Hyperstate Space Graphs For
Automated Game Analysis

Michael Cook
Queen Mary University of London
mike @ gamesbyangelina.org

Abstract—Automatically analysing games is an important chal-
lenge for automated game design, general game playing, and co-
creative game design tools. However, understanding the nature of
an unseen game is extremely difficult due to the lack of a priori
design knowledge and heuristics. In this paper we formally define
hyperstate space graphs, a compressed form of state space graphs
which can be constructed without any prior design knowledge
about a game. We show how hyperstate space graphs produce
compact representations of games which closely relate to the
heuristics designed by hand for search-based AI agents; we
show how hyperstate space graphs also relate to modern ideas
about game design; and we point towards future applications for
hyperstates across game Al research.

Index Terms—automated game design, general game playing,
game analysis

I. INTRODUCTION

Games are complex software that can be viewed in many
different ways. Developers, critics, academics and players use
different models to discuss and represent different parts of
a game, to see something in a different light or focus on
a particular game facet. In design and research a popular
method for modelling the ways a game can play out is a state
space graph (SSG), a directed graph in which the vertices
represent game states and the edges represent actions taken by
the player that transition the game from one state to another.
SSGs are useful for a variety of purposes: designers may use
them to model the structure of puzzles [7], and Al agents may
construct and explore SSGs to evaluate the best next action [4].

Although SSGs are useful, most games are too large for
exhaustive SSGs to be constructed. Many games have no fixed
end point, which would result in a theoretically infinite SSG
(e.g. Civilisation). Other games are simply very large — there
are 361 initial moves in a game of Go, and after 50 moves the
number of possible game states is in the order of 10'27 [1]. The
verbosity of videogame state spaces also means that important
actions that have an impact on the game are dwarfed by a
larger quantity of low-impact actions. For example, the large
quantities of time spent running across the town in Silent Hill
2 compared to the small but impactful time solving puzzles.

To manage size, when constructing SSGs we often apply
reduction or abstraction techniques. One option is to change
the SSG representation. For example, in [7] a puzzle from The
Legend Of Zelda: Twilight Princess is represented as an SSG,
but many intermediate states, such as walking around rooms or
combat, are either elided or combined into higher-level states.

Azalea Raad
Max Planck Institute for Software Systems
azalea@mpi-sws.org

Another option, commonly used in the design of Al agents, is
to limit the size of the SSG — many Chess agents are limited
in how far ahead they may look to evaluate a move.

These abstraction processes for state space compression
require game-specific expert knowledge: what is important and
what is not, and which aspects of the game we wish to focus
on. However, many Al systems are required to play, analyse
or interact with games that have never been seen before by
anyone. Automated game design systems must understand a
game in order to be able to evaluate or change its design.
Co-creative systems similarly must understand what a person
has created in order to give feedback or respond creatively.
General game playing agents must assess unseen games in
order to devise or select an appropriate way of playing. For
the general case of an unseen game design, no heuristics exist
to help us compress or reduce the state space, or to guide us
in evaluating the nature of this game.

In this paper we propose hyperstate space graphs (HSGs) as
a general approach to compressing SSGs using the notion of
reversible actions. We define a reversible action as any game
action whose effects can be undone through a series of further
game actions. This approach not only results in smaller graphs
for many types of game, but the nature of the compression
can help identify decisions which are important or more
impactful, as well as providing metrics to measure the texture
and distribution of choices in a game. Our early exploration
shows promise as an analytical technique for automated game
designers, but also has utility for other applications of Al to
games, and may even be a useful technique for people, too.

Outline: The remainder of the paper is organised as follows:
in §II we formally define reversible actions and HSG construc-
tion; in §IIT we show how HSGs have a close relationship
to the heuristics designed by human experts to solve games
through search; in §IV we show how HSGs concisely represent
or relate to three modern ideas about game design; in §V we
discuss existing work on adjacent problems; in § VI we discuss
our plans for future work.

II. HYPERSTATE SPACE GRAPHS

A. State Space Graphs

A game state is a snapshot of information about a game at
a particular instance in time. Depending on the granularity of
the representation, a game state may be extremely detailed,
even including information such as the contents of memory

and pixel data in the case of a digital game. More often, peo-
ple familiar with a game develop game-specific abstractions,
limiting this information to a subset that is sufficient for a
particular analysis.

For a given game (and, where appropriate, a given level)
the state space is the set of all possible game states that
are reachable from the game’s initial starting state. Note that
some researchers, such as [1], use the term ‘state space’ to
refer to the set of all describable game states, including states
which the game cannot reach through legal play (for example,
a regular chess game with three kings in it). For our purposes,
we use the narrower definition of reachable from the initial
game state, since our analysis is focused on what possible
ways there are to play the game.

