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1 Introduction

This survey is based on a series of lectures given during the School on Random Schrödinger
Operators and the International Conference on Spectral Theory and Mathematical Physics
at the Pontificia Universidad Catolica de Chile, held in Santiago in November 2014. As
the title suggests, the presented material has two foci: Harmonic analysis, more precisely,
unique continuation properties of several natural function classes and Schrödinger operators,
more precisely properties of their eigenvalues, eigenfunctions and solutions of associated
differential equations. It mixes topics from (rather) pure to (rather) applied mathematics,
as well as classical questions and results dating back a whole century to very recent and even
unpublished ones. The selection of material covered is based on the selection made for the
minicourse, and is certainly a personal choice corresponding to the research interests of the
authors.

Emphasis is layed not so much on proofs, but rather on concepts, questions, results,
examples and applications. In several cases, however, we do supply proofs of special cases
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or sketches of proofs, and use them to illustrate the underlying concepts. As the minicourse
Harmonic Analysis and Random Schrödinger Operators itself, we designed the text to be
accessible to advanced graduate students which have already aquired some experience with
partial differential equations. On the other hand, even experts in the field will find new
results, mostly toward the end of the text.

The line of thought starts with discussing unique continuation properties of holomorphic
and harmonic functions. Already here we illustrate different notions of unique continuation.
Hereafter, elliptic partial differential equations are introduced and unique continuation prop-
erties of their solutions are discussed. Then we shift our attention to domains and differential
equations with an inherent multiscale structure. The question here is, whether appropriately
collected local data of a function give good estimates to global properties of the function. In
the framework of harmonic analysis the Whittaker–Nyquist–Kotelnikov–Shannon Sampling
and the Logvinenko-Sereda Theorem are examples of such results. From here it is natural to
pursue the question whether similar and related results can be expected for (classes of) so-
lutions of differential equations. This leads us to quantitative unique countinuation bounds
which are obtained by the use of Carleman estimates. In the context of random Schrödinger
operators they have risen to some prominence recently since they facilitated the resolution
of some long standing problems in the field. We present several unique countinuation theo-
rems tailored for this applications. Finally, after several results on the spectral properties of
random Schrödinger operators, an application to control of the heat equation is given.

1.1 Unique continuation

Intuitively, a unique continuation property describes the phenomenon that certain global
properties of appropriately chosen function classes are uniquely determined by knowledge of
the function locally, that is on arbitrarily small balls around a reference point. The following
definition is classic. We denote by B(x, r) = {y ∈ R

d | |x− y| < r} the open ball with center
x ∈ R

d and radius r > 0. If x = 0 we write B(r) instead of B(0, r).

Definition 1.1. Let Ω ⊂ R
d be open. A class of functions F = F(Ω) ⊂ {f : Ω → C |

f measurable} satisfies the

• (weak) unique continuation property, if every f ∈ F which vanishes on a nonempty
and open subset W ⊂ Ω vanishes everywhere. In other words, we have the implication

∃W ⊂ Ω nonempty and open, with f ≡ 0 on W ⇒ f ≡ 0. (1)

• strong unique continuation property, if every f ∈ F which vanishes of every polyno-
mial order at some point x0 ∈ Ω vanishes everywhere. In other words, we have the
implication

∃x0 ∈ Ω such that ∀N ∈ N : lim
ε→0

ε−N

∫

B(x0,ε)
|f |dx = 0 ⇒ f ≡ 0. (2)

In the present manuscript we also introduce the following notions which have been con-
sidered previously in the literature and/or are suitable for the discussion which follows.

Remark 1.2. Let Ω ⊂ R
d be open. A class of functions F ⊂ {f : Ω → C | f measurable}

satisfies the
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• semi-strong unique continuation property, if every f ∈ F which vanishes of some expo-
nential order at some point x0 ∈ Ω vanishes everywhere. In other words, we have the
implication

∃x0 ∈ Ω and a, b > 0 with lim
ε→0

eaε
−b

∫

B(x0,ε)
|f |dx = 0 ⇒ f ≡ 0. (3)

• very strong unique continuation property of order N0 > 0, if there is an ε-polynomial
lower bound of order N0 for the L1-norm of 0 6≡ f ∈ F on ε-balls. More precisely,
if for each x0 ∈ Ω and 0 6≡ f ∈ F there is a constant C = C(x0, f) and a radius
ε0 = ε0(x0, f) ∈ (0,∞) such that

CεN0 ≤
∫

B(x0,ε)
|f |dx for all ε ∈ (0, ε0). (4)

The notion “weak” to “very strong” makes sense since (4) ⇒ (2) ⇒ (3) ⇒ (1). In fact, the
only non-trivial implication is (4) ⇒ (2), so let us give a short proof.

Proof of (4) ⇒ (2). Assume that f satisfies the very strong unique continuation property
of order N0 ∈ N and that there is x0 ∈ Ω such that for all N ∈ N (hence in particular for
some N > N0) we have limε→0 ε

−N
∫

B(x0,ε)
|f |dx = 0. Using f 6≡ 0, we find by the very

strong unique continuation property limε→0 ε
−N

∫

B(x0,ε)
|f |dx ≥ limε→0Cε

N0−N = ∞ since
N > N0, a contradiction.

It makes sense to consider uniform variants of these properties, for instance uniform
w.r.t. the center of the ball x0 or uniform w.r.t. the functions in the set F . Sometimes such
uniformity is easy to achieve, somtimes not. A nice example where compactness and peri-
odicity are used to enhance a simple unique continuation property to a unique continuation
property, uniform over several scales, is given in Section 4 of [CHK03].

In particular one has the following uniform variants of the very strong unique continuation
property of order N0: We say that a class of functions F ⊂ {f : Ω → C | f measurable}
satisfies the

• very strong unique continuation property of order N0, uniform in the base point, if for
every 0 6≡ f ∈ F there is a constant C = C(f) and a radius ε0 = ε0(f) ∈ (0,∞) such
that

CεN0 ≤
∫

B(x0,ε)
|f |dx for all x0 ∈ Ω and ε ∈ (0, ε0).

It may well happen that the behaviour of functions in F near the boundary of Ω is less
regular than, say, the r-interior Ωr := {x ∈ Ω | dist(x, ∂Ω) > r} for some r > 0. In this case
we would not have the above type of uniformity. We also say that F satisfies the

• very strong unique continuation property of order N0, uniform in the set F , if for every
x0 ∈ Ω there is a radius ε0 = ε0(x0) ∈ (0,∞) such that for all 0 6≡ f ∈ F there is a
constant C = C(x0, f) ∈ (0,∞) with

CεN0 ≤
∫

B(x0,ε)
|f |dx for all ε ∈ (0, ε0).

3



• very strong unique continuation property of order N0, uniform in the base point and
in the set F , if there is a radius ε0 ∈ (0,∞) such that for every 0 6≡ f ∈ F there is a
constant a constant C = C(f) ∈ (0,∞) with

CεN0 ≤
∫

B(x0,ε)
|f |dx for all x0 ∈ Ω and ε ∈ (0, ε0). (5)

One might wonder whether the constant C = C(f) could be chosen uniform in F , as well.
This cannot be expected if F is closed under scalar multiplication, as it is the case for vector
spaces, since then for sufficiently small λ > 0

∫

B(x0,ε)
|λf |dx = λ

∫

B(x0,ε)
|f |dx < CεN0 .

Thus we see that it will be natural to complement the requirement f ∈ F with some kind of
normalization, e.g.

∫

|f |p = 1. Alternatively, the normalization can be already taken care of
in the function class F . Then we would be dealing, e.g., with the unit sphere in a normed
linear space. In this situation one can obviously drop the condition f 6≡ 0 which appeared
several times above.

Remark 1.3. Another way to allow F to be a vector space would be to multiply the left hand
side of (5) with the norm of f . Later, in Section 3, we will do this, but in an L2-setting.
This means that we will study inequalities of the form

CεN0

∫

Ω
|f |2dx ≤

∫

B(x0,ε)
|f |2dx for all x0 ∈ Ω and ε ∈ (0, ε0) (6)

and similar expressions where B(x0, ε) has been replaced by a more general set, e.g. a disjoint
union of ε-balls. We will call estimates as in (6) quantitative unique continuation estimates.

1.2 Harmonic and holomorphic functions

Example 1.4 (Polynomials of degree one on R). Let F = P1(R) be the space of affine
polynomials on R with degree at most one, that is ∆f = 0, where ∆ denotes the Laplace
operator or the second derivative. Every f ∈ P1(R) can be written as f(x) = ax+ b where
a, b ∈ R. Now there are three possibilities:

• If a 6= 0, there is exactly one root and f vanishes on no ball B(x0, ε)

• If a = 0, b 6= 0, then f never vanishes.

• If a = 0, b = 0, then f ≡ 0 on R
d.

Thus, F satisfies the weak unique continuation property as well as the semi-strong and the
strong unique continuation property. Moreover, F satisfies the very strong unique continu-
ation property of order 2 since a non-zero function f ∈ P1(R) can vanish at most of order
1.

Example 1.5 (Harmonic and holomorphic functions). One can generalize this to higher
dimensions and an open connected Ω ⊂ R

d. The space of harmonic functions on Ω is
{f ∈ C2(Ω) | ∆f ≡ 0}. It is known, see for example [Rud70], that such functions are real
analytic and thus the space of harmonic functions satisfies the weak, the semi-strong and
the strong unique continuation property. The same holds for holomorphic functions C → C.
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By definition, the various unique continuation properties above concern local behaviour
of a function at a point. Considering certain natural classes of functions one observes that
there is a connection to global properties, for instance the growth behaviour at infinity.

