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Air pollution by Nitrogen Oxides (NOx) is a major concern in large cities as it has severe ad-
verse health effects. However, the statistical properties of air pollutants are not fully understood.
Here, we use methods borrowed from non-equilibrium statistical mechanics to construct suitable
superstatistical models for air pollution statistics. In particular, we analyze time series of Nitritic
Oxide (NO) and Nitrogen Dioxide (NO2) concentrations recorded at several locations throughout
Greater London. We find that the probability distributions of concentrations have heavy tails and
that the dynamics is well-described by χ2-superstatistics for NO and inverse-χ2-superstatistics for
NO2. Our results can be used to give precise risk estimates of high-pollution situations and pave
the way to mitigation strategies.

Complex driven non-equilibrium systems with time
scale separation are often well-described by superstatisti-
cal methods, i.e. by mixing several dynamics on distinct
time scales and constructing effective statistical mechan-
ics models out of this mixing [1, 2]. The intensive pa-
rameter β that fluctuates in a superstatistical way can
be an inverse temperature of the system, a fluctuating
diffusion constant, or simply a local variance parameter
in a given time series generated by the complex system
under consideration. This formalism is in particular rel-
evant for heterogeneous spatio-temporally varying sys-
tems and has been successfully applied to many areas
of physics and beyond, most notably Lagrangian turbu-
lence [3], defect turbulence [4], wind velocity fluctuations
[5, 6], share price dynamics [7], diffusion of complex bio-
molecules [8], frequency fluctuations in power grids [9],
rainfall statistics [10, 11], and many more. Here, we ap-
ply a superstatistical analysis to an important topic of
high relevance, namely the spatio-temporally dynamics
of air pollution in big cities. Our main example of pollu-
tants considered in the following are NO and NO2, but
the method can be similarly applied to other substances.
NO and NO2 are examples of nitrogen oxides (NOx),

which are gaseous air pollutants that are primarily dis-
charged through combustion [12]. In urban areas, the
main cause of this is through automobile emissions [13].
These chemicals have been shown to aggravate asthma
and other respiratory symptoms and increase mortality.
Further, short term exposure to NO2 has been shown
to correlate with ischaemic and hemorrhagic strokes
[12, 14, 15]. While NO is a very important substance
within Earth’s ecosystem, for example regulating the de-
velopment in plants and acting as a signaling hormone in
certain processes in animals, it can also cause severe en-
vironmental damage in high concentrations [16–18]. NO
may form acids, e.g. by chemically mixing with water
(H2O) to form Nitric Acid (HNO3), or reacting further
to NO2 [19] it can cause acid rain [15]. Though NOx are
not thought to be carcinogenic, they indicate the pres-
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ence of other harmful air pollutants [13].
The data analyzed here was taken from the publicly

available London Air Quality Network (LAQN) website
[20]. The site provides readings of pollutant levels at dif-
ferent locations throughout Greater London at different
time intervals, with the 15-minute interval data analyzed
here. Inspecting the measured concentration time series
for both NO and NO2 reveals that both pollutants’ con-
centrations vary on multiple time scales, see Fig. 1.

Concentrating on the case of NO for now, we notice
that the probability distribution of the measured concen-
tration exhibits power-law tails, see Fig. 2. The distribu-
tion is well-fitted by a q-exponential [21] of the form

p(u) = (2− q)λq [1 + (q − 1)λqu]
1

1−q , (1)

where u are the concentration levels [µg/m3] of the pol-
lutant, and the q- and λq-values are parameters. q can
be regarded as an entropic index [21–23] and it is related
to λq and the mean µ by