Given a game’s state space, a state space graph (SSG) is
constructed as follows. An SSG, G=(G, a), is a directed graph
in which the vertices (G) are game states, and the edges (a)
are player actions. Actions might be real-world actions (e.g.
pressing the ‘A’ button) or in-game actions (e.g. jumping).
Actions are represented as a labelled relation on game states:
given states g,¢’ € G, then (g,l,¢’') € a denotes that taking
the action labelled [in state g, causes the game to transition to
state ¢’. Fig. 3a shows an example SSG with G={g1,- - , 911}
and actions labelled {l1,--- ,l13}.

Given an SSG G=(G, a), the leaf states denote those states
without an outgoing action. For instance, in Fig. 3a states g3
and g9 are leaf states. Each leaf state in an SSG is associated
with a win or fail tag, denoting whether a game is won or
lost. In Fig. 3a, g3 is tagged as a failure state, denoted by
the square-shaped node, while gg is tagged as a success state,
denoted by the diamond-shaped node. Note that not all leaf
states may result in winning or losing: some games do not
have success or failure built in, some games can result in a
tie, and there are many ways to soft lock games where no
progress can be made. In such cases, leaves may be tagged
with whichever concept makes sense — ‘success’ in games with
no clear winning winning condition, or ‘failure’ in cases such
as soft lock, for example.

In its most basic form, an SSG shows every possible state
the game can be in, and every possible action that can be
taken in every state. However, due to their large size and
complexity, state space graphs are rarely constructed in this
way; instead, game-specific abstraction techniques or changes
in representation are used to decrease this complexity. For
example, in [7] a dungeon from The Legend Of Zelda: Twilight
Princess is described using a graph where vertices correspond
to key events in the dungeon’s solution, and edges between
them compress a series of actions into a single transition.
This helps a designer or critic focus on the states and actions
that are important (e.g. discovering a key item or fighting
a mini-boss) and abstract away or de-emphasise states and
actions that are less important (e.g. walking across an empty
room to reach somewhere else). However, such techniques
are highly game-specific and require expert knowledge about
what can and cannot be abstracted away from a particular
game’s environment. To remedy this, we propose the concept

Fig. 1: An immediately reversible action in the game Sokoban.

of reversible game actions as a general abstraction technique
that requires no game-specific knowledge or expertise.

B. Reversible Actions

An action is immediately reversible iff its effects can be
undone (reversed) by another action. Fig. 1 shows an example
of an immediately reversible action in the game Sokoban, a
turn-based, grid-based puzzle game. The player presses the
down arrow, which moves the player character down one tile.
Pressing the up arrow reverses the action by returning the
player to their original location.

Put formally, given G=(G,a), an action (g,1,¢') € a is
immediately reversible iff there exists an action labelled [’
which transforms ¢’ into a game state ¢” (i.e. (¢',1',¢") € a),
such that ¢ = ¢”, where = denotes state equivalence. State
g is equivalent to ¢’ (¢ = ¢") if all data that can impact
the game’s execution has the same value in g and in g”. This
means, for example, that the position of the player’s character
is compared, but so is any internal state the character has, or
any external variables such as the player’s score or narrative
flags. As we discuss in future work, it is possible to use a
weaker definition of game state equivalence.

Note that g = ¢” holds if g = ¢”, i.e. when the game is
returned to the exact same state. For instance, in the Sokoban
example of Fig. 1, pressing the up arrow reverses the action
by returning the player to the same original state. In the SSG
example of Fig. 3a, the action ¢; Lo, gs 1s reversible, since
the action gg s, g1 reverses its effect.

Some actions may not be immediately reversible, but rather
eventually reversible: they can be reversed through a sequence
of actions. Fig. 2 shows an example of eventual reversibility
in Sokoban, where a crate can be pushed back into its original
position and the player returned to the starting location with
a longer sequence of moves. Put formally, given an SSG
G=(G,a), an action (g,l,¢9') € a is eventually reversible
iff there is a sequence of actions with labels [y, ...l,, which,
when applied successively to ¢’, yield a state g” such that
g = ¢”. Note that the actions labelled [y,...I,, are not
necessarily immediately reversible themselves, but they are
all eventually reversible. In the SSG example of Fig. 3a, the

. 1 . . .
action g, — gs is eventually reversible since the sequence

g5 ts 96 ts, g7 — g4 reverses its effect. Observe that the
actions labelled [5, lg and [; are also eventually reversible.

Fig. 2: An eventually reversible action in Sokoban.

