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1 Introduction

This work grew out of Buzzard and Taylor’s attempt to generalise, to the Hilbert case, Taylor’s pro-
gramme ([59]) to prove new cases of the strong Artin conjecture for odd continuous two-dimensional
Galois representations in the icosahedral case. We complete the programme in the Hilbert case in this
paper by a method slightly different from what they probably had in mind.
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In 1999, Buzzard and Taylor [11] ([9]) made substantial progress on the strong Artin conjecture for
odd, continuous representations ρ : Gal(Q/Q) → GL2(C) of the absolute Galois group Gal(Q/Q) of
Q, which culminated in [10] and subsequently in [60]. In proving the hitherto intractable ‘icosahedral’
case of the conjecture, Buzzard and Taylor built on the work of Katz in the 70s and Coleman in the 90s
on the theory of p-adic modular forms, to prove a modular lifting theorem which constructs a weight
one eigenform corresponding to an odd two-dimensional p-adic representation Gal(Q/Q) → GL2(Qp)
(potentially) unramified at p. One of the key observations they made in in [11] was the idea that one
can use Hida theory of p-adic modular forms to draw results about weight one forms from results about
weight two forms in the form of modular lifting theorems by Wiles, Taylor-Wiles and Diamond.

In generalising Taylor’s strategy to the Hilbert case, one has to work with sections of the determinant
of the ‘universal’ cotangent sheaf over (admissible subsets of) Hilbert modular varieties. Rapoport [45]
probably was the first to consider a [F : Q]-dimensional moduli space Y of abelian varieties with real
multiplication (HBAV) by a totally real field F satisfying some PEL conditions (in particular of ‘level
prime to p’); and [45] shows that Y gives rise to a Zp-integral model for the (connected) Shimura variety
corresponding, in particular, to the algebraic Q-group G, defined by the pull-back of ResF/QGL2 →
ResF/QG along G→ ResF/QG (where G denotes the multiplicative group scheme base-changed over to
F ). The determinant of the cotangent bundle of the universal HBAV defines an automorphic line bundle
AY of parallel weight one and one may identify weight one holomorphic modular forms with integral
coefficients with global sections of AY over the moduli space Y . With the assumption that p divides
the discriminant of F , one is naturally led to work with the models Deligne-Pappas constructed in [16].
However, they no longer satisfy the ‘Rapoport condition’–the Lie algebras of HBAVs A over S have
to be locally free OF ⊗Z OS-modules of rank one–and they are not smooth over the base as aresult; in
particular, one can calculate local models to deduce that the special fibre at a prime p which ramifies in F
is singular in codimension 2 and geometry of the corresponding rigid space is discouragingly complicated
for arithmetic applications. To at least resolve the difficulties arising from geometry, it was suggested by
Buzzard and Taylor to the author to ‘resolve’ the singularities of the Deligne-Pappas models using ideas
from Pappas-Rapoport [41].

Fix an embedding Q into Qp. In this paper, we constructs an integral model Y PR
U of G of level

U ⊂ G(A∞) with U ∩G(Qp) = G(Zp) over the ring of integers O of a finite extension L of Qp containing
the image of every embedding F → Q→ Qp, and prove that it is smooth over O. We also define a model

Y PR
UIw with Iwahori level at the primes of F above p, analogous to the construction given by Pappas [40]

and Katz-Mazur [34]. Note that our models all have explicit descriptions as moduli problems. This is
critical, for example, when one defines Hecke operators moduli-theoretically as in the work of Katz [33]
and consider overconvergent eigenforms. We accordingly build a p-adic theory of Hilbert modular forms
on the models Y PR

UIw. For applications, we shall prove a modular lifting theorem which generalises a result
of [11]. More precisely,

Theorem 1 Suppose p > 3 and let L be a finite extension of Qp with ring O of integers and maximal
ideal λ. Let

ρ : Gal(F/F )→ GL2(O)

be a continuous representation such that

• ρ is totally odd,

• ρ is ramified at only finitely many primes of F ,

• ρ = (ρ mod λ) is absolutely irreducible when restricted to Gal(F/F (ζp)),

• if p = 5 and the projective image of ρ is isomorphic to PGL2(F5), the kernel of the projective
representation of ρ does not fix F (ζ5),

• there exists a cuspidal automorphic representation Π of GL2/F which are ordinary at every place
of F above p such that ρΠ ' ρ,

• the image of inertia subgroup at every finite place of F above p is finite.
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Then there exists a cuspidal Hilbert modular eigenform defined as a section of the automorphic bundle
AX(−cusps) over the p-adic generic fibre X = XPR

UIw[1/λ] of a compactification XPR
UIw of Y PR

UIw of par-
allel weight one, whose associated Galois representation, in the sense of Rogawski-Tunnell/Wiles, is
isomorphic to ρ.

Assuming that p splits completely in F and that ρ, when restricted to every place of F above p, is
the direct sum of two characters which are distinct mod λ, the theorem is proved in [49]. Assuming p
is unramified in F and that the restriction of ρ at every place of F above p is the direct sum of two
characters whose ratio is non-trivial mod λ and is unramified (resp. tamely ramified), the theorem is
proved in [31] (resp. [32]). On the other hand, Pilloni [43] has a a result stronger than [31] allowing small
ramification of p in F , while Pilloni and Stroh have a paper [44] announcing the same set of statements
as the main theorem above (although our approach is completely different from theirs).

The theorem is established in two major steps. Given a residually automorphic p-adic represent-
ation ρ as above (note that ρ is not assumed ‘p-distinguished’), we firstly prove an R = T theorem
for p-ordinary representations/forms such that ρ defines a map from R to O, where R parameterises
deformations of ρ which are reducible at every place of F above p (as in [23]) and where T is a Hida
(nearly) ordinary Hecke algebra localised at ρ. Our R = T theorem holds without recourse to taking
reduced quotients (we indeed prove that, not only T but R is also reduced); we do this by following
Snowden’s insight in [55], non-trivially observing that the relevant local deformation rings (including
those at places above p) are Cohen-Macaulay. The maps from T to O, corresponding to ρ and eigen-
values of ρ(Frobp) for all places p above p, define a family of p-adic overconvergent cuspidal Hilbert
modular eigenforms of weight one which are ‘in companion’. The construction, however, is no longer
as straightforward as the case ρ is split with distinct eigenvalues at places above p (as in [11], [9], and
[31]), and we follow Taylor’s idea in the case F = Q, combined with the reducedness of R, to deal with
the general case. We then follow Kassaei’s paper [31] morally to ‘glue’ these p-adic companion forms
in order to construct a classical weight one form over X. The beautiful idea of Buzzard and Taylor
[11] that, from their q-expansion coefficients (by the strong multiplicity one theorem), one can spot a
set of linear equations satisfied by the p-adic companion eigenforms is sill very much in force in this paper.

It is absolutely crucial that we work with Y PR
U and Y PR

UIw. Suppose for brevity that p has only one
prime p in F . Let k be the residue field of p and let |k| = pf . Let A be a HBAV over an O-scheme of
the type considered by Deligne-Pappas [16], equipped with a finite flat OF -subgroup scheme C of A[p]
of order |k| which equals its orthogonal for the Weil paring on A[p]. In proving analytic continuation
results, it is desirable to describe, for a fixed C, exactly the locus where

deg(C) > deg(A[p]/D)

hold1 for all OF -subgroup schemes D ⊂ A[p] that intersect trivially with C in A[p].
If F = Q, it is proved in [33] (and made more precise in [9]) that one can explicitly ‘solve equations’

in one-dimensional formal groups to compute and compare deg(C) and deg(D) explicitly. In the general
unramifed Hilbert case, in dealing with this problem, Goren-Kassaei [24] finds a way to understand
degrees near ordinary loci in terms of local geometry of Hilbert modular varieties, and instead solves
‘local equations’ of HMVs. When p ramified in F , A[p] is no longer a truncated Barsotti-Tate of level
1 in general (indeed, A[p] is truncated Barsotti-Tate of level 1 if and only if A satisfies the Rapoport
condition), and it is not a straightforward task to compute the Dieudonne module of A[p] in the standard
sense, let alone deducing results about deg(C) and deg(D). Indeed, the gist of work of Andreatta-Goren
[1] is to keep track of the relative Frobenius in characteristic p that is no longer ‘well-behaved’ in the
presence of ramification. We propose a solution to these issues by working with the integral models Y PR

U

and Y PR
UIw over O. More precisely, we

• define new invariants for HBAVs parameterised by the κ-fibre Y
PR

U (where κ is the residue field of
O), by which we single out HBAVs in co-dimension ≤ 1 that are ‘not too supersingular’ and ‘well-
behaved’ for analytic continuation (and analytic continuation results are established exclusively
over this locus);

1deg(C) is ‘normalised’ such that deg(C) = 0 (resp. f) if and only if C is multiplicative (resp. étale)
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• define a finer degree which reads geometry of the κ-fibre Y
PR

UIw of Y PR
UIw better;

• use these invariants to understand geometry of fibres of the forgetful functor/morphism from Y
PR

UIw

to Y
PR

U ;

• over the p-adic generic fibre of Y PR
UIw, we make appeal to its comparatively simple set of local

equations to prove a canonical subgroup theorem, and make use of ‘mod p Dieudonne crystals’, in
place of Breuil-Kisin modules in the unramfied case, to prove analytic continuation results we need
in the general ramified case.

The condition that ρΠ is (nearly) ordinary at all place of F above p is essential in our approach;
more precisely, essential in constructing overconvergent companion forms. On the other hand, it is quite
likely that one can extend the main theorem to p = 2 (See [50]). In return for assuming that ρ is indeed
a direct sum of distinct characters at every place of F above p, Skinner-Wiles [54] allows us to ‘extend’
our main theorem ‘orthogonally’ to the case ρ is reducible. The general residually reducible case requires
some more work, and is considered also in [50].

A conjecture of Fontaine-Mazur asserts that an n-dimensional continuous irreducible p-adic repres-
entation of the absolute Galois group Gal(F/F ) of a number field F , which are unramified outside a finite
set of places and which are finite when restricted to the inertia subgroup at every place of F above p,
has finite image. Since p-adic Galois representations associated to classical weight one forms have finite
image, the Fontaine-Mazur conjecture for ρ exactly as above follows immediately. Many more cases of
the Fontaine-Mazur conjectures are proved in [50].

Finally, combined with a theorem about modularity of mod 5 representation ρ, we shall prove the
strong Artin conjecture:

Theorem 2 The strong Artin conjecture for two-dimensional, totally odd, continuous representations
ρ : Gal(F/F )→ GL2(C) of the absolute Galois group Gal(F/F ) of a totally real field F , holds.

By work of Artin, Langlands, and Tunnell, the ‘soluble’ cases where the image of projective repres-
entation of ρ is dihedral, octahedral, and tetrahedral are known; and the theorem proves the icosahedral
case completely.

We remark that the p-adic integral models we construct also have applications to p-adic theory of
Hilbert modular forms. As Johansson [30] demonstrates, one can prove an analogue of Coleman’s the-
orem, ‘overconvergent modular forms of small slope are classical’, using our models. His approach is
a generalisation to quaternion Hilbert modular forms of Coleman’s original ‘cohomological approach’,
while one can take Kassaei’s ‘gluing approach’ with our p-adic integral models to prove it. It is also
likely that one can extend the ‘geometric’ construction of an eigenvariety for Hilbert modular forms by
Andreatta-Iovita-Stevens and Pilloni to the general ramified case, and prove various Langlands functori-
ality in p-adic families.

The author would like to thank his Ph.D supervisor Kevin Buzzard, Fred Diamond, Toby Gee,
Payman Kassaei, Vytas Paškūnas, Timo Richarz, and Teruyoshi Yoshida for helpful comments and
conversations on numerous occasions. He would also like to thank Alain Genestier for a helpful comment.

Section 3 and Section 5.1 were originally written as a chapter in author’s Ph.D thesis at Imperial
College London, and owes their existence to various ideas he discussed and numerous conversations he
had with Kevin Buzzard, as well as to the financial support he received from EPSRC through him in the
form of an EPSRC Project Grant (PI Kevin Buzzard). While this paper was prepared, the author was
financially supported by EPSRC and DFG/SFB. And he would like to thank all these research councils
for their support. Last but not least, he would like to thank Kevin Buzzard, Fred Diamond, Payman
Kassaei, and Vytas Paškūnas for moral support while this paper was being prepared.

The author acknowledges most gratefully that, if it were not for Kassaei’s paper [31], Taylor’s idea (to
deal with the case ρ(Frobp) has equal eigenvalues for places p of F above p) and countless conversations
and discussions he had with Diamond, this paper could not have been completed. He is grateful to Taylor

4



for having given him permission to use his argument (in F = Q) to deal with the p-non-distinguished
case.

2 Deformation rings and Hecke algebras (following Geraghty)

This section follows [13] and [23].

Let L be a finite extension of Qp with ring of integers O, maximal ideal λ, and residue field k.

For every finite place Q, let FQ denote the completion of F at Q with ring of integers OFQ
,

DQ ' Gal(FQ/FQ) denote the decomposition subgroup at Q and IQ denote the inertia subgroup at
Q of the absolute Galois group Gal(F/F ) of a totally real field F . Let ArtQ denote the local Artin map,
normalised to send a uniformiser πQ of OFQ

to a geometric Frobenius element FrobQ.

Let
ρ : Gal(F/F )→ GLn(k)

be a totally odd (i.e., the image of complex conjugation with respect to every embedding of F into R is
non-trivial), continuous, irreducible representation of Gal(F/F ). For every prime Q of F , let ρQ denote
the restriction to the decomposition group DQ at a place Q of F .

For every prime Q of F , let R�
Q denote the universal ring for liftings of ρQ.

Let S be a finite set of places in F containing the set SP of all places of F above p and the set S∞
of all infinite places of F , and let T be a subset of S. Suppose that T does not contain S∞.

Let FS denote the maximal extension unramified outside S, and let GS = Gal(FS/F ). Let

Σ = (S, T, (I�Q )Q∈S)

be a deformation data, where I�Q ⊂ R�
Q is an ideal defining a local deformation problem ΣQ and a

subspace LQ ⊂ H1(DQ, adρ) (2.2.4, [13]), and we define Ht
Σ(GS , adρ) as follows: Firstly, let

C0,loc
Σ (GS , adρ) =

⊕
Q∈S−T

(0)⊕
⊕
Q∈T

C0(DQ, adρ),

C1,loc
Σ (GS , adρ) =

⊕
Q∈S−T

C1(DQ, adρ)/MQ ⊕
⊕
Q∈T

C1(DQ, adρ),

where MQ denotes the pre-image in C1(DQ, adρ) of LQ, and let

Ct,loc
Σ (GS , adρ) =

⊕
Q∈S

Ct(DQ, adρ)

for t ≥ 2; and let

CtΣ(GS , adρ) = Ct(GS , adρ)
⊕

Ct−1,loc
Σ (GS , adρ)

with the boundary map CtΣ(GS , adρ) → Ct+1
Σ (GS , adρ) sending (φ, (φloc

Q )) to (∂φ, (resQφ− ∂φloc
Q )). We

then define Ht
Σ(GS , adρ) to be the cohomology group defined by the complex.

Let C = CO denote the category of O-algebras as defined in 2.2 of [13]; its objects are inverse limits
of objects in the category Cf of Artinian local O-algebras R for which the structure map O → R induces
an isomorphism on residue fields and its morphisms are homomorphisms of O-algebras which induce
isomorphisms on residue fields. Let R�

Σ denote the universal ring for T -framed deformation of type
(ΣQ)Q∈S (when T is non-empty). If T is empty, write RΣ. We let Rloc

Σ denote the completed tensor
product of R�

Q/I
�
Q for Q in T , and let R�

T denote the formal power series ring in n2|T |− 1 variables with
coefficients in O normalised such that

R�
Σ ' RΣ ⊗R�

T .
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Proposition 3 R�
Σ is the quotient of a power series ring over Rloc

Σ in dimH1
Σ(GS , adρ) variables. If

furthermore H2
Σ(GS , adρ) = (0), then it is indeed a power series ring over Rloc

Σ in dimH1
Σ(GS , adρ)

variables.

Proof. Corollary 2.2.12, [13]. �

The local Tate duality
adρ× adρ(1) −→ k(1)

given by the ‘trace pairing’ gives rise to the perfect pairing

H1(DQ, adρ)×H1(DQ, adρ(1)) −→ k.

The orthogonal complement L⊥Q of LQ ⊂ H1(DQ, adρ) will be taken with respect to the pairing.

Following 2.3 [13], given a deformation problem Σ = (S, T, (LQ)Q∈S , (I
�
Q )Q∈S), define

H1
Σ⊥(GS , adρ(1))

to be the kernel of the map

H1(GS , adρ(1)) −→
⊕
S−T

H1(DQ, adρ(1))/L⊥Q.

Proposition 4 Suppose n = 2.

dimH1
Σ(GS , adρ)

= dimH1
Σ⊥(GS , adρ(1)) + dimH0

Σ(GS , adρ)− dimH0(GS , adρ(1))
+

∑
Q∈S−T dimLQ − dimH0(DQ, adρ)

Proof. It follows from the long exact sequence defining Ht
Σ(GS , adρ) that∑

t(−1)tdimHt
Σ(GS , adρ)

=
∑
t(−1)tdimHt(GS , adρ)−

∑
Q∈S χ(DQ, adρ)−

∑
Q∈S−T (dimLQ − dimH0(DQ, adρ)),

hence, we deduce dimH1
Σ(GS , adρ) is

dimH0
Σ(GS , adρ) + dimH2

Σ(GS , adρ)− dimH3
Σ(GS , adρ)− χ(GS , adρ)

+
∑

Q∈S χ(DQ, adρ) +
∑

Q∈S−T (dimLQ − dimH0(DQ, adρ)).

By the Poitou-Tate global duality, we deduce dimH3
Σ(GS , adρ) = dimH0(GS , adρ(1)), and dimH2

Σ(GS , adρ) =
dimH1

Σ⊥(GS , adρ(1)). By the global Euler characteristic formula ([39], Theorem 5.1), χ(GS , adρ) =
−2[F : Q]. By the local Euler characteristic formulae (Theorem 2.13 in [39] and Theorem 5, Chapter II,
5.7 in [51])

∑
S χ(DQ, adρ) = −2[F : Q]. Combining these, we get the assertion. �

Suppose that SQ is a set of primes Q of F not in S such that

• NF/QQ ≡ 1 mod p;

• ρQ is unramified, and is a direct sum of unramified characters ρ1 and ρ2, where ρ1(FrobQ) and
ρ2(FrobQ) distinct.

Define LQ ⊂ H1(DQ, adρ) to be the subspace of classes corresponding to conjugacy classes of liftings
ρ which are direct sum of characters ρ1 and ρ2 such that ρt lifts ρt (t = 1, 2) and ρ2 is unramified; hence
dimLQ − dim H0(DQ, adρ) = 1 (see 2.4.6 in [13]).

Fixing a deformation data Σ as above, let

ΣQ = (S ∪ SQ, T, (LQ)Q∈S∪SQ
, (I�Q )Q∈S∪SQ

).
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The restriction to the inertia subgroup IQ at Q in SQ (as in the preceding section), of the determinant
of a lifting ρ of ρ of type ΣQ as above factors through the composition of the local Artin map (restricted
to IQ) followed by the surjection to the maximal pro-p quotient ∆Q of (OF /Q)×. As a result, we have
a map ∆Q → RΣQ

; and
∏

Q ∆Q → RΣQ
where Q ranges over SQ.

We now apply the formula above to ΣQ to compute dimH1
ΣQ

(GS∪SQ , adρ).

Proposition 5 Suppose n = 2, and suppose that ρ is absolutely irreducible when restricted to Gal(F/F (ζp)).
Suppose that T is non-empty. Suppose for a finite place Q in S−T that dimLQ− dimH0(DQ, adρ) = 0
if Q is not in SP, while dimLQ − dimH0(DQ, adρ) = [FQ : Qp] if Q is in SP. Then

dimH1
ΣQ

(GS∪SQ
, adρ)

= dimH1
Σ⊥Q

(GS∪SQ
, adρ(1)) + |SQ| −

∑
Q|∞ 1−

∑
Q∈T∩SP

[FQ : Qp].

Proof. Since dimH0
Σ(GS , adρ) is 0 (resp. 1) when T is non-empty (resp. empty), dimH0

Σ(GS , adρ)−
dimH0(GS , adρ(1)) = 0, and it suffices to check∑

Q∈(S∪SQ)−T

dimLQ − dimH0(DQ, adρ)

equals

|SQ| −
∑
Q|∞

1−
∑

Q∈(T∩SP)

[FQ : Qp].

By the definition of SQ, it is equivalent to check∑
Q∈(S−T )

dimLQ − dimH0(DQ, adρ) = −
∑
Q|∞

1−
∑

Q∈(T∩SP)

[FQ : Qp].

By the assumptions of the proposition, it is equivalent to the validity of∑
Q∈(S−T )∩SP

[FQ : Qp] +
∑

Q∈(T∩SP)

[FQ : Qp] = −(
∑
Q|∞

−2)−
∑
Q|∞

1

but this holds as both sides equal [F : Q]. �

2.1 Universal rings for local liftings

In this section, we define universal rings for liftings/deformations that we need.

As in the previous section, SP denote the set of all primes above p and S∞ denote the set of infinite
places of F . Let SR, SL and SA denote disjoint finite sets of finite primes of F not dividing p. Suppose
furthermore that SA is non-empty and any prime Q of SR ∪ SL satisfies NF/QQ ≡ 1 mod p.

Suppose that p is odd. Suppose now that

ρ : Gal(F/F )→ GL2(k)

is a continuous representation of the absolute Galois group Gal(F/F ) of F such that

• ρ is totally odd,

• ρ is unramified outside SP ∪ SR ∪ SL ∪ SA,

• ρ, when restricted to any prime in SP ∪ SR ∪ SL, is trivial,

• the restriction to Gal(F/F (ζp)) of ρ is absolutely irreducible.
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• ρ, when restricted to any prime Q in SA, is unramified and H0(DQ, ad ρ(1)) = 0 (it is possible to
find a such Q, indeed satisfying NF/QQ 6≡ 1 mod p, follows for example from Proposition 4.11 in
[15]),

• if p = 5 and the projective image of ρ is PGL2(F5), the kernel of the projective representation of
ρ does not fix F (ζ5),

We remark that S earlier will be SP ∪ SR ∪ SL ∪ SA ∪ S∞ and T will be S − S∞.

For every place p of F above p, let Gp denote the image of the inertia subgroup Ip in the pro-p-
completion of the maximal abelian quotient of the decomposition group Dp at p, and let G denote the
product of Gp over all p above p. The local Artin map Artp identifies Gp with 1 + πOp where π = πp is
a uniformiser. Let Σp denote the Qp-linear embeddings of Fp into L.

Let G denote the multiplicative group over F and let ResF/QG denote the Weil restriction. Let
T ' G × G denote the algebraic group of diagonal torus over F in GL2/F and let ResF/QT denote its
Weil restriction, which is isomorphic to ResF/QG× ResF/QG. By slight abuse of notation, we continue
to use the same symbols to mean the integral models of the aforementioned algebraic groups.

For every integer r ≥ 1, let ResF/QT (Zp)[p
r] ⊂ ResF/QT (Zp) denote the kernel

ker(ResF/QT (Zp)→ ResF/QT (Z/prZ))

of the standard ‘reduction mod pr’ morphism. Simialrly, define ResF/QG(Zp)[p
r]. Granted, we may

identify ResF/QT (Zp)[p] with G × G and ResF/QG(Zp)[p] with G. When convenient and no confusion
is expected, we may write ∆ = ∆T (resp. ∆G) to mean ResF/QT (Zp)[p] (resp. ResF/QG(Zp)[p]).

We define the ‘local’ Iwasawa algebra Λp to be the O-algebra O[[Gp×Gp]] of the pro-p-group Gp×Gp,

and let Λp denote the Iwasawa algebra
⊗̂

pΛp. The ‘global’ Iwasawa algebra Λp is identified with
O[[G×G]], and hence with O[[∆]].

The O-algebra Λp parameterises the pairs of characters χ = (χ1, χ2) =
∏

p(χp,1, χp,2) of G which take

values in objects of C and which are liftings of the trivial character in k×; each algebraic character χp,t

of Gp is parametrised by a |Σp|-tuple λp,t = (λτ,t)τ of integers with τ ranging over Σp. By slight abuse
of notation, by a tuple λ = (λp,1, λp,2)p of integers as above, we shall also mean the pair of algebraic
characters corresponding to λ.

Define Λ to be the quotient O[∆/(O×F,+ ∩∆)]] of O[[∆]] parameterising all characters which satisfy

the ‘parity condition’, i.e., factor through the p-adic closure O×F,+ ∩∆ of the diagonal image of the totally

positive units O×F,+ in ∆ = G×G. Note that Λ is of relative dimension 1 + [F : Q] + εL over O, where
εL = 0 if the Leopoldt conjecture of the pair F and p holds.

If w is a fixed integer, the set of 2[F : Q]-tuples λ (corresponding to a pair of algebraic characters by
definition) such that λτ,1 ≥ λτ,2 and λτ,1 +λτ,2 = w for every p and τ in Σp is in bijection with the set of
[F : Q]-tuples k = (kτ ) such that kτ ≥ 2 and kτ ≡ w mod 2 by decreeing that λ = (λτ,1, λτ,2) corresponds
to k = (λ1,τ − λ2,τ + 2) and, conversely, k = (kτ ) corresponds to λ = ((w + kτ − 2)/2, (w − kτ + 2)/2).

2.2 Local liftings at places above p

Let L be a finite extension of Qp, and let O denote its ring of integers with maximal ideal λ and residue
field k . Let V = O2. Let p be a place of F above p that we fix, and let ρp : Dp → GL2(R�

p ) denote the
universal lifting of the restriction ρp (assumed to be trivial) to the decomposition groupDp at p of ρ above.

Define a functor Gr�p which sends an O-algebra R to the set of data consisting of

• a filtration Fil (V ⊗OR) = (0 = (V ⊗OR)(0) ⊂ (V ⊗OR)(1) ⊂ (V ⊗OR)(2) = V ⊗OR) of V ⊗OR,

• a map R�
p → R whose composition ρp ⊗O R : Dp → GL2(R) with the universal lifting Dp →

GL2(R�
p ) preserves the filtration.

Define a functor Gr�Λp
which sends an O-algebra R to the set of data consisting of an R-valued point of

Gr�p as above, together with an O-algebra morphism τ from Λp to R, satisfying the following condition: if
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χ = (χ1, χ2) is the universal pair of characters Gp → Λp, the R-valued character, defined as the projection
of Ip to Gp followed by χt⊗τ R, matches up with the action via ρp⊗OR on (V ⊗OR)(t)/(V ⊗OR)(t−1),
when restricted to Ip.

Lemma 6 The functor Gr�p (resp. Gr�Λp
) is representable by a scheme XGr�p

(resp. XGr�Λp

).

Proof. This is standard. �

Forgetting filtrations for every S-point defines a morphism XGr�p
→ SpecR�

p , while, by definition, we

have a closed immersion XGr�Λp

→ SpecR�
p ⊗̂OΛp (Lemma 3.1.2 in [23]). We define R�,ord

p = R�
p /I

�,ord
p

by letting SpecR�,ord
p be the schematic closure of the image of XGr�Λp

[1/p] ↪→ XGr�Λp

→ SpecR�
p ⊗̂OΛp.

By the projection, XGr�Λp

is thought of as a Λp-scheme; and, similarly, R�,ord
p is a Λp-algebra. In partic-

ular, let κ denote the morphism SpecR�,ord
p → Spec Λp.

Let ξ denote a closed point of SpecLξ → SpecR�,ord
p [1/p] for a finite extension Lξ of L and χ =

(χ1, χ2) denote a pair of characters corresponding to the point κ ◦ ξ of Spec Λp[1/p]. Suppose that χ1

and χ2 are distinct and that εχ2 and χ1 are also distinct (where ε is the cyclotomic character). The pair
of characters satisfying these conditions are evidently dense in Spec Λp[1/p].

Lemma 7 The fibre SpecR�,ord
p,χ of SpecR�,ord

p at χ along κ is regular of dimension [Fp : Qp] + 4; and

the localisation SpecR�,ord
p,ξ of SpecR�,ord

p at ξ is regular of dimension 3[Fp : Qp] + 4.

Proof. The assertions follow from Lemma 3.2.2 in [23]. �

Proposition 8 Suppose that [Fp : Qp] > 2. Let Γ be a minimal ideal of Λp. Then SpecR�,ord
p ⊗Λp

Λp/Γ
is geometrically irreducible of relative dimension 3[Fp : Qp] + 4 over O.

Proof. This is proved essentially in Corollary 3.4.2 in [23] or Proposition 3.14 in [62]. The essence of
the proof is to establish that every irreducible component of XGr�Λp

[1/p] is of dimension 3[Fp : Qp] + 4,

which one checks by computing (Lemma 3.2.3 in [23]) its completed local ring at a closed point whose
projection to Spec Λp corresponds to a pair of characters χ = (χ1, χ2) such that χ1 = εχ2 does not

hold. It follows that for every minimal ideal Γ of Λp, SpecR�,ord
p ⊗Λp

Λp/Γ is irreducible of dimen-
sion at most 1 + 3[Fp : Qp] + 4. However, it follows from the ‘moduli description’ of the morphism

XGr�Λp

[1/p] → SpecR�,ord
p [1/p] of Spec Λp[1/p]-schemes that the morphism is finite (more precisely,

quasi-finite with its fibres singletons, but, combined with the projectivity of the morphism, the finiteness
holds) if it is pull-back over to the open subscheme of Spec Λp[1/p] corresponding to the pairs of distinct
characters, and this suffices to establish the assertion as in the proof of Corollary 3.4.2 in [23]. �

We need a variant of R�,ord
p that further parameterises ‘eigenvalues of the characteristic polynomial

of a Frobenius element of Dp’. Let φ = φp be a Frobenius lift in Dp that we fix. We proceed differently
from Pilloni-Stroh’s construction in Section 4.1 of [44] in the ordinary case.

Let R�,+
p denote the universal ring for the liftings ρ of (the trivial two-dimensional representation)

ρp, together with choices of roots of the quadratic polynomial X2 − tr ρ(φ)X + det ρ(φ) = 0.

Define R�,ord,+
p by the pull-back:

SpecR�,ord,+
p −→ SpecR�,+

p ⊗̂Λpy y
SpecR�,ord

p −→ SpecR�
p ⊗̂Λp

where the horizontal morphisms are closed immersions. Similarly, define X+

Gr�Λp

to be the pull-back of

XGr�Λp

along SpecR�,+
p ⊗̂Λp → SpecR�

p ⊗̂Λp. As the formation of scheme-theoretic closure commutes

9



with flat base change, SpecR�,ord,+
p is also the scheme-theoretic closure of the morphism X+

Gr�Λp

[1/p] ↪→

X+

Gr�Λp

→ SpecR�,+
p ⊗̂Λp.

