involved in seizure genesis (Senatorov 

et al. 1997). PmCCK-expressing neurons have been observed in the prethalamus 

(ventral thalamus) of lamprey (present results) and CCK-ir cells are also present in the 

ventral thalamus of the green molly (Batten et al. 1990). This suggests that the 

prethalamic CCK expression is a shared feature in fishes, although the projections and 

function of these prethalamic cells are not known. 

 



 

34 
 

Habenula 

 The innervation of the sea lamprey habenula by PmCCK-8-ir fibres is very 

selective, ending on the ventral region of the right habenula and on the left habenula.  

These two habenular regions are considered the homologue of the mammalian medial 

habenular nucleus (Stephenson-Jones et al. 2012). In rats, CCK-ir fibres also innervate 

the medial habenular nucleus, but not the lateral habenular nucleus (Tohyama and 

Takatsuji 1998). Present findings in the lamprey habenula add to other findings showing 

a similar pattern of alpha-transducin fibre innervation of the medial habenular nucleus 

homologue. These findings indicate the presence of direct CCK-ir pathways probably 

originating from hypothalamic or posterior tubercle populations, projecting selectively 

onto this habenular region. These projections were not noted by other studies (Yáñez 

and Anadón 1994; Stephenson-Jones et al. 2012; Grillner et al. 2018).   

 

Midbrain  

 Optic tectum. No PmCCK-expressing perikarya were observed in the sea 

lamprey optic tectum. This absence of tectal CCK-expressing neurons contrasts with the 

abundance of CCK mRNA-expressing cells reported in the optic tectum of some 

teleosts (rainbow trout: Jensen et al. 2001; flounder: Kurokawa et al. 2003). CCK 

expression was also reported by ISH in cells of the frog tectum (Rourke et al. 1997), 

although not with immunohistochemistry (Petkó and Kovács 1996). In the optic tectum 

of the adult sea lamprey, PmCCK-8-ir fibres were rather abundant, mostly in deep tectal 

layers. With regard to other vertebrates, the presence of CCK-ir fibres has been reported 

in the optic tectum of teleosts (Himick and Peter 1994), frogs (Petkó and Kovács 1996), 

and rat (superior colliculus: Kubota et al. 1983; Tohyama and Takatsuji 1998), 

suggesting that CCK is involved in modulation of tectal circuits of these vertebrates. 

Interestingly, there is a notable difference between adult lampreys and larval lampreys, 

which mostly lack tectal PmCCK-8-ir innervation, a difference probably related to the 

poor development of the tectum and the retina at this stage (de Miguel and Anadón 

1987; de Miguel et al. 1990; Villar-Cerviño et al. 2009, 2013). 

 Tegmentum. The PmCCK-expressing neurons of the midbrain tegmentum of the 

adult sea lamprey form two populations, one more dorsal located in the region of the 

Schober’s M5 nucleus (Schober 1964), which also contains GABAergic neurons 

(Meléndez-Ferro et al. 2002; Robertson et al. 2006) and another more ventral. Cells 

from the midbrain tegmental region give rise to projections to the optic tectum 
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(Robertson et al. 2006; de Arriba and Pombal 2007), pretectum (Capantini et al. 2017) 

and retina (Vesselkin et al. 1984), which may explain both the rich PmCCK-8-ir 

innervation of the tectum and the occasional presence of PmCCK-8-ir fibres observed in 

the adult sea lamprey retina (unpublished observations). In rats, the most densely 

packed CCK-ir cell population of the brain is found in the periaqueductal gray (Innis et 

al. 1979) and is probably involved in nociception (Innis and Aghajanian 1986). 

Midbrain PmCCK-expressing populations in the lamprey could correspond to those of 

the rat periaqueductal gray and might therefore have similar physiological roles. 

 

Hindbrain 

Dorsal isthmus. The adult sea lamprey isthmus contains two populations of 

PmCCK-expressing neurons, one in the dorsal isthmic grey and the other in the ventral 

reticular region. Considering the absence in the lamprey of a cerebellum comparable to 

that of gnathostomes (Lanoo and Hawkes 1997), the topology of the dorsal isthmic grey 

population is probably comparable to the CCK-expressing neuronal populations 

reported in the lateral parabrachial region of mammals, which project to the 

hypothalamus (Kubota et al. 1983; Tohyama and Takatsuji 1998; Hermanson et al. 

1998). Interestingly, dorsal isthmic cells show PmCCK mRNA expression and PmCCK-

8-ir only in adult lampreys, either young or upstream migrating. In the isthmus of 

larvae, we have not found evidence of any of these markers, indicating that in the 

isthmic region there is a profound change in PmCCK gene expression during 

transformation. This change in PmCCK-8 expression in these cells may be related to the 

major changes in feeding biology and head and gut anatomy accompanying the 

transition from larval and to adult lampreys. Major changes in expression of various 

neuronal markers not observed in larval eyes (opsins, GABA, 5-HT, dopamine, 

neuropeptides and calcium-binding proteins) have also been reported in the 

transforming lamprey retina related with the major lifestyle changes occurring during 

transformation (Anadón et al. 1998; Pombal et al. 2003; Villar-Cerviño et al. 2006; 

Villar-Cheda et al. 2006, 2008; Abalo et al. 2008; Cornide-Petronio et al. 2015).  

