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Abstract

We prove and apply two theorems: First, a quantitative, scale-free unique continuation
estimate for functions in a spectral subspace of a Schrödinger operator on a bounded or
unbounded domain; second, a perturbation and lifting estimate for edges of the essential
spectrum of a self-adjoint operator under a semi-definite perturbation. These two results
are combined to obtain lower and upper Lipschitz bounds on the function parametrizing
locally a chosen edge of the essential spectrum of a Schrödinger operator in dependence of
a coupling constant. Analogous estimates for eigenvalues, possibly in gaps of the essential
spectrum, are exhibited as well.
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1. Introduction

There are two types of results in the paper, one from the realm of the analysis of partial differ-
ential equations and the other from operator theory. On the one hand we prove a quantitative
and scale-free unique continuation principle for Schrödinger operators in unbounded domains.
On the other hand we establish lower bounds on the sensitivity of spectra of self-adjoint oper-
ators under perturbations. Finally, we combine these results and obtain lower bounds on the
lifting of eigenvalues and edges of essential spectrum of Schrödinger operators under certain
non-negative perturbations.
The classical notion of unique continuation for elliptic differential expressions L refers to the

fact that if a solution u of Lu = 0 in a connected, open Γ ⊂ Rd vanishes on a non-empty open
subset, then u is identically zero. In this paper, we study a quantitative and multi-scale variant
of this property. Let

Γ =
d

×
k=1

(αi, βi), αi, βi ∈ R ∪ {±∞} (1)

be a generalized rectangle, and Sδ ⊂ Γ be a certain equidistributed arrangement of balls of
radius δ. We refer to Fig. 1 for an illustration of such a set, and to Sect. 2.1 for a precise
definition. Furthermore, let V ∈ L∞(Γ) be real-valued, and define the self-adjoint operator

Figure 1: Illustration of a possible arrangement of the set Sδ ⊂ Γ.

H = −∆ + V in L2(Γ). Our first main result, spelled out in Section 2, is an estimate of the
form

C‖u‖2L2(Γ) ≤ ‖u‖
2
L2(Sδ)

with C = δN(1+‖V ‖2/3∞ +
√
E). (2)

It holds for all E ≥ 0 and all u in the spectral subspace of H up to energy E with a uniform,
merely dimension-dependent constant N > 0. It is important to note that the constant C does
neither depend on the set Γ nor on the choice of the equidistributed set Sδ. Furthermore, it
depends on V only via its L∞-norm.
Results of the type (2) have been obtained before in the case where Γ is a cube ΛL of side

length L. In this case the operator H is lower semibounded with purely discrete spectrum and
all functions in its spectral subspace up to energy E turn out to be finite linear combinations
of eigenfunctions. This is the typical situation encountered when studying random Schrödinger
operators, Anderson localization, and Wegner estimates. However, if Γ ⊂ Rd is an unbounded
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set, which is allowed in our framework, the bulk of the spectrum of H will in general consist of
essential spectrum, and eigenfunctions, if any exist, might span only a subspace. Consequently,
by allowing a more general geometry (unbounded sets Γ) we are also allowing more general
spectral situations (spectral subspaces without an orthonormal basis consisting of eigenvectors).
In order to prove Ineq. (2) in the desired generality, we replace the expansion with respect to
eigenfunctions by an appropriate formulation in terms of spectral calculus.
While it is not possible to give an exhaustive summary on the history of unique continuation

principles for Schrödinger operators here, there is a number of papers which motivate directly
and are the starting point of the present study. We describe them now briefly. If Γ = ΛL
with L ∈ N, and u is in the domain of the Dirichlet Laplacian on ΛL satisfying |∆u| ≤ |V u|
almost everywhere on ΛL, special cases of Ineq. (2) have been obtained in [RMV13] using
local quantitative unique continuation estimates very similar to those developed in [GK13] and
[BK13]. Here, the condition |∆u| ≤ |V u| is in particular satisfied if u is a single eigenfunction of
a Schrödinger operator in L2(ΛL). The case where Γ = ΛL and u is in the spectral subspace of
an interval I ⊂ R, has first been studied in [Kle13] under the assumption that I = [E−ε, E+ε]
for fixed, but sufficiently small ε > 0. The general case where I = (−∞, E] has been announced
in [NTTV15], while full proofs were given in [NTTV18]. An extension of this result to infinite
linear combinations of eigenfunctions with exponentially decaying coefficients has been given in
[TT17]. Special cases of an estimate of the type (2) on unbounded domains have been presented
first in [TV16].
In Section 3 we study lower bounds on the displacement of eigenvalues and spectral edges

of general self-adjoint operators under the influence of non-negative perturbations which are
positive on an appropriate spectral subspace. On one hand, these abstract results are of interest
in themselves, on the other the required positivity on spectral subspaces is, by Ineq. (2), in
particular satisfied for Schrödinger operators and non-negative perturbations potentials which
are positive on a superset of Sδ as in Fig. 1.
To formulate this more precisely, let E ∈ R, A a self-adjoint operator and B a self-adjoint,

non-negative, bounded perturbation, satisfying

B ≥ κ > 0 on RanPA+B(E), (3)

where {PA+B(E) : E ∈ R} is the resolution of identity for the operator A + B. If A is lower
semibounded with purely discrete spectrum then a standard perturbation argument shows that
the minimax principle for eigenvalues yields

λk(A+B) ≥ λk(A) + κ

as long as λk(A + B) ≤ E, where λk denotes the k-th eigenvalue of an operator, counted
from below including multiplicities. For convenience of the reader and in order to illustrate the
underlying mechanism, we give the precise statement and proof in Lemma 3.5 below. Now, if the
operator A exhibits essential spectrum as well, the corresponding situation is more challenging.
By an adaptation of the argument for eigenvalues, it is still rather straightforward to deduce an
analogous lower bound on the sensitivity of the bottom of the essential spectrum with respect
to perturbations, see Lemma 3.5 below.
The situation concerning the movement of other edges of the essential spectrum and eigen-

values inside gaps of the essential spectrum is far more intricate. In each gap of the essential
spectrum, the operator A may have a finite or countably infinite set of isolated eigenvalues of
finite multiplicity with possible accumulation points at the upper and lower edge of the gap.
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Therefore, the notion of the k-th eigenvalue inside a gap might become meaningless. Hence, for
a self-adjoint operator A we pick a reference point γ ∈ R∩ρ(A) and denote by λ←k,γ (respectively,
λ→k,γ) the k-th eigenvalue to the left (respectively to the right) of γ, counting multiplicities. Un-
der a similar assumption as Ineq. (3), we deduce in Theorem 3.14 for perturbations B with
norm not exceeding a critical value that

λk,γ(A+B) ≥ λk,γ(A) + κ. (4)

Indeed, the mentioned assumption on ‖B‖ is necessary in order to ensure that the spectral
components above and below γ do not mix, and is optimal in that regard. We also show an
analogous estimate for edges of the essential spectrum, see Theorem 3.9 below. The proofs
rely on variational principles which are valid inside gaps of the essential spectrum, and which
have been developed in other contexts, see, e.g., [GLS99], [MM15], [LS16], and the references
given there. In fact our proofs employ two different variational principles, one for spectrum
below γ and one for spectrum above γ. The first of them has recently been proved in [LS16].
The second one is a combination of the variational principle in [GLS99] and the subspace
perturbation theory of [See17]. This variant of the variational principle is formulated and
proved in the appendix by A. Seelmann of this paper. We need this variant, because the direct
application of [GLS99] or [MM15], which are formulated for quadratic forms, does not seem to
yield the optimal critical value for the norm of the perturbation ‖B‖, which we were aiming
for. Apart from this, we feel that the variational principle presented in the appendix relies on
criteria which are particularly natural and easy to check. In fact, in our application the criteria
are ensured by the Davis-Kahan sin 2Θ theorem on the perturbation of spectral projections.
Moreover, one might wonder whether one can avoid to invoke two different variational prin-

ciples when considering eigenvalues below and above γ, respectively. One would naturally try
to transform one variational principle into the other by using the sign-flip A − γ 7→ −A + γ.
However, this does not work directly, because assumption (3) is not symmetric under the sign
flip. In particular, while for lower semi-bounded operators A the operator (A+B)PA+B(E) is
bounded, (A+B)(1− PA+B(E)) is not, for arbitrary E ∈ R.
We also prove monotonicity of eigenvalues λk,γ(A + C) ≤ λk,γ(A + B) (inside gaps of the

essential spectrum) with respect to two perturbation operators 0 ≤ C ≤ B.
Perturbation of eigenvalues inside gaps has been studied in a number of papers, but the

questions raised there are different to those which we study. Mostly the number of eigenvalues
inside an essential spectral gap is studied, see [HS08] for an abstract result, oftentimes in the
asymptotic regime of a coupling constant, see [Bir91]. For operators of Schrödinger type or
of divergence form there are numerous more precise results of this genre, in particular those
originating from Birman’s school, see for instance [BL94, BW94, Bir95, Bir96, Bir97, BP97,
BS10, Sus03].
We now turn to sensitivity of the edges of the essential spectrum. Lemma 3.1 formulates

a folklore wisdom that the edges of the essential spectrum define locally Lipschitz continuous
functions with respect to the perturbation. See [Ves08] and [See14b] for some background on
this topic. One of the main results of the present paper is to complement this estimate by
giving lower bounds on the lifting of the spectral edges. In particular, under a slightly stronger
assumption than (3) we show in Theorem 3.12 and Theorem 3.18 that the edge of the essential
spectrum moves at least by κ for sufficiently small perturbations. Basically, the position f(t)
of the specified edge of σess(A+ tB) satisfies

f(0) + tκ ≤ f(t) ≤ f(0) + t‖B‖ (5)
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as long as t ∈ [0, t0) with ‖B‖t0 equal to the length of the gap in the essential spectrum above
f(0). Again, our smallness condition on the perturbation B, or the bound on t0, respectively, is
optimal. The proof relies on a successive application of the perturbation result (4), an iterative
renumbering, and a limiting procedure.
In Section 4, we combine the results of the previous two sections. For A we choose a

Schrödinger operator in L2(Γ) with a bounded potential V , and for B a multiplication operator
satisfying B ≥ ϑ1Sδ for some ϑ > 0. Then the quantitative unique continuation principle from
(2) ensures that our perturbation results can be applied. Hence, for such non-negative pertur-
bations of Schrödinger operators, we obtain quantitative estimates on the lifting of eigenvalues
and (essential) spectral edges. Let us stress that the number κ is explicitly given in terms of
ϑ, δ, ‖V ‖∞, ‖B‖, and the upper energy cutoff E. Furthermore, the estimates are scale-free
and uniform over geometric configurations in the sense that they neither depend on the set Γ
nor on the particular realization of the equidistributed arrangement of balls Sδ on which the
perturbation is supported. Let us give a specific example where our theorem applies.