Proposition 9 Suppose that [Fp : Qp] > 2. Let Γ be a minimal ideal of Λp. Then SpecR�,ord,+
p ⊗Λp

Λp/Γ

is geometrically irreducible of relative dimension 3[Fp : Qp] + 4 over O. Furthermore, R�,ord,+
p ⊗Λp

Λp/Γ

is flat over O, Cohen-Macaulay and reduced; and R�,ord,+
p ⊗Λp

Λp/(Γ, λ) is reduced.

Proof. For the first assertion, the proof of Proposition 8 works verbatim if the morphismX+

Gr�Λp

[1/p]→

SpecR�,ord,+
p [1/p] is finite when restricted to the open subscheme of Spec Λp[1/p] corresponding to the

pairs of distinct characters. But this is immediate.
To prove the second assertion, we define another Λp-algebra R�,ord,†

p which is universal for ‘explicit’
liftings of ρp. This is more amenable to explicit calculations, and we shall write down a set of explicit
equations to establish that it is Cohen-Macaulay, reduced and flat over O.

Let R�,ord,†
p denote the quotient of R�,+

p ⊗̂Λp parametrising (ρ, α(φ), χ) where χ = (χ1, χ2) and where
α(φ) denote a root of the polynomial X2 − tr ρ(φ)X + det ρ(φ) = 0 satisfying the following conditions:

(I) tr ρ(z) = χ1(z) + χ2(z) for z in Ip,

(II) tr ρ(φ) = α(φ) + β(φ) where β(φ) denotes det ρ(φ)/α(φ),

(III) det (ρ(φ)− β(φ)) = 0,

(IV) 1 + det(χ2(z)−1ρ(z)) = tr (χ2(z)−1ρ(z)) for z in Gp,

(V) (ρ(z)− χ2(z))(ρ(z+)− χ2(z+)) = (χ1(z)− χ2(z))(ρ(z+)− χ2(z+)) for z and z+ in Ip,

(VI) (ρ(φ)− α(φ))(ρ(z)− χ2(z)) = (β(φ)− α(φ))(ρ(z)− χ2(z)) for z in Ip, or equivalently,

ρ(φz) = β(φ)(ρ(z)− χ2(z)) + χ2(z)ρ(φ).

Let {zτ}τ , where 1 ≤ τ ≤ [Fp : Qp], be the generators of Ip. In writing

ρ(φ) =

(
β(φ) 0

0 β(φ)

)
+

(
Aφ Bφ
Cφ Dφ

)
and, for every 1 ≤ τ ≤ [Fp : Qp],

ρ(zτ ) =

(
χ2(zτ ) 0

0 χ2(zτ )

)
+

(
Aτ Bτ
Cτ Dτ

)
,

it is possible to check that R�,ord,†
p is given by the formal power series ring with coefficients in O with

(4 + 1)[Fp : Qp] + (4 + 1) = 5[Fp : Qp] + 5 variables

{Aτ , Bτ , Cτ , Dτ , χ2(zτ )}τ , Aφ, Bφ, Cφ, Dφ, β(φ)

with their relations given by the 2 by 2 minors in(
Aφ Cφ −C1 −D1 · · · −Cd −Dd

Bφ Dφ A1 B1 · · · Ad Bd

)
where d = [Fp : Qp]. Let R�,ord,†,∨

p denote the quotient of the polynomial ring by the ideal given by the
same set of variables with the same set of relations.

By definition, R�,ord,†,∨
p is determinantal in the sense of Section 1-C in [8] or Section 7 in [7], while

R�,ord,†
p is determinantal according to Section 18.5 in [18]. As the Cohen-Macaulay-ness and the flatness

(over O) pass from R�,ord,†,∨
p to R�,ord,†

p , we establish these properties for R�,ord,†,∨
p .

Firstly, R�,ord,†,∨
p is Cohen-Macaulay (see Theorem 18.18 in [18], or Corollary 2.8 in Section 2.B in

[8]). It is also possible to explicitly spot a regular sequence in R�,ord,†,∨
p and use that to prove R�,ord,†,∨

p
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is Cohen-Macaulay directly, as in the proof of Proposition 2.7 in [53]. Eisenbud (see Section 18.5 with its
reference to Exercises 10.9 and 10.10 in [18]) also claims, without a proof, that it is of relative dimension

5[Fp : Qp] + 5− (2[Fp : Qp] + 1) = 3[Fp : Qp] + 4

over O; this will be checked directly in the forthcoming argument.
The reducedness of R�,ord,†,∨

p indeed follows from the defining equations. To see this, we shall prove

that the L-algebra R�,ord,†,∨
p [1/λ] and the k-algebra R�,ord,†,∨

p /λ are both domains of the same dimension

3[Fp : Qp]+4. Granted, it follows from Lemma 2.2.1 in [55] (also see Theorem 23.1 in [38]) that R�,ord,†,∨
p

is flat over O and follows, as result, that R�,ord,†,∨
p ⊂ R�,ord,†,∨

p [1/λ] is reduced.

To see that the naturally graded L-algebraR�,ord,†,∨
p [1/λ] is a domain, one notes that ProjR�,ord,†,∨

p [1/λ]
is covered by the open sets {X 6= 0} where X ranges over the single-variable equations defined by those

appearing in the relations defining R�,ord,†,∨
p , i.e, X is any one of the 4 + 4[Fp : Qp] variables in the list

{Aφ, Bφ, Cφ, Dφ; {Aτ , Bτ , Cτ , Dτ}τ}.

Each covering {X 6= 0} is isomorphic to the domain (AL−{0})×A
2([Fp:Qp]+1)+[Fp:Qp]+1
L (where the

right-most ‘[Fp : Qp] + 1’ reads {χ2(zτ )}τ and β(φ), for example), therefore R�,ord,†,∨
p [1/λ] is a domain.

The same proof (with k in place of L) works in the case of R�,ord,†,∨
p (as the ‘coefficient’ k is, again, a field).

To transfer our calculations so far about R�,ord,†
p to R�,ord,+

p , we shall prove that they are isomorphic.
Firstly, one observes that there is a natural map,

X+

Gr�Λp

→ SpecR�,ord,†
p

which, when followed by the closed immersion SpecR�,ord,†
p → SpecR�,+

p ⊗̂OΛp, factors throughX+

Gr�Λp

→

SpecR�,+
p ⊗̂OΛp. It then follows from the universal property of the scheme-theoretic closure SpecR�,ord,+

p

that there is a closed immerion
SpecR�,ord,+

p → SpecR�,ord,†
p

giving rise to a surjection R�,ord,†
p → R�,ord,+

p .
To prove that the surjection is indeed bijective, we follow the proof of Lemma 4.7.3 in [55] to show

that SpecR�,ord,†
p [1/λ] ⊂ SpecR�,ord,+

p [1/λ] (and as a result R�,ord,†
p [1/λ] ' R�,ord,+

p [1/λ]) ‘moduli-

theoretically’ using the equations (I)-(VI) defining R�,ord,†
p .

Let (ρ, α(φ), χ = (χ1, χ2)) be a closed point of SpecR�,ord,†
p defined over a finite extension K of

L = O[1/λ]. For simplicity, we write α = α(φ) and β = det ρ(φ)/α(φ). From (I) and (IV), we may
deduce that the restriction of ρ to Ip is either an extension of K(χ2) by K(χ1) or an extension of K(χ1)
by K(χ2).

Suppose that it is the latter. We may then choose a basis of ρ to write the restriction of ρ to Ip to

be of the form ρ|I =

(
χ2 c
0 χ1

)
. But it follows from (V) that

c(z)(χ1(z+)− χ2(z+)) = (χ1(z)− χ2(z))c(z+),

i.e.,
((χ2/χ1)(z+)− 1)c(z) = ((χ2/χ1)(z)− 1)c(z+).

If χ1 and χ2 are distinct, χ2/χ1 is non-trivial and we may therefore see the equality as saying that the
co-cycle c in H1(Dp,K(χ2/χ1)) is coboundary, in other words, ρ is split when restricted to Ip. Hence the

restriction to Ip of ρ is of the form

(
χ1 ∗
0 χ2

)
, in other words, (ρ, χ) defines a K-point of SpecR�,ord

p [1/λ].

Suppose χ1 = χ2. With respect to the basis chosen above, suppose that ρ(φ) =

(
β∼ ∗
0 α∼

)
. By

(III), we may deduce that (β∼ − β)(α∼ − β) = 0. Hence either (α∼, β∼) = (α, β) or (α∼, β∼) = (β, α)
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holds. By (VI), one can check that the latter occurs only when the restriction of ρ to Ip is split. In any

case, (ρ, α, χ) defines a K-point of SpecR�,ord,+
p [1/λ].

Suppose that χ1 and χ2 are distinct. It then follows from (VI) that (β∼−α)(χ1−χ2) = (β−α)(χ1−
χ2). As χ1 and χ2 are distinct, β∼ = β, and α∼ = α as a result. It therefore follows that (ρ, α, χ) defines

a K-point of SpecR�,ord,+
p [1/λ] and thereby establishes that the surjection R�,ord,†

p [1/λ]→ R�,ord,+
p [1/λ]

is indeed an isomorphism.
As R�,ord,†

p is flat over O and λ thus is not a zero-divisor in R�,ord,†
p , the kernel of the surjection

R�,ord,†
p → R�,ord,+

p is indeed trivial, i.e., R�,ord,†
p ' R�,ord,+

p . This concludes our proof of the proposi-
tion. �

2.3 Local liftings at places not dividing p

SR: Suppose that NF/QQ ≡ 1 mod p. Let O be as above. By enlarging O if necessary to assume that
µ|kQ|−1 ⊂ (1 + λ). Suppose that χQ,1, χQ,2 : DQ → (1 + λ) ⊂ O× are characters of finite order such that
their reductions mod λ are trivial. Write χ = χQ to mean the pair (χQ,1, χQ,2).

Lemma 10 There exists an ideal I�,χQ of R�
Q which corresponds to the liftings ρ of the trivial represent-

ation ρQ such that

• the characteristic polynomial of the restriction of ρ to the inertia subgroup IQ at Q in X is of the
form (X − χQ,1(ArtQ(g))−1)(X − χQ,2(ArtQ(g))−1) for every g in IQ;

• R�
Q/I

�,χ
Q is flat over O, reduced, Cohen-Macaulay and of equi-dimensional of relative dimension 4

over O;

• R�
Q/I

�,χ
Q [1/p] is formally smooth over L;

• R�
Q/(λ, I

�,χ
Q ) is reduced;

• the generic point of every irreducible component of R�
Q/I

�,χ
Q has characteristic zero.

Furthermore,

• if χQ,1 and χQ,2 are distinct, then R�
Q/I

�,χ
Q is geometrically irreducible of relative dimension 4 over

O;

• if χQ,1 and χQ,2 are both trivial and if L is sufficiently large, every minimal prime of R�
Q/(λ, I

�,χ
Q )

contains a unique minimal prime of R�
Q/(λ, I

�,χ
Q ).

Proof. Following the notation of [53], when χQ,1 and χQ,2 are distinct, let R�
Q/I

�,χ
Q be R�(ρQ, τ) with

the inertial type τ given by a representation of IQ sending g in IQ to

(
χQ,1(g) ∗

0 χQ,2(g)

)
and N = 0.

When χQ,1 and χQ,2 are both trivial, let SpecR�
Q/I

�,χ
Q denote the union of SpecR�(ρQ, τ) where the

inertial types τ range over those given by the trivial representation of I with open kernel (when N = 0,
it corresponds to the unramified liftings while non-trivial N corresponds to the ‘Steinberg’ liftings).

Firstly, observe that R�
Q/I

�,χ
Q is flat over O and reduced by definition. Proposition 5.8 in [53] proves

that R�
Q/I

�,χ
Q is Cohen-Macaulay (equi-dimensional of relative dimension 4 over O) and, less explicitly,

R�
Q/I

�,χ
Q [1/p] is formally smooth over L.

When χQ,1 and χQ,2 are distinct, Proposition 5.8 in [53] also proves that R�
Q/(λ, I

�,χ
Q ) is reduced.

Furthermore, the proof of Proposition 3.1 in [58] proves that R�
Q/I

�,χ
Q is geometrically integral.

When χQ,1 = χQ,2 = 1, as λ is R�
Q/I

�,(1,1)
Q -regular, R�

Q/(λ, I
�,(1,1)
Q ) is Cohen-Macaulay by Theorem

17.3 in [38]. On the other hand, the proof of Lemma 3.2 in [58], combined with the corollary of Theorem

23.9 in [38], establishes that R�
Q/(λ, I

�,(1,1)
Q ) is generically reduced. The reducedness of R�

Q/(λ, I
�,(1,1)
Q )

therefore follows. The last assertion is proved in Proposition 3.1 in [58]. �

SL:
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Lemma 11 Suppose Q satisfies NF/QQ ≡ 1 mod p. Then there exists an ideal I�,St
Q of R�

Q, containing

I
�,(1,1)
Q above, which corresponds to the liftings of the trivial representation ρQ : DQ → GL2(k) such that

• the characteristic polynomial of ρ when restricted to IQ (resp. ρ(FrobQ) where FrobQ, by abuse of
notation, is a lifting of the arithmetic Frobenius) is of the form (X−1)2 (resp. (X−|kQ|)(X−α|kQ|)
for some α);

• R�
Q/I

�,St
Q is flat over O, reduced, Cohen-Macaulay and equi-dimensional of relative dimension 4

over O;

• (R�
Q/I

�,St
Q )[1/p] is formally smooth;

• R�
Q/I

�,St
Q is geometrically integral;

• the generic point of R�
Q/I

�,St
Q has characteristic zero.

Proof. This is proved in Proposition 3.1 of [58], Proposition 3.17 in [62] and Proposition 5.8 in [53]
as in the proof of Lemma 10. �

SA: For every Q in SA, R�
Q is formally smooth of relative dimension 4, and let IQ = (0).

SQ,ν :

Lemma 12 Let ν ≥ 1 be an integer. Suppose that Q satisfies NF/QQ ≡ 1 mod pν . Suppose that ρQ is
unramified, and is the direct sum of (unramified) characters χQ,1, χQ,2 : DQ → k×. Then there exists
an ideal I�Q of R�

Q which corresponds to the liftings ρ = χQ,1 ⊕ χQ,2 of ρQ such that χQ,t lifts χQ,t for
t = 1, 2, and χQ,2 is unramified.

Proof. See Section 2.4.6 in [13], or Definition 4.1 and Lemma 4.2 in [63]. �

We shall suppose that |SQ,ν | = q is independent of ν. Existence of a such set of ‘Taylor-Wiles primes’
will be stated with a reference in the following.

In the following, let Σχ denote the deformation data defined by

• S = SP ∪ SR ∪ SL ∪ SA ∪ S∞;

• T = S − S∞;

and the ideals of universal rings for local liftings at T , namely

• I�,ord,+
p for every p in SP assuming [Fp : Qp] > 2;

• a tuple χ = (χQ = (χQ,1, χQ,2)) of characters where Q ranges over SR , and I
�,χQ

Q for every Q in
SR;

• I�,St
Q for every Q in SL;

• I�Q = (0) for every Q in SA (any lifting of ρQ for Q in SA is necessarily unramified);

The ideals I�Q of R�
Q for every Q in S define a subspace LQ ⊂ H1(DQ, adρ). When χQ is trivial for all

Q in SR, we write Σ instead.

Let C denote the category as defined in 2.2, [13], with Λp in place of O. The functor which sends
an object R of C to the set of T -framed deformations of ρ of type Σχ is represented by a complete local
noetherian Λp-algebra R�

Σχ
. If T is empty, write it RΣχ .

Lemma 13 If p = 5 and the projective image of ρ is isomorphic to PGL2(F5), assume that the kernel
of the projective representation of ρ does not fix F (ζ5).

For every integer ν ≥ 1 there exists a finite set SQ,ν of Q such that
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• NF/QQ ≡ 1 mod pν ;

• ρ at Q is a direct sum of two distinct characters which are unramified;

• |SQ,ν | = q,

and if we let Σχ,Q,ν denote the deformation data (S∪SQ,ν , T, . . . ) defined by the ideals of universal rings
for local liftings at T exactly as in Σχ = (S, T, . . . ), together with I�Q for Q in SQ,ν defined as above,

then R�
Σχ,Q,ν

is topologically generated over Rloc
Σχ

by r = q − 2[F : Q] elements.

Proof. The proof of Proposition 2.5.9, [13] works verbatim (with n = 2) to constructs the sets SQ,ν

as required. The last assertion follows from Proposition 5. �

2.4 Hecke algebras

Let AF denote the ring of adeles of F and let A∞F denote its finite part. Let D be the quaternion algebra
over F ramified exactly at SL∪S∞ such that |SL∪S∞| is even. Let G denote the corresponding algebraic
group over F such that G(F ) = D×. Once for all, we fix a maximal order OD of D, and for every finite
place Q not in SL, we fix an isomorphism G(OFQ) ' GL2(OFQ). For a finite place Q of F , we shall
let Iw(OFQ

) denote the subgroup of matrices in GL2(OFQ
) which reduce mod Q to upper triangular

matrices.
Let χ be a set of characters indexed by SR such that χQ = (χQ,1, χQ,2) for every Q in SR defines a

character of Iw(OFQ
) ⊂ GL2(OFQ

), trivial on the subgroup of matrices in GL2(OFQ
) which reduce mod

Q to the unipotent matrices.
For an algebraic character λ = (λp,1, λp,2) of Λp such that λτ,1 ≥ λτ,2 for every τ in Sp, let Vλ,χ be

the O-tensor module
VP ⊗ VR ⊗ VL

where VP is the SP-tensor product
⊗
Vp with Vp =

⊗
τ SymλτdetγτO2 where λτ = λτ,1 − λτ,2 and

γτ = λτ,2 for every τ in HomQp
(Fp, L); VR =

⊗
O(χQ) and we let the SR-product

∏
Iw(OFQ

) act by
χ; VL is the SL-tensor product of the one-dimensional trivial representation of (D⊗F FQ)× for Q in SL,
which is given by the the determinant (D ⊗F FQ)× → F×Q (followed by the trivial character F×Q → F×Q )
and corresponds by the Jacquet-Langlands correspondence to the special representation Sp2 (Chapter
I, Section 3 in [25]) of the trivial character, which in turn corresponds by the local Langlands corres-
pondence to a two-dimensional reducible local Galois representation with the cyclotomic and the trivial
characters on the diagonal.

For an O-algebra A, let Sχλ (A) denote the space of functions

f : G(F )\G(AfF )→ Vλ,χ ⊗O A.

Let G(A∞∪TF )×
∏
G(OFQ

)×
∏

Iw(OFQ
), where T = SP ∪ SR ∪ SL ∪ SA and where in the first (resp.

second) product Q ranges over SP ∪ SL ∪ SA (resp. SR), act on Sχλ (A) by

(γf)(g) = (γSP∪SR
)f(gγ)

where γSP∪SR is the projection of γ onto the SP ∪ SR-components.

Let U = UD be an open compact subgroup of G(A∞∪TF ) ×
∏
G(OFQ

) ×
∏

Iw(OFQ
), where the first

product ranges over SP ∪SL ∪SA and the second over SR, such that UQ is a maximal compact subgroup
of G(FQ) for every Q in SL and such that UQ for every Q in SR is the subgroup of matrices which reduce
mod the maximal ideal to the identity matrix. In this case, because of the primes in SA, U is sufficiently
small in the sense that, for every t in G(A∞F ), the finite group (U ∩ t−1G(F )t)/O×F is {1}.

For integers N ≥ 1 and ν ≥ 1, let SQ,ν as in the previous section, and define UIwQ,ν ,N to be a
sufficiently small open compact subgroup of G(A∞F ) as above such that, at every p above p, it reduces
modulo the N -th power of p to the upper triangular unipotent matrices while, at every Q in SQ,ν , reduces
mod Q to the upper triangular matrices. We also define UΣQ,ν ,N to be the subgroup of UIwQ,ν ,N that is

14



identical to UIwQ,ν ,N away from the primes in SQ,ν but, for every Q in SQ,ν , UΣQ,ν ,N ∩GL2(FQ) consists
of all matrices in UIwQ,ν ,N ∩ GL2(FQ) ⊂ GL2(OFQ

) whose right-bottom entries reduce mod Q to the
elements of (OF /Q)× that map trivially when passing to the maximal pro-p-quotient ∆Q of (OF /Q)×.
In other words, UΣQ,ν ,N is defined such that UIwQ,ν ,N/UΣQ,ν ,N '

∏
Q ∆Q where Q ranges over SQ,ν .

When SQ,ν is empty, we shall write UN . By slight abuse of notation, the N -direct limit of UΣQ,ν ,N

(resp. UIwQ,ν ,N ) will be denoted by UΣQ,ν (resp. UIwQ,ν ).

Let Sχλ (U,A) denote the set f ∈ Sχλ (A) such that γf = f for every γ ∈ U .

Definition. When χQ is trivial, i.e., χQ,1 and χQ,2 are both trivial, for every Q in SR, in which case
we will often say χ is trivial, we in particular write Sλ(U,A). If, on the other hand, χQ,1 and χQ,2 are
distinct for all Q in SR, we say that χQ is distinct. We only need these two extreme cases.

For Q not in SP ∪ SR ∪ SL ∪ S∞, A[UQ\GL2(FQ)/UQ] acts on Sχλ (U,A): for g in GL2(FQ), if
[UQgUQ] =

∐
γ γUQ, define the Hecke operator corresponding to g by

∑
γ γf . Let TQ (resp. SQ) denote

the Hecke operator corresponding to

(
πQ 0
0 1

)
(resp.

(
πQ 0
0 πQ

)
) where πQ is a uniformiser of OFQ

.

For U = UN or UΣQ,ν ,N , Sχλ (U,A) comes equipped with the Hecke operator Up (resp. Sp) for every

p in SP, corresponding to the matrix

(
πp 0
0 1

)
(resp.

(
πp 0
0 πp

)
) but normalised by multiplying the

product over τ in Σp of τ(πp)−λ2,τ (resp. τ(πp)−(λ1,τ+λ2,τ )). The normalisation is in common with
[26] for example. It also has action of Sτ (this is denoted by 〈τ〉 in Definition 2.3.1 of[23], but we save

〈 〉 for another operator) corresponding an element τ in the diagonal torus T (Op) =

(
O×p 0
0 O×p

)
for

every p in SP. If τ is a tuple (τp)p of τp in T (Op) for every p in SP, let Sτ denote the product of Sτp over p.

When U = UN or UΣQ,ν ,N , we follow Geraghty Definition 2.6.2 in [23] to define

〈τ〉 = γ−1
τ Sτ ,

where γτ =
∏

p γτ,p and γτ,p = τp,2 for τp = (τp,1, τp,2) in T (Op) for every p.

Let Tλ,Σχ,Q,ν (UΣQ,ν ,N , A) denote the Hecke algebra generated by the images in End(Sχλ (UΣQ,ν ,N , A))
of TQ and SQ for Q not in S ∪ SQ,ν , Up for p in SP, and Sτ for τ ∈ T . When SQ,ν is empty, we shall
write Tλ,Σχ(UN , A).

When A = O, we will not make references to A henceforth. When λτ,1 = λτ,2 = 0 for every τ in Sp

and p in SP, write 2 in place of λ.

Section 2.4 of [23] defines the ‘Hida’ idempotent e on Sχλ (UΣQ,ν ,N ), Sχλ (UΣQ,ν ,N , L/O), and Tλ,ΣQ,ν (UΣQ,ν ,N ),
and define

Sχ,ord(UΣQ,ν
)

(resp. Sχ,ord(UΣQ,ν
, L/O))

to be the N -direct limit of eSχ2 (UΣQ,ν ,N ) (resp. eSχ2 (UΣQ,ν ,N , L/O)); and

T ord
Σχ,Q,ν (UΣQ,ν

)

to be theN -inverse limit of eT2,Σχ,Q,ν (UΣQ,ν ,N ). When SQ,ν is empty, we shall write Sχ,ord(U), Sχ,ord(U,L/O)

and T ord
Σχ

(U) respectively. Naturally, Tχ,ord
Σχ,Q,ν

(UΣQ,ν
) and Sχ,ord(UΣQ,ν

) are algebras over Λp, and hence

over Λ, by 〈 〉.

Lemma 14 • T ord
Σχ

(U) is reduced.
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• T ord
Σχ

(U) is a finite faithful Λ-module, Sχ,ord(U) is a faithful T ord
Σχ

(U)-module and is finite free over
Λ.

Proof. The first assertion follows from Lemma 2.4.4 in [23]. The second assertion follows from Pro-
position 2.5.3 and Proposition 2.5.4 in [23]. �

Let m be a maximal ideal of T ord
Σχ

(U) when χ is trivial. Since Sord(U)/λ = Sχ,ord(U)/λ, it induces a

maximal mχ ⊂ T ord
Σχ

(U). Let mχ,Q,ν ⊂ T ord
Σχ,Q

(UΣQ,ν
) be the maximal ideal defined by the surjection

T ord
Σχ,Q,ν (UΣQ,ν

)→ T ord
Σχ (U).

Define HΣχ,Q,ν (UΣQ,ν
), also denoted by HΣχ,Q,ν , by letting

(HΣχ,Q,ν )∨ ⊂ Sχ,ord(UΣQ,ν
, L/O)∨mχ,Q,ν

(where by the dual ∨ we mean the ‘Pontrjagin dual’ HomO(−, L/O)) as in section 4.2 of [23], let
HΣχ,Q,ν (UIwQ,ν

) denote the one defined similarly with UIwQ,ν
in place of UΣQ,ν

and let

TΣχ,Q,ν ⊂ End(HΣχ,Q,ν )

denote the image of T ord
Σχ,Q,ν

(UΣQ,ν
)mχ,Q,ν in End(HΣχ,Q,ν ). When SQ,ν = ∅, we simply write TΣχ andHΣχ

for TΣχ,Q,ν and HΣχ,Q,ν . Let H�
Σχ,Q,ν

= HΣχ,Q,ν⊗RΣχ,Q,ν
R�

Σχ,Q,ν
; when SQ,ν = ∅, we simply write it H�

Σχ
.

Recall that UIwQ,ν
/UΣQ,ν

is isomorphic to the
∏

Q ∆Q where Q ranges over SQ,ν and where ∆Q

is the maximal pro-p quotient of (OF /Q)× for every Q. Let ∆Q,ν denote the quotient (UIwQ,ν ∩
A∞×F )O×F /(UΣQ,ν ∩ A∞×F )O×F ' (

∏
Q ∆Q)/O

×
F by the image O

×
F of the units O×F .

Lemma 15 The co-invariants of HΣχ,Q,ν (UΣQ,ν ) by O[∆Q,ν ] is isomorphic to HΣχ,Q,ν (UIwQ,ν ) by the
trace map corresponding to UIwQ,ν

/UΣQ,ν
, and HΣχ,Q,ν = HΣχ,Q,ν (UΣQ,ν

) is a finite faithful and free
module over Λ[∆Q,ν ].

Proof. For a sufficiently small open compact subgroup U of G(A∞F ),

G(A∞F ) =
∐
t

G(F )tU

holds, where t ranges over a finitely many representatives in G(A∞F ); and (t−1G(F )t ∩ U)/O×F is trivial.
For an O-module A, it therefore follows that

Sχ2 (U,A) '
⊕
t

(V2,χ ⊗O A)t
−1G(F )t∩U .

The first assertion follows if the co-invariants Sχ2 (UΣQ,ν ,N , O)∆Q,ν is isomorphic to Sχ2 (UIwQ,ν ,N , O).
This, in turn, follows (by the standard duality pairing and Pontryagin duality) if the invariants Sχ2 (UΣQ,ν ,N , L/O)∆Q,ν

is isomorphic to Sχ2 (UIwQ,ν ,N , L/O). As the order of t−1G(F )t ∩ UIwQ,ν ,N and the order of ∆Q,ν =

(
∏

Q ∆Q)/O
×
F are coprime, this holds.

To prove the second assertion, it is enough to prove |Sχ2 (UΣQ,ν ,N , L)||∆Q,ν | = |Sχ2 (UIwQ,ν ,N , L)| by
Nakayama’s lemma. But this follows as one observes, as UIwQ,ν ,N is sufficiently small,

Sχ2 (UIwQ,ν ,N , L) '
⊕
t

V
t−1G(F )t∩UIwQ,ν ,N

2,χ

and therefore

Sχ2 (UΣQ,ν ,N , L) '
⊕
t

⊕
∆Q,ν

V
t−1G(F )t∩UIwQ,ν ,N

2,χ

as the order of ∆Q,ν and t−1G(F )t ∩ UIwQ,ν ,N are coprime. �
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Let Λ� = Λ⊗̂R�
T where T = SP ∪ SR ∪ SL ∪ SA and let ∆Q,∞ be the free Zp-module (

∏
q Zp)/O

×
F of

rank q− rkO
×
F ≥ q− ([F : Q]−1) by Dirichlet’s unit theorem, which surjects onto ∆Q,ν = (

∏
Q ∆Q)/O

×
F

for every ν. Let J denote the kernel of the homomorphism Λ�[[∆Q,∞]] → Λ which sends ∆Q,∞ to 1
and all 4|T | − 1 variables in R�

T to 0. Let Rloc
Σχ,∞ = Rloc

Σχ
[[X1, ..., Xr]]. Following Geragthy 4.3, [23], the

H�
Σχ,Q,ν

patch together to yield a Rloc
Σχ,∞⊗̂Λ�[[∆Q,∞]]-module H�

Σχ,∞.

Lemma 16 Let 4 be a minimal ideal of Λ.

• If χ is distinct, Spf Rloc
Σχ
⊗Λ/4 is O-flat and geometrically irreducible of relative dimension 1+2[F :

Q] + εL + 4|T |.

• If χ is trivial and if L is sufficiently large, Spf Rloc
Σ ⊗ Λ/4 is equi-dimensional of relative dimen-

sion 1 + 2[F : Q] + εL + 4|T |; furthermore, every minimal prime of Rloc
Σ ⊗ Λ/(4, λ) contains a

unique minimal prime of Rloc
Σ ⊗Λ/4. Furthermore, Rloc

Σ is O-flat, Cohen-Macaulay and Rloc
Σ /λ is

generically reduced.

Proof. See Lemma 4.12 in [23] and Lemma 3.3 [3]. When χ is trivial and K is sufficiently large, it
follows from Lemma 3.3 in [3] that every prime, minimal amongst those containing λ, contains a unique
minimal prime.

It follows from Proposition 9, Proposition 10 and Proposition 11 that Rloc
Σ ⊗ Λ is Cohen-Macaulay.

Lemma 1.4 in [62] establishes that the fibres Rloc
Σ /λ is generically reduced. �

Remark. The Cohen-Macaulayness of Rloc
Σ,∞ is critical to our proof of RΣ ' TΣ without recourse to

taking the reduced quotients. This is based on Snowden’s insight in [55].

Lemma 17 As Rloc
Σχ,∞/λ ' Rloc

Σ,∞/λ-modules, H�
Σχ,∞/λ ' H�

Σ,∞/λ holds. Furthermore, H�
Σχ,∞ (resp.