Neuronal population lateral to the visceromotor column. Immunohistochemical 

analysis of the larval dorsal isthmus reveals a conspicuous PmCCK-8-ir/GABA-ir tract 

coursing in the lateral walls of the hindbrain that bends to selectively innervate a 

glutamatergic neuronal population dorso-rostral to the I1 giant Muller cell. Since this 

population is located in the same region that in adults contains the dorsal isthmic 
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CCKergic neurons, we hypothesize that these fibres are contacting isthmic cells that 

will express PmCCK-8 after transformation. The larval CCK innervation of this 

neurochemically immature isthmic population appears analogous to the early presence 

of GABAergic retinopetal fibres in the retina of larvae, which appear to regulate the 

differentiation state of larval retinal cells before transformation (Anadón et al. 1998). 

With regard the PmCCK-8-ir tract that contacts the dorsal isthmic grey population in 

larvae, our immunohistochemical results indicate that the PmCCK-expressing neurons 

accompanying the visceromotor column originate this tract. This population may form 

part of an ill-defined primary viscerosensory/visceromotor region of the lamprey 

hindbrain (Koyama 2005). The facial-vagal primary sensory nuclei contain CCK-ir cells 

in teleosts (Batten et al. 1990; Himick and Peter 1994; Farrell et al. 2002), and the same 

was reported in the nucleus of the solitary tract of frog (Petkó and Kovács 1996) and rat 

(Kubota et al. 1983; Hökfelt et al. 1988; Tohyama and Takatsuji 1998). Topographical 

differences in lamprey CCKergic neuronal populations with regards those of teleosts, 

frog and mammals appear to be due to differences in rostrocaudal extension of the 

viscerosensory column. This column extends caudally from just in the region of the 

facial nerve entrance in lampreys, whereas in gnathostome vertebrates the 

gustatory/general visceral nuclei occupy a relatively more caudal position in the 

hindbrain. A similar difference is found with regards the visceromotor column, which is 

continuous from the level of the trigeminal nerve entrance till the caudal hindbrain in 

lampreys (Pombal et al. 2001; Pombal and Megías 2019), unlike the discontinuous 

visceromotor columns found in jawed vertebrates. In any case, the anatomy of the 

PmCCK-8-ir tract (ventral to the trigeminal descending root) and its target in the dorsal 

isthmus is reminiscent of the secondary gustatory/visceral tract of teleosts, which 

projects to a very conspicuous secondary gustatory/visceral nucleus in the isthmus. This 

teleost nucleus is considered homologous to nuclei of the mammalian parabrachial 

complex (see Yáñez et al. 2017).  

Rhombencephalic reticular formation. The presence of CCK-like-ir neurons in 

the posterior rhombencephalic reticular nucleus has been reported previously in adult 

lampreys (Brodin et al. 1988; 1989). These authors also found that some of these CCK-

ir reticular cells project to the spinal cord and these projections are part of the locomotor 

circuits (Van Dongen et al. 1985; Ohta et al. 1988; Parker 2000). The present ISH 

results reveal a column of small to medium-sized reticular cells that express PmCCK 

mRNA and are PmCCK-8-ir in both larvae and adults, confirming the 
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cholecystokinergic nature of these cells. Moreover, our double 

immunohistochemical/tract tracing experiments in larvae confirm that some of these 

PmCCK-8-ir neurons have descending projections to the spinal cord. Previous studies 

have also reported the presence of CCK-ir neurons in the lamprey spinal cord that were 

immunostained by some of the CCK antibodies used but not with others (Van Dongen 

et al. 1985; Ohta et al. 1988; Brodin et al. 1988). This led to Brodin et al. (1988) to 

suggest that some CCK antibodies used in these studies might cross-react with an 

unknown protein. Here, we were unable to confirm the presence of CCK-ir spinal cells 

using a specific PmCCK-8 antibody or of PmCCK mRNA expressing cells by ISH, 

which rules out the presence of intraspinal CCK-expressing cells in the sea lamprey. 

In addition to the PmCCK-expressing cells of the posterior rhombencephalic 

reticular nucleus, we have found a population of PmCCK-expressing small cells in the 

ventral isthmo-trigeminal reticular region of the adult sea lamprey. These cells may 

correspond to those observed in the middle rhombencephalic reticular nucleus of river 

and silver lampreys by Brodin et al. (1988), although the location of PmCCK-

expressing cells appears to be more rostral than those reported by these authors and are 

partially intermingled with 5-HT-ir isthmic cells. The development of the ventral 

isthmic 5-HT-ir neuronal population in sea lamprey suggests that it corresponds to a 

raphe nucleus whose cells migrate laterodorsally instead of towards the midline (Abalo 

et al. 2007), which is unlike the ventral and ventrolateral migration of neurons observed 

in the formation of raphe nuclei of basal jawed vertebrates (Carrera et al. 2008). CCK 

mRNA expression was observed in the dorsal raphe nucleus of zebra finch (Lovell and 

Mello 2011) and CCK-positive neurons were also found in some raphe nuclei of rat 

(van der Kooy et al. 1981; Mantyh and Hunt 1984; Monti 2010). Unlike the cells of the 

isthmo-trigeminal region that express serotonin early in sea lamprey larvae (Abalo et al. 

2007; Cornide-Petronio et al. 2013), we found no cell in this region expressing 

PmCCK-8 in larvae. As indicated above for the dorsal isthmic PmCCK-expressing 

population, the appearance of ventral PmCCK-expressing cells in adult lampreys 

appears to be delayed until metamorphosis when new structures and functions necessary 

for the adult lifestyle develop.   

 

Co-localization of CCK with other neurotransmitters  

GABA and Glu. Well-studied examples of CCK-GABA co-localization in 

mammals are interneurons of the cerebral cortex, hippocampus and amygdala 
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(McDonald and Pearson 1989; Kubota et al. 1994; Singec et al. 2002; Somogyi et al. 

