
Preprint submitted to Internet of Things 19 November 2019 1

Agri-Info: Cloud Based Autonomic System for Delivering Agriculture as a Service

Sukhpal Singh1, Inderveer Chana2 and Rajkumar Buyya3

1School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
2Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

3Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

School of Computing and Information Systems, The University of Melbourne, Australia

s.s.gill@qmul.ac.uk, inderveer@thapar.edu, rbuyya@unimelb.edu.au

ABSTRACT

The Internet of Things (IoT) and cloud computing paradigms offer enhanced services for agricultural applications to manage

the data efficiently. To provide an effective and reliable agriculture as a service, there is a need to manage Quality of Service

(QoS) parameters to efficiently monitor and measure the delivered services dynamically. This paper presents a QoS-aware

cloud based autonomic information system called Agri-Info for delivering agriculture related information as a service through

the use of latest Internet-based technologies such as cloud computing and IoT which manage various types of agriculture

related data based on different domains of agricultural industry. Proposed system gathers information from various users

through preconfigured IoT devices (mobiles, laptops or iPads). It further manages and delivers the required information to

users and diagnoses the agriculture status automatically. We have developed the web and mobile-based application and

evaluated the performance of the proposed system in cloud environment using CloudSim toolkit based small scale

environment. Results demonstrate our system yields in a reduction on 12.46% cost, on 15.52% network bandwidth, on 10.18%

execution time and 13.32% in latency. Furthermore, a case study of an Indian village is presented to identify the customer

satisfaction of farmers.

Keywords - Cloud computing, Autonomic, Quality of Service, Agriculture as a Service, Resource Scheduling, Case Study,

Cloud Application

 1. Introduction

Cloud computing paradigm offers an effective application platform, which manages and delivers the new emerging Internet

of Things (IoT) based applications in the field of healthcare, agriculture, education or finance efficiently over the Internet.

Though, delivering dedicated cloud services that ensure application's dynamic Quality of Service (QoS) requirements and

user satisfaction is a big research challenge in cloud computing [1]. As dynamism, heterogeneity and complexity of

applications is increasing rapidly, this makes cloud systems unmanageable in-service delivery. To overcome these problems,

cloud systems require self-management of services. Autonomic cloud computing systems provide the environment in which

IoT applications can be managed efficiently by fulfilling QoS requirements of applications without human involvement [2].

Emergence of IoT and ICT (Information and Communication Technologies) plays an important role in agriculture sector by

providing services through computer-based agriculture systems [3] [20]. But these agriculture systems are not able to fulfill

the needs of today’s generation due to lack of important requirements like processing speed, lesser data storage space, network

utilization and latency [4] [21] and even the resources used in computer-based agriculture systems are not utilized efficiently

[5] [22]. To solve the problem of existing agriculture systems, there is a need to develop a cloud based service [12] that can

easily manage different types of agriculture related data based on different domains (crop, weather, soil, pest, fertilizer,

productivity, irrigation, cattle and equipment) through these steps: i) gather data from various users through preconfigured

IoT devices, ii) analyze the gathered data in an efficient manner, iii) store the classified information in cloud repository for

future use, and iv) automatic diagnose of the agriculture status using concepts such as fuzzy logic [2]. In addition, cloud based

autonomic information system is also able to identify the QoS requirements of user request and resources are allocated

efficiently to execute the user request based on these requirements. Cloud based services can significantly improve latency,

network bandwidth, execution time and customer satisfaction.

1.1 Motivation

The motivation of this paper is to design an architecture of cloud based autonomic information system for agriculture service

called Agri-Info which manages various types of agriculture related data based on different domains and maintains required

level of QoS. The main objectives of this research work are: i) to propose an autonomic resource management technique

which is used: a) to gather the information from various users through preconfigured IoT devices, b) to analyze the

information and c) to store the information in cloud repository (fuzzy rule base) for future use and e) diagnose the agriculture

status automatically and ii) to allocate resources automatically at infrastructure level after identification of QoS requirements

of user request. Agri-Info improves user satisfaction by fulfilling their expectations and increases availability of services.

Preprint submitted to Internet of Things 19 November 2019 2

1.2 Article Structure

The rest of the paper is organized as follows. Section 2 presents related work and contributions. Proposed architecture is

presented in Section 3. Section 4 presents the graphical user interface with the help of web and mobile based application.

Section 5 describes the experimental setup and presents the results of performance evaluation and a case study of Agri-Info.

Section 6 presents summarizes the paper and highlights open challenges and future directions.

2. Related Work

Literature reported that existing agriculture systems [23] [24] have been developed with limited functionality. This section

presents the related work of existing agriculture systems. Jirapond et al. [1] proposed control system (Smart-Farm) using

node sensors in the crop field with data management via smartphone and a web application to control the watering process

to the crops and helps to reduce the cost of watering crop. Alexandros et al. [6] proposed architecture of a farm management

system using characteristics of Internet which focuses on procedure of farming and mechanisms to exchange the information

among stakeholders. Further, this architecture describes the method for better management of only some of the tasks of

farmers without using the autonomic concept. Ranya et al. [7] presented Agriculture Land Suitability Evaluator (ALSE) to

study various types of land to find the appropriate land for different types of crops by analyzing geo-environmental factors.

ALSE used Global Information System (GIS) capabilities to evaluate land using local environment conditions through digital

map and based on this information decisions can be made. Raimo et al. [25] proposed Farm Management Information System

(FMIS) used to find the precision agriculture requirements for information systems through web-based approach. Author

identified the management of GIS data is a key requirement of precision agriculture. Sorensen et al. [8] studied the FMIS to

analyze dynamic needs of farmers to improve decision processes and their corresponding functionalities. Further, they

reported that identification of process used for initial analysis of user needs is mandatory for actual design of FMIS.

Sorensen et al. [9] identified various functional requirements of FMIS and information model is presented based on these

requirements to refine decision processes. They identified that complexity of FMIS is increasing with increase in functional

requirements and found that there is a need of autonomic system to reduce complexity. Shitala et al. [10] presented mobile

computing-based framework for agriculturists called AgroMobile for cultivation and marketing and analysis of crop images.