H�
Σ,∞) is a finite free module over Λ�[[∆Q,∞]] (resp. Λ�[[∆Q,∞]]) (and hence are finitely generated

Rloc
Σχ,∞-modules); and H�

Σχ,∞/J ' HΣχ and H�
Σ,∞/J ' HΣ holds respectively.

Proof. See Proposition 2.5.3 and Corollary 2.5.4 in [23] �

The following is a summary of Geraghty’s results [23] about Hida theory that we shall implicitly use;
their proofs can be found in [23]. See Proposition 3.4.4 in [13], Lemma 2.6.4, Proposition 2.7.4, and
Lemma 4.2.2 in [23] for example.

If λ : Λ → O× is an algebraic character defined by the set λ = (λp,1, λp,2) of integers, and if a
character γ : Λ → O× is of finite order, we shall let Γλ,γ denote the ideal ker(γ(−λ2,−λ1 − 1)) of Λ
where (−λ2,−λ1 − 1) denote the character Λp → O× defined by the product of (−λτ,2,−λτ,1 − 1) over
τ in Sp for all p in SP.

If ker γ contains the product over p of ker(T (Op) � T (Op/p
N )) for an integer N ≥ 1, the quotient

T ord
Σχ
⊗Λ ΛΓλ,γ/Γλ,γ surjects onto the maximal quotient of T ord

λ,Σχ
(UN ) where Sτ operates as γτ for every

τ in TG; furthermore, the kernel of the surjection is nilpotent.

There exists a continuous representation

ρ = ρmχ,Q,ν : Gal(F/F )→ GL2(TΣχ,Q,ν/mχ,Q,ν)

such that

• ρ is unramified outside S, and
trρ(FrobQ) = TQ

and
detρ(FrobQ) = (NF/QQ)SQ

for every Q not in S,
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• for every place Q in SR, the characteristic polynomial in X of the restriction of ρ(g) is of the form
(X − χQ,1(ArtQ(g))−1)(X − χQ,2(ArtQ(g))−1) for every g in IQ.

• for every place Q in SL, the characteristic polynomial of ρ(FrobQ) (resp. ρ(g)) is of the form
(X − |kQ|)(X −α|kQ|) for some α (resp. (X − 1)2) for a Frobenius lifting FrobQ (resp. for every g
in IQ),

• ρ is unramified at every place in SA.

• ρ is a direct sum of two distinct unramified characters when restricted to every place of SQ,ν .

Suppose that mχ is non-Eisenstein. There exists a continuous representation

ρ = ρmχ,Q,ν : Gal(F/F )→ GL2(TΣχ,Q,ν )

for which the following hold:

• ρ is a conjugate lifting of ρ of type Σχ,Q,ν .

• Suppose SQ,ν = ∅. The maximal ideal mχ uniquely determines an irreducible component of Spec Λp
over which it lies, and the component is characterised by a character of the torsion subgroup of Λ.
Suppose that γ equals −(λp,2, λp,1)p when restricted to the torsion subgroup. If Γ is a dimension
one prime ideal of TΣχ lying above Γλ,γ ,

ρmχ,Γ : Gal(F/F )→ GL2(LΓ),

where LΓ denote the field of fractions of TΣχ/Γ, satisfies:

– for every p in SP, the restriction ρmχ,Γ,p of ρmχ,Γ to Dp is de Rham/potentially semi-stable
with Hodge-Tate weights (λτ,1 + 1, λτ,2)τ ;

– ρmχ,Γ,p is reducible of the form

(
ξ1,p ∗
0 ε−1ξ2,p

)
where ξ1,p ◦ Artp (resp. ξ2,p ◦ Artp), as a

character of O×p , is given by ((−λτ,2) ◦ τ)τ (resp. ((−λτ,1) ◦ τ)τ ); and ξ1,p ◦ Artp(πp) = Up

mod Γ, and ξ2,p ◦Artp(πp) = Sp/Up mod Γ.

In applications, we consider Γ corresponding to λτ,1 − λτ,2 = −1 for τ in Sp for every p in SP.

2.5 R = T

Suppose that ρ as in the previous section is modular, i.e., ρ ' ρm for a non-Eisenstein maximal ideal
m ⊂ T ord

Σ (U).

Theorem 18 H�
Σ,∞ is a (Cohen-Macaulay) faithful Rloc

Σ,∞-module.

Proof. For every minimal prime 4 of Λ, the Krull-dimension of Rloc
Σχ,∞/4, for a distinct χ, is

1 + r + (1 + 2[F : Q] + εL) + 4|SP ∪ SR ∪ SL ∪ SA|
= 1 + (q − 2[F : Q]) + (1 + 2[F : Q] + εL) + 4|SP ∪ SR ∪ SL ∪ SA|.

On the other hand, the Rloc
Σχ,∞-depth of H�

Σχ,∞/4 is at least the Λ�[[∆Q,∞]]-depth of H�
Σχ,∞/4. As

H�
Σχ,∞/4 is free as a Λ�[[∆Q,∞]]-module, the latter depth equals the Krull-dimension of Λ�[[∆Q,∞]]

which is greater than or equal to

1 + (1 + [F : Q] + εL) + 4|SP ∪ SR ∪ SL ∪ SA| − 1 + q − ([F : Q]− 1).

Since SpecRloc
Σχ,∞/4 is irreducible, it then follows from Lemma 2.3 in [58] that H�

Σχ,∞/4 is a nearly

faithful Rloc
Σχ,∞/4-module. By Lemma 2.2, 1, [58], H�

Σχ,∞/(4, λ) is a nearly faithful Rloc
Σχ,∞/(4, λ)-

module, hence H�
Σ,∞/4 is a nearly faithful Rloc

Σ,∞/4-module. It then follows from Lemma 2.2, 2, [58],
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that H�
Σ,∞/4 is a nearly faithful Rloc

Σ,∞/4-module. As this holds for any minimal prime4, one concludes

that H�
Σ,∞ is a nearly faithful Rloc

Σ,∞-module.
On the other hand, one may observe that p and the generators of J define a system of parameters of

Rloc
Σ,∞/4. Since Rloc

Σ,∞/4 is Cohen-Macaulay, it follows from Theorem 17.4 in [38] that it indeed defines

a regular sequence of the noetherian local ring. In particular, p is Rloc
Σ,∞/4-regular. It therefore follows

from Lemma 16 that Rloc
Σ,∞/(4, λ) is Cohen-Macaulay and that Rloc

Σ,∞/(4, λ) is reduced. The regularity

also establishes that Rloc
Σ,∞/4 is reduced and, by extension, Rloc

Σ,∞ is reduced. The faithfulness of H�
Σ,∞

as an Rloc
Σ,∞-module follows. �

By the theorem above, H�
Σ,∞/J ' HΣ is a nearly faithful Rloc

Σ,∞/J-module. Hence the maximal
reduced quotient of RΣ is isomorphic to TΣ. To promote this isomorphism on the reduced quotients
to the isomorphism RΣ ' TΣ, it suffices to prove that RΣ itself is also reduced. In achieving the
reducedness, the key input is Snowden’s insight in [55] (Section 5 to be more precise), i.e. by establishing
that Rloc

Σ,∞ ' RΣ,∞ is Cohen-Macaulay and, by extension, Rloc
Σ,∞/J is Cohen-Macaulay and O-flat.

As the preceding theorem proves that Rloc
Σ,∞/J is isomorphic to RΣ, it is enough to establish that

Rloc
Σ,∞/J , or equivalently Rloc

Σ,∞/(4, J) is reduced for every minimal prime 4. To this end, we need a
lemma which paraphrases Lemma 8.5 in [28]:

Lemma 19 Let R be a noetherian local ring and let M be a faithful, Cohen-Macaulay, finitely generated
R-module. Let r, r1, . . . , rN be a system of parameters of R, let J denote the ideal generated by r1, . . . , rN
and let R = R/J and M = M ⊗R R/J . Suppose that

• M [1/r] is a semi-simple R[1/r]-module,

• for every prime ideal P in R[1/r] which is the pre-image of a maximal ideal m that lies in
SuppR[1/r](M [1/r]), the localisation R[1/r]P is regular.

Then R[1/r] is reduced.

Proof of the lemma. Since M is a finitely generated Cohen-Macaulay module over R, for a prime P
as in the second assumption, M [1/r]P is a finitely generated Cohen-Macaulay module over R[1/r]P. It
then follows from Auslander-Buchsbaum that M [1/r]P is finite free over R[1/r]P; in particular, M [1/r]m
is finite free over R[1/r]m. One may then deduce from the semi-simplicity assumption that the Jacobson
radical of R[1/r]m is zero, and therefore the nilradical of R[1/r]m is zero.

On the other hand, M is assumed to be faithful over R, and therefore M [1/r] is nearly faithful over
R[1/r], or equivalently, SuppR[1/r](M [1/r]) = SpecR[1/r]. As R[1/r] is aritinian, SpecR[1/r] equals the

maximum spectrum MaxR[1/r] and an isomorphism

R[1/r] '
∏
m

R[1/r]m,

where m ranges over MaxR[1/r] = SuppR[1/r](M [1/r]), holds. As each R[1/r]m is reduced, the assertion
follows. �

Corollary 20 RΣ ' TΣ

Proof. For a minimal ideal Γ of Rloc
Σ,∞/(4, J, p), we apply Lemma 19 to the localisation (Rloc

Σ,∞/4)Γ of

Rloc
Σ,∞/4 at Γ to establish that (Rloc

Σ,∞/(4, J))Γ[1/p] is reduced. It therefore follows thatRloc
Σ,∞/(4, J)[1/p]

is generically reduced. As it is Cohen-Macaulay by Lemma 16 (and Theorem 2.1.3 in [7]), it is indeed
reduced. To promote the reducedness of Rloc

Σ,∞/(4, J)[1/p] to the reducedness of Rloc
Σ,∞/(4, J), it suffices

to establish that Rloc
Σ,∞/(4, J) is p-torsion free so that Rloc

Σ,∞/(4, J) embeds into Rloc
Σ,∞/(4, J)[1/p]. But

since Rloc
Σ,∞/4 is noetherian local, p is Rloc

Σ,∞/(4, J)-regular and the p-torsion freeness follows. �
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3 Models of Hilbert modular varieties

3.1 Pappas-Rapoport integral models

Let F be a totally real field with [F : Q] = d and let OF denote the ring of integers. Let D = DF/Q

denote the different of F . Fix an embedding Q ↪→ Qp once for all.
For every place p of F above p , we shall denote the completion of F at p by Fp, its ring of integers by

Op, and a uniformiser πp (or π when the reference to p is clear from the context); denote the ramification
index by ep (or e when the reference to p is clear from the context) and the residue degree by fp. Let

F̂p denote the maximal unramified extension of Qp in Fp; and let E ∈ F̂p[u] denote the Eisenstein

polynomial in u defining the totally ramified extension Fp over F̂p of degree ep.
Let L be a finite extension of Qp which contains the image of every embedding of F ↪→ Q ↪→ Qp;

and let O denote its ring of integers and let κ denote the residue field.

For every place p of F above p, we shall let Σp denote HomQp(Fp, L) and let Σ̂p denote HomQp(F̂p, L).

For every τ ∈ Σ̂p, let Σ̂p,τ denote the set of elements in Σp whose restriction to F̂p is τ , and we fix, once
for all, a bijection between Σp,τ and the set of integers between 1 and ep; if we let Eτ ∈ L[u] denote the

image of E by τ for τ ∈ Σ̂p, it mean that we order (and fix) the roots of Eτ in L.

For every place p of F above p and τ in Σ̂p, let γtτ , for every 1 ≤ t ≤ ep, be the image of πp by the
element of Σp,τ corresponding to t; and let Eτ (t) be the polynomial (u− γtτ )(u− γt+1

τ ) · · · (u− γepτ ) in u
with coefficients in O (and hence in OS for any O-scheme S).

Let V = F 2 and let ( , ) denote the standard non-generate alternating bilinear pairing on V . Let
B = F thought of coming equipped with identity ‘involution’. Define the closed algebraic subgroup G
over Q of GLB(V ) = ResF/QGL2 as in 6.1 in [46].

Let U be an open compact subgroup of G(A∞) such that U ∩ G(Qp) = G(Zp). Indeed we suppose
that U is the principal congruence subgroup mod n of G(A∞), and suppose that n ≥ 3 and is prime to
p.

Fix, once for all, a set of representatives ` ∈ A×F for the strict ideal class group A×F /F×(OF ⊗Z

Z∧)×(F ⊗Q R)×+ of F ; by abuse of notation, let ` also denote the corresponding fractional ideal of F .
By ‘+’ we shall always mean ‘the subgroup of its totally positive elements’.

For every (fixed) representative `, define MDP
U,` to be the functor which sends an O-scheme S to the

set of isomorphism classes of data (A, i, λ, η) consisting of

• an abelian scheme A/S of relative dimension d = [F : Q]

• i : OF → End(A/S)

• an OF -linear morphism of étale sheaves λ : (`, `+) → (Sym(A/S),Pol(A/S)) which is indeed an
isomorphism, and by which the natural morphism A ⊗ Sym(A/S) → A∨ is also an isomorphism
(note that these are equivalent to the condition Deligne-Pappas defines: a homomorphism (`, `+)→
(Sym(A/S),Pol(A/S)) of OF -modules such that the composite A ⊗ ` → A ⊗ Sym(A/S) → A∨ is
an isomorphism);

• an OF -linear isomorphism A[n] ' OF ⊗Z (Z/nZ).

The functor is representable by a scheme over O which we shall denote by Y DP
U,` ; it follows from local

model theory that its fibre Y
DP

U,` over Specκ is smooth outside a codimension 2 closed subscheme. The
main result of this section is to construct an integral model over O which is smooth over O (and hence
its fibre over κ is smooth).

For every ` as above, define MPR
U,` to be the functor which sends an O-scheme S to the set of

isomorphism classes of data (A, i, λ, η) where
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• (A, i, λ, η) define a S-valued point of MDP
U,`

• For every place p of F above p and every τ ∈ Σ̂p, the τ -component Lie∨(A∨/S)τ of the OS-dual
Lie∨(A∨/S) of the sheaf Lie(A∨/S) of Lie algebras of the dual abelian variety A over S, comes
equipped with a filtration

0 = Lie∨(A∨/S)τ (0) ⊂ Lie∨(A∨/S)τ (1) ⊂ · · · ⊂ Lie∨(A∨/S)τ (ep) = Lie∨(A∨/S)τ ⊂ H1
dR(A/S)∨τ

such that Lie∨(A∨/S)τ (t) is, Zariski locally on S, a direct summand of Lie∨(A∨/S)τ of rank t
and is a sheaf of Op ⊗τ OS-submodule (where ⊗ is meant over F̂p) of Lie∨(A∨/S)τ , satisfying the
condition

(πp ⊗ 1− 1⊗ γtτ )Lie∨(A∨/S)τ (t) ⊂ Lie∨(A∨/S)τ (t− 1).

For every τ ∈ Σ̂p and every 1 ≤ t ≤ ep, let

Gr∨(A∨/S)τ (t) = Lie∨(A∨/S)τ (t)/Lie∨(A∨/S)τ (t− 1),

and let
Ĝr∨(A/S)τ (t) = H1

dR(A/S)∨τ /Lie∨(A∨/S)τ (t− 1);

the former (resp. the latter) is a locally free sheaf of OS-modules of rank 1 (resp. 2ep − (t− 1)).
Let

D̂(A/S)τ (t) = ker(Eτ (t) | Ĝr∨(A/S)τ (t))

and
D(A/S)τ (t) = ker(π ⊗ 1− 1⊗ γtτ | D̂(A/S)τ (t)) = ker(π ⊗ 1− 1⊗ γtτ | Ĝr∨(A/S)τ (t)).

We know the ranks of these OS-modules:

Lemma 21 For every τ ∈ Σ̂p and for every 1 ≤ t ≤ ep,

• D̂(A/S)τ (t) is a locally free sheaf of OS [u]/Eτ (t)-modules of rank 2 and is also a locally free sheaf
of OS-modules of rank 2(ep − t+ 1);

• D(A/S)τ (t) is a locally free sheaf of OS-modules of rank 2.

Proof. This is essentially Proposition 5.2 (b) of [42] with d = 2. �

Lemma 22 For every τ ∈ Σ̂p and every 1 ≤ t ≤ ep, Gr∨(A∨/S)τ (t) is locally a rank 1 direct summand
of D(A/S)τ (t) as an OS-module.

Proof. Since this is not proved in [42], we shall give a complete proof. By definition, Gr∨(A∨/S)τ (t) is
a subsheaf ofOS-modules ofD(A/S)τ (t). It suffices to prove that the quotientD(A/S)τ (t)/Gr∨(A∨/S)τ (t)
is locally free of rank 1. Consider the exact sequence

0→ D(A/S)τ (t)/Gr∨(A∨/S)τ (t)→ Ĝr∨(A/S)τ (t)/Gr∨(A∨/S)τ (t)→ Ĝr∨(A/S)τ (t)/D(A/S)τ (t)→ 0.

Firstly observe that the middle term

Ĝr∨(A/S)τ (t)/Gr∨(A∨/S)τ (t) ' Ĝr∨(A/S)τ (t+ 1),

and it is locally free of rank 2ep − t; hence it suffices to show that Ĝr∨(A/S)τ (t)/D(A/S)τ (t) is locally
free of rank 2ep − (t+ 1). The preceding lemma asserts that D(A/S)τ (t) is locally a direct summand of

D̂(A/S)τ (t) with the quotient D̂(A/S)τ (t)/D(A/S)τ (t) locally free of rank 2(ep− t+ 1)− 2 = 2(ep− t).
It is proved in the proof of Proposition 5.2 in [42] that D̂(A/S)τ (t) is locally a direct summand of
Ĝr∨(A/S)τ (t) with the quotient Ĝr∨(A/S)τ (t)/D̂(A/S)τ (t) locally free of rank t−1. Hence the quotient
Ĝr∨(A/S)τ (t)/D(A/S)τ (t) is locally free of rank 2(ep − t) + (t− 1) = 2ep − (t+ 1), as desired. �

Proposition 23 The functor MPR
U,` is representable by a smooth scheme, which we shall henceforth

denote by Y PR
U,` , over O. Furthermore, the forgetful morphism, Y PR

U,` → Y DP
U,` is proper.
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Proof. Representability : Define MGr
U,` to be the functor which sends an O-scheme S to the set of

isomorphism classes of data as in MPR
U,`, except that it ‘forgets’ the last condition about the prescribed

action of OF ; then MGr
U,` → MDP

U,` , forgetting filtrations, is clearly relatively representable and proper,

hence MGr
U,` is representable. The relative representability of MPR

U,` → MGr
U,` follows from Lemma 1.3.4

in [34], for example.

Smoothness: Y PR
U,` is locally of finite presentation, and it suffices to show its formal smoothness in the

following sense. Choose a closed point of Y PR
U,` , and let RPR

U,` denote the completed local ring of Y PR
U,` at

the closed point and MPR
U,` its maxim ideal. LetMPR,∧

U,` denote the ‘local formal moduli’ functor Spf RPR
U,`,

and let R be a complete noetherian local ring with maximal ideal M such that R/M ' RPR
U,`/M

PR
U,` . It

suffices to prove that
MPR,∧

U,` (S)→MPR,∧
U,` (S),

induced by S
def
= SpecR/M l−1 → S

def
= SpecR/M l for an integer l ≥ 2 which we fix, is surjective. We

shall show this by the Grothendieck-Messing crystalline Dieudonne theory.

Let (A/S, i, λ, η, (Lie∨(A
∨
/S)τ (1) ⊂ · · · ⊂ Lie∨(A

∨
/S)τ )) be a point ofMPR

U,` over S. Then, for every

τ , Gr∨(A
∨
/S)τ (t) is locally a OS-direct summand of the locally free sheaf D(A/S)τ (t) of OS-modules

of rank 2 by the preceding lemma.
Let γtτ be a lifting in OS of γtτ in OS . The OS-dual H1

cr(A/S)∨ of the crystalline cohomology sheaf
of OS-module is a locally free sheaf of OF ⊗OS-modules of rank 2, and ker(π ⊗ 1− 1⊗ γ1

τ |H1
cr(A/S)∨τ )

defines a locally free sheaf of OS-modules of rank 2 which lifts D(A/S)τ (1). It then follows that there

exists a locally free subsheaf Lie∨(A
∨
/S)τ (1) of ker(π ⊗ 1 − 1 ⊗ γ1

τ |H1
cr(A/S)∨τ ) of rank 1 which lifts

Lie∨(A
∨
/S)τ (1).

Suppose, for 1 ≤ l ≤ t, that every Lie∨(A
∨
/S)τ (l), locally free of rank l over S, lifts Lie∨(A

∨
/S)τ (l)

and which satisfy Gr∨(A
∨
/S)τ (l) ⊂ ker(π ⊗ 1− 1⊗ γlτ |H1

cr(A/S)∨τ /Lie∨(A
∨
/S)τ (l − 1)) for 1 ≤ l ≤ t.

One may and will define Lie∨(A
∨
/S)τ (t+1) to be a rank t+1 locally free OS-submodule of H1

cr(A/S)∨

satisfying the condition that its quotient Lie∨(A
∨
/S)τ (t + 1)/Lie∨(A

∨
/S)τ (t) defines a rank 1 direct

summand of ker(π ⊗ 1 − 1 ⊗ γt+1
τ |H1

cr(A/S)∨τ /Lie∨(A/S)τ (t)) which is an OS-module of rank 2 lifting
D(A/S)τ (t+ 1).

It then follows from the Grothendieck-Messing crystalline Dieudonné deformation theory that there
exists a Hilbert-Blumenthal abelian variety A over S whose pull-back to S is (A/S, i) and Lie∨(A∨/S)τ×S
S ' Lie∨(A

∨
/S)τ for every τ . Evidently, Lie(A/S) satisfies that the Kottwitz ‘determinant’ condition

(Definition 2.4 in [64]), and it follows from Corollary 2.10 of Vollaard [64] that λ lifts over to S. �

Let Y PR
U denote the disjoint union Y PR

U,` over `.

Let P denote the product of all prime ideals of OF above p. For a representative `, let `P denote the
element (or its corresponding fractional ideal) in the fix set of representatives representing the fractional
ideal `P.

Define MDP
UIw,` to be the functor which sends an O-scheme S to the set of isomorphism classes of

OF -linear isogenies
f : A/S → B/S

of degree |OF /P| such that ker f ⊂ A[P], where A and B come equipped with PEL structure defin-
ing S-points of Y DP

U,` and Y DP
U,`P

respectively such that (f∨ ◦ Sym(B/S) ◦ f, f∨ ◦ Pol(B/S) ◦ f) equals

(PSym(A/S),PPol(A/S)). One can check that the last condition is equivalent to demanding that
C = ker f is an isotropic subgroup of A[P] in the sense that, for any λ in Sym(A/S) (in fact, it suffices
for any λ of degree prime to p), λ maps C to (A[P]/C)∨. The functor is representable by an O-scheme
Y DP
UIw,`.

Similarly, we define MPR
UIw,` to be the functor which sends an O-scheme S to the set of isomorphism

classes of OF -linear isogenies f : A/S → B/S of degree |OF /P| such that ker f ⊂ A[P] defining an
S-point of Y DP

UIw,`, where A and B are respectively S-points of Y PR
U,` and Y PR

U,`P
such that the filtrations
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commutes the diagram of locally free OS-sheaves:

H1∨
dR(A/S)τ −→ H1∨

dR(B/S)τ −→ H1∨
dR(A/S)τ

∪ ∪ ∪
Lie∨(A∨/S)τ −→ Lie∨(B∨/S)τ −→ Lie∨(A∨/S)τ

|| || ||
Lie∨(A∨/S)τ (ep) −→ Lie∨(B∨/S)τ (ep) −→ Lie∨(A∨/S)τ (ep)

∪ ∪ ∪
Lie∨(A∨/S)τ (ep − 1) −→ Lie∨(B∨/S)τ (ep − 1) −→ Lie∨(A∨/S)τ (ep − 1)

∪ ∪ ∪
...

...
...

∪ ∪ ∪
Lie∨(A∨/S)τ (1) −→ Lie∨(B∨/S)τ (1) −→ Lie∨(A∨/S)τ (1)

If we let C =
∏

p Cp ⊂ A[P] =
∏

pA[p] denote the kernel of π : A/S → B/S, one can see that

Lie∨(C∨/S) comes equipped with a filtration

0 = Lie∨(C∨/S)τ (0) ⊂ Lie∨(C∨/S)τ (1) ⊂ · · · ⊂ Lie∨(C∨/S)τ (ep) = Lie∨(C∨/S)τ

defined by coker(Lie∨(A∨/S)τ (t)/Lie∨(A∨/S)τ (t− 1)→ Lie∨(B∨/S)τ (t)/Lie∨(B∨/S)τ (t− 1)) for every
p in SP, τ in Σ̂p, and 1 ≤ t ≤ ep; and each Lie∨(C∨/S)τ (t)/Lie∨(C∨/S)τ (t− 1) is killed by πp.

Proposition 24 The functor MPR
UIw,` is representable by an O-scheme.

Proof. It is clear that MPR
UIw,` is relatively representable over MDP

UIw,`. �

Let Y PR
UIw,` denote the O-scheme representing MPR

UIw,` in the proposition and let Y PR
UIw denote the

disjoint union of Y PR
UIw,` over ` ranging over the fixed set of representatives as before.

As the definition of Y PR
U and Y PR

UIw are based on the local model constructions of Pappas-Rapoport
[42], it is clear what their local models should be.

3.2 Compactification

Fix a representative `; we shall compactify Y PR
U,` and Y PR

UIw,` following Rapoport’s [45] and Stroh’s [56]
observations. Fix the integer n ≥ 3 defined in the previous section.

By a `-cusp degeneration data C, we shall mean two fractional ideals M and N of F , an exact sequence

0→ D−1M−1 → L→ N → 0

of projective OF -modules, and an isomorphism MN−1 ' D; suppose furthermore that it comes equipped
with a choice of an isomorphism L/nL ' (OF /nOF )2.

Given an `-cusp degeneration data C as above, let M+ = MN , M+
n = n−1M+, and M+∨ =

HomZ(M+,Z); let M+∨
R,+ denote the submodule of the positive elements in M+∨ ⊗ R where its pos-

itivity is defined via the isomorphism M+∨ ' `M−2D−1 and the positivity of each of the fractional
ideals on the RHS.

Let Σ denote a rational polyhedral cone decomposition {τ} of M+∨
R,+ ∪ {0}; we may and will choose

it so that it is level-n-admissible in the sense that it satisfies the conditions of 3.2 and 3.3 of [12] (see p.
299 of [45]). Let S` = SpecR with R = O[M+

n ], and let S` ↪→ S`,τ = SpecRτ denote the affine torus
embedding where Rτ = O[M+

n ∩ τ∨].

As Stroh [56] puts it, we may think of S` as a moduli space (stack) of Deligne 1-motives corresponding
to an `-cusp degeneration data C: let X = SpecA be a normal scheme, Y an open dense subscheme,
and Z = X − Y = SpecA/I for an ideal I of A. In our context, a Mumford 1-motive over (Y ↪→ X)

in the sense of Stroh is a set of data: the semiabelian variety G̃ = G ⊗Z D
−1M−1 thought of as it is

defined over X (where G is the multiplicative group scheme base-changed over to F ), a ‘lattice’ N over
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X (i.e. a locally constant étale sheaf of finite free abelian groups), and a complex q : N → G̃ of fppf

sheaves of abelian groups over Y defined by an OF -linear homomorphism N → G̃(Y ) whose induced
homomorphism trF/Q ◦ q : M+ → G(Y ) maps M+

+ to I.

Let Spf R̂τ denote the affine formal completion of S`,τ along S`,τ − S`. Let X`,τ = Spec R̂τ , let Y`,τ
denote its open dense subscheme defined by the pull-back of X`,τ over S` along S` ↪→ S`,τ , and let Z`,τ
denote the complement X`,τ − Y`,τ .

Rapoport’s application [45] of the Mumford construction (in the ‘split case’) gives rise to a semi-
abelian scheme

(G⊗Z D
−1M−1)/qN

over X`,τ such that

• the pull-back to Y`,τ of (G ⊗Z D
−1M−1)/qN is a HBAV (see (i) and (ii) of [45], p.297) which is

`-polarisable (see (v) and (vi) in [45], p.298) which comes equipped with a level n-structure (see
(iii) and (iv) in [45], p.297-p.298), and whose dual Lie algebra ‘sheaf’ M comes equipped with a
canonical PR-filtration in the sense of Section 3.1 (and gives rise to a map from Y`,τ to Y PR

U,` ),

• if A denote the universal HBAV over Y PR
U,` , the p-torsion of (G⊗ZD

−1M−1)/qN over Y`,τ , i.e., the

pull-back to Y`,τ of (G ⊗Z D
−1M−1)/qN , is canonically isomorphic to the p-torsion of the fibre

product of A and Y`,τ over Y PR
U,` .

Definition. Suppose that (G⊗ZD
−1M−1)/qN ) over Y`,τ comes equipped with a Raynaud submod-

ule scheme Cp of ((G ⊗Z D
−1M−1)/qN )[p] of rank 1 for all p in SP. Let SP,× and SP,et be subsets of

SP defined such that p lies in SP,× if Cp is multiplicative while it lies in SP,et if it is étale; in which case
SP,× and SP,et are disjoint and their union is SP.

Definition Let SI,` denote the disjoint union over all partitions (SP,×, SP,et) of SP of S`; and define
XI,τ and YI,τ similarly.

Let SpecR+
τ denote the henselisation of (S`,τ , S`,τ − S`). Then it follows exactly as in Proposition

2.3.3.1 in [56] that there exists semi-abelian scheme ((G ⊗Z D
−1M−1)/qN )+ which is ‘as universal’ as

(G ⊗Z D
−1M−1)/qN is. It furthermore follows as in 2.4 in [56] that there exists an étale extension

Retτ over Rτ and a semi-abelian scheme ((G ⊗Z D
−1M−1)/qN )et which satisfies the same properties as

(G⊗Z D
−1M−1)/qN with ((G⊗Z D

−1M−1)/qN )et in place of (G⊗Z D
−1M−1)/qN .

Definition. Let Xet
I,`,τ denote the pull-back to SI,`,τ of Xet

`,τ over S`,τ along the natural forgetful map

from SI,`,τ to S`,τ . Similarly define Y etI,`,τ to be the pull-back to SI,` of Y et`,τ over S` along SI,` → S`.

Definition. Let Y et`,Σ =
∐
C
∐
τ Y

et
`,τ and Xet

`,Σ =
∐
C
∐
τ X

et
`,τ where C ranges over the set of isomorph-

ism classes (i.e. homotheties of ideals) of `-cusp degeneration data and where τ ranges over Σ with C
given. Define Xet

I,`,Σ and Y etI,`,Σ similarly.

Lemma 25 The quotient algebraic stack of Y et`,Σ by R = Y et`,Σ×Y PR
U,`
Y et`,Σ is isomorphic to Y PR

U,` . Similarly,

the quotient algebraic stack of Y etI,`,Σ by RI = Y etI,`,Σ ×Y PR
UIw,`

Y etI,`,Σ is isomorphic to Y PR
UIw,`.