2004). In the cortex, CCK is found in a small percentage of GABAergic interneurons, 

which are inhibitory (Xu et al. 2010). Since CCK is not expressed in cells of the 

lamprey telencephalon, we wondered if a similar co-localization with GABA is found in 

other PmCCK-8-expressing neurons of the brain. In double immunofluorescence 

experiments in larval brains, only some cells of the column lateral to the trigeminal and 

facial motor nuclei were GABA/CCK double-labelled, but co-localization was not 

observed in the other regions in which CCK cells and GABA-ir cells were co-

distributed. To the best of our knowledge, this is the first demonstration of co-

localization of GABA and CCK in neurons of a non-mammalian vertebrate. 

Comparison with mammals indicates that co-localization with GABA is not a general 

property of CCKergic neurons but of some particular cell types which largely differ 

between lampreys and mammals. Partial co-localization of GABA with other 

neurotransmitters (5-HT, dopamine, NPY) in some lamprey brain populations has also 

been reported (Parker et al. 1998; Rodicio et al. 2008; Barreiro-Iglesias et al. 2009a, 

2009b, 2010b).  

With regards the distribution of Glu (the main excitatory neurotransmitter in the 

brain) and CCK, in the brain of larval lampreys, we only found co-localization in cells 

of the medial nucleus of the posterior reticular formation. Previous studies in sea 

lamprey showed that vesicular Glu transporter is expressed in many reticular cells of 

this reticular region (Villar-Cerviño et al. 2013). In addition to the presence of a 

PmCCK-8/glutamatergic reticular population in the sea lamprey larval brain, the present 

results in adult lamprey further reveal a PmCCK-8/Glu positive dorsal isthmic 

population and a population of ventral hypothalamic cells. In mammals, double 

immunoreactivity to CCK and vesicular Glu transporter 1 (VGluT1) has been reported 

in numerous axon terminals of the hippocampus in a mouse model with recurrent, 

spontaneous seizures, indicating that some glutamatergic neurons express CCK (Wyeth 

et al. 2012). It appears that different GABAergic and glutamatergic populations in the 

sea lamprey express different combinations of neuropeptides, including CCK, indicating 

large differences in functional specialization. Unlike in mammals, where these double-

labelled populations are mainly found in telencephalic regions involved in higher 

functions, in the sea lamprey the double labelled cells appear to form part of more basic 

hindbrain and hypothalamic circuits, which is a major difference between these animals. 
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It remains to be investigated if similar GABA/CCK or Glu/CCK co-localization occurs 

in other non-mammalian vertebrates.  
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Tables 

Table 1. Animals used in each of the experiments. In some cases, serial sections from 

the same animal (colour coded) were used for different experiments. 

  Larvae Young 
Adults 

Mature 
adults 

RNA extraction 8 - - 
PmCCK ISH 6 5 3 

PmCCK-8 + 5HT 3 3 3 
PmCCK-8 + NPY 3 3 3 
PmCCK-8 + TH 3 3 3 

PmCCK-8+ GABA 4 2 - 
PmCCK-8 + Glut 4 2 - 
PmCCK-8 + SC 
Neurobiotin 4 - - 

Total: 31 10 6 
 

Table 2. Details on the antibodies used in this study. The PmCCK-8 antibody can be 

provided by the corresponding author upon reasonable request. 

Antigen Immunogen Manufacturer, species antibody was rainsed in, 
Catalogue #, RRID 

Dilution 

PmCCK-8 CDY(SO3)IGWMDF-
NH2 coupled to KLH 

Biomedal, rabbit polyclonal (not commercially 
available) 

1:200 

Tyrosine 
hydroxylase 

TH purified from 
PC12 cells 

Millipore, mouse monoclonal, Cat# MAB318, 
RRID:AB_2201528 

1:1,000 

GABA Purified GABA 
conjugated to BSA 

Sigma, mouse monoclonal, Cat# GB-69, 
RRID:AB_2314453 

1:1,200 

Glutamate Purified L-glutamate 
conjugated to BSA 

Swant, mouse monoclonal, Cat# mAB 2D7, 
RRID:AB_10013460 

1:1,000 

Serotonin  5-HT  conjugated to 
BSA 

Immunostar, rabbit polyclonal, Cat# 20080, 
RRID:AB_572263 

1:2,500 

Neuropeptid
e Y 

Synthetic porcine 
neuropeptide Y 

conjugated to KLH 

Sigma, rabbit polyclonal, Cat# N9528, 
RRID:AB_260814 

1:600 

Rabbit 
immunoglobi

n 

Rabbit 
immunoglobin 

Millipore, goat, Cy3-conjugated, Cat#AP132C, 
RRID:AB_92489 

1:200 

Rabbit 
immunoglobi

n 

Rabbit 
immunoglobin 

Thermo Fisher, donkey, Alexa Fluor 488-
conjugated, Cat# A21206, RRID:AB_2535792 

1:100 

Mouse 
immunoglobi

n 

Mouse 
immunoglobin 

Millipore, mouse, FITC-conjugated, Cat# 
AQ303F, RRID:AB_92818 

1:100 
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Figures 

Figure 1. Identification of a CCK-type precursor in the sea lamprey P. marinus. a. 

Nucleotide and protein sequence of the PmCCK precursor. The signal peptide sequence 

is shown in blue and cleavage sites that give rise to the putative PmCCK-8 peptide are 

shown in green. The putative PmCCK-8 mature peptide is indicated in red, with the C-
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terminal glycine, which is substrate for amidation, shown in orange. The tyrosine 

residue that is predicted to be sulfated in mature peptide is underlined. The primers used 

for cloning of a fragment of the PmCCK precursor cDNA are highlighted in yellow. b. 