Further, AgroMobile is used to detect the disease through image processing and also discussed how dynamic needs of user

affects the performance of system. Seokkyun et al. [11] proposed cloud-based Disease Forecasting and Livestock Monitoring

System (DFLMS) in which sensor networks has been used to gather information and manages virtually. DFLMS provides an

effective interface for user but due to temporary storage mechanism used, it is unable to store and retrieve data in databases

for future use.

2.1 Comparisons of Agri-Info with Existing Agriculture Systems

The proposed QoS-aware cloud based autonomic information system (Agri-Info) has been compared with existing agriculture

systems as described in Table 1, which clearly shows the novelty and superiority of the Agri-Info.

Table 1: Comparisons of existing agriculture systems with proposed system (Agri-Info)

Agriculture

System

Domains Autonomic QoS-

aware

Fuzzy

Logic

Cloud Resource

Management

Graphical User

Interface

Case

Study

Smart-Farm [1] Irrigation X X X X ✔ X

ALSE [7] Soil X X X X X X

FMIS [25] Pest and Crop X X X X X X

AgroMobile [10] Crop X X X X X X

DFLMS [11] Crop X X X X X X

Agri-Info

(Our Work)

Crop, Weather, Soil, Pest, Fertilizer,

Productivity, Irrigation, Cattle and Equipment
✔ ✔ ✔ ✔ ✔ ✔

2.2 Previous Work and Our Contributions

This research work is an extended and summarized version of our previous work [12], (published in The Journal of

Organizational and End User Computing) and an updated version of our Technical Report1. In our previous work, we

proposed a cloud-based system for agriculture, which gathers and manages data coming from systems or IoT devices and

provides the required information to users based on their requirement. However, these works are not able to make smart and

intelligent decisions to diagnose the status of agriculture related user query. There is a need of rule based intelligent module,

which can diagnose the status of user related query automatically within their deadline and minimum value of latency,

1 CLOUDS-TR-2015-2, Cloud Computing and Distributed Systems Laboratory, The University of Melbourne, 2015, web link: https://arxiv.org/abs/1511.08986

https://arxiv.org/abs/1511.08986
https://arxiv.org/abs/1511.08986

Preprint submitted to Internet of Things 19 November 2019 3

network bandwidth and execution time. In this paper, we use Fuzzy logic to make the decisions based on defined rules to

diagnose the status as well as schedule the resources automatically by optimizing the execution time, cost, latency and

network bandwidth. Further, we have designed web-based and mobile-based application for user through which user or farmer

can interact with the system efficiently. The major contributions of this work are:

• To propose cloud based autonomic model for offering Agriculture-as-a-Service through web and mobile based

application and maintains the level of QoS.

• To gather the information from various users through preconfigured IoT/Edge devices.
• To diagnose the agriculture status automatically using Fuzzy Logic, which helps to make further optimal decisions.

• To execute cloud resources automatically and improves user satisfaction and usability of cloud service automatically.

• To evaluate the performance of Agri-Info with existing agriculture system i.e. Smart-Farm [1] based on various QoS

parameters such as execution time, cost, latency and network bandwidth.

• To validate Agri-Info with the real case study of an Indian Village based on the customer satisfaction level of farmers.

3. Agri-Info Architecture

Existing agriculture systems are not able to fulfill the needs of today’s generation due to missing of important requirements

like processing speed, lesser data storage space or latency and even the resources used in computer-based agriculture systems

are not utilized efficiently. To solve the problem of existing agriculture systems, there is a need to develop a cloud based

autonomic information system which delivers Agriculture as a Service (AaaS). In this section, we present an architecture of

QoS-aware cloud based autonomic information system for agriculture service called Agri-Info, which manages various types

of agriculture related data based on different domains. Architecture of Agri-Info is shown in Figure 1.

Figure 1: Agri-Info Architecture [12]

The main objectives of this proposed system are: i) to get information from various IoT devices, ii) to analyze the information

using Fuzzy logic and create fuzzy rules, iii) to store the user data and fuzzy rules in cloud repository (Fuzzy Rule Base) for

future decisions, iv) to respond the user queries automatically based on the information stored in Fuzzy Rule Base and v) to

allocate the resources automatically based on QoS requirements of different requests. Architecture of Agri-Info comprises

following two subsystems: i) user and ii) cloud.

3.1 User Subsystem

This subsystem provides user interface, in which different type of users interacting with Agri-Info to provide and get useful

information about agriculture based on different domains. We have considered nine types of information of different domains

in agriculture: crop, weather, soil, pest, fertilizer, productivity, irrigation, cattle and equipment. Users are basically classified

in three categories: i) agriculture expert, ii) agriculture officer and iii) farmer. Agriculture expert shares professional

Preprint submitted to Internet of Things 19 November 2019 4

knowledge by answering the user queries and updates the fuzzy rule database based on the latest research done in the field of

agriculture with respect to their domain. Agriculture officers are the government officials those provides the latest information

about new agriculture policies, schemes and rules passed by the government. Farmer is an important entity of Agri-Info who

can take maximum advantage by asking their queries and getting automatic reply after analysis. Use case diagram shown in

Figure 2, describes the important functions user can perform with Agri-Info.