Recall that Y PR
U,` is smooth over O, and Y PR

UIw,` is normal. The second assertion can be checked by its
local model.

Definition Let XPR
U,` denote the quotient algebraic stack of Xet

`,Σ by the normalisation of Xet
Σ ×Xet

`,Σ

in R.
Let XPR

UIw,` denote the quotient algebraic stack of Xet
I,`,Σ by the normalisation of Xet

I,`,Σ×Xet
I,`,Σ in RI.

Proposition 26 XPR
U,` and XPR

UIw,` are proper over O.
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Proof. See Proposition 3.1.5.2 and Théorème 3.1.8.3 in [56]. �

Recall that U is the full congruence subgroup of level n for an integer n ≥ 3 prime to p.
Let O×F,+ denote the totally positive units in F and O×F,+,n denote the subgroup of the squares of

elements in O×F , i.e., units, congruent to 1 mod n.
As explained more carefully in Section 2 in [17], observe that O×F,+ acts (and O×F,+,n acts trivially)

on `-polarisations, hence acts on XPR
U,` and on XPR

UIw,`. Let O×,+F,+ = O×F,+/O
×
F,+,n. Furthermore, Section

2 in [17] explains that GL2(OF ⊗Z Ẑ) acts on XPR
U,` and XPR

UIw,`.

Definition. Let K denote the preimage in GL2(OF ⊗Z Ẑ) = (ResF/QGL2)(Ẑ) of

(
∗ ∗
0 1

)
⊂

(ResF/QGL2)(Z/nZ) by the reduction mod n map (ResF/QGL2)(Ẑ) → (ResF/QGL2)(Z/nZ) and let

XPR
K (resp. XPR

KIw) denote the disjoint union over ` of XPR
K,` = XPR

U,`/(O
×,+
F,+ × K) (resp. XPR

KIw,` =

XPR
UIw,`/(O

×,+
F,+ ×K)). We similarly define Y PR

K (resp. Y PR
KIw) to be the disjoint union over ` of Y PR

K,` =

Y PR
U,` /(O

×,+
F,+ ×K) (resp. Y PR

KIw,` = Y PR
UIw,`/(O

×,+
F,+ ×K)) . The set of geometrically connected components

of Y PR
K may be identified with the strict ideal class group A∞,×F /F×+ (OF ⊗Z Ẑ)×.

The formation of O×,+F,+ -invariants does not change p-adic and mod p geometry of XPR
U and XPR

UIw we
are interested.

4 Hecke operators, odds and ends

4.1 Classical p-adic Hilbert modular eigenforms

Let V denote the open compact subgroup K or KIw of (ResF/QGL2)(Ẑ) as above. With that choice
made, let XPR

V,` denote its toroidal compactification over O defined as above. While the smooth O-

scheme XPR
K,` depend on a choice of an admissible polyhedral cone decomposition, we shall not refer

to the choice. Furthermore, we may and will choose an admissible polyhedral cone decomposition for
V = KIw compatible with the choice we make for XPR

K,`.

Let (A/S, i, λ, η, (Lie∨(A∨/S)τ (1) ⊂ · · · ⊂ Lie∨(A∨/S)τ )) be an S-point of Y PR
V,` for an O-scheme S.

Let LS denote the direct sum of two copies of O, ‘base-changed’ over O to OS . The cotangent sheaf
Lie∨(A/S) of A over S is a direct sum of locally free sheaves Lie∨(A/S)τ of OS-modules of rank ep for

τ in Σ̂p = HomQp
(F̂p, L) for every p in SP. For every τ , the polarisation λ equips Lie∨(A/S)τ with a

filtration

0 = Lie∨(A/S)τ (0) ⊂ Lie∨(A/S)τ (1) ⊂ · · · ⊂ Lie∨(A/S)τ (ep) = Lie∨(A/S)τ ⊂ H1
dR(A/S)τ

defined on Lie∨(A∨/S)τ . The locally free sheaf ker(π ⊗ 1 − 1 ⊗ γtτ |H1
dR(A/S)/Lie∨(A/S)(t − 1)) of

OS-modules is of rank 2 for every 1 ≤ t ≤ ep, and

Lie∨(A/S)τ (t)/Lie∨(A/S)τ (t− 1) ⊂ ker(π ⊗ 1− 1⊗ γtτ |H1
dR(A/S)/Lie∨(A/S)(t− 1)).

The covering over S, defined as the Zariski sheaf over S of isomorphisms

ker(π ⊗ 1− 1⊗ γtτ |H1
dR(A/S)/Lie∨(A/S)(t− 1)) ' LS

for all τ in Σ̂p, 1 ≤ t ≤ ep, and p in SP, which sends Gr∨(A/S)τ (t) = Lie∨(A/S)τ (t)/Lie∨(A/S)τ (t− 1)
to a line in LS which equals its orthogonal for the standard alternating form on LS , is a torsor with
respect to the Σ-product of a Borel subgroup B of the base-change GL2/O (by the standard embedding
of Q into L), where Σ = HomQ(F,L). In the unramified case, this sort of construction is standard (using
the smooth model of Rapoport [45]); the Pappas-Rapoport filtration exactly makes it possible to see all
isotypic components, which does not seem possible with the integral models defined in [16].

For a pair λ = (k,w) consisting of a [F : Q]-tuple of integers k =
∑
kιι where ι ranges over Σ and

an integer w such that kι ≡ w mod 2, consider the following invertible sheaf of OS-modules:⊗
ι

Gr∨(A/S)τ (t)⊗kι−2 ⊗ Ω1
dR,ι ⊗ Std⊗(w−kι)/2

ι
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where all tensor products are defined for OS-modules, and the first tensor product ranges over Σ where,
for every ι in Σ, there exists a unique prime p above p such that ι : F ⊗Q Qp → L factors through Fp and

its restriction to the unramified extension F̂p over Qp is exactly τ and ι, as an element of Σp,τ corresponds
to 1 ≤ t ≤ ep; and where Ω1

dR,ι is the ι-isotypic component of the sheaf of relative differentials of S over
O, and where Stdι is the invertible sheaf of OS-module corresponding to the standard representation of
the centre in B followed by the projection to S by ι.

Let Aλ denote the invertible sheaf on Y PR
V obtained when applying the construction to the universal

HBAV A over S = Y PR
V . The invertible sheaf extends to XPR

V , which we shall again call Aλ. It should be
possible to use these sheaves to define an eigenvariety for Hilbert modular forms in the general ramified
case.

Definition. We define a section of the induced invertible sheaf Aλ over XPR
K (resp. XPR

KIw) for
λ = (k,w), to be a p-adic classical cusp Hilbert modular form (on ResF/QGL2) over O of level K (resp.
K ∩ Iw) and of weight λ, or of weight k and central character of weight w.

Remark. We will only interested in the case of λ = (k,w) where kι = 1 for every ι in Σ.

For every prime p of F above p, let wp denote the automorphism of XPR
KIw defined on the non-cuspidal

points by the automorphism sending (A,C) to (A/Cp, A[p]/Cp × Cp) where by Cp, we mean the finite
flat subgroup ‘C away from p’.

Let π1, or π when it is clear what it is meant (resp. π2,p or πp), denote the morphism XPR
KIw → XPR

K

defined on the non-cuspidal points by the correspondence sending (A,C) to A (resp. to A/Cp).

We define Hecke operators on XPR
KIw. For a prime Q of F not dividing p (with a uniformiser πQ), let

XPR
KIw,IwQ

denote the toroidal compactification of the fine moduli O-space Y PR
KIw,IwQ

of A, parameterised

by Y PR
KIw, together with a finite flat subgroup scheme D = DQ of the finite étale group scheme A[πQ],

étale locally isomorphic to (OF /πQ)2, of order NF/QQ which locally f.p.p.f. admits a OF /πQ-generator.
It follows from the proof of Theorem 3.7.1 in [34] that the forgetful map π1,Q : Y PR

KIw,IwQ
→ Y PR

KIw is a rel-

atively representable morphism which is finite étale. Let π2,Q denote the extension to XPR
KIw,IwQ

→ XPR
KIw

of the morphism defined by sending a non-cuspidal point (A,D) to A/D.

For p above p, let XPR
KIw,Iwp

[1/p] denote the toroidal compactification of the fine moduli L-space

Y PR
KIw,Iwp

[1/p] which is the finite étale covering over Y PR
KIw[1/p] parameterising (A,C) together with a

finite flat subgroup scheme D of the étale group scheme A[p] of order NF/Qp which has only trivial
intersection with C. It again follows from the proof of Theorem 3.7.1 in [34] that the forgetful map
π1,p : Y PR

KIw,Iwp
[1/p] → Y PR

KIw[1/p] is a relatively representable morphism which is finite étale. Let π2,p

denote the morphism XPR
KIw,Iwp

[1/p] → XPR
KIw[1/p] defined on the non-cuspidal points by the represent-

able morphism sending (A,C,D) to (A/D, (C +D)/D).

Let π1, π2 denote either π1,Q, π2,Q : XPR
KIw,IwQ

→ XPR
KIw or π1,p, π2,p : XPR

KIw,Iwp
[1/p]→ XPR

KIw[1/p].

Let XPR,R-a
KIw denote the Raynaud generic fibre associated to the formal completion of XPR

KIw along its
fibre. By slight abuse of notation, we let XPR

KIw,Iwp
[1/p]R-a denote the Tate rigid analytic space associated

to the generic fibre XPR
KIw,Iwp

[1/p]. Let Aλ,R-a denote the Raynaud analytification of the invertible sheaf

Aλ over XPR
KIw and XPR

K .

By definition, we have π∗2Aλ,R-a → π∗1Aλ,R-a. If U and V are admissible open subsets of XPR,R-a
KIw in

the case of Q and XPR
KIw[1/p]R-a in the case of p satisfying π−1

1 (U) ⊆ π−1
2 (V ), we have a homomorphism

of sections

Aλ,R-a(V ) −→ (π2,∗π
∗
2Aλ,R-a)(V ) (π1,∗π

∗
2Aλ,R-a)(U) −→ (π1,∗π

∗
1Aλ,R-a)(U) −→ Aλ,R-a(U)

|| ||
π∗2Aλ,R-a(π−1

2 V ) −→ π∗2Aλ,R-a(π−1
1 U)
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where the rightmost map is the map of U -sections of the trace morphism; and we shall call it HeckeCor(p)(U)
or HeckeCor(Q)(U) depending on the case with p or Q.

Let Up denote the morphism

(NF/Qp)−1HeckeCor(p)(U) : Aλ,R-a(V )−→Aλ,R-a(U)

We define TQ (UQ if Q divides the level of U) exactly the same with Q in place of p.
Finally we define an operator wp of sections of the invertible rigid analytic sheaf Aλ,R-a over an

admissible open subset U of XPR,R-a
KIw . For a section f of Aλ,R-a over U , the pull-back w∗pf is a section

over wpU of w∗pAλ,R-a; its pull-back π∗2,pw
∗
pf is a section over wpU of Aλ,R-a, which we shall call wp(f).

4.2 Overconvergent p-adic Hilbert modular forms

We shall define an invariant ‘finer’ than the degree functions of Raynaud [47] and Fargues [21]. This is

specific to HBAVs of Pappas-Rapoport type parameterised by XPR,R-a
KIw , and is a key technical input that

allows us to perform analogues of Kassaei’s calculations in the unramified case [31]. One significant ad-
vantage of our construction is that, as we shall see it in Lemma 49 for example, it reads p-adic geometry
of XPR,R-a

KIw qualitatively more than the standard degree function on the Raynaud generic fibre of Y DP
KIw.

Let K be a finite extension of L; and let OK denote its ring of integers and let νK denote the valuation
on K normalised such that νK(p) = 1. Let S = Spec OK .

Following Tate [57],

Definition. Let O be an associative ring with a unit. An O-module scheme over a scheme S is a
commutative group scheme G over S together with a unitary ring homomorphism O → End(G/S); this
makes G(T ) for every S-scheme T a free O-module. If O is of characteristic p and the O-rank of G(T )
is independent of T and indeed 1, we call G a Raynaud O-module scheme (or O-vector space scheme if
O is a field).

Let f : A/S → B/S denote a (closed) non-cuspidal S-point of XPR
KIw corresponding to a K-point of

XPR,R-a
KIw . For every p in SP, τ in Σ̂p, and 1 ≤ t ≤ ep, define deg((A,C)/S)τ (t) in [0, 1/e] to be the νK

of a generator in OK of the annihilator of coker(Gr∨(A∨/S)τ (t)→ Gr∨(B∨/S)τ (t)).
The sum of all the deg((A,C)/S)τ (t) equals the degree function of Raynaud [47] and Fargues [21].

While it is defined pointwise, this definition works ‘in families’, i.e., one may take S to be an admissible
covering of XPR

KIw (and glue).
Note that our degree functions are defined solely as a result of filtrations defined on both ends of the

isogeny f . Incorporating one’s ‘choices of uniformisers’ into the equation is what seems to be achieved
by this definition.

Suppose that a cusp corresponding to a (class of) `-cusp degeneration data C as above correspond
to a semi-abelian A = (G ⊗Z D

−1M−1)/qN over S =
∐
τ X`,τ , whose pull-back to

∐
τ Y`,τ is a HBAV

and which comes equipped with an isotropic OF -stable Raynaud submodule scheme C =
∏

p Cp ⊂∏
p(G ⊗ D−1M−1/qN )[p] as above, let deg(A)τ (t) be 0 (resp. 1) for every τ in Σ̂p and 1 ≤ t ≤ ep

whenever p is in SP,× (resp. SP,et). In fact, analytic functions on Y PR,R-a
KIw defining degrees extend to

XPR,R-a
KIw , allowing us to define admissible open subsets in terms of degrees.

Definition. For λ = (k,w) as above, a p-adic overconvergent (cusp) Hilbert modular form over O of
level K ∩ Iw of weight k (and central character of weight w) is defined to be an element in the direct
limit, over the positive rationals ε, of the sections of Aλ,R-a over the admissible open subset of points ξ

in XPR,R-a
KIw satisying deg(ξ) ≤ ε.

5 Mod p geometry of modulil spaces of p-divisible groups

In this section, we study mod p geometry of XPR
K and XPR

KIw, by phrasing the essential part of arguments
in terms of stacks, or morally ‘local Shimura varieties’, of p-divisible groups. We define two new invariants
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for p-divisible groups of Pappas-Rapoport type, namely

• ΣBT where ‘BT’ stands for Bruhat-Tits as we consider ‘combinatorial choices of lines in vectors
spaces of a fixed dimension’ at Pappas-Rapoport filtrations; this invariant generalises the ‘Deligne-
Pappas invariant’ in [16],

• and ΣEO, which is based on the observation of Reduzzi-Xiao [48].

ΣEO will be used as an essential geometric input in proving an analytic continuation theorem (Propos-
ition 59), which allows us to pass from one ‘canonical end’ of the valuation hypercube to near the far
(opposite) end of the hypercube. In Section 5.4, the ‘Rapoport-Zink’ [46] stratification is introduced.
Proposition 35 and Proposition 36 are the key observations in characteristic p that are to be used in
studying the dynamics of Up-operator in characteristic zero generic fibre. In fact they play the same role
as Lemma 2.1 in [31].

Let p be a rational prime. Fix once for all an algebraic closure Qp of Qp. In this section, let π a
uniformiser in the ring O of integers of Fp, e the ramification index, and f the residue degree.

Let L ⊂ Qp be an extension of Qp containing the image of every conjugate of F in Qp, and let O

denote its ring of integers; and let κ denote its residue field, and Σ̂ = Σ̂p denote the set of all Qp-linear

embeddings of the residue field F = Fp of Fp into κ. Let f denote the element of Σ̂ which is (the unique
lifting of) the standard Frobenius automorphism.

The map sending π ⊗ 1 to a variable u defines an isomorphism

O ⊗ κ '
⊕

κ[u]/ue

where
⊕

ranges over Σ̂.
Let X be a Barsotti-Tate (Définition 1.5 in [29]) p-divisible group over a κ-scheme S of dimension

ef ([29] Remarques 2.2.2, (b)) and of height 2ef , equipped with endomorphism i : O → End(X/S).
Suppose that it is principally polarisable, i.e., there exists an O-linear isomorphism λ : X/S → X∨/S. It
then follows that Lie(X/S)τ is a locally free sheaf of OS-modules of rank ef , while the S-dual (5.3 in [4])
D∨(X/S) of the Dieudonné crystal sheaf D(X/S)S on the (small) site S is a locally free sheaf of O⊗ZpOS-
modules of rank 2. The dual D∨(X/S) comes equipped with Frobenius-semi-linear endomorphisms F
and V defined by duality in terms of V and F on the Dieudonné crystal D(X/S) respectively; hence
D∨(X/S) is isomorphic to D(X∨/S) as Dieudonné modules, and Lie∨(X∨/S) ' V D∨(X/S) for example.

Definition. For a closed immersion of S into the first-order thickening S[ε]/ε2, let D∨(X/S[ε]/ε2)
denote the S-dual of the Dieudonné crystal D(X/S) on the site S[ε]/ε2. For a homomorphism ϕ : L→M
of OS-modules, we shall let L[ϕ] denote the kernel ϕ in L.

5.1 Filtered Deligne-Pappas/Kottwitz-Rapoport

Definition. A principally polarisable Barsotti-Tate p-divisible group X/S as above is said to be filtered
if, for every τ in Σ̂, the τ -component Lie∨(X∨/S)τ of the dual of the Lie algebra sheaf Lie(X∨/S) of the
dual p-divisible group X∨ over S, comes equipped with a filtration

0 = Lie∨(X∨/S)τ (0) ⊂ Lie∨(X∨/S)τ (1) ⊂ · · · ⊂ Lie∨(X∨/S)τ (e) = Lie∨(X∨/S)τ ⊂ D∨(X/S)τ

such that Lie∨(X∨/S)τ (t) is, Zariski locally on S, a direct summand of Lie∨(X∨/S)τ of rank t and is a
sheaf of O ⊗τ OS-submodule of Lie∨(X∨/S)τ , satisfying, if we let u denote π ⊗ 1,

u(Lie∨(X∨/S)τ (t)) ⊂ Lie∨(X∨/S)τ (t− 1).

For brevity, we often write Gr∨(X∨/S)τ (t) to mean the quotient Lie∨(X∨/S)τ (t)/Lie∨(X∨/S)τ (t−1).

Lemma 27 For every τ in Σ̂,

u(Lie∨(X∨/S)τ (1)) = 0, u2(Lie∨(X∨/S)τ (2)) = 0, . . . , ue(Lie∨(X∨/S)τ (e)) = 0
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Proof. Since u(Lie∨(X∨/S)τ (t+ 1)) ⊂ Lie∨(X∨/S)τ (t), it follows that ut+1(Lie∨(X∨/S)τ (t+ 1)) ⊂
ut(Lie∨(X∨/S)τ (t)); hence it suffices to show that u(Lie∨(X∨/S)τ (1)) = 0 but this holds by definition.
�

Lemma 28 ue−tLie∨(X∨/S)τ ⊆ Lie∨(X∨/S)τ (t) for every 1 ≤ t ≤ e.

Proof. This can be proved by induction. When t = e, the equality evidently holds. Suppose
ue−(t+1)Lie∨(X∨/S)τ ⊆ Lie∨(X∨/S)τ (t+ 1) holds for t ≤ e− 1. Then

ue−tLie∨(X∨/S)τ = uue−(t+1)Lie∨(X∨/S)τ ⊆ uLie∨(X∨/S)τ (t+ 1) ⊂ Lie∨(X∨/S)τ (t).

�

Definition. Since X/S is principally polarisable, Lie(X/S) is also filtered if it is filtered. Indeed, by
duality, Lie(X/S) comes equipped with surjections:

Lie(X/S)τ ' Lie∨(X∨/S)∨ = Lie∨(X∨/S)τ (e)∨ → Lie∨(X∨/S)τ (e−1)∨ → · · · → Lie∨(X∨/S)τ (1)∨ → 0

such that every kernel is a locally free sheaf of OS-modules of rank 1 and is annihilated by u; in-
deed, Lie∨(X∨/S)τ (t + 1)/Lie∨(X∨/S)τ (t) is isomorphic to the dual of ker(Lie∨(X∨/S)τ (t + 1)∨ →
Lie∨(X∨/S)τ (t)∨).

Define Lie(X/S)τ (t) to be the kernel of the composite of surjections:

Lie∨(X∨/S)τ (e)∨ → Lie∨(X∨/S)τ (e− 1)∨ → Lie∨(X∨/S)τ (e− t)∨.

Then Lie(X/S)τ comes equipped with a filtration

0 = Lie(X/S)τ (0) ⊂ Lie(X/S)τ (1) ⊂ · · · ⊂ Lie(X/S)τ (e) = Lie(X/S)τ

which is analogous to the filtration on Lie∨(X∨/S); in particular, the assertions in the preceding lemmas
hold for Lie(X/S) in place of Lie∨(X∨/S). Note that, by definition, Lie(X/S)τ (t + 1)/Lie(X/S)τ (t)
is dual to ker(Lie∨(X∨/S)τ (e)/Lie∨(X∨/S)τ (e − t − 1) → Lie∨(X∨/S)τ (e)/Lie∨(X∨/S)τ (e − t)) =
Lie∨(X∨/S)τ (e− t)/Lie∨(X∨/S)τ (e− t− 1).

Definition. Let SBT denote the stack of principally polarisable filtered Barsotti-Tate p-divisible
groups over Specκ. The stack SBT parametrises that p-divisible groups arising from points of Y PR

K as
defined in Section 3.

Definition. For a principally polarisable filtered p-divisible group X over a κ-scheme S, let

D(X/S)τ (t) = ker(u |D∨(X/S)τ/Lie∨(X∨/S)τ (t− 1))

for every τ in Σ̂ and 1 ≤ t ≤ e. It is a locally free sheaf of OS-modules of rank 2 (see Proposition 5.2 (b)
of [42] with d = 2).

5.2 Bruhat-Tits

For every τ in Σ̂, define a set ΣBT,τ of e integers ΣBT,τ = {νBT,τ (1), . . . , νBT,τ (e)} satisfying:

• νBT,τ (1) = 0;

• for every 2 ≤ t ≤ e, exactly one of the conditions, (BT-1): νBT,τ (t − 1) = νBT,τ (t), or (BT-2):
νBT,τ (t− 1) + 1 = νBT,τ (t) is satisfied;

• for every t,
t− νBT,τ (t) ≥ νBT,τ (t).
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When convenient, we let νBT,τ (0) = 0, and let νBT,τ denote νBT,τ (e).

Remark. The number of t’s satisfying (BT-2) equals νBT,τ .

Definition. Let ΣBT,τ,1 (resp. ΣBT,τ,2) denote the subset of {1, . . . , e} consisting of 1 and the set
of 2 ≤ t ≤ e satisfying (BT-1) (resp. consisting of 1 ≤ t ≤ e satisfying (BT-2)). Evidently ΣBT,τ,1 and
ΣBT,τ,2 defines a partition of {1, . . . , e}.

Definition. Given ΣBT,τ , define a subset γBT,τ of {1, . . . , e} the following way. Firstly, for every τ ,
we define a map ζτ (dependent of ΣBT,τ ) from {1, . . . , e} to the set of length e (labeled) sequences of
two elements {e1, e2}, by defining ζτ (t) = e1 if t lies in ΣBT,τ,1 and ζτ (t) = e2 if t lies in ΣBT,τ,2. We
then turn the resulting sequence ζτ (1), . . . , ζτ (e) of ‘words’ into its reduced expression by sequentially
(as t increases) eliminating the adjacent pair e1e2; the corresponding pairs of indices in {1, . . . , e}, or an
index that is in pair, so eliminated will be referred to as ΣBT,τ -redundant. Finally define γBT,τ to be the
set of all 1 ≤ t ≤ e that is not ΣBT,τ -redundant. By definition, |γBT,τ | = e− 2νBT,τ , which is defined to
be non-negative.

Definition. For every integer 1 ≤ N ≤ e, let D∨(X∨/S)τ 〈N〉 denote the image of D∨(X∨/S)τ by
uN .

Definition. Given data Σ consisting of ΣBT = (ΣBT,τ )τ , define SBT
Σ to be the closed κ-substack of

SBT of principally polarisable filtered p-divisible groups X over κ-schemes S satisfying

D∨(X/S)τ 〈e− νBT,τ (t)〉 ⊂ Lie∨(X∨/S)τ (t) ⊂ D∨(X∨/S)τ 〈e− (t− νBT,τ (t))〉.

Observe that when ΣBT is defined by demanding that νBT,τ (t) = 0 for every τ in Σ̂ and t, the stack
SBT

Σ is nothing other than SBT.

For two sets of data Σ = {νBT,τ (t)} and Σ+ = {lBT,τ (t)} as above, we may define a partial or-

der Σ+ ≤ Σ if lBT,τ (t) ≤ νBT,τ (t) holds for every τ in Σ̂ and 1 ≤ t ≤ e. If this is the case,
D∨(X/S)τ 〈e− lBT,τ 〉 is contained in D∨(X/S)τ 〈e−νBT,τ 〉, while D∨(X/S)τ 〈e−(t−νBT,τ )〉 is contained
in D∨(X/S)τ 〈e− (t− lBT,τ )〉, hence SBT

Σ+ defines a closed κ-substack of SBT
Σ .

Definition. If a principally polarisable filtered p-divisible group X over a κ-scheme X lies in the
S-fibre of SBT

Σ −
⋃

Σ+<Σ S
BT
Σ+ , we say that X is of type Σ = ΣBT and let νBT(X/S)τ (t) and γBT,τ (X/S)

respectively denote νBT,τ (t) and γBT,τ corresponding to Σ.

Proposition 29 For Σ = ΣBT as above, the closed immersion from SBT
Σ to SBT is representable and

formally smooth of relative dimension
∑
τ e− (e− 2νBT,τ ) =

∑
τ 2νBT,τ .

In earlier versions of the paper, we gave a ‘linear algebra’ proof of this proposition by carefully in-
specting the moduli problem. In the following, we opt for a proof that is admittedly rather highbrow,
yet sheds more light on Pappas-Rapoport constructions ([41] and [42]), in particular, on their relevance
to Deligne-Pappas constructions.

For simplicity and for ease of reference to [41] and [42], we assume |Σ̂| = 1. The transfer of a
proof to the general case is straightforward, as the case |Σ̂| = 1 typifies what happens at every τ in Σ̂
independently.

Let k be a field of characteristic p and let k[[u]] (resp. k((u))) be the power series (resp. Laurent
series) ring k[[u]] with coefficients in k and a variable u.

Let FA denote a free k((u))-module of rank 2 and fix a k((u))-basis. Let A ⊂ FA denote the free
k[[u]]-module generated by the basis over k[[u]].

For a k-algebra R, by a k[[u]] ⊗k R-lattice in A ⊗k R ' R((u))2, we mean a submodule over R[[u]]
of FA ⊗k R which is, locally on SpecR, a free R module of rank 2 and, when u is inverted, it gives rise
to FA ⊗k R. We often say ‘... parameterises k[[u]]-lattices of FA ’ to abbrivaite this functorial view.
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Let G denote GL2(k((u))) and K denote the subgroup scheme of GL2(k((u))) whose k-valued points
stabilise the lattice A . We see G (resp. K) as the (resp. positive) loop group of GL2 and let G/K be
the fpqc sheaf quotient, i.e., the affine Grassmannian of GL2. For brevity, let X denote the e copies of
G/K, which is also an ind k-scheme.

For an element τ of dominant coweight GL2, let G(τ) denote the closure of KτK in G.

Fix a positive integer `. Let
φ = (φ1, . . . , φ`)

be an `-tuple of coweights of GL2 which are either trivial or (dominant) minuscule, in other words, by
the standard identification of the coweights with Z2, φ is an ` tuple of vectors (0, 0) or (1, 0).

Let G(φ) denote the closed subscheme of the ` copies of G which parameterises (γ1, . . . , γ`) ∈ G×· · ·×
G such that γt−1γ

−1
t lies in G(φt) (where we set γt = 1 when t = 0); it is evidently a closed subscheme

of the ` copies of G. We define right action of K` by right translations component-by-component.
On the other hand, define an isomorphism

G(φ1)× · · · ×G(φ`)→ G(φ)

by
(γ1, . . . , γ`) 7→ (γ1, γ1γ2, · · · , γ1 · · · γ`).

By this isomorphism, the aforementioned right action of K` on G(φ) induces right action of K` on
G(φ1)× · · · ×G(φ`):

(γ1, . . . , γ`)(β1, . . . , β`) = (γ1β1, β
−1
1 γ2β2, . . . , β

−1
`−1γ`β`).

The isomorphism G(φ1) × · · · × G(φ`) → G(φ) induces an isomorphism D(φ) := (G(φ1) × · · · ×
G(φ`))/K

` → G(φ)/K` of the right K`-quotients (in the fpqc topology) and it is possible to interpret
them slightly differently.

The quotient G(φ)/K` ⊂ X parameterises, for a k-algebra R, the set of k[[u]]⊗k R-lattices

A = A (0) ⊃ A (1) ⊃ · · · ⊃ A (`)

in FA such that, for every 1 ≤ t ≤ `, the relative position ρ(A (t − 1),A (t)) satisfies the inequality
ρ(A (t − 1),A (t)) ≤ φt in terms of the standard partial order on the dominant coweights of GL2. The
condition about the relative positions indeed implies that uA (t − 1) ⊂ A (t) ⊂ A (t − 1) for all t.
Furthermore, if t is an index such that φt is trivial, A (t − 1) = A (t); hence there are only maximum
`− |{1 ≤ t ≤ ` |φt is miniscule}| distinct lattices in each chain A (1) ⊃ · · · ⊃ A (`) contained in A .

With this ‘moduli viewpoint’, the isomorphism from G(φ)/K` to D(φ) is given by sending a chain of
lattices (A (1) ⊃ · · · ⊃ A (`)) in FA as above to (A /A (1),A (1)/A (2), . . . ,A (e− 1)/A (`)).

On the other hand, D(φ) = (G(φ1) × · · · ×G(φ`))/K
` is thought of as a left G-homogenous bundle

that is given by iterated P1-fibrations in the following sense:

• Let K act on G, and hence on G(φ`), from right by right translations and let L(φ`) denote the
quotient G(φ`)/K ⊂ G/K, which come equipped with natural left G action by left translations.