Example 1.1. Let L1 and L2 ⊂ Rd be two incommensurate d-dimensional lattices, Vj ∈ L∞(Rd)
be real-valued Lj-periodic, for j = 1 respectively j = 2, and H = −∆ + V1. Then H
is self-adjoint with purely absolutely continuous band spectrum, and the norm ‖Vj‖ of the
multiplication operator equals the sup-norm ‖Vj‖∞ of the function. Assume that (0, b) is
a spectral gap of H, i.e. 0, b ∈ σ(H) = σess(H) = σac(H) and σ(H) ∩ (a, b) = ∅. For
t ∈ R set f(t) = sup (σess(H + tV2) ∩ (−∞, b− |t|‖V2‖)). Then f(0) = 0 and for suffi-
ciently small values of |t| the corresponding edge of σess(H + tV2) is given by f(t) and satisfies
−|t|‖V2‖ ≤ f(t) ≤ |t|‖V2‖. More precisely, this holds true for all t ∈ (−b/(2‖V2‖), b/(2‖V2‖)).
In the case that there is an open O ⊂ Rd such that V2 ≥ 1O one can simplify the definition

of f to
f :
[
0, b/‖V2‖

)
→ R, f(t) = sup (σess(H + tV2) ∩ (−∞, b)) .

Then we have for all t ∈ [0, b/‖V2‖) and ε ∈ [0, b/‖V2‖ − t) the two-sided Lipschitz bound

εκ ≤ f(t+ ε)− f(t) ≤ ε‖V2‖

where κ is as above and thus depends only on d, O, ‖V1‖, ‖V2‖, and b.
If the two lattices L1 and L2, happen to be commensurate, i.e. L1 ∩ L2 is a d-dimensional

lattice as well, then the result of course holds as well. However, in this simpler situation one
can resort to a Floquet-decomposition to reduce the problem to operators with purely discrete
spectrum. In the general situation we consider here, this is not the case.

The two-sided Lipschitz estimate on the movement of spectral band edges of Schrödinger
operators provides a key tool to prove Anderson localization near edges of the essential spectrum
of some Schrödinger operator H on L2(Rd) under the influence of a random potentialW = Wω.
Indeed, in the case of a H with periodic potential and a perturbation Wω of alloy-type this
has been performed in [KSS98]. The starting point of their analysis is Ineq. (2.2) in [KSS98,
Theorem 2.2] which is a special case of bound (5) above. However, [KSS98, Theorem 2.2]
considers only a periodic situation. Due to this assumption one can use Floquet-Bloch theory
to reduce the spectral perturbation problem to operators with purely discrete spectrum and
then apply classical perturbation theory for isolated eigenvalues. In the general situation which
we are treating this is no longer possible and we have to study the essential spectrum directly.
We defer the precise formulation and proof of the indicated claim on Anderson localization near
spectral band edges to a sequel paper.
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There is another important application of the unique continuation results of Section 2, namely
control theory of the heat equation on unbounded domains. While control theory on bounded
domains has been studied for decades, unbounded domains became a focus of interest rather re-
cently, see for instance [Mil05a, Mil05b], [Gd07], [Bar14], [Zha16], [LM16], [WWZZ17], [EV17],
[BPS18] and the references therein. In a sequel project we aim to establish explicit estimates on
the cost of null-controllability of the heat equation for Schrödinger semigroups on unbounded
domains Γ of the type (1). They recover, improve, and unify several results obtained earlier.
This application will be the subject of a future paper.

2. Quantitative unique continuation principle

2.1. Notation and main result

Whenever we consider in this paper Schrödinger operators we consider the following geometric
situation. Let d ∈ N. For G > 0 we say that a set Γ ⊂ Rd is G-admissible, if there exist
αi, βi ∈ R ∪ {±∞} with βi − αi ≥ G for i ∈ {1, . . . , d}, such that

Γ =
d

×
i=1

(αi, βi).

This implies that there is a ξ ∈ Rd such that (−G/2, G/2)d + ξ is contained in Γ. For δ > 0
and such ξ ∈ Rd we say that a sequence Z = (zj)j∈(GZ)d+ξ ⊂ Rd is (G, δ, ξ)-equidistributed, if

∀j ∈ (GZ)d + ξ : B(zj , δ) ⊂ (−G/2, G/2)d + j.

Corresponding to a G-admissible Γ ⊂ Rd and a (G, δ, ξ)-equidistributed sequence Z, we define

Sδ,Z =
⋃

j∈(GZ)d+ξ

B(zj , δ) ∩ Γ.

Note that by a global shift of the coordinate system, we may assume without loss of generality
that ξ = 0 ∈ Rd. If ξ = 0 we will call a (G, δ, ξ)-equidistributed sequence simply (G, δ)-
equidistributed.
For a G-admissible set Γ and real-valued V ∈ L∞(Γ), we define the self-adjoint operator H

on L2(Γ) as
H = −∆ + V

with Dirichlet or Neumann boundary conditions.
For a set S ⊂ Rd, we denote by 1S its indicator function. For a self-adjoint operator A

we denote by PA(E) := 1(−∞,E](A) the spectral projector of A associated to the interval
(−∞, E] and by PA the spectral measure of A. We use the notation P⊥A (E) = 1(E,∞)(A) for
the projection onto the orthogonal complement of RanPA(E). For details concerning spectral
calculus we refer to [RS78] or [Sch12]. The main result of this section is the following theorem.

Theorem 2.1. There is N > 0 depending only on the dimension, such that for all 1-admissible
Γ ⊂ Rd, all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences Z, all real-valued V ∈ L∞(Γ), all
E ∈ R, and all ψ ∈ RanPH(E) we have

‖ψ‖2L2(Sδ,Z) ≥ Cuc‖ψ‖2L2(Γ), where Cuc = δN
(

1+‖V ‖2/3∞ +
√

max{0,E}
)
.
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By scaling and optimizing over a spectral shift parameter we obtain

Corollary 2.2. There is N > 0 depending only on the dimension, such that for all G > 0,
all G-admissible Γ ⊂ Rd, all δ ∈ (0, G/2), all (G, δ)-equidistributed sequences Z, all real-valued
V ∈ L∞(Γ), all E ∈ R, and all ψ ∈ RanPH(E) we have

‖ψ‖2L2(Sδ,Z) ≥ C
(G)
uc ‖ψ‖2L2(Γ), where C(G)

uc = sup
λ∈R

(
δ

G

)N(1+G4/3‖V−λ‖2/3∞ +G
√

(E−λ)+)

and t+ := max{0, t} for t ∈ R.

Remark 2.3. Choices of the parameter λ which lead to a value for C(G)
uc which is not too far off

from the optimal are for instance λ = inf σ(H), λ = infx V (x) or λ = (infx V (x)+supx V (x))/2.
We emphasize that the constant C(G)

uc neither depends on the set Γ nor on the choice of the
(G, δ)-equidistributed sequence Z, and that it depends on the potential V only via its L∞-norm.

Corollary 2.4. LetWδ,Z = 1Sδ,Z be the operator of multiplication by the characteristic function
of the set Sδ,Z . Under the assumptions of Corollary 2.2 we have

PH(E)Wδ,ZPH(E) ≥ C(G)
uc PH(E)

in the sense of quadratic forms.

The proofs of Theorem 2.1 and Corollary 2.2 are given in subsection 2.4.

2.2. Extension to ghost dimension and spectral function

For the application of an appropriate unique continuation result it will be necessary to extend
the operator H = −∆ + V to a differential expression acting on a (d+ 1)-dimensional domain.
We discuss now this extension in an abstract framework.
Let H be a Hilbert space and A a self-adjoint operator on H with domain D(A). Note that

A need not be semi-bounded. We define the family of self-adjoint operators (Ft)t∈R on H as

Ft =

∫ ∞
−∞

st(λ)dPA(λ) where st(λ) =


sinh(

√
λt)/
√
λ, λ > 0,

t, λ = 0,

sin(
√
−λt)/

√
−λ, λ < 0.

The operators Ft are self-adjoint operators with RanPA([a, b]) ⊂ D(Ft) for −∞ < a < b <∞,
where D(Ft) denotes the domain of Ft. For ψ ∈ RanPA([a, b]) we define the function Ψ: R→ H
as

Ψ(t) = Ftψ.

For T > 0 we define the operator Â on L2((−T, T );H) with D(Â) = {Φ: t 7→ A(Φ(t)) −
(∂2
t Φ)(t) ∈ L2((−T, T );H)} by

(ÂΦ)(t) = A(Φ(t))− (∂2
t Φ)(t).

where ∂2
t Φ denotes the second H-derivative with respect to t.

Lemma 2.5. For all a, b ∈ R with a < b and all ψ ∈ RanPA([a, b]) we have:
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(i) The map R 3 t 7→ Ψ(t) ∈ H is infinitely H-differentiable. In particular,

(∂tΨ)(0) = ψ. (6)

(ii) For all T > 0 we have Ψ ∈ D(Â) and

ÂΨ = 0. (7)

Remark 2.6. We apply the lemma in the case H = L2(Γ) and A = H, a = −‖V ‖∞, and b > a.
Then it follows that L2((−T, T );H) = L2(Γ×(−T, T )), i.e. Ψ may be understood as a mapping
from Γ× (−T, T ) to C. We have

Â = −∆ + V̂ on L2(Γ× (−T, T ))

with corresponding boundary conditions on (∂Γ) × (−T, T ), where V̂ (x, t) = V (x). Since
Ψ ∈ D(Â) by Lemma 2.5, we find that Ψ ∈ H1(Γ × (−T, T )). Now we extend Ψ and V̂ from
Γ× (−T, T ) to Γ+ × (−T, T ) where

Γ+ :=
d

×
i=1

(α+
i , β

+
i ),

with
α+
i =

M(αi − βi) + αi + βi
2

β+
i =

M(βi − αi) + αi + βi
2

if both αi and βi are finite, and (α+
i , β

+
i ) = R otherwise. Here M is the least power of 3 which

is larger than 9e
√
d. The construction of the extension will depend on the boundary conditions,

see [NTTV18]. In the case of

• Dirichlet boundary conditions we extend V̂ for each direction i ∈ {1, . . . , d} for which
one of αi and βi is finite by symmetric reflections with respect to the boundary, and Ψ
by antisymmetric reflections. Then we iterate this procedure log3M times.

• Neumann boundary conditions we extend both V̂ and Ψ in the same way by symmetric
reflections.

