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Abstract22

The foreshock, extending upstream of Earth’s bow shock, is a region of intense electro-23

magnetic wave activity and nonlinear phenomena which can have global effects on geospace.24

It is also the first geophysical region encountered by solar wind disturbances journey-25

ing towards Earth. Here, we present the first observations of considerable modifications26

of the foreshock wave field during extreme events of solar origin called magnetic clouds.27

Cluster’s multi-spacecraft data reveal that the typical quasi-monochromatic foreshock28

waves can be completely replaced by a superposition of waves each with shorter corre-29

lation lengths. Global numerical simulations further confirm that the foreshock wave field30

is more intricate and organized at smaller scales. Ion measurements suggest that changes31

in shock-reflected particle properties may cause these modifications of the wave field. This32

state of the foreshock is encountered only during extreme events at Earth, but intense33

magnetic fields are typical close to the Sun or other stars.34

Plain Language Summary35

Solar storms are giant clouds of particles ejected from the Sun into space during36

solar eruptions. When solar storms are directed towards Earth, they can cause large dis-37

turbances in near-Earth space, for example disrupting communications or damaging space-38

craft electronics. Understanding in detail what happens when solar storms reach Earth39

is crucial to mitigate their effects. Using measurements from the Cluster spacecraft, we40

investigate how solar storms modify the properties of the very first region of near-Earth41

space they encounter when journeying towards Earth. This region, called the foreshock,42

extends ahead of the protective bubble formed by the Earth’s magnetic field, the mag-43

netosphere. The foreshock is home to intense electromagnetic waves, and disturbances44

in this region can perturb the Earth’s magnetosphere. Our study reveals that solar storms45

modify profoundly the foreshock, resulting in a more complex wave activity. Global nu-46

merical simulations performed with the Vlasiator code confirm our findings. These changes47

could affect the regions of space closer to Earth, for example in modifying the wave prop-48

erties or the amount of solar particles entering the Earth’s magnetosphere. This needs49

to be taken into account to better anticipate the effects of solar storms at Earth.50

1 Introduction51

Magnetic clouds are strongly-geoeffective solar transients, characterized by an en-52

hanced and smoothly-rotating magnetic field (Huttunen et al., 2005; Yermolaev et al.,53

2012). Understanding the details of their interaction with near-Earth space is crucial to54

forecast accurately their space weather effects. On their earthward journey, the first geo-55

physical region that incoming magnetic clouds encounter is the Earth’s foreshock.56

The foreshock extends upstream of the quasi-parallel sector of the Earth’s bow shock,57

where the θBn angle between the interplanetary magnetic field (IMF) and the shock nor-58

mal is below ∼ 45◦ (Eastwood, Lucek, et al., 2005). The foreshock is permeated with59

intense electromagnetic waves, generated through plasma instabilities triggered by shock-60

reflected particles (Eastwood, Lucek, et al., 2005; Wilson, 2016). Foreshock processes can61

have global effects on the Earth’s magnetosphere, causing enhanced wave activity down62

to the Earth’s surface (Bier et al., 2014), or triggering geoeffective fast magnetosheath63

jets (Plaschke et al., 2018). Changes in the foreshock properties can therefore significantly64

affect conditions throughout geospace.65

The most common waves in the Earth’s ion foreshock are the so-called 30 s waves66

(Eastwood et al., 2002), quasi-monochromatic magnetic field fluctuations at a period around67

30 s, left-handed in the spacecraft frame. Their wavelength is about 1 RE (1 Earth ra-68

dius = 6371 km), while their finite transverse extent ranges between 8 and 18 RE (Archer69

et al., 2005). Close to the wave vector direction, the wave front is essentially planar over70
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several RE, and the overall shape of the waves is approximately an oblate spheroid (Archer71

et al., 2005). They have been identified as fast magnetosonic waves propagating sunward72

in the plasma frame, but advected earthward by the faster solar wind flow (Eastwood,73

Balogh, et al., 2005a). They are excited by backstreaming field-aligned beams (FABs)74

via the right-hand resonant ion-ion beam instability. The cyclotron resonance condition75

associated with this mode is:76

ω = Vbeamk‖ − Ωci (1)

where Vbeam is the beam velocity and Ωci the ion gyrofrequency. These waves are gen-77

erated around the mode interaction point of the cyclotron resonance with the fast mag-78

netosonic branch, which can be approximated here as ω = vAk‖, where vA is the Alfvén79

velocity (e.g., Eastwood, Balogh, et al. (2005a)).80

In spacecraft measurements, these waves are not observed in conjunction with the81

