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Abstract—In this paper, we consider the sum α-fair utility
maximization problem for joint downlink (DL) and uplink (UL)
transmissions of a wireless powered communication network
(WPCN) via time and power allocation. In the DL, the users with
energy harvesting receiver architecture decode information and
harvest energy based on simultaneous wireless information and
power transfer. While in the UL, the users utilize the harvested
energy for information transmission, and harvest energy when
other users transmit UL information. We show that the general
sum α-fair utility maximization problem can be transformed
into an equivalent convex one. Tradeoffs between sum rate and
user fairness can be balanced via adjusting the value of α. In
particular, for zero fairness, i.e., α = 0, the optimal allocated
time for both DL and UL is proportional to the overall available
transmission power. Tradeoffs between sum rate and user fairness
are presented through simulations.

Index Terms—Energy harvesting, fair optimization, power
control, time allocation.

I. INTRODUCTION

Energy harvesting has been recognized as a key technol-
ogy for wireless communications [1], [2]. By using energy
harvesting, users are able to harvest wireless energy from
environment or radio frequency (RF) signals [3]–[8]. Due to
this distinction, energy harvesting technology can prolong the
lifetime of energy-constrained networks, such as sensor, ad-
hoc and Internet of Things (IoT) [9]–[12].

Since energy harvesting from the environment is an uncon-
trollable process, wireless powered communication networks
(WPCNs), where users are powered over the air by dedicated
wireless power transmitters, have attracted great interest in
both academia and industry [13]–[20]. In [16], the optimal
time allocation scheme was investigated for WPCNs where
multiple users harvest energy from base station (BS) downlink
(DL) broadcasting and utilize the harvested energy to transmit
information in the uplink (UL). The time allocation problem
for WPCNs was studied in [17] , where the BS equipped with
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two antennas can simultaneously broadcast energy wirelessly
in the DL and receive information in the UL. The optimal
time allocation was efficiently identified by a simple line
search method in [18] for a multiuser multiple-input multiple-
output (MIMO) WPCN. To further maximize the sum rate
in WPCNs, [19] jointly optimized BS broadcasting power and
the time sharing among users. Moreover, the energy efficiency
maximization problem for WPCNs via joint time and power
allocation was investigated in [20]. According to [21, Sec-
tion III-B] and [22, Section III-C], data transmission in the DL
is considered to provide information exchange in IoT, which is
an important application to WPCNs. The above existing works
[16]–[20] all assumed that users only harvest energy in the DL
even though the wireless information transmission in the DL
is required in most practical applications.

A centralized wireless time-division duplexing orthogonal
frequency division multiple access network with energy har-
vesting was considered in [23], where different users occu-
py different subchannels in the DL and UL. However, the
DL and UL time fractions were set as fixed in [23], even
though the DL and UL time fractions can be optimized to
further improve the system performance. In [24], a DL time-
slotted simultaneous wireless information and power transfer
network was considered, where a single user is scheduled for
information transmission in each slot and the remaining users
only opportunistically harvest energy from received signals.
Considering both DL and UL, [25] investigated a simultaneous
wireless information and power transfer network with only
one DL user and multiple UL users. Since channel gains were
assumed to be the same in different blocks in [25], equal power
allocation is proved to be optimal, which simplifies the original
link and power allocation problem to a merely link allocation
problem.

The sum rate and the fairness of all users are two crucial
performance metrics. Both are similar to the two ends of a
seesaw in that improving one will often decrease the other
[26]. Toward the two ends, the sum rate and max-min rate
problems for WPCNs were studied in [16]. Since maximizing
sum rate usually results in the most unfair case and the max-
min optimization often leads to the lowest sum rate [27], an
efficient tradeoff between sum rate and fairness is needed.
Recently, [28] and [29] investigated proportional fairness prob-
lems for WPCNs via time allocation. However, proportional
fairness can only be regarded as a special tradeoff point. To
offer a smooth tradeoff between sum rate and fairness, sum
α-fair utility maximization problem [26] can be a powerful
candidate. To the best of our knowledge, the sum α-fair utility
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maximization problem for WPCNs is rarely considered.
In this paper, we consider joint time and power allocation

for WPCNs to maximize sum α-fair utility. Different from
prior works [16]–[20], which focused on wireless energy
transfer in the DL and information transmission in the UL, in
this paper users simultaneously receive wireless information
and harvest energy in both DL and UL. Different from [25],
we consider a general WPCN serving multiple users with
quasi-static flat-fading channels in both DL and UL.

The main contributions of this paper are summarized as
follows:

• We formulate the sum α-fair utility maximization prob-
lem for WPCNs. The general sum α-fair utility maxi-
mization problem is proved to be a convex problem. The
maximal sum α-fair utility can be achieved by occupying
all available time.

• For zero fairness with given DL transmission power and
split power, i.e., α = 0, the optimal solution is obtained
in closed form. Since power loss due to path loss can
be minimized, it is optimal for at most one user in each
epoch to transmit with positive power in the UL. Besides,
the optimal allocated time is proportional to the overall
power available for transmission.

• When α > 0, we propose iterative time and power
allocation algorithms with low complexities, each step
of which obtains the optimal solution in closed form. For
common fairness and max-min fairness, the optimal split
power for each user in the DL increases with its allocated
time, and the optimal transmission power for each user
in the UL also increases with the allocated time.

This paper is organized as follows. In Section II, we
introduce the system model and provide the formulation of
sum α-fair utility maximization problem. Section III provides
the optimality of full time and maximal power, and proposes
optimal time and power allocation schemes. Some numerical
results are displayed in Section IV and conclusions are finally
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a WPCN with simultaneous wireless information
and power transfer in both DL and UL, as shown in Fig. 1. In
this network, there exist one BS and K users denoted by the set
K = {1, · · · ,K}. The network utilizes time division multiple
access (TDMA), and the time is divided into M TDMA frames
(also referred to as the epochs) of equal duration T . It is
assumed that the BS and all users are equipped with one single
antenna each. Channel reciprocity [30] holds for the DL and
UL. It is further assumed that all channels are quasi-static
flat-fading, i.e., the channel is constant during a single epoch
but changes independently from one epoch to the next. The
channel gain between the BS and user k in epoch i is denoted
by gk(i), ∀k ∈ K, i ∈ M = {1, · · · ,M}. Assume that full
channel state information (CSI) is available at the BS. This
can be realized by setting up CSI feedback channels from all
users with predetermined codebooks at both sides.
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1( )g i

2 ( )g i
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Fig. 1. System model.

