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Abstract 69 

 70 

Climate change is expected to cause major changes in forest ecosystems during the 21st 71 

century and beyond. To assess forest impacts from climate change, the existing 72 

empirical information must be structured, harmonised and assimilated into a form 73 

suitable to develop and test state-of-the-art forest and ecosystem models. The 74 

combination of empirical data collected at large spatial and long temporal scales with 75 

suitable modelling approaches is key to understand forest dynamics under climate 76 

change. To facilitate data and model integration, we identified major climate change 77 

impacts observed on European forest functioning and summarised the data available for 78 

monitoring and predicting such impacts. Our analysis of c. 120 forest-related databases 79 

(including information from remote sensing, vegetation inventories, dendroecology, 80 

palaeoecology, eddy-flux sites, common garden experiments and genetic techniques) 81 

and 50 databases of environmental drivers highlights a substantial degree of data 82 

availability and accessibility. However, some critical variables relevant to predicting 83 

European forest responses to climate change are only available at relatively short time 84 

frames (up to 10-20 years), including intra-specific trait variability, defoliation patterns, 85 

tree mortality and recruitment. Moreover, we identified data gaps or lack of data 86 

integration particularly in variables related to local adaptation and phenotypic plasticity, 87 

dispersal capabilities and physiological responses. Overall, we conclude that forest data 88 

availability across Europe is improving, but further efforts are needed to integrate, 89 

harmonise and interpret this data (i.e. making data useable for non-experts). 90 

Continuation of existing monitoring and networks schemes together with the 91 
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establishments of new networks to address data gaps is crucial to rigorously predict 92 

climate change impacts on European forests.  93 

 94 

Highlights 95 

 Harmonised freely-available data is crucial to model forest impacts on climate 96 

change. 97 

 We summarise available datasets on forest functioning and underlying drivers. 98 

 Data for key demographic mechanisms are available at the short-term at EU 99 

level. 100 

 Lack of high-resolution harmonised EU data for genetic and physiological tree 101 

responses to climate change. 102 

 Need for Pan-European data integration effort. 103 

 104 

Keywords: climatic extremes; data accessibility; data integration; drivers; forest 105 

responses to climate change; harmonisation; open access.  106 
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1. Introduction 107 

 108 

Changes in mean and extreme climatic conditions are affecting forest functioning 109 

worldwide (Frank et al., 2015, EEA, 2017, Seidl et al., 2017). Understanding and 110 

predicting these impacts is necessary for science-based decisions, but challenging 111 

because climate change interacts with other drivers of global change, such as rising 112 

atmospheric CO2
 (Cramer et al., 2001), atmospheric deposition (de Vries et al., 2014), 113 

land use change (Linares et al., 2009, García-Valdés et al., 2015), pests and invasive 114 

species (Krumm & Vitková, 2016, Liu et al., 2017), and management and legacy effects 115 

(Baudena et al., 2015, Motta et al., 2015, Morales-Molino et al., 2017a, Ruiz-Benito et 116 

al., 2017b). Moreover, ecosystems react to climate change in complex ways, for 117 

example through stabilizing processes (Lloret et al., 2012) such as positive biotic 118 

interactions (Ruiz-Benito et al., 2017a) or local adaptation and phenotypic plasticity 119 

(Valladares et al., 2014, Benito-Garzón et al., 2019), but also with destabilizing non-120 

linear responses and feedbacks that could trigger tipping points (Camarero et al., 2015, 121 

Reyer et al., 2015). To support the crucial role of forests in maintaining key ecosystem 122 

services decision-makers must adapt forests for the future (Messier et al., 2013, IPCC, 123 

2014). To aid this process, it is therefore critically important to rapidly increase our 124 

ability to predict forest responses and vulnerability to climate change (Urban et al., 125 

2016).  126 

The use of empirical data at large spatial and/or long temporal extents in 127 

combination with suitable models is one of the most powerful tools for better 128 

understanding forest function, predicting vulnerability to climate change and assessing 129 

options for mitigation and adaptation (see e.g. Mouquet et al., 2015). During the last 130 
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few decades there has been a steady development in modelling techniques (Franklin et 131 

al., 2016), aimed at better understanding and/or predicting species occurrence and 132 

abundance (e.g. Dormann et al., 2012) or forests dynamics and functioning (e.g. gap 133 

models or Dynamic Global Vegetation Models –DGVMs–, see e.g. Bugmann et al., 134 

2001, Cramer et al., 2001). Available models range from empirical to process-based 135 

approaches and from modelling local processes and dynamics up to global vegetation 136 

and general ecosystem models (Figure 1). 137 

 138 

 139 

Figure 1. Existing model approaches to improve our understanding and prediction of 140 

climate change impacts. The models are classified according to spatial scale (local to 141 

global) and model type (correlative to process-based), with the position representing a 142 

relative ranking of the model types. SDM: Species Distribution Models. For each model 143 

type a review paper is associated if possible. 144 

 145 
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While there is a general agreement about the importance of assessing and predicting 146 

ecosystem responses to climate change (IPCC, 2014), there are multiple modelling 147 

approaches available to understand and predict climate change impacts quantitatively, 148 

designed to answer specific questions at different scales and using different data (Figure 149 

1). The mechanisms and processes limiting model predictions at large geographical 150 

scales are under particularly intense debate (see e.g. Mouquet et al., 2015, Franklin et 151 

al., 2016, Seidl, 2017). Furthermore, forests are complex socio-ecological systems and 152 

predictions can be theory-limited because forest functioning depends on multiple 153 

spatial and temporal responses and scales that depend on species composition (García-154 

Valdés et al., 2018, Morin et al., 2018) and may include thresholds or tipping points 155 

(Camarero et al., 2015, Reyer et al., 2015, Jump et al., 2017), interactive effects 156 

(Scheffer et al., 2001), phenological responses (Chuine & Régnière, 2017) and 157 

adaptation or time-dependent processes (Lloret et al., 2012). A final challenge is the 158 

integration of models and data, and in particular the ability to adequately parameterise 159 

and test models at large spatial scales (Hartig et al., 2012).  160 

A key component to understand and predict forest responses to climate change 161 

is the extent, resolution and quality of associated environmental data such as climate, 162 

soils or nitrogen deposition. For example, environmental drivers are often themselves 163 

based on model outputs, not only of future predictions but also of past levels. 164 

Uncertainty about the future trajectory of the climate system, which largely depends on 165 

socio-economic development, can further impact prediction accuracy (Purves & Pacala, 166 

2008, García-Valdés et al., 2018). Moreover, much of the available data on observed 167 

impacts is not yet integrated and understood in the wider context of whole-ecosystem 168 

functioning. For example, climate change effects on shifting the time of flowering (but 169 
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see Chuine et al., 2016, Ascoli et al., 2017b), tree mortality episodes (Greenwood et 170 

al., 2017) or large wildfires (Pausas et al., 2008) have been quantified but they are 171 

generally not included in many forest vulnerability assessments.  172 

Impacts of climate change across European forests are occurring at all biological 173 

levels of organisation. At the tree level, decreased water availability or temperature 174 

stress might induce functional adjustments in respiration, water-use efficiency, 175 

hydraulic conductivity, resource allocation, reproductive efforts or phenology, and 176 

root-to-shoot allocation patterns (Penuelas et al., 2011, Keenan et al., 2013), which can 177 

ultimately influence reproduction, growth and mortality (Lambers et al., 2008). At the 178 

population level, plant demography drives forest responses to climate change 179 

(Martínez-Vilalta & Lloret, 2016, Ruiz-Benito et al., 2017b) depending on local 180 

adaptation to climate (Pedlar & McKenney, 2017; Fréjaville et al., In review). Changes 181 

in tree growth and productivity are contingent on ecosystem-type and water availability 182 

(e.g. Vayreda et al., 2012, Ruiz-Benito et al., 2014) and individual responses to drought 183 

have been linked to long-term species composition changes (Galiano et al., 2013, 184 

Martínez-Vilalta & Lloret, 2016). At the ecosystem level heat waves have been shown 185 

to have an overall depressing effect on net primary productivity (Ciais et al., 2005, 186 