FABs that generated them, but with intermediate, gyrating or gyrophase-bunched dis-82

tributions (Eastwood, Balogh, et al., 2005a; Kempf et al., 2015). Measurements taken83

shortly before or after observing the foreshock waves have however brought quantitative84

evidence of a cyclotron resonance between FABs and waves (Eastwood, Lucek, et al., 2005,85

and references therein). These waves have been extensively studied since their discov-86

ery (Greenstadt et al., 1968; Eastwood, Balogh, et al., 2005a, 2005b; Palmroth et al., 2015),87

and it is well-established that their period depends on the IMF strength and orientation88

(Takahashi et al., 1984; Le & Russell, 1996).89

Even though magnetic clouds are the most geoeffective solar wind disturbances,90

there are no studies focusing on the foreshock properties during such events. Recent nu-91

merical simulations predict that an enhanced IMF strength, as is encountered during mag-92

netic clouds, could strongly affect the foreshock wave properties and their large-scale struc-93

turing (Turc et al., 2018). These simulations were however limited to a single set of up-94

stream conditions, warranting a more general observational investigation.95

2 Event identification96

Observations of foreshock waves during magnetic clouds are rare, as these transients97

pass by Earth only about 2% of the time (Yermolaev et al., 2012), and Earth-orbiting98

spacecraft cross the foreshock only sporadically. In the early phase (2001-2005) of the99

Cluster mission (Escoubet et al., 2001), the spacecraft separations are similar to the wave100

characteristic sizes (a few hundred kilometers), which allows us to determine accurately101

the wave properties. Using the catalogue introduced in Turc et al. (2016), we identify102

events when Cluster observes foreshock waves during a magnetic cloud and divide them103

into 5-min intervals.104

Foreshock fast magnetosonic waves are mostly transverse and propagate at a small105

angle relative to the magnetic field vector (Eastwood, Balogh, et al., 2005b). Measure-106

ments from Cluster’s fluxgate magnetometer (Balogh et al., 1997) are projected onto a107

frame where one axis is parallel to the mean magnetic field during the 5-min interval and108

the two others are perpendicular to it, forming a right-handed triplet. Then we perform109

a wavelet transform on the perpendicular magnetic field components and calculate the110

wavelet phase difference, to check the wave polarization (Torrence & Compo, 1998). In-111

tervals of steepened waves and discrete wave packets are visually identified and rejected.112

In total, we find six magnetic clouds with observations of left-handed foreshock waves113

(see Table S1 in the supporting information). These observations take place several hours114

after the passage of the interplanetary shock preceding the magnetic cloud, when near-115

Earth space is embedded deep within the magnetic cloud, which dictates the upstream116

conditions for the foreshock to develop. These strongly differ from typical solar wind con-117

ditions, in particular due to the clouds’ large IMF strength.118
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3 Results119

3.1 A more intricate form of wave activity120

During most events, we find that the foreshock wave field departs significantly from121

its usual state. To facilitate the comparison, Figure 1 shows an example of typical fore-122

shock waves on 18 February 2003 analyzed in previous studies (Archer et al., 2005; Kis123

et al., 2007; Hobara et al., 2007) (left) together with representative observations during124

a magnetic cloud on 19 January 2005 (right). In both cases, foreshock waves appear as125

large-amplitude magnetic field oscillations, especially in the two perpendicular compo-126

nents (panels c-d and i-j). During quiet conditions, the wavelet power spectrum show-127

cases a rather narrow band of strong wave power around 30 s (panel e), while during mag-128

netic clouds (panel k) high fluctuation power is observed at periods between 5 and 30 s.129

The contours highlight where the wave power is strongest, showing that the fluctuations130

are left-handed in the spacecraft frame (in blue in the phase difference plot, panel l).131