λq =
1

µ(3− 2q)
, (2)

see Appendices A and B for more details.
The basic idea of the superstatistical modelling ap-

proach is that a given time series, generated by a com-
plex driven non-equilibrium system, obeys a stochastic
differential equation (SDE) where the parameters of the
SDE change randomly as well, but on a much longer time
scale [24]. In our case, the concentration time series,
whilst being q-exponentially distributed as a whole, ap-
pears to be non-stationary, in the sense that it can be
divided into shorter time slices, of length T , that each
have locally an exponential density with different relax-
ation constant λe each, see Fig. 3. These changes in
the pollutants statistics make sense due to the changing
environment, e.g. because of changing weather condi-
tions or traffic flow varying from week to week and also
across seasons. Observing simple (exponential) statistics
locally, while noting heavy tails in the aggregated statis-
tics clearly suggests a superstatistical description. One
of the simplest local models is based on an exponential
probability distribution of the form

p(u|β) = β · exp (−βu) , (3)
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Figure 1. The concentration levels vary on several distinct time scales. a: We display the concentration of NO, recorded at
the Sir John Cass School location (London), measured in 15-minute intervals. The inset reveals large variations within one
month. b: We plot the concentration of NO2, recorded at the North Street location (London), measured in 15-minute intervals.
The inset again gives the concentrations for one month. For both pollutants we note seasonal changes, weekly changes and
intermittent fluctuations.
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Figure 2. Pollution statistics is not exponentially distributed,
but rather q-exponentially distributed. We display the his-
togram of the NO data, together with the best exponential
fit (green) and a q-exponential fit (red). Also displayed are
the value of the exponential parameter λe and the q- and
λq-parameters for the q-exponential distribution.

where β = λe is a local relaxation parameter that fluctu-
ates on the larger superstatistical time scale.

We determine this large time scale by computing the
average local kurtosis κ of a cell of length ∆t, similarly
as done in [2] for locally Gaussian distributions. We use
a local average kurtosis defined as

κ (∆t) =
1

tmax −∆t

∫ tmax−∆t

0

dt0
〈(u− ū)

4〉t0,∆t
〈(u− ū)

2〉2t0,∆t
, (4)

where tmax is the full length of the time series. The no-
tation 〈. . . 〉t0,∆t indicates the expectation for the time
slice of length ∆t starting at t0. Assuming local expo-

nential distributions with kurtosis 9, we apply Equation
(4) to determine the long time scale T as the special time
length ∆t such that

κ (∆t) = κ (T ) = 9. (5)

We show an example of how T is calculated in Appendix
B, with a plot illustrating how the average local kurtosis
depends on ∆t. Once the time slice length T is calcu-
lated, we define an intensive parameter β for each local
cell, by setting β = λe = 1/〈u〉t0,T . The distribution of
this parameter, f(β), is then obtained from a histogram,
as shown in Fig. 4a. In good approximation, we find β
to be χ2 distributed, i.e.,

f(β) =
1

Γ
(
n
2

) ( n

2β0

)n
2

β
n
2−1exp

(
− nβ

2β0

)
, (6)

where n is the number degrees of freedom and β0 is the
mean of β.

Integrating out the β-parameter, the marginal distri-
bution p(u) is calculated as

p(u) =

∫ ∞
0

p(u|β)f(β) dβ, (7)

which evaluates to

p(u) = (2− q)λq [1 + (q − 1)λqu]
1

1−q , (8)

with

−n
2
− 1 =

1

1− q
, (9)

and

1

2
(q − 1)λq =

β0

n
. (10)
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Figure 3. NO concentrations locally follow exponential distributions. a: We plot the NO concentration for several months
in 2010, with two periods of length ∆t = T ≈ 6 days highlighted, whose distributions are explored in panels b and c. The
histograms of panels b and c are fitted with exponential distributions and we note their respective λe-values. Note that the
exponent in panel b is only one fourth of the exponent recovered in panel c, i.e. high pollution levels are much more likely to
be observed in panel b, a time period in January, than in panel c, a time period in June. These different exponents quantify
the observation that pollutant levels tend to be higher during winter than during summer, see also Fig. 1.

Eq. (8) is the q-exponential distribution, which we de-
rived from a superposition of local exponential distribu-
tions.

Fitting the n-parameter to find f(β), as illustrated in
Fig. 4a, we determine the q- and λq-parameters from Eqs.
(9) and (10), respectively. Inserting the χ2-distribution
f(β), we use (7) and (8) to compute a probability density,
which both approximates the fitted q-exponential and the
data very well, successfully serving as a consistency check
of the superstatistical approach, see Fig. 4b.