Alignment of the C-terminal region of CCK-type precursor proteins from selected 

vertebrate species. Conserved residues are highlighted, with conservation in more than 

80% of sequences shown in black and with conservative substitutions shown in grey. 

Conserved known or predicted cleavage sites are highlighted in green. The peptides 

corresponding to CCK-8, CCK-22, CCK-33, CCK-39 and CCK-58 are shown above the 

alignment. c. Neighbour-joining tree showing relationships of CCK-type precursors in 

selected chordate species. The percentages of replicate trees in which the associated 

taxa clustered together in the bootstrap test (5000 replicates) are shown next to the 

branches. The analysis was conducted in MEGA 7. Species names in the alignment (b) 

are as follows: Pmar (P. marinus; highlighted with an arrow), Lcam (Lethenteron 

camtschaticum), Hsap (Homo sapiens), Rnor (Rattus norvegicus), Sscr (Sus scrofa), 

Ggal (Gallus gallus), Cpic (Chrysemys picta belli), Amis (Alligator mississippiensis), 

Lcha (Latimeria chalumnae), Ipun (Ictalurus punctatus), Amex (Astyanax mexicanus), 

Drer (Danio rerio), Saca (Squalus acanthias), Cmil (Callorhinchus milii). In the 

alignment (b) and phylogeny (c), species names are highlighted in taxon-specific 

colours: blue (agnathans), purple (mammals), orange (sauropsids), yellow (lobe-finned 

fishes), green (ray-finned fishes), pink (cartilaginous fishes), grey (urochordates). The 

accession numbers and the alignment of the sequences used to build this phylogenetic 

tree are shown in Supplementary Figure 1. 
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Figure 2. Schematic drawings of transverse sections of the brain of a larval sea lamprey 

showing the composite distribution of PmCCK perikarya (black circles) and fibres 

(dots, dashes) based on ISH and immunofluorescence methods on the right, and the 

main brain structures on the left. The level of sections is schematically indicated in the 

upper left figurine. For abbreviations, see the list. Scale bar = 100 µm (applies to a-i). 
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Figure 3. Schematic drawings of transverse sections of the brain of an adult sea 

lamprey showing the composite distribution of PmCCK perikarya (black circles) and 

fibres (dots, dashes) based on ISH and immunofluorescence methods on the right, and 

the main brain structures on the left. The level of sections is schematically indicated in 
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the upper left figurine. For abbreviations, see the list. Scale bar = 250 µm (applies to b-

r). 

 

 

Figure 4. Rostro-caudal transverse sections through the brain of a larval sea lamprey 

showing the distribution of PmCCK positive neuronal populations. a, section at the 

level of the postoptic commissure. b, detail of the ventral hypothalamus adjacent to the 

neurohypophysis. c-d, sections showing PmCCK populations in the prethalamus and 

dorsal hypothalamus. e-f, section showing mesencephalic PmCCK populations. g-i, 
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sections showing hindbrain PmCCK populations associated to motor nuclei and in 

rhombencephalic reticular regions. Panel f is a detail of e. For abbreviations, see the list. 

The arrow in a points to the midline. Arrows in b, and e to i point to the ventral midline. 

Dorsal is at the top. Note numerous melanophores (black cells) in the meninges. Scale 

bars = 200 µm (a, c, e, g, h, i), 100 µm (b, c, f). 
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Figure 5. Panoramic views of transverse sections through the prosencephalon and 

mesencephalon of a young adult lamprey in rostro-caudal sequence showing the 

location of PmCCK positive neuronal populations in the hypothalamus (a-c), 

prethalamus (d), nucleus of the posterior tubercle (e), nucleus of the medial longitudinal 

fasciculus (f) and mesencephalic tegmentum (g-i). For abbreviations, see the list. Dorsal 

is to the top. Note numerous melanophores (black cells) in the meninges. Scale bars = 

250 µm. 

 

 
Figure 6. Panoramic views of rostro-caudal transverse sections through the caudal optic 

tectum and rhombencephalon of a young adult lamprey showing the distribution of 

PmCCK positive neuronal populations (outlined arrows). a, section showing positive 

cells in the periventricular region of the dorsal isthmic grey. b-c, sections showing 

ventral isthmic populations. d, section showing cells just lateral to the trigeminal motor 
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nucleus. e-f, sections showing positive reticular cells close to the medial longitudinal 

fasciculus. h-i, sections showin a conspicuous population in the putative nucleus of the 

solitary tract. Thin arrows in c-i point to the ventral midline. For abbreviations, see the 

list. Dorsal is to the top. Note numerous melanophores (black cells) in the meninges. 

Scale bars = 250 µm. 
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Figure 7. Details of rostro-caudal transverse sections showing the PmCCK positive 

neuronal populations of a young adult lamprey. a-b, nucleus of the postoptic 

commissure and ventral hypothalamus. c, prethalamus. d, posterior tubercle nucleus. e, 

nucleus of the medial longitudinal fasciculus with the M1 cell. f, midbrain M5 nucleus. 

g. perioculomotor region. h, dorsal isthmic grey showing small periventricular cells and 

the band of larger cells extending laterally as a wing. i, ventral isthmus population. j, 

cells lateral to the trigeminal motor nucleus. k, small reticular cells over the medial 

longitudinal fasciculus. l, neurons in the putative nucleus of the solitary tract and near 

the vagal motor nucleus. Asterisks in e and k indicate large reticulospinal neurons. 