We refer to immediately reversible and eventually reversible
actions collectively as reversible actions. Reversible actions
capture an important feature of games, namely the distinction
between tentative and permanent actions. Tentative actions do
not commit the player to a particular decision, and can be
reversed somehow. For example, moving the player around
the game space in Sokoban, exploring a maze in a puzzle
game, rearranging your inventory in a roleplaying game, or
examining an item in an adventure game are all examples
of tentative actions. By contrast, permanent actions change
the game in a way the player cannot completely undo. For
example, destroying tiles in a Match-3 game, giving a gift
in a dating game, or building a school in a city management
game are all examples of permanent actions. While some of
these actions may be reversible in part (e.g. bulldozing the
school), other side effects of the decision cannot be reversed
(e.g. resources spent to build the school). We use this insight
to abstract an SSG to a hyperstate space graph (HSG) by
merging together those states that are connected by reversible
actions. That is, HSGs abstract (hide) tentative actions and
only contain permanent actions, reducing the state space size
significantly in most cases.

C. Hyperstate Space Graphs

A hyperstate space graph (HSG) is built from an SSG by
merging together those states that are connected by reversible
actions. For instance, the HSG associated with the SSG in
Fig. 3a is given in Fig. 3b. Note that as states g;,gs are
connected by a reversible action, they are merged together
into state {g1,gs} in the corresponding HSG. Similarly for
states g9 and g11. Analogously, since states g4, g5, g, g7 are
connected by an eventually reversible action, they are merged
together into state {g4, g5, g6, g7} in the HSG. The remaining
states are left unchanged as they do not have reversible actions.
We now formalise the definition of HSGs.

Given an SSG G=(G, a), we write a* to denote the reflexive,
transitive closure of a. That is, whenever (g,_,¢') € a
and (¢',_,¢") € a, then (g,_,¢') € a* (transitivity), and
(9,.,9), 9y, 9),(¢9",_,9") € a* (reflexivity). Given a game
state g € G, we write a*(g) to define the set of states in the
reflexive transitive closure of g:

a*(9) € {g'|(g,_g') € a*}

We define the reversible closure of a state ¢ € G, denoted
G.re(g), as follows:

Gre(g) € {g'| ¢ €a*(9) Ageat(g)}

That is, a state ¢’ is in the reversible closure of g if ¢’ is in the
reflexive transitive closure of g and vice versa; i.e. they are
mutually reachable from one another. Given this definition, we
can now define the structure of an HSG.

Given an SSG G=(G, a), its associated HSG is given by
H=(H,c), where H is a set of hyperstates and c is a relation
on H describing action transitions on hyperstates such that:

1) Each hyperstate hs € H is a set of game states in G
(e.g. the hyperstate {g1,gs} in Fig. 3b contains the states
g1, gs of the original SSG in Fig. 3a).

2) Each state geG appears in exactly one hyperstate hsc€H.

3) Each hyperstate contains states that are mutually reach-
able via reversible actions; for instance, g; and gg in
Fig. 3a are mutually reachable via reversible actions
labelled Ig and l1¢ and thus form the hyperstate {g1,gs}
in Fig. 3b. Formally, for all hyperstates hs € H and all
states g,g' € G, if g,g' € hs, then g and ¢’ are in the
reversible closure of each other, and vice versa:

VYhs € HVg,¢' € G.
9,9 € hs < g€ G.re(g')Ng € Gre(g)

4) The HSG actions are simply lifted from SSG actions: if
(hs,l,hs") € ¢, then there exists g € hs and ¢’ € hs’
such that (g,l,¢’) € a, and vice versa; for example, we
have {g1,9s} 4, {g2} in Fig. 3b because of ¢; N go
in Fig. 3a. Moreover, we exclude self-loops, i.e. actions
between the same hyperstate; for example, although we
have ¢; LN gs in Fig. 3a, we exclude {g1,¢s} o,
{g1,9s} from Fig. 3b.

Note that while relation a in the SSG represents all game
actions that transition between states, relation ¢ in the corre-
sponding HSG represents only non-reversible actions. We refer
to such actions as critical actions, hence the notation c. As in
SSGs, we write ¢* for the reflexive transitive closure of ¢, and
write ¢*(hs) for the set of hyperstates reachable from hs.

Automating HSG Construction: We have developed an
algorithm that automates the HSG construction process. That
is, given an SSG it is always possible to compute its associated
HSG such that it satisfies the above conditions. Given an SSG
G, our algorithm (i) identifies the hyperstates of the associated
HSG; and (ii) adds the appropriate edges between these
hyperstates. For step (i), we use a cycle detection mechanism
to identify mutually reachable states in G, and subsequently
merge the nodes of each cycle into a single hyperstate. For
step (ii), we iterate over the G edges and for each (g,l,¢’)
edge, we add the edge (hs,l, hs') to our HSG, when g € hs,
g’ € hs' and hs # hs'.

Tagging Hyperstates: As with SSG leaf states, each HSG
leaf state is associated with a win or fail tag. A leaf hyperstate
is tagged as a win hyperstate if it contains exactly one win
state; e.g. {go} in Fig. 3b is tagged as a win hyperstate since

la
g @ fs gde 99
3 v

(a) A state space graph

{9107911}

{94 95 ,96,97}

(b) The hyperstate space graph constructed from Fig. 3a

Fig. 3: An SSG (left) and its corresponding HSG (right); square nodes denote failure and diamond nodes denote success.

go is a win state in Fig. 3a. Analogously, a leaf hyperstate
is tagged as a fail hyperstate if it contain no win states; e.g.
both {gs} and {g10, g11} are tagged as fail hyperstates as they
contain no win states of Fig. 3a.