Figure 2: Use Case Diagram of Agri-Info

Use case diagram describes the interaction of users with Agri-Info. The notation <<include>> uses when a use case is

depicted as using the functionality of another use case. For example: the functionality of use case “Agri-Info” can be accessed

only with valid “Authentication”. The notation <<extend>> uses when the next connected use case is optional. For, example:

indicates that an “Invalid Password” use case may include (subject to specified in the extension) the behavior specified by

base use case “Authentication”. Figure 3 shows the sequence diagram of the user interaction in Agri-Info. Sequence diagram

shows the: 1) collaboration of objects based on a time sequence and 2) how the objects interact with others in a particular

scenario of Use Case. Firstly, successful registration of user has been demonstrated. After performing the task of the user’s

authentication and authorization, the home page of user will be displayed. User can write their query regarding the agriculture

information required from any of the domain and then system will provide the required information after analysis of user

Authentication

Registration

Invalid

Farmer_DB

<<extend>>

<<include>>

Agri-Info

Crop Detail

<<extend>>

Farmer

Weather Detail

<<extend>>

Soil Detail

<<extend>>

Irrigation Detail

<<extend>>

<<extend>>

Fertilizer Detail

Productivity

Detail

Pest Detail

<<extend>>

<<extend>>

AaaS_DB

Update Agriculture Status/ Policies

Diagnosis Agriculture Status

<<include>>

Agriculture

Expert

Agriculture

Officer

Answer Query

Ask Query

<<include>>

Cattle Detail

Equipment Detail

 <<extend>>

<<extend>>
<<include>>

Preprint submitted to Internet of Things 19 November 2019 5

query automatically. All the requests are analyzed based on their information asked by user and updates the database. Users

can monitor any data related to their domain and get their response without visiting the agriculture help center. It integrates

the different domains of agriculture with Agri-Info. Agri-Info does not require any technical expertise to use this system. The

information or queries received from user(s) are forwarded to cloud repository for updation and response send back to

particular user on their preconfigured devices (tablets, mobile phones or laptops) via Internet.

 Registration get information

 User registered

 Update information send updated information

 Information updated

 <<login>>

 Authenticated user

 Select type of Information

 Type selected
 enter required information get detail

 information entered

 view information
 get information

 generate information call()

 information received

 Enter Query

 Ask query

 Answer query
 Get answer

 <<logout>>

 Figure 3: Sequence Diagram of Agri-Info

3.2 Cloud Subsystem

This subsystem contains the platform in which agriculture web service is hosted on a cloud [17]. Agriculture web or mobile

service allows to process the agriculture information provided by users of different domains of agriculture. Agri-Info gathered

different number of attributes based on specific agriculture information submitted by user through agriculture web service or

mobile application as shown in Table 2.
Table 2: Domains and their Attributes [12]

Domain Attributes

Crop Info Cropid, Name, Type, Soil Moisture, Temperature, Season, Avg. Productivity, Min Land, Growing Period, Seed Type, Price,

Quantity, Disease and Treatment.

Weather Info Humidity, Temperature, Pressure, Wind Speed, Rainfall and Location

Soil Info Bulk Density, Inorganic Material, Organic Material, Water, Air, Color, Texture, Structure and Infiltration

Pest Info Type, Effect, Treatment, Solubility in Water, Outcome and Price

 Fertilizer Info Type, Nutrient Composition and Price

Productivity Info Soil Type, Crop Type, Season, Rainfall, Pest Info, Fertilizer Info and Irrigation Info

Irrigation Info Climate Factors (Rainfall/Temperature), Crop Type, Season and Soil Type

Cattle Info Type, Quantity, Area, Layout and Structure of Yard, Feed, Drinking Water, Health Issue, Disease and Treatment

Equipment Info Type, Quantity, Area, Budget, Price, Maintenance Cost and Work Type

These details are stored in cloud repository in different classes for their respective domains with unique identification number.

The information is monitored, analyzed and processed continuously by Agri-Info. We have designed different classes for

:Farmer

:Database_Handler

:Farmer_Database

Loop

 Wo rkloads

: Agri-Info

:AaaS_Database

:Agriculture Expert/Agriculture Officer

Preprint submitted to Internet of Things 19 November 2019 6

every domain and sub classes for further categorization of information. In storage repository or fuzzy rule base, user data is

categorized based on different predefined classes of every domain. This information is further forwarded to agriculture experts

and agriculture officers for final validation through IoT devices. Agriculture Manger is an independent entity and in charge

of this system and will be responsible to evaluate the correctness of the knowledge present in the database. Agriculture

Manger can be an employee of the government or private agriculture industry. Based on QoS requirements, autonomic

resource manager identifies resource requirements and allocates and executes the resources at infrastructure level.

Performance monitor is used to verify the performance of system and maintain it automatically. If system will not be able to

handle the request automatically then system will generate alert.

3.2.1. Fuzzy Logic Based Status Diagnose Module

Agri-Info executes the user requests to diagnose the status of their query automatically. The components of fuzzy system [13]

[14] [15] used in Agri-Info are described below:

3.2.1.1 Fuzzy input and output variables

It is necessary to find the input and output parameters for fuzzy system. We have considered six attributes from Table 2 as

an input: Crop Name, Temperature, Soil Texture, Season, Pesticide and Fertilizer and one output: Productivity. Based on

these six attributes, Agri-Info design rules and membership functions.

3.2.1.2 Fuzzy membership functions (Inferences)

Based on these input and output variable, inference engine is making decisions. Block diagram of inference engine is shown

in Figure 4. Value of membership functions can be changed based on the requirements and conditions of every user request.

Figure 4: Block diagram of inference engine

i) Cluster and fuzzify the extracted data: To derive required member functions (mfs) from output values, there is a need to

cluster the output values of all training instances (𝑡𝑖) into various clusters. After clustering, most close output values of 𝑡𝑖

belong to the similar class is considered. To achieve this objective, it further includes sub steps:

a) To find relationship among different output values of 𝑡𝑖, Sort the output values in an ascending order

(𝑡𝑖1 ≤ 𝑡𝑖2 ≥ ⋯ ≤ 𝑡𝑖𝑛), where 𝑡𝑖𝑚 ≤ 𝑡𝑖𝑚+1 for m = 1, 2, 3…..n-1,

b) To identify the similarity, there is a need to find the difference 𝑑𝑚 between adjacent data

 𝑑𝑚 = 𝑡𝑖𝑚+1− 𝑡𝑖𝑚, for each pair 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑚+1

c) To transform distance 𝑑𝑚 to a real number 𝑟𝑚, 𝑟𝑚 ∈ (0, 1)

 𝑟𝑚 = {
1 −

 𝑑𝑚

𝑠 × 𝑠𝑑𝑟

, 𝑑𝑚 ≤ 𝑠 × 𝑠𝑑𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Crop Name

Temperature

Soil Texture Productivity

Inference

Engine
Season

Pesticide

Fertilizer

Preprint submitted to Internet of Things 19 November 2019 7

Where 𝑟𝑚 presents the similarity between 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑚+1 and 𝑑𝑚 is distance between 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑚+1 and 𝑠𝑑𝑟 is standard

deviation of 𝑑𝑚 and 𝑠 is a control parameter which is used to decide the shape of mfs of similarity.

d) Cluster the 𝑡𝑖 according to similarity

For clustering the instances, the value of µ for similarity is identified. Value of µ is used to identify the threshold value two

adjacent data, where adjacent data belongs to similar class. With maximum value of µ, clusters will be smaller.