Example 1.6 (A counterexample). For k ∈ N let fk : C → C, z 7→ zk. Since fk is
holomorphic, it is analytic and hence satisfies the weak, the semi-strong and the strong
unique continuation property. For large k, however, fk vanishes arbitrarily fast at z0 = 0.
Thus, for any N0 the space {f : C → C | f holomorphic} fails to satisfy the very strong
unique continuation property (4) of order N0. Furthermore, all fk are uniformly bounded
on B(1) by 1. Thus, a local bound is not sufficient for very strong unique continuation.
However, we observe that for large k, fk grows fast at infinity.

One might hope that nonzero holomorphic functions cannot vanish faster at 0 than they
grow at infinity. This observation is made more precise in the following theorem and its
corollary. It is known as Hadamard’s three circle theorem and can for instance be found in
[Lit12], where it is stated as an already known result.

Theorem 1.7 (Hadamard’s three circle theorem). Let r1 < r2 < r3, f be a holomorphic
function on the annulus r1 ≤ |z| ≤ r3 and Mf (ri) := max|z|=ri|f(z)|. Then

log

(

r3
r1

)

logMf (r2) ≤ log

(

r3
r2

)

logMf (r1) + log

(

r2
r1

)

logMf (r3). (7)

If we choose ε = r3/r2 = r2/r1, then (7) becomes

2 logMf (r2) ≤ logMf (εr2) + logMf (r2/ε).

Thus the theorem is a statement about convexity of the map log(r) 7→ logMf (r).

Corollary 1.8. Let f : C → C be holomorphic. Assume that f grows slower at ∞ than it
vanishes at 0, i.e. we have

lim inf
ε→0

Mf (ε) ·Mf (1/ε) = 0.

Then f ≡ 0.

Proof. Let z0 ∈ C with |z0| = 1. We apply Hadamard’s three circle theorem with r1 = ε,
r2 = 1 and r3 = 1/ε and obtain for all ε > 0

2 logMf (1) ≤ logMf (ε) + logMf (1/ε)

and thus
|f(z0)|2 ≤Mf (1)

2 ≤Mf (ε) ·Mf (1/ε).

Letting ε tend to 0, we find by our assumption that f ≡ 0 on {z ∈ C | |z| = 1}. Since f
is holomorphic, f ≡ 0 on {z ∈ C | |z| ≤ 1} by the maximum principle. By analyticity we
obtain f ≡ 0.
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Instead of holomorphic functions fk : C → C, z 7→ zk, we could also have considered
the harmonic functions Fk : R2 → R

2, (x, y) 7→ Re(x+ iy)k where we use the identification
C ∼= R

2. Since there is a natural connection between holomorphic and harmonic functions,
namly the real and imaginary part of every holomorphic function are harmonic, we would
have found similar relations between vanishing at 0 and growth at ∞ for harmonic functions
on R

2.
Another example concerns the spherical harmonics on the sphere, cf. [dV85].

Example 1.9 (Spherical harmonics). Let S
2 := {x ∈ R

3 | |x| = 1} be the 2-sphere. There
is a special orthonormal base of L2(S2), called the spherical harmonics {Yl,m | l ∈ N,−l ≤
m ≤ l} such that

{

−∆Yl,m = l(l + 1)Yl,m and
∂
∂φYl,m = imYl,m,

where ∂/∂φ denotes the derivative with respect to the φ coordinate in spherical coordinates.
We study the sequence Yl,l, l ∈ N. In spherical coordinates they are of the form

Yl,l = cl cos(θ)
l exp(ilφ), θ ∈ [−π/2, π/2], φ ∈ [0, 2π),

where cl > 0 is a normalization factor.
Letting Er be a tubular neighborhood around the equator, that is Er := {(σ, θ) ∈ S

2 |
|θ| < r}, then the mass of Yl,l concentrates exponentially around the equator if l tends to
∞, i.e. there is C = C(r) > 0 such that

lim
l→∞

eC(r)l

∫

S2\Er
Yl,l = 0. (8)

The interesting points to consider are at the poles and we will consider the order of vanishing
of the eigenfunctions at these points.

If we consider the class of functions F = {Yl,l | l ∈ {1, . . . , lmax}} for some lmax ∈ N, then
the uniform very strong unique continuation principle as in (5) is satisfied, as the following
calculation shows.

Since the only zero of Yl,l is at the pole, we have for all l = 1, ..., lmax, all x0 ∈ S
2 and all

ε < π/2
∫

B(x0,ε)
|Yl,l|dx ≥

∫

B(p,ε)
|Yl,l|dA,

where p is a pole (by symmetry, we can assume that p is the north pole). Note that balls on
the sphere are defined with respect to the geodesic distance. Now,

∫

B(p,ε)
|Yl,l|dx =

∫ 2π

0
dφ

∫ π/2

π/2−ε
dθcl cos(θ)

l sin(θ)

= 2πcl

∫ π/2

π/2−ε
cos(θ)l sin(θ)

=
2πcl
l + 1

cos(π/2 − ε)l+1 =
2πcl
l + 1

sin(ε)l+1.
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The function ε 7→ sin(ε)l+1 vanishes of order l + 1 at 0. Thus for every Yl,l, there is an
l + 1-polynomial lower bound, uniform on S

2, i.e. there is C = C(Yl,l) > 0 such that

∫

B(x0,ε)
|f | ≥ C(f)εl+1 for all x0 ∈ S

2, ε < π/2.

Since in this case, F is a finite set, we can choose C = minlmax
l=1 C(Yl,l) and find the uniform

very strong unique continuation principle of order N0 = l + 1 as in (5).
On the other hand the set {Yl,l | l ∈ N} does not satisfy the uniform very strong unique

continuation principle. In fact, given N0 > 0, we see by the above calculation that for
l0 = ⌈N0⌉ ∈ N, the function Yl0,l0 vanishes of order l0+1 > N0 at the poles, thus (5) cannot
hold.

The limit in (8) tells us that for high energies (high eigenvalues) the eigenfunctions are
more and more unevenly distributed on the sphere. Of course, the choice of eigenbasis for the
Laplace operator on the sphere and the ’diagonal’ subsequence plays a crucial role here. Since
the eigenvalues of the Laplacian on the sphere are highly degenerate one has a lot of freedom
when choosing an orthonormal basis of eigenfunctions. With an appropriate choice of basis
and enumeration, it may be well possible that eigenfunctions for high eigenvalues do obey
an equidistribution or quantum ergodicity property on the sphere excluding a behaviour like
(8). In fact, this has been established to hold almost surely for a random choice of eigenbasis
by Zelditch.

Note that the l-th eigenvalue level of −∆ on S
2 is (2l − 1)-fold degenerate. Thus, the

set of all possible choices of orthonormal bases of L2(S2), consisting of eigenfunctions of ∆,
can be identified with the product U(1)×U(3)×U(5)× ... where U(n) denotes the unitary
group on C

n. This product naturally carries the structure of a probability measure, the
Haar measure µHaar, see [Zel92] for details. The following result can be found in [Zel92]. We
formulate a simplified version for multiplication operators.

Theorem 1.10 (Almost sure quantum ergodicity on the sphere). Let f ∈ C∞(S2). For
µHaar-almost every orthonormal basis (φj)j∈N of −∆-eigenfunctions on L2(S), that is −∆φj =
Ejφj , we have

lim
E→∞

1

N(E)

∑

j∈N;Ej≤E

|〈φj , fφj〉 − f̄ |2 = 0

where f̄ = Vol(S2)−1
∫

S2
f(x)dx and N(E) ist the number of eigenvalues not exceeding the

energy E.

It is much harder to find a specific, deterministic eigenbasis for the Laplacian on the
sphere with the quantum ergodicity property. A corresponding conjecure and first steps of
its proof can be found in [BSSP03]. Using a different method a deterministic eigenbasis with
the quantum ergodicity property was found very recently in [BML15].

These examples for the behaviour of Laplace eigenfunctions on the sphere were remerk-
able because they clarified that one has to be careful with analogies between ergodicity or
integrability properties of a classical system and its quantum analogue.
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2 Vanishing speed for solutions of elliptic PDE

One can generalize the study of unique continuation properties to solutions of a large class
of partial differential operators. A milestone result is [Car39]. There unique continuation
properties for solutions of a system of first order differential equations with sufficiently regular
coefficients on open subsets Ω of R2 are proven. Note that second order partial differential
equations can be transformed into a system of first order differential equations, see for
instance [Had03], page 348. For this purpose, Carleman introduced a new method which is
nowadays called Carleman estimates. While Carleman’s original result applies to the two-
dimensional case only, it has been generalized to arbitrary dimensions in [Mül54] and by now
there are plenty of results concerning Carleman estimates and their applications.

An example of a Carleman estimate, see [KRS86, Ken86] and the references therein, is
the following: for all u ∈ C∞

0 (Rd) and p, p′ with 1/p − 1/p′ = 2/d, and all sufficiently large
λ > 0 we have

‖e−λxdu‖Lp′ (Rd) ≤ C‖e−λxd∆u‖Lp(Rd), (9)

where xd denotes the d-th coordinate of x. In fact, Ineq. (9) can be extended to {u ∈
Lp′(Rd) | ∆u ∈ Lp(Rd) and ∃µ ∈ R : suppu ⊂ {xd > µ}}.