The network adopts a harvest-then-transmit protocol as
shown in Fig. 2. During the DL phase in epoch i, a fraction
of time mk(i)T , 0 ≤ mk(i) < 1, is assigned to user k for
information transmission, ∀k ∈ K. Each user k harvests energy
when the BS transmits information to other users, i.e., user
k harvests energy within the time fraction

∑
l∈K\{k}ml(i)T .

The fraction of time allocated to user k during the UL phase in
epoch i is denoted by nk(i)T , 0 ≤ nk(i) < 1, ∀k ∈ K. Each
user also harvests energy in the UL when other users transmit
UL information. Since mk(i) and nk(i) represent the time
portions allocated to user k for information transformation in
the DL and UL, respectively, we have∑

k∈K

(mk(i) + nk(i))T ≤ T, ∀i ∈ M. (1)

For convenience, we assume a normalized unit block time
T = 1 in the following. Without causing ambiguity, we can
use both the terms of energy and power interchangeably.

During the DL phase in epoch i, the transmission power
of the BS for user k is denoted by pk(i). The received
noise at each user is modeled as a circularly symmetric
complex Gaussian (CSCG) random variable with zero mean
and variance σ2. The received signal at user k is processed by
a power splitter, where a ratio 1 − ρk(i) of power is split to
its energy receiver and the remaining ρk(i) part is split to its
information receiver, with 0 ≤ ρk(i) ≤ 1. The achievable DL
rate of user k in bits/s/Hz for the information receiver can be
expressed as

rDL
k (i) = mk(i) log2

(
1 +

gk(i)ρk(i)pk(i)

Γσ2

)
, ∀k ∈ K,

(2)
where Γ, namely system margin, is the signal-to-noise gap
from the additive white Gaussian noise due to practical mod-
ulation and coding implementation.

In epoch i, the achievable UL rate of user k in bits/s/Hz is
given by

rUL
k (i) = nk(i) log2

(
1 +

gk(i)p̄k(i)

Γσ2

)
, ∀k ∈ K, (3)

where p̄k(i) is the UL transmission power of user k.
It is assumed that the energy harvested due to the received

noise is negligible. The energy harvested by power receiver of
user k between user k’s UL information transmission in epoch
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Fig. 2. The harvest-then-transmit protocol.

i− 1 and user k’s UL information transmission in epoch i is
given by

Ek(i)=ζgk(i)
∑

l∈K\{k}

ml(i)pl(i)+ζgk(i)mk(i)(1−ρk(i))pk(i)︸ ︷︷ ︸
harvested energy in the DL

+ζ0

k−1∑
l=1

glk(i)nl(i)p̄l(i)+ζ0

K∑
l=k+1

glk(i− 1)nl(i− 1)p̄l(i− 1)︸ ︷︷ ︸
harvested energy in the UL

(4)

for all k ∈ K, where glk(i) is the channel gain between user
l and user k in epoch i, p̄k(0) = 0 for all k ∈ K, ζ ∈ (0, 1]
is the conversion efficiency of the energy harvested from the
BS, and ζ0 ∈ [0, 1] represents the conversion efficiency of
the energy harvested from the other users. Note that the case
ζ0 = 0 represents that the user cannot harvest the energy from
the other users.

B. Problem Formulation
Define the α-fair utility function [31] by Uα(x), which is

given as

Uα(x) =

{
ln(x) if α=1
1

1−αx
1−α if α ≥ 0, α ̸= 1.

(5)

In particular, the utility function Uα(x) represents zero fairness
with α = 0, proportional fairness with α = 1, harmonic mean
fairness with α = 2, and max-min fairness with α = +∞.

We aim at network utility maximization via time and power
allocation. The sum α-fair utility maximization problem can
be formulated as

max
mmm,nnn,ppp,p̄pp,ρρρ≥000

∑
k∈K

Uα

(
1

M

∑
i∈M

rDL
k (i)

)

+
∑
k∈K

Uα

(
1

M

∑
i∈M

rUL
k (i)

)
(6a)

s.t.
∑
k∈K

mk(i) + nk(i) ≤ 1, ∀i ∈ M (6b)

pk(i) ≤ Pmax, ∀i ∈ M, k ∈ K (6c)
1

M

∑
i∈M

∑
k∈K

mk(i)pk(i) ≤ Pavg (6d)

i∑
j=1

nk(i)p̄k(i) ≤
i∑

j=1

Ek(i), ∀i ∈ M, k ∈ K

(6e)
ρρρ ≤ 111, (6f)

where mmm = {mk(i)}i∈M,k∈K, nnn = {nk(i)}i∈M,k∈K, ppp =
{pk(i)}i∈M,k∈K, p̄pp = {p̄k(i)}i∈M,k∈K, ρρρ = {ρk(i)}i∈M,k∈K,
Pmax is the maximal instantaneous transmission power of the
BS, and Pavg is the maximal average transmission power of
the BS.