Cluster’s relative position in the foreshock can be determined from its measurements132

prior to the foreshock waves observations. Before 13:34 UT on 19 January 2005, Clus-133

ter was just outside the Earth’s foreshock. The IMF rotation inside the magnetic cloud134

results in a progressive change of the θBn angle along the field line connecting Cluster135

to the bow shock from 60◦ at 13:30 UT to 40◦ at 14:00 UT, according to a model bow136

shock (Jeřáb et al., 2005). Consequently, the spacecraft probe the outer foreshock, pop-137

ulated by FABs, from 13:34 UT, and then the foreshock wave field from 13:42 UT. In138

such a configuration, one would expect to observe the usual quasi-monochromatic fast139

magnetosonic waves. However, the power spectra of the left-handed foreshock waves dis-140

play multiple spectral peaks whose periods vary with time (Figure 1k). This intricate141

spectrum is neither associated with right-handed polarization (in red in the phase dif-142

ference plot), nor with highly steepened waves.143

To identify the wave mode, we use two independent methods, multi-spacecraft tim-144

ing analysis (Schwartz, 1998) (applied to bandpass filtered data to separate the differ-145

ent wave periods) and multipoint signal resonator (MSR) (Narita et al., 2011) (see sup-146

porting information). Their results for the first minutes of the data set are given in Ta-147

ble S2. The timing analysis yields wave vectors within 30◦ of the magnetic field. With148

the MSR technique, we find that the power distribution in wave vector space maximizes149

at two different wave vectors, showing the coexistence of two waves. The orientation of150

all wave vectors k towards −x (i.e. earthward) and the negative wave velocities in the151

plasma frame Vwave,pl indicate that the waves propagate sunward in the plasma frame152

and are intrinsically right-handed. This rules out 10 s Alfvén waves, intrinsically left-153

handed (Eastwood et al., 2003). The Alfvén velocity was about 294 ± 158 km/s dur-154

ing this interval, the large uncertainties being due to large density fluctuations, as mea-155

sured by the Cluster Ion Spectrometer (CIS) (Rème et al., 2001). The estimated wave156

speeds are comparable to the Alfvén velocity, which is close to the fast magnetosonic speed157

for large IMF strengths. These properties are all consistent with those of fast magne-158

tosonic waves.159

Both wave analysis techniques therefore consistently identify a superposition of fast160

magnetosonic waves at different periods, ranging between 6 and 17 s. These periods, lower161

than the usual 30 s, are due to the magnetic cloud’s large IMF strength, here 11 nT, while162

its average value at Earth is about 5 nT. The frequency of foreshock fast magnetosonic163

waves changes with the IMF strength because their dispersion relation depends on this164

parameter, among others (Krauss-Varban et al., 1994). According to the Takahashi et165

al. (1984) empirical formula, the wave period should be 17 s under these solar wind con-166

ditions, very similar to the 18 s predicted by the Le and Russell (1996) formula, and con-167

sistent with the largest periods we observe. However, the lower wave periods are not ac-168

counted for by these models.169
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Similar intricate wavelet spectra are observed during four out of the six magnetic170

clouds under study (see the third column of Table S1). The waves were identified as fast171

magnetosonic waves during three of these events (22 January 2004, 19 January 2005 and172

22 January 2005). For the last event, the wave mode could not be determined because173

of the extremely large IMF strength and solar wind velocity, resulting in the spacecraft174

tetrahedron being too large compared to the wavelength, making it impossible to iden-175

tify uniquely the wave fronts.176

The remaining two events display smoother wavelet spectra, as in normal solar wind177

conditions. The nature of the waves could not be confirmed during the 28 March 2001178

event because of the poor correlation between the spacecraft time series, and of the large179

uncertainties in the flow velocity due to the very low density. Both events with smoother180

spectra were associated with much larger IMF cone angles (about 45◦) than the more181

complex spectra (less than 30◦), where the cone angle is measured between the IMF vec-182

tor and the Sun-Earth line. Larger cone angles result in larger wave periods for a given183

IMF strength (Takahashi et al., 1984; Le & Russell, 1996), about 30 s on 23 April 2001.184

This suggests that the development of more complex foreshock wave activity is linked185

with shorter absolute wave periods.186

3.2 A possible source for multiple fast magnetosonic waves187

A recent numerical study also reported a superposition of fast magnetosonic waves188

in the foreshock associated with higher IMF strength (Turc et al., 2018). In the simu-189

lation, the multiple wave periods were attributed to ion velocity distribution functions190