Outlined arrows indicate small positive cells just lateral to the caudal trigeminal 

motoneurons (j) and cells medial to the vagal motoneurons (l). Thin arrows point to the 

midline. For abbreviations, see the list. Dorsal is to the top. Scale bars = 100 µm. 
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Figure 8. Details of transverse sections showing the PmCCK positive neuronal 

populations of an upstream migrating adult lamprey. a-c, nucleus of the postoptic 

commissure and ventral hypothalamic populations. d, cells in prethalamus and dorsal 

hypothalamus. e, posterior tubercle populations. f, midbrain M5 and perioculomotor 

populations. h, ventral isthmic population. i, rhombencephalic reticular neurons over the 

mlf. j, positive population in the putative nucleus of the solitary tract. Asterisks in i 
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indicate large reticulospinal neurons. Thin arrows (a-c, e-f, g, i) point to the midline. In 

d and h the midline is to the right, in j the midline is to the left. Outlined arrow in g 

points to thick commissural fibres coursing in the caudal isthmus below the PmCCK 

ventral population. For abbreviations, see the list. Dorsal is to the top. Scale bars = 200 

µm. 
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Figure 9. Confocal photomicrographs of double immunostained sections of larval 

brains showing PmCCK-8-ir (CCK, red channel) neuronal populations and co-

distribution or co-localization with Glu or GABA immunoreactivities (green channel). 

a, photomicrograph and single channel details (squared area) showing PmCCK-8-ir 

CSF-c neurons co-distributed with glutamatergic cells in the ventral hypothalamus. b, 
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phomicrograph and single channel details (squared area) of the posterior tubercle 

showing co-distribution with Glu in the ventral small-celled PmCCK-8-ir population 

(outlined arrow). c, section of the isthmus showing the conspicuous ascending PmCCK-

8-ir tract (thin arrow) projecting specifically on a glutamatergic periventricular 

population (outlined arrow). Inset is a two-channel detail of the squared area. d, 

photomicrograph of the PmCCK-8-ir population (outlined arrow) at a caudal level of 

the trigeminal motor nucleus showing co-distribution with glutamatergic cells. Note the 

lateral location of the ascending PmCCK-8-ir tract (arrow). Insets, details of the squared 

area. e, section through the reticular formation showing co-localization with Glu in 

PmCCK-8-ir cells (outlined arrow). Insets, details of the squared area showing co-

localization in some cells (yellow arrowheads). f, section through the hypothalamus and 

details (from a different section in the same region) showing CSF-c PmCCK-8-ir cells 

co-distributed with GABA-ir cells. g, section through the mesencephalon showing 

perioculomotor PmCCK-8-ir cells (outlined arrow) close to the M3 cell (note the 

unspecific stained nucleus of the M3 cell). Insets, detail of the squared area showing co-

distribution with GABA-ir cells. h, lateral CCK-ir population (outlined arrow) at the 

level of the facial motor nucleus showing co-localization with GABA. Insets, details of 

the squared area showing co-localization in some cells (yellow arrowheads). i, section 

through the caudal reticular region showing co-location of PmCCK-8 and GABA in two 

small neurons (outlined arrow). Insets, details of the squared area showing double-

labelled cells (yellow arrowheads). The blue channel (b-i) represents bisbenzimide 

nuclear stain. For abbreviations, see the list. Dorsal is to the top.  Scale bars = 50 µm. 
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Figure 10. Confocal photomicrographs of double immunostained sections of larval 

brains showing PmCCK-8-ir (CCK, red channel) neuronal populations and co-

distribution with serotonergic (5-HT) or NPY-like-ir cells (green channel). a, section 

through the dorsal hypothalamus showing a few PmCCK-8-ir cells (outlined arrow) 

close to a large population of serotonergic CSF-c cells. b, section through the 

hypothalamus at the level of the neurohypophysis. Note abundant PmCCK-8-ir fibres in 

the neurohypophysis (thin arrows). b’, detail of the squared area in b showing co-

distribution of PmCCK-8-ir and 5-HT-ir cells. c, section through the posterior hindbrain 

reticular region showing co-distribution of 5-HT-ir and PmCCK-8-ir cells. d-d’’’, 
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section and details (squared area) of the ventral hypothalamus showing co-distribution 

of NPY-ir and PmCCK-8-ir neurons (outlined arrow). e, section of the caudal 

hypothalamus showing periventricular PmCCK-8-ir cells (outlined arrow) and 

numerous PmCCK-8-ir and NPY-ir processes in the lateral neuropil. f-f’’’, section and 

details (squared area) of the nucleus of the medial longitudinal fasciculus (outlined 

arrow) showing co-distribution of some NPY-ir and PmCCK-8-ir neurons. The blue 

channel (a-f) represents bisbenzimide nuclear stain. For abbreviations, see the list. 

Dorsal is to the top. Scale bars = 50 µm (a, b, c, d, e, f), 10 µm (b’, d’-d’’’, f’-f’’’).  