III. OPTIMAL TIME AND POWER ALLOCATION

It is easily verified that problem (6) is nonconvex due
to the nonconvex constraints in (6c)-(6e). In order to make
the problem more tractable, we first reformulate problem (6)
by introducing a set of new nonnegative variables: qk(i) =
mk(i)pk(i), q̄k(i) = nk(i)p̄k(i), vk(i) = mk(i)ρk(i)pk(i),
∀i ∈ M, k ∈ K. Based on the above definitions, qk(i) and
q̄k(i) can be respectively viewed as DL and UL transmission
powers, while vk(i) is viewed as split power. Then, problem
(6) is equivalent to

max
mmm,nnn,qqq,q̄qq,vvv≥000

∑
k∈K

Uα

(
1

M

∑
i∈M

r̄DL
k (i)

)

+
∑
k∈K

Uα

(
1

M

∑
i∈M

r̄UL
k (i)

)
(7a)

s.t.
∑
k∈K

mk(i) + nk(i) ≤ 1, ∀i ∈ M (7b)

qk(i) ≤ Pmaxmk(i), ∀i ∈ M, k ∈ K (7c)
1

M

∑
i∈M

∑
k∈K

qk(i) ≤ Pavg (7d)

i∑
j=1

q̄k(i) ≤
i∑

j=1

Ēk(i), ∀i ∈ M, k ∈ K (7e)

vk(i) ≤ qk(i), ∀i ∈ M, k ∈ K, (7f)

where qqq = {qk(i)}i∈M,k∈K, q̄qq = {q̄k(i)}i∈M,k∈K, vvv =
{vk(i)}i∈M,k∈K,

r̄DL
k (i) = mk(i) log2

(
1 +

gk(i)vk(i)

Γσ2mk(i)

)
, (8)

r̄UL
k (i) = nk(i) log2

(
1 +

gk(i)q̄k(i)

Γσ2nk(i)

)
, (9)

and

Ēk(i) = ζgk(i)
∑
l∈K

ql(i)− ζgk(i)vk(i) + ζ0

k−1∑
l=1

glk(i)q̄l(i)

+ζ0

K∑
l=k+1

glk(i− 1)q̄l(i− 1). (10)
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Theorem 1: The objective function of problem (7) is con-
cave with respect to (w.r.t.) (mmm,nnn, q̄qq,vvv).

Proof: Please refer to Appendix A.
To solve problem (7), we have the following lemma.
Lemma 1: The optimal (mmm∗,nnn∗) of problem (7) satisfies∑
k∈K(m

∗
k(i) + n∗k(i)) = 1, ∀i ∈ M.

Proof: Please refer to Appendix B.
According to Lemma 1, transmitting with full time is

optimal. This is also intuitively reasonable because both DL
and UL rates of users can always be enhanced with the
increase of time. From Theorem 1, the objective function of
problem (7) is concave. Since the constraints of (7) are all
linear, problem (7) is a convex problem, which can be solved
by the popular interior point method (IPM) [32]. For finite M ,
solving (7) with constraints (7e) is difficult and requires non-
causal CSI knowledge. According to [33] and [34], one user
with unlimited storage capacity can transmit with the desired
transmit power in almost all epochs, if the number of epochs
M satisfies M → ∞. As a result, constraints (7e) can be
simplified when M → ∞, as the following constraints:

M∑
i=1

q̄k(i) ≤
M∑
i=1

Ēk(i), ∀k ∈ K. (11)

Note that the left hand side of (11) is the total energy
consumed for transmission of user k, while the right hand
side is the total energy harvested by user k.

In the following, we therefore replace (7e) with simplified
constraints (11). We consider three cases separately: zero
fairness with α = 0, common fairness with 0 < α < +∞,
and max-min fairness with α = +∞. Having obtained the
optimal solution (mmm∗,nnn∗, qqq∗, q̄qq∗, vvv∗) to the equivalent convex
problem (7), the optimal solution (mmm,nnn,ppp, p̄pp,ρρρ) to the original
problem (6) is thus given by

mk(i) = m∗
k(i), nk(i) = n∗k(i), ∀i ∈ M, k ∈ K, (12)

and

pk(i) =
q∗k(i)

m∗
k(i)

, p̄k(i) =
q̄∗k(i)

n∗k(i)
, ρk(i) =

v̄∗k(i)

q∗k(i)
(13)

for all i ∈ M, k ∈ K.

A. Zero Fairness with α = 0

When α = 0, problem (7) becomes the zero fairness
problem:

max
mmm,nnn,qqq,q̄qq,vvv

1

M

∑
i∈M

∑
k∈K

(r̄DL
k (i) + r̄UL

k (i)) (14a)

s.t. (7b), (7c), (7d), (11), (7f). (14b)

Theorem 2: With given (qqq,vvv), the optimal time and UL
transmission power allocation to problem (14), denoted by
(mmm∗,nnn∗, q̄qq∗), is given by

m∗
k(i) =

gk(i)vk(i)

C̃(i)

∣∣∣∣
qk(i)

Pmax

, n∗k(i) =
gk(i)q̄

∗
k(i)

C(i)
(15)

for all i ∈ M, k ∈ K,

q̄∗w(i)(i) =

{
0 if C̃(i) > Dw(i)(i)

q̂∗w(i)(i) if C̃(i) ≤ Dw(i)(i)
, ∀i ∈ M,

(16)
and

q̄∗t (i) = 0, ∀i ∈ M, t ∈ K \ {w(i)}, (17)

where C(i) = C̃(i) if C̃(i) > Dw(i)(i), C(i) = Dw(i)(i) if
C̃(i) ≥ Dw(i)(i), C̃(i) is the root of equation

∑
k∈K

gk(i)vk(i)

C̃(i)

∣∣∣∣
qk(i)

Pmax

= 1, (18)

w(i) = argmink∈KDk(i), Dk(i) is defined in (C.7),

q̂∗w(i)(i) =

Dw(i)(i)−
∑

k∈K gk(i)vk(i)| qk(i)Dw(i)
Pmax

gw(i)(i)
, and µ and ννν =

{νk}k∈K are the nonnegative Lagrange multipliers correspond-
ing to (7d) and (11), respectively.

With given (mmm,nnn, q̄qq), the optimal DL transmission power
and split power (qqq∗, vvv∗) is given by

q∗k(i) =

{
v∗k(i) if µ

M > ζνk
∑
l∈K gl(i)

Pmaxmk(i) if µ
M ≤ ζνk

∑
l∈K gl(i)

(19)

and

v∗k(i) =

[
mk(i)

(ln 2)ζνkgk(i)
− Γσ2mk(i)

gk(i)

]∣∣∣∣Pmaxmk(i)

0

(20)

for all i ∈ M, k ∈ K.
Proof: Please refer to Appendix C.