(VDFs) with multiple FABs, instead of the single beam which usually generates quasi-191

monochromatic waves.192

During all intervals under study, the ion VDFs have already evolved into interme-193

diate and gyrating distributions when foreshock waves are observed, in agreement with194

previous works (e.g., Eastwood, Balogh, et al. (2005a)). Cluster however probed the FAB195

region shortly before most of these intervals. We focus here only on those intervals for196

which fast magnetosonic waves were reliably identified (23 April 2001, 22 January 2004,197

19 January 2005 and 22 January 2005). We checked that the upstream conditions re-198

mained essentially steady from the FAB observations to that of the waves, except for the199

IMF direction, which causes the foreshock wave field to reach the spacecraft. Based on200

the current understanding of foreshock wave generation, we can reasonably assume that201

the FABs we observe in the first place are representative of those generating the waves202

detected a few minutes later.203

The upper part of Figure 2 displays representative VDFs recorded by the Hot Ion204

Analyzer (HIA) instrument onboard Cluster-1 at 13:41:10 and 13:41:18 UT on 19 Jan-205

uary 2005. The left column shows reduced two-dimensional (2D) VDFs in the (V‖,V⊥)206

plane (relative to the magnetic field vector), integrated over the second perpendicular207

direction. In panels a and b, part of the solar wind population appears in red in the right-208

hand side, while backstreaming ions are in the left-hand side. The suprathermal pop-209

ulation consists mostly of a FAB, centered at V‖ ∼ −1500 km s−1. There is no clear ev-210

idence of multiple distinct FABs during this event, but a second population is observed211

at a non-zero pitch angle, centered around V⊥ ' 1000 km s−1. Panels c-d show the phase212

space density of the suprathermal population along a cut at V⊥ = 0. The beam shape213

is well fitted by a Gaussian (see also Table S3), most likely because the gyrating pop-214

ulation is located at about the same V‖ as the FAB. This second population appears as215

a second peak in phase space density on the cuts along V⊥ at V‖ = Vbeam (panels e-216

f), and remain clearly visible for a range of V‖ (not shown). The suprathermal popula-217

tion is better fitted by a sum of two Gaussians in these cuts (see Table S3), thus con-218

firming that the two peaks are well distinct.219
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During the 23 April 2001 event, typical quasi-monochromatic foreshock waves were220

observed, accompanied with typical FABs. During the 22 January 2004 event, a sharp221

rotation of the IMF shortly before 12:00 UT causes a rapid motion of the foreshock bound-222

ary. Only 2-3 VDFs are recorded when Cluster crosses the FAB region. Given the rapid223

motion of the boundary, we cannot draw firm conclusions regarding the FABs during this224

event.225

Finally, the 22 January 2005 event brings clear evidence of multiple FABs (Figure226

2, bottom part) similar to those reported by Turc et al. (2018). Because of the differ-227

ent IMF orientation, the solar wind population in panels g-h is at negative V‖ during this228

event. The FABs are centered around V‖ ∼ 700 km s−1 and 1700 km s−1, respectively,229

and are well fitted by a sum of two Gaussians (panels i-j and Table S3). From these fits230

and Gaussian fits along V⊥ at V‖ = Vbeam1 (panels k-l) and V‖ = Vbeam2, we estimate231

the temperature anisotropy (ratio of the perpendicular to parallel temperatures) of each232

of the beams (see Table S4). They range between 2 and 10, in excellent agreement with233

previous observations (Paschmann et al., 1981). The two FABs evolve progressively in234

consecutive VDFs for about a minute. At 01:24:00 UT, the higher energy beam reaches235

its highest phase space density, peaking at about 4.1 10−9 s2 m−5, only a factor of three236

lower than the other beam, at about 1.3 10−8 s2 m−5.237

To our knowledge, this is the first time that multiple FABs are observed in con-238

junction with unusual foreshock wave activity. Spacecraft observations of multiple FABs239

have been reported by Meziane et al. (2011), but were associated with typical quasi-monochromatic240

waves. The IMF strength was relatively high (9 nT) during the main interval analyzed241

in Meziane et al. (2011), but was not associated with a magnetic cloud. The compar-242

ison of the cyclotron resonant speed of the waves with that of the FABs revealed that243

only the main beam was in cyclotron resonance with the waves (Meziane et al., 2011).244