We will use the same symbol for the extended V̂ and Ψ. Note that V̂ takes values in
[−‖V ‖∞, ‖V ‖∞]. By Lemma 2.5

ÂΨ = (−∆ + V̂ )Ψ = 0 on Γ× (−T, T ).

By construction, we have

(−∆ + V̂ )Ψ = 0 on Γ+ × (−T, T ), (8)

and (the extended) Ψ satisfies the corresponding boundary conditions.

Proof of Lemma 2.5. In order to identify the L2(H)-derivative we calculate using dominated
convergence theorem

lim
h→0

∥∥∥∥∫ b

a

(
st+h(λ)− st(λ)

h
− ∂tst(λ)

)
dPA(λ)ψ

∥∥∥∥2

H

= lim
h→0

∫ b

a

∣∣∣∣st+h(λ)− st(λ)

h
− ∂tst(λ)

∣∣∣∣2d〈ψ, PA(λ)ψ〉 = 0.
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The calculation for higher derivatives is analogous and we find for k ∈ N0 that

(∂kt Ψ)(t) =

(∫ b

a
∂kt st(λ)dPA(λ)

)
ψ ∈ H.

Since A is self-adjoint and FtPA([a, b]) is bounded, the operator AFtPA([a, b]) is closed. For
part (ii) we infer from [Sch12, Theorem 5.9] that

AFtPA([a, b])ψ = AFtPA([a, b])ψ =

(∫ b

a
λst(λ)dPA(λ)

)
ψ ∈ H,

which implies that ψ ∈ D(AFtPA([a, b])). Hence FtPA([a, b])ψ = Ψ(t) ∈ D(A). We calculate
using λst(λ)− ∂2

t st(λ) = 0∫ T

−T
‖A(Ψ(t))− (∂2

t Ψ)(t)‖2Hdt =

∫ T

−T

∫ b

a
|λst(λ)− ∂2

t st(λ)|2d‖PA(λ)ψ‖2dt = 0

2.3. Interpolation inequalities

In this section we formulate two interpolation inequalities resulting from optimization of Carle-
man estimates. They are generalizations of Propositions 3.4 and 3.5 in [NTTV18]. For the sake
of the reader’s convenience we use the notation from [NTTV18] and define XT = Γ× (−T, T )
for T > 0 and Rd+1

+ = {(x, t) ∈ Rd × R : t ≥ 0} for a 1-admissible set Γ ⊂ Rd, and

S1 =

{
(x, t) ∈ Rd × [0, 1] : − t+

t2

2
−
∑d

i=1 x
2
i

4
> − δ

2

16

}
⊂ Rd+1

+ ,

S3 =

{
(x, t) ∈ Rd × [0, 1] : − t+

t2

2
−
∑d

i=1 x
2
i

4
> −δ

2

4

}
⊂ Rd+1

+ .

Note that in [NTTV18] an additional set S2 is defined, which we do not need here. Moreover,
given a 1-admissible set Γ ⊂ Rd and a (1, δ)-equidistributed sequence Z, we define

QΓ,Z =
{
j ∈ Zd : (−1/2, 1/2)d + j ⊂ Γ

}
as well as

Uk,Z =
⋃

j∈QΓ,Z

Sk(zj), for k ∈ {1, 3}.

Here Sk(x) = Sk + x denotes the translate of the set Sk by x ∈ Rd. Recall that for ψ ∈
RanPH(E), and T > 0, the function Ψ ∈ H1(Γ+ × (−T, T )) is constructed as in Section 2.2.

Proposition 2.7. For all 1-admissible Γ ⊂ Rd, all δ ∈ (0, 1/2), all (1, δ)-equidistributed se-
quences Z, all real-valued V ∈ L∞(Γ), all E ∈ R, and all ψ ∈ RanPH(E) we have

‖Ψ‖H1(U1,Z) ≤ D1‖ψ‖1/2L2(Sδ,Z)
‖Ψ‖1/2

H1(U3,Z)
,

where
D1 = δ−N1(1+‖V ‖2/3∞ )

and N1 > 0 is a constant depending only on the dimension.
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If Γ = ΛL = (−L/2, L/2)d with L ∈ Nodd := {1, 3, 5, . . .}, Proposition 2.7 has been stated
and proved in [NTTV18, Proposition 3.4], where we note that therein, the analog of Ψ is called
F . Let us now sketch how to prove Proposition 2.7 in the case of 1-admissible Γ. We will
omit technical details given in [NTTV18, Proposition 3.4], and focus only on the necessary
modifications. A comprehensive proof can be found in [Täu].
By Lemma 2.5 and Remark 2.6 we have ∆Ψ = V̂Ψ almost everywhere on Γ × (−T, T ). As

a consequence, Carleman estimates as in [NTTV18] lead to the inequality

‖Ψ‖2H1(S1(zj))
≤ f1(β)‖(∂tΨ)(·, 0)‖2L2(Bδ(zj))

+ f2(β)‖Ψ‖2H1(S3(zj))
(9)

for all j ∈ QΓ,Z . Here, β is an optimization parameter which can be chosen over some range
(β1,∞), the prefactor f1(β) is exponentially growing, and the prefactor f2(β) is exponentially
decreasing with respect to β. Furthermore, the dependence of β1 and the prefactors on δ and
‖V ‖∞ is explicit, see [NTTV18] for details. Summing Ineq. (9) over j ∈ QΓ,Z and using that
for different j ∈ QΓ,Z the S1(zj) (or S3(zj) or Bδ(zj) respectively) are mutually disjoint, one
arrives at

‖Ψ‖2H1(U1,Z) ≤ f1(β)‖(∂tΨ)(·, 0)‖2L2(Sδ,Z) + f2(β)‖Ψ‖2H1(U3,Z).

Now a special choice of β ensures that the two summands become equal. This turns the additive
estimate into a multiplicative one. Tracking the dependence of the resulting constant in terms
of δ and ‖V ‖∞ then yields the statement of Proposition 2.7, see [NTTV18] for details.
We shall also need a second interpolation estimate.

Proposition 2.8. For all 1-admissible Γ ⊂ Rd, all δ ∈ (0, 1/2), all (1, δ)-equidistributed se-
quences Z, all real-valued V ∈ L∞(Γ), all E ∈ R, and all ψ ∈ RanPH(E) we have

‖Ψ‖H1(X1) ≤ D2‖Ψ‖γH1(U1,Z)
‖Ψ‖1−γ

H1(Γ+×(−R3,R3))
,

where

R3 = 9e
√
d, γ =

(
log2

(
8.5e
√
d

1
2 −

1
8

√
16− δ2

))−1

, D
1/γ
2 = δ−N2(1+‖V ‖2/3∞ ),

and N2 > 0 is a constant depending only on the dimension.

If Γ = ΛL = (−L/2, L/2)d with L ∈ Nodd, Proposition 2.8 has been stated and proved
in [NTTV18, Proposition 3.5] with a slightly different γ. Again we sketch the proof of Propo-
sition 2.8 in the case of general Γ. We will omit technical details given in [NTTV18, Proposi-
tion 3.5], and focus only on the necessary modifications. A comprehensive proof can be found
in [Täu].
We define

r1 =
1

2
− 1

8

√
16− δ2, r2 = 1, r3 = 8.5e

√
d,

R1 = 1− 1

4

√
16− δ2, R2 = 8

√
d, R3 = 9e

√
d,

and annuli Vk(x) = BRk(x)\Brk(x) ⊂ Rd+1 for k ∈ {1, 2, 3} and x ∈ Rd. Note that for
k ∈ {2, 3}, the set Vk(zj) will not necessarily be a subset of Γ × (−R3, R3) any more, but
a subset of Γ+ × (−R3, R3). Exploiting again the relation ∆Ψ = V̂Ψ almost everywhere on

10



V1(zj) V2(zj) V3(zj)

Figure 2: Sketch of the annuli V1(zj), V2(zj), V3(zj) in dimension d = 2

Γ+×(−T, T ) from Lemma 2.5 and Remark 2.6, and using a Carleman estimate as in [NTTV18],
we obtain

‖Ψ‖2H1(V2(zj))
≤ g1(α)‖Ψ‖2H1(V1(zj))

+ g2(α)‖Ψ‖2H1(V3(zj))
(10)

for all j ∈ QΓ,Z . Here, α is an optimization parameter which can be chosen over some range
(α1,∞), the prefactor g1(α) is exponentially growing, and the prefactor g2(α) is exponentially
decreasing with respect to α. Furthermore, the dependence of α1 and the prefactors on δ
and ‖V ‖∞ is explicit. It should be noted that our choice of R2 and r3 differs from the one
in [NTTV18] but we still have the relation eR2 < r3 which ensured that g1 was exponentially
growing. We sum Ineq. (10) over j ∈ QΓ,Z and find∑

j∈QΓ,Z

‖Ψ‖2H1(V2(zj))
≤ g1(α)

∑
j∈QΓ,Z

‖Ψ‖2H1(V1(zj))
+ g2(α)

∑
j∈QΓ,Z

‖Ψ‖2H1(V3(zj))
. (11)

We now further estimate the three sums in Ineq. (11). First, we note that since R1 < δ, the
sets V1(zj), j ∈ QΓ,Z , are mutually disjoint. Furthermore we have V1(zj) ∩ Rd+1

+ ⊂ S1(zj) for
j ∈ QΓ,Z , hence ∪j∈QΓ,Z

V1(zj) ∩ Rd+1
+ ⊂ U1,Z . Combining this with the antisymmetry of Ψ in

the (d+ 1)-coordinate we find∑
j∈QΓ,Z

‖Ψ‖2H1(V1(zj))
= ‖Ψ‖2H1(

⋃
j∈QΓ,Z

V1(zj))
= 2‖Ψ‖2

H1(
⋃
j∈QΓ,Z

V1(zj)∩Rd+1
+ )
≤ 2‖Ψ‖2H1(U1,Z).

Moreover, for every (x, t) ∈ Γ+ × (−R3, R3), there are at most (2R3 + 2)d indices j ∈ QΓ,Z

such that (x, t) ∈ V3(zj). Thus, we have∑
j∈QΓ,Z

‖Ψ‖2H1(V3(zj))
≤ (2R3 + 2)d‖Ψ‖2H1(Γ1×(−R3,R3)).

Finally, we claim that ∑
j∈QΓ,Z

‖Ψ‖2H1(V2(zj))
≥ ‖Ψ‖2H1(X1).

This can be seen by distinguishing two cases. First we assume that Γ is sufficiently large.
More precisely we assume each elementary cell (−1/2, 1/2)d + j ⊂ Γ, j ∈ Zd, has a next-to-one
neighbor in Γ, that is, (−1/2, 1/2)d + j + 2fk ⊂ Γ for some k ∈ {1, . . . , d}, where fk denotes
the k-th unit vector or its negative. Then it is easy to see that⋃

j∈QΓ,Z

V2(zj) ⊃ X1.