From Theorem 2, the allocated time in each epoch is
proportional to the overall power available for both DL and
UL transmissions. It can be found that at most one user
w(i) in the UL desires positive power q̄w(i)(i) to transmit
information to the BS. According to Theorem 2, problem (14)
can be effectively solved via iteratively optimizing (mmm,nnn, q̄qq)
with given (qqq,vvv) and updating (qqq,vvv) with fixed (mmm,nnn, q̄qq), which
fortunately has closed-form expression in each iteration. Since
problem (14) is convex based on Theorem 1, the iterative
algorithm yields a locally optimal solution, which is also the
globally optimal solution to convex problem (14). Practical
implementation of the zero fairness protocol at the BS is
summarized in Algorithm 1. In practice, the values of µ and
{νk}∀k∈K may not be available in advance, and we adopt the
stochastic gradient descent method [35] as in Algorithm 1,
where {λk}k∈K∪{0} are some step sizes.

Note that the iterative steps (Step 4 and Step 5) in Algorithm
1 always converge due to the fact that (i) some variables are
globally optimized with other variables fixed in each step,
which shows that the objective function (14a) is nondecreasing
in each step; (ii) the objective function (14a) is upper-bounded
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by
1

M

∑
i∈M

∑
k∈K

(r̄DL
k (i) + r̄UL

k (i))

(a)
=

1

M

∑
i∈M

∑
k∈K

(
mk(i) log2

(
1 +

gk(i)vk(i)

Γσ2mk(i)

)
+nk(i) log2

(
1 +

ζgk(i)q̄k(i)

Γσ2nk(i)

))
(b)
≤ 1

M

∑
i∈M

∑
k∈K

(
log2

(
1 +

gk(i)Pmax

Γσ2

)
+ log2

(
1 +

ζgk(i)P̄max

Γσ2

))
, (21)

where equality (a) follows from (8) and (9), and inequality (b)
holds because 0 ≤ mk(i), nk(i) ≤ 1, 0 ≤ vk(i) ≤ qk(i) ≤
Pmax, P̄max determined by (11) is the maximal value of q̄k(i),
and both r̄DL

k (i) and r̄UL
k (i) increase with (mmm,nnn, q̄qq,vvv) according

to Appendix B.

Algorithm 1 : Zero Fairness Protocol Implementation at the
BS

1: Initialize vvv, µ, and ννν ; Set {λk}k∈K∪{0} and i = 1.
2: repeat
3: repeat
4: Obtain the optimal {mk(i), nk(i), q̄k(i)}∀k∈K with

fixed {qk(i), vk(i)}∀k∈K.
5: Obtain the optimal {qk(i), vk(i)}∀k∈K with fixed

{mk(i), nk(i), q̄k(i)}∀k∈K.
6: until objective function (14a) converges
7: Inform {nk(i), q̄k(i)/nk(i), vk(i)/q̄k(i)}∀k∈K to al-

l users, and broadcast RF energy at pk(i) = qk(i)
mk(i)

during mk(i), ∀k ∈ K.
8: Update µ = µ+ λ0

(
1
i

∑i
t=1

∑
k∈K qk(t)− Pavg

)
.

9: Update νk = νk+λk

(
1
i

∑i
t=1 q̄k(i)−

1
i

∑i
t=1 Ēk(t)

)
,

∀k ∈ K.
10: Set i = i+ 1.
11: until i ≤M

B. Common Fairness with 0 < α < +∞
Although the sum α-fair utility maximization problem (7) is

convex, it is hard to obtain the optimal solution in closed form
through directly solving the KKT conditions for an arbitrary
α ∈ (0,+∞). In the following, we adopt an alternating
method to solve problem (7) by iteratively optimizing time
sharing factor with fixed transmission power and split power,
updating transmission power and split power with fixed time
sharing factor. In each step of the proposed alternating method,
we can fortunately obtain closed-form optimal solutions to
time sharing factor and power.

Theorem 3: Given (qqq, q̄qq,vvv), the optimal time sharing factor
to problem (7), denoted by (mmm∗,nnn∗), is determined by

m∗
k(i)=−gk(i)vk(i)

Γσ2

(
1

W (−e−1−(ln 2)(R̄DL
k )αϕ(i))

+1

)∣∣∣∣
qk(i)

Pmax

(22)

and

n∗k(i) = −gk(i)q̄k(i)
Γσ2

(
1

W (−e−1−(ln 2)(R̄UL
k )αϕ(i))

+ 1

)∣∣∣∣
0

(23)
for all i ∈ M, k ∈ K, where W (·) is Lambert-W function,
R̄DL
k and R̄UL

k are respectively the average rates over M epochs
in the DL and UL,

R̄DL
k =

1

M

∑
i∈M

mk(i) log2

(
1 +

gk(i)vk(i)

Γσ2mk(i)

)
, (24)

R̄UL
k =

1

M

∑
i∈M

nk(i) log2

(
1 +

gk(i)q̄k(i)

Γσ2nk(i)

)
, (25)

and ϕ(i) is the root of the following equation∑
k∈K

−gk(i)vk(i)
Γσ2

(
1

W (−e−1−(ln 2)(R̄DL
k )αϕ(i))

+ 1

)∣∣∣∣
qk(i)

Pmax

+
∑
k∈K

−gk(i)q̄k(i)
Γσ2

(
1

W (−e−1−(ln 2)(R̄UL
k )αϕ(i))

+1

)∣∣∣∣
0

=1,(26)

which can be solved by using the bisection method.
While given (mmm,nnn), the optimal transmission power and

split power (qqq∗, q̄qq∗, vvv∗) to problem (7) is given by

q∗k(i) =

{
v∗k(i) if µ

M > ζνk
∑
l∈K gl(i)

Pmaxmk(i) if µ
M ≤ ζνk

∑
l∈K gl(i)

, (27)

q̄∗k(i) =

[
nk(i)

(ln 2)(R̄UL
k )ανk

(
1− ζ0

∑
l∈K\{k} gkl(i)

)
− Γσ2nk(i)

gk(i)

]∣∣∣∣∣
0

, (28)

and

v∗k(i) =

[
mk(i)

(ln 2)(R̄DL
k )αζνkgk(i)

− Γσ2mk(i)

gk(i)

]∣∣∣∣Pmaxmk(i)

0
(29)

for all i ∈ M, k ∈ K.
Proof: Please refer to Appendix D.