We already noticed different statistical behavior when
inspecting the trajectory of the NO2 data in Fig. 1, as
compared to that of NO. Following a similar procedure
as for the NO data, we find that for NO2 the aggregated
distribution is approximated by a q-Maxwell Boltzmann
distribution, of the form

p(u) =
1

Z
u2σ3/2

q

[
1 + (q − 1)σqu

2
] 1

1−q , (11)

where Z is the normalization factor given by

Z =

√
πΓ
(

5−3q
2(q−1)

)
4(q − 1)3/2Γ

(
1
q−1

) (12)

and where q is related to the scale parameter σq and the
mean µ by

σq =

 2 (q − 1)
3/2

Γ
(

1
q−1

)
µ
√
π (2− q) (3− 2q) Γ

(
5−3q

2(q−1)

)
2

, (13)

see Appendix C for details.
Analogously to the NO-case, we explain the aggre-

gated distribution as a superposition of simple local dis-
tributions, here chosen as ordinary Maxwell-Boltzmann
distributions. Each local Maxwell-Boltzmann distribu-
tion is defined as

p(u) =

√
16

π
u2σ

3/2
mb exp

(
−σmbu2

)
, (14)
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Figure 4. The superstatistical approach consistently describes the data. a: The distribution of local exponents of the NO data,
here named β, follows a χ2 distribution, one of three commonly observed universality classes in general superstatistical complex
systems [2]. b: Histogram of the NO data, together with a q-exponential distribution with fitted q- and λq-values (red), and a
q-exponential distribution with q- and λq-values derived from the parameters of the fitted χ2-distributed f(β) (orange).
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Figure 5. NO2 concentrations are well described by inverse-χ2-superstatistics. a: The extracted distribution of the scale
parameter β for the NO2 time series is very well fitted by an inverse-χ2 distribution (green). b: Histogram of the NO2 data,
together with a q-Maxwell-Boltzmann distribution with fitted q- and σq-values (red) and a q-Maxwell-Boltzmann with q- and
σq-values superstatistically calculated from a χ2 distributed f(β) (orange), and Eq. (17), which is calculated from inverse-χ2

superstatistics (green). The inverse-χ2-superstatistics fits the NO2 data best.

where σmb =: β is a scale parameter.
We determine the long time scale T by varying ∆t

so that we locally obtain the kurtosis of a Maxwell-
Boltzmann distribution, which is given as

κ (T ) =
15π2 + 16π − 192

(3π − 8)
2 ≈ 3.1082, (15)

see Appendix C for the calculation. If the β val-
ues again follow a χ2-distribution, the superpositioned
Maxwell-Boltzmann distributions would lead to an exact
q-Maxwell-Boltzmann distribution, see Appendix C for a
detailed calculation.

The results of our superstatistical analysis for the NO2

data are displayed in Fig. 5. The χ2-distribution is only
a rough fit and the histogram of β is instead best fitted
by an inverse-χ2-distribution

f(β) =
β0

Γ
(
n
2

) (nβ0

2

)n
2

β−
n
2−2exp

(
−nβ0

2β

)
. (16)

This leads to a different superstatistics, compared to
the case of NO. Integrating the conditional probabil-
ity p(u|β), as in (7) but with local Maxwell-Boltzmann
distributions p(u|β) and an inverse-χ2-distribution f(β),
gives the marginal distribution as

p(u) =

√
64

π

β0

Γ
(
n
2

) (nβ0

2

)n+1
4

u
n+3
2 K 1−n

2

(
u
√

2nβ0

)
,

(17)
where Kv(z) is the modified Bessel function of the sec-
ond order. This inverse-χ2-superstatistical model leads
to a very good description of the data, see Fig. 5, and
it approximates q-Maxwell-Boltzmann distributions for
medium concentrations but it not exactly the same.
In fact, the PDF of the observed statistics decays like
p(u) ∼ exp(−const

√
u) for large u values, see also Ap-

pendix C.
To conclude, we have illustrated that superstatistical

methods, originally introduced in non-equilibrium statis-
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tical mechanics and applied to fully developed turbulent
flows and other complex systems, find new applications
to model the statistics of air pollution. We find excel-
lent agreement of simple superstatistical models with the
experimentally measured pollution data. A main result
is that different pollutants obey different types of super-
statistics (in our case χ2 for NO and inverse-χ2 for NO2).
In fact, different types of local dynamics also occur (in
our case locally exponential density for NO and locally
Maxwell-Boltzmann for NO2). Once the precise super-
statistical model for a given pollutant has been identified,
precise risk estimates of high pollution situations can be
given, by integrating the tails of the probability distribu-
tion above a given threshold. These estimates could help
to design tailor-made thresholds for suitable policies to
tackle the pollution problem in cities. We discuss some
explicit examples in the Appendix D. While the precise
local statistics (exponential or Maxwell-Boltzmann) does
significantly influence the likelihood to observe very low
concentrations, the probability to observe high concen-
trations is determined by heavy tails in both cases.