Example 2.1 (How to conclude UCP from Carleman). We follow [Ken86] and show how
the Carleman estimate (9) can be used to obtain a unique continuation property. Let V ∈
Ld/2(Rd) and, as before, 1/p− 1/p′ = 2/d. Our goal is to show that if u ∈ C∞

0 (Rd) satisfies
|∆u| ≤ |V u| and suppu ⊂ {xd > 0}, then u ≡ 0.

Proof. In a first step, we show that u vanishes on a strip Sρ = {x ∈ R
d | xd ∈ [0, ρ]}, ρ > 0.

We choose ρ > 0 to be the largest number such that

C‖V ‖Ld/2(Sρ+xd·ed) ≤
1

2
for all xd ∈ R.

where C is the constant from the Carleman estimate (9) and ed the unit vector in the d-th
dimension. Such a ρ exists since V ∈ Ld/2(Rd). Now, inequality (9) gives for all λ > 0

∥

∥e−λxdu
∥

∥

Lp′(Sρ) ≤ C
∥

∥e−λxdV u
∥

∥

Lp(Sρ) + C
∥

∥e−λxd∆u
∥

∥

Lp(Rd\Sρ).

By Hölder’s inequality and our assumption on ρ we obtain
∥

∥e−λxdu
∥

∥

Lp′(Sρ) ≤ C‖V ‖Ld/2(Sρ)
∥

∥e−λxdu
∥

∥

Lp′(Sρ) + C
∥

∥e−λxd∆u
∥

∥

Lp(Rd\Sρ).

Since C‖V ‖Ld/2(Sρ) ≤ 1/2 we get

∥

∥e−λxdu
∥

∥

Lp′(Sρ) ≤ 2C
∥

∥e−λxd∆u
∥

∥

Lp(Rd\Sρ).

We use e−λxd ≤ e−λρ for xd > ρ and obtain

∀λ > 0 :
∥

∥e−λ(xd−ρ)u
∥

∥

Lp′(Sρ) ≤ 2C
∥

∥∆u
∥

∥

Lp(Rd\Sρ).

Note that the right hand side of the last inequality is independent of λ and that xd − ρ < 0
on Sρ. Hence, if u 6≡ 0 on Sρ, we get a contradiction by choosing λ large enough. By our
choice of ρ, we can iterate this procedure and find that u ≡ 0 on R

d.
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Remark 2.2 (Weight functions). The above example shows unique continuation on strips
since the level sets of the weight function e−λxd are strips. Hence, it might be tempting
to search for radially symmetric weight functions in order to obtain unique continuation on
annuli or balls. Indeed, such weight functions have been used in many situations, see the
discussion in Remark 3.11 below. However, typically one wants the weight function to have
nowhere vanishing gradient. For radially symmetric functions, this poses a problem at the
origin, which can be resolved in various ways. One could exclude the origin from the domain
and consider weight functions which are smooth except at the origin cf. e.g. Remark 3.11,
or use a two-weight Carleman inequality, cf. e.g. [RT15].

Example 2.3 (Elliptic differential operators). Let H be the elliptic partial differential op-
erator

Hf(x) :=

d
∑

j,j=1

∂

∂xi

(

aij(x)
∂

∂xj
f(x)

)

+ V (x)f(x),

acting on C2(Ω), where Ω ⊂ R
d is open and connected, V : Ω → R is bounded and

measurable, the functions aij : Ω → R, 1 ≤ i, j ≤ d, are Lipschitz continuous, aij = aji, and
there is λ > 0 such that for all x ∈ Ω and all ξ ∈ R

d

1

λ
|ξ|2 ≤

d
∑

i,j=1

aij(x)ξiξj ≤ λ|ξ|2.

By means of Carleman estimates it has been shown that the class {f ∈ C2(Ω) | Hf =
0} satisfies the strong unique continuation property, see for instance [Wol93], where more
general results are discussed. One can generalize this result to Sobolev spaces W 2,2(Ω) or
W 2,p(Ω), p > 1.

Next we supply an example which shows that the two properties from Definition 1.1 are
actually distinct.

Example 2.4 (Functions satisfying UCP, but not SUCP). Let d ∈ {3, 4}, Ω ⊂ R
d be open,

ai,j : Ω → R Lipschitz for i, j = 1, ..., d, A ∈ Ld/2
loc (Ω) and B ∈ Ld

loc(Ω). Then solutions

u ∈W 2,2
loc (Ω) of the differential inequality

∣

∣

∣

∣

∣

d
∑

i,j=1

aij
∂2u

∂xi∂xj

∣

∣

∣

∣

∣

≤ A|u|+B|∇u| (10)

satisfy the unique continuation property, but not necessarily the strong unique continuation
property, see [Wol93] and the references therein. Note that for A,B ≥ 0, the set of solutions
of the differential inequality (10) contains in particular solutions of the differential equation

d
∑

i,j=1

aij
∂2u

∂xi∂xj
= Au+B∇u.

For other examples of this type see [JK85, Ken86].
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2.1 A result of Donnelly and Fefferman: Eigenfunctions of the Laplacian

We now consider a d-dimensional, connected, compact manifold M with a smooth (that is
C∞) Riemannian metric. The compactness will replace the condition of controlled growth
at infinity of functions we have discussed in the context of Hadamard’s three circle theorem.
We want to study differentiable functions on M .

Example 2.5. A prominent example of such a manifold M is the d-dimensional torus
T
d := R

d/Zd. Note that

Ck(Td) ∼= Ck
per(R

d) =
{

u ∈ Ck(Rd) | u(x+ k) = u(x) for all x ∈ R
d, k ∈ Z

d
}

.

In particular, we can learn about periodic problems in Euclidean space by studying this
example.

The following theorem quantifies the vanishing speed of solutions of the differential equa-
tion −∆u = Eu, E > 0, where ∆ denotes the Laplace-Beltrami operator on the manifold
M . Here, the vanishing speed is quantified in L∞-norm. It can be found in Proposition 4.1
of [DF88].

Theorem 2.6. There are constants C1, C2 ≥ 0, depending only on d, the diameter of M
and the maximum over all sectional curvatures on M such that for every E > 0, every
u :M → R, 0 6≡ u with −∆u = Eu on M , and every x0 ∈M , u can vanish at most of order
C1 + C2

√
E with respect to the ∞-norm.

More precisely, for every u 6≡ 0 with −∆u = Eu and every x0 ∈ M there is ε0 > 0 such
that for every ε < ε0, we have

εC1+C2

√
E ≤ max

x∈B(x0,ε)
|u(x)| (11)

and consequently

lim
ε→0

ε−δ−(C1+C2

√
E) max

x∈B(x0,ε)
|u(x)| = ∞ for all δ > 0.

The balls are to be taken with respect to the geodesic distance on M .

Remark 2.7. (i) Even though we did not make any regularity assumption on u, by elliptic
regularity theory, see for example [Eva98, Chapter 6.3], we know that any u that solves
the eigenvalue equation is in fact in C∞(M).

(ii) Vanishing with respect to the L∞-norm is a stronger statement than vanishing with
respect to the L1-norm as we have it in the definition of the strong unique continuation
property. In fact, let u vanish of order C1+C2

√
E with respect to the L∞-norm. Then

we have
∫

B(ε)
|u(x)|dx ≤ Vol(B(1)) · εd max

x∈B(ε)
|u(x)| ≤ Vol(B(1)) · εd+C1+C2

√
E .

However, for the property of not vanishing with respect to some order, the converse
implication holds, so that Theorem 2.6 is a weaker statement than one about non-
vanishing with respect to the L1-norm.

10



Since C1 and C2 are not explicitly known, this theorem is most interesting for large E.
Inequality (11) controls some kind of local variation of u. The higher E, the larger the
variation of u around a point x0, cf. Example 2.10. It is natural to ask whether one can
complement inequality (11) by an upper bound. This has been studied in [DF88] as well.

Definition 2.8. Let u ∈ C(M) be real-valued. The nodal set of u is Nu := {x ∈M | u(x) =
0}. We denote by Hd−1 the (d− 1)-dimensional Hausdorff measure on M .

Recall that eigenfunctions of the Laplacian on an analytic manifold are analytic, see e.g.
[Hör69, Theorem 7.5.1]. By the theory of analytic sets, the nodal sets Nu of such function
have a well-defined Hausdorff measure Hd−1(Nu). The following theorem is due to [DF88,
Theorem 1.2].

Theorem 2.9. Let M be a compact, real-analytic, connected manifold (with real-analytic
metric). Then, there exist C3, C4, depending on M , such that for every u : M → R, 0 6≡ u
and every E ≥ 0 with −∆u = Eu, we have

C3

√
E ≤ Hd−1(Nu) ≤ C4

√
E. (12)

Example 2.10 (Vanishing speed and nodal sets of trigonometric functions). Let M = T
1 =

S
1 ∼= [0, 1). The eigenfunctions of the Laplace operator on (0, 1) with periodic boundary

conditions are sin and cos waves. For simplicity we only study the eigenfunctions un(x) =
sin(2πnx) with corresponding eigenvalue En = (2π)2n2 and their vanishing speed at the
point x = 0. For ε small, we have

2πnε ≥ sup
x∈B(ε)

|un(x)| ≥
2πnε

2
,

thus in particular, since ε is small, supx∈B(ε)|un(x)| ≥ ε2πn = ε
√
En whence inequality (11)

holds with C1 = 0 and C2 = 1. Furthermore, the 0-dimensional Hausdorff measure of the
zero set Nun is the number of zeros of un and we have H0(Nun) = 2n. Thus, inequality (12)
holds with C3 = C4 = 1/π.

