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Abstract 
GeneValidator is a tool for determining whether the characteristics of newly predicted protein-

coding genes are consistent with those of similar sequences in public databases. For this, it runs up 

to seven comparisons per gene. Results are shown in an HTML report containing summary statistics 

and graphical visualisations that aim to be useful for curators. Results are also presented in CSV and 

JSON formats for automated follow-up analysis. 

Here, we describe common usage scenarios of GeneValidator that use the JSON output results 

together with standard UNIX tools. We demonstrate how GeneValidator's textual output can be 

used to filter and subset large gene sets effectively. First, we explain how low-scoring gene models 

can be identified and extracted for manual curation – for example, as input for genome browsers or 

gene annotation tools. Second, we show how GeneValidator's HTML report can be regenerated 

from a filtered subset of GeneValidator's JSON output. Subsequently, we demonstrate how 

GeneValidator's GUI can be used to complement manual curation efforts. Additionally, we explain 



how GeneValidator can be used to merge information from multiple annotations by automatically 

selecting the higher scoring gene model at each common gene locus. Finally, we show how 

GeneValidator analyses can be optimised when using large BLAST databases. 
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1 Introduction 
Using accurate gene annotations is important because they affect subsequent analyses (1). For 

some species, annotations can be downloaded directly from a public database such as Ensembl or 

NCBI (2). For newly sequenced species, approaches to identify protein-coding genes in a genome 

sequence typically combine evidence from multiple data sources (including ab initio models, ESTs, 

RNA-seq and protein alignments) (3-5). Whether gene feature annotations are downloaded from a 

public database or newly generated, they may contain errors resulting from biases of the 

underlying data, algorithmic choices (6), and the general limitations of a one-dimensional 

representation of DNA sequences. Common errors include frameshifts, incorrect exon-intron 

structure, incorrect merging of adjacent genes, and incorrect splitting of genes at long intron 

positions (7). 

We previously described GeneValidator (GV), a tool to evaluate the quality of protein-coding gene 

predictions based on comparisons with a database of known proteins (8). In brief (Fig. 1), GV first 

runs a BLAST search against the given database, retaining sequences of hits with e-value stronger 

than 10-5. Next, GV runs up to seven validations on each gene prediction. Each validation tests if the 

characteristics of the query gene deviate from those of similar sequences in the reference 

database. Based on predefined thresholds, the result of each validation is a pass or a fail. The 

overall score of the prediction is a scaled percentage of the validations that passed. Predictions 



with a score lower than 75 (i.e., more than one failed validation) may be regarded as potentially 

problematic. Explanation of the approach and an overview of the data underlying each validation is 

included in the HTML report, along with several visualisations to facilitate interpretation. Detailed 

results are also available in CSV and JSON format for spreadsheet and programmatic access. 

Results produced by GV are dependent on the quality and coverage of the database used for 

validation. Furthermore, higher scores indicate consistency with database sequences and not 

biological truths. Several publicly available databases of protein sequences such as Swiss-Prot (9), 

UniRef50 (9,10), TrEMBL (9), or NR (2) can be used with GV. The GV approach becomes increasingly 

reliable as proteomes of more species are submitted to these databases by the global research 

community, and as the quality of submitted sequences improve due to experimental validation, 

manual verification by experts, and technological and algorithmic advances in sequencing and 

automated gene prediction. We created GV to be flexible. Many of GV's features are designed to 

facilitate automatic processing of large gene sets (e.g., whole-genome annotation) as part of 

custom workflows. These include GV's versatile JSON output, ability to leverage HPC facilities, and 

the possibility to use advanced BLAST search options. GV also includes a web server that can be 

used as a shared resource. Here, we discuss five common use cases of GV that can be easily 

incorporated into custom workflows. 