• Fixing t ≥ 0, suppose D(φ`−t, . . . , φ`) is a left G-equivariant bundle over G(φ`−t)/K. We then
define

D(φ`−(t+1), φ`−t, . . . , φ`) = (G(φ`−(t+1))×D(φ`−t, . . . , φ`))/K

where we see D(φ`−t, . . . , φ`) as a right K-module by left-inverse translations and K acts on
G(φ`−(t+1)) by right translations. We let G acts on D(φ`−(t+1), . . . , φ`) from left by letting it act on
the G(φe−(t+1))-factor only by left translations; as a result, D(φ`−(t+1), . . . , φ`) is a G-equivariant
bundle over over G(φ`−(t+1))/K.
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If φt is minuscle, G(φt)/K is P1 over k which is smooth and consequently, D(φ) is smooth of dimension

|{1 ≤ t ≤ ` |φt is miniscule}| = 〈φ1 + · · ·φ`, (1,−1)〉

where 〈 , 〉 is the standard scaler product on R2 and where we see the dominant weight φ1 + · · · + φ`
as a pair of integers. One normally thinks of D(φ) as a resolution2 of G(φ1 + · · · + φ`)/K by iterated
P1-fibrations. As [42] Section 6 establishes, G(φ1)× · · · ×G(φ`) is naturally thought of as a K`−1-torsor
over D(φ).

Definition. Let XPR be the closed ind-subscheme of X parametrising k[[u]]-lattice chains A ⊃
A (1) ⊃ · · · ⊃ A (`) in FA such that

A ⊃ A (1) ⊃ · · · ⊃ A (`) = E (`) ⊃ E (`− 1) ⊃ · · ·E (1) ⊃ u`A

where, for every 1 ≤ t ≤ `, we denote
E (t) = u`−tA (t).

Definition. Let XPR(φ) denote G(φ)/K`.

By definition, XPR(φ) is a closed ind-subscheme of XPR. Also, since D(φ) is smooth over k, so is
XPR(φ). Evidently, if φ is such that φt is miniscule for every 1 ≤ t ≤ `, then XPR(φ) = XPR.

We now recall Pappas-Rapoport local models. Unless otherwise specified, ` is chosen to be e in the
following.

Fix an isomorphism O ⊗Zp k ' k[u]/ue sending π ⊗ 1 to u and A denote a free R-module A ⊗k[[u]]

k[[u]]/ue.

The Pappas-Rapoport local model NPR parameterises, for a k-algbera R, the iset of of locally free
R-modules

0 = A(0) ⊂ A(1) ⊂ · · ·A(e) ⊂ A⊗R

such that A(t) is, locally on SpecR, a free R-module of rank t and such that π ⊗ 1 ∈ (O ⊗ k) ⊗k R
annihilates A(t)/A(t− 1) for every 1 ≤ t ≤ e.

For a such chain of locally free R-modules A(1) ⊂ · · · ⊂ A(e), if E (1) ⊂ · · · ⊂ E (e) ⊂ A ⊗k R denote
a chain of k[[u]]-lattices in A lifting A(1) ⊂ · · · ⊂ A(e) by A ⊗k R→ A⊗k R then the map

f : (A(1) ⊂ · · · ⊂ A(e)) 7→ (E (1) ⊂ · · · ⊂ E (e) ⊂ u−1E (e− 1) ⊂ · · · ⊂ u1−eE (1))

gives a bijection between NPR and XPR where the ‘converse’ f−1 is given by sending (A (1) ⊃ · · · ⊃
A (e)) to the image of (ue−1A (1) ⊂ ue−2A (e−2) ⊂ · · · ⊂ ue−tA (t) ⊂ · · · ⊂ A (1) ⊂ A ⊗kR) in A⊗kR
by reduction A ⊗k R→ A⊗k R mod ue.

For φ = (φ1, . . . , φe), we define a closed stratum NPR(φ) of NPR parameterising locally free modules
A(1) ⊂ · · · ⊂ A(e) ⊂ A such that the relative position ρ(A(t − 1), A(t)), naturally thought of as an
element of GL2(k[u]/ue)\GL2(k((u)))/GL2(k[u]/ue) lies in the closure of GL2(k[u]/ue)φtGL2(k[u]/ue)
in G for every 1 ≤ t ≤ e.

The map f : NPR → XPR gives rise to an isomorphism

NPR(φ)→ XPR(φ).

We finally prove the proposition. We define a closed subscheme NPR
Σ of NPR with Σ = ΣBT =

{νBT(1), . . . , νBT(e)}: it parametrises the set of locally free modules A(1) ⊂ · · ·A(e) ⊂ A such that A(t)
is, locally on SpecR, a free R-module of rank t and satisfies

A〈e− νBT(t)〉 ⊂ A(t) ⊂ A〈e− (t− νBT(t))〉
2The construction is often attributed to Demazure, Lusztig, Bott, Samelson and Hansen.
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for every 1 ≤ t ≤ e. Note that the condition, evidently closed, is placed to specify the elementary
divisors, i.e., a pair of integers defined as the u-valuations of a two generators of A(t) when written in
terms of k[u]/ue-basis of A. More precisely, the elementary divisors of A(t) is a pair e − νBT(t) and
e − (t − νBT(t)), which satisfy the inequality e − νBT(t) ≥ e − (t − νBT(t)) by definition and which we
might see as a dominant weight of GL2. If we let E (1) ⊂ · · · ⊂ E (e) ⊂ A denote a chain of liftings in
A of A(1) ⊂ · · ·A(e), the elementary divisors of E (t) remain the pair (e− νBT(t), e− (t− νBT(t))) but
E (t)〈−(e− t)〉 has elementary divisors (t− νBT(t), νBT(t)) for every 1 ≤ t ≤ e.

The scheme NPR
Σ is a local model for SBT

Σ and the proposition follows from the smoothness of NPR
Σ

which we prove in the following Lemma.

Lemma 30 Let Σ = ΣBT = {νBT(1), . . . , νBT(e)}. Define φ by φt is minuscle if t lies in γBT; and φt is
trivial if t is redundant, for every 1 ≤ t ≤ e. Then

NPR
Σ ' NPR(φ).

In particular, NPR
Σ is smooth of dimension |γBT| = e− 2νBT over k.

Proof. Since XPR(φ) is isomorphic to NPR(φ), we prove the assertion as an isomorphism of closed
subschemes in XPR. For a k -algebra R, let E (1) ⊂ · · · ⊂ E (e) ⊂ A denote a chain of lattices in FA ⊗kR
that reduced to an R-point of NPR

Σ . For every 1 ≤ t ≤ e, let A (t) denote E (t)〈−(e − t)〉. Then one
observes that the A (t)〈−νBT(t)〉 as t ranges over γBT define an R-valued point of XPR(ϕ) where ϕ is
the |γBT| = (e− 2νBT)-tuple of minuscule dominant coweight (1, 0). It is easy to check that this defines
an isomorphism NPR

Σ ' XPR(ϕ). By the definition of φ, XPR(φ) is evidently isomorphic to XPR(ϕ). �

Remark. We have NPR
Σ ' NPR(φ) ' XPR(φ) ' D(φ). In particular, D(φ) can be seen as a

resolution of G(φ1 + · · · + φe)/K. The local model corresponding to G(φ1 + · · · + φe)/K therefore
parameterises, for a k-algebra R, the set of locally free R-module A(e) ⊂ A⊗k R of rank e satisfying the
condition

A〈e− νBT〉 ⊂ A(e) ⊂ A〈νBT〉.

This is precisely the closed k-singular stratum of the Deligne-Pappas local model, 4.2 in [16]; and NPR
Σ

is thought of as a resolution of the stratum at the singularities.

Proof of Proposition 29. Since NPR
Σ is a local model for SPR

Σ when |Σ̂| = 1, the proposition follows
from the lemma above, combined with the observation that NPR(φ) ' D(φ) is smooth over k = κ of
dimension e− 2νBT and NPR ' XPR is smooth of dimension e. �

5.3 Ekedhal-Oort

In this section, we shall consider an ‘Ekedahl-Oort stratification’ on SBT. To this end, we use a slight
variant of the construction of ‘partial Hasse invariants’ by Reduzzi and Xiao in [48]; the ‘source’ of
our maps are on D(X/S)τ (t) in comparison to [46] on Gr∨(X∨/S)τ (t). We emphasise that the idea is
essentially Reduzzi-Xiao’s.

Let S be a κ-scheme S and X be a filtered principally polarisable Barsotti-Tate p-divisible group over
S. The Verschiebung VX∨ : X∨ → X∨(1/p) defines, for every τ in Σ̂, a ϕ−1-semi-linear homomorphism

Lie∨(X∨/S)f◦τ → (Lie∨(X∨/S)×ϕ−1 S)τ ' Lie∨(X∨(1/p)/S)τ
VX∨−→ Lie∨(X∨/S)τ

of OS-modules that we shall denote simply by V , where ϕ denote the (absolute) Frobenius morphism on
S.

Lemma 31 V above sends Lie∨(X∨/S)τ (t) ⊂ Lie∨(X∨/S)τ to Lie∨(X∨/S)f−1◦τ (t).

Proof. Since utLie∨(X∨/S)τ (t) = 0, one sees that Lie∨(X∨/S)τ (t) ⊂ ue−tD∨(X/S)τ . As V is u-
linear, V (Lie∨(X∨/S)τ (t)) ⊂ ue−tV D∨(X/S)τ = ue−tLie∨(X∨/S)f−1◦τ . It follows from Lemma 28 that
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ue−tLie∨(X∨/S)f−1◦τ ⊂ Lie∨(X∨/S)f−1◦τ (t). Combining these two, the assertion follows. �

For 2 ≤ t ≤ e, we let
∆t
τ : D(X/S)τ (t) −→ D(X/S)τ (t− 1)

denote the multiplication-by-u-map, and, when t = 1, we let

∆1
τ : D(X/S)τ (1) −→ Gr∨(X∨/S)f−1◦τ (e) ⊂ D(X/S)τ (e)

be the map ‘V ◦ u−e+1’ that sends an element ue−1ξ in D(X/S)τ (1) = ker(u |D∨(X/S)τ ) with ξ in
D∨(X/S)τ to the class V (ξ) + Lie∨(X∨/S)f−1◦τ (e− 1) in Gr∨(X∨/S)f−1◦τ (e).

For 2 ≤ t ≤ e, D(X/S)τ (t) is nothing other than u−1Lie∨(X/S)τ (t − 1)/Lie∨(X∨/S)τ (t − 1), and
therefore the image of ∆t

τ is Gr∨(X∨/S)τ (t−1). The rank of the kernel D(X/S)τ (t)[∆t
τ ] is 1 as a result.

Similarly, the image of ∆1
τ is Gr∨(X∨/S)f−1◦τ (e). As pointed out in Lemma 3.8 in [48], the restriction

to Gr∨(X∨/S)τ (t) of the composite ∆t+1
f−1◦τ ◦ · · · ◦∆e

f−1◦τ ◦∆1
τ ◦ · · · ◦∆t

τ :

D(X/S)τ (t)
∆t
τ−→ · · · ∆2

τ−→ D(X/S)τ (1)
∆1
τ−→ D(X/S)f−1◦τ (e)

∆e
f−1◦τ−→ · · ·

∆t+1

f−1◦τ−→ D(X/S)f−1◦τ (t)

defines the Verschiebung map

V : Gr∨(X∨/S)τ (t) −→ Gr∨(X∨/S)f−1◦τ (t)

induced by Lemma 31. When f = 1, we recover the standard Verschiebung.

For every τ in Σ̂, let γEO,τ denote a subset of {1, . . . , e}, and ΣEO denote the Σ̂-tuple (γEO,τ )τ as τ

ranges over Σ̂.
For Σ = ΣEO, we define SBT

Σ to be the κ-substack of SBT parameterising filtered principally polaris-

able p-divisible groups X over κ-schemes S such that, for every τ in Σ̂, ∆t
τ is zero if t lies in γEO,τ .

Remark. In the light of the proof of Proposition 29, it is possible to relate ΣBT and ΣEO.

For two sets of data Σ = ΣEO = (γEO,τ )τ and Σ+ = Σ+
EO = (γ+

EO,τ )τ , we may define a partial order

Σ+ ≤ Σ if γEO,τ ≤ γ+
EO,τ holds for every τ in Σ̂. If Σ+ ≤ Σ but Σ+ is distinct from Σ, we write Σ+ < Σ.

If this is the case, SBT
Σ+ defines a closed κ-substack of SBT

Σ .

Definition. If a principally polarisable filtered p-divisible group X over a κ-scheme S lies in the S-
fibre of SBT

Σ −
⋃

Σ+<Σ S
BT
Σ+ , we say that X of of type ΣEO, and let γEO,τ (X/S) denote γEO,τ corresponding

to ΣEO.

Proposition 32 Let Σ denote ΣEO. The closed immersion from SBT
Σ to SBT is representable and

formally smooth of relative dimension
∑
τ |ΣEO,τ |.

Proof. Let U be a κ-scheme. Let S be a U -scheme, and S[ε]/ε2 its first-order thickening. Let X be
a principally polarisable filtered Barsotti-Tate p-divisible group over S defining an S-point of the fibre
SBT

Σ,U over U . As SBT
Σ,U is given by the vanishing sections over S of line bundles ∆t

τ for t in γEO,τ for

every τ , the relative dimension of SBT
Σ,U ↪→ SBT

U is at most
∑
τ |ΣEO,τ |. It therefore suffices to establish

that the tangent space of SBT
Σ,U at X/S has codimension

∑
τ |ΣEO,τ | in the tangent space of SBT

U . Fix

τ and 1 ≤ t ≤ e, and suppose that Lie∨(X∨/S)τ (t − 1) lifts to S[ε]/ε2. If t lies in γEO,τ , it follows, by
definition, that Gr∨(X∨/S)τ is contained in the rank 1 module D(X/S)τ (t)[∆t

τ ], and therefore they are
equal. As D(X/S)τ (t)[∆t

τ ] lifts uniquely to S[ε]/ε2, so does Gr∨(X∨/S)τ (t). �

5.4 Rapoport-Zink

Let SBT
I denote the κ-stack of principally polarisable filtered Barsotti-Tate p-divisible groups equipped

with O-linear isogenies to principally polarisable filtered Barsotti-Tate p-divisible groups. More precisely,
the fibre of SBT

I over a κ-scheme of S parameterises (the set of isomorphism classes of) of O-linear
isogenies f : X/S → Y/S of principally polarisable Barsotti-Tate p-divisible groups X and Y over S such
that
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• C = ker f is a finite flat O-subgroup ofX[π] of order |O/π| = |F| such that any principal polarisation
on X induces an isomorphism X[π] ' X[π]∨ which sends C to (X[π]/C)∨ isomorphically,

• for every τ in Σ̂, both
Lie∨(f∨) : Lie∨(X∨/S)τ → Lie∨(Y ∨/S)τ

and
Lie∨(f∧)∨ : Lie∨(Y ∨/S)τ → Lie∨(X∨/S)τ ,

given by f : X → Y and the ‘dual’ isogeny Y/S → X/S such that f∧ ◦ f = π on X and f ◦ f∧ = π
on Y , will be denoted again by f∨ and (f∧)∨ respectively by slight abuse of notation, commute
with their respective filtrations, and let

f∨ : Gr∨(X∨/S)τ (t)→ Gr∨(Y ∨/S)τ (t)

and
(f∧)∨ : Gr∨(Y ∨/S)τ (t)→ Gr∨(X∨/S)τ (t)

also denote the corresponding morphisms.

For pairs of O-isogenies f and f∧ as above, we define analogues of the invariants defined in [46] and
[24].

Definition. For every τ in Σ̂, define γRZ,τ (f) (resp. νRZ,τ (f)) to be the set of 1 ≤ t ≤ e such that
f∨ (resp. (f∧)∨) is zero on Gr∨(X∨/S)τ (t) (resp. Gr∨(Y ∨/S)τ (t)).

Note that, as π = 0, for every 1 ≤ t ≤ e, either t lies in γRZ,τ or in νRZ,τ , or indeed in both.

Definition. Let Σ denote a tuple (νRZ,τ , γRZ,τ )τ , where τ ranges over Σ̂, of subsets γRZ,τ ⊆ {1, . . . , e}
and νRZ,τ ⊆ {1, . . . , e}, satisfying the following condition that every 1 ≤ t ≤ e lies in at least one of γRZ,τ

or νRZ,τ for every τ in Σ̂.

For a such Σ, define SBT
I,Σ to be the closed κ-substack of O-isogenies f : X/S → Y/S of filtered

principally polarisable Barsotti-Tate p-divisible groups over S such that

• f∨ : Gr∨(X∨/S)τ (t)→ Gr∨(Y ∨/S)τ (t) is zero for every t that lies in γRZ,τ , i.e., γRZ,τ ⊆ γRZ,τ (f),

• (f∧)∨ : Gr∨(Y ∨/S)τ (t) → Gr∨(X∨/S)τ (t) is zero for every t that lies in νRZ,τ , i.e., νRZ,τ ⊆
νRZ,τ (f∧).

Proposition 33 For Σ as above, the closed immersion of SBT
I,Σ into SBT

I is representable of relative

dimension
∑e
t=1(f − (f − |γRZ,t|+ f − |νRZ,t|)) =

∑e
t=1(|γRZ,t|+ |νRZ,t| − f).

Proof. This can be proved as Theorem 2.5.2 in [24]. �

If γRZ,t ∩ νRZ,t = ∅, |γRZ,t| + |νRZ,t| = f , and if this is the case for every 1 ≤ t ≤ e, the relative
dimension of the closed immersion is 0.

Lemma 34 Let f : X/S → Y/S and its dual isogeny f∧ : Y/S → X/S be as above. Then the equalities
D(X/S)τ (t)[f∨] = (f∧)∨(D(Y/S)τ (t)) and D(X/S)τ (t)[(f∧)∨] = f∨(D(Y/S)τ (t)) hold, and they are
all of rank 1.

Proof. One observes firstly that, as (f∧)∨(D(Y/S)τ (t)) is contained in D(X/S)τ (t)[f∨], it suffices to
check that they are both of rank 1 over S. However, it follows immediately from Proposition 5.2 in [42]
that D(X/S)τ (t)[f∨] is locally free of rank 1 over S. A similar argument shows that D(Y/S)τ (t)[(f∧)∨]
is rank 1 over S and, as D(Y/S)τ (t) is rank 2 over S, (f∧)∨(D(Y/S)τ (t)) is rank 1 over S. An analogous
argument proves the other equality. �
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Proposition 35 Let f : X/S → Y/S and f∧ : Y/S → X/S be as above. If t ≥ 2 and t− 1 lies in νRZ,τ

while t lies in γRZ,τ , then t lies in γEO,τ (X/S). If t = 1 and e lies in νRZ,f−1◦τ while t = 1 lies in γRZ,τ ,
then t = 1 lies in γEO,τ (X/S).

Proof. Firstly suppose t ≥ 2. The assumption that t − 1 lies in νRZ,τ implies that (f∧)∨ vanishes
on the image by ∆ = ∆t

τ of D(Y/S)τ (t). As ∆D(Y/S)τ (t) ' D(Y/S)τ (t)/D(Y/S)τ (t)[∆] and similarly
for X, it then follows that (f∧)∨(D(Y/S)τ (t)) ⊂ D(X/S)τ (t)[∆]. On the other hand, t is in γRZ,τ (f)
and therefore Gr∨(X∨/S)τ (t) is contained in D(X/S)τ (t)[f∨] = (f∧)∨(D(Y/S)τ (t)). Combining, one
deduces that Gr∨(X∨/S)τ (t) is contained in D(X/S)τ (t)[∆]. As ∆Gr∨(X∨/S)τ (t) is zero, t lies in γEO,τ .

The case t = 1 is similar, except that one has to be careful that the image by ∆1
τ of D(Y/S)τ (1) is

Gr∨(X/S)f−1◦τ (e). �

Proposition 36 Let f : X/S → Y/S and f∧ : Y/S → X/S be as above. If t ≥ 2 and if either

• t− 1 lies in νRZ,τ while t does not lie in γRZ,τ ,

• or t− 1 does not lie in νRZ,τ while t lies in γRZ,τ ,

holds, then t does not lie in γEO,τ (X/S). If t = 1, if either

• e lies in νRZ,f−1◦τ while t = 1 does not lie in γRZ,τ ,

• or e does not lie in νRZ,f−1◦τ while t = 1 lies in γRZ,τ ,

holds, then t = 1 does not lie in γEO,τ (X/S).

Proof. Suppose that t ≥ 2. The case t = 1 is similar as in Proposition 35. Firstly, suppose that t− 1
lies in νRZ,τ but t does not in γRZ,τ . It then follows exactly as in the proof of Proposition 35, using
the assumption that t − 1 lies in νRZ,τ , that D(X/S)τ (t)[f∨] = (f∧)∨D(Y/S)τ (t) ⊂ D(X/S)τ (t)[∆].
Observing that they all are of rank 1, one sees that they are equal. Therefore, if Gr∨(X∨/S)τ (t) lay
in D(X/S)τ (t)[∆], it would contradict the assumption that t does not lie in γRZ,τ . As Gr∨(X∨/S)τ (t)
does not lie in D(X/S)τ (t)[∆], t does not lie in γEO,τ .

Secondly, suppose that t lies in γRZ,τ but it does not in νRZ,τ . One observes that Gr∨(X∨/S)τ (t) ⊂
D(X/S)τ (t)[f∨] = (f∧)∨D(Y/S)τ (t) are equal (of rank 1). One also observes that ∆(D(Y/S)τ (t)) is
Gr∨(Y ∨/S)τ (t) and in particular it is of rank 1. It then follows that

∆Gr∨(X∨/S)τ (t) = ∆(f∧)∨D(Y/S)τ (t) = (f∧)∨∆D(Y/S)τ (t) = (f∧)∨Gr∨(Y ∨/S)τ (t− 1)

but the assumption that t does not lie in νRZ,f−1◦τ (f) implies that ∆Gr∨(X∨/S)τ (t) is non-zero. Con-
sequently t does not lie in γEO,τ . �

Swapping f for f∧ and f∧ for f , it is possible to prove:

Proposition 37 If t ≥ 2 and t− 1 lies in γRZ,τ while t lies in νRZ,τ , then t lies in γEO,τ (Y/S). If t = 1
and e lies in γRZ,f−1◦τ while t = 1 lies in νRZ,τ , then t = 1 lies in γEO,τ (Y/S).

On the other hand, if t ≥ 2 and if either

• t− 1 lies in γRZ,τ while t does not lie in νRZ,τ ,

• or t− 1 does not lie in γRZ,τ while t lies in νRZ,τ ,

holds, then t does not lie in γEO,τ (Y/S). If t = 1, if either

• e lies in γRZ,f−1◦τ while t = 1 does not lie in νRZ,τ ,

• or e does not lie in γRZ,f−1◦τ while t = 1 lies in νRZ,τ ,

holds, then t = 1 does not lie in γEO,τ (Y/S).

Proof. See the proofs of Proposition 35 and Proposition 36. �
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5.5 Calculations with de Rham-Breuil modules

As in the previous sections, let π be a uniformiser in the valuation ring O of Fp, e the ramification index,
and f the residue degree. Let F = O/π denote the residue field. Let OL denote the valuation ring of
a finite extension L of Fp which contains the image of every embedding of Fp into Qp. Write the set

Σ̂ = Σ̂p and the Frobenius automorphism f in Σ̂ as in the previous section.

Let K denote a finite extension of L with ring OK of integers, a uniformiser ξ, the ramification index
eK and k = OK/ξOK the residue field. We normalise the valuation on K so that p has valuation 1.
Unless otherwise specified, S = Spec OK and S = Spec OK where OK = OK/πOK in this section.

By a Barsotti-Tate p-divisible group (which comes equipped with an endomorphism O → End(X/S)),
we shall mean it in the sense of Définition 1.5 in [29] over S, and is of dimension fe and of height 2fe.

Definition. A principally polarisable Barsotti-Tate p-divisible group X over S is said to be filtered
if, for every τ in Σ̂, Lie∨(X∨/S)τ comes equipped with a filtration

0 = Lie∨(X∨/S)τ (0) ⊂ Lie∨(X∨/S)τ (1) ⊂ · · · ⊂ Lie∨(X∨/S)τ (e) = Lie∨(X∨/S)τ ⊂ D∨(X/S)τ

such that Lie∨(X∨/S)τ (t) is, locally on S, a direct summand of Lie∨(X∨/S)τ of rank t and is a sheaf of
O ⊗τ OK-submodule satisfying the condition

(π ⊗ 1− 1⊗ γtτ )Lie∨(X∨/S)τ (t) ⊂ Lie∨(X∨/S)τ (t− 1)

where γ1
τ , . . . , γ

e
τ are the fixed roots of the Eisenstein polynomial Eτ over O ⊗τ OL which may also be

thought of as over O ⊗τ OK as defined in Section 3.

Definition. If X is a principally polarisable Barsotti-Tate p-divisible group over S, and C is an F-
subgroup of X[π] of order |F| such that any principal polarisation X → X∨ on X induces an isomorphism
X[π] ' X[π]∨ which sends C to (X[π]/C)∨, we say that C is a Raynaud F-vector subspace scheme of X
for brevity.

Furthermore, we say that C is filtered if it is the kernel of an O-linear isogeny f : X/S → Y/S of filtered
principally polarisable Barsotti-Tate p-divisible groups over S such that both Lie∨f∨ : Lie∨(X∨/S)τ →
Lie∨(Y ∨/S)τ and Lie∨(f∧)∨ : Lie∨(Y ∨/S)τ → Lie∨(X∨/S)τ commute with filtrations on Lie∨(X∨/S)τ
and Lie∨(Y ∨/S)τ .

Lemma 38 A principal polarisation λ : X → X∨ defines an isomorphism from C onto the Cartier dual
(X[π]/C)∨ of Raynaud submodule scheme.

Proof. By definition, the image by λ of C is contained in (X[π]/C)∨. Since both are Raynaud sub-
module scheme, λ defines an isomorphism. �

Fix a filtered principally polarisable Barsotti-Tate p-divisible group X over S equipped with a filtered
Raynaud submodule scheme C which is the kernel of an O-linear isogeny f : X → Y = X/C; f gives
rises to a map of OK-modules

Lie∨f∨ : Gr∨(X∨/S)τ (t)→ Gr∨(Y ∨/S)τ (t)

for every τ in Σ̂ and 1 ≤ t ≤ e, and define deg((X,C)/S)τ (t) in [0, 1] to be the (normalised) valuation
of a generator in OK of the annihilator of its cokernel.

We remark that these invariants are qualitatively ‘finer’ than degrees defined by Fargues in [21], and
are exactly the reason we succeed in better understanding p-adic geometry of Hilbert modular varieties
of level at p.

Let
deg((X,C)/S) =

∑
τ

∑
t

deg((X,C)/S)τ (t)
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where t ranges over 1 ≤ t ≤ e and τ ranges over Σ̂. By definition, deg((X,C)/S) ranges over [0, ef ].

We consider ‘Breuil modules’ of p-torsion subgroups of filtered principally polarisable Barsotti-Tate
p-divisible groups over S. Because it seems difficult (if not impossible, perhaps) to ‘integrally’ incorpor-
ate Pappas-Rapoport filtrations (which are inherently ‘of de Rham’) into Breuil modules of p-torsion (or
worse still, π-torsion) subgroups, we instead work directly with de Rham crystals over the ‘truncated’
valuation ring S. To this end suppose e > 1; when e = 1, we simply make appeal to calculations with
Breuil modules in Section 3 of [31] which is our model for the construction in the following. Parenthetic-
ally, Section 3 of [31] is based on Kisin’s proof in [37] of a conjecture of Breuil when p > 2; the conjecture
itself is also proved by Kisin [36] in the connected case when p = 2 and by Kim, Lau, Liu in the general
p = 2 case, and the argument in [31] works verbatium when p = 2.

Fix a filtered principally polarisable Barsotti-Tate p-divisible group X over S. For every τ in Σ̂ and
1 ≤ t ≤ e, let

Gr∼∨(X∨[p]/S)τ (t) = D(X∨[p]/S)S/Lie∨(X∨[p]/S)τ (t− 1)

and let D(X∨[p]/S)τ (t) denote the free rank 2 module over OK

ker(π⊗1−1⊗γtτ |Gr∼∨(X∨[p]/S)τ (t)) = (ξ⊗1−1⊗γtτ )−1Lie∨(X∨[p]/S)τ (t−1)/Lie∨(X∨[p]/S)τ (t−1),

which contains the rank 1 OK-module Gr∨(X∨[p]/S)τ (t) by definition. Let D(X∨[p]/S)τ (t) denote the

pull-back of D(X∨[p]/S)τ (t) to S; it is a rank 2 module over OK . Let D(X
∨

[p]/k)τ (t) denote the pull-
back to the closed fibre Spec k; it is a rank 2 module over k.

Let
∆t
τ : D(X∨[p]/S)τ (t) −→ D(X∨[p]/S)τ (t− 1)

denote the map defined by multiplication by u if t > 1 and

∆1
τ : D(X∨[p]/S)τ (1) −→ D(X∨[p]/S)f−1◦τ (e)

denote V ◦ (ue−1)−1 if t = 1. By definition, the image of ∆t
τ is exactly Gr∨(X∨[p]/S)τ (t − 1) if t > 1

and Gr∨(X∨[p]/S)f−1◦τ (e) if t = 1.

Let C denote a filtered Raynaud submodule scheme of X[π] and let Y = X/C be the filtered
principally polarisable Barsotti-Tate p-divisible group over S. Let D(C/S)τ (t) denote the kernel of
D(X∨[p]/S) → D(Y ∨[p]/S)τ (t). If G is one of the X∨[p], Y ∨[p] or C, let D(G/S) (resp. D(G/k))
denote the pull-back of D(G/S) to S (resp. Spec k).

The image of D(X∨[p]/S)τ (t) in D(Y ∨[p]/S)τ (t) defines a rank 1 submodule over OK and con-
sequently D(C/S)τ (t) is free of rank 1 over OK . This follows if it holds over S, which in turn follows by

Nakayama if the image of D(X
∨

[p]/k)τ (t) defines a rank 1 subspace of D(Y
∨

[p]/k)τ (t). But this follows
from Lemma 34.

Indeed, given X over k, the existence of a filtered Raynaud F-vector subspace scheme of X over k is

equivalent to the existence of a family of subspaces Ξtτ of D(X
∨

[p]/k)τ (t) of rank 1 for all τ in Σ̂ and
1 ≤ t ≤ e satisfying the conditions:

• ∆t
τ (Ξtτ ) ⊂ Ξt−1

τ if t > 1 (in which case, ∆t
τ is multiplication by u);

• and ∆1
τ (Ξ1

τ ) ⊂ Ξef−1◦τ if t = 1 (in which case ∆1
τ = V ◦ u1−e).

To see the claim, suppose firstly that one is given a family of vector subspaces Ξtτ as above. As one can

immediately see, by definition (observing that both have the same rank over k), that D(X
∨

[p]/k)τ (1) =

ue−1D(X
∨

[p]/k)τ where D(X
∨

[p]/k)τ denotes the τ -isotypic part of the Dieudonne module D(X
∨

[p]/k)

over k, define Ξτ to be the e-dimensional vector subspace u1−eΞ1
τ of D(X

∨
[p]/k)τ and Ξ =

⊕
τ Ξτ ⊂

D(X
∨

[p]/k). It is immediate to see that, for every τ , Ξτ satisfies, for the Verschiebung V on D(X
∨

[p]/k),

V Ξτ = V (u1−eΞ1
τ ) ⊂ Ξef−1◦τ ⊂ u

−1Ξe−1
f−1◦τ ⊂ · · · ⊂ u

−(e−1)Ξ1
f−1◦τ = Ξf−1◦τ
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and therefore Ξ is a Dieudonne submodule of D(X
∨

[p]/k) with its quotient D(X
∨

[p]/k)/Ξ free of rank
1 over F⊗ k. By Dieudonne theory, there exists a Raynaud F-vector space scheme C of rank 1 in X[p]
such that its corresponding Dieudonne module is exactly Ξ.