The superstatistical approach presented here can eas-
ily be generalized and extended. For example, we may
formulate an explicit dynamical process to match the tra-
jectories in time (in form of a superstatistical stochastic
differential equation), which could lead to synthetic dy-
namical models and the possibility to employ short-term
predictions of the pollution concentration. Further re-
search should be devoted to understand how and why
certain local statistics, such as exponential or Maxwell-
Boltzmann distributions arise, and to potentially link
these statistics to the physical and chemical properties
of the pollutants.
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Appendix A: Superstatistical cases

These appendices provide calculations of some equali-
ties used in the main text, such as relationships between
mean, variance and kurtosis for the relevant distribu-
tions. We also display how the long time scale is deter-
mined and explicitly discuss how the knowledge of con-
centration probability distributions could be used to set
pollution thresholds and policies.

We start by providing an overview of the different
cases of local distributions (exponential or Maxwell-
Boltzmann) and the β-distributions of the individual
scale parameters:

local distr./β distr. χ2 inv. χ2

exponential
q-exp,
empirical NO

Not observed here,
but see [25]

Maxwell-Boltzmann q-MB empirical NO2

Appendix B: NO

In the case of NO concentrations, we approximate lo-
cal concentrations as exponential distributions

p(u) = λe · exp (−λeu) , (B1)

and the aggregated statistics as q-exponentials

p(u) = (2− q)λq [1 + (q − 1)λqu]
1

1−q , (B2)

derived from a χ2 distribution of β = λe:

f(β) =
1

Γ
(
n
2

) ( n

2β0

)n
2

β
n
2−1exp

(
− nβ

2β0

)
. (B3)

1. Calculation of λq

Here, we show how to express the scale parameter of
q-exponentials λq as a function of the mean of the dis-
tribution µ = 〈u〉 and the q- parameter. We start by
computing the mean:

µ =〈u〉 = (2− q)λq
∫ ∞

0

u [1 + (q − 1)λqu]
1

1−q du

=
(2− q)Γ(2)Γ

(
3−2q
q−1

)
λq(q − 1)2Γ

(
1
q−1

)
=

1

λq(3− 2q)

(B4)

which gives

λq =
1

µ(3− 2q)
. (B5)

2. Calculation of mean µ of Exponential
Distribution

We briefly recall the relationship between the exponen-
tial scale parameter β = λe and the mean µ as

µ =〈u〉 = β

∫ ∞
0

u exp (−βu) du

=
1

β
.

(B6)
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3. Calculation of kurtosis κ of Exponential
Distribution

In the main text, we determined the time scale T as
the time scale where the local kurtosis of the local expo-
nential distribution takes on the value κ = 9. Here, we
provide the corresponding calculation

κ =
〈(u− µ)4〉
〈(u− µ)2〉2

=

∫∞
0

(u− µ)4βexp (−βu) du(∫∞
0

(u− µ)2βexp (−βu) du
)2

=

∫∞
0

(u4 − 4u3µ+ 6u2µ2 − 4uµ3 + µ4)βexp (−βu) du(∫∞
0

(u2 − 2uµ+ µ2)βexp (−βu) du
)2

=
24− 24µβ + 12µ2β2 − 4µ3β3 + µ4β4

4− 8µβ + 8µ2β2 − 4µ3β3 + µ4β4

=9,

(B7)

using µ = 1
β .