Reichstein et al., 2013). The combination of increased atmospheric CO2, nitrogen 187 

deposition, pollution and climate change is also considered a key factor in tree decline 188 

and ecosystem level responses (e.g. de Vries et al., 2014). Furthermore, several studies 189 

indicate altitudinal and latitudinal shifts in species distribution and functional types 190 

across Europe (see Appendix A), attributable in many cases not to climate change alone, 191 

but with substantial interactions with herbivory release, secondary succession or forest 192 

management (Peñuelas & Boada, 2003, Ruiz-Benito et al., 2017b). 193 
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To adequately identify potential risks and to establish future research and 194 

management priorities the scientific community, governments and other interested 195 

parties need well-structured, easily accessible and usable empirical data, often at large 196 

temporal and spatial scales. Multiple types, levels and sources of data are currently 197 

available, which can be harmonised to make compatible and comparable databases 198 

(GTOS, 1998), and prepare them to be suitable for model-based analyses. The aim of 199 

this paper is to support studies predicting forest responses and vulnerability to climate 200 

change by assessing the availability and accessibility of harmonised databases of forest 201 

functioning and underlying environmental drivers at the European scale. Firstly, based 202 

on a literature review, we identified the main types of forest response to climate change 203 

and the underlying interacting drivers. Then, based on expert knowledge, we researched 204 

the different data types available (genetic, eddy-flux measurement, experimental or 205 

observational field-techniques, tree-ring, palaeoecological and remote sensing 206 

techniques) to assess their ability to inform about climate change impacts (Figure 2). 207 

Additionally, we highlight the main data gaps and biases to predict climate change 208 

impacts on forests across Europe.   209 
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 210 

Figure 2. Relationships between (a) the data that can be used to detect and inform on 211 

(b) the biological levels at which forests may respond as a result of climate change. 212 

 213 

2. Availability of data indicating forest responses to climate change 214 

Forest responses to climate change are  measured with different survey techniques that 215 

cover a range of spatial and temporal scales (see Figure 3 and Appendix B): genetic 216 

data show local adaptation to climate over generations; eddy flux measurements 217 

provide continuous data on local productivity at 0.5-1 hour resolution up to more than 218 

20 years, vegetation inventories from local to regional scales cover show one -10 year 219 

changes across decadal to 100 year time-scale; dendrochronological data at local scales 220 

show yearly growth data over up to 5000 years; palaeoecological techniques at local 221 

scale cover long temporal scales (millennial data); and remote sensing data (RS) with 222 

high temporal and spatial resolution (continental for space-borne remote sensing, 223 
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regional for airborne remote sensing and local for ground based remote sensing, Table 224 

1), over a few years to multiple decades. The availability of these data varies from fully 225 

open-access to restricted-access (i.e. where the data is completely available for users or 226 

it is only available under request or a licence for a particular project, see Table 1). 227 

 228 

Table 1. Data types available to inform about climate change impacts on forest 229 

functioning (see a complete list of each dataset including accessibility in Appendix B).  230 

Data type 

(specific measurement 

methods or examples) 

Forest response type 

(indicator) 

Spatial & temporal 

resolution 

Extent (max. res) 

Span (step) 

Availability & 

accessibility 

(strengths & 

challenges use) 

Genetic data 
(Genetic diversity and 

structure, common 

gardens and provenance 

trials, reciprocal 

transplant performance) 

 

Genotype, phenotype 

and composition 
(genetic or phylogenetic 

diversity, local 

adaptation, plasticity)  

Regional to global 

(species ranges) 

- 

From open- to 

restricted-access 

Eddy flux data 

 

Phenotype and drivers 
(Carbon, water and 

energy fluxes; 

meteorological drivers 

and ecosystem state 

variables) 

Global 

(specific sites) 

Since 90s 

(hours) 

Open-access  

(immediate forest 

responses to CC, inter-

site comparison across 

vegetation types, 

sensitivity to climate 

factors, global 

synthesis studies) 

Systematic vegetation 

inventories 

(Regional, national or 

continental forest 

inventories, Long-term 

Research Networks) 

Demography, structure 

and composition 
(Tree demography and 

wood/defoliation, forest 

structure, species 

occurrence or 

abundance; species or 

functional diversity) 

Regional-National-

European 

(1 km or lower) 

Since 80s 

(up to decadal) 

From open- to 

restricted-access  

(Data integration and 

management, no 

individual information 

of e.g. species-specific 

allometric equations or 

trait information) 

Other vegetation 

inventories or 

experiments 

(Field-based or 

experimental data) 

Phenotype, 

demography, structure 

and composition 
(Traits, tree demography 

and wood/defoliation, 

forest structure, species 

occurrence or 

abundance; species or 

functional diversity) 

Regional-National-

European 

(1 km or lower) 

Since 80s 

(up to decadal) 

From open- to 

restricted-access  

(Data integration and 

management) 

Tree ring data 

(Tree growth or wood 

density) 

Demography and 

phenotype 
(tree radial growth; 

wood density) 

Global (stand) 

50-1000 yrs   

(year-season) 

Open-access 

(No large-scale 

coverage, stand and/or 

tree characteristics 

often missing) 
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Data type 

(specific measurement 

methods or examples) 

Forest response type 

(indicator) 

Spatial & temporal 

resolution 

Extent (max. res) 

Span (step) 

Availability & 

accessibility 

(strengths & 

challenges use) 

Palaeoecological data 

(Pollen or Macrofossil 

data) 

Structure and 

composition 
(occurrence, 

species and functional 

group diversity, forest 

cover and change) 

Global  

(stand) 

21,000 yrs. ago-

present  

(Multi-decadal to 

millennial) 

Open-access 

(Insights into past 

periods of abrupt 

climate change; multi-

centennial timescale 

relevant for forest 

ecosystems; uneven 

spatial occurrence, 

sometimes quite 

localised; no large-

scale spatial coverage 

at high resolution, 

relatively low time 

resolution) 

Ground RS 

(Terrestrial laser 

scanning, leaf 

spestoscopy) 

Structure  
(height, dbh, biomass, 

fine-scale crown metrics 

and canopy gaps) 

Local  

(cm - ha) 

Since 00s 

(NA to decadal) 

Restricted access, 

highly localised, no 

large-scale databases 

available  

(Easy sampling of fine 

spatial explicit 

measurements, require 

fieldwork and data 

processing) 

Airborne RS 

(Photogaphy, optical, 

LiDAR 

SAR) 

Structure 
(canopy and sub-canopy 

including height, 

biomass, crown metrics) 

Local-Regional-

National (cm) 

Since 00s  

(NA to decadal) 

From open- to 

restricted access, 

highly localised   

(Detailed structural 

data, require data 

processing) 

Space-borne RS* 

(Landsat, AVHR; 

MODIS, SPOT, 

RADARSAT,  

ALOS PALSAR, 

SENTINEL) 

Demography, structure 

and composition  
(forest cover/area, 

biomass, LAI, spectral 

diversity or phenology 

(NDVI, EVI), 

productivity) 

Global-continental 

(30 - 10 m) 

Since 80-90s 

(day-month) 

Open-access 

(Computational 

challenges in 

interpreting the data 

and integrating them 

with existing ground 

data at different scales) 
*RS: remote sensing data. 231 

 232 
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 233 

Figure 3. Harmonised picture of (a) data types and (b) forest conditions or 234 
responses to climate change depending on the spatial extent at which it is generally 235 

gathered (from local to regional and continental) and temporal span (i.e. from days up 236 

to 106 years), modified from Hartig et al. (2012). The position of the data type and 237 

forest condition o response is relative to provide a relative ranking within all data 238 

available. For each forest response the main data type is indicated as in Figure 2. 239 

 240 

Genetic and phylogenetic diversity, local adaptation and plasticity 241 

 242 

The capacity for genetic and phylogenetic tree diversity estimation is progressing 243 

rapidly thanks to ecological genomics (Holliday et al., 2017). The increase in genomic 244 

data allow us to understand the association between allelic frequencies and 245 
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environmental gradients (Fitzpatrick & Keller, 2015). Plant phylogenies are available 246 

for a large number of species (see e.g. (Zanne et al., 2014), Appendix B) and it is being 247 

used to further estimate phylogenetic diversity at the European scale (van der Plas et 248 

al., 2018). In Europe, adaptive genetic responses to climate using SNPs data are only 249 

available for a few species (Jaramillo-Correa et al., 2015).  250 

Local adaptation and plasticity are the main sources of intraspecific variation 251 

and should be considered when evaluating species responses to climate change because 252 

within-species ecological responses (abundance, biomass, community composition) are 253 

often greater than across species (Des Roches et al., 2018) and predictions of species 254 

responses due to climate change can differ when intra-specific variability is taken into 255 

account (Moran et al., 2016, Sánchez-Salguero et al., 2018, Benito-Garzón et al., 2019). 256 