Once all leaf hyperstates are tagged, we next tag non-leaf
hyperstates as either eventually winnable or implicitly failed. A
non-leaf hyperstate hs is tagged eventually winnable if it can
reach at least one win leaf hyperstate. A non-leaf hyperstate
is tagged implicitly failed otherwise. For instance, in Fig. 3b
the non-leaf hyperstates {g1, gs} and {94, g5, g6, g7} are both
tagged as eventually winnable as they can reach the win leaf
hyperstate {go}, while the non-leaf hyperstate {g=} is tagged
as implicitly failed as it cannot reach {gg}. Implicitly failed
hyperstates are functionally the same as fail hyperstates, as
there is no way for the game to resolve except in a loss, even
though the player can still interact with the game.

For those familiar with modal logic, such tagged hyperstates
can be defined using reachability modalities when interpret-
ing the HSG as a Kripke graph. In particular, when W
describes the win (leaf) hyperstates, eventually winnable (non-
leaf) hyperstates are described by OW (read ‘eventually W),
while implicitly failed hyperstates are described by =W, or
equivalently by [LI-W (read ‘always not W”).

III. HYPERSTATES AS HEURISTIC APPROXIMATION

When we develop abstract representations for games we
often use game-specific heuristics we have discovered, or our
own intuition, in order to find efficient models that focus on
the most important or relevant aspects. This is also true of Al
applications to specific games. For example, [9] describes a
reduction of the Sokoban game space such that it removes
actions which are uninteresting for the solver, making the
search problem simpler. The authors note:

“Two states are the same, if the box positions are

identical and the player can move from the position it

occupied in the one state to the position it occupies in
the other state without moving a box.”

This intuition about Sokoban’s state space and the action
relation on it — namely, that movement is not interesting unless
it results in boxes moving — compresses Sokoban’s game state

space drastically, allowing the search-based agent to focus
on decisions which are important and have meaning. This
Sokoban heuristic is analogous to the notion of immediate (not
eventual) reversibility. Movement in Sokoban is immediately
reversible, while moving boxes is not. As such, the Al solver’s
state space only involves moves which affect boxes.

Our HSG representation actually takes this a step further,
because eventual reversibility means that box movements
which can be reversed (such as the one shown in Fig. 2)
are also condensed into a single state. The reason why [9]
does not take this approach is likely because it is hard to
concisely describe which box moves are reversible and which
are not. Our HSG construction obtains this knowledge through
a deep exploration of the state space, whereas a heuristic is
designed to be a general guideline. Nevertheless, there is a
close correspondence between our notion of reversibility and
the authors’ intuition of how to collapse Sokoban’s state space.

In [10] the authors describe a framework for playing games
using Monte-Carlo Tree Search (MCTS - see [5]). In one
of their case studies they describe a game similar to Tetris,
where falling blocks represent parts of monsters that must be
connected. The authors note the following when discussing
the action space for their MCTS agent:

“Some of those actions could be repeated indefinitely

without affecting the game state, meaninglessly expand-

ing the scope of the search for Monster Carlo to
perform. To avoid this, we use micro-decisions to model
only those choices.”

Here, the ‘micro-decisions’ are chosen by the system de-
signer, using their specialised knowledge of the game’s deci-
sion space. Once again, the actions which ‘could be repeated
indefinitely without affecting the game state’ correspond to our
reversible actions, and the solver has been explicitly designed
to ignore such distinctions. Our HSG representation would
create a similar reduction when applied to this game.

We believe that these examples support the idea that HSGs
represent an intuitive compression of game state spaces that
is closely related to how the developers of Al agents com-
press state spaces to make them amenable to search-based
agent algorithms. Even though our system ideally requires

an exhaustive exploration of a specific search space in order
to determine hyperstates, we believe that once an HSG is
generated, it may be possible to infer a more general heuristic
from it. For example, by constructing the HSG of a small set
of Sokoban levels, a more general heuristic that focuses only
on box movement might be automatically derivable based on
the kinds of states which were compressed. We are currently
pursuing this as an extension to this work.

IV. HYPERSTATES AS GAME DESIGN THEORY

The main motivation of this work is to provide a lens for
automated game analysis for software working in domains
such as automated game design or general game playing, in a
way that requires no game-specific knowledge. Additionally,
however, we have found that HSGs and the notion of reversible
actions align well with several informal ideas about game
design. We describe three such ideas and show how they relate
to or are expressible with HSGs. This suggests that HSGs may
have a use as a general formalism for expressing certain game
design ideas, as well as supporting our argument that HSGs
capture a common and abstract way of thinking about games.