Example 2.11 (Vanishing speed and nodal sets of spherical harmonics on S
2). We consider

the real part of the spherical harmonics Yl,l, l ∈ N, from Example 1.9, i.e.

ReYl,l = Re
(

cl cos(θ)
l exp(ilφ)

)

= cl cos(θ)
l cos(lφ),

where θ ∈ [−π/2, π/2] and φ ∈ [0, 2π). Recall that −∆ReYl,l = El ReYl,l where El = l(l+1).
The function ReYl,l exhibits the highest order of vanishing at the poles θ = ±π/2 where its
maximum behaves as |±π/2− θ|l. Thus we have for all x0 ∈ S

2 and ε > 0 sufficiently small

max
x∈B(x0,ε)

ReYl,l(x) ≥ εl ≥ ε
√
El ,

where B(x0, ε) denotes the ball with center x0 and radius ε with respect to the geodesic
distance. Thus Ineq. (11) of Theorem 2.6 holds with C1 = 0 and C2 = 1.

Concerning Theorem 2.9, we note that the nodal set of ReYl,l consists of exactly l
meridians. It is of Hausdorff measure Hd−1(NReYl,l) = 2πl. Hence, Ineq. (12) of Theorem 2.9
is satisfied with C3 = π and C4 = 2π.
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2.2 A result of Kukavica: Eigenfunctions of Schrödinger operators

Instead of eigenfunctions of the Laplacian, one can study solutions of the stationary Schödinger
equation ∆u = V u on a manifold M . In this setting the question arises how the vanishing
order depends on properties of the potential V .

Next we cite Theorem 5.2 of [Kuk98], which is a generalization of Theorem 2.6.

Theorem 2.12. Let M be a compact, connected, smooth manifold of dimension d, let V ∈
L∞(M) and 0 6≡ u ∈ W 2,2(M) with ∆u = V u. Then there is a constant C > 0, depending
only on M , such that u can vanish at most of order

C(1 + ‖V ‖1/2∞ + (oscV )2),

where osc(V ) := supV − inf V .
More precisely, for every x0 ∈M and every ε > 0 sufficiently small, we have

εC(1+‖V ‖1/2∞ +(osc V )2) ≤ max
x∈B(x0,ε)

|u(x)|. (13)

In the case V ≡ E, this theorem reduces to Theorem 2.6. If we choose V = E · χW

where χW is the characteristic function of a open, non-empty, proper subset W ⊂M and E
a coupling constant, then the exponent in (13) becomes C(1 +

√
E +E2), that is quadratic

in E. Later, we will see similar statements with the better exponent C(1 + E2/3).
Theorems 2.6, 2.9, and 2.12 apply to the d-dimensional torus T

d. This fits nicely to
some partial differential equations in Euclidean space. If one considers a cube Λ ⊂ R

d as a
domain and imposes periodic boundary conditions on the solutions of the partial differential
equation, then a problem on a torus results. We will come back to discuss this situation in
Sections 3.2 and 3.3.

Theorem 2.12 can be reduced (by use of the exponential map) to a statement about
elliptic operators on bounded domains Ω ⊂ R

d, see [Kuk98] for details.

Theorem 2.13. Let Ω ⊂ R
d be open, connected and with C1,1 boundary. Let 0 6≡ u ∈

W 2,2(Ω) satisfy

−
d

∑

i,j=1

∂i(aij∂ju) + V u = 0

where V ∈ L∞(Ω) and the aij ∈ C0,1(Ω), i, j = 1, ..., d are uniformly Lipschitz continuous
functions with aij = aji, satisfying the following ellipticity condition: there is λ > 0 such
that for all ξ ∈ R

d and all x ∈ Ω we have

|ξ|2/λ ≤
d

∑

i,j=1

aij(x)ξiξj.

Furthermore, we assume |aij(x)| ≤ λ and |∂kaij(x)| ≤ λ for almost all x ∈ Ω and that
aij |∂Ω ∈ C1,1(∂Ω), i, j, k = 1, ..., d.

Then there is a constant C, depending only on d, λ, the C1,1-character of ∂Ω and the
C1,1-character of ai,j|∂Ω such that at every x0 ∈ Ω, u can vanish at most of order order

C(1 + ‖V ‖1/2∞ + (oscV )2).
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3 Retrieval of global features from local data

Let Λ ⊂ R
d be open and connected and W ⊂ Λ. One can ask the question whether it is

possible to reconstruct certain properties of a function f : Λ → C only from data or certain
features of f on the set W . This might be possible, if one has additional information on the
regularity or rigidity of f .

3.1 Rigidity of functions with concentrated Fourier transform

A benchmark for reconstructing functions from partial data is the following theorem which
is discussed in detail e.g. in [BSS88].

Theorem 3.1 (Whittaker–Nyquist–Kotelnikov–Shannon sampling theorem). Let f ∈ C(R)∩
L2(R), such that the Fourier transform

f̂(p) =
1√
2π

∫

R

e−ixpf(x)dx

vanishes outside [−πK, πK]. Then

(SKf)(x) =
∑

j∈Z
f(j/K)

sinπ(Kx− j)

π(Kx− j)

converges absolutely and uniformly on R and SKf = f on R.

One can relax the hypotheses and remove the compact support condition on f̂ . Then
the aliasing error is estimated as

sup
R

|f − Skf | ≤
√

2

π

∫

|p|>πK
|f̂(p)|dp.

The Whittaker–Nyquist–Kotelnikov–Shannon sampling theorem allows one to reconstruct
the complete function from data on the discrete set W = {j/K | j ∈ Z} ⊂ Λ = R. This is
due to the imposed rigidity requirement, which allows only for holomorphic functions. Next
we formulate the Logvinenko-Sereda Theorem [LS74], where an upper bound on the Lp-norm
of a function is obtained from local data on an appropriately choosen subset W ⊂ R.

Theorem 3.2 (Logvinenko-Sereda Theorem). Let γ, a > 0. Let W ⊂ R be (γ, a)-thick,
i.e. W is measurable and for all intervals I ⊂ R of length a we have

|W ∩ I| ≥ γ · a.

Let p ∈ [1,∞], J ⊂ R be an interval of length b > 0, and ψ ∈ Lp(R) with ψ̂ supported in J .
Then there is a constant C = C(ab, γ) such that

‖ψ‖Lp(W ) ≥ C(ab, γ)‖ψ‖Lp(R).

Note that the constant on the right hand side does not depend on the position of the
interval J , nor on detailed properties of the set W . Here a plays the role of a scale and γ of
a density. Logvinenko and Sereda proved the statement with C(ab, γ) = exp(−c(1 + ab)/γ),
while Kovrijkine showed in [Kov01] that the constant C(ab, γ) can be chosen as a polynomial
(γ/c)c(1+ab) of γ. Here c denotes a universal constant independent of the model parameters.
Furthermore, he showed the following refinement of Logvinenko-Sereda Theorem:
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Theorem 3.3 (Kovrijkine-Logvinenko-Sereda Theorem). Let γ, a > 0. Let W ⊂ R be (γ, a)-
thick. Let p ∈ [1,∞], Jk ⊂ R, k = 1, . . . , s be intervals of length b > 0, and ψ ∈ Lp(R) with
ψ̂ supported in J = ∪s

k=1Jk. Then

‖ψ‖Lp(W ) ≥ C(ab, γ, s, p) ‖ψ‖Lp(R)

with C(ab, γ, s, p) = (γ/c)ab(c/γ)
s+s−(p−1)/p

There exists a multidimensional analog, for ψ ∈ Lp(Rd), of the Logvinenko-Sereda The-
orem as well, cf. [Kov01, MS13]. The following consequence of Theorem 3.3 is remarkable.

Corollary 3.4. Fix γ, a, b > 0, s ∈ N. Let B : L2(R) → L2(R) be the multiplication operator
with the characteristic function of an (γ, a)-thick set. For an interval J of length b set
F(J) = {f ∈ L2(R) | supp f̂ ⊂ J}. While B is not injective, we have

‖ψ‖L2(R) ≥ ‖B ψ‖L2(R) ≥
(γ

c

)ab(c/γ)s+s− 1
2 ‖ψ‖L2(R) for all ψ ∈ ∪+s

k=1 F(Jk) (14)

where +s
k=1F(Jk) = span(F(J1), . . .F(Js)) and the union runs over all s-tuples J1, . . . , Js ⊂

R of intervals of length b each.

None of the subspaces F(Jk) has finite dimension, but they are all unitarily equivalent.
The constant c in (14) in particular does not depend on the positions of the intervals Jk.
This resembles the definition of the uniform uncertainty principle or restricted isometry
property, except for the fact that dimensions of all subspaces are infinite. Let us recall
the uniform uncertainty principle, which plays a prominent role in compressed sensing and
sparse recovery, cf. for instance [CRT06, FR13].