4. Superstatistical calculation of q-Exponential
Distribution

We show how integrating several local exponential dis-
tributions, whose exponents β follow a χ2-distribution,
leads to an overall q-exponential distribution: Each local
distribution is given as

p(u|β) = βexp(−βu). (B8)

Integrating over all of these distributions can be ex-
pressed as

p(u) =

∫ ∞
0

p(u|β)f(β) dβ

=
1

Γ
(
n
2

) ( n

2β0

)n
2
∫ ∞

0

β
n
2 exp

(
−β
(

n

2β0
+ u

))
dβ,

(B9)

which we evaluate to

p(u) = (2− q)λq [1 + (q − 1)λqu]
1

1−q , (B10)

if we identify

−
(
n+ 2

2

)
=

1

1− q
, (B11)

1

2
(q − 1)λq =

β0

n
, (B12)

where β0 is the mean of β.

5. Determining the long time scale T

We determine the long time scale T from the time se-
ries using Equ. (4) from the main text given as

κ (∆t) =
1

tmax −∆t

∫ tmax−∆t

0

dt0
〈(u− ū)

4〉t0,∆t
〈(u− ū)

2〉2t0,∆t
.

(B13)
The long time scale T is defined as T := ∆t such that
κ(∆t) = 9. Here, we compute the average local kurto-
sis κ as a function of the time window ∆t and thereby
determine T .
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Figure 6. The average kurtosis κ as given by Eq.(4) is plot-
ted as a function of the time window ∆t (blue). The crossing
between the horizontal line at κ = 9 (the kurtosis of an expo-
nential distribution) and the κ vs. ∆t curve gives the value
for ∆t = T ≈ 6.

Appendix C: NO2

In the case of NO2 concentrations, we approximate
local concentrations as Maxwell-Boltzmann distributions

p(u) =

√
16

π
u2σ

3/2
mb exp

(
−σmbu2

)
(C1)

and the aggregated statistics is a q-Maxwell-Boltzmann
distribution

p(u) =
1

Z
u2σ3/2

q

[
1 + (q − 1)σqu

2
] 1

1−q (C2)

if σmb is χ2 distributed. These q-Maxwell-Boltzmann
distributions would strictly arise if the scale parameters
β = σmb were following a χ2-distribution. Empirically,
we observe that for our data, the β values follow an
inverse-χ2-distribution instead:

f(β) =
β0

Γ
(
n
2

) (nβ0

2

)n
2

β−
n
2−2exp

(
−nβ0

2β

)
. (C3)
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We obtain this inverse-χ2-distribution from a simple
transformation of random variables when β−1, rather
than β, is χ2-distributed.

1. Calculation of σq

Here, we show how to express the scale parameter of q-
Maxwell-Boltzmann distributions σq as a function of the
mean of the distribution µ = 〈u〉 and the q-parameter.
We start by computing the mean:

µ =〈u〉 =
σ

3/2
q

Z

∫ ∞
0

u3
[
1 + (q − 1)σqu

2
] 1

1−q du

=
Γ(2)Γ

(
3−2q
q−1

)
2Zσ

1/2
q (q − 1)2Γ

(
1
q−1

)
=

1

2Z(2− q)(3− 2q)σ
1/2
q

=
2(q − 1)3/2Γ

(
1
q−1

)
σ

1/2
q
√
π(2− q)(3− 2q)Γ

(
5−3q
q−1

) ,

(C4)

which gives

σq =

 2(q − 1)3/2Γ
(

1
q−1

)
µ
√
π(2− q)(3− 2q)Γ

(
5−3q
q−1

)
2

. (C5)

2. Calculation of mean µ of Maxwell-Boltzmann
Distribution

We briefly recall the relationship between the scale pa-
rameter β = σmb of the Maxwell-Boltzmann distribution
and the mean µ as

µ =〈u〉 =

√
16

π
β3/2

∫ ∞
0

u3exp
(
−βu2

)
du

=

√
16

π
β3/2

(
Γ(2)

2β2

)
=

2√
πβ

(C6)

3. Calculation of kurtosis κ of Maxwell-Boltzmann
Distribution

In the main text, we determined the time scale T as the
time scale where the local kurtosis of the local Maxwell-
Boltzmann distribution takes on the value κ ≈ 3.1082.