A. Strategic Headroom

In [14], Smith informally defines the notion of strategic
headroom, with respect to the roguelike genre of games.
Smith is one of the active developers of NetHack, one of
the longest-running and best-known roguelike projects in the
world. Smith’s essay defines what strategic headroom means
for a game, and how roguelikes can be broadly classified
according to how much headroom they wish to afford the
player. Strategic headroom is a measure of how much freedom
the player has to make suboptimal choices and still complete
the game. Giving an example of a simple binary choice in a
game, Smith explains:

“There are two possible extremes for the scale here. One
is ‘no matter who you are or which choice you make, it
won'’t affect your odds of winning the game’... The other
extreme is ‘one of these choices will guarantee you victory;
the other will guarantee you are defeated’.”

These extreme cases are examples of high and low head-
room respectively. The former has infinite headroom, while the
latter has zero headroom. Smith posits that neither approach
is intrinsically good or bad: different players will seek out dif-
ferent kinds of headroom, and different game designs benefit
from a different emphasis on headroom.

Although Smith only analyses roguelikes, one can think
of headroom more generally as a way of capturing a partic-
ular property of the game’s decision space. Given an HSG
H=(H,c) and hs € H, the headroom of hs is directly related
to what proportion of states in ¢*(hs) (states reachable from
hs) are winnable. If hs has maximum or infinite headroom,
then the decision made in hs does not have any impact on
the outcome of the game. In this extreme case, this means
not only that every state in ¢*(hs) is winnable, but that it is
perfectly winnable: all actions in ¢*(hs) lead to a win state.

Analogously, we can consider an equally extreme state of
low or zero headroom, where there is only one viable action
from a given state, and all other actions lead to failure. In
HSG terms, this means that there is only one action that leads
from a hyperstate hs to a winnable state; all other actions
lead to implicit or actual failure states. Unlike the maximum
headroom example, minimal headroom implies nothing about
states more than one action away from hs.

More generally, the headroom of a hyperstate hs can be
thought of as a ratio of eventually winnable to implicitly
failed states in the closure of hs (via ¢*(hs)); that is, all
the states accessible from hs through any valid sequence of
actions. Higher headroom states will have a larger proportion
of winnable states in ¢*(hs), particularly in states only one
action away from hs.

There are certain nuances of Smith’s definition which would
best be expressed by extending our definition of HSGs. In
particular, the outcome of many actions in roguelikes is non-
deterministic. That is, for a given hs and an action labelled [,
there may be more than one hs’ such that (hs, [, hs') € c. This
is a specialised type of HSG which we plan to investigate in
the future. However, the notion of headroom is useful in both
deterministic and non-deterministic scenarios.

B. Failure Spectra

In [8], Francis introduces the notion of a ‘failure spectrum’,
describing the staggered nature of failure in some games,
whereby an action can make a situation worse without outright
ending the game. Francis writes:

“When you can fail at something but still carry on playing,
I call the range of states between perfect success and
total failure a failure spectrum... screw-ups can move you
towards the failure end and recoveries can (sometimes)
move you back up towards success.”

Many kinds of game exhibit failure spectra. Francis identi-
fies stealth games as a good example of the concept: failures
in such games typically expose the player more and more,
from their initial hidden state into open combat or fleeing
from danger, as enemies become increasingly aware of their
presence. In many such games, this is recoverable through
hiding, covering up evidence, or acting in a particular way.
However, this recoverability is often imperfect — for example,
in Invisible Inc, an alerted guard will search for the player
even after they lose track of them.

A move down the failure spectrum towards total failure can
be thought of as a transition towards states which are closer
to implicit or actual failure in the HSG. Fig. 4 shows a partial
HSG for a game, where states are labelled with their loss
distance, or ld, denoting the shortest distance to a loss state.
An ideal path through the corresponding HSG always chooses
the action which leads to the state with the highest Id. The
greater the distance between the ideal path and the nearest loss
state, the broader the failure spectrum is for the game.

0 0 0

Fig. 4: A partial HSG. Diamonds denote success states and
squares denote failure states; each state is labelled with the
shortest distance (number of actions) to a failure state.

C. Depth

In [12], the authors attempt to formalise a quality which
approximates the phenomenon of ‘depth’ in strategic games.
In particular, they suggest that depth may be related to the
space of possible strategies for playing the game, and how
those strategies are ordered, with a deep game offering a wide
spectrum of strategies, which increase in both computational
complexity and performance. Lantz et al. also consider other
metrics that might correspond to depth, including game state
space, about which they say:

“However, state space by itself cannot explain the qualities
of depth that we are looking to isolate. To see why, imagine
any existing game and then add a new rule that allows
either player, after their turn, to flip a token from side A
to side B. This immediately doubles the size of the game’s
state space without affecting its depth in the slightest.”