Definition 3.5. Let M,n, s ∈ N, B : RM → R
n be a linear map, and s ≤M . If

(1− δs)‖ψ‖2 ≤ ‖Bψ‖2 ≤ (1 + δs)‖ψ‖2

for all ψ ∈ R
M with ♯ suppψ ≤ s, then δs is called a restricted isometry constant (for s and

B), and B is said to satisfy an uniform uncertainty principle or restricted isometry property.
Here typically M ≫ n.

While this definition concerns finite matrices, the most interesting situation is when M
becomes very large, and one wants an explicit control with respect to the dimension. This
setting is then not too far form the infinite dimensional one. The two-sided inequality (14)
may be seen as an instance of the infinite dimensional analog to Definition 3.5. This and
multiscale versions of the Logvinenko-Sereda Theorem will be discussed in detail elsewhere.

Example 3.6 (Spherical harmonics revisited). Let us come back to Example 1.9 of spherical
harmonics discussed earlier. In light of the Logvinenko-Sereda Theorem one can also ask the
question how one has to choose observation sets AL ⊂ S

2, L ∈ N, such that for all L ∈ N

one has an observability inequality which is uniform on

f ∈ FL =
{

f ∈ L2(S2) | f ∈ Span {Yl,m | l(l + 1) < L,−l < m < l}
}

,

that is an inequality
∫

S2

|f |2 ≤ C

∫

AL

|f |2 for all f ∈ FL (15)

14



with a constant C > 1 that does not depend on L.
The answer is given by Theorem 1 of [OCP13]. We formulate it reduced to the simpler

S
2 case.

Theorem 3.7 (Logvinenko-Sereda Theorem on the sphere). A sequence of sets AL ⊂ S
2,

L ∈ N, satisfies (15) if and only if there is r > 0 such that

Γ = Γr := inf
L∈N

inf
z∈S2

vol
(

AL ∩B(z, r/
√
L
)

vol
(

B(z, r/
√
L
) > 0.

The balls are to be taken with respect to the geodesic distance on S
2.

Here Γ plays the role of a density, while a space scale is provided by r/
√
L. This implies

in particular that for (15) to hold, we need that there is r > 0 such that for every L ∈ N the
complement Ac

L contains no r/
√
L-balls.

In the next section we will pursue the question which of the properties discussed so
far survive if the class of functions under consideration is not given by a Fourier condition,
but by eigenfunctions of Schrödinger operators or linear combinations thereof. This is a
natural question, since the expansion in terms of eigenfunctions can be seen as an analogue
or generalization of the Fourier transform.

3.2 Eigenfunctions of Schrödinger operators

Recall that for L > 0, we write ΛL = (−L/2, L/2)d. We assume that Λ ∈ {Rd,ΛL} and
W ⊂ Λ is an equidistributed subset of Λ. To be more precise, given G, δ > 0, we say that a
sequence zj ∈ R

d, j ∈ (GZ)d is (G, δ)-equidistributed, if

∀j ∈ (GZ)d : B(zj, δ) ⊂ ΛG + j.

Corresponding to a (G, δ)-equidistributed sequence zj we define for L ∈ GN the set

Wδ =
⋃

j∈(GZ)d

B(zj , δ) ∩ Λ,

see Fig. 1 for an illustration. Note that the set Wδ depends on G and the choice of the (G, δ)-
equidistributed sequence and, if Λ = ΛL, also on the scale L. For a bounded and measurable
potential V : Rd → R we introduce the self-adjoint Schrödinger operator H := −∆+ V on
L2(Rd). If Λ = R

d then HΛ coincides with H, if Λ = ΛL for some finite L then HΛ denotes
the restriction of −∆+V to L2(Λ) with Dirichlet, Neumann, or periodic boundary conditions.
Our aim is to prove ‖ψ‖L2(Wδ) ≥ C‖ψ‖L2(Rd) for eigenfunctions ψ of HΛ, with an explicit
and L-independent constant C > 0. In the one-dimensional situation this problem reduces
to an application of Gronwall’s inequality as carried out in [Ves96, KV02] for periodically
arranged balls on the real line and in [HV07] for balls on metric graphs, cf. Lemma 10 in
the preprint [HV06] for details. We restate it here for (1, δ)-equidistributed sequences.
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Figure 1: Illustration of Wδ within the region Λ = Λ5 ⊂ R
2 for periodically (left) and

non-periodically (right) arranged balls.

Lemma 3.8. Let d = 1. For each δ ∈ (0, 1/2) there is a constant Cδ > 0, such that for
all L ∈ 2N − 1 and Λ ∈ {R,ΛL}, V : R → R measurable and bounded, all ψ ∈ W 2,2(Λ)
satisfying HΛψ = Eψ for some E ∈ R, all (1, δ)-equidistributed sequences zj , j ∈ Z, and all
k ∈ Z ∩ Λ we have

‖ψ‖L2(B(δ,zk)) ≥ Cucp‖ψ‖L2(Λ1(k)) and ‖ψ‖L2(Wδ) ≥ Cucp‖ψ‖L2(Λ),

where

Cucp =
(

⌈1/δ⌉ e2Cδ+2‖V−E‖∞
)−1

.

Thus we are indeed considering inequalities of the type (6) as discussed in Remark 1.3.

Proof. For k ∈ Λ ∩ Z set fk(x) = ‖ψ‖2L2(B(x+zk ,δ))
> 0 whenever B(x + zk, δ) ⊂ Λ. By

Sobolev norm estimates and the eigenvalue equation there is a δ-dependent constant Cδ > 0
such that

∣

∣

∣

∣

∂

∂x
fk(x)

∣

∣

∣

∣

≤ 2‖ψ‖L2(B(x+zk ,δ))‖ψ
′‖L2(B(x+zk ,δ))

≤ 2 [Cδ + ‖V − E‖∞] ‖ψ‖2L2(B(x+zk ,δ))
= 2 [Cδ + ‖V − E‖∞] fk(x),

see [Ves96, KV02] for details. Applying Gronwall’s lemma, we obtain

fk(x) ≤ e2[Cδ+‖V−E‖∞]|x|fk(0)

⇔ ‖ψ‖2L2(B(x+zk ,δ))
≤ e2[Cδ+‖V−E‖∞]|x|‖ψ‖2L2(B(zk ,δ))

. (16)

Positioning x ∈ (−1, 1) we cover Λ1(k) by ⌈1/δ⌉ intervals of length δ and obtain

‖ψ‖2L2(Λ1(k))
≤ ⌈1/δ⌉ e2Cδ+2‖V−E‖∞‖ψ‖2L2(B(zk ,δ))

,

which proves the first inequality. The second inequality follows immediately by summing up
the disjoint intervals Λ1(k), k ∈ Z ∩ Λ.
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Note that the constant Cucp in Lemma 3.8 is independent of L. For this reason we call
an estimate of this type scale-free unique continuation principle. The drawback of this result
is that it is restricted to the one-dimensional situation. Also, we did not track the explicit
δ-dependence.

Now we turn to the multidimensional case. We start by recalling quantitative unique con-
tinuation estimates. The following theorem from [BK05] may be understood as an analogue
of Theorems 2.6, 2.12, and Ineq. (16) for Schrödinger operators on R

d.

Theorem 3.9. Let γ, V : R → R be bounded and measurable, and u : R → C a bounded
solution of ∆u = V u + γ with u(0) = 1. Then there are constants c, c′ ∈ (0,∞), such that
for all x ∈ R

d we have

max
|y−x|≤1

|u(y)|+ ‖γ‖∞ > c exp
(

−c′|x|4/3 log|x|
)

. (17)

The proof is based on following Carleman estimate, see [EV03, BK05].

Theorem 3.10. There are α0, C > 1 such that for all ρ > 0 there is wρ : Rd → R s.t. for
all α ≥ α0 and u ∈W 2,2(Rd) with support in B(ρ) \ {0} we have

α3

∫

Rd

w−1−2α
ρ u2 ≤ C1ρ

4

∫

Rd

w2−2α
ρ (∆u)2 and

|x|
eρ

≤ wρ(x) ≤
|x|
ρ
. (18)

Remark 3.11. (i) In fact, one can choose for ρ > 0

ϕ : [0,∞) → [0,∞), ϕ(s) := s · exp
(

−
∫ s

0

1− e−t

t
dt

)

wρ : R
d → [0,∞), wρ(x) := ϕ(|x|/ρ).

Then ϕ is a strictly increasing continuous function, on (0,∞) even smooth, and

|x|
eρ

≤ wρ(x) ≤
|x|
ρ

for all x ∈ B(0, ρ)

(ii) The particular feature of this Carleman estimate is that the weight function is not
exponential as, e.g., in Ineq. (9). Furthermore, the particular scaling with α is crucial
to obtain the exponent 4/3 in Ineq. (17).

(iii) Theorem 3.9 was a crucial step for the answer on a long-standing problem in the theory
of random Schrödinger operators, namely Anderson localization for the continuum
Anderson model with Bernoulli-distributed coupling constants. Let us emphasize that
the precise decay rate in Ineq. (17) was essential for this application. If, instead of
Ineq. (17), one would have at disposal only a slightly weaker version, where the exponent
4/3 would be replaced by 1.35, one could not conclude localization for the continuum
Anderson-Bernoulli model using the same techniques, cf. [BK05, p. 412].

