
Choosing the best gene predictions
with GeneValidator
Ismail Moghul1, †, *, Anurag Priyam2, † and Yannick Wurm2, *

1UCL Cancer Institute, University College London

2School of Biological and Chemical Sciences, Queen Mary University of London, United Kingdom

†Equal contribution

*To whom correspondence should be addressed

Abstract
GeneValidator is a tool for determining whether the characteristics of newly predicted protein-

coding genes are consistent with those of similar sequences in public databases. For this, it runs up

to seven comparisons per gene. Results are shown in an HTML report containing summary statistics

and graphical visualisations that aim to be useful for curators. Results are also presented in CSV and

JSON formats for automated follow-up analysis.

Here, we describe common usage scenarios of GeneValidator that use the JSON output results

together with standard UNIX tools. We demonstrate how GeneValidator's textual output can be

used to filter and subset large gene sets effectively. First, we explain how low-scoring gene models

can be identified and extracted for manual curation – for example, as input for genome browsers or

gene annotation tools. Second, we show how GeneValidator's HTML report can be regenerated

from a filtered subset of GeneValidator's JSON output. Subsequently, we demonstrate how

GeneValidator's GUI can be used to complement manual curation efforts. Additionally, we explain

how GeneValidator can be used to merge information from multiple annotations by automatically

selecting the higher scoring gene model at each common gene locus. Finally, we show how

GeneValidator analyses can be optimised when using large BLAST databases.

Keywords: genome annotation, gene prediction, gene validation, genevalidator

1 Introduction
Using accurate gene annotations is important because they affect subsequent analyses (1). For

some species, annotations can be downloaded directly from a public database such as Ensembl or

NCBI (2). For newly sequenced species, approaches to identify protein-coding genes in a genome

sequence typically combine evidence from multiple data sources (including ab initio models, ESTs,

RNA-seq and protein alignments) (3-5). Whether gene feature annotations are downloaded from a

public database or newly generated, they may contain errors resulting from biases of the

underlying data, algorithmic choices (6), and the general limitations of a one-dimensional

representation of DNA sequences. Common errors include frameshifts, incorrect exon-intron

structure, incorrect merging of adjacent genes, and incorrect splitting of genes at long intron

positions (7).

We previously described GeneValidator (GV), a tool to evaluate the quality of protein-coding gene

predictions based on comparisons with a database of known proteins (8). In brief (Fig. 1), GV first

runs a BLAST search against the given database, retaining sequences of hits with e-value stronger

than 10-5. Next, GV runs up to seven validations on each gene prediction. Each validation tests if the

characteristics of the query gene deviate from those of similar sequences in the reference

database. Based on predefined thresholds, the result of each validation is a pass or a fail. The

overall score of the prediction is a scaled percentage of the validations that passed. Predictions

with a score lower than 75 (i.e., more than one failed validation) may be regarded as potentially

problematic. Explanation of the approach and an overview of the data underlying each validation is

included in the HTML report, along with several visualisations to facilitate interpretation. Detailed

results are also available in CSV and JSON format for spreadsheet and programmatic access.

Results produced by GV are dependent on the quality and coverage of the database used for

validation. Furthermore, higher scores indicate consistency with database sequences and not

biological truths. Several publicly available databases of protein sequences such as Swiss-Prot (9),

UniRef50 (9,10), TrEMBL (9), or NR (2) can be used with GV. The GV approach becomes increasingly

reliable as proteomes of more species are submitted to these databases by the global research

community, and as the quality of submitted sequences improve due to experimental validation,

manual verification by experts, and technological and algorithmic advances in sequencing and

automated gene prediction. We created GV to be flexible. Many of GV's features are designed to

facilitate automatic processing of large gene sets (e.g., whole-genome annotation) as part of

custom workflows. These include GV's versatile JSON output, ability to leverage HPC facilities, and

the possibility to use advanced BLAST search options. GV also includes a web server that can be

used as a shared resource. Here, we discuss five common use cases of GV that can be easily

incorporated into custom workflows.