Phenotypic measurements of fitness-related traits, such as tree diameter, height, 257 

phenology, growth and/or survival, from known genotypes at different locations can 258 

inform models about the amount of phenotypic trait variation attributable to local 259 

adaptation or phenotypic plasticity of populations (Moran et al., 2016). Phenotypic 260 

variation has been traditionally measured in common gardens (i.e. genetic trials or 261 

provenance tests, see Appendix B) and has been established for most commercial tree 262 

species. It provides information about plasticity (i.e. one provenance planted in several 263 

common gardens with different environments) and local adaptation of populations (i.e. 264 

several provenances planted in one common garden, Savolainen et al., 2013).  265 

 266 

Plant phenotype: physiology, traits and phenology  267 

 268 
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Physiological parameters have traditionally been measured either in experimentally 269 

controlled conditions or in observational studies where the physiological outputs are 270 

highly dependent on environmental conditions, species interactions and adaptation 271 

mechanisms. Eddy flux measurements and new remote sensing products have the 272 

potential to further elucidate plant physiological responses. The Eddy covariance 273 

networks are particularly important for quantifying the spatial differences and temporal 274 

dynamics in CO2 and water vapour exchange across large abiotic and biotic gradients. 275 

Estimates of water-use efficiency at large spatial extents and gross primary productivity 276 

(GPP) (e.g. Lasslop et al., 2012, Wohlfahrt & Galvagno, 2017) can both be derived 277 

from eddy flux data. Meanwhile in many flux observation sites other important 278 

biometric measurements, such as soil respiration rates are reported as so-called ancillary 279 

data. These additional data allow for a more analytical view on the net fluxes and their 280 

partitioning into individual components of the forest carbon cycle, enabling the 281 

portioning of ecosystem respiration into heterotrophic and autotrophic components (see 282 

e.g. Rodeghiero & Cescatti, 2006, Brændholt et al., 2018). The availability of new 283 

space-borne instruments enable measuring Sun Induced Chlorophyll Fluorescence 284 

(SIF), which offers a more direct link to plant physiology (Dobrowski et al., 2005) and 285 

a promising way to quantify gross primary production from space (Grace et al., 2007). 286 

Global phenology and model parameterisation have long been estimated 287 

through Earth Observation methods (e.g. Justice et al., 1985, Ahl et al., 2006, Hmimina 288 

et al., 2013, White et al., 2014). Long-term passive optical data from programmes such 289 

as AVHRR, Landsat and MODIS (NASA) have been used to quantify decadal forest 290 

cover change on a near global scale (e.g. Hansen et al., 2013). Such data have also been 291 

combined with ground measurements to detect climate-driven changes in temperate 292 
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forest phenology over long time scales (Piao et al., 2006, Keenan et al., 2014) and 293 

phenological changes associated with the spread of invasive species (Ramsey et al., 294 

2005). However, data availability about phenological changes is scarce (see Appendix 295 

B), and a good understanding or predictive models of phenological responses are 296 

critical to further understand climate change consequences (Delpierre et al., 2019). 297 

 298 

Forest demography and structure 299 

 300 

Forest demography can be assessed using vegetation inventories, tree ring data or 301 

remote sensing data. Regional, national and continental inventories (see Appendix B) 302 

are useful tools to estimate forest demographic processes such as tree growth, mortality 303 

and recruitment at the individual tree (Kunstler et al., 2016, Neumann et al., 2017) or 304 

plot level (Carnicer et al., 2014, Ruiz-Benito et al., 2017a) at regular intervals (often 305 

each c. 10 years). Recruitment data in systematic inventories have been successfully 306 

harmonised for saplings (height between 30 and 130 cm) across single censuses in 307 

Europe (Ruiz-Benito et al., 2017a, van der Plas et al., 2018), but recruitment data 308 

contain differential information about tree seedlings. In addition, recruitment data 309 

rarely contain time series records, dispersion information or individual tree information 310 

required to understand forest responses to climate change. Tree and site level radial 311 

growth at longer time spans and annual time steps can be obtained from tree ring and 312 

remote sensing data, which allow retrospective and prospective characterisations of 313 

forest responses, including forest resistance and resilience to short- and long-term 314 

climatic changes (Briffa et al., 1998, Anderegg et al., 2015, Gazol et al., 2018). Re-315 

surveyed plots from airborne remote sensing allow for monitoring of structural 316 
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dynamics such as forest growth (Yu et al., 2004) and large surveys can determine stand 317 

successional stage (Falkowski et al., 2009). At stand level remote sensing allow also 318 

capturing long-term canopy defoliation and tree mortality (Senf et al., 2018) (Table 1).  319 

Forest structure can be characterised by density, basal area, volume, biomass 320 

or crown metrics at tree or plot level, obtained from vegetation inventories or remote 321 

sensing data (Figure 3, Table 1). Systematic vegetation inventories generally measure 322 

tree level diameter / height, allowing a direct calculation of plot level basal area or tree 323 

density and indirect volume or biomass estimates through the application of species-324 

specific allometric equations (Montero et al., 2005, Zianis et al., 2005, Annighöfer et 325 

al., 2016). Some National Forest Inventories measure the position of each tree within a 326 

plot enabling the calculation of distance-dependent competition indices and tree-to-tree 327 

interactions (Gómez-Aparicio et al., 2011, Kunstler et al., 2016), although small plots 328 

can lead to biased predictions (Hynynen & Ojansuu, 2003). Tree height and diameter 329 

are common inventory variables that can also be obtained from airborne LiDAR and 330 

ground-based remote sensing with higher accuracy than inventory based calculations 331 

(Zolkos et al., 2013)⁠. LiDAR can provide sub-metre accuracy of surface heights 332 

(Lefsky et al., 2002, Lee et al., 2010), although accuracy can vary with canopy height 333 

and distribution (Hopkinson & Chasmer, 2009), ground slope (Breidenbach et al., 334 

2008) and sampling intensity (Hyyppä et al., 2000). Low point density data can be used 335 

to calculate stem density, vertical foliage profile (Coops et al., 2007) and basal area 336 

(Lee & Lucas, 2007), and is a promising method for above ground biomass 337 

measurement (Lefsky et al., 2002, Mascaro et al., 2011, Simonson et al., 2016). There 338 

is enormous potential to develop large spatial and temporal scale datasets when 339 

combining these different data types, e.g. the spatially continuous height, age, biomass 340 
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and carbon information derived from NFI and MODIS data (Mäkisara et al., 2016, 341 

Moreno et al., 2017). 342 

Biomass or wood volume can be estimated at the global scale from space-borne 343 

remote sensing as passive microwave data (Liu et al., 2015), passive optical data (e.g. 344 

from Landsat: Avitabile et al., 2012), and SAR data from L-band (Mitchard et al., 2011) 345 

and C-band instruments (Santoro et al., 2010), but the latter methods typically require 346 

calibration using ground data (Rodríguez-Veiga et al., 2017). SAR biomass estimates 347 

are calculated using backscatter coefficients related to wood volume scattering 348 

mechanisms and/or allometry using height estimates derived through polarimetric 349 

interferometry (PolInSAR; Mette et al., 2004; (Le Toan et al., 2011). Space borne 350 