2 Installing and running GeneValidator 
GV runs on Linux and macOS. To install GV, run the command shown below. This will install GV and 

all its dependencies to a directory called "genevalidator" in the current working directory. 

sh -c "$(curl -fsSL https://install-genevalidator.wurmlab.com)" 



The software includes example sequences to test the installation. The following command can be 

used to run GV on these example sequences with the included Swiss-Prot database. GV will print 

the results of validations for each gene prediction to the terminal, ending with a summary, and the 

directory where detailed results were saved to. 

genevalidator --db genevalidator/blast_db/swissprot --num_threads 4 \ 
genevalidator/exemplar_data/protein_data.fa 

3 GeneValidator workflows 
A gene set will almost inevitably contain some gene predictions with low scores. It can be desirable 

to curate these manually. Here, we begin by providing two approaches to facilitate inspection of 

these low-scoring predictions. First (Subheading 3.1), we show how to use GV’s JSON output to 

extract the sequence identifiers of low scoring gene predictions. Among other things, these can be 

used to subset the initial gene set, to prioritise inspection in a genome browser (11), or for 

annotation editing in a tool such as Apollo (12). Second (Subheading 3.2), we show how to create a 

new HTML report by subsetting GV’s JSON output. This can reduce the need to navigate through a 

long HTML report. Subsequently (Subheading 3.3), we introduce GV’s graphical interface. This is 

helpful for rapidly viewing how GV’s validation results change during manual curation. 

We also provide guidance on two more general challenges based on our applications of GV. First 

(Subheading 3.4), we show how GV can be used to automatically select the best gene model from 

multiple gene sets at each common gene locus. Furthermore (Subheading 3.5), we show how to 

restrict GV to use a specific subset of a BLAST database. This is to avoid BLAST searching against 

sequences unlikely to be informative. 



3.1 Extracting sequence identifiers of low scoring gene predictions 

GV’s JSON output can be used with JQ (https://stedolan.github.io/jq/), a command-line JSON 

processor (included in GV package), to select gene predictions matching a particular criterion and 

access validation results and associated metadata. In the example below, we extract identifiers of 

predictions with a score lower than 75 (i.e., having failed more than one validation) and having at 

least two BLAST hits for manual curation. The idea is that while having two BLAST hits is insufficient 

for GV's statistical tests (and thus results in a low score), they may provide sufficient evidence for 

biologically interpreting whether the prediction could be appropriate. 

1. Extract FASTA header of gene predictions that have more than two BLAST hits and an overall 

score of less than 75. 

jq ".[] | 
select(.no_hits >= 2 and .overall_score < 75) | .definition" 
input_file_results.json > sequence_definitions.txt 

2. Extract sequence identifier (first word of the FASTA header) using the cut command. 

cut -d ' ' -f 1 sequence_definitions.txt > sequence_ids.txt 

3.2 Subsetting the HTML report to only low scoring gene predictions 

GV’s JSON output can be filtered using JQ and input back to GV to reproduce results for the 

selected gene predictions. This is useful to create smaller HTML report, for example focusing on a 

particular gene family. In the example below, we subset GV’s output for the low scoring gene 

predictions selected in 3.1.  

1. Select gene predictions that have more than two BLAST hits and an overall score of less than 

75. 

jq "[ .[] | select(.no_hits >= 2 and .overall_score < 75) ] | 
sort_by(.overall_score)" input_file_results.json > 
input_file_results_subset.json 



2. Reproduce GV’s output. 

genevalidator --json input_file_results_subset.json 

3.3 Using GeneValidator web server to iteratively refine gene models 

Although running GV from the command-line is ideal for processing of large datasets and custom 

workflows, a graphical user interface can facilitate iterative usage. For example, during manual 

curation of gene models, running GV repeatedly as a gene model is revised can help a curator verify 

that changes they are making indeed improve the gene model. Building on the lessons learnt when 

developing the SequenceServer BLAST interface (13), we also built a graphical user interface (app) 

for GV that is accessible through a web browser.  

1. Launching GV app requires the path to a directory containing one or more BLAST databases; 

the interface (accessible at http://localhost:5678) is opened automatically in the default 

browser. 

genevalidator app --database_dir genevalidator/blastdb/ --num_threads 4 

2. To validate gene predictions, paste the corresponding FASTA sequences into the text area, 

select the database to compare to, and click "Analyse Sequences" (Fig. 2). The results are 

then shown on the same page. 

We also host a GV web server at https://genevalidator.wurmlab.com with two caveats: first, it is 

suitable for up to 10 queries at a time, and second, given computational constraints on this server, 

we only provide the Swiss-Prot and the UniRef50 databases. 

3.4 Merging gene predictions from two different sources 

Different gene prediction approaches are unlikely to generate identical gene models for a locus. GV 

can be used to select the higher scoring gene model for each locus from multiple gene sets. Briefly, 

we first identify annotations corresponding to the same locus from the different sources (steps 

1 – 3 below). Subsequently, we generate a FASTA file containing alternative predictions for each 



locus and use GV’s "--select_single_best" option to select the higher scoring one (step 4 

below). 