2 Installing and running GeneValidator
GV runs on Linux and macOS. To install GV, run the command shown below. This will install GV and

all its dependencies to a directory called "genevalidator" in the current working directory.

sh -c "$(curl -fsSL https://install-genevalidator.wurmlab.com)"

The software includes example sequences to test the installation. The following command can be

used to run GV on these example sequences with the included Swiss-Prot database. GV will print

the results of validations for each gene prediction to the terminal, ending with a summary, and the

directory where detailed results were saved to.

genevalidator --db genevalidator/blast_db/swissprot --num_threads 4 \
genevalidator/exemplar_data/protein_data.fa

3 GeneValidator workflows
A gene set will almost inevitably contain some gene predictions with low scores. It can be desirable

to curate these manually. Here, we begin by providing two approaches to facilitate inspection of

these low-scoring predictions. First (Subheading 3.1), we show how to use GV’s JSON output to

extract the sequence identifiers of low scoring gene predictions. Among other things, these can be

used to subset the initial gene set, to prioritise inspection in a genome browser (11), or for

annotation editing in a tool such as Apollo (12). Second (Subheading 3.2), we show how to create a

new HTML report by subsetting GV’s JSON output. This can reduce the need to navigate through a

long HTML report. Subsequently (Subheading 3.3), we introduce GV’s graphical interface. This is

helpful for rapidly viewing how GV’s validation results change during manual curation.

We also provide guidance on two more general challenges based on our applications of GV. First

(Subheading 3.4), we show how GV can be used to automatically select the best gene model from

multiple gene sets at each common gene locus. Furthermore (Subheading 3.5), we show how to

restrict GV to use a specific subset of a BLAST database. This is to avoid BLAST searching against

sequences unlikely to be informative.

3.1 Extracting sequence identifiers of low scoring gene predictions

GV’s JSON output can be used with JQ (https://stedolan.github.io/jq/), a command-line JSON

processor (included in GV package), to select gene predictions matching a particular criterion and

access validation results and associated metadata. In the example below, we extract identifiers of

predictions with a score lower than 75 (i.e., having failed more than one validation) and having at

least two BLAST hits for manual curation. The idea is that while having two BLAST hits is insufficient

for GV's statistical tests (and thus results in a low score), they may provide sufficient evidence for

biologically interpreting whether the prediction could be appropriate.

1. Extract FASTA header of gene predictions that have more than two BLAST hits and an overall

score of less than 75.

jq ".[] |
select(.no_hits >= 2 and .overall_score < 75) | .definition"
input_file_results.json > sequence_definitions.txt

2. Extract sequence identifier (first word of the FASTA header) using the cut command.

cut -d ' ' -f 1 sequence_definitions.txt > sequence_ids.txt

3.2 Subsetting the HTML report to only low scoring gene predictions

GV’s JSON output can be filtered using JQ and input back to GV to reproduce results for the

selected gene predictions. This is useful to create smaller HTML report, for example focusing on a

particular gene family. In the example below, we subset GV’s output for the low scoring gene

predictions selected in 3.1.

1. Select gene predictions that have more than two BLAST hits and an overall score of less than

75.

jq "[.[] | select(.no_hits >= 2 and .overall_score < 75)] |
sort_by(.overall_score)" input_file_results.json >
input_file_results_subset.json

2. Reproduce GV’s output.

genevalidator --json input_file_results_subset.json

3.3 Using GeneValidator web server to iteratively refine gene models

Although running GV from the command-line is ideal for processing of large datasets and custom

workflows, a graphical user interface can facilitate iterative usage. For example, during manual

curation of gene models, running GV repeatedly as a gene model is revised can help a curator verify

that changes they are making indeed improve the gene model. Building on the lessons learnt when

developing the SequenceServer BLAST interface (13), we also built a graphical user interface (app)

for GV that is accessible through a web browser.

1. Launching GV app requires the path to a directory containing one or more BLAST databases;

the interface (accessible at http://localhost:5678) is opened automatically in the default

browser.

genevalidator app --database_dir genevalidator/blastdb/ --num_threads 4

2. To validate gene predictions, paste the corresponding FASTA sequences into the text area,

select the database to compare to, and click "Analyse Sequences" (Fig. 2). The results are

then shown on the same page.