If 𝑟𝑚 ≤ µ then [distribute the two adjacent data into different clusters] else [keep two adjacent data into similar cluster]

Result is obtained in the form like: (𝑡𝑖𝑚, 𝐶𝑜), after the above operation. (𝑡𝑖𝑚, 𝐶𝑜) represents that mth output data is clustered

into the 𝐶𝑜 (where 𝐶𝑜 is oth produced fuzzy region).

Suppose the value of µ is 8, then training data clustered into groups: (𝑡𝑖1, 𝐶1), (𝑡𝑖2, 𝐶1), (𝑡𝑖3, 𝐶2), (𝑡𝑖4, 𝐶1), (𝑡𝑖5, 𝐶3),

(𝑡𝑖6, 𝐶1), (𝑡𝑖7, 𝐶3), (𝑡𝑖8, 𝐶2).

e) Identify the membership functions of the output space

We used membership functions for every linguistic variable. Minimum value of µ in the cluster is selected as value of

membership of the two extreme points (𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑞) of boundary to determine the membership of 𝑡𝑖𝑚 𝑎𝑛𝑑 𝑡𝑖𝑞. Formula

used to calculate 𝜌𝑜 (𝑡𝑖𝑚) and 𝜌𝑜 (𝑡𝑖𝑞) is:

 𝜌𝑜 (𝑡𝑖𝑚) = 𝜌𝑜 (𝑡𝑖𝑞) = minimum (𝑟𝑚+1, 𝑟𝑚+2, … … … . 𝑟𝑞−1)

f) Determine the value of membership which belongs to the selected cluster for every instance

Fuzzy value formed as (𝑡𝑖𝑚, 𝐶𝑜, 𝜌𝑚𝑜) of each output data is retrieved by using above membership functions. Term (𝑡𝑖𝑚,

 𝐶𝑜, 𝜌𝑚𝑜) referred as fuzzy value (𝜌𝑚𝑜) to the cluster (𝐶𝑜) of output data (mth). Every ti is then represented as after

transformation:

(𝑓1, 𝑓2, … … 𝑓ℎ; (𝐶1, 𝜌1), (𝐶2, 𝜌2), … … . (𝐶𝑞 , 𝜌𝑞))

ii) Create initial membership functions for input attributes: Initial membership function is assigned to every input attribute,

which is represented as: triangle (j, k, l) with k - j = l - k = the smallest predefined unit. For example: smallest unit is selected

to be 10 if 10, 20 and 30 are three values of an attribute. We have assumed for the attribute that 𝑗0 be its smallest value and

𝑗𝑛 be its biggest value.

iii) Create the initial decision table: Based on initial membership functions, a multi-dimensional decision table is created in

which every attribute is represented by every dimension and position’s content in the decision table is treated as Slot. To

represent the position’s content of (𝑤1, 𝑤2, 𝑤3 … … … . . 𝑤𝑡) in the decision table, 𝑆𝑙𝑜𝑡(𝑤1,𝑤2,𝑤3………..𝑤𝑡) is created, where

position value at the mth dimension is represented by 𝑤𝑚 and dimension of decision table is represented by t. Every slot can

be empty or contain a maximum value of membership of the output data. Slots cannot be empty.

iv) Simplify the initial decision table: To eliminate redundant and unnecessary, initial decision table can be simplified in

following ways:

i. Merge two columns/rows into single if slots in two adjacent rows/columns are the same. Example: Two columns

Temperature = 18 °C and Temperature = 19 °C are merged into single if all the slots in the adjacent columns

[Temperature = 18 °C and Temperature = 19 °C] are the same.

ii. Merge two rows/columns into single if two slots are the same or (if any slot is empty in two adjacent rows/columns

and minimum one slot in both the rows/columns is non-empty). Example: Two rows Temperature = 40 °C and

Temperature = 41 °C, are merged into single.

Based on above mentioned two rules (a and b), membership functions can be rebuilt for simplification process.

v) Derive decision rules from the decision table : To derive a Fuzzy rule (if-then), every slot (𝑆𝑙𝑜𝑡(𝑤1,𝑤2,𝑤3………..𝑤𝑡) = 𝐶0)

is used in decision table:

Preprint submitted to Internet of Things 19 November 2019 8

Rule 1: If {𝐴11˄/˅𝐴12 ˄/˅𝐴13 ˄/˅…………………………………….. ˄/˅𝐴1𝑛} then 𝐶1

Rule 2: If {𝐴21˄/˅𝐴22 ˄/˅𝐴23 ˄/˅…………………………………….. ˄/˅𝐴2𝑛} then 𝐶2

Rule 3: If {𝐴31˄/˅𝐴32 ˄/˅𝐴33 ˄/˅…………………………………….. ˄/˅𝐴3𝑛} then 𝐶3

 . .

 . .

Rule m: If {𝐴𝑚1˄/˅𝐴𝑚2 ˄/˅𝐴𝑚3 ˄/˅…………………………………….. ˄/˅𝐴𝑚𝑛} then 𝐶𝑚

Where 𝐴𝑖𝑗 is an attribute to be retrieved and 𝐶𝑘 is an output. Data is gathered from fuzzy rule base through various sub

processes in fuzzy inference process and based on fuzzy inference rules and their corresponding membership functions,

decisions are derived. In the fuzzy logic system, the working of inference engine is similar to reasoning process of human.

Crop Name, Temperature, Soil Texture, Season, Pesticide and Fertilizer are antecedents and Productivity is consequent.