We make multiple simplifying assumptions to generate a mapping of annotations corresponding to 

the same locus from the different sources (steps 1 – 3 below). Specifically, we assume that we have 

a single transcript (splice-form) per source per locus, that gene predictions from different loci do 

not overlap, and that annotations are available in a GFF3 format file. Often, additional pre-

processing of gene sets will be necessary to take these into account. 

1. Intersect the transcript annotations in the GFF3 files (requires prior installation of bedtools). 

We require that both hits are on the same strand ("-s"). If comparing more than two GFF3 

files, see the bedtools documentation ("-b" can take multiple values). The output file 

contains the entire input record from both input files ("-wa -wb"). 

bedtools intersect -wa -wb -s \ 
-a <(awk '/\tmRNA\t/' geneset1.gff) \ 
-b <(awk '/\tmRNA\t/' geneset2.gff) \ 
> geneset_overlaps.bed 

2. Extract the GFF3 attributes columns (i.e., the 9th and 18th column) which contain the 

sequence identifiers. 

awk '{printf ("%s;\t%s;\n", $9, $18)}' geneset_overlaps.bed > 
attributes_columns.tsv 

3. Extract the sequence identifiers from the attributes columns. 

perl -nle '@ids = /ID=(.*?);/g; print join("\t", @ids) if @ids' 
attributes_columns.tsv > mapping_ids.tsv 

4. Now that we have identifiers of the annotations corresponding to the same locus from both 

the gene sets, their respective sequences can be extracted and then used with GV’s "--

select_single_best" option. 

a. Create indexes for each of the FASTA files (requires prior installation of samtools). 

samtools faidx geneset1.fasta 
samtools faidx geneset2.fasta 



b. Create output FASTA file. 

touch output.fa 

c. Loop over the "mapping_ids.tsv" file. Extract FASTA sequence for each ID and write 

them to a temporary FASTA file. Run GV using the "--select_single_best" option on 

the temporary FASTA file. The "--select_single_best" mode prints the highest 

scoring sequence to STDOUT in FASTA format, which is written to the output file 

previously created. 

cat mapping_ids.tsv | while read -r line; do 
echo "$line" | cut -f 1 | \ 
xargs samtools faidx geneset1.fasta > gv_run_tmp.fa 

echo "$line" | cut -f 2 | \ 
xargs samtools faidx geneset2.fasta >> gv_run_tmp.fa 

genevalidator --select_single_best gv_run_tmp.fa >> output.fa 
rm gv_run_tmp.fa 

done 

It may be desirable to include gene models unique to both sets in the final output. We leave this as 

an exercise for the reader. 

3.5 Using NCBI’s non-redundant database of protein sequences with GV 

While it is desirable to validate gene predictions against a gold standard database like Swiss-Prot, its 

limited coverage (9) makes this challenging for many species. At the same time, technological 

advances continue to increase the quality of automated predictions (14). This makes it tempting to 

use a more comprehensive database such as NCBI’s non-redundant collection (NR) of manually 

reviewed as well as automatically generated protein sequences for validation. However, the large 

size of the NR database means BLAST searches can take days. We show how to use BLAST’s ability 

to restrict searches to a list of identifiers (15) to accelerate a GV analysis. For this, we first restrict 

the BLAST search to a particular taxonomic lineage to avoid BLAST searching against sequences 

unlikely to be informative. Additionally, we exclude sequences from the focal species to avoid 

circular self-validation. 



For the implementation below, we consider the example of the red fire ant, Solenopsis invicta (16). 

We first obtain taxon identifiers of all species in Eukaryota (id: 2759). Subsequently, we exclude all 

Solenopsis species (taxonomy id: 13685). We then obtain GenInfo identifiers (GI numbers) of all 

sequences in the retained taxa. We finally run GV using this list.  