We also host a GV web server at https://genevalidator.wurmlab.com with two caveats: first, it is

suitable for up to 10 queries at a time, and second, given computational constraints on this server,

we only provide the Swiss-Prot and the UniRef50 databases.

3.4 Merging gene predictions from two different sources

Different gene prediction approaches are unlikely to generate identical gene models for a locus. GV

can be used to select the higher scoring gene model for each locus from multiple gene sets. Briefly,

we first identify annotations corresponding to the same locus from the different sources (steps

1 – 3 below). Subsequently, we generate a FASTA file containing alternative predictions for each

locus and use GV’s "--select_single_best" option to select the higher scoring one (step 4

below).

We make multiple simplifying assumptions to generate a mapping of annotations corresponding to

the same locus from the different sources (steps 1 – 3 below). Specifically, we assume that we have

a single transcript (splice-form) per source per locus, that gene predictions from different loci do

not overlap, and that annotations are available in a GFF3 format file. Often, additional pre-

processing of gene sets will be necessary to take these into account.

1. Intersect the transcript annotations in the GFF3 files (requires prior installation of bedtools).

We require that both hits are on the same strand ("-s"). If comparing more than two GFF3

files, see the bedtools documentation ("-b" can take multiple values). The output file

contains the entire input record from both input files ("-wa -wb").

bedtools intersect -wa -wb -s \
-a <(awk '/\tmRNA\t/' geneset1.gff) \
-b <(awk '/\tmRNA\t/' geneset2.gff) \
> geneset_overlaps.bed

2. Extract the GFF3 attributes columns (i.e., the 9th and 18th column) which contain the

sequence identifiers.

awk '{printf ("%s;\t%s;\n", $9, $18)}' geneset_overlaps.bed >
attributes_columns.tsv

3. Extract the sequence identifiers from the attributes columns.

perl -nle '@ids = /ID=(.*?);/g; print join("\t", @ids) if @ids'
attributes_columns.tsv > mapping_ids.tsv

4. Now that we have identifiers of the annotations corresponding to the same locus from both

the gene sets, their respective sequences can be extracted and then used with GV’s "--

select_single_best" option.

a. Create indexes for each of the FASTA files (requires prior installation of samtools).

samtools faidx geneset1.fasta
samtools faidx geneset2.fasta

b. Create output FASTA file.

touch output.fa

c. Loop over the "mapping_ids.tsv" file. Extract FASTA sequence for each ID and write

them to a temporary FASTA file. Run GV using the "--select_single_best" option on

the temporary FASTA file. The "--select_single_best" mode prints the highest

scoring sequence to STDOUT in FASTA format, which is written to the output file

previously created.

cat mapping_ids.tsv | while read -r line; do
echo "$line" | cut -f 1 | \
xargs samtools faidx geneset1.fasta > gv_run_tmp.fa

echo "$line" | cut -f 2 | \
xargs samtools faidx geneset2.fasta >> gv_run_tmp.fa

genevalidator --select_single_best gv_run_tmp.fa >> output.fa
rm gv_run_tmp.fa

done

It may be desirable to include gene models unique to both sets in the final output. We leave this as

an exercise for the reader.

3.5 Using NCBI’s non-redundant database of protein sequences with GV

While it is desirable to validate gene predictions against a gold standard database like Swiss-Prot, its

limited coverage (9) makes this challenging for many species. At the same time, technological

advances continue to increase the quality of automated predictions (14). This makes it tempting to

use a more comprehensive database such as NCBI’s non-redundant collection (NR) of manually

reviewed as well as automatically generated protein sequences for validation. However, the large

size of the NR database means BLAST searches can take days. We show how to use BLAST’s ability

to restrict searches to a list of identifiers (15) to accelerate a GV analysis. For this, we first restrict

the BLAST search to a particular taxonomic lineage to avoid BLAST searching against sequences

unlikely to be informative. Additionally, we exclude sequences from the focal species to avoid

circular self-validation.