Although, as they argue, flipping a token doubles the size
of an SSG, it leaves the size of the corresponding HSG
unchanged: since flipping a token is immediately reversible,
any two game states connected by flipping a token will be
merged into the same hyperstate, resulting in no change in
the size of the HSG. In fact, flipping a token has no impact
on game execution other than affecting how the token can
be flipped in the future, and so could be excluded from the
equivalence relation altogether.

While new pathological cases could be invented which cause
problems for HSGs, we find it interesting that our representa-
tion circumvents the natural counterexample proposed by the
authors. Although we do not believe that hyperstates provide
a direct correlate to depth, there does seem to be some link
between the way in which hyperstates reduce state space
graphs, and the author’s dissatisfaction with ordinary state
space as a metric for depth. We hope to explore this avenue in
the future, as we investigate the utility of various hyperstate-
based metrics for measuring qualities about a game.

V. RELATED WORK

While we are not aware of any work specifically dealing
with general representations for exhaustive game analysis,
there is a large body of work that deals with overcoming
the challenges of navigating a game’s state space. The history

of graph search algorithms, especially as the area developed
techniques for game agent Al, is aimed at this type of problem.
For example, Alpha-Beta search explores the game state space
by pruning subtrees that are known to be less optimal than
an already discovered alternative move [11]. This analysis is
designed to make a single choice for an agent’s next action,
which means it is not interested in understanding the overall
shape of all choices on offer. This is true of many search
algorithms, such as Monte Carlo Tree Search (MCTS), which
combines precise action selection with random exploration to
balance its search through a state space [5].

Another approach to the problem of analysing unseen games
is to develop a set of known analytical approaches for existing
games, and then cluster them such that new games can be
matched to the nearest cluster. [2] applies such a clustering
approach on several VGDL games (see [13]), considering
features such as whether the player can die, what sprites are
on the screen, and how many interactions the game contains.
These features help assign a new game to a cluster, which has
an associated player control algorithm which is selected for
use. This is an innovative approach to general game playing
(GGP) that is especially suited to many GGP benchmarks
where games are expected to have similar properties to classic
games. Our approach differs in that we do not require prior
clustering, or for the unseen games to be similar to any existing
game. This is particularly important for domains such as
automated game design or working co-creatively with people,
as in both cases, it is desirable to work with games that may
be highly innovative or break convention.

In [3] the authors describe a system for evolving new
game designs in the genre of two-player adversarial abstract
games. Part of their system evaluates candidate game designs
to find what they believe to be higher quality games and
filter out lower quality ones. The system is provided with
several human-developed heuristics, but they are intended to
be fairly broad and applicable to the genre of two-player
adversarial games, rather than specific to a particular game.
Many of these metrics are based on an analysis of game
playouts, for example a ‘drama’ measurement looks at how
many times the advantage swings between one player and
another. This represents a design-first approach to dealing with
unseen games, where the authors’ significant knowledge of the
domain leads to specific (but genre-wide) heuristics.

Brown and Maire’s approach in in [3], like many automated
game design approaches, works well in that it leverages spe-
cific domain knowledge from the authors to precisely evaluate
certain features of games in a known space. Our work differs
here in several ways. First, Brown and Maire’s approach uses
the authors’ personal experience with games of this type in
order to develop specific heuristics about what makes such a
game good. The authors are clear that they are not claiming
their heuristics to be objectively true or universally applicable,
rather that they are expressions of their own experience in the
field. Our approach differs here in that it requires no prior
game-specific knowledge or experience. Moreover, we avoid
using specific claims about what we believe a good game to

be, and instead aim to provide a representation that reveals
interesting structures and metrics to distinguish between types
of game, challenge or experience. Rather than say ‘this game
is good’ or ‘this game is bad’, we intend for hyperstates to be
a way to look at the DNA of a game experience and see what
properties it has, what texture the landscape of decisions has,
so that automated systems can make more interesting decisions
in the absence of specific human-originated design knowledge.
In addition to this, Browne and Maire’s work is focused
specifically on two-player adversarial games, and their metrics
make frequent reference to which player is likely to win, or
how often a game ends in a draw. Our approach is broader,
and applicable to any type of game (with extensions — see § VI
below). This makes sense, since their system was designed
specifically to create this type of game, whereas we have
aimed for a more general scope in order to cater to a wider
spectrum of automated game design applications. Finally, due
to their use of search-based game playing agents, their system
primarily explores parts of the state space that lead to victory
as efficiently as possible. By contrast, we are interested in
surveying the fuller extent of the game’s solution and failure
space, including suboptimal play and esoteric failure states.