LiDAR (ICESat GLAS) has been used to quantify biomass at the global scale (Simard 351 

et al., 2011) and Popescu et al. (2011) suggest close correlations to airborne 352 

equivalents. The use of SAR for forest monitoring is likely to increase with the missions 353 

expected over the next decade (e.g. BIOMASS, NISAR and SAOCOM-1).  354 

Space-borne remote sensing data provide long-term and large-scale information 355 

about crown structure as the leaf area index (LAI). LAI is the projected leaf area 356 

relative to ground area (m2 m-2) and is a good proxy of plant response to water 357 

availability (Jump et al., 2017). Satellite-derived LAI is generated with multispectral 358 

remote sensing reflectance data (Garrigues et al., 2008). Long-term products are 359 

available at global scale with spatial resolution of 500 m or greater and temporal 360 

resolution from 8 days to 1 month (see Appendix B) as CYCLOPES (derived from 361 

SPOT, Baret et al., 2007), GlobCarbon (derived from ERS, ENVISAT and SPOT, Deng 362 

et al., 2006, Plummer et al., 2007), and MODIS Leaf Area Index product (Knyazikhin 363 

et al., 1998, Yang et al., 2006).  364 
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 Crown metrics can be estimated using airborne LiDAR with discrete return 365 

and high point density data (~ 8-20 points m-2 (Wu et al., 2016), as crown volume 366 

(Korhonen et al., 2013), vertical crown length (Lee et al., 2010), crown diameter 367 

(Morsdorf et al., 2004) and crown cover (Lee & Lucas, 2007). Full waveform LiDAR 368 

data can describe canopy vertical structural complexity (Nie et al., 2017)⁠, including 369 

understory characterisation (Hancock et al., 2017), crown morphology (Lindberg et al., 370 

2012) and height (Anderson-Teixeira et al., 2015). A key parameter in many vegetation 371 

models, LiDAR derived LAI may be calculated using metrics of canopy structure, 372 

percentage canopy hits (Riaño et al., 2004) and radiative transfer models (Tang et al., 373 

2012). This approach avoids the saturation issue inherent in passive optical estimates 374 

(Peduzzi et al., 2012) and has been found to be more accurate than passive optical 375 

equivalents derived from MODIS data (Jensen et al., 2011) and the GLOBCARBON 376 

product (Zhao & Popescu, 2009)⁠. Airborne SAR systems have the capacity to measure 377 

similar structural properties as LiDAR given their sensitivity to complex forest structure 378 

(Lausch et al., 2017). Both correlative (Balzter et al., 2007) and physically-based 379 

approaches (Ningthoujam et al., 2016a) have been used to extract wood volume and 380 

vegetation height through interferometry (Neumann et al., 2012). To date, SAR has 381 

quantified AGB, LAI (Peduzzi et al., 2012), forest cover (Ningthoujam et al., 2016b) 382 

and tree height (Ningthoujam et al., 2016a). Unfortunately, currently there is little open-383 

access airborne SAR data available (see Appendix B).  384 

Fine scale spatially explicit crown metrics of stems and branches, as e.g. 385 

biomass or packing (Palace et al., 2016), are not captured by traditional vegetation 386 

inventories. Terrestrial laser scanning (TLS) offers an efficient and accurate alternative 387 

to measure fine-scale forest attributes (Seidel et al., 2015, Srinivasan et al., 2015) such 388 
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as height (Srinivasan et al., 2015), diameter (Kankare et al., 2013), biomass (Yu et al., 389 

2013, Calders et al., 2015), canopy characteristics including crown width (Metz et al., 390 

2013, Srinivasan et al., 2015) and canopy gaps (Seidel et al., 2015). TLS is filling the 391 

gap between tree scale manual measurements and large-scale airborne LiDAR scanning 392 

(Srinivasan et al., 2015), allowing upscaling airborne LiDAR measurements (Hancock 393 

et al., 2017). However, TLS data is available locally because it requires specific 394 

fieldwork and the management of a high volume of data.  395 

 396 

Species or functional occurrence, abundance and diversity 397 

 398 

Species or functional type occurrence and abundance data can be calculated from 399 

data generally available in vegetation inventories, palaeoecological or remote sensing 400 

data. Data on actual species distribution in Europe tends to come from individual field-401 

based observations (e.g. the worldwide database GBIF) and current knowledge (e.g. 402 

EUFORGEN or European maps from JRC, see a complete list in Appendix B). The 403 

systematic information from NFIs, gathered at regional or national level, and 404 

International Co-operative Programme on Assessment and Monitoring of Air Pollution 405 

Effects on Forests (ICP forests gathered at European level) provides large-scale and 406 

long-term information about the state of forests (Appendix B). Systematic vegetation 407 

inventories provide detailed information on tree species occurrence and abundance 408 

(generally through basal area or density measurements) with a good spatial coverage 409 

within Europe across biomes but over a relatively short time span (see Appendix  B and 410 

(Mauri et al., 2017). Long-term changes in species occurrence and abundance in 411 

response to environmental variability can be assessed through fossil pollen and plant 412 
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macrofossils data (Morales-Molino et al., 2017b). Despite the uneven spatial 413 

distribution and the relatively low taxonomic and spatial/temporal resolution of 414 

palaoecological data, the long time-span they usually cover allows to assess ecosystem 415 

dynamics during past periods of abrupt climate change (see Table 1), like the Younger 416 

Dryas-Holocene transition (rapid and marked warming dated c. 11700 years ago) or the 417 

8.2 ka event (abrupt cooling centered at c. 8200 years ago). For instance, fossil pollen 418 

data have been successfully used to document changes in the distribution and 419 

abundance of the main plant genera of European vegetation over the last 15,000 years 420 

(Giesecke et al., 2017). Similarly, plant macrofossils represent an interesting proxy to 421 

infer past distribution ranges as they often allow more precise plant identifications (even 422 

to species level) than pollen. Plant macrofossils are unequivocal indicators for past plant 423 

local presence due to their limited dispersal and are often directly dated therefore 424 

reducing uncertainty about their age (Birks & Birks, 2000). When reliable age estimates 425 

based on radiocarbon dates on terrestrial plant macrofossils and robust age-depth 426 

models are available, palaeoecological data allow accurate assessments on the 427 

responses of forest species to past climate changes, which can in turn be used to validate 428 

projected vegetation responses to future climate change. 429 

Diversity metrics can be calculated from systematic vegetation inventories 430 

including tree and shrub richness, functional types or even functional or phylogenetic 431 

measurements when merged with trait/phylogenetic data (Ruiz-Benito et al., 2017a) or 432 

specific field-based trait measurements (Vilà-Cabrera et al., 2015). Plant trait 433 

information and plant phylogeny is available for a large number of plants (see e.g. the 434 

TRY database, try-db.org, Kattge et al., 2011 or Zanne et al., 2014, Appendix B) and it 435 
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is being used to further estimate functional or phylogenetic diversity (Paquette & 436 

Messier, 2011). 437 

Tree species diversity is not directly available from medium-resolution open-438 

access Earth Observation data such as Landsat or MODIS. However, several studies 439 

have demonstrated the potential for predicting species richness and diversity from 440 

satellite-derived land cover and landscape complexity (e.g. Honnay et al., 2003, 441 

Hernandez-Stefanoni & Ponce-Hernandez, 2004, Ma et al., 2019), leaf traits (Moreno-442 

Martínez et al., 2018), or link species composition with forest dynamics (Huesca et al., 443 

2015). Other studies have used the Spectral Variation Hypothesis, which links spectral 444 

heterogeneity in the reflectance signal to environmental heterogeneity and therefore 445 

species diversity (Gould, 2000, Palmer et al., 2002, Rocchini et al., 2007, Rocchini et 446 

al., 2016). Fine spatial resolution imagery has been used to identify tree species within 447 

forest ecosystems using classification approaches as e.g. combination of LiDAR with 448 

Pleiades data (e.g. Blázquez-Casado et al., 2019), IKONOS (Carleer & Wolff, 2004, 449 

Dahdouh-Guebas et al., 2004) or QuickBird (Neukermans et al., 2008), but such data 450 

are usually complex to analyse or costly to obtain, limiting their use for mapping 451 

diversity at a regional or continental scale. Furthermore, structural and topographical 452 

information derived from airborne LiDAR can also provide information on tree species 453 

richness (Simonson et al., 2012, Hernández-Stefanoni et al., 2014, Lopatin et al., 2016, 454 