Several rules are using simultaneously in inference process.

3.2.1.3 Fuzzification

To find the degree of truth for every rule, membership function defined on every input variable is applied to their actual value.

We used most popular operator “AND” operator for fuzzy implementation. We used fuzzy “AND” operator to evaluate the

rules and produce another variable. Rule is said to be fire if value is non-zero. For every rule, resultant value is used to

represent the degree of truth. Apply the truth value of every rule to the output value (productivity) is called inference process.

We used “MIN” as an inference rules to calculate the degree of truth through the use of fuzzy logic “AND”. Composition

process produces the fuzzy subset, which can be further used to convert to single crisp output through Defuzzification.

3.2.1.4 Defuzzification

It is used to convert the value of fuzzy output into crisp output value. We used “MAXIMUM” method in this work for

Defuzzification. We select the crisp output for output variable at which fuzzy subset has maximum. Following steps are

performed to find a final result from the input given by user through the use of inference process:

1. According to the derived membership functions, numeric input values are transformed into linguistic terms.

2. To determine the output groups, linguistic terms and the decision rules are matching.

3. To form the final decision, Defuzzification of output groups is performed.

For Example: user wants to retrieve the productivity level using Agri-Info.

User Request Crop Name Temperature Soil Texture Season Pesticide Fertilizer Productivity

Soybean 21-27 °C Slity Loam Clay Winter Organochlorine Urea ?

Agri-Info using following rule to find the productivity level Fuzzy Rule based Status Diagnose Module:

Rule: If {𝐶𝑟𝑜𝑝 𝑁𝑎𝑚𝑒˄ Temperature ˄ Soil Texture ˄ Season ˄ Pesticide ˄ Fertilizer} then𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

Agri-Info Response Crop Name Temperature Soil Texture Season Pesticide Fertilizer Productivity

Soybean 21-27 °C Slity Loam Clay Winter Organochlorine Urea C

Similarly, any type of request related to different domains can be asked by user and Agri-Info executes the user request and

send response back to particular user automatically based on the rules defined in fuzzy rule base. Through Agri-Info, users

can easily diagnosis the agriculture status automatically.

3.2.2 Autonomic Resource Manager

Based on QoS information, resource scheduling is performed using Self-management of ClOud resOurces for execuTion of

clustEred woRkloads (SCOOTER) technique [17] in this research work. The autonomic component is working based on

IBM’s autonomic model [18] [19] that considers four steps of autonomic system: 1) Monitor, 2) Analyze, 3) Plan and 4)

Preprint submitted to Internet of Things 19 November 2019 9

Execute and two external interfaces: a) Sensor and b) Effector, as shown in Fig. 1. Autonomic service manager comprises

following components:

1) Sensors get the information about performance of current state nodes in terms of QoS parameters.

2) Monitors are used to collect the information from manager node for monitoring continuously performance variations by

comparing expected and actual performance. Expected performance is the threshold value of QoS parameters, which is

identified based on their previous history of execution.

3) Analyze and plan module start analyzing the information received from monitoring module and make a plan for adequate

actions for corresponding alert.

4) Executor implements the plan after analysis of current status of system.

5) Effector is acting as an interface between nodes to exchange updated information and it is used to transfer the new

policies, rules and alerts to other nodes with updated information.

The working of autonomic component is given described in our previous work in detail [17].

4. Graphical User Interface

To validate Agri-Info, we have presented user interaction through a web service i.e. e-Agriculture cloud by considering QoS

parameters at service level [17]. We have developed this web and mobile application due to following main reasons:

• It is difficult to discuss the technical queries manually, if expert is not present at same office, and managing a meeting

personally.

• It is wastage of time to search for and to traverse all the documents listed manually.

4.1 Web Application

Cloud based e-Agriculture web service is global community of practice, where users [(i) agriculture expert, (ii) agriculture

officer and (iii) farmer] from all over the world exchange information, ideas, and resources related to the use of ICT for

sustainable agriculture for different domains. The e-Agriculture utilizes information, imaging and communication

technologies coupled with applications of the Internet for the purpose of providing enhanced agriculture services and

information to the farmer and farming community regularly. The e-Agriculture is implemented as centralized system in cloud

environment. Several users make use of this system from several geographical locations. Users send their request to the Agri-

Info and the Agri-Info gives a response to the request submitted by the user automatically using fuzzy logic-based rules. The

various users make use of the system depending upon the rights given to the user. The user’s login into the Agri-Info and

access the database. This computerized control of the several aspects related to the agriculture to a better management of the

different domains such as crops etc. going on in the environment which leads to an improvement in efficiency of work and

leads to the customer satisfaction and trust in the organization owing to the timely and proper management. The main

objectives to develop a cloud-based e-Agriculture web service are:

• To give answers to the user queries coming from different domains of agriculture from various geographical locations.

• To provide accurate information to users automatically and save time of users.

• To provide a common platform, where multiple farmers can communicate to each other and discuss their problems and

any enquiry about any domain.

User interface of cloud-based e-Agriculture web service is shown in Figure 5. The main functions of cloud-based e-

Agriculture web service are: searching information using quick search, viewing resource (equipment and tools uses in

agriculture) information, get crop status, latest news etc. Figure 6 shows the searching of crop in cloud-based e-Agriculture

web service. Figure 7 shows processing of query by cloud-based e-Agriculture web service and results after execution of

query. Existing agriculture system manages resources without considering the concept of autonomic and QoS parameters,

which leads to performance degradation.

4.2 Mobile Application

We have also developed Android based application for handheld devices for easy access. Main functions of mobile

application are: finding productivity, post queries, weather forecasting, getting information about latest equipment and getting

alerts about agriculture news and finding crop information as shown in Figure 8. Figure 8 (a) shows the process of finding

productivity based on the values of other parameters selected by the user. The value of the productivity is ‘high’ as shown in

Figure 8 (a) while Figure 8 (b) shows the ‘low’ productivity. Figure 8 (c) shows the process of posting query while Figure 8

Preprint submitted to Internet of Things 19 November 2019 10

(d) shows the posted query with an image. Figure 8 (e) shows the latest information about equipment and latest news alerts

are shown in Figure 8 (f). Figure 8 (g) shows the output of weather forecasting and crop information is shown in Figure 8 (h).