From (28) and (29) in Theorem 3, the optimal split power
v∗k(i) for each user in the DL increases with its allocated time
mk(i), and the optimal transmission power q̄∗k(i) for each user
in the UL also increases with the allocated time nk(i). Based
on Theorem 3, an implementation of the common fairness
protocol at the BS is outlined by Algorithm 2. In Algorithm
2, the average rate R̄X

k in epoch i is updated online according
to a simple iterative rule [36],

R̄X
k =

i− 1

i
R̄X
k +

1

i
r̄X
k (i), ∀X ∈ {DL,UL}. (30)

Note that the convergence of Algorithm 2 can be proved
by using the same method in Section III-A. The proof of
convergence of Algorithm 2 is thus omitted.
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Algorithm 2 : Common Fairness Protocol Implementation at
the BS

1: Initialize qqq, q̄qq, vvv, µ, and ννν ; Set {λk}k∈K∪{0} and i = 1.
2: repeat
3: repeat
4: Obtain the optimal {mk(i), nk(i)}∀k∈K with fixed

{qk(i), q̄k(i), vk(i)}∀k∈K.
5: Obtain the optimal {qk(i), q̄k(i), vk(i)}∀k∈K with

fixed {mk(i), nk(i)}∀k∈K.
6: until objective function (7a) converges
7: Inform {nk(i), q̄k(i)/nk(i), vk(i)/q̄k(i)}∀k∈K to al-

l users, and broadcast RF energy at pk(i) = qk(i)
mk(i)

during mk(i), ∀k ∈ K.
8: Update µ = µ+ λ0

(
1
i

∑i
t=1

∑
k∈K qk(t)− Pavg

)
.

9: Update νk = νk+λk

(
1
i

∑i
t=1 q̄k(i)−

1
i

∑i
t=1 Ēk(t)

)
,

∀k ∈ K.
10: Update R̄X

k = i−1
i R̄

X
k + 1

i r̄
X
k (i), ∀X ∈ {DL,UL}, k ∈

K.
11: Set i = i+ 1.
12: until i ≤M

C. Max-Min Fairness with α = +∞
According to [31, Lemma 3], problem (7) with α = +∞

equivalently represents the following max-min problem1:

max
mmm,nnn,qqq,q̄qq,vvv

min
k∈K,X∈{DL,UL}

R̄X
k (31a)

s.t. (7b), (7c), (7d), (11), (7f). (31b)

By introducing an auxiliary variable, problem (31) is equiva-
lent to

max
mmm,nnn,qqq,q̄qq,vvv

θ (32a)

s.t. R̄DL
k ≥ θ, ∀k ∈ K (32b)

R̄UL
k ≥ θ, ∀k ∈ K (32c)

(7b), (7c), (7d), (11), (7f). (32d)

To solve problem (32), we have the following lemma.
Lemma 2: Problem (32) is designed to guarantee the rate

of the users with the worse channel conditions. The optimal
(mmm∗,nnn∗, qqq∗, q̄qq∗, vvv∗, θ∗) of problem (32) satisfies

(R̄DL
k )∗ = (R̄UL

k )∗ = θ∗, ∀k ∈ K. (33)

Lemma 2 can be easily proved by the contradiction method
through the facts that R̄DL

k is a monotonically increasing
function of (mmm,vvv) according to Appendix B and R̄UL

k is a
monotonically increasing function of (nnn, q̄qq).

Although problem (32) is convex based on the proof of
Theorem 1, it is still hard to obtain the optimal solution in
closed form. In the following, we devise an alternating low-
complexity method to solve problem (32).

1In problem (31), the rates of both DL and UL are optimized as the
same according to Lemma 2. For the rates of DL and UL with different
rate requirements, one can simply change the objective function (31a) with

maxmmm,nnn,qqq,q̄qq,vvv mink∈K,X∈{DL,UL}
R̄X

k

ξX
k

, where ξX
k represents the rate require-

ments of user k in the (X=)DL or (X=)UL. With the modified objective
function, the proposed method in this subsection is also valid.

Theorem 4: Given (qqq, q̄qq,vvv), the optimal time sharing factor
to problem (32), denoted by (mmm∗,nnn∗), equals

m∗
k(i) = −gk(i)vk(i)

Γσ2

(
1

W (−e−1−(ln 2)ϕ(i)/ψ1k)
+ 1

)∣∣∣∣
qk(i)

Pmax

,

(34)
and

n∗k(i) = −gk(i)q̄k(i)
Γσ2

(
1

W (−e−1−(ln 2)αϕ(i)/ψ2k)
+ 1

)∣∣∣∣
0

(35)
for all i ∈ M, k ∈ K, where ψψψ1 = {ψ1k}k∈K and ψψψ2 =
{ψ2k}k∈K are respectively nonnegative Lagrangian multipliers
associated with (32b) and (32c), and ϕ(i) is the root of the
following equation∑
k∈K

−gk(i)vk(i)
Γσ2

(
1

W (−e−1−(ln 2)ϕ(i)/ψ1k)
+ 1

)∣∣∣∣
qk(i)