VI. DISCUSSION AND FUTURE WORK
A. Applications To AI And Games

Evaluating partial or complete game designs is a challenging
problem within the field of automated game design and co-
creative design. For domain-specific procedural content gen-
eration tasks we can embed existing design knowledge and
heuristics about the target domain in order to improve the
generator’s assessment of artefacts it generates. By contrast, in
the case of game design few general heuristics exist, and even
personal guidelines or rules of thumb are usually expressed
in highly subjective terms (such as Sid Meier’s definition of
a game as ‘a series of interesting choices’). Both automated
game design systems and co-creative game design tools cannot
use such heuristics (since we cannot define ‘interesting’ or
‘fun’ or similar ideas mathematically), and must thus look for
other ways to evaluate and analyse game designs.

HSGs can help automated game designers in several dif-
ferent ways. First and foremost, HSGs greatly compress state
space graphs for many games, which makes the act of analysis
more efficient. In our pilot experiments using the automated
game designer ANGELINA [6], we have also noted that low-
quality games tend to be highly compressible, because their
rulesets tend to be unfocused and their level designs sparsely
populated. HSGs can help identify these games and more
conclusively set them apart.

The second benefit is that they provide a means for compar-
ing different games. Comparing games with one another using
classic SSGs is difficult, because the structure of an SSG does
not reveal much about what the game is like to play. SSG
features such as the branching factor or the number of win or
loss states can be misleading, and in the absence of heuristics
that clarify this, comparing two unknown games is unreliable.
As we showed earlier when discussing heuristic search, HSGs

compress less important actions in a game and thus reduce the
state space of games down in similar ways. While this does
not make it possible to say if a game is ‘better’ than another,
it does provide a better way to inspect what the decision space
of two games looks like.

A final benefit is that HSGs provide metrics which can
be used either for comparative purposes or to evaluate sin-
gle games. Measurements such as the length or quantity of
winning paths, the percentage of game states compressed in
the creation of the HSG, the number and nature of reversible
actions from a given path, all provide additional insights into
the kinds of choices players make while playing a game.
We are currently conducting research into what uses different
metrics may have, with an initial focus on distinguishing
different types of challenge in puzzle games.

These benefits should carry over to general game playing
(GGP) research, where similar problems related to playing
unseen games often arise. For example, in [2] the authors
present a system which analyses a game and then selects
from a catalogue of algorithms based on what it thinks will
best suit the game. This analysis uses clustering to analyse
known games based on features such as whether the player
can die, or what proportion of game objects are related to
a win condition. We can imagine a similar GGP approach
that incorporates metrics about the frequency of choices, the
percentage of critical choices, and the number of states that can
be compressed in an HSG. For example, a high compression
rate suggests a low number of critical decisions and a sparse
decision space, which benefit longer rollouts and less search.

B. Extensions To Hyperstate Space Graphs

In some cases, calculating a full HSG is impractical, while
for other cases it may simply be unnecessary. In particular
there are two cases where a different approach might be prefer-
able: infinite or effectively infinite state spaces, and extremely
granular state equivalence. In this section we propose two
extensions to HSG construction, the properties of which we
intend to explore more in the future.

Depth-Limited HSGs: As discussed in §I, some games
either have no guaranteed ending or have such a large state
space that it is effectively infinite. In such cases, we can use a
depth limiting technique similar to that used by search-based
game-playing agents. However, unlike a traditional SSG where
depth-limiting has no effect on the structure and content of
the graph (other than its size), a depth-limited HSG may be
different in structure and content.

Suppose we limit the depth of our initial SSG to paths of
length 10. Now suppose that an action taken at the initial state
go is eventually reversible using a sequence of 11 actions. Due
to the limited search depth, this sequence is never discovered,
and thus this action is marked as non-reversible and the states
it connects may not be combined into a single hyperstate. This
is a correct representation of the game’s decision space under
the 10-move depth limit, but differs from the exhaustive HSG.

We intend to investigate the utility of depth-limited HSGs
in future work, and test out how the analysis of games is

affected by non-exhaustive HSGs. Depth limits would make
HSGs more efficient for realtime use, and work better for time-
limited applications such as game-playing agents, as it would
allow a partial HSG to be compiled at any time.

Weak Equivalence HSGs: In our earlier definition of
reversibility we defined a game state equivalence relation =,
such that in the most complete definition of reversibility,
equivalence includes any data or information that could affect
the execution of the game. For many genres of game, e.g.
point-and-click adventures, interactive fiction or turn-based
puzzle games, this is likely to be manageable. However, for
some types of game it may be desirable to abstract away
certain details from the equivalence relation in order to focus
on more important game elements.

For example, Super Mario Bros. has a timer which counts
down during play, and has several effects on the game (e.g.
causing a game over). For some applications, the timer is an
important element of a game state and it would be necessary
to include it when comparing states, making any two states
with different timer values different under =. However, if the
timer is not relevant to the task at hand, one can weaken the
notion of = to abstract away the timer, leading to a smaller
HSG. Under this weaker notion of =, two states are considered
equivalent if they have the same data up fo and excluding
timer values. This would omit information about losing the
game due to running out of time, or getting a higher score by
finishing levels quickly, but it would be able to compress a
large number of otherwise identical states into one another.