On the other hand, the converse of the claim is clear and will be left unattended.

Suppose that ξtτ,1, ξ
t
τ,2 form a OK-basis of D(X∨[p]/S)τ (t) such that ξtτ,1 defines a OK-basis of

D(C/S)τ (t) inD(X∨[p]/S)τ (t), and ξtτ,2 maps onto a OK-basis of the image ofD(X∨[p]/S) inD(Y ∨[p]/S)τ (t).

For every τ , we may and will assume if t > 1

∆t
τ (ξtτ,1) = ξρ

t−1
τ Rt−1

τ ξt−1
τ,1

and
∆t
τ (ξtτ,2) = St−1

τ ξt−1
τ,1 + ξχ

t−1
τ T t−1

τ ξt−1
τ,2

where Rt−1
τ , St−1

τ , T t−1
τ are elements of OK and Rt−1

τ , T t−1
τ are in particular units in OK ; and similarly

if t = 1,

∆1
τ (ξ1

τ,1) = ξ
ρe
f−1◦τRef−1◦τξ

e
f−1◦τ,1

and
∆1
τ (ξ1

τ,2) = Sef−1◦τξ
e
f−1◦τ,1 + ξ

χe
f−1◦τT ef−1◦τξ

e
f−1◦τ,2.

By construction, if t > 1, it is an easy exercise to check:

Lemma 39 Fix τ in Σ̂ and 1 < t ≤ e. Then χt−1
τ equals eKdeg((X,C)/S)τ (t − 1) while ρt−1

τ satisfies
the inequality ρt−1

τ ≥ eK(1/e− deg((X,C)/S)τ (t− 1)) = eKdeg((X/C,X[π]/C)/S)τ (t− 1).

Proof. To see the first assertion about χt−1
τ , observe that χtτ computes the truncated valuation of

the annihilator in OK of Coker(Gr∨(X∨[p]/S)τ (t − 1) → Gr∨(Y ∨[p]/S)τ (t − 1)). Since the normalised
truncated valuation of the uniformiser ξ is eK/e, the assertion follows.

The assertion about ρt−1
τ follows as ∆t

τD(C/S)τ (t) is contained in ker(Gr∨(X∨[p]/S)τ (t − 1) →
Gr∨(Y ∨[p]/S)τ (t− 1)). �

Similarly,

Lemma 40 Fix τ in Σ̂. Then χef−1◦τ equals eKdeg((X,C)/S)f−1◦τ (e) and ρef−1◦τ satisfies the inequality

ρef−1◦τ ≥ eK(1/e− deg((X,C)/S)f−1◦τ (e)) = eKdeg((X/C,X[π]/C)/S)f−1◦τ (e).

Let D be another Raynaud submodule scheme of X[π] distinct from C. For every τ and 1 ≤ t ≤ e,
we may suppose that the image of D(D/S)τ (t) is generated by ξtτ,1 + εtτξ

t
τ,2 for some element εtτ in OK ;

and if t > 1
∆t
τ (ξtτ,1 + εtτξ

t
τ,2) = ξρ

t−1,∼
τ U t−1

τ (ξt−1
τ,1 + εt−1

τ ξt−1
τ,2 )

and if t = 1
∆1
τ (ξ1

τ,1 + ε1
τξ

1
τ,2) = ξ

ρe,∼
f−1◦τUef−1◦τ (ξef−1◦τ,1 + εef−1◦τξ

e
f−1◦τ,2)

for some unit U tτ in OK , where ρt,∼τ , when t > 1, similarly satisfies the inequality

ρt,∼τ ≥ eK/e− deg((X,D)/S)τ (t) = deg(X/D,X[π]/S)τ (t)

as in the case for C (Lemma 39). One can readily observe that εtτ is non-zero in OK for every τ in Σ̂
and 1 ≤ t ≤ e; otherwise εtτ = 0 for every τ in Σ̂ and 1 ≤ t ≤ e, and C would equal D which contradicts
the assumption that C and D are distinct.

In the light of Lemma 39 and Lemma 40, let χt,∼τ denote deg((X,D)/S)τ (t) for brevity. The cokernel
of the embedding of D(D/S)τ (t) into D(X∨[p]/S)τ (t) is generated by the image of ξtτ,2, and as its image
is

∆t
τ (ξtτ,2) + OK(ξt−1

τ,1 + εt−1
τ ξt−1

τ,2 ) = (ξχ
t−1
τ T t−1

τ − St−1
τ εt−1

τ )ξt−1
τ,2 + OK(ξt−1

τ,1 + εt−1
τ ξt−1

τ,2 ),
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eK/e minus the truncated valuation in OK of ξχ
t−1
τ T t−1

τ −St−1
τ εt−1

τ computes χt−1,∼
τ . Similar when t = 1.

Equating the coefficients of ξt−1
τ,1 and ξt−1

τ,2 if t > 1 and ξef−1◦τ,1 and ξef−1◦τ,2 if t = 1, we have the

following equations (which, for ease of reference in the following, we name >
t

τ,1 and >
t

τ,2): if t > 1

>
t

τ,1 : ξρ
t−1
τ Rt−1

τ + εtτS
t−1
τ = ξρ

t−1,∼
τ U t−1

τ

and

>
t

τ,2 : εtτξ
χt−1
τ T t−1

τ = ξρ
t−1,∼
τ εt−1

τ U t−1
τ ;

and if t = 1

>
1

τ,1 : ξ
ρe
f−1◦τRef−1◦τ + ϕ−1(ε1

τ )Sef−1◦τ = ξ
ρe,∼
f−1◦τUef−1◦τ

and

>
1

τ,2 : ϕ−1(ε1
τ )ξ

χe
f−1◦τT ef−1◦τ = ξ

ρe,∼
f−1◦τ εef−1◦τU

e
f−1◦τ

where, by slight abuse of notation, ϕ again denotes the absolute Frobenius on OK . From >
t

τ,2’s, we
deduce the following Lemma 41 and Corollary 42 which are not strictly necessary for our proof of the
main theorem but serve as a ‘sanity check’:

For every t ≥ 1 and τ in Σ̂, let stτ [χ] denote

χef−1◦τ + · · ·+ χtf−1◦τ ,

and, for every t > 1 and τ in Σ̂, let st,¬τ [χ] denote

χt−1
τ + · · ·+ χ1

τ .

Similarly define stτ [
∼
χ] and st,¬τ [

∼
χ] with

∼
χ in place of χ; and stτ [

∼
ρ] and st,¬τ [

∼
ρ] with

∼
ρ.

For brevity, for every t ≥ 1 and τ in Σ̂, let

stτ
def
= stτ [χ]− stτ [

∼
ρ]

and, for every t > 1 and τ in Σ̂,

st,¬τ
def
= st,¬τ [χ]− st,¬τ [

∼
ρ].

By Lemma 39,
stτ ≤ stτ [χ] + stτ [

∼
χ]− (e− (t− 1))eK/e

and
st,¬τ ≤ st,¬τ [χ] + st,¬τ [

∼
χ]− (t− 1)eK/e

hold.

Lemma 41 Fix τ in Σ̂ and 1 ≤ t ≤ e. The valuation of εtτ is calculated by

(
∑

1≤N≤f

pf−Nst,¬
fN◦τ + pf−(N−1)stfN◦τ )/(pf − 1)

if t > 1 and by

(
∑

1≤N≤f

pf−(N−1)s1
fN◦τ )/(pf − 1)

if t = 1.

Remark. This is an analogue of Lemma 3.3 of [31].
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Proof. Suppose t > 1. Since εtf◦τ = (ξρ
t−1,∼
f◦τ U t−1

f◦τ /ξ
χt−1
f◦τ T t−1

f◦τ )εt−1
f◦τ , and ∆t+1

τ ◦· · ·◦∆e
τ◦∆1

f◦τ◦· · ·◦∆t
f◦τ =

ue−t ◦ V ◦ (ue−t)−1 is the Verschiebung V on D(X∨[p]/S)f◦τ (t), one may deduce that the image of εtf◦τ
by V is computed by

ϕ−1(ξρ
t−1,∼
f◦τ U t−1

f◦τ /ξ
χt−1
f◦τ T t−1

f◦τ ) · · ·ϕ−1(ξρ
1,∼
f◦τ U1

f◦τ/ξ
χ1
f◦τT 1

f◦τ )(ξρ
e,∼
τ Ueτ /ξ

χeτT eτ ) · · · (ξρ
t,∼
τ U tτ/ξ

χtτT tτ )εtτ .

In other words, the p-th power of εtτ is εtf◦τ times

ξχ
t−1
f◦τ +···+χ1

f◦τ+p(χeτ+···+χtτ )T t−1
f◦τ · · ·T

1
f◦τ (T eτ · · ·T tτ )p/ξρ

t−1,∼
f◦τ +···+ρ1,∼

f◦τ+p(ρe,∼τ +···+ρt,∼τ )U t−1
f◦τ · · ·U

1
f◦τ (Ueτ · · ·U tτ )p.

Similarly, the p-th power of ε1
τ is ε1

f◦τ times

ξp(χ
e
τ+···+χ1

τ )(T eτ · · ·T 1
τ )p/ξp(ρ

e,∼
τ +···+ρ1,∼

τ )(Ueτ · · ·U1
τ )p.

Repeating the argument, we get the assertion. �

Corollary 42 For every 1 ≤ t ≤ e and τ in Σ̂,∑
1≤N≤f p

f−N
(
χ1
fN◦τ + · · ·+ χt−1

fN◦τ + p(χtfN−1◦τ + · · ·+ χefN−1◦τ )
)

=
∑

1≤N≤f p
f−N

(
st,¬
fN◦τ [χ] + pstfN◦τ [χ]

)
≥

∑
1≤N≤f p

f−N
(

(t− 1)eK/e+ p(e− (t− 1))eK/e− (st,¬
fN◦τ [

∼
χ] + pstfN◦τ [

∼
χ])
)

=
∑

1≤N≤f p
f−N

(
(eK/e− χ1,∼

fN◦τ ) + · · ·+ (eK/e− χt−1,∼
fN◦τ ) + p(eK/e− χt,∼fN−1◦τ ) + · · ·+ p(eK/e− χe,∼fN−1◦τ )

)
if t > 1 and ∑

1≤N≤f p
f−N

(
χ1
fN◦τ + · · ·+ χefN◦τ

)
=

∑
1≤N≤f p

f−Ns1
fN◦τ [χ]

≥
∑

1≤N≤f p
f−N (eK/e− s1

fN◦τ [
∼
χ])

=
∑

1≤N≤f p
f−N

(
(eK/e− χ1,∼

fN−1◦τ ) + · · ·+ (eK/e− χe,∼fN−1◦τ )
)

when t = 1.

Proof. This follows from the preceding lemma, noting that the valuation of εtτ is non-negative and
χtτ − ρt,∼τ ≤ χtτ + χt,∼τ − eK/e. �

Remark. Since χtτ = eKdeg((X,C)/S)τ (t) and χt,∼τ = eKdeg((X,D)/S)τ (t), the case when t = e =
1 recovers Corollary 3.4 in [31].

The following three lemmas replace calculations with Breul modules in [31] and essential for our proof
of the main theorem.

Lemma 43 Fix τ in Σ̂ and 1 ≤ t ≤ e. If t > 1 and if χt−1
τ = 0, then χt−1,∼

τ 6= 0. Similarly if χeτ = 0
then χe,∼τ 6= 0.

Proof. Suppose t > 1 and χt−1
τ = 0. If χt−1,∼

τ = 0, it would follow from Lemma 39 that ρt−1,∼ = eK/e.

However, it then follows from the equality >
t

τ,2 that εtτ = (ξρ
t−1,∼

U t−1
τ /ξχ

t−1
τ T t−1

τ )εt−1
τ , and therefore the

truncated valuation of εtτ would be greater than and equal to eK/e and εtτ would be 0 in OK , which is
a contradiction. The case when t = 1 is similar. �

We know a great deal at the ‘far end of the valuation hypercube’:

Lemma 44 Suppose that there exists † in Σ̂ and 1 ≤ l ≤ e such that

• every χtτ = eK/e as τ ranges over Σ̂ and 1 ≤ t ≤ e, except when τ = †, t = l − 1, and l > 1 (resp.
l = 1), at which 0 < χl−1

† < eK/e (resp. 0 < χl−1
f−1◦† < eK/e) holds,
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• the induced map ∆t
τ on Gr∨(X∨/k)τ (t) does not vanish except when τ = † and t = l at which it

does.

Then ρtτ = 0 for every τ in Σ̂ and 1 ≤ t ≤ e expect when τ = † and t = l − 1.

Proof. Suppose firstly that either τ is not † or if τ = †, t is neither l nor l − 1. In this case, since
the image of ∆t+1

τ is Gr∨(X∨/S)τ (t) and ξχ
t
τ = 0 in OK , Gr∨(X∨/S)τ (t) is generated by ξtτ,1. It then

follows from the second assumption that ρt−1
τ = 0.

Suppose that τ = † and t = l − 1. In this case, Gr(X∨/S)τ (t) is generated by ∆t+1
τ (ξt+1

τ,2 ) =

ξtτ,1 + ξχ
t
τ ξtτ,2 (up to multiplying ξtτ,1 and ξtτ,2 by units in OK if necessary), since it follows from Lemma

39 that ρtτ ≥ eK/e− χtτ > 0 and χtτ > 0 that Stτ has to be a unit in OK .
Because χt−1

τ = eK/e,

∆t
τGr(X∨/S)τ (t) = ∆t

τ (ξtτ,1 + ξχ
t
τ ξtτ,2) = (ξρ

t−1
τ + ξχ

t
τSt−1

τ )ξt−1
τ,1

and it follows from the second assumption and χtτ > 0 that ρt−1
τ is zero. �

Maintaining the notation and assumptions in Lemma 44, we have:

Lemma 45 • The valuation of εtτ is zero for every τ in Σ̂ and 1 ≤ t ≤ e except when τ = † and
t = l.

• ρt,∼τ = eK/e for every τ ∈ Σ̂ and 1 ≤ t ≤ e except when τ = † and t = l − 1 or l.

• The valuation of Stτ is zero for every τ ∈ Σ̂ and 1 ≤ t ≤ e except when τ = † and t = l − 1.

Proof. Suppose firstly that the (truncated) valuation of εl+1
† is positive. It then follows from the

equation >
l+1

†,1 and ρl† = 0 by Lemma 44 that ρl,∼† = 0. Combined with χl† = eK/e and the valuation

of εl+1
† being non-negative, it follows from >

l+1

†,2 that the valuation of εl+1
† is non-positive, which is a

contradiction. The valuation of εl+1
† is therefore zero.

If t is an integer satisfying l+ 1 ≤ t < e and if we suppose that the truncated valuation of εt† is zero,

the equation >
t+1

†,2 then forces ρt,∼† = eK/e and the truncated valuation of εt+1
† to be zero, in order to

attain the valuation of εt+1 to be non-negative (because χt† = eK/e). As the valuation of εt+1
† is zero,

ρt† = 0 and ρt,∼† = eK/e, it follows from >
t+1

†,1 that the valuation of St† is zero. Continuing the argument

(when ‘t = e’, we use >
1

τ for τ = †, f ◦ †, . . . and so on), we get the assertion.
The case when τ = † and t = l − 1 is proved in the proof of Lemma 44.�

Still maintaining the assumptions of Lemma 44,

Corollary 46 χt,∼τ = eK/e for every τ in Σ̂ and 1 ≤ t ≤ e except when τ = † and t = l.

Proof. Suppose that either τ is not † or if τ = †, t is not l. It follows from Lemma 45 that the
valuations of εtτ and Stτ are both zero. As χt,∼τ is computed by eK/e minus the valuation of ξχ

t
τ − Stτεtτ

and χtτ = eK/e by assumption, the assertion follows. �

6 Overconvergent companion forms are classical

Results in this section establish links between geometry of the fibre X
PR

KIw and p-adic geometry of XPR
KIw

defined in terms of degrees.
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6.1 ‘Global’ mod p and p-adic geometry

A non-cuspidal point ξ of XPR,R-a
KIw corresponds to a closed point of XPR

KIw thence to an S-point of XPR
KIw,

where S = Spec OK for the ring OK of integers of a finite extension K of L with residue field k. Let ζ
denote its image in XPR,R-a

K by the forgetful morphism π : XPR,R-a
KIw → XPR,R-a

K . By ξ, we shall mean the

S-point (S = Spec k) of the κ-scheme X
PR

KIw defined by ξ and let ζ denote its image by π : X
PR

KIw → X
PR

K .
We shall freely use the invariants defined in the previous section for the corresponding component of the
Barsotti-Tate p-divisible group (which is filtered and principally polarisable), given respectively by ζ and
ξ.

Remark/Definition. By slight abuse of notation, we often write γEO,τ (ξ/S) to mean the γEO,τ -
invariant of the source of the isogeny corresponding to ξ.

Proposition 47 The formal completion R̂KIw of Y
PR

KIw at ξ is the tensor product over Σ̂p for all p in
SP of ⊗̂

k[[xtτ ]]⊗̂
⊗̂

k[[ytτ , z
t
τ ]]/(ytτztτ )

where the left-most ranges over those 1 ≤ t ≤ ep which do not lie in νRZ,τ (ξ) ∩ γRZ,τ (ξ), while the
right-most tensor product is over the set of 1 ≤ t ≤ ep which lies in νRZ,τ (ξ) ∩ γRZ,τ (ξ) ; the formal

completion R̂K of Y
PR

K is ⊗̂
k[[utτ ]]

where the tensor product ranges over all Σ̂p × {1 ≤ t ≤ ep} for p in SP.

Proof. Follows from local model calculations. �

On the Raynaud generic fibre sp−1(ξ) ⊂ XPR,R-a
KIw , there are ‘local parameters’, i.e., analytic functions

which specialise to xtτ , y
t
τ , z

t
τ , u

t
τ ; we shall denote them by xtτ , y

t
τ , z

t
τ , u

t
τ satisfying ytτztτ = πp for every τ

in Σ̂p.

Proposition 48 The formal completion of Y PR
KIw at ξ is the tensor product over Σ̂p for all p in SP of⊗̂

OK [[xtτ ]]⊗̂
⊗̂

OK [[ytτ , z
t
τ ]]/(ytτztτ − πp)

where the left-most ranges over those 1 ≤ t ≤ ep which do not lie in νRZ,τ (ξ) ∩ γRZ,τ (ξ) while the right-
most tensor product is over the set of 1 ≤ t ≤ ep which lies in νRZ,τ (ξ)∩ γRZ,τ (ξ); the formal completion
of XPR

K at ζ is ⊗̂
OK [[utτ ]]

where the tensor product ranges over all Σ̂p × {1 ≤ t ≤ ep} for p in SP.

Proof. This follows from local model calculations. �

Definition. Let ξ be a point of XPR,R-a
KIw . When ξ is not a cusp, it corresponds to an S-point (A,C)

of XPR
KIw, where S = Spec OK for the ring OK of integers of a finite extension K of L (whose normalised

valuation takes p to 1). For every p, τ in Σ̂p and 1 ≤ t ≤ ep that we fix, we shall define a measure

degPR,R-a
KIw (ξ)τ (t) of (over)convergence/supersingularity on XPR,R-a

KIw that may be thought of as a ‘local

model’ of deg(ξ)τ (t) defined earlier and of seeing intrinsic geometry of XPR,R-a
KIw (hence our notation, but

we apologise for our nomenclature).

Firstly if ξ is indeed a cusp, let degPR,R-a
KIw (ξ)τ (t) = deg(ξ)τ (t). If ξ is not a cusp, and

• if t 6∈ νRZ,τ (ξ/S) and t ∈ γRZ,τ (ξ/S), let degPR,R-a
KIw (ξ/S)τ (t) = 1/ep;

• if t ∈ νRZ,τ (ξ/S) and t ∈ γRZ,τ (ξ/S), define degPR,R-a
KIw (ξ/S)τ (t) to be the minimum of 1 and the

valuation (on OK) of ytτ evaluated at the point ξ;
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• if t ∈ νRZ,τ (ξ/S) and t 6∈ γRZ,τ (ξ/S), let degPR,R-a
KIw (ξ/S)τ (t) = 0.

If ζ is a point of XPR,R-a
K , define degPR,R-a

K (ζ)τ (t) for τ in Σ̂p and 1 ≤ t ≤ ep as follows: if ζ is not a

cusp and if t ∈ γEO,τ (ζ/S), define degPR,R-a
K (ζ/S)τ (t) to be the minimum of 1 and the valuation of utτ

evaluated at the point ζ; otherwise let degPR,R-a
K (ζ)τ (t) = 0.

These degPR,R-a
KIw (ξ)τ (t)’s are the invariants first introduced by Coleman in the curve case; and are

subsequently used in gluing overconvergent eigenforms in [11], [10], [9] in the modular curve case and
[31] in the unramified Hilbert case, in order to to construct classical weight one forms.

Lemma 49 degPR,R-a
KIw (ξ)τ (t) = deg(ξ)τ (t).

Proof. It suffices to show the equality when ξ is non-cuspidal. Suppose that it corresponds to an
S-point (A,C)/S and let B denote the target of the corresponding isogeny A/C for brevity. If t does not

lie in νRZ,τ (ξ) but lies in γRZ,τ (ξ), the map Gr∨(A
∨
/S)τ (t) → Gr∨(B

∨
/S)τ (t) on the special fibres in-

duced from the isogeny is zero, hence the normalised valuation of Gr∨(A∨/S)τ (t)→ Gr∨(B∨/S)τ (t) is 1.
Similarly for the case when t lies in νRZ,τ (ξ) but does not lie in γRZ,τ (ξ). When t ∈ νRZ,τ (ξ)∩γRZ,τ (ξ), we
note from Proposition 48 that the coordinates ytτ and ztτ are chosen such that, for example, the annihil-
ator of coker(Gr∨(A∨/S)τ (t)→ Gr∨(B∨/S)τ (t)) is locally defined by ytτ evaluated at ξ. As deg(ξ/S)τ (t)
is defined to be its valuation, the assertion follows. �

Definition. In the light of the lemma, we shall let deg(ζ/S)τ (t) denote degPR,R-a
K (ζ/S)τ (t). In fact,

it is also possible to define deg(ζ/S)τ (t) ‘more directly’.

6.2 Canonical subgroups and analytic continuation in a tubular neighbour-
hood of the multiplicative ordinary locus

In this section, we prove a few results constructing canonical subgroups of Hilbert-Blumenthal abelian
varieties A of Pappas-Rapoport type as ‘canonical’ Raynaud vector subspace schemes of A[p] for every
place p of F above p. As it does not seem possible to ‘see’ Pappas-Rapoport filtrations on Breuil
modules, linear algebra calculations ‘on points’ does not take us far; perhaps enlarging coefficients of
Breuil modules (in the sense of Section 1.2 in [37]) to allow roots of Eisenstein polynomials and hoping
for (faithfully flat) descent might be one possible approach. It may also be possible to follow Fargues
([20]) and construct a ‘canonical’ subgroup of the p-torsion subgroup A[p], and subsequently single out
its F -stable part killed by all p.

We, on the other hand, take the Goren-Kassaei approach ([24]) of making essential use of geometry of
relevant moduli spaces, in order to construct ‘canonical subgroups’. Note that it is important to construct
canonical subgroups for HBAVs, whether A[p] is BT level one or not for every p, for it is humbly used
to establish that weight one specialisations of Hida (nearly ordianary) families define overconvergent
eigenforms.

Proposition 50 Let ξ be a point over S of X
PR

KIw. Fix p, τ in Σ̂ = Σ̂p and 1 ≤ t ≤ e = ep. Suppose
that

• if t ≥ 2, t− 1 lies in νRZ,τ (ξ/S) and that t lies in γRZ,τ (ξ/S);

• if t = 1, e lies in νRZ,f−1◦τ (ξ/S) and that t = 1 lies in γRZ,τ (ξ/S).

For π∗ : R̂K → R̂KIw, the following equations in R̂KIw hold:

If t ≥ 2, and

(I) t lies νRZ,τ (ξ/S) and t− 1 lies in γRZ,τ (ξ/S), there elements γtτ and ρt−1
τ in R̂

×
KIw such that

π∗(utτ ) = γtτytτ + ρt−1
τ zt−1(p)

τ

where, by slight abuse of notation, S
t−1(p)
τ denotes the p-th power of St−1

τ ;
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(II) t lies νRZ,τ (ξ/S) and t−1 does not lie in γRZ,τ (ξ/S), there exists an element γtτ in R̂
×
KIw such that

π∗(utτ ) = γtτytτ ;

(III) t does not lie in νRZ,τ (ξ/S) and t−1 lies in γRZ,τ (ξ/S), there exists an element ρt−1
τ in R̂

×
KIw such

that
π∗(utτ ) = ρt−1

τ zt−1(p)
τ ;

(IV) neither t lies in νRZ,τ (ξ/S) nor t− 1 lies in γRZ,τ (ξ/S)

π∗(utτ ) = 0.

If t = 1, and

(I) t = 1 lies νRZ,f−1◦τ (ξ/S) and e lies in γRZ,τ (ξ/S), there elements γ1
τ and ρ1

τ in R̂
×
KIw such that

π∗(u1
τ ) = γ1

τy1
τ + ρeτz

e(p)
f−1◦τ ;

(II) t = 1 lies νRZ,f−1◦τ (ξ/S) and e does not lie in γRZ,τ (ξ/S), there exists an element γ1
τ in R̂

×
KIw such

that
π∗(u1

τ ) = γ1
τy1
τ ;

(III) t = 1 does not lie in νRZ,f−1◦τ (ξ/S) and e lies in γRZ,τ (ξ/S), there exists an element ρef−1◦τ in

R̂
×
KIw such that

π∗(u1
τ ) = ρef−1◦τz

e(p)
f−1◦τ ;

(IV) neither t = 1 lies in νRZ,f−1◦τ (ξ/S) nor e lies in γRZ,τ (ξ/S)

π∗(u1
τ ) = 0.

Remark. This is a generalisation of Lemma 2.8.1 in [24]. The case t = e = 1 recovers their result.

Proof. We shall only sketch a proof, which is a generalisation of the proof of Lemma 2.8.1 in [24]. For
brevity, for every τ in Σ̂, let νRZ,τ (resp. γRZ,τ ) denote νRZ,τ (ξ/S) (resp. γRZ,τ (ξ/S)). An irreducible

components of X
PR

KIw passing through ξ is parameterised by a subset J =
∑
τ Jτ of JRZ =

∑
τ JRZ,τ where

JRZ,τ = νRZ,τ ∩γRZ,τ in the sense that, if R̂KIw,J denote the ideal of R̂KIw generated by ytτ for all t lying

in JRZ,τ−Jτ and ztτ for all t lying in Jτ as τ ranges over Σ̂, the intersection Spf (R̂KIw/ÎKIw,J)∩Spf R̂KIw

is the formal completion at ξ of the irreducible component X
+

KIw,ΣJ where ΣJ = (νRZ,J,τ , γRZ,J,τ ) defined
by

• γRZ,J,τ = γRZ,† − Jτ ,

• νRZ,J,τ = {1, . . . , e} − γRZ,J,τ .

We now fix τ in Σ̂ and 1 ≤ t ≤ e as in the assertion of the proposition. We deal with the case (I) and
leave the rest as an exercise for the reader. There are four different ‘types’ of Jτ ⊂ JRZ,τ to consider:

(A) both t− 1 and t lie in Jτ ;

(B) both t− 1 and t lie in JRZ,τ − Jτ ;

(C) t− 1 lies in Jτ while t lies in JRZ,τ − Jτ ;

(D) t− 1 lies in JRZ,τ − Jτ while t lies in Jτ .
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(I-A): Since t − 1 lies in Jτ , t − 1 does not lie in γRZ,J,τ , hence t − 1 lies in νRZ,J,τ . Also t lies in

γRZ,τ and in Jτ , therefore t does not lie in γRZ,J,τ . As any point ζ in X
+

KIw,ΣJ satisfies the conditions

that νRZ,τ (ζ) contains νRZ,J,τ (and γRZ,τ (ζ) contains γRZ,J,τ ), t− 1 lies in νRZ,τ (ζ). It then follows from
Proposition 35 that t lies in γRZ,τ (ζ) if and only if t lies in γEO,τ (ζ).

(I-B): Since t lies in γRZ,τ but does not lie in Jτ , t lies in γRZ,Jτ . Also t− 1 lies in γRZ,τ but does not
lie in Jτ , hence t − 1 lies in γRZ,J,τ and consequently t − 1 does not lie in νRZ,J,τ . It then follows from

Proposition 35 that, for any point ζ in X
+

KIw,ΣJ , t− 1 lies in νRZ,τ if and only if t lies in γEO,τ (ζ).
(I-C): As t lies in γRZ,τ but does not lie in Jτ , t lies in γRZ,J,τ . Also t− 1 lies in Jτ , hence t− 1 does

not lie in γRZ,J,τ , and t − 1 lies in νRZ,J,τ . It then follows from Proposition 35 that, for any point ζ in

X
+

KIw,ΣJ , t always lie in γEO,τ (ζ).
Applying (I-A) to J = JRZ and (I-B) to J = ∅, as well as a simple but tedious calculation that⋂

J ÎKIw,J , where J ranges over the subsets J of JRZ satisfying the conditions in (C), is generated by ytτ
and zt−1

τ , we get the assertion in (I). The other cases may be similarly deduced. �

Corollary 51 Let ξ be a point over S of XPR,R-a
KIw and ζ denote its image by π in XPR,R-a

K . Fix p, τ in

Σ̂ = Σ̂p and 1 ≤ t ≤ e = ep. Then

• the conditions t ≥ 2, t − 1 lies in νRZ,τ (ξ/S), and t lies in γRZ,τ (ξ/S) holds, if and only if
deg(ξ/S)τ (t− 1) < 1/e and 0 < deg(ξ/S)τ (t);

• the conditions t = 1, e lies in νRZ,f−1◦τ (ξ/S), and t = 1 lies in γRZ,τ (ξ/S) hold if and only if
deg(ξ/S)f−1◦τ (e) < 1/e and 0 < deg(ξ/S)τ (1).

Suppose that the preceding (equivalent) assertions hold. Then, for t ≥ 2,

(I) deg(ζ/S)τ (t) equals the normalised valuation on sp−1(ξ) of (γtτytτ+ρt−1
τ z

t−1(p)
τ )(ξ) if 0 < deg(ξ/S)τ (t−

1) and deg(ξ/S)τ (t) < 1/e;

(II) deg(ζ/S)τ (t) = deg(ξ/S)τ (t) if deg(ξ/S)τ (t− 1) = 0 and deg(ξ/S)τ (t) < 1/e;

(III) deg(ζ/S)τ (t) = p(1/e− deg(ξ/S)τ (t− 1)) if 0 < deg(ξ/S)τ (t− 1) and deg(ξ/S)τ (t) = 1/e;

(IV) deg(ζ/S)τ (t) = 1/e if deg(ξ/S)τ (t− 1) = 0 and deg(ξ/S)τ (t) = 1/e.