 

 
Figure 11. Confocal photomicrographs of sections of adult lamprey brains showing 

PmCCK-8-ir (red channel) neuronal populations. a, photomicrograph and detail 

(squared area, inset) of PmCCK-8-ir neurons of the ventral hypothalamus. b, PmCCK-
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8-ir neurons in the nucleus of the medial longitudinal fasciculus. Small arrows point to 

faintly stained cell nuclei of large cells. c, photomicrograph and detail (squared area, 

inset) of perioculomotor PmCCK-8-ir neurons below the M3 giant cell. Small arrows 

point to nuclei of oculomotoneurons. d-f, panoramic view (d) and details of the dorsal 

isthmus showing PmCCK-8-ir cells in the medial region (d,e) and extending laterally (f, 

see a detail of the squared area in the inset) and numerous fibres coursing in the dorsal 

isthmic commissure (dic) and in the dorsal isthmic grey (DIG). g, PmCCK-8-ir cells in 

the region lateral to the facial motor nucleus. h, section through the intermedio-lateral 

region of the caudal hindbrain showing numerous PmCCK-8-ir cells in the putative 

nucleus of the solitary tract. i, section through the medial part of the posterior reticular 

region showing PmCCK-8-ir cells (large arrows). The small arrows point to non-

specific staining of the nuclei of larger reticular cells. The blue channel (a-f) represents 

bisbenzimide nuclear stain. c-h are photomicrographs of sections from young adults, a-b 

and i from a mature upstream-migrating lamprey. For abbreviations, see the list. Dorsal 

is to the top. Scale bars = 50 µm (a, b, c, e, g, h, i), 100 µm (d, f). 

 

 



 

70 
 

Figure 12. Confocal photomicrographs of double immunostained sections of adult 

lamprey brains showing in a-c co-localization of Glu, (green channel) and PmCCK-8 in 

some cells and in d co-distribution of GABA-ir neurons (green channel) and PmCCK-8 

neurons (red channel). a, photomicrograph and details (squared area) showing co-

localization of PmCCK-8 and Glu in CSF-c neurons of the ventral hypothalamus. b, 

photomicrograph and details (squared area) showing co-localization of PmCCK-8 and 

Glu in periventricular neurons of the dorsal isthmic grey. c, section and details (squared 

area) through the posterior reticular region showing some double labelled small 

PmCCK-8-ir cells (yellow arrowheads). Cell nuclei show weak autofluorescence signal 

in the red channel. d, section through the ventral isthmus showing that small PmCCK-8-

ir cells (red arrowheads in upper detail) are not GABA-ir. Note single-stained GABA-ir 

cells (green arrowheads in lower inset). The blue channel (a-c) represents bisbenzimide 

nuclear stain. For abbreviations, see the list. Dorsal is to the top.  Scale bars = 50 µm (a, 

d), 25 µm (b), 100 µm (c). 
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Figure 13. Fluorescence photomicrographs showing the distribution of PmCCK-8-ir 

fibres (in black) in selected transverse sections of the brain of a young adult. a, 

tangential section through the caudal pallial hemisphere. b, section showing the 

different fibre densities in the striatum and medial and lateral pallium. c, section 

showing the high density of fibres in the hypothalamus at caudal levels and close the the 

neurohypophysis. d and e, sections through caudal levels of the left and right habenulas 

showing the regions with rich innervation (arrows). Arrowheads point to the 

interhabenular sulcus. f, section of the optic tectum showing thin layers of PmCCK-8-ir 

fibres (arrows) in the periventricular grey and scarce fibres in outer region. g, section 

showing fibres in the midbrain tegmentum. h, section of the ventro-rostral isthmus 

showing rich PmCCK-8-ir innervation in regions dorsal to the interpeduncular nucleus. 
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i, section through the region ventrolateral to the facial motor nucleus showing the 

conspicuous longitudinal tract of PmCCK-8-ir fibres (asterisk, arrows). Colour 

photomicrographs were transformed to grey-scale, inverted and adjusted for brightness 

and contrast. Note that in fluorescence photomicrographs with a wide band filter cube 

neurons show faint red autofluorescence seeming pale grey. For abbreviations, see the 

list. Dorsal is to the top.  Scale bars = 100 µm. 

 

 
Figure 14. Confocal (a,b,e) and fluorescence photomicrographs (c,d) of transverse 

sections of brains of experimental larvae injected with neurobiotin in the spinal cord 

(SC) and immunostained with the PmCCK-8 antibody. a, section through the posterior 

reticular region showing a retrogradely labelled PmCCK-8-ir cell (arrow and detail in 

the inset). Note the thick diameter of mlf axons. b, group of PmCCK-8-ir cells (arrow) 

close to the lateral dendrite of a Mauthner cell. c, section through the isthmus showing 

the projection of a conspicuous PmCCK-8-ir tract (outlined arrow) on a periventricular 

nucleus (double arrow) that is dorsal to big retrogradely labelled reticular neurons. d, 

section through the midbrain tegmentum showing PmCCK-8-ir cells (arrows) that lie 

dorsal and ventral to the labelled M3 cell. e, section through the caudal diencephalon 

showing the relation of PmCCK-8-ir cells (arrows; nucleus of the medial longitudinal 

fasciculus) to the labelled giant M1 and M2 cells. The vertical bars (a, b, d, e) indicate 

the midline. For abbreviations, see the list. Dorsal is to the top. Scale bars = 50 µm (a, 

b), 100 µm (c, d), 200 µm (e). 
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Supplementary Figure 1. Alignment of selected CCK precursors from chordates used 

for construction of the phylogenetic tree in figure 1. Conserved residues are highlighted. 