Figure 5: User interface of Cloud based e-Agriculture Web Service

5. Performance Evaluation

We have selected CloudSim [16] for simulation and modeling as it supports both system and behavior modeling of cloud

system components such as data centers, Virtual Machines (VMs) and resource scheduling policies. CloudSim also supports

modeling and simulation of cloud computing environments consisting of both single and inter-networked clouds (federation

of Clouds). Moreover, it exposes custom interfaces for implementing policies and scheduling techniques for allocation of

VMs under inter-networked cloud computing scenarios. CloudSim has been installed along with its requirements using

NetBeans which provide cloud service. 3000 independent cloud workloads (user requests) were generated randomly in

CloudSim as Cloudlets. Table 3 shows the characteristics of resources and cloudlets (workloads) that have been used for all

the experiments. User cloud workloads are modeled as independent parallel applications are modeled which is compute-

intensive. Thus, the data dependency among the cloud workloads in the parallel applications is negligible. Each cloud

workload is parallel and is hence considered to be independent of any other cloud workload. Table 4 presents the resource

configuration of the simulation. We used three Physical Machines (PMs) with different number of virtual nodes (6, 4 and 2)

and virtual nodes are further divided into instances called Execution Components (ECs). Every EC contains their own cost

of execution and it is measured with unit (C$/EC time unit (Sec)). EC measures cost per time unit in Cloud dollars (C$).

Preprint submitted to Internet of Things 19 November 2019 11

Figure 6: Searching Crop Information in Cloud based e-Agriculture Web Service

Figure 7: Query Processing and Results in Cloud based e-Agriculture Web Service

Preprint submitted to Internet of Things 19 November 2019 12

a)

b)

c)

d)

e) f)

g) h)

Figure 8: Main functions of Mobile Application: a) Finding Productivity (High), b) Finding Productivity (Low), c) Posting a Query, d)

Posted a Query with Image, e) Getting Information about Latest Equipment’s, f) Getting Latest News, g) Weather Forecasting and h)

Crop Information

Table 3: Scheduling Parameters and their Values
Parameter Value

Number of resources 250

Number of Cloudlets (Workloads) 3000

Bandwidth 1000 - 3000 B/S

Size of Cloud Workload 10000+ (10%–30%) MB

Number of PEs per machine 1

PE ratings 100-4000 MIPS

Cost per Cloud Workload $3–$5

Memory Size 2048-12576 MB

File size 300 + (15%–40%) MB

Cloud Workload output size 300 + (15%–50%) MB

Table 4: Configuration Details

Resource_Id Configuration Specifications Core Operating

System

Number of

Virtual Nodes

Number

of ECs

Price (C$/EC time unit)

R1 Intel Core 2 Duo -

2.4 GHz

6 GB RAM and 320

GB HDD

2 Windows 6 (1 GB and 50

GB)

18 2

R2 Intel Core i5-

2310- 2.9GHz

4 GB RAM and 160

GB HDD

2 Linux 4 (1 GB and 40

GB)

12 3

R3 Intel XEON E

52407-2.2 GHz

2 GB RAM and 160

GB HDD

2 Linux 2 (1 GB and

60GB)

6 4

Preprint submitted to Internet of Things 19 November 2019 13

5.1 Experimental Data and Baseline Technique

The application model of Agri-Info is built into CloudSim [16] in order to validate the proposed system through real-time

mobile and web application (in other words, data from the experiment is directly fed into the simulator to provide edge-device

operational behavior for the resource manager). We have performed the different number of experiments by comparing our

proposed QoS-aware Autonomic (Agri-Info) with existing baseline technique i.e. Smart-Farm [1], which is non-autonomic

resource management technique, which neither consider QoS parameter and nor consider autonomic scheduling mechanism.

5.2 Experimental Results

This section presents the experimental results of performance evaluation. Experiment has been conducted with different

number of workloads (500-3000) for verification of execution cost, execution time, network bandwidth and latency and to

validate Agri-Info as compared to Smart-Farm. To verify Agri-Info, we have conducted simulation-based experiments using

CloudSim toolkit with the variations in the number of workloads submitted in terms user requests/queries received from web

and mobile application. Figure 9 shows the comparisons of Agri-Info and Smart-Farm based on different QoS parameters.

a)

b)

c)

d)

Figure 9: Experimental Results: a) Execution Cost, b) Execution Time, C) Network Bandwidth and d) Latency

Execution cost is defined as the total money that can be spent in one hour to execute the application successfully and execution

cost is measured in Cloud Dollars (C$) as mention in Table 4. Figure 9 (a) shows the comparison of Agri-Info and Smart-

Farm in terms of execution cost and cost is increasing with increase in number of workloads for Agri-Info and Smart-Farm,

but Agri-Info consumes less cost as compared to Smart-Farm. The average value of cost in Agri-Info is 12.46% less than

Smart-Farm. In resource scheduler, Agri-Info considers the impact of other workloads on current workload during execution

and execute within their specified deadline and budget using STAR [19]. Execution time is the amount of time required to

execute application successfully and execution time is measured in Seconds. Figure 9 (b) shows the variation of an execution

time with different number of workloads and time is increasing with increase in number of workloads for both Agri-Info and

Smart-Farm. The average value of execution time in Agri-Info is 10.18% less than Smart-Farm because Agri-Info tracks the

resource states automatically for effective decisions using fuzzy logic.

Network Bandwidth is calculated as number of bits transferred/received in a particular workload in one second. Figure 9 (c)

shows the value of network bandwidth in Agri-Info is 15.52% less than Smart-Farm. This is because, Agri-Info identifies the

network faults automatically using SCOOTER [17] which improves the network bandwidth of Agri-Info as compared to

Smart-Farm. Latency is a defined as a difference of time of input user request and time of start time of execution of that user

request. Figure 9 (d) shows the comparison of Agri-Info and Smart-Farm in terms of latency and its value is increasing with

increase in number of workloads for Agri-Info and Smart-Farm, but Agri-Info performs better than Smart-Farm due to

automatic execution of resources. The average value of latency in Agri-Info is 13.32% less than Smart-Farm.