Let us now assume the contrary. Then diam Γ < 5
√
d. Now ∪j∈QΓ,Z

V2(zj) does not nec-
essarily cover X1, but it covers a set Γ̃ × (−1, 1), where Γ̃ ⊂ Γ+ is a translate of Γ and
‖Φ‖H1(Γ̃×(−1,1)) = ‖Φ‖H1(Γ×(−1,1)).

11



ΓΓ̃

zj

Γ

zj

V2(zj) Domain covered by V2(zj)

Figure 3: The annuli V2(zj) either each already cover another elementary cell in Γ, such that all
of Γ will be covered, or Γ is so small that an annulus V2(zj) already covers an entire
translated copy Γ̃. (In this figure, the outer radii of V2(zj) are not drawn according
to its scale.)

2.4. Proofs of Theorem 2.1 and Corollary 2.2

To exploit the interpolation inequalities in the last section we need to show that the norms of
the extended function Ψ are comparable to norms of the original function ψ. This is possible,
because Ψ was chosen in an appropriate way in the first place.

Proposition 2.9. For all 1-admissible Γ ⊂ Rd, Λ ∈ {Γ,Γ+}, all T > 0, all τ ∈ (0, T ], all
real-valued V ∈ L∞(Γ), all E ∈ R, and all ψ ∈ RanPH(E) we have

τ

2
‖ψ‖2L2(Λ) ≤ ‖Ψ‖

2
H1(Λ×(−τ,τ)) ≤ 2τ(1 + (1 + ‖V ‖∞)τ2)e2τ

√
max{0,E}‖ψ‖2L2(Λ).

Proof. If Λ = Γ+, we recall that Ψ: Γ×(−T, T )→ C is extended to Γ+×(−T, T ) as explained
in Remark 2.6. For τ > 0 we have

‖Ψ‖2H1(Λ×(−τ,τ)) =

∫ τ

−τ

∫
Λ

(
|∂tΨ|2 + |∇dΨ|2 + |Ψ|2

)
dx dt.

Using Green’s theorem we have by Lemma 2.5 and Remark 2.6∫
Λ
|∇dΨ|2dx = −

∫
Λ

(∆dΨ)Ψdx = −
∫

Λ
V |Ψ|2dx+

∫
Λ

(∂2
t Ψ)Ψdx

for all t ∈ R. First, we estimate

‖Ψ‖2H1(Λ×(−τ,τ)) =

∫ τ

−τ

∫
Λ

(
|∂tΨ|2 − V |Ψ|2 + (∂2

t Ψ)Ψ + |Ψ|2
)

dx dt

≤
∫ τ

−τ

∫
Λ

(
|∂tΨ|2 + (∂2

t Ψ)Ψ + (1 + ‖V ‖∞)|Ψ|2
)

dx dt

= 2

∫ E

−∞
I(λ)d‖PH(λ)ψ‖2,

12



where

I(λ) =

∫ τ

0

(
(1 + ‖V ‖∞) st(λ)2 + (∂t st(λ))2 + (∂2

t st(λ)) st(λ)
)

dt

= (1 + ‖V ‖∞)

∫ τ

0
st(λ)2dt+ (∂t st(λ)) sτ (λ).

In order to estimate I(λ) for λ ∈ (−∞, E] from above, we distinguish two cases. If λ ≤ 0 we
use st(λ) ≤ t and (∂tst(λ))sλ(t) ≤ t for t > 0, and obtain

I(λ) ≤ (1 + ‖V ‖∞)τ3/3 + τ.

If E, λ > 0 we use sinh(
√
λt)/
√
λ ≤ t cosh(

√
λt) for t > 0, and cosh2(

√
λτ) ≤ e2

√
λτ , and obtain

for all λ ∈ (0, E]

I(λ) = (1 + ‖V ‖∞)

∫ τ

0

sinh2(
√
λt)

λ
dt+ sinh(

√
λτ) cosh(

√
λτ)/

√
λ

≤ ((1 + ‖V ‖∞)T 3 cosh2(
√
λτ) + τ cosh2(

√
λτ)) ≤ ((1 + ‖V ‖∞)τ3 + τ)e2

√
Eτ .

Hence, we conclude the upper bound of the statement. For the lower bound we drop the
gradient term and obtain

‖Ψ‖2H1(Λ×(−τ,τ)) ≥
∫ τ

−τ

∫
Λ

(
|∂tΨ|2 + |Ψ|2

)
dx dt = 2

∫ E

−∞
Ĩ(λ)d‖PH(λ)ψ‖2,

where
Ĩ(λ) =

∫ τ

0

[
st(λ)2 + (∂t st(λ))2

]
dt.

If λ = 0, the lower bound Ĩ(λ) ≥ τ follows immediately. Else, we use (∂t st(λ))2 ≥ cos(
√
|λ|t)

to obtain

Ĩ(λ) ≥
∫ τ

0
cos2(

√
|λ|t)dt =

τ

2
+

sin(2
√
|λ|τ)

4
√
|λ|

.

Now, if 2
√
|λ|τ < π, the sinus term is positive and we drop it to find Ĩ(λ) ≥ τ/2. If 2

√
|λ|τ ≥ π,

we have sin(2
√
|λ|τ) ≥ −1 and estimate

Ĩ(λ) ≥ τ

2
− 1

4
√
|λ|

=
τ

2
− π

4π
√
|λ|
≥ τ

2
− τ

2π
≥ τ

4
.

Hence, we conclude the lower bound of the statement.

Now we are in the position to complete the proofs of Theorem 2.1 and Corollary 2.2.

Proof of Theorem 2.1. Since RanPH(E) ⊂ RanPH(0) for E < 0 it suffices to prove the state-
ment in the case E ≥ 0. We use the upper bound of Proposition 2.9 with T = R3, the lower
bound with T = 1, and ‖ψ‖L2(Γ+) ≤ (3R3)d‖ψ‖L2(Γ) to obtain

‖Ψ‖2H1(Γ+×(−R3,R3))

‖Ψ‖2
H1(X1)

≤ 4 ·R3(1 + (1 + ‖V ‖∞)R2
3)e2R3

√
E(3R3)d =: D2

3.
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Then Propositions 2.7 and 2.8 imply

‖Ψ‖H1(Γ+×(−R3,R3)) ≤ D3‖Ψ‖H1(X1)

≤ Dγ
1D2D3‖Ψ‖1−γH1(Γ+×(−R3,R3))

‖(∂tΨ)(·, 0)‖γ/2
L2(Sδ,Z)

‖Ψ‖γ/2
H1(U3,Z)

.

We recall R3 = 9e
√
d. By the definition of U3,Z and Γ+ we have U3,Z ⊂ Γ+ × (−R3, R3).

Hence,
‖Ψ‖H1(Γ+×(−R3,R3)) ≤ D2

1D
2/γ
2 D

2/γ
3 ‖(∂tΨ)(·, 0)‖L2(Sδ,Z).

By Proposition 2.9, the square of the left hand side is bounded from below by

‖Ψ‖2H1(Γ+×(−R3,R3)) ≥
R3

2
‖ψ‖2L2(Γ+).

Putting everything together we obtain by using (∂tΨ)(·, 0) = ψ

R3

2
‖ψ‖2L2(Γ) ≤

R3

2
‖ψ‖2L2(Γ+) ≤ D

4
1 (D2D3)4/γ ‖ψ‖2L2(Sδ,Z).

>From the definitions of Dk, k ∈ {1, 2, 3}, and γ one calculates that

D4
1 (D2D3)4/γ 2R−1

3 ≤ C−1
uc = δ−N

(
1+‖V ‖2/3∞ +

√
E
)

with some constant N > 0 depending only on the dimension.

Proof of Corollary 2.2. First note that

ψ ∈ RanPH(E)⇔ ψ ∈ RanPH−λ(E − λ)

thus integrals of ψ can be estimated by using either of the two subspace properties. Now it is
possible to perform an optimization over the spectral shift parameter λ.

To analyze the dependence of estimate on the scale parameter G, fix V ∈ L∞(Γ) and ψ ∈
RanPH(E). We define Ṽ : G−1Γ → R by Ṽ (x) = G2V (Gx), the operator H̃ = −∆ + Ṽ
on L2(G−1Γ), the bounded operator S : L2(Γ) → L2(G−1Γ) by (Sf)(x) = f(Gx), and ψ̃ ∈
L2(G−1Γ) by ψ̃ = Sψ. By a straightforward calculation one shows H̃ = G2SHS−1. We also
define the mapping R 3 λ 7→ P̂ (λ) = SPH(λ)S−1. Then {P̂ (λ) : λ ∈ R} is the resolution of
identity corresponding to the operator SHS−1. This follows from the formula S∗ = G−dS−1.
By assumption we have PH(E)ψ = ψ, hence P̂ (E)ψ̃ = ψ̃. Since PH̃(λ) = P̂ (G−2λ) this implies
that

ψ̃ ∈ RanPH̃(G2E).

By construction we have

G−1Γ =
d

×
i=1

(G−1αi, G
−1βi),

G−1βi − G−1αi ≥ 1, G−1Sδ,Z arises from a (1, δ̃)-equidistributed sequence where δ̃ = δ/G ∈
(0, 1/2). Hence we can apply Theorem 2.1 and obtain by substitution

‖ψ‖2L2(Sδ,Z) = Gd‖ψ̃‖2L2(G−1Sδ,Z) ≥ C
G
ucG

d‖ψ̃‖2L2(G−1Γ) = CGuc‖ψ‖2L2(Γ),

where CGuc = Cuc(d, δ/G,EG
2, ‖V ‖∞G2) with Cuc from Theorem 2.1.
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3. Perturbation of spectral edges and eigenvalues in gaps

Throughout this section all occurring operators are defined on the same infinite dimensional
Hilbert space H and we denote the domain of an operator A by D(A). In this section we
prove lifting estimates for edges of the components of the essential spectrum and also for the
eigenvalues in spectral gaps. As a starting point we recall that the notion of ‘spectral edges’ is
well defined and gives rise to a Lipschitz-continuous function t 7→ f(t) of a coupling constant.

Lemma 3.1. Let A be self-adjoint, B 6= 0 bounded, symmetric and non–negative. Let a ∈
σess(A) and let b > a be such that (a, b)∩σess(A) = ∅. Let t0 = (b−a)/‖B‖. Then f : (−t0, t0)→
R, f(t) = sup (σess(A+ tB) ∩ (−∞, b− t−‖B‖)) satisfies for all t ∈ (−t0, t0),

(a) f(0) = a,

(b) f(t) ∈ σess(A+ tB),

(c) (f(t), b− t−‖B‖) ∩ σess(A+ tB) = ∅, where t− = max{0,−t},

(d) f is Lipschitz continuous with Lipschitz coefficient ‖B‖.