Conservation in more than 70% of sequences is highlighted in black, conservative 

substitutions are highlighted in grey. Species names and accession numbers are as 

follows: Hsap (Homo sapiens; P06307), Rnor (Rattus norvegicus; P01355), Sscr (Sus 

                                    *               * 
Hsap  sp_P06307        1 -----------MNSGVCL---CVLMAVLAAGA---------------------LTQPVPP 
Rnor  sp_P01355        1 -----------MNGGLCL---CVLMAVLAAGT---------------------LAQPVPP 
Sscr  sp_P01356        1 -----------MKCGVCL---CVVMAVLAAGA---------------------LAQPVVP 
Ggal  sp_Q9PU41        1 -----------MYGGICI---CVLLAALSVSS---------------------LGQQPAG 
Cpic  XP_005278641.1   1 MM--------AMYSGICI---YMFLAMLSTSS---------------------FGQQATG 
Cpic2 XP_005278642.1   1 -----------MYSGICI---YMFLAMLSTSS---------------------FGQQATG 
Amis  KYO43311.1       1 MAQDQICPEEAMYSGICI---CVFLAALATIS---------------------FGQQSTG 
Lcha  XP_006013099.1   1 -----------MYSGICI---CMFLAVLSMGC---------------------FGQQTTG 
Saca  CAB10585.1       1 -----------MNSGICV---CVFLAVLSSGC---------------------MGKLATG 
Cmil  XP_007895078.1   1 -----------MNNGICV---CVFLAVLSSGC---------------------VGRLADG 
Ipun  XM_017484277.1   1 -----------MNCGVCV---CVLLAALSVTF---------------------AARTRSS 
Drer  XP_002665661.2   1 -----------MNSGVCV---CVILAALSVSV---------------------------- 
Amex  XP_022531953.1   1 -----------MNSGVCV---CALLAALSVSC---------------------LARQHLP 
Pmar  ADJ57604.1       1 -----------MRNSLYL--GWLLLAALSISGCLALPMIRSGAPRERERLHAELARDDVP 
Lcam  APJL01044986.1   1 -----------MRNSLYL--GWLLLAALSISGCLALPMIRSGAPRERERLHAELARDDV- 
Cint  NP_001027711.1   1 -----------MGSNIVIYFSIIVIVTLNVNGVPASDLFKS------------VSQYHI- 
 
                                                *                           * 
Hsap  sp_P06307       26 -ADPAGSGLQRAEEA---PRRQLRVSQRT------------DGESRAHLGALLARYIQQA 
Rnor  sp_P01355       26 -ADSAVPGAQE-EEA---HRRQLRAVQKV------------DGESRAHLGALLARYIQQA 
Sscr  sp_P01356       26 -VEAVDPMEQRAEEA---PRRQLRAVLRP------------DSEPRARLGALLARYIQQV 
Ggal  sp_Q9PU41       26 -SHDGSPVAAELQQSLTEPHRHSRAPSSAGPLKPAPRL-DGSFEQRATIGALLAKYLQQA 
Cpic  XP_005278641.1  29 -SHNENPVATELEQSLTEHHRHVRVPSSAGQLKPIQRL-DGNVDQKANIGALLAKYLQQA 
Cpic2 XP_005278642.1  26 -SHNENPVATELEQSLTEHHRHVRVPSSAGQLKPIQRL-DGNVDQKANIGALLAKYLQQA 
Amis  KYO43311.1      37 -FHNANPVAPELEQSLTEHHRHVRTPSSASQLRSVQRV-DGNVDQRANIGALLTKYLQQA 
Lcha  XP_006013099.1  26 -SNNDSLMAGDTEQRFTTHERHVRAAPSSGQLKPFPKL-EGNPDQRANLGALLTKYLQQA 
Saca  CAB10585.1      26 -SDDGGPTGSELKQSVAMRQRQIRETQSID-LKPLQ-----DSEQRANLGALLTRYLQQV 
Cmil  XP_007895078.1  26 -SDYGSPIASEVEENLTMQQKQTRETQSLDHLKPFQMG-RFNKEEKPNLGGLLTRYLQQV 
Ipun  XM_017484277.1  26 -PAQQENDALPLQMD--------RSSVSAG----------HDANPRANLNELLARLI--S 
Drer  XP_002665661.2  19 -SCASRPVSDERSLS---ARRLARSASLTL-QQPLPPAGDIQPDTRANLSQLLAKLIS-S 
Amex  XP_022531953.1  26 -LEQEAGNALPSQMEV--GLRVSRSESLAGPVKPLPIA-EDQADTRANLSELLARLI--S 
Pmar  ADJ57604.1      48 MPGALVHLADETEEAGERHFLPLRQSLSLAAQDPL-----QESDNSPQFRLLRDRMRAYL 
Lcam  APJL01044986.1  47 -PGALGHLADETEEAGERHFMPLRRSLSLAAQDPL-----QESDNSPQFRLLRDRMRAYL 
Cint  NP_001027711.1  37 -PRSKVINKETVTKPLQFQRAICRLLQKLG----------EETFARLSQSELEAKQLDLI 
 