Pmax

+
∑
k∈K

−gk(i)q̄k(i)
Γσ2

(
1

W (−e−1−(ln 2)ϕ(i)/ψ2k)
+ 1

)∣∣∣∣
0

= 1,

(36)

which can be solved by using the bisection method.
While given (mmm,nnn), the optimal transmission power and

split power (qqq∗, q̄qq∗, vvv∗) to problem (32) is

q∗k(i) =

{
v∗k(i) if µ

M > ζνk
∑
l∈K gl(i)

Pmaxmk(i) if µ
M ≤ ζνk

∑
l∈K gl(i)

, (37)

q̄∗k(i)=

 ψ2knk(i)

(ln 2)(νk

(
1− ζ0

∑
l∈K\{k} gkl(i)

) − Γσ2nk(i)

gk(i)

∣∣∣∣∣∣
0

,

(38)
and

v∗k(i) =

[
ψ1kmk(i)

(ln 2)ζνkgk(i)
− Γσ2mk(i)

gk(i)

]∣∣∣∣Pmaxmk(i)

0

(39)

for all i ∈ M, k ∈ K.
Proof: Please refer to Appendix E.

Practical implementation of the max-min fairness protocol
at the BS is similar to Algorithm 2. The difference is that
max-min fairness requires the updated information of ψψψ1 and
ψψψ2. Using the stochastic gradient descent method [35] in each
epoch, we have

ψ1k = ψ1k + λK+k

(
min

k∈K,X∈{DL,UL}
R̄X
k − R̄DL

k

)
, (40)

ψ2k = ψ2k + λ2K+k

(
min

k∈K,X∈{DL,UL}
R̄X
k − R̄ UL

k

)
, (41)

and

ψ1k =
ψ1k∑

k∈K(ψ1k + ψ2k)
, ψ2k =

ψ2k∑
k∈K(ψ1k + ψ2k)

(42)

for all k ∈ K, where {λK+k, λ2K+k}k∈K are some step sizes.
Equation (42) follows from the optimal condition given in
(E.2a) and (E.4a) in Appendix E.
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D. Complexity Analysis

Considering that the dimension of the variables in problem
(7) is 5KM , the complexity of solving problem (7) by using
the standard IPM is O(LIPK

3M3) [32, Pages 487, 569], where
LIP is the number of iterations.

For the proposed zero fairness protocol implementa-
tion (ZFPI) in Algorithm 1, the complexity of solving
{mk(i), nk(i), qk(i), q̄k(i), vk(i)}k∈K in epoch i is O(LZFK),
where LZF is the number of iterations for objective function
(14a) to converge. As a result, the total complexity of ZFPI is
O(LZFKM).

For the proposed common fairness protocol implemen-
tation (CFPI) in Algorithm 2, the major complexity lies
in the computation of time factor {mk(i), nk(i)}k∈K. Ac-
cording to (22) and (23), the complexity of calculating
{mk(i), nk(i)}k∈K with given ϕ(i) is O(K log2(1/ϵ1)),
where O(log2(1/ϵ1)) is the complexity of calculating
the Lambert-W function with the accuracy of ϵ1. To
calculate ϕ(i), the complexity is O(log2(1/ϵ2)), where
O(log2(1/ϵ2)) is the complexity of solving (26) by us-
ing the bisection method with the accuracy of ϵ2. Thus,
the total complexity of computing {mk(i), nk(i)}k∈K is
O(K log2(1/ϵ1) log2(1/ϵ2)). As a result, the total complexity
of CFPI is O(LCFKM log2(1/ϵ1) log2(1/ϵ2)), where LCF is
the total number of required iterations for the convergence
of (7a). For convenience, the accuracies are set to the same
value, i.e., ϵ1 = ϵ2 = ϵ. The total complexity of the CFPI
can be simplified as O(LCFKM log22(1/ϵ)). With the same
analysis, the total complexity of the max-min fairness protocol
implementation (MFPI) is O(LMFKM log22(1/ϵ)), where LMF
is the total number of required iterations for the convergence of
(32a). Compared with the IPM, we can find that the proposed
ZFPI and CFPI have a lower order of complexity.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
algorithms. Both the DL and UL channel power gains are
modeled as gk = 10−3ρ2kD

−χ
k [16], k = 1, · · · ,K, where

ρk represents the short-term fading, which indicates that ρ2k is
an exponentially distributed random variable with unit mean,
and Dk (in meter) is the distance between user k and the
BS. Note that according to the above channel model, a 30
dB average signal power attenuation is assumed at a reference
distance of 1 m, and the pathloss exponent is set to χ = 3.
There are a total number of K, ranging from 2 to 10, users
uniformly distributed in a square area 10 m × 10 m. For
each user, the energy harvesting efficiency is assumed to be
ζ = 0.5. The noise power is σ2 = −104 dBm and we set
Γ = 9.8 dB assuming that an uncoded quadrature amplitude
modulation (QAM) is employed [37]. The number of epochs
is st as M = 103. Unless specified otherwise, the system
parameters are set as ζ0 = 0.5, Pmax = 5 W, and K = 10.

A. Sum Rate and Fairness

In this subsection, we provide the sum rate and fairness
performance with various values of α. We compare the
proposed ZFPI and CFPI schemes with the IPM scheme to
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Fig. 3. Sum rate vs. maximal transmission power of the BS.

solve problem (7) by using the matlab cvx toolbox [38],
and the equal time allocation, equal transmission power and
equal power-splitting factor (ETEPES) scheme, i.e., mk(i) =
nk(i) = 1

2K , qk(i) = qj(i), q̄k(i) = q̄j(i), vk(i) = qk(i)/2,
∀k, j ∈ K, i ∈ M. Fig. 3 shows the sum rate versus maximal
transmission power of the BS. From Fig. 3, the sum rate
achieved by the ZFPI or CFPI is almost the same as the
IPM, while the complexity of the ZFPI or CFPI is much
lower compared to IPM according to Section III-D. It is
also observed that the proposed sum rate is superior over
the EFEPES, which shows the effectiveness of the proposed
algorithm. According to Fig. 3, the proposed sum rate with
ζ0 = 0 is slightly lower than that with ζ0 = 0.5, which
is, as expected, due to the fact that the users cannot harvest
the energy from the other users for the case ζ0 = 0. Note
that the presented values in Fig. 3 seem too high due to
the following two reasons. The first reason is that sum rate
includes both DL and UL rates. The second reason is that the
channel gains between the BS and users are relatively higher
than in conventional cellular communication networks due to
low distance between the BS and the users in WPCNs.