Vaglio Laurin et al., 2016). 455 

 456 

3. Availability and accessibility of harmonised data at the European level 457 

 458 

3.1. Forest responses 459 
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 460 

Harmonised data on forest conditions is available in multiple global and European scale 461 

databases (see Appendix B and a summary in Table 3) and range from open- to 462 

restricted-access (Table 2). For open-access databases citation and acknowledgment is 463 

usually mandatory. For more restricted datasets, the data managers or contributors can 464 

request authorship as a prerequisite for access (e.g. some harmonised NFI databases, 465 

common garden experiments, Table 2). Harmonised data at the European extent is 466 

generally of high quality, i.e. well-structured and documented. In some cases, data use 467 

does not require a high degree of expertise (e.g. processed or combined remote sensing 468 

products), but it requires managing large volumes of data. In others the use of data 469 

requires a medium-high degree of expertise as e.g. when managing unprocessed 470 

inventory data, tree ring or palaeoecological data (Table 2).  471 

The data products of individual observational or experimental studies are 472 

increasingly being published online thanks to research networks, public repositories 473 

and more recently data-papers gaining increasing attraction. However, whether 474 

scientific data should be freely-accessible is under an intense debate (Gewin, 2016) and 475 

often there is a low replicability, even in journals with an established data policy 476 

(Stodden et al., 2018). Data available and accessible at European level in data 477 

repositories or specific harmonisation initiatives cover many different data types such 478 

as trait information (e.g. TRY database, Kattge et al., 2011), plant growth-related 479 

experimental responses to environment (i.e. Meta-phenomics, Poorter et al., 2016), trait 480 

variation from common gardens or provenance tests (Robson et al., 2018, Vizcaíno-481 

Palomar et al., 2019), provenance regions (12 tree species, SIG-Forest), seed masting 482 

(MASTREE, Ascoli et al., 2017a), biomass and plant allometry (BADD, Falster et al., 483 
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2015), forest conditions and demography (ICP forests, UNECE & ICP Forests 484 

Programme Co-ordinating Centre, 2016) and long-term experiments/observational data 485 

in regions of Europe including a large number of forest indicators (see ForestGEO, 486 

DEIMS or NOLTFOX, Appendix B).  487 

Data harmonisation must include data standardisation protocols and specifically 488 

informing about data strengths and limitations (see Meyer et al., 2016 for data of species 489 

occurrence, Franklin et al., 2017). The main data strengths identified were taxonomic, 490 

spatial and temporal coverage, systematic data sampling and error identification and 491 

control (Table 2). The main data limitations were taxonomic, spatial or temporal 492 

uncertainty (i.e. ambiguous taxonomic data, spatial location or time since data 493 

collection, respectively); taxonomic, spatial or temporal coverage; multisource effects 494 

(i.e. different sampling techniques in input data such as plot size or sampling dates); or 495 

sampling effects (i.e. observation or measurement errors and over- or under-496 

representation bias, see Table 2).  497 

Table 2. Harmonised databases of forest responses at European extent. For each 498 

database we included the main data type ((a) genetic, (b) eddy flux, (c) vegetation 499 

inventories and experiments, (d) tree ring, (e) palaeoecological, and (f) remote sensing 500 

data), the accessibility (O: open-access, R: restricted-access) and attribution (A: if 501 

authorship can be requested/required). We show the main potential data limitations in 502 

the harmonised databases; and data availability, accessibility or attribution issues.  503 

Database*1 
Indicator 

(Data type) 
Data strengths*2 Data limitations*3 

TreeGenes, Hardwood 

genomic data, 

Genbank (a), O-R, A 

Genetic diversity or 

sequences 

(Genetic data) 

- 
Multisource 

uncertainty 

Benito-Garzón et al., 

2018, Robson et al., 

2018, Vizcaino-

Palomar et al., 2019, 

GnpIS, GENFORED, 

BeechCOSTe52 (a), O-R 

Phenotypic plasticity 

and adaptation 

(Genetic conservation 

units, genetic entries, 

common gardens, 

provenance regions) 

- 

Taxonomic coverage 

(data not available for 

many species) 

Meta-phenomics 

database (c), R 

Phenotypic plasticity 

and adaptation  

(plant growth and 

performance) 

- 

Taxonomic and spatial 

coverage (data not 

available for all 

species and all climatic 

conditions) 
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Database*1 
Indicator 

(Data type) 
Data strengths*2 Data limitations*3 

FLUXNET, 

CARBOEurope 

European Fluxes 

Database , and 

emerging ICOS carbon 

portal (b), O 

Carbon, water and 

energy fluxes  

(Flux measurements) 

Temporal and spatial 

coverage (standardised 

quality checked from 

more 600 towers since 

80s comparable across 

time and sites) 

Spatial coverage 

(localised sites) 

GBIF, Euforgen, AFE, 

EFI Tree species map, 

TSDE, EVA, sPLOT, 

GFBI (c),O-R 

Species occurrence or 

abundance 

(Vegetation 

inventories) 

Spatial coverage  

(high resolution) 

Temporal and spatial 

uncertainty (variable 

input data e.g. GBIF) 

TRY database(c)*4, O-R, A 

Functional traits  

(Field or experimental 

data) 

Error identification 

and control 

Temporal uncertainty 

and coverage, multi-

source effects 

(multiple input data) 

ICP forest(c), R 

Forest demography 

and structure, some 

plant traits 

(Vegetation 

inventories) 

Temporal coverage 

(available since 80s 

comparable across 

time and sites), 

systematic sampling at 

European level 

Sampling effects 

(underrepresentation 

of extreme events) 

National Forest 

Inventory harmonised 

(e.g. Occurrence data, 

GFBI, FUNDIV data) 

(c), O-R, A 

Demography, forest 

structure, species 

occurrence and 

abundance, species 

diversity 

(Vegetation 

inventories) 

Systematic sampling at 

national level 

Temporal coverage 

(available since 80s 

but multiple 

inventories rarely 

harmonised), sampling 

effects (plot and time-

intervals dependent on 

countries, under-

representation of large 

trees and extreme 

responses) 

International Tree-

Ring Data Bank 

(ITRDB)(d), FO 

Tree radial growth 

(tree ring data) 

Temporal coverage 

(up to century) 

Multisource effects 

(metadata 

improvements 

regarding tree size, age 

and site data) and 

sampling effects 

(mostly dominant and 

climate-sensitive trees 

sampled, individual 

and mean series of 

several trees),  

European Pollen 

Database (EPD), 

Neotoma Paleoecology 

database(e), O 

Long-term vegetation 

distribution and 

diversity 

(Palaeoecological 

data) 

Temporal coverage 

(up to millennia) 

Spatial coverage 

(limited sites), 

multisource (different 

time intervals) and 

sampling effects 

(under-representation 

of extreme responses) 
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Database*1 
Indicator 

(Data type) 
Data strengths*2 Data limitations*3 

CORINE Land Cover, 

PALSAR and JRC 

forest maps, ESI 

Forest Map, JRC 

Forest Biomass 

increment,  

GLOBBIOMASS (f), O 

Forest cover/area, 

biomass increment, 

habitat cover, forest 

change, carbon storage 

(Remote sensing) 

Spatial coverage  

(high resolution) 

Temporal coverage 

(short time span) 

*1See details of the database regarding output; spatial and temporal scale; data availability and 504 
accessibility; websites and citations in Appendix S2. 505 
*2 All data is at least available at European extent. We classified data strengths as taxonomic, spatial 506 
and temporal coverage, systematic data sampling, error identification and control. 507 
*3 We classified data limitations as taxonomic, spatial and temporal uncertainty; taxonomic, spatial and 508 
temporal coverage; multisource or sampling effects. 509 
*4Other trait databases area available and open-access generally for specific groups of traits or regions. 510 
 511 

Genetic diversity (e.g. allelic frequency) data is not harmonised at the European 512 

level (but see Genbank database for specific queries of genes in plants, Table 2, 513 

Appendix B) and to our knowledge this type of data has not been used to study large-514 

scale forest responses to climate (but see Jaramillo-Correa et al., 2015). However, the 515 

improvements in the next-generation of sequencing technologies is increasing the 516 

availability of open-access databases ((Neale & Kremer, 2011), Table 3, Appendix B). 517 

Despite evidence that genotypes respond differently to climate change across the range 518 

of the species (e.g. Matías et al., 2017) it can be difficult to measure genetic diversity 519 

and to incorporate it in predictive models of climate change effects (Kramer et al., 520 