5.3 Case Study of Agri-Info in an Indian Village

We have done a pilot study in the Indian Village (Maddoke, Punjab) to check the customer satisfaction level while delivering

agriculture as a service using our developed web and mobile application based on Agri-Info. Total 63 farmers have

0

100

200

300

400

500

500 1000 1500 2000 2500 3000

E
x
ec

u
ti

o
n
 C

o
st

 (
C

$
)

Number of Workloads

Agri-Info

Smart-Farm

0

200

400

600

800

1000

1200

1400

1600

500 1000 1500 2000 2500 3000

E
x
ec

u
ti

o
n
 T

im
e

(S
ec

o
n
d
s)

Number of Workloads

Agri-Info

Smart-Farm

0

500

1000

1500

2000

2500

500 1000 1500 2000 2500 3000

N
et

w
o

rk
 B

an
d
w

id
th

(B
it

s/
S

ec
)

Number of Workloads

Agri-Info

Smart-Farm

0

5

10

15

20

500 1000 1500 2000 2500 3000

L
at

en
cy

 (
S

ec
)

Number of Workloads

Agri-Info

Smart-Farm

Preprint submitted to Internet of Things 19 November 2019 14

participated in this case study to test the familiarity and usability of web and mobile application. The Confidence and

Fulfillment Matrix based on satisfaction level of farmers is shown in Table 5.

Table 5: Confidence and Fulfillment Matrix

Confidence and Fulfilment

Level

Number of Farmers Application Customer Satisfaction (%)

Mobile Web

Very Satisfied (100%) 36 31 5 57

Satisfied (75%) 11 10 1 17.5

Neutral (50%) 4 2 2 6.5

Dissatisfied (25%) 5 2 3 8

Completely Dissatisfied (0%) 7 2 5 11

6. Summary and Conclusions

In this paper, QoS-aware cloud based autonomic information system (Agri-Info) for agriculture service has been proposed

which manages various types of agriculture related data based on different domains, through different user preconfigured

devices. Agri-Info uses autonomic resource manager for efficient resource allocation at infrastructure level after identification

of QoS requirements for user’s request. We have evaluated the performance of the proposed system in cloud environment

using CloudSim toolkit and experimental results show that this system performs better in terms of execution time, cost,

network bandwidth and latency. The application model of Agri-Info is built on top of CloudSim in order to validate the

proposed system through real-time mobile and web application (in other words, data from the experiment is directly fed into

the simulator to provide edge-device operational behavior for the resource manager). The case study of Agri-Info is

implemented in an Indian village to evaluate the customer satisfaction amongst farmers. Experimental results show that Agri-

Info delivers a superior autonomic solution for farmers and approximate optimum solution for challenges of resource

management, using the concept of autonomic computing.

6.1 Future Directions and Open Challenges

Agri-Info can be further enhanced in a larger scope under the following aspects as shown in Figure 10 and discussed below:

1. Practical implementation of Agri-Info in agriculture industries: In this research work, the detailed analysis of

performance has been conducted through cloud based simulated environment using CloudSim toolkit. The proposed

system would be evaluated on real cloud environment in the future, which can be utilized in agriculture industries.

2. Quality of Service (QoS): Agri-Info can be extended by developing pluggable scheduler, in which resource scheduling

can be changed to incorporate other important QoS parameters such as security, scalability, availability and energy [18].

Figure 10: Future Directions and Open Challenges

Future
Directions and

Open Issues

Agriculture
4.0

Fog/Edge
Computing

NLP

Practical
Implementation

IoT

Artificial
Intelligence

Preprint submitted to Internet of Things 19 November 2019 15

3. Natural Language Processing (NLP): Presently, Agri-Info supports only English language. In future, the other languages

can be used to provide the services to end users like farmers.

4. Artificial Intelligence (AI): Agriculture enterprises, private companies or cooperatives can utilize Agri-Info by providing

agricultural services automatically using AI, which can be helpful to make operational decisions [2]. Knowledge database

can be updated automatically based on the new data received by edge or IoT devices.

5. Agriculture 4.0: Agriculture 4.0 is a nomenclature for upcoming trends in the Agro-Industry which include a main focus

on the IoT, precision agriculture and big data analytics [2]. These technologies will drive greater business efficiencies in

the face of increasing populations and climate change. Further, Agri-Info can be used to analyze the influence of Industry

4.0 in the Agro-Industry, transportation sector, crop rotation and landscape management.

6. Fog/Edge Computing: Proposed service can interact with sensor data or IoT devices using Fog/Edge Computing platform

to reduce latency and response time of service [2]. New data aggregation mechanism can be designed to collect data

from heterogenous IoT/Edge devices.

Declaration of Competing Interest

We do not have any conflicts of interest.

Acknowledgments

This research work is an updated version of Technical Report CLOUDS-TR-2015-2, Cloud Computing and Distributed

Systems Laboratory, The University of Melbourne, Nov. 27, 2015 (Available at https://arxiv.org/abs/1511.08986) and

summarized and extended version of research article titled “IoT Based Agriculture as a Cloud and Big Data Service: The

Beginning of Digital India” [12], published in Journal of Organizational and End User Computing, 2017 (Available at

https://doi.org/10.4018/JOEUC.2017100101). We would like to thank the editor, area editor and anonymous reviewers for

their valuable comments and suggestions to help and improve our research paper. We would like to thank Manmeet Singh

(Scientist at Indian Institute of Tropical Meteorology, India) for his useful suggestions and discussion to improve the quality

of the paper.

References

[1] Muangprathub, Jirapond, Nathaphon Boonnam, Siriwan Kajornkasirat, Narongsak Lekbangpong, Apirat Wanichsombat, and Pichetwut Nillaor. "IoT

and agriculture data analysis for smart farm." Computers and electronics in agriculture 156 (2019): 467-474.
[2] Sukhpal Singh Gill et al. "Transformative Effects of IoT, Blockchain and Artificial Intelligence on Cloud Computing: Evolution, Vision, Trends and

Open Challenges." Internet of Things (2019), vol. 8.