There are local L2-variants of Theorem 3.9, see [GK13, BK13, RMV13]. As an exemple,
we formulate Theorem 3.4 of [BK13].
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Theorem 3.12. Let Λ ⊂ R
d be an open subset of R

d and consider a real measurable and
bounded function V on Λ. Let ψ ∈ W 2,2(Λ) be real-valued and ζ ∈ L2(Λ) be defined by
−∆ψ+ V ψ = ζ almost everywhere on Λ. Let Θ ⊂ Λ be a bounded and measurable set where
‖ψ‖L2(Θ) > 0. Set

Q(x,Θ) := sup
y∈Θ

|y − x| for x ∈ Λ.

Consider x0 ∈ Λ \ Θ such that Q = Q(x0,Θ) ≥ 1, dist(x0,Θ) > 0, and B(x0, 6Q + 2) ⊂ Λ.
Then given 0 < δ ≤ min{dist(x0,Θ), 1/24}, we have

(

δ

Q

)K
(

1+‖V ‖2/3∞

)

(

Q4/3+log
‖ψ‖

L2(Λ)
‖ψ‖

L2(Θ)

)

‖ψ‖2L2(Θ) ≤ ‖ψ‖2L2(B(x0,δ))
+ δ2‖ζ‖2L2(Λ), (19)

where K > 0 is a constant depending only on d.

Remark 3.13. In the case ζ = 0 inequality (19) estimates the quotient

‖ψ‖L2(Θ)

‖ψ‖L2(B(x0,δ))

of two local L2-norms in terms of another such quotient

‖ψ‖L2(Λ)

‖ψ‖L2(Θ)

If an estimate on the latter is not provided a-priori, one might wonder, whether one is running
in a vicious circle or an induction without induction anchor. Indeed, for many applications
the bound in Theorem 3.12, and likewise the corresponding estimates in [GK13, RMV13],
need to be complemented by some other information. This is quite analogous with the
situation encountered in Example 1.6 and Corollary 1.8. Only when we are supplied with
some estimate which controls the global growth of the function fk, we can say at what fastest
rate it can vanish at the origin.

Remark 3.14. Theorem 3.12 is applied in [BK13] to obtain bounds on the density of states
outer measure for Schrödinger operators in dimension d ∈ {1, 2, 3}. The restriction on the
dimension stems from the decay rate 4/3 in Theorem 3.12 and would be lifted if the inequality
(19) would be at disposal with Q4/3 replaced by Q. However, in the case of complex-valued
potentials Meshkov’s example [Mes92] shows that it is not possible to improve the exponent
4/3. The example of Meshkov does not apply to real valued potentials. However, at the
moment it is not known how to exploit this additional property of the potential in order to
obtain improved quantitative unique countinuation estimates. In particular, an improvement
of (19) must be based on some method different from Carleman estimates.

Let us sketch the basic ideas of the proof of Theorem 3.12 using the Carleman esti-
mate (18).

Sketch of proof of Theorem 3.12. For simplicity, we restrict ourselves to the special case ζ ≡
0, Λ = R

d and x0 = 0. We cannot apply Ineq. (18) to ψ directly, since ψ is not supported
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Θ

Figure 2: Cutoff function η, annuli A1, A2, A3 and the set Θ

in B(r) \ {0} for some r > 0. Therefore it is natural that a cut off function comes into play.
We choose three annuli

A1 = B(3δ/4) \B(δ/4), A2 = B(2eQ) \B(3δ/4) and A3 = B(2eQ+ 1) \B(2eQ).

and a cutoff function η ∈ C∞
0 (Rd; [0, 1]) as illustrated in Fig. 2, with support in B(2eQ +

1) \B(δ/4) and the properties that











max{|∇η|, |∆η|} ≤ Θ̃1/δ
2 =: Θ1 on A1,

η ≡ 1 on A2,

max{|∇η|, |∆η|} ≤ Θ2 on A3,

(20)

for some constants Θ̃1,Θ2 > 0 which depend only on the dimension. Note that by construc-
tion Θ ⊂ A2 ∩B(Q). Now we can apply Ineq. (18) with ρ = 2eQ+2 to the function u = ηψ
and obtain using the product rule and (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and |∆ψ| = |V ψ| that

α3

∫

A2

w−1−2α
ρ ψ2 ≤ C1ρ

4

∫

Rd

w2−2α
ρ (ψ∆η + η∆ψ + 2 (∇η)T∇ψ)2

≤ 3C1ρ
4

(
∫

A1

+

∫

A2

+

∫

A3

)

w2−2α
ρ (ψ2|∆η|2 + η2‖V ‖2∞|ψ|2 + 2|∇η|2|∇ψ|2).

Since w−1
ρ ≥ 1 on A2 we can replace the weight function on the left hand side by w2−2α

ρ .
For the three integrals

∫

Ai
, i ∈ {1, 2, 3}, on the right hand side we proceed as follows. Since

∇η = ∆η ≡ 0 and η ≡ 1 on A2 , we can subsume the second integral on the right hand side
into the left hand side by choosing α sufficiently large. For the first and the third integral
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we use our bound (20) on the cutoff function and a Cacciopoli inequality to estimate
∫

|∇ψ|2
by a constant (depending on δ and ‖V ‖∞) times

∫

|ψ|2, see e.g. [BK13] for details. Putting
everything together we obtain

α3

∫

A2

w2−2α
ρ ψ2 .

∫

A1

w2−2α
ρ ψ2 +

∫

A3

w2−2α
ρ ψ2, (21)

up to a multiplicative constant depending on δ, Q, ρ, ‖V ‖∞, Θ1 and Θ2. Now we use that
Θ ⊂ A2∩B(Q), A1 ⊂ B(δ) and our bounds on the weight function (ρ/|x|)2α−2 ≤ w2−2α

ρ (x) ≤
(eρ/|x|)2α−2 on B(ρ) to obtain

α3

(

ρ

Q

)2α−2 ∫

Θ
ψ2 .

(

4eρ

δ

)2α−2 ∫

B(δ)
ψ2 +

(

eρ

2eQ

)2α−2 ∫

Λ
ψ2.

If
α322α ≥ 2‖ψ‖2L2(Λ)/‖ψ‖2L2(Θ),

we can subsume
∫

Λ ψ
2 into the left hand side. The result follows by collecting all the

constants.

Remark 3.15. In Ineq. (21) we estimate the values of the function ψ on the middle annulus
A2 in terms of the values on the inner A1 and outer A3 annuli. Thus we have a similar
geometric situation as in Hadamard’s three circle theorem 1.7.

Quantitative unique continuation estimates as in Theorem 3.12 are useful to obtain
scale-free quantitative unique continuation estimates. The following theorem was proven
in [RMV13] if Λ = ΛL and has been adapted to the case Λ = R

d in [TV15b]. It is a
multidimensional analogue of Lemma 3.8 with an explicit dependence on δ and ‖V − E‖∞.

Theorem 3.16. Let Λ ∈ {ΛL,R
d}. There exists a constant K ∈ (0,∞) depending merely on

the dimension d, such that for any G > 0, δ ∈ (0, G/2], any (G, δ)-equidistributed sequence
zj , j ∈ (GZ)d, any measurable and bounded V : Rd → R, any L ∈ 2N−1 and any real-valued
ψ ∈W 2,2(Λ) satisfying |∆ψ| ≤ |(V − E)ψ| almost everywhere on Λ we have

‖ψ‖L2(ΛL) ≥ ‖ψ‖L2(Wδ) ≥
(

δ

G

)K(1+G4/3‖V−E‖2/3∞ )

‖ψ‖L2(ΛL). (22)

Recall that Wδ denotes the union of δ-balls around an equidistributed sequence. In
comparison to Theorem 2.6 we have here no dependence on the diameter of the set ΛL,
because we have not just one base point x0, but an equidistributed sequence zj, j ∈ (GZ)d.

Remark 3.17. Such estimates are called quantitative unique continuation estimates, or un-
certainty principles, or observability estimates. Since there is no dependence on L ∈ 2N− 1

the estimate is called scale-free and the constant Csfuc = (δ/G)K0(1+G4/3‖V−E‖2/3∞ ) is called
scale-free unique continuation constant.

The dependence on the other paramters is also of interest. Only the sup-norm ‖V ‖∞
of the potential enters, no knowledge of V beyond this is used, in particular no regularity
properties. The constant Csfuc is polynomial in δ and (almost) exponential in ‖V ‖∞.
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Remark 3.18. In order to prove Theorem 3.16 one uses Theorem 3.1 in [RMV13], which is
very similar to Theorem 3.12 above. The roles played by the different sets are as follows:
Λ is the original finite or infinite cube on which the function ψ is considered. Θ is a cube
of side 62⌈

√
d⌉ centered at a lattice point k ∈ Λ ∩ Z

d inside the cube Λ. One should think
of Θ as a neighbourhood of a unit cube Λ1(k) centered at the same k. The ball B(x0, δ)
is placed in (say the right) next-neighbour unit cube adjacent to Λ1(k). There is an issue
with lattice sites k near the boundary of Λ, but for the moment let uns consider the cae of
periodic boundary conditions on the faces Λ. Then we can consider equivalently a partial
differential equation on a torus (without boundary). Unfortunarely one does not have a
priori information about the quotient ‖ψ‖L2(Λ)/‖ψ‖L2(Θ). As discussed before, without this
information the bound (19) cannot be applied directly.