2010). For example, neutral diversity does not show direct effects of genetic variation 521 

on fitness and, therefore, it is not informative about the adaptative or evolutionary 522 

potential of the species (Holderegger et al., 2006). However, common gardens and 523 

provenance trials are an important source of knowledge on the effects of intra-specific 524 

genetic and phenotypic variation on species response to different climates (Savolainen 525 

et al., 2013). Data harmonisation is not homogeneous for all data sources and the 526 

planting sites often do not include the entire distribution range of a given species (but 527 

see compilations for Pinus pinea L., Pinus pinaster Ait., Pinus nigra Arnold., Abies 528 
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alba Mill. and Fagus sylvatica L., (Benito-Garzón et al., 2018, Robson et al., 2018, 529 

Vizcaíno-Palomar et al., 2019)).  530 

Eddy flux measurement networks are established on almost all continents (e.g. 531 

ASIAFLUX, AMERIFLUX, OZFLUX, EUROFLUX) with FLUXNET as a global 532 

network of networks with long-term research infrastructures (Papale et al., 2012). 533 

Therefore, long-term harmonised high-quality data are available at both the global and 534 

European level (Table 2), providing detailed and standardised temporal information for 535 

specific towers across Europe (Aubinet et al., 2012). Further methodological 536 

standardisation is emerging in new American (NEON) and European (ICOS) research 537 

infrastructures (Franz et al., 2018). 538 

The availability and accessibility of vegetation inventories depend on the 539 

database owner, varying from systematic vegetation inventories (e.g. NFI or ICP 540 

forests) to specific databases from research network or data-papers (see Appendix B). 541 

Several initiatives to harmonise NFIs are being undertaken, including COST Actions 542 

(Tomppo et al., 2010), European projects such as e.g. BACCARA 543 

(http://www.baccara-project.eu/), FunDivEUROPE (http://www.fundiveurope.eu/, 544 

Baeten et al., 2013) or DIABOLO (http://diabolo-project.eu/), and European Networks 545 

such as ENFIN (http://www.enfin.info/) or global Initiatives (GFBI, 546 

https://www.gfbinitiative.org). NFI data can be open- or restricted-access at country 547 

level but the data require error identification and harmonisation considerations (e.g. 548 

minimum tree size or basal area, management, (Ratcliffe et al., 2016)) and 549 

harmonisation of heterogeneous databases as country-level NFIs should include 550 

standardisation steps to the final outputs. Harmonisation initiatives are resulting in the 551 

availability of NFI data at the European level, such as species occurrence (Mauri et al., 552 

http://www.enfin.info/
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2017) or forest structure (Moreno et al., 2017). ICP plots include information about 553 

biodiversity and the health and vitality of forests, for example canopy affectation by 554 

defoliation or/and climate change interactions with other air pollutants (de Vries et al., 555 

2014, UNECE & ICP Forests Programme Co-ordinating Centre, 2016). The main data 556 

limitations are based on the temporal coverage of the data (available since the 1980s) 557 

and the importance of understanding the knowledge any sampling effects that might 558 

include the underrepresentation of large trees, differential plot sizes and time intervals. 559 

Tree ring data are harmonised at global scale by NOAA’s “International Tree 560 

Ring Data Bank” (ITRDB, Table 2 and Appendix B). The ITRDB provides long-term 561 

growth information (usually tree-ring widths but also tree-ring density data) at tree, 562 

stand and species levels that can be freely downloaded. However, most of the ITRDB 563 

data refer to classical dendrochronological data, i.e. cross-dated tree-ring series 564 

obtained from 10-20 dominant and climatically sensitive trees of the same species living 565 

in the same site, stand or tree population; often at climate-sensitive sites. Usually, 566 

authors analyse a chronology or mean series of the individual tree series from the same 567 

site. Certain considerations or data treatment is required to estimate climate impacts on 568 

the entire forest. First, the spatial and ecological extent of the chronologies is generally 569 

vague, because the size of the site is rarely defined (e.g. 0.5-1 ha). Second, sampling is 570 

often biased towards dominant big trees of similar age classes, from harsh sites where 571 

climate is the major constraint of radial growth, which can lead to biased estimates of 572 

forest productivity and carbon uptake. Third, there is an urgent requirement for better 573 

metadata for future tree-ring series to be uploaded to the ITRDB. For instance, tree size 574 

(d.b.h.) and age are rarely reported and stand information as basal area or tree density 575 

is usually lacking, but they are required to obtain useful estimates of radial growth (e.g. 576 
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basal area increment) and carbon fixation from the tree ring data. Tree-ring data from 577 

tropical forests are scarce at the ITRDB (partially due to the inherent difficulty of ring 578 

formation and cross-dating in these tropical sites), but ITRDB data have been 579 

successfully used in global analyses (e.g. Anderegg et al., 2015). 580 

Palaeoecological data at the European level are harmonised in the Neotoma 581 

Paleoecology Database (Neotoma) and the European Pollen Database (also accessible 582 

via Neotoma, see Appendix B). The main data-limitations relate to the spatial coverage 583 

(uneven distribution of sites across Europe), multisource and sampling effects (i.e. time 584 

interval can differ between sampling sites). Neotoma and the EPD are open-access 585 

standardized databases of published palaecological records to foster broad-scale (global 586 

or continental-scale) vegetation and land-use history studies (Williams et al., 2018). 587 

Pollen-data can sometimes be difficult to use because: (1) Several plant species produce 588 

the same pollen type, which limits the estimation of plant diversity or specific species 589 

presence, but for woody taxa taxonomic resolution is usually high (except for most 590 

European deciduous oaks that cannot be distinguished by their pollen); (2) non-uniform 591 

representativeness of pollen distribution for vegetation distribution due to species-592 

specific differences in pollen production, dispersal, deposition and preservation (e.g. 593 

anemophilous tree species with high pollen production and dispersal ability as e.g. 594 

Pinus sp. are often overrepresented, Broström et al., 2008). This bias can be corrected 595 

by using empirical species-specific pollen productivity estimates (PPEs, (Pearman et 596 

al., 2008)); (3) pollen records mostly reflect vegetation structure and composition in an 597 

area whose size depends on the site and surface type (usually lakes and mires, (Sugita, 598 

1994)). Macrofossil records are less abundant than pollen sequences in Europe, 599 

especially in the Mediterranean region. Similarly, macrofossil data availability is still 600 
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limited compared with pollen data (see Neotoma, Appendix B) and most sequences are 601 

published as papers in specialised journals (e.g. Birks, 2003, Tinner & Kaltenrieder, 602 

2005).  603 

The availability of remote sensing information is vastly increasing thanks to 604 

recent technical advances (Kennedy et al., 2014) but significant challenges remain to 605 

select, process and interpret data provided in order to make them easily usable for forest 606 

assessment and management (Table 2). Processed and combined products are now 607 

widely available and offer a great opportunity for use at European scale (Table 2), with 608 

the temporal coverage dependent on the specific platform and product (Appendix B). 609 

There is an increasing amount of open-access large-scale airborne LiDAR data across 610 

Europe (generally at regional scale) and the recently launched GEDI Mission will 611 

provide global coverage of spaceborne LiDAR (though over a relative short duration, 612 

Appendix B). TLS has the potential to move forward forest inventory datasets by 613 

providing new structural measurements at fine spatial scales (Liang et al., 2016, White 614 

et al., 2016) as well as new means to determine uncertainty of forest properties 615 

quantified by spaceborne and airborne methods. 616 

 617 

3.2. Environmental data 618 

 619 

Climate databases at European or global levels differ in spatio-temporal resolution and 620 

extent. Mean climatic conditions for the 20th century are often directly available at high 621 

spatial resolution and at global or European scales from databases such as Worldclim, 622 

E-OBS, Chelsa, Climatic Research Unit (CRU, see Table 3 and Appendix B) either for 623 

a certain period (e.g. WordClim data provide mean values for 1970-2000) or even 624 
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monthly values for each year (e.g. E-OBS, CRU-TS, CRU-CL or CRU-SR, Appendix 625 

B). Temporal data on past temperature and precipitation (i.e. daily, monthly or yearly 626 

records) are available at the global and European level (e.g. CRU and E-OBS, 627 

respectively). There are new databases that combine the spatial resolution of 628 