For a given α, we utilize Jain’s index to evaluate the degree
of fairness. Jain’s index is defined as

Jain’s index =

(∑
k∈K(R̄

DL
k + R̄UL

k )
)2

2K
∑
k∈K((R̄

DL
k )2 + (R̄UL

k )2)
, (43)

which is bounded in [1/(2K), 1] [39]. Within this interval,
Jain’s index = 1/(2K) corresponds to the least fair allocation
in which only one rate receives a non-zero benefit, and Jain’s
index = 1 corresponds to the fairest allocation in which all
UL and DL rates receive the same benefit [26]. Therefore,
the Jain’s index quantitatively represents the fairness between
users, and a relatively large Jain’s index indicates that the
differences of different user rates are not distinctive. As a
result, a larger Jain’s index is more fair [26], [40].

Fig. 4 shows Jain’s index versus α under various maximal
transmission power constraints of the BS. Jain’s index increas-
es monotonically with the value of α, i.e., if we increase α,
a more fair time and power allocation can be obtained. The
increasing speed is rapid at low-value region of α, while the
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speed is slow at high-value region of α. The tradeoff curve
between sum rate and Jain’s fairness is presented in Fig. 5.
Combining Fig. 4 and Fig. 5, it is observed that the largest sum
rate is obtained at α = 0, while the solution is least fairness.
The largest Jain’s index 1 is obtained when α = +∞, which
yields the smallest sum rate.

The sum rate for DL and UL of the proposed CFPI
method versus α under various maximal transmission power
constraints of the BS is presented in Fig. 6. According to
Fig. 6, the sum rate for both DL and UL decreases with the
value of α. It is also observed that the gap of sum rate between
DL and UL also decreases with the value of α, which implies
that the fairness between DL and UL increases with α.

B. Zero Fairness

In this subsection, we evaluate the sum rate performance for
the zero fairness case, i.e., α = 0. We compare the proposed
ZFPI with the ETEPES scheme, the sum throughput scheme
where only DL wireless energy transfer is considered (ST-
DWET) [16], and the proposed MFPI in Section III-C.

Fig. 7 shows sum rate versus maximal transmission power
of the BS. It is observed that ZFPI, ETEPES and MFPI all

0 2 4 6 8 10
2

4

6

8

10

12

14

16

18

20

22

S
um

 r
at

e 
(b

its
/s

/H
z)

α

 

 

DL, P
max

=1 W

UL, P
max

=1 W

DL, P
max

=5 W

UL, P
max

=5 W

Fig. 6. Sum rate for DL and UL vs. α.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

S
um

 r
at

e 
(b

its
/s

/H
z)

Maximal transmission power (W)

 

 

ZFPI
ETEPES
MFPI
ST−DWET

Fig. 7. Sum rate vs. maximal transmission power of the BS.

outperforms ST-DWET. This is because ZFPI, ETEPES and
MFPI all considers simultaneous wireless information and
power transfer in the DL and user can harvest additional
energy when other users transmit UL information, while ST-
DWET only allows wireless energy transfer in the DL.

The sum rate comparison for different number of users is
shown in Fig. 8. It is observed that sum rate increases with the
number of users for all schemes. Based on Fig. 7 to Fig. 8, it
is observed that the proposed ZFPI achieves the best sum rate
among four schemes.

C. Max-Min Fairness

In this subsection, we evaluate the fairness value for the
max-min fairness case, i.e., α = +∞. We compare the
proposed ZFPI scheme in Section III-C with the ETEPES
scheme, the equal time allocation, equal transmission power
and optimized split power (ETEPOS) scheme (i.e., mk(i) =
nk(i) =

1
2K , qk(i) = qj(i), q̄k(i) = q̄j(i), ∀k, j ∈ K, i ∈ M,

optimal vvv is obtained from (39)), and the optimized time and
transmission power allocation and equal power-splitting factor
(OTOPES) scheme (i.e., vk(i) = qk(i)

2 , ∀k ∈ K, i ∈ M,
optimal (mmm,nnn,qqq, q̄qq) is obtained from Theorem 4).



9

2 3 4 5 6 7 8 9 10
0

5

10

15
S

um
 r

at
e 

(b
its

/s
/H

z)

Number of users

 

 

CFPI
ETEPES
MFPI
ST−DWET

Fig. 8. Sum rate vs. number of users.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
at

e 
(b

its
/s

/H
z)

User ID

 

 

DL
UL

Fig. 9. Rate distribution of each user in both DL and UL.

Fig. 9 shows the rate distribution of each user in both DL
and UL of the proposed MFPI mrthod. From Fig. 9, the rates
for each user’s DL and UL are almost the same, which verifies
the fairness achieved by the proposed MFPI.

In Fig. 10, we illustrate the fairness value θ in (32) ver-
sus maximal transmission power of the BS. As shown in
Fig. 10, the proposed MFPI achieves better performance than
OTOPES, which verifies that the system performance can be
further improved with the optimization of split power. The
ETEPES yields the least fairness value, since neither time
allocation nor power control is optimized. It is observed that
the OTOPES outperforms the ETEPOS, which demonstrates
that the optimization of time allocation and transmission power
dominates the optimization of split power. This is because that
the rates in both DL and UL grow almost linearly with time
allocation vector, while grows logarithmically with split power
according to (8) and (9).