Here, we provide the corresponding calculation

κ =
〈(u− µ)4〉
〈(u− µ)2〉2

=

√
16
π β

3/2
∫∞

0
(u− µ)

4
u2exp(−βu2) du(√

16
π β

3/2
∫∞

0
(u− µ)

2
u2exp(−βu2) du

)2

=

µ4√π
4β3/2 − 2µ3

β2 + 9µ2√π
4β5/2 − 4µ

β3 + 15
√
π

16β7/2√
16
π β

3/2
(
µ2
√
π

4β3/2 − µ
β2 + 3

√
π

8β5/2

)2

=
15π2 + 16π − 192

(3π − 8)2
≈ 3.1082

(C7)

4. Superstatistical calculation of
q-Maxwell-Boltzmann Distribution

We show how integrating several local Maxwell-
Boltzmann distributions, whose exponents β follow a χ2-
distribution, leads to an overall q-Maxwell-Boltzmann
distribution: Each local distribution is given as

p (u|β) =

√
16

π
u2σ

3/2
mb exp

(
−σmbu2

)
. (C8)

Integrating over all of these distributions can be ex-
pressed as

p(u) =

∫ ∞
0

p(u|β)f(β) dβ

=

√
16

π

1

Γ
(
n
2

) ( n

2β0

)n
2

u2

×
∫ ∞

0

β
n+1
2 exp

(
β

(
n

2β0
+ u2

))
dβ,

(C9)

which can be evaluated to

p(u) ∼ u2σ3/2
q

[
1 + (q − 1)σqu

2
] 1

1−q , (C10)

if we identify

−
(
n+ 3

2

)
=

1

1− q
, (C11)

1

2
(q − 1)σq =

β0

n
, (C12)

where β0 is the mean of β.

5. Calculation of inverse-χ2 superstatistical
distribution based on superimposed
Maxwell-Boltzmann distributions

Instead of following a χ2-distribution, our data indi-
cates that the scale parameters β of the local Maxwell-
Boltzmann distribution rather follow an inverse-χ2-
distribution. Here, we derive the probability density
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function for such a superposition. Taking the condi-
tional density p(u|β) as given in (C8) and the inverse-
χ2-distribution for the distribution f(β), the probability
density p(u) is given as

p(u) =

√
16

π

β0

Γ
(
n
2

) (nβ0

2

)n
2

u2

×
∫ ∞

0

β−
(n+1)

2 exp

(
−nβ0

2β
− βu2

)
dβ

=

√
64

π

β0

Γ
(
n
2

) (nβ0

2

)n+1
4

u
n+3
2 K 1−n

2

(
u
√

2nβ0

)
.

(C13)

This PDF has still heavy tails, which decay as p(u) ∼
exp(−const

√
u) for large u values.

6. Extra Figures

We repeat Fig. 3 from the main text for local NO2 con-
centrations, i.e. analyzing brief periods of the NO2 tra-
jectory. Fig. 7 illustrates that in good approximation the
local behavior follows Maxwell-Boltzmann distributions
with fluctuating variance. Further, we also determine
the long time scale T for the local Maxwell-Boltzmann
distributions by setting T := ∆t for the local kurtosis
κ(∆t) ≈ 3.1082, following Eq. (4) from the main text
again. See Figs. 7 and 8.

Appendix D: Thresholds and policies

Policies to tackle pollution in cities often focus on
thresholds and compliance with these thresholds. This
then often leads to pollution just below the threshold in
many regions. However, in many cases it may be more
reasonable to reduce the overall exposure to pollutants
[26]. Weather is responsible for many fast variations of
the air pollution [26]. The focus on threshold is espe-
cially dangerous as there is strong evidence that even
small concentrations of pollutants, below national stan-
dards, increase the death rate [27]. The UK government

(Dept. of Health & Social Care) calls air pollution a
”health emergency” and the World Health Organization
(WHO) judges the situation similarly on a global scale
[28]. Note that about 9500 premature deaths are at-
tributed to air pollution in London alone every year [29].
On a global scale this number rises to about 4.9 million
premature deaths, making air pollution the fifth leading
cause of mortality worldwide [30].