Remark 3.2. There is an analogous version of Lemma 3.1 for the case where (a, b)∩σess(A) = ∅
and b ∈ σess(A), cf. Cor. 3.19. Lemma 3.1 holds as well in the case of indefinite B, provided one
replaces t0 by (b− a)/(2‖B‖) and claim (c) by (f(t), b− |t|‖B‖)∩σess(A+ tB) = ∅. Obviously,
an analog of Lemma 3.1 holds also for isolated eigenvalues. See for instance [Ves08] and [See14b]
for some background.
Lemma 3.1 follows immediately from

Lemma 3.3. Let A be self-adjoint and B bounded and non-negative. If (a, b) ⊂ R, then

(a, b) ∩ σess(A) = ∅ ⇒ (a+ ‖B‖, b) ∩ σess(A+B) = ∅, (12)

and
(a, b) ∩ σess(A) 6= ∅ ⇒ (a, b+ ‖B‖) ∩ σess(A+B) 6= ∅. (13)

Here we use the convention that (c, d) = ∅ if c ≥ d.

Remark 3.4. Note that since the essential spectrum is closed, the statements of the Lemma 3.3
also hold if the corresponding intervals are replaced by closed or semi-closed intervals. If one
is interested in negative perturbations −B, one applies the contraposition of (12) and (13).

Proof of Lemma 3.3. Let us assume (a, b) ∩ σess(A) = ∅. Then for every ε > 0, A has at most
finitely many eigenvalues with finite multiplicity in (a + ε, b − ε). Thus, there is a finite rank
perturbation T such that (a+ ε, b− ε)∩σ(A+T ) = ∅. From Proposition 2.1 in [See17] we infer
that (a+ ε+ ‖B‖, b− ε)∩σ(A+T +B) = ∅. Since finite rank perturbations leave the essential
spectrum unchanged, we obtain

(a+ ε+ ‖B‖, b− ε) ∩ σess(A+B) = ∅ for all ε > 0.

This shows (12). The relation (13) is equivalent to (12) by contraposition.

Lemma 3.1 provides an upper bound on the movement speed of spectral edges. In this section,
we complement this by providing lower bounds on the lifting of spectral edges and eigenvalues
in gaps of the essential spectrum. All the results hold under an abstract positivity condition
on the perturbation. This condition is in particular satisfied for Schödinger operators with
appropriate perturbations as in Section 2.1. This connection will be spelled out in Section 4.

15



3.1. Below the essential spectrum

As a warm up and to introduce notation we first consider the infimum of the essential spectrum
and eigenvalues below it. For a lower semibounded self-adjoint operator A, we set λ∞(A) =
inf σess(A). Note that λ∞(A) = ∞ if σess(A) = ∅. Moreover, we denote by {λk(A)}k∈N
the sequence of eigenvalues of A below σess(A), enumerated non-decreasingly and counting
multiplicities. If there are exactly N ∈ N0 eigenvalues in (−∞, λ∞(A)) then we set λk(A) =
λ∞(A) for all k ∈ N with k > N . If A has purely discrete spectrum then the sequence λk(A),
k ∈ N, is the non-decreasing sequence of eigenvalues of A.

Lemma 3.5. Let A be self-adjoint and lower semibounded, B bounded and symmetric, E ∈ R,
κ ∈ R, and

∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞} such that λk(A+B) < E, we have

λk(A+B) ≥ λk(A) + κ.

Proof. Let ε0 = E − λk(A+B) > 0. Then we have by assumption

λk(A+B) = inf
0<ε≤ε0

sup
x∈RanPA+B(λk(A+B)+ε)

‖x‖=1

(〈x,Ax〉+ 〈x,Bx〉)

≥ inf
0<ε≤ε0

sup
x∈RanPA+B(λk(A+B)+ε)

‖x‖=1

〈x,Ax〉+ κ.

Since dim RanPA+B(λk(A+B)+ε) ≥ k for ε > 0, we have by the standard variational principle

sup
x∈RanPA+B(λk(A+B)+ε)

‖x‖=1

〈x,Ax〉 = sup
L⊂RanPA+B(λk(A+B)+ε)

dimL=k

sup
x∈L
‖x‖=1

〈x,Ax〉

≥ inf
L⊂RanPA+B(λk(A+B)+ε)

dimL=k

sup
x∈L
‖x‖=1

〈x,Ax〉

≥ inf
L⊂D(A)
dimL=k

sup
x∈L
‖x‖=1

〈x,Ax〉 = λk(A).

3.2. Ordering from right to left in gaps

For a self-adjoint (not necessarily semibounded) operator A, and γ ∈ ρ(A)∩R, we set λ←∞,γ(A) =
sup{λ < γ : λ ∈ σess(A)}. If there is no essential spectrum below γ this means λ←∞,γ(A) = −∞,
otherwise λ←∞,γ(A) is the right edge of the component of σess(A) below γ. Moreover, we denote
by {λ←k,γ(A)}k∈N the sequence of eigenvalues of A in (λ←∞,γ(A), γ), enumerated non-increasingly
and counting multiplicities. If there are infinitely many eigenvalues inside (λ←∞,γ(A), γ), then
it follows that λ←∞,γ(A) = infk λ

←
k,γ(A) = limk λ

←
k,γ(A). If there are exactly N ∈ N0 eigenvalues

inside (λ←∞,γ(A), γ) we set λ←k,γ(A) = λ←∞,γ(A) for all k ∈ N with k > N . Moreover, we define

M−γ = {M : M is a maximal (A− γ)-non-positive subspace of D(A)}.

Recall that a subspace M ⊂ H is called A-non-positive if 〈x,Ax〉 ≤ 0 for all x ∈ M. Such a
M is called maximal if there is no A-non-positive subspace which properly containsM.
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For γ ∈ ρ(A) ∩ R we define

dist←(γ, σ(A)) = dist(γ, σ(A) ∩ (−∞, γ]) = γ − sup (σ(A) ∩ (−∞, γ]) , and
dist→(γ, σ(A)) = dist(γ, σ(A) ∩ [γ,∞)) = inf(σ(A) ∩ [γ,∞))− γ.

Note that dist←(γ, σ(A)) =∞ if γ < inf σ(A), and that dist→(γ, σ(A)) =∞ if γ > supσ(A).

Lemma 3.6. Let A be self-adjoint, γ ∈ ρ(A) ∩R, B bounded and symmetric, satisfying either

(i) ‖B‖ < 1
2 dist(γ, σ(A)), or

(ii) 0 ≤ B < dist(γ, σ(A)).

Then RanPA+B(γ) ∩ D(A) is a maximal (A− γ)-non-positive subspace of D(A).

Proof. For all x ∈ RanPA+B(γ) ∩ D(A) with ‖x‖ = 1 we have

〈x, (A− γ)x〉 = 〈x, (A+B − γ)x〉 − 〈x,Bx〉 ≤ − dist←(γ, σ(A+B))− 〈x,Bx〉.

If (ii) is satisfied, this is clearly negative. If (i) is satisfied, we use dist←(γ, σ(A + B)) ≥
dist(γ, σ(A))− ‖B‖ and conclude

〈x, (A− γ)x〉 < −dist←(γ, σ(A)) + ‖B‖ − 〈x,Bx〉 ≤ −dist←(γ, σ(A)) + 2‖B‖ < 0.

Hence, RanPA+B(γ) ∩ D(A) is an (A− γ)-non-positive subspace of D(A).
Let us assume it is not maximal. Then we can choose x ∈ RanPA+B(γ)⊥ ∩ D(A) satisfying
‖x‖ = 1 and 〈x, (A− γ)x〉 ≤ 0. In case (i), we use ‖B‖ < dist(γ, σ(A))/2, to obtain

〈x, (A+B − γ)x〉 ≥ dist(γ, σ(A+B)) ≥ dist(γ, σ(A))− ‖B‖ ≥ 1

2
dist(γ, σ(A)).

This leads to the contradiction

0 ≥ 〈x, (A− γ)x〉 = 〈x, (A+B − γ)x〉 − 〈x,Bx〉 ≥ 1

2
dist(γ, σ(A))− ‖B‖ > 0.

In case (ii), we use 〈x, (A+B − γ)x〉 ≥ dist→(γ, σ(A)), and find the contradiction

0 ≥ 〈x, (A− γ)x〉 = 〈x, (A+B − γ)x〉 − 〈x,Bx〉 ≥ dist→(γ, σ(A))− ‖B‖ > 0.

The following theorem is a reformulation of Theorem 3.1 in [LS16], obtained by replacing T
by −T , and by working with operator domains instead of quadratic form domains.

Theorem 3.7. Let A be self-adjoint. For all γ ∈ ρ(A) ∩ R and k ∈ N we have

λ←k,γ(a) = inf
M∈M−γ

inf
L⊂M

dimL=k−1

sup
x∈M
x⊥L
‖x‖=1

〈x,Ax〉. (14)

Remark 3.8. If γ < inf σ(A), then by definition we have λ←k,γ(A) = −∞. Since we also have
M−γ = {0}, the last supremum on the right hand side of Eq. (14) is taken over the empty set.
Hence, the right hand side of Eq. (14) is as well minus infinity.
In our theorems in Section 3.2, 3.3 and 4, we will be faced with such a situation from time

to time, in particular, whenever we consider spectrum to the left of γ with γ < inf σ(A), or
spectrum to the right of γ with γ > supσ(A).
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With Lemma 3.6 and the last Theorem at disposal we are prepared to prove

Theorem 3.9. Let A be self-adjoint, γ ∈ ρ(A)∩R, κ ∈ R, B bounded and symmetric, satisfying
either

(i) ‖B‖ < 1
2 dist(γ, σ(A)), or

(ii) 0 ≤ B < dist(γ, σ(A)).

Assume further
∀x ∈ Ran(PA+B(γ)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞}, we have

λ←k,γ(A+B) ≥ λ←k,γ(A) + κ.

Proof. First consider k ∈ N. Since ‖B‖ < dist(γ, σ(A)) we have γ ∈ ρ(A+B). We apply the
standard variational principle to −(A+B)|RanPA+B(γ) and obtain

λ←k,γ(A+B) = inf
L⊂RanPA+B(γ)∩D(A)

dimL=k−1

sup
x∈RanPA+B(γ)∩D(A)

x⊥L
‖x‖=1

〈x, (A+B)x〉

≥ inf
L⊂RanPA+B(γ)∩D(A)

dimL=k−1

sup
x∈RanPA+B(γ)∩D(A)

x⊥L
‖x‖=1

〈x,Ax〉+ κ.