When t = 1,

(I) deg(ζ/S)τ (1) equals the normalised valuation on sp−1(ξ) of (γ1
τy1
τ+ρef−1◦τz

e(p)
f−1◦τ )(ξ) if 0 < deg(ξ/S)f−1◦τ (e)

and deg(ξ/S)τ (1) < 1/e;

(II) deg(ζ/S)τ (1) = deg(ξ/S)τ (1) if deg(ξ/S)f−1◦τ (e) = 0 and deg(ξ/S)τ (1) < 1/e;

(III) deg(ζ/S)τ (1) = p(1/e− deg(ξ/S)f−1◦τ (e)) if 0 < deg(ξ/S)f−1◦τ (e) and deg(ξ/S)τ (1) = 1/e;

(IV) deg(ζ/S)τ (1) = 1/e if deg(ξ/S)f−1◦τ (e) = 0 and deg(ξ/S)τ (1) = 1/e.

Proof. This follows immediately from the definition of deg(ζ/S)τ (t) and Lemma 49. �

For every p, let CPR,R-a
KIw,p (resp. DPR,R-a

KIw,p ) denote the admissible open subset of points ξ over S of

XPR,R-a
KIw such that

• for every t ≥ 2 and τ in Σ̂ = Σ̂p,

deg(ξ/S)τ (t) + pdeg(ξ/S)τ (t− 1) < p/e

(resp. deg(ξ/S)τ (t) + pdeg(ξ/S)τ (t− 1) > p/e)

holds;
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• for t = 1 and every τ in Σ̂,

deg(ξ/S)τ (1) + pdeg(ξ/S)f−1◦τ (e) < p/e

(resp. deg(ξ/S)τ (1) + pdeg(ξ/S)f−1◦τ (e) > p/e)

holds.

Let CPR,R-a
KIw denote the intersection, over all places p above p, of CPR,R-a

KIw,p , while DPR,R-a
KIw denote

the union of (
⋂

p∈ΣD
PR,R-a
KIw,p ) ∩ (

⋂
p6∈Σ C

PR,R-a
KIw,p ) as Σ ranges over the set of non-empty subsets Σ of the

set of places above p. By definition, if a point of XPR,R-a
KIw lies in CPR,R-a

KIw ∪ DPR,R-a
KIw , then it lies in

CPR,R-a
KIw,p ∪D

PR,R-a
KIw,p for every p.

Let CPR,R-a
K,p denote the admissible open subset of points ζ over S of XPR,R-a

K such that

• for every t ≥ 2 and τ in Σ̂,

deg(ζ/S)τ (t) + pdeg(ζ/S)τ (t− 1) < p/ep

holds;

• for t = 1 and every τ in Σ̂

deg(ζ/S)τ (1) + pdeg(ζ/S)f−1◦τ (e) < p/ep

holds.

Let CPR,R-a
K denote the intersection, over all places p above p, of CPR,R-a

K,p .

Remark. These admissible open sets (the loci of ‘canonical subgroups’ and ‘anti-canonical sub-
groups’) generalise those defined in Section 5.3 in [24]. If t = e = 1, we recover their results.

Proposition 52 Let ξ be a point over S of XPR,R-a
KIw and ζ denote its image by π in XPR,R-a

K . Fix p, τ

in Σ̂ = Σ̂p and 1 ≤ t ≤ e = ep.
Suppose that

• if 2 ≤ t ≤ e− 1,
deg(ξ/S)τ (t+ 1) + pdeg(ξ/S)τ (t) < p/e,

deg(ξ/S)τ (t) + pdeg(ξ/S)τ (t− 1) < p/e;

• if t = e,
deg(ξ/S)f◦τ (1) + pdeg(ξ/S)τ (e) < p/e,

deg(ξ/S)τ (e) + pdeg(ξ/S)τ (e− 1) < p/e;

• if t = 1,
deg(ξ/S)f◦τ (2) + pdeg(ξ/S)τ (1) < p/e,

deg(ξ/S)τ (1) + pdeg(ξ/S)f−1◦τ (e) < p/e.

Then deg(ζ/S)τ (t) = deg(ξ/S)τ (t) holds.

On the other hand, suppose that

• if 2 ≤ t ≤ e,
deg(ξ/S)τ (t) + pdeg(ξ/S)τ (t− 1) > p/e,

• if t = 1,
deg(ξ/S)f◦τ (1) + pdeg(ξ/S)τ (e) > p/e,
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Then
deg(ζ/S)τ (t) = p(1/e− deg(ξ/S)τ (t− 1))

holds if 2 ≤ t ≤ e, and
deg(ζ/S)f◦τ (1) = p(1/e− deg(ξ/S)τ (e))

holds if t = 1.

Remark. This is a generalisation/refinement of Lemma 5.3.4 in [24].

Proof. Firstly, we sketch the first case when 2 ≤ t < e − 1. From the first given inequality, one
may deduce immediately that deg(ξ/S)τ (t) cannot be 0 and therefore either deg(ξ/S)τ (t) = 0 or 0 <
deg(ξ/S)τ (t) < 1/e holds.

Suppose deg(ξ/S)τ (t) = 0. In which case, t does not lie in γRZ,τ (ξ/S) by definition. On the other
hand, by the second given inequality, deg(ξ/S)τ (t− 1) can not be 1/e, hence t− 1 lies in νRZ,τ (ξ/S). It
follows from Proposition 36 that t does not lie in γEO,τ (ξ/S), hence deg(ζ/S)τ (t) = 0 by definition.

Suppose 0 < deg(ξ/S)τ (t) < 1/e holds. As deg(ξ/S)τ (t− 1) cannot be 1/e, it follows that t− 1 lies
in νRZ,τ (ξ/S). On the other hand, deg(ξ/S)τ (t) cannot be 0, and t lies in γRZ,τ (ξ/S). We there see that
the assumptions of Proposition 51 are satisfied.

If deg(ξ/S)τ (t−1) = 0, then the case (II) applies, and deg(ζ/S)τ (t) = deg(ξ/S)τ (t). If deg(ξ/S)τ (t−
1) > 0, then the case (I) applies, and deg(ζ/S)τ (t) is computed by the normalised valuation ν of (γtτytτ +

ρtτz
t−1(p)
τ )(ξ) for some units γtτ and ρt−1

τ in R̂KIw. However, as deg(ξ/S)τ < p(1/e−deg(ξ/S)τ (t−1)), it
follows that the normalised valuation of ρtτytτ evaluated at ξ is strictly less than p(1/e−deg(ξ/S)τ (t−1)) =

p(1/e − ν(yt−1
τ (ξ))) = pν(zt−1

τ (ξ)) = pν(ρt−1
τ zt−1

τ (ξ)) = ν(ρt−1
τ z

t−1(p)
τ (ξ)), and therefore deg(ζ/S)τ (t) =

deg(ξ/S)τ (t).

We shall prove the second assertion when 2 ≤ t ≤ e. By the given inequality, deg(ξ/S)τ (t − 1) > 0
and therefore either deg(ξ/S)τ (t− 1) = 1/e or 0 < deg(ξ/S)τ (t− 1) < 1/e holds. On the other hand, it
also follows that deg(ξ/S)τ (t) > 0 and t lies in γRZ,τ (ξ/S).

Suppose that deg(ξ/S)τ (t−1) = 1/e. In which case, t−1 does not lie in νRZ,τ (ξ/S). It therefore follows
from Proposition 36 that t does not lie in γEO,τ (ξ/S), and deg(ζ/S)τ (t) = 0 = p(1/e−deg(ξ/S)τ (t− 1))
as desired.

Suppose that 0 < deg(ξ/S)τ (t−1) < 1/e. In which case, t−1 lies in νRZ,τ (ξ/S). If deg(ξ/S)τ (t) = 1/e,
then it follows from Corollary 51 that deg(ζ/S)τ (t) = p(1/e− deg(ξ/S)τ (t− 1)). If 0 < deg(ξ/S)τ (t) <
1/e, it also follows from Corollary 51 that deg(ζ/S)τ (t) is computed by the normalised valuation ν of

(γtτytτ+ρt−1
τ z

t−1(p)
τ )(ξ) for some units in R̂KIw. However, the given inequality implies that deg(ξ/S)τ (t) >

p(1/e−deg(ξ/S)τ (t−1)), hence ν(γtτytτ (ξ)) > ν(ρt−1
τ z

t−1(p)
τ (ξ)). It therefore follows that deg(ζ/S)τ (t) =

ν(ρt−1
τ z

t−1(p)
τ (ξ)) = pν(zt−1

τ (ξ)) = p(1/e− deg(ξ/S)τ (t− 1)). The other cases follow similarly. �

Lemma 53 Fix p and 1 ≤ t ≤ e = ep.

• If 2 ≤ t ≤ e− 1, suppose that the following hold

deg(ξ/S)τ (t) + pdeg(ξ/S)τ (t− 1) ≤ p/e

and
deg(ξ/S)τ (t+ 1) + pdeg(ξ/S)τ (t) ≥ p/e;

• if t = e, suppose

deg(ξ/S)τ (e) + pdeg(ξ/S)τ (e− 1) ≤ p/e

and
deg(ξ/S)f◦τ (1) + pdeg(ξ/S)τ (e) ≥ p/e;
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• if t = 1, suppose

deg(ξ/S)τ (1) + pdeg(ξ/S)f−1◦τ (e) ≤ p/e

and
deg(ξ/S)τ (2) + pdeg(ξ/S)τ (1) ≥ p/e.

Then deg(ζ/S)τ (t+ 1) + pdeg(ζ/S)τ (t) ≥ p/e. In particular, ζ does not lie in CPR,R-a
K,p .

Remark. This is a generalisation of Lemma 5.3.6 in [24].

Proof. We prove the case 2 ≤ t ≤ e−1. Since deg(ξ/S)τ (t−1) cannot be 1/e, t−1 lies in νRZ,τ (ξ/S).
Also since deg(ξ/S)τ (t) cannot be 0, t lies in γRZ,τ (ξ/S). There are four cases (corresponding exactly to
the four cases in Proposition 51) to deal with:

(I) deg(ξ/S)τ (t− 1) > 0 and deg(ξ/S)τ (t) < 1/e;

(II) deg(ξ/S)τ (t− 1) = 0 and deg(ξ/S)τ (t) < 1/e;

(III) deg(ξ/S)τ (t− 1) > 0 and deg(ξ/S)τ (t) = 1/e;

(IV) deg(ξ/S)τ (t− 1) = 0 and deg(ξ/S)τ (t) = 1/e.

Suppose (I). In this case, deg(ζ/S)τ (t) is computed by the normalised valuation of (γtτytτ+ρtτz
t−1(p)
τ )(ξ).

As it follows from the first inequality in the assumption ν(ytτ (ξ)) ≤ ν(z
t−1(p)
τ (ξ)) that deg(ζ/S)τ (t) ≥

deg(ξ/S)τ (t). On the other hand, deg(ξ/S)τ (t) is not 1/e and it follows from the second inequality in
the assumption that deg(ξ/S)τ (t+ 1) > 0, hence t+ 1 lies in γRZ,τ (ξ/S).

If deg(ξ/S)τ (t+1) = 1/e, combined with deg(ξ/S)τ (t) > 0, Corollary 51, (III), applies and deg(ζ/S)τ (t+
1) = p(1/e− deg(ξ/S)τ (t)). It then follows that

deg(ζ/S)τ (t+ 1) + pdeg(ζ/S)τ (t) ≥ p(1/e− deg(ξ/S)τ (t)) + pdeg(ξ/S)τ (t) = p/e.

If, on the other hand, deg(ξ/S)τ (t + 1) < 1/e, Corollary 51, (I), applies, and deg(ζ/S)τ (t + 1)

is computed by the normalise valuation ν of (γt+1
τ yt+1

τ + ρtτz
t(p)
τ )(ξ). The second inequality in the

assumption implies that ν(γt+1
τ yt+1

τ (ξ)) ≥ ν(ρtτz
t(p)
τ (ξ)), hence deg(ζ/S)τ (t + 1) ≥ pν(ztτ (ξ)). It then

follows that

deg(ζ/S)τ (t+ 1) + pdeg(ζ/S)τ (t) ≥ pν(ztτ (ξ)) + pν(ytτ (ξ)) = pν(ytτ (ξ) + ztτ (ξ)) = p/e.

The other cases can be proved similarly. �

Proposition 54 π−1(CPR,R-a
K ) = CPR,R-a

KIw ∪DPR,R-a
KIw .

Proof. This can be proved as in Section 5.3 of [24]. Firstly observe that the proof of Proposition 52

proves that π−1(CPR,R-a
K ) ⊇ CPR,R-a

KIw ∪DPR,R-a
KIw .

Suppose that ξ does not lie in CPR,R-a
KIw ∪ DPR,R-a

KIw . Then there exists p such that ξ does not lie in

CPR,R-a
KIw,p ∪D

PR,R-a
KIw,p . Because ξ does not lie in DPR,R-a

KIw,p in particular, there is a pair of † in Σ̂ = Σ̂p and
1 ≤ l ≤ e = ep such that the following hold:

deg(ξ/S)†(l) + pdeg(ξ/S)†(l − 1) ≤ p/e

if l > 1, or
deg(ξ/S)†(1) + pdeg(ξ/S)f−1◦†(e) ≤ p/e

when l = 1. We ’order’ the ef pairs Σ̂× ([1, e] ∩ Z) by

(†, l), (†, l + 1), . . . , (†, e), (f ◦ †, 1), . . . , (f ◦ †, e), . . . , (f−1 ◦ †, 1), (f−1 ◦ †, e), (†, 1), . . . , (†, l − 1)

if l > 1 and
(†, 1), . . . , (†, e), (f ◦ †, 1), . . . , (f ◦ †, e), . . . , (f−1 ◦ †, 1), . . . , (f−1 ◦ †, e)
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if l = 1. Since ξ does not lie in CPR,R-a
KIw,p , there exists a pair of τ in Σ̂ and 1 ≤ t ≤ e such that the

following hold:
deg(ξ/S)τ (t+ 1) + deg(ξ/S)τ (t) ≥ p/e

if t ≤ e− 1, or
deg(ξ/S)τ (1) + pdeg(ξ/S)f−1◦τ (e) ≥ p/e

if t = e. We may choose the pair to be ‘minimum’ (i.e. ‘left-most’ in the arrangement above) amongst
those satisfying the condition. By the ‘minimality’,

deg(ξ/S)τ (t) + pdeg(ξ/S)τ (t− 1) < p/e

if 1 < t ≤ e− 1,
deg(ξ/S)τ (1) + pdeg(ξ/S)f−1◦τ (e) < p/e

if t = 1, or
deg(ξ/S)f−1◦τ (e) + pdeg(ξ/S)f−1◦τ (e− 1) < p/e

if t = e, holds as otherwise deg(ξ/S)†(l) + pdeg(ξ/S)†(l − 1) ≤ p/e if l > 1, or deg(ξ/S)†(1) +
pdeg(ξ/S)f−1◦†(e) ≤ p/e holds. In any case, the assumptions of the preceding lemma are satisfied,

and ξ would not lie in CPR,R-a
K,p . �

Theorem 55 An overconvergent Hilbert modular form, which is an eigenform for Kp with non-zero

eigenvalue for all p in SP, extends to CPR,R-a
KIw .

Proof. Let ξ is a point over S of CPR,R-a
KIw , and suppose that it corresponds to (A,C) over S. Fix a

place p above p. It suffices to establish that, for a Raynaud submodule scheme D of A[p] distinct from

C, (A/D, (C +D)/D) lies in CPR,R-a
KIw and deg((A/D, (C +D)/D) < deg(A,C). As ξ defines a point of

CPR,R-a
KIw,p , it follows from the preceding proposition that, if ζ denotes the point corresponding to (A,D),

ζ lies in either CPR,R-a
KIw or DPR,R-a

KIw .

If ζ lay in CPR,R-a
KIw,p , it follows from Proposition 52 that deg(ξ/S)τ (t) = deg(ζ/S)τ (t) for every τ

and 1 ≤ t ≤ e and C would equal D, which is a contradiction. Hence ζ lies in DPR,R-a
KIw,p , as ζ lies in

π−1(CPR,R-a
K ) = CPR,R-a

KIw ∪ DPR,R-a
KIw ⊂ CPR,R-a

KIw,p ∪ D
PR,R-a
KIw,p . Granted, it follows from Proposition 52

that if t ≥ 2, deg(ξ/S)τ (t) = p(1/e − deg(ζ/S)τ (t − 1)), and deg((A/D, (C + D)/D)/S)τ (t − 1) =
deg(ξ/S)τ (t)/p, while if t = 1, deg(ξ/S)f◦τ (1) = p(1/e − deg(ζ/S)τ (e)), and therefore deg((A/D, (C +

D)/D)/S)τ (e) = deg(ξ/S)f◦τ (1)/p. It is immediate to see that (A/D, (C + D)/D) lies in CPR,R-a
KIw,p and

deg((A/D, (C +D)/D)/S) = deg(ξ/S)/p < deg(ξ/S) as desired. �

Remark. The proof of the theorem indeed proves that Up, for every p above p, acts completely
continuously on the space of overconvergent p-adic Hilbert modular eigenforms in our sense.

6.3 Throwing away loci of ‘large’ co-dimension

In this section, in preparation of proving strong analytic continuation theorems on the Raynayd generic
fibre XPR,R-a

KIw , we define various admissible open subsets X+
KIw of ‘co-dimension ≤ 1’ (which contains

the multiplicative ordinary locus), based on the observation in Proposition 32. It is an analogue of those
defined in Section 5.2 in [31].

Let OK denote the ring of integers of a finite extension K of L and k be its residue field. Let
S = Spec OK and S = Spec k.

The (standard) Barsotti-Tate p-divisible group of A over S defining an S-point of Y PR
K is a product

of filtered principally polarisable Barsotti-Tate p-divisible groups Xp (of dimension epfp and of height
2epfp) over S where p ranges over SP; for each p, one can define invariants as in Section 5 for Xp over
S according to which one can stratify moduli spaces of Barsotti-Tate p-divisible groups. To that end,
let Σ = ΣEO (resp. Σ = ΣRZ) be a tuple (Σp)p where p ranges over SP with each Σp defined as in

Section 5; and we shall let Y
PR

K,Σ (resp. Y
PR

KIw,Σ) denote the closed κ-subscheme of the special fibre Y
PR

K

(resp. Y
PR

KIw) defined by demanding that the corresponding principally polarisable filtered Barsotti-Tate
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p-divisible group X = Xp lies in the closed substack of SBT (resp. SBT
I ) defined by Σp as in Section 5

for every p in SP.

Let Y
PR,++

K denote the union (over Σ) of subscheme Y
PR

K,Σ of Y
PR

K where Σ = ΣEO is defined such
that, there exists p in SP such that

[Fp : Qp]− 2 ≥
∑
τ

e− |γEO,τ |,

where τ ranges over Σ̂p, holds. It follows from Proposition 32 and Proposition 29 respectively that every

such Y
PR

K,Σ is of co-dimension ≥ 2 in Y
PR

K .

Let
Y

PR,+

K = Y
PR

K − Y PR,++

K

and let
Y

PR,+

KIw = π−1(Y
PR,+

K ).

As it is useful in defining ‘compactifications’ of the admissible open sets above, if Σ = ΣRZ, and if,
for every p in SP, one of the following:

• (St-1): νRZ,τ = {1, . . . , ep} while γRZ,τ = ∅ for every τ in Σ̂p,

• (St-2): νRZ,τ = ∅ while γRZ,τ = {1, . . . , ep} for every τ in Σ̂p,

holds, we say that Σ is semi-stable.
If Σ is semi-stable, let SP,Σ denote the set of all p in SP such that Σp satisfies (St-1). If Σ is semi-

stable, let X
PR

KIw,Σ denote the Zariski closure of Y
PR

KIw,Σ in X
PR

KIw. Let Z
PR

KIw,Σ denote the complement

in X
PR

KIw,Σ of the union of Y
PR

KIw,Σ+ as Σ+ ranges over all Σ+ = (νRZ,τ,+, γRZ,τ,+)τ which are not equal
to Σ such that νRZ,τ,+ contains νRZ,τ and γRZ,τ,+ contains γRZ,τ simultaneously.

Definition. Let XPR,+
KIw denote the union of sp−1(Y

PR,+

KIw ) and sp−1(Z
PR

KIw,Σ) for all semi-stable Σ. If

we let X
PR,+

K denote X
PR

K − Y PR,++

K and X
PR,+

KIw denote π−1(X
PR,+

K ), it follows by definition that

XPR,+
KIw = sp−1(X

PR,+

KIw ).

6.4 Overconvergent eigenforms of weight one

We shall use the notation used in Section 3.

Theorem 56 Suppose p > 3 and let L be a finite extension of Qp with ring O of integers and maximal
ideal λ. Let

ρ : Gal(F/F )→ GL2(O)

be a continuous representation such that

• ρ is totally odd,

• ρ is ramified at only finitely many primes of F ,

• ρ = (ρ mod λ) is of the form as supposed in Section 2, and there exists a non-Eisenstein maximal
ideal m of T ord

Σ (K) such that ρ ∼ ρm,

• ρ is absolutely irreducible when restricted to Gal(F/F (ζp)),

• if p = 5 and the projective image of ρ is isomorphic to PGL2(F5), the kernel of the projective
representation of ρ does not fix F (ζ5),

• ρ is trivial at every finite place of F above p,
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• ρ is unramified at every place p of F above p, and ρ(Frobp), where Frobp is the arithmetic Frobenius,

is equivalent to

(
αp ∗
0 βp

)
.

Let SP,e (‘e’ for ‘equal’) denote the subset of all primes p of F above p such that αp = βp, and let
SP,d (‘d’ for ‘distinct’) for denote the subset all primes p of F above p such that αp and βp are distinct;
SP is the disjoint union of SP,e and SP,d.

Then there exists a family of overconvergent cuspidal Hilbert modular forms FΣ of parallel weight one
and of level KIw where Σ = Σd × Σe where Σd ⊂ SP,d and Σe ⊂ SP,e such that

UpFΣ = βpFΣ for every p in Σd,

UpFΣ = αpFΣ for every p in SP,d − Σd,

UpFΣ = αpFΣ + FΣ−{p} for every p in Σe,

UpFΣ = αpFΣ for every p in SP,e − Σe,

UQFΣ = 0 for every Q in T − SP,

TQFΣ = tr ρ(FrobQ)FΣ for every Q not in T ,

where αp and βp denote, by slight abuse of notation, the roots of characteristic polynomial of ρ(Frobp)
and where T denotes the (disjoint) union of SP, SR, SL, and SA, and such that its associated Galois
representation is isomorphic to ρ.

Proof. Corollary 20 gives rise to a cuspidal p-adic Hilbert modular eigenform FΣ such that

• TQFΣ = tr ρ(FrobQ)FΣ for every Q not T ;

• UpFΣ = αpFΣ if p lies in SP,d − Σd, while UpFΣ = βpFΣ if p lies in Σd;

• UpFΣ = αpFΣ + FΣ−{p} if p lies in Σe while UpFΣ = αpFΣ if p lies in SP,e − Σe.

Furthermore, Lemmas 1.6-1.8 in [61] prove that we may increase the level K at Q if necessary to assume
that FΣ maps UQ to 0 for every Q in T − SP.

The proof that FΣ defines overconvergent modular eigenforms is analogous to Lemma 1 in [11], with
a characteristic zero lifting of a sufficiently large power of the Hasse invariant of parallel weight p− 1 on
XPR
K [1/p] in place of the Eisenstein series E of weight p− 1 in the proof. It is necessary to establish that

the Hecke operator at every place of F above p, acts completely continuously on the space of overcon-
vergent eigenforms (in our sense), but this has been proved already; see Remark at the end of preceding
section. �

In [50], this theorem is extended to the case where not only no assumption is made on p, but ρ is
allowed to be reducible when restricted to Gal(F/F (ζp)) (if it is not induced from a imaginary quadratic
field in F (ζp) in which every prime of F above p splits completely).

6.5 Overconvergent eigenforms of weight one, in companion, are classical

We shall prove that those overconvergent eigenmforms of weight one constructed in the theorem imme-
diately above are indeed classical, which is the last step of proving the main theorem of this paper. We
firstly prove a result (Proposition 57) of paramount importance, which describes the degrees of a point

in XPR,+
KIw . Indeed, it is to obtain a result of this kind that we study mod p/p-adic geometry of XPR

KIw

carefully.
The construction of a weight one form on XPR,+

KIw and ‘by extension’ over to XPR,R-a
KIw is achieved

by induction, designed on the observation made in Proposition 57. Proposition 59 is an analogue of
Proposition 5.7 in [31]. However, as in [31], in order to extend the eigenform to the vertex of the
valuation hypercube (the [Fp : Qp] copies of the interval [0, 1] for every p) at the ‘furthest end’, it is also
necessary to glue its companion forms to it by q-expansion calculations (Lemma 63). We also establish
an analogue, Proposition 60, of Lemma 5.9 in [31].
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Proposition 57 Let ξ be a non-cuspidal S-point of XPR,+
KIw and let ζ denote its image by the forgetful

morphism. Suppose that γEO,τ (ζ), as τ ranges over Σ̂p for every p, are not simultaneously empty. Then,

for every p, there exist † in Σ̂ = Σ̂p and an integer 1 ≤ l ≤ e = ep such that if we arrange the deg(ξ/S)τ (t)
as

· · · ,deg(ξ/S)f−1◦τ (e),deg(ξ/S)τ (1), . . . ,deg(ξ/S)τ (e),deg(ξ/S)f◦τ (1), · · · ,

i.e. a sequence of f = fp blocks of cardinality e, ordered by Σ̂, with each block, in itself, being ordered
by the index 1 ≤ t ≤ e, the sequence starting with deg(ξ/S)†(l) takes values 1/e, · · · , 1/e, in [0, 1/e),
0, . . . , 0.

Fix τ in Σ̂ and 1 ≤ t ≤ e such that deg(ξ/S)τ (t) lies in [0, 1/e) above. In which case, deg(ξ/S)τ (t)
is indeed 0, i.e. deg(ξ/S)τ (t) is the first 0 immediately after 1/e, if and only if t − 1 6∈ νRZ,τ (ξ/S)
and t 6∈ γRZ,τ (ξ/S) hold. On the other hand, deg(ξ/S)τ (t) lies in (0, 1/e) if and only if t lies in
γRZ,τ (ξ/S) ∩ νRZ,τ (ξ/S).

Proof. In this proof, we shall omit our reference to ξ and ζ for the invariants defined in Section 5.
We also fix p, and omit our reference where possible.

By assumption, if [Fp : Qp] =
∑
τ e− |γEO,τ |, then γEO,τ = ∅ hold for every τ , but this is excluded.

Hence it follows that there exists † in Σ̂ such that,

• for every τ in Σ̂, distinct from †, γEO,τ = ∅;

• for †, γEO,† = {l} for some 1 ≤ l ≤ e.

We then make appeal to Proposition 35 and Proposition 36: if t lies in γEO,τ , then

• t ≥ 2 and either the case t − 1 ∈ νRZ,τ while t ∈ γRZ,τ , or the case t − 1 6∈ νRZ,τ while t 6∈ γRZ,τ

holds.

• t = 1 and either the case e ∈ νRZ,f−1◦τ while 1 ∈ γRZ,τ , or the case e 6∈ νRZ,f−1◦τ while 1 6∈ γRZ,τ

holds,

while t does not lie in γEO,τ if

• t ≥ 2 and either the case t − 1 ∈ νRZ,τ while t 6∈ γRZ,τ , or the case t − 1 6∈ νRZ,τ while t ∈ γRZ,τ

holds.

• t = 1 and either the case e ∈ νRZ,f−1◦τ while 1 6∈ γRZ,τ , or the case e 6∈ νRZ,f−1◦τ while 1 ∈ γRZ,τ

holds,

and ascertain the tuples {νRZ,τ , γRZ,τ} for all τ in Σ̂. �

Proposition 58 Let ξ be a non-cuspidal S-point of XPR,R-a
KIw . Suppose that deg(ξ/S)τ (t) is of the form

in the preceding proposition, except we demand further that, for every p, deg(ξ/S) is not an integer
multiple of 1/ep, or equivalently, if t lies in γRZ,τ (ξ/S)∩νRZ,τ (ξ/S), it is assumed that deg(ξ/S)τ (t) lies

in (0, 1/e). Then ξ lies in XPR,+
KIw .

Proof. It suffices to establish |
∑
τ γEO,τ (ξ)| = 1 as τ ranges over Σ̂p, for every place p of F above p.

Fix p and we shall omit the reference. By assumption, there is no 1 ≤ t ≤ e such that t− 1 not lying in
νRZ,τ (ξ/S) and t not lying in γRZ,τ (ξ/S). The assertion therefore follows from Proposition 35 and 36. �

Fix a proper subset Γ of SP. Fix, furthermore, a prime P above p (with a fixed uniformiser π) which
is not in Γ. When convenient, we shall omit our reference to P (and only for P) from notation.

Definition. For an interval I ⊆ [0, f ] be an interval, we shall let X+,Γ
KIwI denote the union of

sp−1(Z
PR

KIw,Σ) for semi-stable Σ, such that SP,Σ contains SP − Γ, and the set of non-cuspidal points ξ

over S in Y PR,+
KIw such that

• for p in Γ,
0 ≤ deg(ξ/S)τ (t) ≤ 1/ep

for every τ in Σ̂p and 1 ≤ t ≤ ep;
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• for p not in Γ ∪ {P}, deg(ξ/S)τ (t) satisfies that

deg(ξ/S)τ (t) + pdeg(ξ/S)f−1◦τ (t) < p/ep

for every τ in Σ̂p and 1 ≤ t ≤ ep;

• for p = P, deg(ξ/S) lies in I.

It is an admissible open subset of XPR,+
KIw by Maximum Modulus Principle.

For brevity, let
r = rP = 1/p+ 1/p2 + · · ·+ 1/pf−1 < 1/(p− 1) < 1

if e = 1.

Proposition 59 If e = eP > 1 and f = fP ≥ 1, a section over X+,Γ
KIw[0, 1/e) which is a UP-eigenform

with non-zero eigenvalue, extends to X+,Γ
KIw[0, f).

If e = 1 and f > 1 (resp. f = 1), a section over X+,Γ
KIw[0, 1) (resp. X+,Γ

KIw[0, p/(p + 1))) which is a

UP-eigenform with non-zero eigenvalue, extends to X+,Γ
KIw[0, f − r) (resp. X+,Γ

KIw[0, 1)).

Proof. When e = 1, Proposition 57 recovers Lemma 5.3 in [31] and the assertion follows from a
straightforward generalisation of the proof of Proposition 5.7 in [31]. Suppose therefore that e > 1. For
clarity, we break our proof into two steps.