1. Obtain a list of eukaryotic taxon identifiers (this requires prior installation of Taxonkit). 

taxonkit list --ids 2759 --indent "" > taxon_ids_eukaryotes.txt 

2. Obtain a list of Solenopsis taxon identifiers. 

taxonkit list --ids 13685 --indent "" > taxon_ids_solenopsis.txt 

3. Subtract the two. 

grep -Fvx -f taxon_ids_solenopsis.txt taxon_ids_eukaryotes.txt >  
taxon_ids.txt 

4. Download a tab-delimited file from NCBI linking taxon ids and GI Numbers. 

curl -L -O 
ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.g
z 

5. Use csvtk (https://github.com/shenwei356/csvtk), a multithreaded CSV/TSV processor 

(packaged with GV), to extract the rows where the taxid is in the taxon_ids.txt file. 

zcat prot.accession2taxid.gz | \ 
csvtk --tabs grep --fields taxid --pattern-file taxon_ids.txt | \ 
cut -f 4 > gi_list.txt 

6. Finally, we pass this file to GV using "--blast_option" option. 

genevalidator --blast_options "-gilist gi_list.txt" --db nr \ 
--num_threads 40 geneset1.fa 

Starting with BLAST+ version 2.8.0 (in development at the time of this writing) steps 4 & 5 can be 

skipped and the list of taxon ids from step 3 can be passed directly to BLAST using the new "-

taxidlist" option. 



Tips and tricks 
1. GV’s overall score is based on the percentage of validations that pass, i.e., where the score 

is above a threshold that we have determined to be appropriate. To emphasise the fact that 

GV results are highly dependent on the quality of information in databases and cannot be 

solely relied upon to classify a ‘perfect’ gene prediction, the overall score is decreased by 

10%. The highest possible score is thus 90%. 

2. GV will run the validations provided there are at least five BLAST hits for a given prediction. 

This can be changed using the "--min_blast_hits" option. A higher number of BLAST hits 

will increase the relevance of the comparisons. 

3. GV generates several summary statistics for the input gene set. These include first, second 

and third quartiles of the overall scores, number of good and bad predictions, and number 

of predictions with insufficient BLAST hits. In addition to providing an overview of the 

quality of the input gene set, the summary statistics can be used to choose between 

predictions from two different sources. 

4. GV includes a tool for downloading sequence databases from NCBI to use for comparisons 

(i.e., "genevalidator ncbi-blast-dbs"). This is a parallelised alternative to the 

“update_blastdb.pl” script included in BLAST+ package. 

5. GV is also able to run BLAST searches on NCBI servers using BLAST’s "-remote" option (e.g., 

"genevalidator --db 'swissprot -remote' geneset.fa"). This has the benefit of 

being able to immediately use the most up-to-date version of a given database. However, 

using a remote BLAST database is very slow. We recommended using this for validating only 

a few genes (e.g., fewer than 25). 



6. It is possible to run BLAST independently and to subsequently provide the output XML ("-

outfmt 5") or tab-delimited ("-outfmt 6") to GV. This can be particularly useful if BLAST 

results have already been produced for other analyses, or when BLAST can be run on a 

cluster. 

7. BLAST is often the slowest step of GV pipeline, especially when working with large datasets. 

In such cases, DIAMOND (17) can be used instead of BLAST for (up to 20,000x!) faster 

database searching. Since DIAMOND’s XML output is compatible with BLAST, it can be used 

directly with GV along with one additional input, i.e., a FASTA file of hit sequences (when 

used with BLAST, GV is able to automatically extract hit sequences from BLAST database). 

Our wiki (https://github.com/wurmlab/genevalidator/wiki) provides detailed instructions 

for using GV with DIAMOND. 

8. To resume a terminated analysis, GV can be run with "--resume" option. In resume mode, 

GV skips previously successful steps, including running BLAST. Gene predictions that were 

successfully processed are skipped as well. 

9. It is possible to split an input gene set into multiple chunks, run GV on each chunk across 

multiple compute nodes, and combine the results for each chunk into a single report. 

1. After splitting the input file and running GV on each input file, the following command 

can be used to merge the individually produced GV JSON files. 

cat */*.json | jq '.[] ' | jq --slurp '.' > MERGED_JSON 

2. The merged JSON can then be used to produce a single report for the whole gene set. 

genevalidator --json MERGED_JSON 
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Figure Captions  
See Figures attached. 

Figure 1: High-level schematic of the steps carried out by GeneValidator. 

Figure 2: A screenshot of the GeneValidator web application as launched from the command line 

via "genevalidator app" or by accessing https://genevalidator.wurmlab.com. 