It turns out that it is sufficient that the a priori bound holds in a certain averaged sense:
not for all lattice points k ∈ Λ ∩ Z

d but just for those which ’carry most weight’. To make
this precise the notion of dominating sites is introduced in [RMV13]. One uses the following
obvious but useful observation:

Lemma 3.19 (A reverse Markov inequality). Let N,T ∈ N and µ be a probability measure
on N := {1, ..., N}. Set A := {n ∈ N | µ(n) ≤ 1

T
1
N }. Then µ(A) ≤ 1/T .

For details of the proof of theorem 3.16 see [RMV13].

Remark 3.20. If we are dealing with neither an eigenfunction ψ, nor a function which satisfies
the inequality |∆ψ| ≤ |(V −E)ψ|, but with a linear combinations of eigenfunctions there is
no easy way to apply Theorem 3.16. As we will see there are (at least) two approaches how
to deal with the problem:

• If the energy interval, which contains the relevant eigenvalues is small enough one can
control the norm of ζ sufficiently well. The drawback is that only small energy intervals
are allowed.

• Or one uses a more sophisticated argument to exploit the full power of Carleman
estimates. This includes introducing an additional ghost dimension and using two
different interpolation estimates based on Carleman estimates.

All this will be discussed in the next section.

3.3 Spectral subspaces of Schrödinger operators

In [RMV13] the authors posed the open question whether Ineq. (22) holds also for linear
combinations of eigenfunctions, i.e. for φ ∈ Ranχ(−∞,E](HΛ). This is equivalent to

χ(−∞,E](HΛ)χWδ
χ(−∞,E](HΛ) ≥ Cχ(−∞,E](HL),

with an explicit dependence of C on the parameters δ, E and ‖V ‖∞. Here χI(HΛ) denotes
the spectral projector of HΛ onto the interval I. A partial answer, for short energy intervals,
was given in [Kle13] in the finite volume case Λ = {ΛL} and adapted to the case Λ = R

d in
[TV15b].
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Theorem 3.21. Let Λ ∈ {Rd,ΛL}. There is K = K(d) such that for all E,G > 0, δ ∈
(0, G/2), all (G, δ)-equidistributed sequences zj , any measurable and bounded V : Rd → R,
any L ∈ 2N − 1 and all intervals I ⊂ (−∞, E] with

|I| ≤ 2γ where γ2 =
1

2G4

(

δ

G

)K
(

1+G4/3(2‖V ‖∞+E)2/3
)

,

and all φ ∈ RanχI(HΛ) we have

‖φ‖L2(Wδ) ≥ G4γ2‖φ‖L2(Λ).

A full answer to the above question, i.e. Theorem 3.21 for arbitrary compact energy
intervals I ⊂ R has been given in [NTTV15], while full proofs will be provided in [NTTV].

Theorem 3.22. Let Λ = ΛL. There is K = K(d) such that for all G > 0, all δ ∈ (0, G/2),
all (G, δ)-equidistributed sequences zj , all measurable and bounded V : Rd → R, all L ∈ GN,
all E ≥ 0 and all φ ∈ Ran(χ(−∞,b](HΛL)) we have

‖φ‖2L2(Wδ)
≥ Csfuc‖φ‖2L2(ΛL)

where

Csfuc = Csfuc(d,G, δ,E, ‖V ‖∞) :=

(

δ

G

)K
(

1+G4/3‖V ‖2/3∞ +G
√
E
)

.

Let us shortly discuss the ideas for the proof of Theorem 3.22. By scaling it suffices
to consider G = 1 only. Given V : Rd → R and L ∈ N we denote by ψk, k ∈ N, the
eigenfunctions of HΛL with corresponding eigenvalues Ek. Then given E ≥ 0 each φ ∈
Ran(χ(−∞,E](HΛL)) can be represented as

φ =
∑

k∈N

Ek≤E

αkψk with αk = 〈ψk, φ〉. (23)

Let R = ⌈18e
√
d⌉. Using reflections and translations, we extend the eigenfunctions and

the potential VL = V |ΛL in such a way to ΛRL that the extensions still solve the eigenvalue
equation. We use the same symbols VL and ψk for the extended versions. This is possible for
periodic, Dirichlet, and Neumann boundary conditions. Let further F : X = ΛRL × R → C

be defined by

F (x, xd+1) =
∑

k∈N

Ek≤b

αkφk(x) sk(xd+1), (24)

where sk : R → R is given by

sk(t) =











sinh(λkt)/λk, Ek > 0,

t, Ek = 0,

sin(λkt)/λk, Ek < 0,

with λk =
√

|Ek|. The function F fulfills

∆F =

d+1
∑

i=1

∂2i F = VLF on ΛRL ×R
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and
∂d+1F (·, 0) =

∑

k∈N

Ek≤b

αkψk(·) on ΛRL.

In particular, for all x ∈ ΛL we have ∂d+1F (·, x) = φ(x). This way we recover the original
function we are interested in. Let X1 = ΛL × [−1, 1] and X3 = ΛL+18e

√
d × [−9e

√
d, 9e

√
d].

The goal is to obtain lower and upper bounds on the H1-norm of F , more precisely

D1‖φ‖L2(ΛL) ≤ ‖F‖H1(X3) ≤ D2‖φ‖L2(Wδ) (25)

with explicit constants D1 and D2 independent on the scale L and explicit in all the other
parameters. The lower bound is a calculation using the way how the sets ΛL and X3 are
chosen. For the upper bound we use two different Carleman estimate, namely Ineq. (18)
and Proposition 1 in the appendix of [LR95], and conclude two interpolation inequalities for
the function F . The two interpolation inequalities read as follows with explicitly controlable
constants D3, D4 and suitable sets U1 ⊂ U3 ⊂ X3, see [NTTV] for details on how U1, U3

and X3 are chosen.

Proposition 3.23. For all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences zj , all measurable
and bounded V : Rd → R, all L ∈ 2N − 1, all E ≥ 0 and all φ, F as in (23) and (24) we
have

‖F‖H1(U1) ≤ D3‖(∂d+1F )(·, 0)‖1/2L2(Wδ)
‖F‖1/2

H1(U3)
.

Proposition 3.24. For all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences zj , all measurable
and bounded V : Rd → R, all L ∈ 2N − 1, all E ≥ 0 and all φ, F as in (23) and (24) we
have

‖F‖H1(X1) ≤ D4‖F‖γH1(U1)
‖F‖1−γ

H1(X3)
.

Let us now show how these two interpolation inequalities are applied to obtain the
announced upper bound (25). Again, a calculation shows ‖F‖H1(X3) ≤ D5‖F‖H1(X1). Ap-
plying both interpolation inequalities we conclude

‖F‖H1(X3) ≤ D5D4D3‖F‖1−γ
H1(X3)

‖(∂d+1F )(·, 0)‖γ/2L2(Wδ)
‖F‖γ/2

H1(U3)
.

Since U3 ⊂ X3 we find

‖F‖H1(X3) ≤ (D5D4D3)
2/γ‖(∂d+1F )(·, 0)‖L2(Wδ).

Since ∂d+1F (·, 0) = φ this provides the upper bound and the result follows by estimating
carefully all the constants Di, i ∈ {1, . . . , 5}, and γ.

In a more elementray setting this startegy of proof has been developed already in [JL99].
Additionally, [NTTV] uses ideas from [GK13, RMV13].

4 Applications

4.1 Random Schrödinger operators

This section is concerned with Schrödinger operators with random potential. Such operators
serve as quantum mechanical models of disordered condensed matter. Spectral and analyt-
ical properties of solutions of corresponding elliptic partial differential equation are studied
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in order to gain insight in the evolution behaviour of solutions of the corresponding time de-
pendent Schrödinger equation. This in turn allows for conclusions concerning the transport
properties of the modelled material. The most studied type of random Schrödinger operator
is the alloy model, also called continuum Anderson model. We will be concerned with a dif-
ferent type of random operator, namely the random breather model. It is analytically more
challenging, due to the non-linear influence of the random variables. In the mathematical
literature random breather potentials have been has been first considered in [CHM96], and
studied in [CHN01] and [KV10]. However, all these papers assumed unnatural regularity con-
ditions, excluding the most basic and standard type of single site potential, where u equals
the characteristic function of a ball or a cube. For more details see [NTTV15, NTTV].

Consider a sequence ω = (ωj)j∈Zd of positive, independent and identically distributed
random variables. We assume that the distribution measure µ of ωj is supported in an
interval [ω−, ω+] satisfying 0 ≤ ω− < ω+ < 1/2. The standard random breather potential is
the function

Vω(x) =
∑

j∈Zd
χB(j,ωj)(x).

while the family (Hω)ω with Hω := −∆ + Vω on R
d is called standard random breather

model. Note that the random potential is non-negative and uniformly bounded, and thus
the operator Hω is self-adjoint for almost every ω ∈ Ω. We also define for L ∈ N the operator
Hω,L as the restriction of Hω onto ΛL with Dirichlet boundary conditions. Hω,L is a lower
semi-bounded operator with compact resolvent. Hence its spectrum consists of an infinite
sequence of (random) isolated eigenvalues of finite multiplicity EL

1 ≤ EL
2 ≤ EL

3 ≤ . . ..
Due to ergodicity the spectrum of the random operator Hω on the full space is deter-

ministic. This means that there is Σ ⊂ R such that σ(Hω) = Σ, almost surely. Analogous
statements hold for the absolutely continuous, the singular continuous, and the pure point
part of the spectrum. For most truly random models the singular continuous component of
the spectrum is empty, so the prominent question is to determine whether in a certain en-
ergy region the Schrödinger operator exhibits pure point or absolutely continuous spectrum,
corresponding to localized or delocalized states. A mixture of both types of spectrum in the
same energy region would be considered as a physical anomaly. In what we want to discuss,
a central quantity is the integrated density of states (IDS) or spectral distribution function
N(E). It is a function of the energy and measures the number of energy states per unit
volume up to that energy. The definition is as follows

N(E) := lim
L→∞

E
[

Tr
[

χ(−∞,E](Hω,L)
]]

Ld
, E ∈ R.