                                                   *    ** * ****** *      *  
Hsap  sp_P06307        70 RK----APSGRMSIVKN-LQNLDPSH-RISDRDYMGWMDFGRRSAEEYEY-PS 
Rnor  sp_P01355        69 RK----APSGRVSMIKN-LQSLDPSH-RISDRDYMGWMDFGRRSAEEYEY-TS 
Sscr  sp_P01356        70 RK----APSGRMSVLKN-LQGLDPSH-RISDRDYMGWMDFGRRSAEDYEYPSS 
Ggal  sp_Q9PU41        84 RK----GSTGRFSVLGNRVQSIDPTH-RINDRDYMGWMDFGRRSAEEYEY-SS 
Cpic  XP_005278641.1   87 RK----GPTGRISMMGNRVQNIDPTH-RINDRDYMGWMDFGRRSAEEYEY-SS 
Cpic2 XP_005278642.1   84 RK----GPTGRISMMGNRVQNIDPTH-RINDRDYMGWMDFGRRSAEEYEY-SS 
Amis  KYO43311.1       95 RK----GPTGRISIMGNRVQSIDPTH-RINDRDYMGWMDFGRRSAEEYEY-SS 
Lcha  XP_006013099.1   84 RR----GSSGRYALLGSKAQNLDSNH-RINDRDYMGWMDFGRRSAEEYEY-SS 
Saca  CAB10585.1       79 RK----GPLGRGTLVGTKLQNMDPSH-RIADRDYMGWMDFGRRSAEEYEY-AS 
Cmil  XP_007895078.1   84 RK----GSLAKNALAGNKLQKVDNSH-RLSDRDYMGWMDFGRRSAEEYEY-LS 
Ipun  XM_017484277.1   64 RK----GSVRRNSMANSKASALSANH-RIKDRDYLGWMDFGRRSAEEYDY-SS 
Drer  XP_002665661.2   73 KK----GSVRRNSSMNSRAN--SVNH-RIKDRDYVGWMDFGRRSAEEYEY-SS 
Amex  XP_022531953.1   80 RKV--PASGKRGS---------TVNH-RIKDRDYLGWMDFGRRSAEEYEY-SS 
Pmar  ADJ57604.1      103 QQ-------GAAQLVPVRVPPRDVGH-RLTDRDYIGWMDFGKRSAMDEEY-YS 
Lcam  APJL01044986.1  101 QQ-------GAAQLVPVRVPPRDVGH-RLTDRDYIGWMDFGKRSAMDQEY-YS 
Cint  NP_001027711.1   86 KTCYQANSFGDNE---------NQGHMQRMDRNYYGWMDFGKRAIEDVDY-EY 
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scrofa; P01356), Ggal (Gallus gallus; Q9PU41), Cpic (Chrysemys picta belli; 

XP_005278641.1, XP_005278642.1), Amis (Alligator mississippiensis; KYO43311.1), 

Lcha (Latimeria chalumnae; XP_006013099.1), Ipun (Ictalurus punctatus; 

XM_017484277.1), Amex (Astyanax mexicanus; XP_022531953.1), Drer (Danio rerio; 

XP_002665661.2), Saca (Squalus acanthias; CAB10585.1), Cmil (Callorhinchus milii; 

XP_007895078.1), Pmar (P. marinus; ADJ57604.1), Lcam (Lethenteron 

camtschaticum; APJL01044986.1), Cint (Ciona intestinalis; NP_001027711.1). 

 

 

Abbreviations 

5-HT serotonin 

ALL anterior lateral line nerve 

ARRN anterior rhombencephalic reticular nucleus 

B3 rhombencephalic Müller cell 3 

Ch optic chiasm 

dc dorsal cell 

DC dorsal column 

DCN dorsal column nucleus 

DHyp dorsal hypothalamus 

dic  dorsal isthmic commissure 

DIG dorsal isthmic grey 

DN dorsal nucleus of the octavolateralis area 

dV descending trigeminal root 

Em prethalamic eminence 

fr fasciculus retroflexus 

GABA gamma-aminobutyric acid 

Gl glomerular layer of olfactory bulb 

Ha habenula 

NH  neurohypophysis 

Hyp hypothalamus 

I1 giant isthmic neuron 

IIId oculomotor nucleus, dorsal subnucleus  

III-l oculomotor nucleus, lateral subnucleus  

IP interpeduncular nucleus 



 

75 
 

IS isthmus 

ISd dorsal isthmus region 

ISv ventral isthmus region 

IV trochlear nucleus 

IXm  glossopharyngeal motor nucleus 

lHa left habenula 

LHyp lateral hypothalamus 

LP lateral pallium 

LPd lateral pallium, dorsal part 

LPv lateral pallium, ventral part 

LT lamina terminalis 

M mesencephalon 

M1-3 giant Müller cells 1-3 

M5 nucleus M5 of Schober 

Ma mammillary nucleus 

mlf medial longitudinal fasciculus 

MN medial nucleus of the octavolateralis area 

MP medial pallium 

Mr mammillary recess 

MRRN  medial rhombencephalic reticular nucleus 

Mth Mauthner neuron 

NH neurohypophysis 

Nmlf nucleus of the medial longitudinal fasciculus 

OB olfactory bulb 

OLA octavolateralis area 

OMa octavomotor anterior nucleus 

ON optic nerve 

OT optic tectum 

ot optic tract 

P pineal organ 

PC posterior commissure 

pl choroid plexus 

PLL posterior lateral line nerve 

Pm Petromyzon marinus 
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PO preoptic nucleus 

PoC nucleus of the postoptic commissure 

PoR postoptic recess 

prIII perioculomotor region 

PRRN posterior rhombencephalic reticular nucleus 

PT pretectum 

PTh prethalamus 

PTN posterior tubercle nucleus 

Rh rhombencephalon 

rHa right habenula 

N-SC Neurobiotin labelling from the spinal cord 

NPY neuropeptide Y 

SC spinal cord 

ShL subhippocampal lobe 

sl sulcus limitans 

So nucleus of the solitary tract 

SOC spino-occipital motor column 

Sp septum 

Str striatum 

TH tyrosine hydroxylase 

Th thalamus 

TS torus semicircularis 

v ventricle 

VIIm facial motor nucleus 

VIII octaval nerve 

VHyp ventral hypothalamus 

Vm trigeminal motor nucleus 

VN ventral nucleus of the octavolateralis area  

Vs trigeminal spinal nucleus 

Xm vagal motor nucleus 

zl zona limitans intrathalamica 

 