By Lemma 3.6, the subspace RanPA+B(γ)∩D(A) is a maximal (A−γ)-non-positive subspace
of D(A). Hence,

λ←k,γ(A+B) ≥ inf
M∈M−γ

inf
L⊂M

dimL=k−1

sup
x∈M
x⊥L
‖x‖=1

〈x,Ax〉+ κ.

For k ∈ N, the statement of the theorem follows from Theorem 3.7.
If there are infinitely many eigenvalues λ←k,γ(A+B) in (λ←∞,γ(A+B), γ) then

λ←∞,γ(A+B) = inf
k∈N

λ←k,γ(A+B) ≥ inf
k∈N

λ←k,γ(A) + κ = λ←∞,γ(A) + κ.

We can also require a lower bound on B in terms of another operator, rather than a scalar.
Slight modifications of the last proof yield the following

Corollary 3.10. Let A be self-adjoint, B,C bounded and symmetric, satisfying γ ∈ ρ(A+C)∩
R, 〈x,Bx〉 ≥ 〈x,Cx〉 for all x ∈ Ran(PA+B(γ)) and either

(i) ‖B − C‖ < 1
2 dist(γ, σ(A+ C)), or

(ii) 0 ≤ B − C < dist(γ, σ(A+ C)).

Then for all k ∈ N ∪ {∞}, we have

λ←k,γ(A+B) ≥ λ←k,γ(A+ C).
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In the case of a non-negative perturbation, one might ask whether lifting estimates as in
Theorem 3.9 are valid as long as the norm of B ≥ 0 is smaller than the distance between the
reference point γ ∈ ρ(A) ∩ R and the closest spectral value below γ. The following theorem
gives a positive answer to this question, however, under a stronger assumption on the positivity
of B. Combining Lemma 3.6 (ii) and Theorem 3.7 we are able to prove

Theorem 3.11. Let A be self-adjoint, γ ∈ ρ(A)∩R, κ ∈ R, B bounded and symmetric satisfying
0 ≤ B < dist←(γ, σ(A)). Let n be the smallest integer larger than ‖B‖/dist→(γ, σ(A)), and
assume that

∀x ∈
n⋃
j=1

Ran(PA+jB/n(γ)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞}, we have

λ←k,γ(A+B) ≥ λ←k,γ(A) + κ.

Proof. First assume additionally that B < dist→(γ, σ(A)). Then 0 ≤ B < dist(γ, σ(A)) and
the statement follows from Theorem 3.9.
Now we drop the assumption B < dist→(γ, σ(A)), and consider the case k ∈ N ∪ {∞} and

0 ≤ B < dist←(γ, σ(A)). Recall that n ∈ N satisfies 0 ≤ B/n < dist→(γ, σ(A)). It follows that

0 ≤ B/n < dist(γ, σ(A+ jB/n)) for j ∈ {0, . . . , n− 1},

see [See17, Proposition 2.1]. We now apply the result obtained above iteratively for j ∈
{0, . . . , n − 1} to the operator A + jB/n instead of A, with the perturbation B replaced by
B/n, and with κ replaced by κ/n.

If we are interested in a lifting estimate for edges of σess(A) the location of eigenvalues within
the gap of σess(A) should be irrelevant. Theorem 3.12 below makes this precise.

Theorem 3.12. Let A be self-adjoint, (a, b)∩ σess(A) = ∅, a ∈ σess(A), κ ≥ 0, and B bounded
and symmetric satisfying 0 ≤ B < b− a. Assume that

∀x ∈
⋃

t∈[0,1]

RanPA+tB(b) : 〈x,Bx〉 ≥ κ‖x‖2.

Then
[a+ κ, b) ∩ σess(A+B) 6= ∅.

Proof. Define ε = b− a− ‖B‖ > 0. We define a sequence of disjoint intervals

Ik =

(
b− ε+

ε

2k
, b− ε+

3ε

2k+1

)
, k ∈ N.

Note that by (12) in Lemma 3.3, for all t ∈ [0, 1] we have σess(A+ tB) ∩ (b− ε, b) = ∅.
Choose γ1 ∈ ρ(A)∩I1 and s1 = min{dist←(γ1, σ(A))/‖B‖, 1}. We will now recursively define

sequences
(γn)n∈N ⊂

⋃
k∈N

Ik and (sn)n∈N ⊂ [0, 1].
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For that purpose, we will denote by kn ∈ N, the (unique) index such that γn ∈ Ikn . If sn = 1,
we set sm = 1 and γm = γn for all m > n. Else, given n ∈ N, γn and sn < 1, we choose{

γn+1 = γn if σ(A+ snB) ∩ [sup Ikn+1, γn) = ∅,
γn+1 ∈ Ikn+1 ∩ ρ(A+ snB) else,

and set sn+1 = min{sn+dist←(γn+1, σ(A+snB))/‖B‖, 1}. The sequence (sn)n∈N is monotone
increasing and bounded by 1.
Assume that limn sn = s < 1. If there is n0 ∈ N such that γn = γn0 for all n ≥ n0, then for

all n ∈ N, sn+1 − sn is bounded from below by the distance between In0 and In0+1 which is a
fixed positive number for all n ≥ n0. Hence, the sequence (γn)n∈N cannot become stationary.
This implies that A has infinitely many eigenvalues in (b−ε−‖B‖s, γ1). This is a contradiction,
since σess(A) ∩ [b− ε− ‖B‖s, γ1] = ∅. This shows limn sn = 1.

By Lemma 3.3, we have λ←∞,γ(A + tB) = λ←∞,γ̃(A + tB) for all t ∈ [0, 1] and γ, γ̃ ∈ ρ(A +
tB)∩ (b− ε, b). Given n ∈ N, we apply Theorem 3.11 with γ = γn, A replaced by A+ snB and
B replaced by (sn+1 − sn)B and obtain

λ←∞,γn(A+ snB) = λ←∞,γn(A+ sn−1B + (sn − sn−1)B)

≥ λ←∞,γn(A+ sn−1B) + (sn − sn−1)κ

= λ←∞,γn−1
(A+ sn−1B) + (sn − sn−1)κ.

Iteratively, we obtain for all n ∈ N that λ←∞,γn(A + snB) ≥ λ←∞,γ1
(A) + snκ = a + snκ, which

implies
[a+ snκ, a+ sn‖B‖] ∩ σess(A+ snB) 6= ∅.

Using (13) from Lemma 3.3 and 0 ≤ (1− sn)B ≤ B this yields in particular

(a− δ + snκ, a+ ‖B‖+ δ) ∩ σess(A+B) 6= ∅, for all δ > 0

and since σess(A+B) is closed, we find

[a+ snκ, b) ∩ σess(A+B) 6= ∅.

The statement follows by taking the supremum over n ∈ N.

Finally, combining the last Theorem with Lemma 3.1, we are able to give two sided Lipschitz
estimates on the movement of upper edges of the essential spectrum.

Corollary 3.13. Let A be self-adjoint, B 6= 0 bounded, symmetric and non–negative, a ∈
σess(A), b > a such that (a, b) ∩ σess(A) = ∅, and t0 = (b− a)/‖B‖. Assume that

∀x ∈
⋃

t∈[0,1]

RanPA+tB(b) : 〈x,Bx〉 ≥ κ‖x‖2.

Then f(t) = sup (σess(A+ tB) ∩ (−∞, b)) satisfies

κε ≤ f(t+ ε)− f(t) ≤ ‖B‖ε for all t ∈ [0, t0) and ε ∈ [0, t0 − t).
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3.3. Ordering from left to right in gaps

Let A be self-adjoint. For γ ∈ ρ(A) ∩ R we set λ→∞,γ(A) = inf{λ > γ : λ ∈ σess(A)}. If
there is no essential spectrum above γ this means λ→∞,γ(A) = ∞, otherwise λ→∞,γ(A) is the
lower edge of the component of σess(A) above γ. Moreover, we denote by {λ→k,γ(A)}k∈N
the sequence of eigenvalues of A in (γ, λ→∞,γ(A)), enumerated non-decreasingly and count-
ing multiplicities. If there are infinitely many eigenvalues inside (γ, λ→∞,γ(A)) it follows that
λ→∞,γ(A) = supk λ

→
k,γ(A) = limk λ

→
k,γ(A). If there are exactly N ∈ N0 eigenvalues inside

(γ, λ→∞,γ(A)) then we set λ→k,γ(A) = λ→∞,γ(A) for all k ∈ N with k > N .
The two main results of this subsection are the following theorems, dealing with indefinite

and non-negative perturbations, respectively.

Theorem 3.14. Let A be self-adjoint, B bounded and symmetric, γ ∈ ρ(A) ∩ R, ‖B‖ ≤
dist(γ, σ(A))/2, κ ∈ R, E > γ, and

∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2.

Then for all k ∈ N ∪ {∞} with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ λ→k,γ(A) + κ.

If the perturbation B is non-negative, only the distance between γ and the closest spectral
value below γ should be relevant, thus allowing to relax the condition on the norm of B. Note
that in contrast to the analog Theorem 3.11 in the previous subsection, we can slightly relax
the positivity condition on B. Also we can again compare B with another operator C and not
just a scalar.

Theorem 3.15. Let A be self-adjoint, γ ∈ ρ(A) ∩ R, κ ∈ R, B,C bounded and symmetric
satisfying 0 ≤ C ≤ B < dist←(γ, σ(A)) and E > γ.

(1) If ∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2
then for all k ∈ N ∪ {∞} with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ λ→k,γ(A) + κ.

(2) If ∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ 〈x,Cx〉
then for all k ∈ N ∪ {∞} with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ λ→k,γ(A+ C).

Now we turn to the proofs of the two Theorems. As in the previous subsection, we will apply
a variational principle for eigenvalues, this time Theorem A.2 from the appendix A written by
Albrecht Seelmann. In our context it reads as follows.

Theorem 3.16. Let A be self-adjoint, B be bounded and symmetric, and γ ∈ R. If

(i) 〈x, (A− γ)x〉 ≤ 0 for all x ∈ RanPA+B(γ) ∩ D(A) and

(ii) ‖P⊥A+B(γ)PA(γ)‖ < 1,
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then
λk(A|RanP⊥A (γ)) = inf

L⊂RanP⊥A+B(γ)∩D(A)

dim(L)=k

sup
x∈L⊕RanPA+B(γ)∩D(A)

‖x‖=1

〈x,Ax〉

for all k ∈ N with k ≤ dim(RanP⊥A+B(γ)).

We isolate the following step which is used both in the proof of Theorem 3.14 and 3.15.