Step 1. Extending a U -eigenform, with non-zero eigenvalue, from X+,Γ
KIw[0, 1/e) to X+,Γ

KIw[0, f − 1/e].

Suppose ξ is a non-cuspidal point of X+,Γ
KIw[0, f − 1/e]. Let (A,C) denote the corresponding HBAV

over S together with a Raynaud vector subspace scheme C of A.

Suppose that there exists † in Σ̂ such that γEO,†(ξ/S) = {l} for some 1 ≤ l ≤ e. It follows from Propos-
ition 57 that deg(ξ/S)†(l−1) = 0 if l > 1 or deg(ξ/S)f−1◦†(e) = 0 if l = 1. For brevity, we assume l > 1. It

then follows from lemma 43 that, if ζ denotes the point of XPR,R-a
KIw corresponding to (A,D) for a Raynaud

vector space subscheme D such that D[π] is distinct from C[π], all deg(ζ/S)†(l),deg(ζ/S)†(l + 1), . . .
are 1/e except deg(ζ/S)†(l − 1) which satisfies 0 < deg(ζ/S)†(l − 1) < 1/e. Because of Proposition 57

and the observation that deg((A/D,A[π])/S)τ (t) = 1/e− deg(ζ/S)τ (t) for every τ in Σ̂ and 1 ≤ t ≤ e,

the point corresponding to (A/D,A[π]/D) lies in XPR,+
KIw and 0 < deg((A/D,A[π]/D)/S) < 1/e.

Step 2. Extending a U -eigenform, with non-zero eigenvalue, from X+,Γ
KIw[0, f − 1/e] to X+,Γ

KIw[0, f).

Let ξ be a point of X+,Γ
KIw[0, f)−X+,Γ

KIw[0, f − 1/e]. As in Step 1, let (A,C) denote the corresponding
HBAV over S = Spec OK (where OK is the ring of integers of a finite extension K of L) together
with a Raynaud vector subspace scheme C of A, and suppose that γEO,†(ξ/S) = {l} for some † in Σ̂
and 1 ≤ l ≤ e. By assumption, deg(ξ/S)†(l),deg(ξ/S)†(l + 1), . . . , are all 1/e except the last in the
arrangement for which 0 < deg(ξ/S)†(l− 1) < 1/e if l > 1, or 0 < deg(ξ/S)f−1◦†(e) < 1/e if l = 1, holds.
For brevity, suppose l > 1.

We use the set of notation introduced in Section 5.5. Let D be a Raynaud vector space subscheme
which is distinct from C in A[π] and let ζ denote the point corresponding to (A,D) as in Step 1. It
follows from Lemma 44 that ρtτ = 0 except when τ is † and t is l − 1. It is enough to establish that

χD,l−1
† > 0 as it then follows from Proposition 57 that all deg(ζ/S)†(l),deg(ζ/S)†(l + 1), . . . are 1/e,

except 0 < deg(ζ/S)†(l − 1) < 1/e, and the assertion of Step 2 follows as concluded in Step 1.

Suppose that deg(ζ/S)†(l−1) = χD,l−1
† = 0. In which case, ρD,l−1

† = eK/e by Lemma 39. It therefore

follows from >
l

†,2 with πρ
D,l−1
† U l−1

† = 0 in R that εl†π
χl−1
† = 0 in OK . On the other hand, Corollary 46,

combined with Proposition 57, establishes, in particular, that χD,l† = eK/e (we know χl† = eK/e and

χD,l† > 0 but it takes the knowledge of χD,l+1
† = eK/e and Proposition 57 to conclude this claim). Since

eK/e− χD,l† is computed (see the formula for χD,l† ) by the valuation of Sl†ε
l
† in R (because χl† = eK/e),
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it follows that the valuation of εl† (and of Sl†) is zero. Combined with the claim earlier, this would imply

that χl−1
† = eK/e which contradicts the assumption that χl−1

† = eKdeg(ξ/S)†(l − 1) < eK/e. �

Proposition 60 Let ξ be a point of XPR,+
KIw which corresponds to (A,C) defined over S = SpecR for the

ring R of integers of a finite extension of L. Fix a prime P above p with a uniformiser π. Suppose that

(I) if eP > 1 and fP ≥ 1, there exists † in Σ̂ = Σ̂P and 1 ≤ t ≤ e such that deg(ξ/S)τ (t) = 1/e for

every τ in Σ̂ and 1 ≤ t ≤ e except for τ = † and t = l − 1 at which 0 < deg(ξ/S)†(l − 1) < 1/e
holds;

(II) if e = 1 and f > 1, there exists † in Σ̂ = Σ̂P such that deg(ξ/S)τ = 1 for every τ in Σ̂ distinct
from f−1 ◦ † while deg(ξ/S)f−1◦† lies in the open interval (f − 1, f − r)

(III) if e = 1 and f = 1, deg(ξ/S) lies in (0, 1)

Then, for any Raynaud submodule scheme D of A[π] over S that is distinct from C in A[π], (A,D)/S

defines a S-point ζ of XPR,+
KIw such that deg(ζ/S) lying in (f − 1/e, f), (resp. (f − 1, f − r), resp. (0, 1))

if (I) (resp. (II), resp. (III)) holds.

Proof. The case (III) is proved in [49] while the case (II) is dealt with in [31]. The case (I) follows
from the preceding proposition . �

Remark. This is a generalisation of Kassaei’s ‘saturation’ (see Lemma 5.9 in [31]).

Definition. Let Σ+
KIw be the admissible open subset of points ξ over S in XPR,+

KIw such that, for every
p, deg(ξ/S) lies in (fp − 1/ep, fp) (resp. (fp − 1, fp − rp), resp. (0, 1)) when (I) (resp. (II), resp. (III))
of Proposition 60 holds.

Lemma 61 For every representative `, if f > 1 (resp. f = 1), the pull-back X+,Γ
KIw,`[0, f) of X+,Γ

KIw[0, f) ↪→
XPR,R-a
KIw (resp. the pull-back X+,Γ

KIw,`[0, 1) of X+,Γ
KIw[0, 1) ↪→ XPR,R-a

KIw ) along XPR,R-a
KIw,` ↪→ XPR,R-a

KIw is con-
nected.

Proof. This can be proved as in Lemma 6.3 in [31]. We sketch our proof for the case f > 1. Firstly,

we show X+,Γ
KIw,`[0, f − 1 + (e− 1)/e] is connected.

The connectedness of X+,Γ
KIw,`[0, f−1+(e−1)/e]: In the special fibre XKIw,`, the irreducible compon-

ents are parameterised as X
Σ

where Σ = ΣRZ = (γRZ,τ , νRZ,τ ) (see Section 5.4) satisfies the conditions
that hold for every p: every 1 ≤ t ≤ ep lies either γRZ,τ or νRZ,τ , but it does not lie simultaneously in

γRZ,τ and νRZ,τ for every τ in Σ̂p.
To attain some clarity in our exposition, we may and will henceforth suppose that |SP| = 1, and we

omit our reference to P when convenient.

For 0 ≤ N ≤ d− 1 which is of the form N = e(χ− 1) + t for some 1 ≤ χ ≤ f and 0 ≤ t ≤ e− 1, let
ΣN denote ΣRZ,N defined by

• γRZ,† = · · · = γRZ,f−(χ+1)◦† = ∅,

• γRZ,f−χ◦† = {e− (t− 1), . . . , e− 1, e} (in particular, |γRZ,f−χ◦†| = t),

• γRZ,f−(χ−1)◦† = · · · = γRZ,f−1◦† = {1, . . . , e}

• νRZ,τ = {1, . . . , e} − γRZ,τ for every τ in Σ̂.

For example, when N = d−1 in which case χ = f and t = e−1, then γRZ,f−1◦† = {e} while γRZ,τ = ∅
for every τ in Σ̂ distinct from f−1 ◦ †. At the other end of the spectrum, if N = 0 (χ = 1 and t = 0),
then γRZ,τ = {1, . . . , e} for every τ in Σ̂.
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When N = 0, let XΣN denote X
Σ − (X

Σ ∩XΣ∅

) where Σ = ΣRZ is defined by γRZ,τ = {1, . . . e} for

every τ in Σ̂ and where Σ∅ differes from Σ by the corresponding γ∅RZ,τ = ∅ for every τ in Σ̂. For N ≥ 1,

let XΣN denote the union of X
ΣJ

as J ranges over 0 ≤ J ≤ N − 1.

Let X
+

ΣN denote XΣN ∩X
PR,+

KIw . As X+,Γ
KIw,`[0, f − 1 + (e− 1)/e] = sp−1(X

+

Σd−1
), it suffices to prove

that X
+

ΣN is connected when N = d − 1. We prove the connectedness by induction. One checks firstly

that X
+

ΣN is connected when N = 0 by the density and the connectedness of the multiplicative ordinary

locus of X
PR

KIw. Secondly, we assume the connectedness of X
+

ΣN−1
to prove the connectedness of X

+

ΣN .

Let ξ be a point of X
+

ΣN −X
+

ΣN−1
. Write Σ for ΣRZ(ξ), which is ΣRZ,N as above.

Let Σ+ be exactly the same as Σ except at f−χ ◦ † at which we demand γRZ,f−χ◦† = {e− t, . . . , e} =

γRZ,f−χ◦† ∪ {e − t}. One observes that Σ+ is nothing other than ΣRZ,N−1, and X
Σ+

is a member of

the union XΣN−1
. We then conclude our argument by showing, if X is an irreducible component of X

Σ

passing through ξ, that X ∩X+

KIw,` is connected and (X ∩X+

KIw,`) ∩X
Σ+

6= ∅.

The connectedness of X+,Γ
KIw,`[0, f): It suffices to prove the connectedness of X+,Γ

KIw,`[0, f − 1 + (e −
1 + γ)/e] for some γ ∈ (0, 1) ∩ Q. Suppose that X+,Γ

KIw,`[0, f − 1 + (e − 1 + γ)/e] is not connected.

Then there exists a connected component X of X+,Γ
KIw,`[0, f − 1 + (e− 1 + γ)/e] which does not intersect

X+,Γ
KIw,`[0, f −1+(e−1)/e]. By the quasi-compactness of X, there exists ν < γ/e such that X+,Γ

KIw,`[0, f −
1 + (e− 1 + ν)/e] ∩X = ∅.

Let ξ be a point of X. In which case, ν(ξ) = f − 1 + (e − 1)/e + ν(ξ)f−1◦†(e), where ν(ξ)f−1◦†(e)
denotes the valuation of yef−1◦†(ξ) as defined in Section 6.1, while it follows from the definition of ν that

ν(ξ) > f − 1 + (e− 1)/e+ ν. Combining, one deduces that ν(ξ)f−1◦†(e) > ν. In fact, for any point ζ in

X ∩ sp−1(ξ), the strict inequality ν(ζ)f−1◦†(e) > ν holds.

On the other hand, the admissible open subset sp−1(ξ)[0, f −1 + (e−1 +γ)/e] of points ζ in sp−1(ξ),
such that 0 ≤ deg(ζ) ≤ f − 1 + (e− 1 + γ)/e holds, is evidently connected and is contained in X. As for
any point ζ in sp−1(ξ)[0, f − 1 + (e− 1 + γ)/e], deg(ζ) is given by f − 1 + (e− 1)/e+ ν(ζ)f−1◦†(e), one
may therefore deduce ν(ζ)f−1◦†(e) ≤ γ/e holds. This is a contradiction. �

Suppose that the level K of overconvergent modular forms is K as in Theorem 56. In particular, let
T denote the disjoint union of SP, SR, SL, SA.

Proposition 62 Fix a subset Γ of SP such that |Γ| ≤ |SP| − 1. Suppose that SP is a disjoint union of
two subsets SP,e and SP,d. Let Γe (resp. Γd) denote Γ ∩ SP,e (resp. Γ ∩ SP,d).

For every Σ = Σd × Σe ⊂ SP − Γ = (SP,d − Γd) × (SP,e − Γe), suppose that FΣ is a section over

X+,Γ
KIw[0, f − r) if f = fP > 1 and X+,Γ

KIw[0, 1) if f = 1 satisfying

UpF
Γ
Σ = αpF

Γ
Σ for every p in (SP,d − Γd)− Σd,

UpF
Γ
Σ = βpF

Γ
Σ for every p in Σd,

UpF
Γ
Σ = αpF

Γ
Σ for every p in (SP,e − Γe)− Σe

UpF
Γ
Σ = αpF

Γ
Σ + FΓ

Σ−{p} for every p in Σe

UQF
Γ
Σ = 0 for every Q in T − SP,

TQF
Γ
Σ = γQF

Γ
Σ for every Q not in T

where α’s and β’s are all assumed non-zero. Then, for P in SP − Γ which we fix, the family {FΣ}Σ of

eigenforms define a family of eigenforms {FΓ∪{P}
Σ }Σ defined over X+,Γ

KIw[0, f ] with Σ = Σd ×Σe ranging
amongst the subsets of SP − (Γ ∪ {P}) such that, if P is in SP,d − Γd,

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ for every p in (SP,d − Γd − {P})− Σd,
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UpF
Γ∪{p}
Σ = βpF

Γ∪{P}
Σ for every p in Σd,

(UpF
Γ∪{P}
Σ − αp)F

Γ∪{P}
Σ = 0 for every p in (SP,e − Γe)− Σe

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ + F

Γ∪{P}
Σ−{p} for every p in Σe

UQF
Γ∪{P}
Σ = 0 for every Q in T − SP,

TQF
Γ∪{P}
Σ = γQF

Γ
Σ for every Q not in T ,

or if P is in SP,e − Γe

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ for every p in (SP,d − Γd)− Σd,

UpF
Γ∪{P}
Σ = βpF

Γ∪{P}
Σ for every p in Σd,

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ for every p in (SP,e − Γe − {P})− Σe

UpF
Γ∪{P}
Σ = αpF

Γ∪{P}
Σ + F

S∪{P}
Σ−{p} for every p in Σe

UQF
Γ∪{P}
Σ = 0 for every Q in T − SP,

TQF
Γ∪{P}
Σ = γQF

Γ∪{P}
Σ for every Q not in T .

Furthermore, when f > 1 (resp. f = 1), if the equality

FΓ
Σ((A,C)) = FΓ

Σ((A,D))

holds for any pair of points (A,C) and (A,D) of Σ+
KIw ∩X

+,Γ
KIw[0, f) (resp. Σ+

KIw ∩X
+,Γ
KIw[(e − 1)/e, 1))

satisfying C[p] 6= D[p] for all p in Γ, then

F
Γ∪{P}
Σ ((A,C)) = F

Γ∪{P}
Σ ((A,D))

holds for any pair of points (A,C) and (A,D) of Σ+
KIw ∩X

+,Γ
KIw[0, f) satisfying C[p] 6= D[p] for every p

in Γ ∪ {P}.

Proof. We shall prove the case e > 1 and f > 1. The case f = 1 follows similarly. Fix Σ ⊂
SP − (Γ ∪ {P}).

Suppose firstly that P is in SP,d−Γd. By definition, the sections FΓ
Σ and FΓ

Σ∪{P} are both thought of

as being defined over X+,Γ
KIw[0, f) ⊂ X+,Γ

KIw[0, f ] and are eigenforms with the same eigenvalues except at P.

For brevity, let UPF
Γ
Σ = αFΓ

Σ and UPF
Γ
Σ∪{P} = βFΓ

Σ∪{P}; we shall also let F
Γ∪{P}
Σ = αFΓ

Σ−βFΓ
Σ∪{P} and

H
Γ∪{P}
Σ = −(FΓ

Σ∪{P}−F
Γ
Σ), both of which are defined over X+,Γ

KIw[0, f) but are no longer UP-eigenforms.

We shall think of H
Γ∪{P}
Σ as a section over X+,Γ

KIw[0, 1/e) ⊂ X+,Γ
KIw[0, f) (since f > 1 is assumed).

Suppose that P is in SP,e−Γe. The sections FΓ
Σ and FΓ

Σ∪{P} are eigenforms with the same eigenvalues

for Hecke operators away from SP and for Up for p in SP − Γ; furthermore, FΓ
Σ is an UP-eigenform with

eigenvalue α (which we may assume to be 1 but continues to write α) while FΓ
Σ∪{P} is a multiplicity 2

generalised UP-eigenvector and UPF
Γ
Σ∪{P} = αFΓ

Σ∪{P} + FΓ
Σ . We let F

Γ∪{P}
Σ = FΓ

Σ∪{P} and H
Γ∪{P}
Σ =

αFΓ
Σ∪{P} + FΓ

Σ .

Let w = wP denote the map of sections defined as above. We shall glue w(H
Γ∪{P}
Σ ) defined over

w(X+,Γ
KIw[0, 1/e)) = X+,Γ

KIw(f − 1/e, f ] and F
Γ∪{P}
Σ at the intersection

X+,Γ
KIw(f − 1/e, f) = X+,Γ

KIw[0, f) ∩X+,Γ
KIw(f − 1/e, f ]

to construct a section over X+,Γ
KIw[0, f) ∪X+,Γ

KIw(f − 1/e, f ] = X+,Γ
KIw[0, f ].
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For the fractional ideal J = `−1 for some fixed representative ` , let TateJ(q) = G⊗ZD
−1/qJ denote

the algebrified (rigid analytic) quotient over a [F : Q]-dimensional polydisc over L by the OF -linear
morphism q : J → G⊗Z D

−1.
The (semi)abelian variety TateJ(q) comes naturally equipped with real multiplication and is naturally

J−1-polarisable. We suppose that TateJ(q) is equipped with a n-level structure η and (when appropriate)
with choices of isomorphisms:

• OF /p ' (G⊗Z D
−1)[p]

• and OF /p ' p−1J/J (and let qp
−1

denote a lifting in qp
−1

of the generator of qp
−1J/J defined by

this isomorphism)

for every p above p, and these define cusps of XPR
KIw and XPR

KIw,Iwp
.

For an overconvergent cuspidal modular form F of weight λ = (1, w) and of level KIw, let FJ denote

the restriction of F over XPR,R-a
KIw,` and let

∑
ν∈J+

cJ(ν, F )qν denote the q-expansion obtained by evaluating

F (or FJ) at TateJ(q). By slight abuse of notation, by

(G⊗Z D
−1)[P]/qJ ⊂ (G⊗Z D

−1)[p]/qJ

we shall also mean the ‘full’ multiplicative Raynaud vector subspace of TateJ(q) (as only the P-part is
relevant to the calculations that follow). Then, fixing J = `−1 as above,

(UPF )(TateJ(q),G⊗Z D
−1[P]/pJ) =

∑
ν∈J+

cJP(rν, F )qν

where r is a totally positive element satisfying PJ−1 = rJ−1
P with J−1

P = `P a member of the fixed

representative for the class of the fractional ideal PJ−1.
More generally, for any non-zero integer λ, let JPλ denote a member of the fixed set of representatives

satisfying PλJ−1 = rλJPλ for some totally positive element rλ = rJPλ . We often write r for r1.

Lemma 63 Over X+,Γ
KIw(f − 1/e, f) if e > 1, over X+,Γ

KIw(f − 1, f − r) if e = 1 and f > 1 and over

X+,Γ
KIw(f − 1, f − r) if e = 1 and f = 1,

F
Γ∪{P}
Σ = w(H

Γ∪{P}
Σ ).

Proof. Firstly we prove the case when P is in SP,d − Γd. As in Proposition 6.9, [31], it suffices to
prove the equality

π∗1,PF
Γ∪{P}
Σ = π∗π∗2,PH

Γ∪{P}
Σ

of sections over the admissible open subset π−1
1,P(X+,Γ

KIw[0, f)) in the generic fibre XPR
KIw,IwP

, where π is

the map of invertible sheaves π∗2,PAλ,R-a → π∗1,PAλ,R-a where λ = (1, 1).

We may and will normalise Fourier q-expansions to assume αcJ(ν, FΓ
Σ) = cJP(rν, FΓ

Σ) and βcJ(ν, FΓ
Σ∪{P}) =

cJP(rν, FΓ
Σ∪{P}), for r in F+ such that PJ−1 = rJ−1

P , hold for all ν in J+. On one hand,

π∗1,PF
Γ∪{P}
Σ (G⊗Z D

−1/qJ ,G⊗Z D
−1[P]/qJ , qP

−1

)

= (αFΓ
Σ − βFΓ

Σ∪{P})(G⊗Z D
−1/qJ)

=
∑
ν∈J+

(αcJ(ν, FΓ
Σ)− βcJ(ν, FΓ

Σ∪{P}))q
ν

=
∑
ν∈J+

(cJP(rν, FΓ
Σ)− cJP(rν, FΓ

Σ∪{P}))q
ν .

On the other hand,

π∗π∗2,PH
Γ∪{P}
Σ (G⊗Z D

−1/qJ ,G⊗Z D
−1[P]/qJ , qP

−1

)

= −(FΓ
Σ∪{P} − F

Γ
Σ)(G⊗Z D

−1/qP
−1J)

= (FΓ
Σ − FΓ

Σ∪{P})(G⊗Z D
−1/qJP)

=
∑
ν∈J+

(cJP(rν, FΓ
Σ)− cJP(rν, FΓ

Σ∪{P}))q
ν
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We shall prove the case when P is in SP,e−Γe. We may normalise the Fourier q-expansion to assume,
for every ν in J+, that αcJ(ν, FΓ

Σ) = cJP(rν, FΓ
Σ) holds.

Since
UP(FΓ

Σ∪{P} − cF
Γ
Σ) = αFΓ

Σ∪{P} + FΓ
Σ − cαFΓ

Σ = α(FΓ
Σ∪{P} − cF

Γ
Σ) + FΓ

Σ

for a constant c, one may subtract a constant multiple of FΓ
Σ,J from FΓ

Σ∪{P},J if necessary to assume, for
every J that

cJ(1, FΓ
Σ∪{P},J) = 0

from now onwards. Since FΓ
Σ∪{P} is an eigenform for all Hecke operator TQ for Q not in T , we may

therefore further assume that
cJ(ν, FΓ

Σ∪{P},J) = 0

for every J and ν in J+ such that νJ−1 is coprime to the primes of T , or indeed to p by making the
tame level K sufficiently smaller, if necessary.

Sublemma 1. For λ ≥ 1, cJ
Pλ

(rλν, F
Γ
Σ∪{P}) = λαλ−1cJ(ν, FΓ

Σ) for νJ−1 coprime to p.

Proof. Evaluating UPF
Γ
Σ∪{P} = αFΓ

Σ∪{P} + FΓ
Σ at (TateJ(q),G⊗Z D

−1)[P]/qJ), we have∑
ν∈J+

cJP(rν, FΓ
Σ∪{P})q

ν =
∑
ν∈J+

αcJ(ν, FΓ
Σ∪{P})q

ν +
∑
ν∈J+

cJ(ν, FΓ
Σ)qν

i.e.,
cJP(rν, FΓ

Σ∪{P}) = αcJ(ν, FΓ
Σ∪{P}) + cJ(ν, FΓ

Σ).

Similarly, since UλPF
Γ
Σ∪{P} = αλFΓ

Σ∪{P} + λαλ−1FΓ
Σ , evaluating at (TateJ(q),G⊗Z D

−1)[P]/qJ), we
have ∑

ν∈J+

cJ
Pλ

(rλν, F
Γ
Σ∪{P})q

ν =
∑
ν∈J+

αλcJ(ν, FΓ
Σ∪{P})q

ν + λαλ−1
∑
ν∈J+

cJ(ν, FΓ
Σ)qν ,

which proves the assertion, as cJ(ν, FΓ
Σ∪{P}) = 0. �

As α is a unit, we may and will explicitly assume α = 1.

Sublemma 2. For λ ≥ 1, cJ
Pλ

(rλν, F
Γ
Σ∪{P}) = λcJ(ν, FΓ

Σ) for ν in J+.

Proof. Clear. �

We now prove the assertion of the lemma, by comparing q-expansions at (TateJ(q),G⊗ZD
−1[P]/qJ).

On one hand,

F
Γ∪{P}
Σ (G⊗Z D

−1/qJ ,G⊗Z D
−1[P]/qJ)

=
∑
ν∈J+

cJ(ν, FΓ
Σ∪{P})q

ν .

In particular, the coefficient of r
J
P−λ

λ ν-power of q, where ν lies in J+, is

cJ(r
J
P−λ

λ ν, FΓ
Σ∪{P}) = λcJ

P−λ
(ν, FΓ

Σ)

by the lemma.
On the other hand,

w(H
Γ∪{P}
Σ )(G⊗Z D

−1/qJ ,G⊗Z D
−1[P]/qJ)

=
∑
ν∈J+

cJP−1 ((rJP−1 )−1ν, FΓ
Σ∪{P})q

ν +
∑
ν∈J+

cJP−1 ((rJP−1 )−1ν, FΓ
Σ)qν .
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Because rJP−1 = r
J
P−λ

λ /r
J
P−λ

λ−1 by definition, the coefficient of the r
J
P−λ

λ ν-power of q, where ν lies in
J+, is

cJP−1 ((r
J
P−λ

λ /r
J
P−λ

λ−1 )−1r
J
P−λ

λ ν, FΓ
Σ∪{P}) + cJP−1 ((r

J
P−λ

λ /r
J
P−λ

λ−1 )−1r
J
P−λ

λ ν, FΓ
Σ)

= cJP−1 (r
J
P−λ

λ−1 ν, FΓ
Σ∪{P}) + cJP−1 (r

J
P−λ

λ−1 ν, FΓ
Σ)

= (λ− 1)cJ
P−λ

(ν, FΓ
Σ) + cJ

P−λ
(ν, FΓ

Σ)

= λcJ
P−λ

(ν, FΓ
Σ)

by the sub-lemma. The coefficients of the rλν-power of q for all λ ≥ 1 on both sides coincide, and
therefore the lemma follows. �

It remains to establish the last assertion of Proposition 62. Suppose that (A,C) is a point of Σ+
KIw ∩

X+,Γ
KIw[0, f ], and D is a Raynaud submodule scheme of A[p] such that C[p] 6= D[p] for every prime p in

Γ ∪ {P}. By the assumptions, it is only necessary to deal with the case at P. To this end, let G be
a Raynaud submodule scheme of A[P] distinct from C[P] and D[P]. In which case, (A,C,G) (resp.

(A,D,G)) defines a point π−1
1,P(X+,Γ

KIw[0, f)) lying above (A,C) (resp. (A,D)) along π1,P respectively. It

then follows from the identity of sheaves over π−1
1,P(X+,Γ

KIw[0, f)), established in Lemma 63 that

F
Γ∪{P}
Σ ((A,C)) = π∗1,PF

Γ∪{P}
Σ ((A,C,G)) = π∗H

Γ∪{P}
Σ ((A/G,A[P]/G)) = wP(H

Γ∪{P}
Σ )((A,G)).

On the other hand, one can similarly deduce the equality F
Γ∪{P}
Σ ((A,D)) = wP(H

Γ∪{P}
Σ )((A,G)), we

then deduce F
Γ∪{P}
Σ ((A,C)) = F

Γ∪{P}
Σ ((A,D)). �

Corollary 64 F
Γ∪{P}
Σ extends to a section over X+,Γ

KIw[0, f ].

Proof of the main theorem. By Theorem 56, we have a family of overconvergent eigenforms {FΣ},
one for every Σ ⊆ SP. Inductively apply Proposition 62 on Γ to construct a section F+ = F∅ over XPR,+

KIw

which is an eigenform for all Hecke operators corresponding to the ideals not in T . Indeed, F+ descends
to the level K and write F− for π∗F

+ where π is the forgetful morphism π : XPR,+
KIw → XPR,+

K which is

finite flat of degree 1 + p
∑

p fp . Hence π∗F− = π∗π∗F
+ = (p

∑
p fp + 1)F+. Since F− is a section over

XPR,+
K , it follows from the Riemann extension theorem (Proposition 2.10 in [31] for example) that it

extends to a section over XPR,R-a
K . It then follows that the equality (p

∑
p fp + 1)F+ = π∗F− of sections

over XPR,R-a
KIw holds. To see this, it suffices to observe that the equality (p

∑
p fp + 1)F+ = π∗F− holds at

the admissible open subset Σ+
KIw. This, in turn, follows from the last assertion in Proposition 62 that,

if (A,C)/S is a (non-cuspidal) S-point of the set, the equality

(π∗F−)((A,C)/S) = F−(A/S) = (π∗F
+)(A/S) =

∑
D

F+((A,D)/S) = (p
∑

p fp + 1)F+((A,C)/S)

holds, where the sum ranges over all Raynaud submodule schemes D ⊂ A[p] such that (A,D)/S is in

the pre-image by π of π(A,C). Hence F+ is a section over XPR,R-a
KIw which is a classical cuspidal Hilbert

modular eigenform of weight 1 of level old at p. �

6.6 Modularity of Artin representations and the strong Atrin conjecture

Proposition 65 Let F be a totally real field. Let

ρ : Gal(F/F )→ GL2(F5)

be a continuous representation of the absolute Galois group Gal(F/F ) of F satisfying the following
conditions.

• ρ is totally odd.

• The projective image of ρ is A5.
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Then there exists a finite soluble totally real field extension K of F such that ρ, when restricted to
Gal(F/K), is of the form in Section 2.1. In particular, the restriction is modular.

Proof. This can be proved as in Section 2 in [49]. Indeed, as the projective image of ρ is A5, one
firstly replaces F by its finite soluble totally real extension to assume that ρ takes values in GL2(F5)
with mod 5 cyclotomic determinant. We may and will choose a finite soluble totally real field extension
K ⊂ F of F such that the restriction of ρ to Gal(F/K) is unramified at every place of K above 3.
We then find an elliptic curve E over K whose 5-torsion representation of Gal(F/K) is isomorphic to
the restriction of ρ to Gal(F/K), whose 3-torsion representation of Gal(F/K) is absolutely irreducible
when restricted to K(

√
−3), and whose 3-adic Tate module representation T3E of Gal(F/K) is ordinary

at every place of K above 3. We use the degree 24 cover of the ρ|Gal(F/K)-twisted ‘modular curve’ of

X5 over K constructed by Shepherd-Barron-Taylor in Section 1 of [52], and make appeal to Ekedahl’s
Hilbert irreducibility theorem (Theorem 1.3 in [19]) to find a K-point of the twisted curve.

By the Langlands-Tunnell theorem and a result of Kisin [37] (the weight two specialisation of the
Hida family passing though the weight one cusp eigenform corresponding to E[3] renders T3E strongly
residually modular in the sense of [37]), one deduces T3E is modular, hence E and, by extension the
restriction of ρ to Gal(F/K), is modular. Finally, apply the main theorem of [2]. �

As a corollary,

Corollary 66 The strong Artin conjecture for two-dimensional, totally odd, continuous representations
ρ : Gal(F/F )→ GL2(C) of the absolute Galois group Gal(F/F ) of a totally real field F holds.

Proof. This follows from Proposition 62 and the preceding proposition. �
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Nombres, Paris 1988-1989”, Progress in Mathematics 91, Birkhäuser.
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