So let us finally sketch how the knowledge of the proba-
bility density function (PDF) allows estimates of thresh-
old crossings and total exposure. Setting thresholds on
pollutant concentrations is a popular tool when setting
pollution policies. Simultaneously, data coverage might
not be very good in all locations. Especially if data is
not available for the full time period of interest but only
for a few months, estimates on how frequently thresh-
olds are violated are difficult to obtain. As soon as we
are able to determine the PDF p(u) for the concentration
levels u, we can easily compute the number of days where
thresholds are violated as

Nu>uthreshold
= 365

∫ ∞
uthreshold

p(u)du. (D1)

This integral can be easily evaluated numerically, using
q-exponential distributions for NO, see Eq. (8) from the
main text, and Eq. (17) from the main text for NO2,
consistent with experimental observations.

The number of threshold violations explicitly depends
on the parameters λq and q, which have to be determined
from the data sets but can then be compared between
different locations and time periods. Having these two
parameters explicitly disentangles two aspects: The rate
of (rare) extreme events, encoded in q and the overall
variability of the pollutant concentration, encoded in λq
(or λmb for NO2).

Complementary to thresholds, policies could instead
focus on the total pollution exposure (TPE) describing
the average amount citizens are exposed to. Again, this
is easily computed from the PDF as

TPE = 365

∫ ∞
0

p(u)udu. (D2)
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0 1 2 3 4 5

t [days]

2.6

2.8

3

3.2

3.4

3.6

A
ve

ra
ge

 K
ur

to
si

s 

(2.611,3.1082)

Figure 8. The average kurtosis κ is plotted as a function of
the time window ∆t. The crossing between the horizontal line
at κ = 3.1082 (the kurtosis of a Maxwell-Boltzmann distribu-
tion) and the κ vs. ∆t curve gives the value ∆t = T = 2.61.

[13] G. B. Hamra, F. Laden, A. J. Cohen, O. Raaschou-

Nielsen, M. Brauer, and D. Loomis, Environmental
Health Perspectives 123, 1107 (2015).

[14] A. S. Shah, K. K. Lee, D. A. McAllister, A. Hunter,
H. Nair, W. Whiteley, J. P. Langrish, D. E. Newby, and
N. L. Mills, BMJ 350, h1295 (2015).

[15] United States Environmental Protection Agency, Ni-
trogen Dioxide (NO2) Pollution, http://www.epa.gov/

no2-pollution/basic-information-about-no2\$\#\

$What\$\%\$20is\$\%\$20NO2 (2016).
[16] P. Domingos, A. M. Prado, A. Wong, C. Gehring, and

J. A. Feijo, Molecular Plant 8, 506 (2015).
[17] J. Astier, I. Gross, and J. Durner, Journal of Experimen-

tal Botany 69, 3401 (2017).
[18] M. M. Musameh, C. J. Dunn, M. H. Uddin, T. D. Suther-

land, and T. D. Rapson, Biosensors and Bioelectronics
103, 26 (2018).

[19] M. E. Barsan (2007).
[20] Environmental Research Group (ERG) at King’s Col-

lege London, London air, URL https://www.londonair.

org.uk.
[21] C. Tsallis, Introduction to nonextensive statistical me-

chanics: approaching a complex world (Springer, 2009).
[22] R. Hanel, S. Thurner, and M. Gell-Mann, Proceedings of

the National Academy of Sciences 108, 6390 (2011).
[23] P. Jizba and J. Korbel, Physical Review Letters 122,

120601 (2019).
[24] C. Beck, Physical Review Letters 87, 180601 (2001).



10

[25] L. L. Chen and C. Beck, Physica A: Statistical Mechanics
and its Applications 387, 3162 (2008).

[26] G. W. Fuller and A. Font, Science 365, 322 (2019).
[27] Q. Di, Y. Wang, A. Zanobetti, Y. Wang, P. Koutrakis,

C. Choirat, F. Dominici, and J. D. Schwartz, New Eng-
land Journal of Medicine 376, 2513 (2017).

[28] World Health Organization (WHO), How air pollu-
tion is destroying our health (2019), URL https:

//www.who.int/air-pollution/news-and-events/

how-air-pollution-is-destroying-our-health.
[29] H. Walton, D. Dajnak, S. Beevers, M. Williams,

P. Watkiss, and A. Hunt, London: Kings College London,
Transport for London and the Greater London Authority
(2015).

[30] Health Effects Institute, Special Report (2018).