For the implementation below, we consider the example of the red fire ant, Solenopsis invicta (16).

We first obtain taxon identifiers of all species in Eukaryota (id: 2759). Subsequently, we exclude all

Solenopsis species (taxonomy id: 13685). We then obtain GenInfo identifiers (GI numbers) of all

sequences in the retained taxa. We finally run GV using this list.

1. Obtain a list of eukaryotic taxon identifiers (this requires prior installation of Taxonkit).

taxonkit list --ids 2759 --indent "" > taxon_ids_eukaryotes.txt

2. Obtain a list of Solenopsis taxon identifiers.

taxonkit list --ids 13685 --indent "" > taxon_ids_solenopsis.txt

3. Subtract the two.

grep -Fvx -f taxon_ids_solenopsis.txt taxon_ids_eukaryotes.txt >
taxon_ids.txt

4. Download a tab-delimited file from NCBI linking taxon ids and GI Numbers.

curl -L -O
ftp://ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/prot.accession2taxid.g
z

5. Use csvtk (https://github.com/shenwei356/csvtk), a multithreaded CSV/TSV processor

(packaged with GV), to extract the rows where the taxid is in the taxon_ids.txt file.

zcat prot.accession2taxid.gz | \
csvtk --tabs grep --fields taxid --pattern-file taxon_ids.txt | \
cut -f 4 > gi_list.txt

6. Finally, we pass this file to GV using "--blast_option" option.

genevalidator --blast_options "-gilist gi_list.txt" --db nr \
--num_threads 40 geneset1.fa

Starting with BLAST+ version 2.8.0 (in development at the time of this writing) steps 4 & 5 can be

skipped and the list of taxon ids from step 3 can be passed directly to BLAST using the new "-

taxidlist" option.

Tips and tricks
1. GV’s overall score is based on the percentage of validations that pass, i.e., where the score

is above a threshold that we have determined to be appropriate. To emphasise the fact that

GV results are highly dependent on the quality of information in databases and cannot be

solely relied upon to classify a ‘perfect’ gene prediction, the overall score is decreased by

10%. The highest possible score is thus 90%.

2. GV will run the validations provided there are at least five BLAST hits for a given prediction.

This can be changed using the "--min_blast_hits" option. A higher number of BLAST hits

will increase the relevance of the comparisons.

3. GV generates several summary statistics for the input gene set. These include first, second

and third quartiles of the overall scores, number of good and bad predictions, and number

of predictions with insufficient BLAST hits. In addition to providing an overview of the

quality of the input gene set, the summary statistics can be used to choose between

predictions from two different sources.

4. GV includes a tool for downloading sequence databases from NCBI to use for comparisons

(i.e., "genevalidator ncbi-blast-dbs"). This is a parallelised alternative to the

“update_blastdb.pl” script included in BLAST+ package.

5. GV is also able to run BLAST searches on NCBI servers using BLAST’s "-remote" option (e.g.,

"genevalidator --db 'swissprot -remote' geneset.fa"). This has the benefit of

being able to immediately use the most up-to-date version of a given database. However,

using a remote BLAST database is very slow. We recommended using this for validating only

a few genes (e.g., fewer than 25).

6. It is possible to run BLAST independently and to subsequently provide the output XML ("-

outfmt 5") or tab-delimited ("-outfmt 6") to GV. This can be particularly useful if BLAST

results have already been produced for other analyses, or when BLAST can be run on a

cluster.

7. BLAST is often the slowest step of GV pipeline, especially when working with large datasets.

In such cases, DIAMOND (17) can be used instead of BLAST for (up to 20,000x!) faster

database searching. Since DIAMOND’s XML output is compatible with BLAST, it can be used

directly with GV along with one additional input, i.e., a FASTA file of hit sequences (when

used with BLAST, GV is able to automatically extract hit sequences from BLAST database).

Our wiki (https://github.com/wurmlab/genevalidator/wiki) provides detailed instructions

for using GV with DIAMOND.