Earlier in this paper we motivated this work in part by
stating that heuristics for state space compression are too
nuanced to be discovered automatically by software. However,
identifying game elements that have a large impact on com-
pressibility but a low impact on execution is quite possible
when using HSGs, and we intend to experiment with the
automatic discovery of these features in future work. This
would potentially allow game analysis systems to generate
smaller HSGs with minimal loss of information.

Non-Deterministic HSGs: In §IV we discussed non-
deterministic actions in games, whereby two outgoing edges
from a vertex in an SSG are labelled with the same action
(e.g. tossing a coin). Modelling such actions would require a
different approach to HSG construction, since some outcomes
may be reversible, while others are not. A conservative so-
lution is to make reversibility all-or-nothing. If there is one
possible non-reversible outcome to an action, that action is
considered non-reversible in all cases. This results in less
potential compression, but is easily applied to standard HSGs.

In the future, we wish to look into finer-grained solu-
tions that can express more detail about the nature of non-
deterministic reversibility. One possibility is a fractional re-
versibility policy, where an action is given a value in the
range [0, 1] to describe the proportion of traces leading from
it that are reversible. This would allow us to label an action as
partially reversible, to define the degree to which it is known
to be reversible, and to grade and compare different actions
based on their reversibility.

VII. CONCLUSIONS

We introduced the notion of a reversible actions in a game,
and showed that this allows us to compress the state space of
certain games into a hyperstate space and to generate HSGs.
HSGs provide new metrics with which to quantify the nature
and distribution of decisions made in a game, even if the game
has not been seen before, which makes it highly applicable
to certain kinds of automated game design, co-creative game
design, and general game playing. In addition, we showed how
this affords precise ways for expressing certain ideas about
game design, and illustrated this by showing how reversibility
and hyperstates relate to contemporary ideas about elements
of game design. Finally, we discussed the future of this work,
including extensions to the hyperstate representation and its
application to level generation.

Hyperstates were conceived as a way to gain a more ex-
pressive set of metrics for automated game designers to use to
analyse and decide about games and game content. However,
we believe that this formalism has wider applications beyond
automated game design, and look forward to developing it
further as a representation of game space.

VIII. ACKNOWLEDGEMENTS

The first author is supported by the Royal Academy of
Engineering under the Research Fellowship scheme.

REFERENCES

[1] Louis Victor Allis. Searching for Solutions in Games and Artificial
Intelligence. PhD thesis, Maastricht University, 1994.

[2] Philip Bontrager, Ahmed Khalifa, Andre Mendes, and Julian Togelius.
Matching games and algorithms for general video game playing. In
Proceedings of the Twelfth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2016.

[3] C. Browne and F. Maire. Evolutionary game design. IEEE Transactions
on Computational Intelligence and Al in Games, 2(1):1-16, 2010.

[4] Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas,
Peter I. Cowling, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of monte carlo tree search methods. /EEE
Transactions On Computational Intelligence And Al In Games, 2012.

[5] Hyeong Soo Chang, Michael C. Fu, Jiagiao Hu, and Steven 1. Marcus.
An adaptive sampling algorithm for solving markov decision processes.
Operations Research, 53(1):126-139, 2005.

[6] Michael Cook and Simon Colton. Redesigning computationally creative
systems for continuous creation. In Proceedings of the Ninth Interna-
tional Conference on Computational Creativity, 2018.

[7] Joris Dormans. Adventures in level design: Generating missions and
spaces for action adventure games. In Proceedings of the Workshop on
Procedural Content Generation in Games, 2010.

[8] Tom Francis. What works and why:
https://tinyurl.com/failurespectra.

[9] Nils Froleyks. Using an Algorithm Portfolio to Solve Sokoban. PhD

thesis, Karlsruher Intitut fur Technologie, 2016.

Oleksandra Keehl and Adam Smith. Monster carlo: an mcts-based

framework for machine playtesting unity games. In Proceedings of the

IEEE Conference on Computational Intelligence in Games, 2018.

D. E. Knuth and R. W. Moore. An analysis of alpha-beta pruning.

Artificial Intelligence, 6(4):293-326, 1975.

Frank Lantz, Aaron Isaksen, Alexander Jaffe, Andy Nealen, and Julian

Togelius. Depth in strategic games. In Proceedings of the 31st AAAI

Conference on Artificial Intelligence. AAAI, 1 2017.

T. Schaul. A video game description language for model-based or

interactive learning. In 2013 IEEE Conference on Computational

Inteligence in Games (CIG), 2013.

Alex Smith. Strategy headroom in roguelikes. NetHack 4 Development

Blog, 2014. https://tinyurl.com/stratheadroom.

Invisible inc, 2014.

[10]

(11]
[12]

[13]

[14]