The cyclotron resonant speed of the waves, normalized to the solar wind speed, is245

calculated as:246

Pres =
Ωci cos θkV
ωsc cos θkB

(2)

where ωsc is the wave frequency in the spacecraft frame, and θkV (θkB) is the angle be-247

tween the wave vector and the solar wind velocity vector (the IMF vector) (Meziane et248

al., 2011). We calculate Pres for the multiple FABs observed around 01:24 UT on 22 Jan-249

uary 2005. We find that the velocity of the lower energy beam normalized with the so-250

lar wind speed ranges between 1.8 and 1.9, and that of the higher energy beam between251

3.0 and 3.1. This is in excellent agreement with the cyclotron resonant speeds of the waves252

observed from 01:32 UT onwards, which are 1.9 and 3.3.253

3.3 Structuring of the foreshock at smaller scales254

During magnetic clouds, fast magnetosonic waves have shorter periods, which, in255

the plasma rest frame, translates into shorter wavelengths. Another critical parameter256

for the structuring of the foreshock wave field is the wave correlation length. This pa-257

rameter can be estimated using cross-correlations of measurements from pairs of space-258

craft (see Archer et al. (2005) and supporting information). Here, we calculate the wave259

correlation length in the plane perpendicular to the wave vector. We divide all our in-260

tervals of fast magnetosonic waves into 120-s sections, so that for each interval the wave261

period and the upstream parameters remain roughly constant while retaining a sufficient262

number of wave periods. We obtain a reliable estimate of the transverse extent of the263

waves for 35 intervals, displayed as a histogram in Figure 3a. The transverse extent ranges264

between 1 and 10 RE (average 3.5 RE; median 3.2 RE). This is significantly shorter than265

during quiet solar wind conditions (8-18 RE) (Archer et al., 2005). Moreover, we find266

that the transverse extent of the waves is well correlated with the wave period, as ev-267

idenced by Figure 3b (correlation coefficient: 0.83), and we checked that this result is268

insensitive to the chosen interval length. This correlation implies that the waves retain269
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the same aspect ratio when their wavelength varies, i.e., the ratio of their wavelength over270

their transverse extent is roughly constant in the events under study.271

To get a clearer view of the large-scale structuring of the foreshock, we use two global272

simulations performed with the hybrid-Vlasov Vlasiator code (von Alfthan et al., 2014;273

Palmroth et al., 2018), already studied in Turc et al. (2018). In both runs, the simula-274

tion domain is 2D in real space, describing the equatorial plane of near-Earth space. The275

IMF has a 5◦ cone angle, the solar wind velocity is VSW = (−600, 0, 0) km s−1 and the276

ion density nSW = 3.3 cm−3. The IMF strength is set to 5 nT in Run 1, correspond-277

ing to regular IMF strength at Earth, and 10 nT in Run 2, comparable to the 19 Jan-278

uary 2005 event.279

The out-of-plane (Bz) component of the magnetic field in the simulation domain280

is displayed in panels c (Run 1) and d (Run 2) of Figure 3. For clarity, the regions down-281

stream of the bow shock are not shown. Because the foreshock waves are mostly trans-282

verse, Bz is a good marker of the foreshock wave field. As can readily be seen from these283

plots, the waves are coherent over much larger scales during quiet solar wind conditions.284

The plus signs indicate the barycentric positions of triplets of virtual spacecraft, mimic-285

ing the Cluster constellation in 2D, where the transverse extent of the waves was esti-286

mated reliably. Since the simulation is 2D, only three spacecraft are needed to determine287

the wave properties. Magnetic field time series are extracted at each virtual spacecraft288

location and we estimate the transverse extent of the waves using the same cross-correlation289

technique as in Cluster data, albeit only with three spacecraft. The results of the anal-290

ysis are shown as a histogram in panel e. The transverse extent of the waves varies sig-291

nificantly depending on the position in the foreshock. We obtain values ranging between292