8. To resume a terminated analysis, GV can be run with "--resume" option. In resume mode,

GV skips previously successful steps, including running BLAST. Gene predictions that were

successfully processed are skipped as well.

9. It is possible to split an input gene set into multiple chunks, run GV on each chunk across

multiple compute nodes, and combine the results for each chunk into a single report.

1. After splitting the input file and running GV on each input file, the following command

can be used to merge the individually produced GV JSON files.

cat */*.json | jq '.[] ' | jq --slurp '.' > MERGED_JSON

2. The merged JSON can then be used to produce a single report for the whole gene set.

genevalidator --json MERGED_JSON

Acknowledgements
This work was supported by the Natural Environment Research Council [grant NE/L00626X/1] and

the Biotechnology and Biological Sciences Research Council [grant BB/K004204/1 and

BB/M009513/1]. This research used Queen Mary's Apocrita HPC facility, supported by QMUL

Research-IT (http://doi.org/10.5281/zenodo.438045).

References
1. Yandell M, Ence D. (2012) A beginner's guide to eukaryotic genome annotation. Nat Rev

Genet. 13:329–42.

2. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al. (2018)

GenBank. Nucl Acids Res 46:D41–7

3. Holt C, Yandell M. (2011) MAKER2: an annotation pipeline and genome-database

management tool for second-generation genome projects. BMC Bioinformatics 12:491

4. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. (2016) BRAKER1: Unsupervised

RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics

32:767–9

5. Keilwagen J, Hartung F, Paulini M, Twardziok SO, Grau J. (2018) Combining RNA-seq data

and homology-based gene prediction for plants, animals and fungi. BMC Bioinformatics

19:189

6. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. (2009) Annotation error in public

databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput

Biol 5:e1000605

7. Steijger T, Abril JF, Engström PG, Kokocinski F, RGASP Consortium, Hubbard TJ, et al.

(2013) Assessment of transcript reconstruction methods for RNA-seq. Nat Methods

10:1177–84

8. Drăgan M-A, Moghul I, Priyam A, Bustos C, Wurm Y. (2016) GeneValidator: identify

problems with protein-coding gene predictions. Bioinformatics. 32(10):1559–61.

9. The UniProt Consortium. UniProt: the universal protein knowledgebase. (2017) Nucl

Acids Res 45:D158–69

10. Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, The UniProt Consortium. (2015)

UniRef clusters: a comprehensive and scalable alternative for improving sequence

similarity searches. Bioinformatics 31:926–32

11. Buels R, Yao E, Diesh CM, Hayes RD, Munoz-Torres M, Helt G, et al. (2016) JBrowse: a

dynamic web platform for genome visualization and analysis. Genome Biol 17:66

12. Lee E, Helt GA, Reese JT, Munoz-Torres MC, Childers CP, Buels RM, et al (2013). Web

Apollo: a web-based genomic annotation editing platform. Genome Biol 14:R93

13. Priyam A, Ben J Woodcroft, Rai V, Munagala A, Moghul I, Ter F, et al. (2015)

Sequenceserver: a modern graphical user interface for custom BLAST databases. bioRxiv

:033142.

14. Minoche AE, Dohm JC, Schneider J, Holtgräwe D, Viehöver P, Montfort M, et al. (2015)

Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome

Biol 16:549

15. Bethesda (MD): National Center for Biotechnology Information (2008) BLAST® Command

Line Applications User Manual [Internet] - Limiting a Search with a List of Identifiers.

https://www.ncbi.nlm.nih.gov/books/NBK279673. Accessed 13 Sept 2018

16. Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, et al. (2011) The

genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci USA 108(14):5679–84

17. Buchfink B, Xie C, Huson DH. (2015) Fast and sensitive protein alignment using

DIAMOND. Nat Methods 12:59-60

Figure Captions
See Figures attached.

Figure 1: High-level schematic of the steps carried out by GeneValidator.

Figure 2: A screenshot of the GeneValidator web application as launched from the command line

via "genevalidator app" or by accessing https://genevalidator.wurmlab.com.