A priori it is not clear whether the limit exists but in many situations, namely when the
family of random operators is ergodic, as is the case here, this is a consequence of ergodic
theorems. See the monographs [Sto01, Ves08] for more details and further references.

We are interested in Wegner estimates, that are estimates on the expected number of
eigenvalues within an interval [E − ε,E + ε] in terms of ε and Ld, the volume of Λ. Such
estimates play an important part role in proving localization, that is the almost sure existence
of pure point spectrum of Hω near the bottom of Σ. Moreover, our Wegner estimate implies
that the integrated density of states is Hölder continuous.
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χWδ/2

Vω+δ − Vω

Figure 3: Illustration of the increments Vω+δ − Vω and the choice of Wδ/2

In order to prove a Wegner estimate, we need to understand how the eigenvalues EL
n ,

n ∈ N of Hω,L behave if we increase all ωj by a small amount δ > 0. We use the notation
Hω+δ,L for the operator Hω,δ where all ωj have been replaced by ωj + δ.

Lemma 4.1 (Eigenvalue lifting for the standard random breather model). Let Hω,L be as

above and assume that ω ∈ [ω−, ω+]
Zd , δ ≤ 1/2 − ω+. Then, for all L ∈ N and all n ∈ N

with EL
n (ω) ∈ (−∞, E0] we have

EL
n (ω + δ) ≥ EL

n (ω) +

(

δ

2

)

[

K
(

2+|E0+1|1/2
)]

,

where K is the constant from Theorem 3.22. In particular, K does not depend on L.

Proof. The function Vω+δ − Vω is the characteristic function of a disjoint union of annuli
each of which has width δ, see Figure 3. Every such annulus contains a ball of radius δ/2,
see Figure 3 whence we have Vω+δ − Vω ≥ χWδ/2

where χWδ/2
is the characteristic function

of Wδ/2, a union of δ-balls, centered at a (1, δ)-equidistributed sequence. We denote the

eigenfunctions, corresponding to EL
i (ω + δ) by φLi , i ∈ N. Since EL

n (ω + δ) ≤ EL
n (ω) + 1 ≤

E0 + 1, we have by Theorem 3.22 for all φ ∈ Span{φ1, ..., φn} with ‖φ‖ = 1

〈

φ, χWδ/2,L
φ
〉

≥
(

δ

2

)

[

K
(

2+|E0+1|1/2
)]

.
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Using this and the variational characterization of eigenvalues we estimate

EL
n (ω + δ) = 〈φn,Hω+δ,Lφn〉

= max
φ∈Span{φ1,...,φn},‖φ‖=1

[〈φ,Hω,Lφ〉+ 〈φ, (Vω+δ,L − Vω,L)φ〉]

≥ max
φ∈Span{φ1,...,φn},‖φ‖=1

[

〈φ,Hω,Lφ〉+
〈

φ, χWδ/2,L
φ
〉]

≥ inf
dimD=n

max
φ∈D,‖φ‖=1



〈φ,Hω,Lφ〉+
(

δ

2

)

[

K
(

2+|E0+1|1/2
)]




= EL
n (ω) +

(

δ

2

)

[

K
(

2+|E0+1|1/2
)]

.

Combining this Lemma with the method from [HKN+06] that was developed for random
Schödinger operators with alloy type potential we obtain in [NTTV15, NTTV] a Wegner
estimate for the standard random breather model.

Theorem 4.2 (Wegner estimate for the standard random breather model). Assume that µ
has a bounded density ν supported in [ω−, ω+] with 0 ≤ ω− < ω+ < 1/2. Fix E0 ∈ R. Then
there are C = C(d,E0) and εmax = εmax(d,E0, ω+) ∈ (0,∞) such that for all ε ∈ (0, εmax]
and E ≥ 0 with [E − ε,E + ε] ⊂ (−∞, E0], we have

E
[

Tr
[

χ[E−ε,E+ε](Hω,L)
]]

≤ C‖ν‖∞ε[K(2+|E0+1|1/2)]−1 |ln ε|d Ld

where K is the constant from Theorem 3.22. The constant εmax can be chosen as

εmax =
1

4

(

1/2 − ω+

2

)K(2+|E0+1|1/2)
.

Here E denotes the expectation w.r.t. the random variables ωj, j ∈ Z
d. From our Wegner

estimate, we can deduce that the IDS is locally Hölder continuous.

Corollary 4.3 (Hölder continuity of the IDS). For every E0 ∈ R there are a constants
C̃, c > 0 such that for all E1 < E2 ≤ E0 we have

|N(E2)−N(E1)| ≤ C · |E2 − E1|c.

Proof. For every L ∈ 2N− 1 we have

|E
[

Tr
[

χ(−∞,E2](Hω,L)
]]

− E
[

Tr
[

χ(−∞,E1](Hω,L)
]]

|
Ld

≤
E
[

Tr
[

χ[E1,E2](Hω,L)
]]

Ld

≤ C‖ν‖∞
∣

∣

∣

∣

E2 − E1

2

∣

∣

∣

∣

[K(2+|E0+1|1/2)]−1

·
∣

∣

∣

∣

ln
E2 − E1

2

∣

∣

∣

∣

d

≤ C̃|E2 − E1|c.

Remark 4.4. In [NTTV, TV15a] we establish the Wegner bound for a much more general
class of random potentials. Here, for the sake of simplicity, we have restricted ourselves to
the case of the standard random breather model.
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In what we presented so far, the scale-free unique continuation principle was used to re-
move the so called covering condition. In fact, this condition featured in many older results
on Wegner estimates, see for instance the original papers [Kir96, CH94] or the detailed dis-
cussion in the monograph [Ves08]. Since the covering conditions plays a role in other types
of results on spectral properties of random Schrödinger operators, the scale-free unique con-
tinuation principle is a promising tool beyond just proofs of Wegner estimates. For instance,
results of Shirley [Shi14] on Minami estimates and spectral statistics of one-dimensional mod-
els use the covering condition as well. It is natural to conjecture that the scale-free unique
continuation principle can be used to remove this assumption. Indeed, this has been carried
out in the recent paper [Shi15], see Theorem 1.1 there. It uses the scale-free unique contin-
uation principle of [NTTV15] for one-dimensional configuration space, see [Shi15, Theorem
4.1].

4.2 Control of the heat equation

The aim here is to study in a multiscale geometry the control cost for the heat equation, i.e.
the infimum over L2-norms of control functions which drive a system to zero at a prescribed
time T > 0.

We consider the controlled heat equation











∂tu−∆u+ V u = fχW , u ∈ L2([0, T ]× Λ),

u = 0, on (0, T )× ∂Λ,

u(0, ·) = u0, u0 ∈ L2(Λ),

(26)

where Λ = ΛL is a d-dimensional cube of side length L ∈ N and W is a union of δ-balls
within Λ, arizing from a (1, δ)-equidistributed sequence. In (26) u is the state and f is the
control function which acts on the system through the control set W ⊂ Λ.

We say that the system (26) is null controllable at time T > 0, if there is for each initial
state u0 ∈ L2(Λ) a control function f ∈ L2([0, T ]×W ) such that the corresponding solution
of (26) is zero at time T . It is known, see for instance [FI96] that the system (26) is null
controllable at any time T > 0. However, we want to estimate the cost, that is the L2-norm
of the control function f ∈ L2([0, T ]×W ) in relation to the norm of the initial state u0.

The controllability cost C(T, u0) at time T for the initial state u0 is given by

C(T, u0) = inf
{

‖f‖L2([0,T ]×ω) | u is solution of (26) and u(T, ·) = 0
}

.

Combining Theorem 3.22 with results from [Mil10] one finds the following result, see [NTTV]
for details.

Theorem 4.5. For every G > 0, δ ∈ (0, G/2) and KV ≥ 0 there is T ′ = T ′(G, δ,KV ) > 0
such that for all T ∈ (0, T ′], all (G, δ)-equidistributed sequences, all measurable and bounded
V : Rd → R

d with ‖V ‖∞ ≤ KV and all L ∈ GN, the system (26) is null controllable on the
set W with cost C(T, u0) satisfying

C(T, u0) ≤ 2
√

a0b0e
c∗/T ‖u0‖L2(Λ),
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where

a0 = (δ/G)−K(1+G4/3‖V ‖2/3∞ ),

b0 = e2‖V ‖∞ ,

c∗ ≤ ln(G/δ)2 (KG+ 4/ ln 2)2 and

K = K(d) is the constant from Theorem 3.22.

Remark 4.6. The same result holds also in the case of controlled heat equation with periodic
or Neumann boundary conditions with obvious modifications.
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