3 and 11 RE in Run 1 and between 2 and 6 RE in Run 2, the smallest values being en-293

countered closer to the bow shock, especially in Run 1. The average (median) transverse294

extent of the waves is 7 (7.4) RE in Run 1 and 4 (4.3) RE in Run 2.295

These results are in reasonable agreement with Cluster data, supporting the fact296

that the simulated foreshock wave field is representative of the actual foreshock. This297

suggests that during quiet solar wind conditions, the foreshock wave field is composed298

of large-scale coherent waves. When moving closer to the bow shock, their transverse ex-299

tent decreases. At large IMF strength, as is the case during magnetic clouds, the cor-300

relation length of the waves becomes significantly shorter.301

4 Discussion and conclusions302

We have presented the first observations of the Earth’s foreshock during magnetic303

clouds, revealing that the foreshock develops during such events but its wave properties304

are strongly modified due to the unusual upstream conditions dictated by the clouds. Us-305

ing multi-spacecraft analysis techniques, we show that the usually quasi-monochromatic306

fast magnetosonic waves are replaced by a superposition of waves at different periods.307

Their wavelength and their transverse extent are shorter, suggesting that the foreshock308

is structured over smaller scales.309

Atypical ion velocity distribution functions are observed in conjunction with the310

unusual wave activity. During one event, we find clear evidence of two distinct FABs in311

cyclotron resonance with the waves observed shortly afterwards, consistent with previ-312

ous numerical works (Turc et al., 2018). In another, the FAB is accompanied by a sec-313

ond suprathermal population at non-zero pitch angle, which might have evolved from314

a second FAB, due to gyrophase trapping (Mazelle et al., 2003; Kempf et al., 2015). The315

apparent lack of multiple FABs during this event could also be due to the spacecraft con-316

nectivity to the bow shock. Using a model bow shock, we estimate that the observed FABs317

originate from θBn ∼ 52◦ during this event, and from θBn ∼ 43◦ when multiple FABs318

are observed on 19 January 2005 and in the Meziane et al. (2011) event. Local changes319
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a b

c

e

d

Cluster observations

Vlasiator simulations

Figure 3. Transverse extent of the foreshock waves. Upper part: Cluster’s observations during

magnetic clouds. (a) Distribution of the transverse extent of foreshock waves. (b) Wave period as

a function of the transverse extent. Bottom part: global simulations. (c) and (d) Magnetic field

Bz component in Runs 1 and 2 at time t = 500 s from the beginning of the runs, which illustrate

the foreshock wave field. The plus signs indicate the positions of triplets of virtual spacecraft

where the transverse extent of the wave fronts was reliably determined. (e) Distribution of the

transverse extent of the wave fronts.
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of the quasi-perpendicular shock geometry could generate multiple field-aligned beams320

(Meziane et al., 2011), since their energy depends on the local shock geometry upon their321

generation (Paschmann et al., 1980). Foreshock processes are a significant source of lo-322

cal shock deformations (Meziane et al., 2011). Therefore, the observations of multiple323

FABs being more likely at lower θBn values, i.e., closer to the foreshock, fits well within324

this scenario.325

We note here that the second beam in the Meziane et al. (2011) event was not as-326

sociated with intricate wave activity. Its maximum phase space density was about two327

orders of magnitude lower than that of the first beam, which could explain why it did328

not trigger additional fast magnetosonic waves. On the contrary, on 22 January 2005,329

the maximum phase space densities of the two beams only differ by a factor of three, and330

both beams can thus generate fast magnetosonic waves of comparable amplitudes, as their331

growth rate increases with increasing beam density (Gary, 1991).332

In this work, the wave properties have been determined assuming a linear picture,333

which remains appropriate here as the spectral peaks of the waves are well-distinct. This334

allows separation of the different wave modes, as done previously in Hobara et al. (2007).335

Nonlinear wave analysis may be necessitated in other circumstances where distinct pe-336

riodicities are not present.337

Foreshock waves are known to modulate the shape of the shock front (Burgess, 1995).338

Therefore, their smaller wavelength and their smaller transverse extent during magnetic339

clouds could both result in smaller ripples at the shock front, which in turn can affect340

particle reflection at the quasi-parallel bow shock (Wu et al., 2015) and the formation341

of magnetosheath high-speed jets (Plaschke et al., 2018).342

IMF strengths above 10 nT are relatively uncommon at Earth, but they become343

typical closer to the Sun. At Mercury’s orbit, the average IMF strength is about 20-30344

nT (Korth et al., 2011). The small size of Mercury’s magnetosphere results however in345

another organization of its foreshock wave field (Le et al., 2013). Outside of our solar346

system, exoplanets orbiting close to their host stars are immersed in intense magnetic347

fields, and could thus display similar foreshock properties as presented here.348
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