[3] Yan, Hui, Ping Yu, and Duo Long. "Study on Deep Unsupervised Learning Optimization Algorithm Based on Cloud Computing." In 2019 International
Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), pp. 679-681. IEEE, 2019.

[4] Jinbo, Chen, Zhong Yu, and Anthony Lam. "Research on monitoring platform of agricultural product circulation efficiency supported by cloud

computing." Wireless Personal Communications 102, no. 4 (2018): 3573-3587.
[5] Zamora-Izquierdo, Miguel A., José Santa, Juan A. Martínez, Vicente Martínez, and Antonio F. Skarmeta. "Smart farming IoT platform based on edge

and cloud computing." Biosystems engineering 177 (2019): 4-17.

[6] Kaloxylos, Alexandros, Robert Eigenmann, Frederick Teye, Zoi Politopoulou, Sjaak Wolfert, Claudia Shrank, Markus Dillinger, “Farm management
systems and the Future Internet era”, Computers and Electronics in Agriculture, 89 (2012): 130-144.

[7] Ranya Elsheikh, Abdul Rashid B. Mohamed Shariff, Fazel Amiri, Noordin B. Ahmad, Siva Kumar Balasundram, and Mohd Amin Mohd Soom,

“Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops”, Computers and Electronics
in Agriculture, 93 (2013): 98-110.

[8] Sørensen, C. G., S. Fountas, E. Nash, Liisa Pesonen, Dionysis Bochtis, Søren Marcus Pedersen, B. Basso, and S. B. Blackmore. "Conceptual model

of a future farm management information system." Computers and electronics in agriculture 72, no. 1 (2010): 37-47.
[9] Sørensen, C. G., Liisa Pesonen, D. D. Bochtis, S. G. Vougioukas, and Pasi Suomi. "Functional requirements for a future farm management information

system." Computers and Electronics in Agriculture 76, no. 2 (2011): 266-276.

[10] Shitala Prasad, Sateesh K. Peddoju, and Debashis Ghosh, “AgroMobile: A Cloud-Based Framework for Agriculturists on Mobile Platform”,
International Journal of Advanced Science and Technology, 59 (2013): 41-52.

[11] Jeong, Seokkyun, Hoseok Jeong, Haengkon Kim, and Hyun Yoe. "Cloud computing based livestock monitoring and disease forecasting system."

International Journal of Smart Home 7, no. 6 (2013): 313-320.
[12] Gill, Sukhpal Singh, Inderveer Chana, and Rajkumar Buyya. "IoT based agriculture as a cloud and big data service: the beginning of digital India."

Journal of Organizational and End User Computing (JOEUC) 29, no. 4 (2017): 1-23.

[13] Abraham, Ajith. "Rule‐Based Expert Systems." Handbook of measuring system design (2005).

[14] Fahmy, M. M. M. "A fuzzy algorithm for scheduling non-periodic jobs on soft real-time single processor system." Ain Shams Engineering Journal 1,
no. 1 (2010): 31-38.

[15] Tzung-Pei Hong, and Chai-Ying Lee, “Induction of fuzzy rules and membership functions from training examples”, Fuzzy sets and Systems 84(1)

(1996): 33-47.
[16] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose, and Rajkumar Buyya, “CloudSim: A Toolkit for Modeling and

Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms”, Software: Practice and Experience, 41(1): 23-

50, Wiley Press, New York, USA, January 2011.

Preprint submitted to Internet of Things 19 November 2019 16

[17] Gill, Sukhpal Singh, and Rajkumar Buyya. "Resource provisioning based scheduling framework for execution of heterogeneous and clustered
workloads in clouds: from fundamental to autonomic offering." Journal of Grid Computing 17, no. 3 (2019): 385-417.

[18] S.S. Gill, I. Chana, M. Singh, R. Buyya RADAR: self‐configuring and self‐healing in resource management for enhancing quality of cloud services

Concurr. Comput. Pract. Exp., 31 (1) (2019), p. e4834.

[19] Singh, Sukhpal, Inderveer Chana, and Rajkumar Buyya. "STAR: SLA-aware autonomic management of cloud resources." IEEE Transactions on Cloud
Computing (2017). https://doi.org/10.1109/TCC.2017.2648788

[20] Rok Rupnik, Matjaž Kukar, Petar Vračar, Domen Košir, Darko Pevec, Zoran Bosnić, AgroDSS: A decision support system for agriculture and farming,

Computers and Electronics in Agriculture, Volume 161, 2019, Pages 260-271
[21] Yiannis Ampatzidis, Li Tan, Ronald Haley, Matthew D. Whiting, Cloud-based harvest management information system for hand-harvested specialty

crops, Computers and Electronics in Agriculture, Volume 122, 2016, Pages 161-167

[22] Alejandro Belanche, A. Ignacio Martín-García, Javier Fernández-Álvarez, Javier Pleguezuelos, Ángel R. Mantecón, David R. Yáñez-Ruiz, Optimizing
management of dairy goat farms through individual animal data interpretation: A case study of smart farming in Spain, Agricultural Systems, Volume

173, 2019, Pages 27-38

[23] Madalin Colezea, George Musat, Florin Pop, Catalin Negru, Alexandru Dumitrascu, Mariana Mocanu, CLUeFARM: Integrated web-service platform
for smart farms, Computers and Electronics in Agriculture, Volume 154, 2018, Pages 134-154

[24] Sjaak Wolfert, Lan Ge, Cor Verdouw, Marc-Jeroen Bogaardt, Big Data in Smart Farming - A review, Agricultural Systems, Volume 153, 2017, Pages

69-80
[25] Raimo Nikkilä, Ilkka Seilonen, and Kari Koskinen, “Software architecture for farm management information systems in precision agriculture”,

Computers and Electronics in Agriculture, 70(2) (2010): 328-336.