WorldClim (1 km2) with the temporal resolution of CRU (1901 - 2014) (Fréjaville & 629 

Benito Garzón, 2018), and European climate data has been downscaled at 1 km2 for 630 

large temporal frameworks (i.e. 1951-2012, see Moreno & Hasenauer, 2016). There is 631 

also an R packags available to interpolate and downscale coarse climate data and obtain 632 

daily weather variables at landscape level (meteoland, De Cáceres et al., 2018). Past 633 

climatic data can be used to calculate changes in climate (i.e. climatic anomalies based 634 

in annual data, e.g. Ruiz-Benito et al., 2014). Drought effects are derived from climatic 635 

databases that are available at detailed spatial and/or temporal resolution (e.g. 636 

precipitation and drought indices; see Appendix B). Climatic data for future scenarios 637 

are available globally and bias-adjusted from the Intersectoral Impact Model 638 

Comparison Project (ISIMIP, Frieler et al., 2017) and for Europe at different spatial 639 

resolutions from the EURO-CORDEX (https://www.hzg.de/ms/euro-cordex/) to CRU 640 

database or Wordclim (see Appendix B). 641 

Other environmental drivers include topographic information (e.g. elevation, 642 

slope and aspect), soil classification and properties, disturbance and management 643 

information, atmospheric nitrogen or sulphur deposition and CO2 concentrations, etc. 644 

Topographic information can be easily obtained from digital elevation models at 645 

different resolutions (e.g. from 2 m2 to 1 km2, Table 3). The Soil Grid dataset 646 

(https://soilgrids.org/) provides global information about site characteristics, physical 647 

and chemical properties (Appendix B). European Soils Data Centre (ESDC) and ISRIC 648 
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World Soil Information provide a wealth of soil science information, and the FAO a 649 

global soil organic carbon map, which is mostly open-access and directly downloadable 650 

at 1 km2 (Appendix B). In addition to soil property and quality datasets, the ESDC hosts 651 

information on different soil functions and threats to soil functioning. Soil water 652 

content, temperature and snowpack has been estimated from 1979 to 2010 in the ERA-653 

INTERIM/Land at a resolution of 0.125° (Balsamo et al., 2015) and soil organic carbon 654 

is mapped at 1 km2 resolution in the Global Soil Organic Carbon Map (Appendix B). 655 

However, potential drivers of forest responses to climate change as soil fertility or water 656 

retention (Wardle et al., 2008) is not easily accessible at detailed resolution for the 657 

European extent. 658 

 659 
Table 3. Data availability of environmental drivers across Europe. See a complete 660 

list of each dataset including accessibility in Appendix B. The accessibility is open-661 

access upon citation and acknowledgement. 662 

Data type 
Example 

Databases 
Information 

Spatial 

resolution: 

Extent 

(max. res) 

Temporal 

resolution 
Challenges 

Climate 

Wordclim, 

CRU, 

NOAA, E-

OBS, 

CHELSA, 

EuMedClim 

Temperature 

and 

precipitation 

variables. 

Mean, annual 

& monthly 

data 

EU  

(30’’) 

 

Current and 

scenarios for 

past/future 

climate 

Temporal data 

for the 20th 

century and 

climate scenarios 

(e.g. monthly-

yearly) at fine 

spatial resolution 

(e.g. 1 km or 

lower) 

Atmospheric 

deposition 

NOAA, 

IAC, 

WebDab 

CO2 and 

greenhouse 

gases 

concentration 

EU level 

(0.1º) 
50s-present 

No spatial 

resolution in data 

Digital 

Elevation 

Model 

GTOP30 

Altitude, 

slope, 

orientation, 

insolation 

Global-

Europe 

(2 m2)  

- - 

Soils 
SoilGrid 

ESDA 

Soil attributes 

and 

classification 

Global-

Europe 

(1 km2) 

- 

Extract 

meaningful 

information for 

forest responses 
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Data type 
Example 

Databases 
Information 

Spatial 

resolution: 

Extent 

(max. res) 

Temporal 

resolution 
Challenges 

Disturbances 

EFFIS, 

DFDE, EDP, 

EASIN 

Area/perimeter 

burnt, pest, 

pathogens, 

exotic species 

Europe-

regional  

(0.25º) 

Variable 

No temporal 

information 

(only in remote 

sensing derived 

products) 

Policy – 

management 

CCDA, 

historical 

management 

and 

suitability 

for 

management 

Protected sites, 

recent 

management 

Europe  

(1 km2) 
NA 

Missing data of 

forest 

management or 

legacy effects 

 663 
Disturbances such as fires, pests or pathogens are major drivers of forest 664 

vulnerability that can strongly interact with climate change (e.g. Pausas & Keeley, 665 

2009). Palaeoecological records often include charcoal data to reconstruct changes in 666 

fire activity through long timescales, which can be freely accessed and downloaded 667 

from the Global Charcoal Database (GCD; Power et al., 2010) and Neotoma (Williams 668 

et al., 2018). The Database of Forest Disturbances in Europe (DFDE; Appendix B) 669 

provides historical data on abiotic (i.e. wind and snow damage) and biotic (pathogens 670 

and insects) disturbance agents. DFDE has been used at the country-scale to empirically 671 

parameterise landscape models to predict future disturbance levels under different 672 

climate change scenarios (Seidl et al., 2014). European initiatives to record and 673 

disseminate forest disturbance information include the EFI database, European Forest 674 

Fire Information System (EU-EFFIS) and the European Storms Catalogue (Appendix 675 

B). However, there is a considerable lack of geo-referenced data on pest and alien 676 

species in European forests and they are poorly linked to other databases on forest 677 

health such as ICP forests. Some initiatives involving citizen science are providing 678 

georeferenced data of forest pests at regional levels (e.g. 679 

http://www.alertaforestal.com/es/). The European Network of Alien Species (EASIN) 680 
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provides access to records of alien species in Europe, via a mapping tool and a geo-681 

referenced database of published scientific reports (EASIN-lit; Appendix B), although 682 

there are few records regarding forest ecosystems.  683 

Data availability on forest management practices across Europe is limited 684 

because it is difficult to assign a management system to a forest stand based on signs of 685 

its recent management; long-term historical records are essential, but they are largely 686 

missing across most of Europe. NFIs are a valuable source of information on recent 687 

forest management but harmonising the descriptions across countries will remain 688 

challenging until a common classification system is used. The scarce information about 689 

management in vegetation inventories has generally led to harmonisation as a binary 690 

indicator field (managed or unmanaged), which provides only minimal information to 691 

aid in the understanding of forest responses to management (see e.g. Vayreda et al., 692 

2012). The Natura 2000 and Nationally Designated Areas (CDDA; see Appendix B) 693 

initiatives provide spatial information on the protected sites at the European level. 694 

These datasets cannot be used to infer the development of a particular management 695 

activity, but they could be used as an indication of different forest policy and 696 

management objectives. Given the limited availability of management information, 697 

historical reconstruction maps (e.g. McGrath et al., 2015), forest management 698 

simulators (Härkönen et al., 2019) and the Forest Management Map of European 699 

Forests (Hengeveld et al., 2012) assesses the suitability of different forest management 700 

practices based on biotic, abiotic, and socioeconomic factors, which provide useful 701 

information for the development and assessment of management on forest resource 702 

models. 703 

 704 
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4. Considerations for harmonised data use in modelling forest responses to climate 705 

change  706 

 707 

Harmonised and quality-controlled data at the European scale are needed for robust 708 

assessments of forest responses to climate change (Serra-Diaz et al., 2018; Reyer et al., 709 

2019). We have demonstrated that data availability at the European extent has increased 710 

in the last few decades for a multitude of forest properties ranging from genetics to 711 

demography, forest structure and occurrence/abundance (Table 2) as well as for the 712 

potential interacting drivers of climate change (Table 3). We have also identified many 713 

open and semi-restricted databases across Europe, which will facilitate future 714 

integrative research on forest responses to climate change using multiple data sources.  715 