Lemma 3.17. Let A be self-adjoint, B,C bounded and symmetric, γ ∈ ρ(A+B) ∩ R, E > γ,
and κ ∈ R.

(1) If ∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ κ‖x‖2
then for all k ∈ N with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ inf
L⊂RanP⊥A+B(γ)∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉+ κ. (15)

(2) If ∀x ∈ Ran(PA+B(E)) : 〈x,Bx〉 ≥ 〈x,Cx〉
then for all k ∈ N with λ→k,γ(A+B) < E we have

λ→k,γ(A+B) ≥ inf
L⊂RanP⊥A+B(γ)∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x, (A+ C)x〉. (16)

Proof. Let us consider case (1). By assumption, we have for ε0 = E − λ→k,γ(A+B)

λ→k,γ(A+B) = inf
0<ε<ε0

sup
x∈RanPA+B(λ→k,γ(A+B)+ε)∩D(A)

‖x‖=1

〈x, (A+B)x〉

≥ inf
0<ε<ε0

sup
x∈RanPA+B(λ→k,γ(A+B)+ε)∩D(A)

‖x‖=1

〈x,Ax〉+ κ.

For an self-adjoint operator A we use the notation PA((E1, E2]) := 1(E1,E2](A). Since

RanPA+B((γ, λ→k,γ(A+B) + ε]) ∩ D(A)

is a subspace of RanP⊥A+B(γ) ∩ D(A) and has dimension at least k for all ε > 0, we further
estimate

sup
x∈RanPA+B(λ→k,γ(A+B)+ε)∩D(A)

‖x‖=1

〈x,Ax〉

= sup
L⊂RanPA+B((γ,λ→k,γ(A+B)+ε])∩D(A)

dimL≥k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉

≥ sup
L⊂RanPA+B((γ,λ→k,γ(A+B)+ε)])∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉

≥ inf
L⊂RanPA+B((γ,λ→k,γ(A+B)+ε])∩D(A)

dimL=k

sup
x∈L⊕(RanPA+B(γ)∩D(A))

‖x‖=1

〈x,Ax〉

≥ inf
L⊂RanP⊥A+B(γ)∩D(A)

dimL=k

sup
x∈L⊕RanPA+B(γ)∩D(A)

‖x‖=1

〈x,Ax〉.

Case (2) requires only straightforward modifications of the proof.

22



We are now ready to prove Theorems 3.14 and 3.15

Proof of Theorem 3.14. We first consider the case k ∈ N. Since ‖B‖ < dist(γ, σ(A)) we have
γ ∈ ρ(A + B). We can thus apply Lemma 3.17 and obtain Ineq. (16) for all k ∈ N with
λ→k,γ(A + B) < E. Since λ→k,γ(A) = λk(A|RanP⊥A (γ)), it now suffices to check the assumptions
of Theorem 3.16. For all normalized x ∈ RanPA+B(γ) ∩ D(A) we have by the assumption
‖B‖ ≤ dist(γ, σ(A))/2 that

〈x, (A+B)x〉 ≤ sup(σ(A+B) ∩ (−∞, γ]) ≤ γ − dist(γ, σ(A+B))

≤ γ − dist(γ, σ(A)) + ‖B‖ ≤ γ − ‖B‖ ≤ γ + 〈x,Bx〉 .

This shows that assumption (i) of Theorem 3.16 is satisfied. It remains to check assump-
tion (ii) of Theorem 3.16. This is a consequence of the Davis-Kahan sin 2Θ theorem [DK70,
Theorem 8.2]. We apply a version given in [See14a, Remark 2.9], and obtain

‖P⊥A+B(γ) · PA(γ)‖ ≤ ‖PA+B(γ)− PA(γ)‖ ≤ sin

(
1

2
arcsin

(
2

‖B‖
dist←(γ, σ(A)) + dist→(γ, σ(A))

))
≤ sin

(
1

2
arcsin

(
2

‖B‖
dist(γ, σ(A))

))
≤ 1√

2
< 1.

The case k =∞ follows by taking the supremum.

Proof of Theorem 3.15. First we consider claim (1) and the case k ∈ N. Since 0 ≤ B <
dist←(γ, σ(A)) we have γ ∈ ρ(A+B), see [See17, Proposition 2.1]. Applying Lemma 3.17, we
arrive at Ineq. (16) for all k ∈ N with λ→k,γ(A + B) < E. Since B is non-negative, assumption
(i) of Theorem 3.16 is satisfied. Assumption (ii) of the same theorem follows in a similar way as
in in the proof of Theorem 3.14, but using the sin 2Θ theorem for non-negative perturbations
in [See17, Theorem 1]. This shows the statement for k ∈ N.

The case k =∞ follows by taking the supremum. Minor modifications involving
‖P⊥A+B(γ)PA+C(γ)‖ < 1 give the proof of claim (2).

By mimicking the proof of Theorem 3.12, we also find the following theorem.

Theorem 3.18. Let A be self-adjoint, (a, b) ∩ σess(A) = ∅, b ∈ σess(A), κ ≥ 0, and B an
operator satisfying 0 ≤ B < b− a. Assume that

∀x ∈
⋃

t∈[0,1]

RanPA+tB(b+ ‖B‖) : 〈x,Bx〉 ≥ κ‖x‖2.

Then
[b, b+ κ) ∩ σess(A+B) = ∅.

This allows us to describe the movement of an lower edge of a component of the essential
spectrum.

Corollary 3.19. Let A be self-adjoint, B 6= 0 bounded, symmetric and non–negative, b ∈
σess(A), b > a such that (a, b) ∩ σess(A) = ∅, and t0 = (b− a)/‖B‖. Assume that

∀x ∈
⋃

t∈[0,1]

RanPA+tB(b+ ‖B‖) : 〈x,Bx〉 ≥ κ‖x‖2.

Then f(t) = inf (σess(A+ tB) ∩ (a+ t‖B‖,∞)) satisfies

κε ≤ f(t+ ε)− f(t) ≤ ‖B‖ε for all t ∈ [0, t0) and ε ∈ [0, t0 − t).
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4. Perturbation of spectral band edges and eigenvalues of Schrödinger operators

In this section we again consider Schrödinger operators H = −∆ +V in L2(Γ) where Γ ⊂ Rd is
G-admissible as in Section 2. We perturb this operator by a non-negative potential W which is
strictly positive on the equidistributed set Sδ,Z ⊂ Γ. Since the perturbation W is positive only
on a subset, it is not immediately clear if the spectrum will be lifted at all. However, combining
the results from Sections 2 and 3, we prove lower bounds for the lifting of eigenvalues and of
the edges of the essential spectrum, see Theorem 4.1.
Moreover, we consider the family of operators H + tW with coupling constant t ∈ R. As

in Lemma 3.1 one can locally parametrize the edges of the essential spectrum of H + tW as a
function t 7→ f(t). In Corollary 4.2 we conclude that t 7→ f(t) is strictly monotone, and provide
upper and lower bounds in terms of linear functions of t.

Theorem 4.1. Let G > 0, Γ ⊂ Rd be G-admissible, δ ∈ (0, G/2), Z be a (G, δ)-equidistributed
sequence, V ∈ L∞(Γ) be real-valued, and W ∈ L∞(Γ) be real-valued such that

W ≥ ϑ1Sδ,Z

for some ϑ > 0. Moreover, for s ∈ R and with N as in Corollary 2.2 we set

κ(s) = ϑ sup
λ∈R

(
δ

G

)N(1+G4/3(‖V−λ‖∞+‖W‖∞)2/3+G
√

(s−λ)+

)
.

(a) Lifting of spectral values not exceeding inf σess(H). Let E ∈ R. Then for all k ∈
N ∪ {∞} such that λk(H +W ) < E, we have

λk(H +W ) ≥ λk(H) + κ(E).

(b) Lifting of eigenvalues (counted decreasingly) in gaps of σess(H). Let γ ∈ ρ(H)∩R
and ‖W‖∞ < dist←(γ, σ(H)). Then for all k ∈ N ∪ {∞}

λ←k,γ(H +W ) ≥ λ←k,γ(H) + κ(γ).

(c) Lifting of eigenvalues (counted increasingly) in gaps of σess(H). Let γ ∈ ρ(H)∩R,
‖W‖∞ < dist←(γ, σ(H)), and E > γ. Then for all k ∈ N∪{∞} such that λ→k,γ(H+W ) < E,
we have

λ→k,γ(H +W ) ≥ λ→k,γ(H) + κ(E)

(d) Lifting of a lower edge of a gap in σess(H). Let (a, b) ∩ σess(H) = ∅, a ∈ σess(A) and
assume that ‖W‖∞ < b− a. Then

[a+ κ(b), b) ∩ σess(H +W ) 6= ∅.

(e) Lifting of an upper edge of a gap in σess(H). Let (a, b) ∩ σess(H) = ∅, b ∈ σess(A)
and assume that ‖W‖∞ < b− a. Then

[b, b+ κ(b+ ‖W‖∞)) ∩ σess(H +W ) = ∅.

The parameter κ neither depends on the set Γ nor on the choice of the equidistributed
sequence and depends on the potentials V and W only by their L∞-norm.
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Proof. By Corollary 2.2, for all t ∈ [0, 1], s ∈ R and x ∈ RanPH+tW (s), we have

〈x,Wx〉 ≥ ϑ
〈
x,1Sδ,Zx

〉
≥ ϑ sup

λ∈R

(
δ

G

)N(1+G4/3‖V+tW−λ‖2/3∞ +G
√

(s−λ)+

)
‖x‖2

≥ ϑ sup
λ∈R

(
δ

G

)N(1+G4/3(‖V−λ‖∞+‖W‖∞)2/3+G
√

(s−λ)+

)
‖x‖2.

Then the statements (a)–(e) follow by applying Lemma 3.5 and Theorems 3.11, 3.15, 3.12, 3.18,
respectively.

Phrasing Theorem 4.1 in the language of Lemma 3.1 we immediately obtain the following
corollary.

Corollary 4.2. Under the assumptions of Theorem 4.1, let a, b ∈ σess(H), and b > a such that
(a, b) ∩ σess(H) = ∅, and define t0 = (b− a)/‖W‖∞. Then, f± : (−t0, t0)→ R,

f−(t) = sup (σess(H + tW ) ∩ (−∞, b− t−‖W‖∞)) ,

f+(t) = inf (σess(H + tW ) ∩ (a+ t+‖W‖∞,∞)) ,

are Lipschitz continuous with Lipschitz constant ‖W‖∞ and satisfy

tκ ≤ f−(t+ ε)− f−(t) ≤ t‖W‖ for all t ∈ (0, t0) and ε ∈ [0, t0 − t),
t‖W‖ ≤ f−(t+ ε)− f−(t) ≤ tκ for all t ∈ (−t0, 0) and ε ∈ [0, t0 + t),

tκ ≤ f+(t+ ε)− f+(t) ≤ t‖W‖ for all t ∈ (0, t0) and ε ∈ [0, t0 − t),
b+ t‖W‖ ≤ f+(t+ ε)− f+(t) ≤ b+ tκ for all t ∈ (−t0, 0) and ε ∈ [0, t0 + t),

where

κ = ϑ sup
λ∈R

(
δ

G

)N(1+G4/3(‖V−λ‖∞+t0‖W‖∞)2/3+G
√

(2b−a−λ)+

)
,

and, for real t ∈ R, we set t+ = max{0, t} and t− = max{0,−t}.

A. A minimax principle in spectral gaps (Written by Albrecht Seelmann)

In [GLS99], Griesemer, Lewis, and Siedentop devised an abstract minimax principle for eigen-
values in spectral gaps of perturbed self-adjoint operators. The aim of this appendix is to show
that this minimax principle can be adapted to the particular situation of bounded additive per-
turbations with hypotheses that tend to be easier to check in this case. In fact, in the present
context, these hypotheses can explicitly by verified by means of the Davis-Kahan sin 2Θ theo-
rem and variants thereof, cf. Remark A.4 below and also the proofs of Theorems 3.14 and 3.15
in the main part of the present paper.
Throughout this section, we fix the following notations.

Hypothesis A.1. Let A, D be self-adjoint operators on a Hilbert space with the same operator
domain, that is, D(A) = D(D), and let γ ∈ R. Denote

P+ := EA
(
(γ,∞)

)
, Q+ := ED

(
(γ,∞)

)
,

as well as P− := 1− P+ and Q− := 1−Q+. Moreover, let

D± := RanQ± ∩ D(D) = RanQ± ∩ D(A) .
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Here, EA and ED stand for the projection-valued spectral measures for A and D, respectively,
and RanQ± denotes the range of Q±. We have also used the short-hand notation 1 for the
identity operator.
Recall that the standard Courant minimax values for the (lower semibounded) part A|RanP+

of A associated with RanP+ are given by

λn(A|RanP+) = inf
M⊂RanP+∩D(A)

dim(M)=n

sup
x∈M
‖x‖=1

〈x,Ax〉 (17)

for n ∈ N with n ≤ dim(RanP+), see, e.g., [LL01, Theorem 12.1] and also [Sch12, Section 12.1
and Exercise 12.4.2]. Here, 〈 · , · 〉 denotes the inner product of the underlying Hilbert space.

Our main result is the following theorem.

Theorem A.2. Assume Hypothesis A.1, and suppose, in addition, that D = A+B with some
bounded self-adjoint operator B. If

(i) 〈x, (A− γ)x〉 ≤ 0 for all x ∈ D−
and

(ii) ‖Q+P−‖ < 1,

then
λn(A|RanP+) = inf

M+⊂D+

dim(M+)=n

sup
x∈M+⊕D−
‖x‖=1

〈x,Ax〉 (18)

for all n ∈ N with n ≤ dim(RanQ+).

Note that, in contrast to (17), in (18) the subspaces, over which the infimum is taken, are
chosen with respect to D instead of A. This makes it easier to compare the minimax values for
A|RanP+ and D|RanQ+ .
The proof of Theorem A.2 relies on the following variant of the minimax principle from

[GLS99].

Proposition A.3 (see [GLS99, Theorem 1]). Assume Hypothesis A.1, and suppose that

(i) 〈x, (A− γ)x〉 ≤ 0 for all x ∈ D−
and

(ii) Ran(Q+P+|D(A)) = D+.

Then,
λn(A|RanP+) = inf

M+⊂D+

dim(M+)=n

sup
x∈M+⊕D−
‖x‖=1

〈x,Ax〉

for all n ∈ N with n ≤ dim(RanQ+).

Proof. First, observe that under condition (i) the restriction

Q+|RanP+∩D(A) : RanP+ ∩ D(A)→ D+

automatically is injective and, hence, in view of (ii), an isomorphism. This immediately follows
from Step 2 of the proof of [GLS99, Theorem 1].
Now, for γ = 0, the claim agrees with Step 1 of the proof of [GLS99, Theorem 1] with

operator domains instead of form domains. Taking into account that EA−γ
(
(0,∞)

)
= P+ and

ED−γ
(
(0,∞)

)
= Q+, the general case γ ∈ R is obtained from this by shift.
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Since Ran(Q+P+|D+) ⊂ Ran(Q+P+|D(A)), condition (ii) in Proposition A.3 is satisfied if the
stronger identity Ran(Q+P+|D+) = D+ holds. In particular, this is the case if the restriction
Q+P+|D+ : D+ → D+ is an automorphism. The main aim of this appendix is to show that the
latter is guaranteed by condition (ii) in Theorem A.2, see Lemma A.6 below. An alternative
type of condition has been considered in [GLS99]:

Remark A.4. Condition (ii) in Theorem A.2 can be replaced by

‖(|D|+ α)Q+P−(|D|+ α)−1‖ < 1 for some α > 0 , (19)

in the spirit of [GLS99, Theorem 1], cf. Step 2 of the corresponding proof in [GLS99]; if D
has a bounded inverse, also α = 0 can be considered here. However, in the present context of
D = A + B with bounded B, condition (ii) in Theorem A.2 tends to be easier to check than
(19), see, e.g., [BDM83, DK70, See13, See14a, See16, See17] and the references therein.

Recall that for a closed operator Λ on a Banach space with norm ‖ · ‖ its domain D(Λ) can
be equipped with the graph norm

‖x‖Λ := ‖x‖+ ‖Λx‖ , x ∈ D(Λ) ,

which makes (D(Λ), ‖ · ‖Λ) a Banach space.
We need the following abstract result from the author’s Ph.D. thesis [See14b].

Proposition A.5 ([See14b, Lemma 3.9 and Corollary 3.10]). Let Λ be a closed densely defined
operator on a Banach space. Moreover, let S and K be bounded operators on the same Banach
space such that S maps D(Λ) into itself with

SΛx− ΛSx = Kx for all x ∈ D(Λ) .

Then:

(a) S is bounded on D(Λ) with respect to the graph norm for Λ, and the corresponding spectral
radius rΛ(S) := limn→∞‖Sn‖1/nΛ does not exceed the usual operator norm ‖S‖.

(b) For every scalar power series h(z) =
∑∞

k=0 akz
k with radius of convergence greater than

‖S‖, the operator h(S) =
∑∞

k=0 akS
k maps D(Λ) into itself, where the series is understood

in the usual operator norm topology.

Proof. For the sake of completeness, we reproduce the proof from [See14b].
(a). By hypothesis, one has ΛSx = SΛx−Kx for x ∈ D(Λ). Thus,

‖ΛSx‖ ≤ ‖S‖ ‖Λx‖+ ‖K‖ ‖x‖ , x ∈ D(Λ) ,

and, therefore,

‖Sx‖Λ = ‖Sx‖+ ‖ΛSx‖ ≤ ‖S‖ ‖x‖Λ + ‖K‖ ‖x‖ , x ∈ D(Λ) . (20)

In particular, since ‖x‖ ≤ ‖x‖Λ for x ∈ D(Λ), this yields that S|D(Λ) is bounded with respect
to the graph norm ‖ · ‖Λ, and the corresponding operator norm satisfies ‖S‖Λ ≤ ‖S‖+ ‖K‖.
By induction, it easily follows from (20) that for all n ∈ N one has

‖Snx‖Λ ≤ ‖S‖
n ‖x‖Λ + n‖K‖ ‖S‖n−1‖x‖ , x ∈ D(Λ) .
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This implies that ‖Sn‖Λ ≤ ‖S‖
n + n‖K‖‖S‖n−1 for n ∈ N. The corresponding spectral radius

rΛ(S) can then be estimated as

rΛ(S) ≤ lim
n→∞

(
‖S‖n + n‖K‖ ‖S‖n−1)1/n = ‖S‖ ,

which proves (a).
(b). Taking into account that the operator Λ is closed, it follows from part (a) that the series∑∞
k=0 ak(S|D(Λ))

k converges in the operator norm topology with respect to the graph norm
‖ · ‖Λ. Moreover, since one has ‖x‖ ≤ ‖x‖Λ for x ∈ D(Λ), the corresponding limit agrees with
the restriction of h(S), understood in the usual operator norm topology, to D(Λ). This proves
(b).

The following result shows that condition (ii) in Theorem A.2 indeed implies condition (ii)
in Proposition A.3.

Lemma A.6. Assume Hypothesis A.1, and suppose, in addition, that D = A + B with some
bounded self-adjoint operator B. If

‖Q+P−‖ < 1 ,

then the restriction Q+P+|D+ : D+ → D+ is an automorphism.

Proof. Set K := RanQ+ ⊃ D+, and define bounded operators S, T on K by

S := Q+P−|K and T := Q+P+|K = IK − S .

Since P+ and Q+ map D(A) = D(D) into itself, the operator T clearly maps D+ ⊂ D(A) into
itself, that is, Ran(T |D+) ⊂ D+. Moreover, by hypothesis one has ‖S‖ < 1, so that T has a
bounded inverse. In order to prove that T |D+ : D+ → D+ is an automorphism, it therefore
suffices to show that also the inverse T−1 maps D+ into itself.
To this end, recall that T−1 can be written as a Neumann series,

T−1 = (IK − S)−1 =
∞∑
k=0

Sk . (21)

Here, along with T , also the operator S maps D+ into itself. Denote by Λ the part of D = A+B
associated with K, and define the bounded operator K on K by

K :=
(
Q+P−B −Q+BP−

)
|K . (22)

Then, one has
SΛx− ΛSx = Kx for all x ∈ D(Λ) = D+ . (23)

Indeed, for x ∈ D(Λ) = D+ one computes

SΛx− ΛSx = Q+P−(A+B)x− (A+B)Q+P−x

= Q+P−Ax+Q+P−Bx− (A+B)Q+P−x

= Q+AP−x+Q+P−Bx−Q+(A+B)P−x

= Kx .

In view of (21) and ‖S‖ < 1, it now follows from Proposition A.5 (b) that T−1 maps D+ = D(Λ)
into itself, which completes the proof.
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We are now in position to finally prove Theorem A.2.

Proof of Theorem A.2. Since one has Ran(Q+P+|D+) ⊂ Ran(Q+P+|D(A)) ⊂ D+, it follows
from Lemma A.6 that

Ran(Q+P+|D(A)) = D+ ,

so that the hypotheses of Proposition A.3 are satisfied. Applying this proposition then proves
the claim.
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