We found several limitations that should be considered when developing 716 

models and frameworks based on the databases presented here, relating to spatial and 717 

temporal coverage and the effects of using multisource data and data with different 718 

sampling methodologies. Firstly, for specific forest properties data are not publicly 719 

available at high resolution or for many European species, particularly for intraspecific 720 

trait variability, adaptation and phenotypic variation, and physiological and dispersal 721 

responses. Secondly, the temporal coverage of key responses to climate change such as 722 

defoliation, mortality and recruitment is short (e.g. the main sources are vegetation 723 

inventories, which are only available since the 1980s). In addition, there are sampling 724 

issues such as the under-representation of big trees, no individual or harmonised data 725 

of tree recruitment and extreme responses might be under-represented when permanent 726 

plots of forest inventories are used. Thirdly, long-term data are available for forest cover 727 

and tree growth, but researchers should be aware of data limitations regarding spatial 728 
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coverage (i.e. generally localised data) and sampling effects (e.g. selection of sensitive 729 

species/sites for study). The main limitations regarding underlying drivers of forest 730 

responses to climate change that we identified are the availability of meaningful and 731 

detailed soil information, long-term data about disturbances and forest management and 732 

legacy effects on forest functioning. Finally, most of the databases cannot deliver cause-733 

effect mechanisms except emerging ecosystem experiments (see e.g. meta-phenomics 734 

database, Appendix B) and plant responses can differ in field-conditions (Poorter et al., 735 

2016). 736 

 737 

Table 4. Main data limitations identified for each data type and how it can interact 738 

with modelling impacts to climate change. 739 

Data limitations Data type Considerations for 

modelling 

Example citations of 

databases or data 

use 

Data not available at 

the entire EU extent 

at high resolution  

Local adaptation, 

phenotypic plasticity 

or physiology  

Biased prediction of 

climate change 

impacts due to 

prediction of more 

extreme responses or 

general species-

specific physiological 

parameters  

(Robson et al., 2018, 

Benito-Garzón et al., 

2019) 

No long-term or 

detailed data 

Related to inventory 

data (tree mortality 

and recruitment) and 

management/legacy 

effects 

Long-term forest 

dynamics biased due 

to lack of long-term 

or individual data for 

recruitment and 

mortality 

(Baeten et al., 2013, 

Evans & Moustakas, 

2016) 

Data available across 

Europe at specific 

sites 

Long-term forest 

abundance or growth 

(palaeoecological 

data, tree ring and 

eddy flux responses) 

and disturbances 

Not possible to 

predict climate 

change impacts for 

the entire European 

continent 

(Anderegg et al., 

2015, Franz et al., 

2018, Williams et al., 

2018) 

Extreme responses 

under- or over-

represented 

Forest inventory data 

or tree ring data 

Unknown extreme 

forest responses or 

overestimation 

(Anderegg et al., 

2015, Ruiz-Benito et 

al., 2017b) 
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Extract meaningful 

and detailed 

information 

Soil data and 

management 

Missing interactions 

climate-soil and 

climate-legacy effects 

(Härkönen et al., 

2019, Morán-

Ordóñez et al., 2019) 

Cause-effect 

relationships are not 

available for a wide 

variety of conditions  

Experimental data Test forest responses 

for a variety of 

conditions 

(Poorter et al., 2016) 

 740 

The lack of data on key mechanisms of forest responses to climate change either at high 741 

spatial resolution or long temporal span at the European scale can strongly hamper 742 

modelling of forest tree responses to climate change (Table 4). Local adaptation or 743 

physiological data at high spatial resolution is missing at large spatial scales and 744 

detailed resolution, but several efforts are being made to integrate available data such 745 

as ecological genomics to climate change predictions (Fitzpatrick & Keller, 2015) 746 

showing less alarming responses (Benito-Garzón et al., 2019). Process-based models 747 

require a wide range of data to adequately parameterise and evaluate them, ideally 748 

consisting of a mix of stand or ecosystem conditions (e.g. stand structure, species 749 

abundance) and specific mechanisms or processes (e.g. photosynthesis data required in 750 

DGVM models, which ideally should come from controlled experiments, see Hartig et 751 

al., 2012). In many cases, process-based models require large numbers of parameters 752 

of physiological responses to climate, but these values are often known only for special 753 

cases (Mäkelä et al., 2000), or processes formulated for one region cannot be 754 

extrapolated to other climates or larger extents (Morales et al., 2005). Detailed 755 

physiological, structural and ecosystem data are being gathered but rarely on the same 756 

plot or at European extent (Table 2). The lack of accurate data about traits and 757 

ecophysiological responses for individual species in e.g. hydraulic resistance, 758 

photosynthesis or respiration has led to the generalisation of the parameters for a given 759 
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plant functional type, as e.g. depending on their shade-, flooding- or drought-tolerance 760 

and nitrogen requirements (Bugmann, 2001).  761 

Detailed data on tree mortality or recruitment is available at large spatial scales, 762 

but it is generally missing at long temporal scales, which could bias long term 763 

predictions. In fact, there are diverging findings on tree mortality between observational 764 

data and model predictions (Allen et al., 2015, Steinkamp & Hickler, 2015) and lack of 765 

tree recruitment data is likely to hamper model predictions (Evans & Moustakas, 2016). 766 

Furthermore, modelling forest responses to climate change might be affected by 767 

sampling bias due to the under representation of large trees (Vieilledent et al., 2009) or 768 

extreme responses (Fisher et al., 2008).  769 

The short temporal span generally available in data is leading to predictions 770 

under constant conditions and the common use of space-for-time substitutions, where 771 

temporal patterns are inferred from a set of different aged sites (Pickett, 1989). Recent 772 

studies suggest that space-for-time predictions provide similar results to time-for-time 773 

predictions (Blois et al., 2013, Rolo et al., 2016). However, further research of forest 774 

responses and predictions using “space-for-time” substitution should be a priority 775 

because species are likely to show different responses to climate change due to 776 

adaptation (e.g. Benito-Garzón et al., 2011) or legacy effects (Johnson & Miyanishi, 777 

2008). 778 

 779 

5. Conclusions: towards harmonised and freely available quality data to analyse 780 

and model forest responses to climate change  781 

 782 
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Despite the advances made, the main gap to better understanding and modelling of 783 

climate change impacts on European forests lies in the scarcity of high-quality, freely-784 

available data with high spatial and temporal resolution that cover the main biological 785 

processes that are affected by climate change (e.g. dispersal, physiology, biotic 786 

interactions, demography, phenology and adaptation; Urban et al., 2016, Cabral et al., 787 

2017). Open data exchange policies and research networks are leading to rapidly 788 

increasing accessibility of ecological and environmental data over large spatial extents. 789 

Data quality is often high, but observational data biases exist due to sampling effects, 790 

different time intervals and under-representation of extreme conditions. There are 791 

several examples of high-quality data at national, European or global extent that could 792 

serve as models for future data infrastructures. At the national and continental level 793 

forest inventories and the ICP databases are examples of systematically collected data 794 

that are widely used to asses forest vulnerability to climate (e.g. ICP database, UNECE 795 

& ICP Forests Programme Co-ordinating Centre, 2016). At global scales GFBI, 796 

ITRBD, FLUXNET data (Aubinet et al., 2012) and the TRY database (Kattge et al., 797 

2011) combine high-quality data with established quality and assessment controls.  798 

The increasing availability of data will further allow us to investigate complex 799 

mechanisms relevant for the assessment of forest impacts to climate change and to 800 

integrate them in a wide variety of forest models. The main data priorities to improve 801 

our understanding and model forest impacts to climate change are: (i) to maintain 802 

monitoring in existing data networks and start targeted new monitoring that addresses 803 

the identified gaps such as measuring climatic extremes and responses and to obtain 804 

long-term high-quality data on critical biological mechanisms driving forest responses 805 

to climate change, such as adaptation capacity, physiological responses, dispersal and 806 
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regeneration, and mortality; (ii) to promote the availability and provision of harmonised 807 

freely-available databases and further develop the standardisation methods and quality 808 

assessment approaches; (iii) to increase discussion and networking between those 809 

scientists primarily involved in data collection and those in modelling and data 810 

integration; (iv) to encourage data integration methods from different sources, because 811 

they have the potential to use the existing information in the data more effectively and 812 

provide detailed information at large spatial and long temporal scales that can be used 813 

in different modelling frameworks.  814 
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