The fairness value comparison for different numbers of
users is shown in Fig. 11. According to Fig. 11, it is observed
that the fairness value decreases with the increase of number
of users. This is because that high number of users can degrade
the system performance.
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V. CONCLUSION

In this paper, we have investigated the sum α-fair util-
ity maximization for a WPCN with simultaneous wireless
information and power transfer in both DL and UL. The
general sum α-fair utility maximization has been cast to a
convex problem. For zero fairness, the optimal time allocation
is proportional to the available transmission power, and it
is optimal for at most one user in each epoch to transmit
with positive power in the UL. For max-min fairness, the
optimization of time allocation and transmission power with
equal power-splitting factor is superior over the optimization of
split power with equal time allocation and transmission power.
Simulation results show that the sum rate of the proposed
scheme outperforms the conventional WPCN with only energy
transfer in the DL and information transfer in the UL. In
a WPCN with multi-antenna BS, however, it is generally
challenging to obtain the globally optimal time and power
allocation. A direct extension can be made resorting to an
alternating method, i.e., iteratively optimizing DL transmission
and receiving beamforming, and updating time and power
allocation strategies. The synchronization of the DL and UL
slots and the non-ideal energy harvesting characteristics of the
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users are left for our future work.

APPENDIX A
PROOF OF THEOREM 1

Obviously, the function f(vk(i)) , log2

(
1 + gk(i)vk(i)

Γσ2

)
is

concave w.r.t. vk(i). According to the property of perspective
function [32, Section 3.2.6], r̄DL

k (i) = mk(i)f(
vk(i)
mk(i)

) =

mk(i) log2

(
1 + gk(i)vk(i)

Γσ2mk(i)

)
is concave w.r.t. (mk(i), vk(i)).

From (5), we have

U ′
α(x) = x−α ≥ 0, ∀α ≥ 0, x ≥ 0, (A.1)

and

U ′′
α(x) = −x−α−1 ≤ 0, ∀α ≥ 0, x ≥ 0, (A.2)

which demonstrates that Uα(x) is concave and nonde-
creasing. Based on the property of scalar composition
[32, Section 3.2.4], Uα

(
1
M

∑
i∈M r̄DL

k (i)
)

is concave w.r.t.
(mmm,vvv). Analogously, we can prove that both r̄UL

k (i) =

nk(i) log2

(
1 + gk(i)q̄k(i)

Γσ2nk(i)

)
and Uα

(
1
M

∑
i∈M r̄UL

k (i)
)

are
concave w.r.t. (nnn, q̄qq). Since

∑
k∈K Uα

(
1
M

∑
i∈M r̄DL

k (i)
)
+∑

k∈K Uα
(

1
M

∑
i∈M r̄DL

k (i)
)

is a nonnegative weighted sum
of concave functions. Hence, the objective function of problem
(7) is concave w.r.t. (mmm,nnn, q̄qq,vvv) [32, Section 3.2.1].

APPENDIX B
PROOF OF LEMMA 1

Assume that
∑
k∈Km

∗
k(i) + n∗k(i) < 1. The first-order

derivative of r̄DL
k (i) w.r.t. mk(i) is

∂r̄DL
k (i)

∂mk(i)
=

1

ln 2
ln

(
1 +

gk(i)vk(i)

Γσ2mk(i)

)
− gk(i)vk(i)

(ln 2)(gk(i)vk(i) + Γσ2mk(i))
. (B.1)

Define function

h(x) =
ln(1 + x)

ln 2
− x

(ln 2)(1 + x)
, ∀x ≥ 0. (B.2)

From (B.1), we have ∂r̄DL
k (i)

∂mk(i)
= h

(
gk(i)vk(i)
Γσ2mk(i)

)
. Since

h′(x) =
(ln 2)x

(x+ 1)2
> 0, ∀x > 0, (B.3)

we obtain h(x) > h(0) = 0. Then, ∂r̄DL
k (i)

∂mk(i)
≥ 0 and

r̄DL
k (i) is increasing for mk(i) ≥ 0. According to (A.1),
Uα
(

1
M

∑
i∈M r̄DL

k (i)
)

is also increasing for mk(i) ≥ 0. Thus,
objective function (7a) can always be improved by increasing
m∗
k(i), contradicting that solution (mmm∗,nnn∗) is optimal.

APPENDIX C
PROOF OF THEOREM 2

With fixed (qqq,vvv), the Lagrange function of problem (14)
can be written by

L1(mmm,nnn, q̄qq,ϕϕϕ,ννν,ηηη0, ηηη1, ηηη2, ηηη3) =

1

M

∑
i∈M

∑
k∈K

mk(i) log2

(
1 +

gk(i)vk(i)

Γσ2mk(i)

)
+

1

M

∑
i∈M

∑
k∈K

nk(i) log2

(
1 +

gk(i)q̄k(i)

Γσ2nk(i)

)

+
∑
i∈M

ϕ(i)

(
1−

∑
k∈K

(mk(i) + nk(i))

)
+
∑
i∈M

∑
k∈K

η0k(i) (Pmaxmk(i)− qk(i))

+
∑
i∈M

∑
k∈K

νk

(
ζgk(i)

∑
l∈K

ql(i)− ζgk(i)vk(i)

+ζ0

k−1∑
l=1

glk(i)q̄l(i) + ζ0

K∑
l=k+1

glk(i− 1)q̄l(i− 1)− q̄k(i)

)
+
∑
i∈M

∑
k∈K

η1k(i)mk(i) +
∑
i∈M

∑
k∈K

η2k(i)nk(i)

+
∑
i∈M

∑
k∈K

η3k(i)q̄k(i), (C.1)

where ϕϕϕ = {ϕ(i)}i∈M, ννν = {νk}k∈K, and ηηηj =
{ηjk(i)}i∈M,k∈K, j = 0, 1, 2, 3, are nonnegative Lagrangian
multipliers associated with the corresponding constraints of
problem (14). According to [32], the optimal solution of
problem (14) given (qqq,vvv) should satisfy:

∂L1

∂mk(i)
= h

(
gk(i)vk(i)

Γσ2mk(i)

)
− ϕ(i) + η0k(i) + η1k(i) = 0

(C.2a)
∂L1

∂nk(i)
= h

(
gk(i)q̄k(i)

Γσ2nk(i)

)
− ϕ(i) + η2k(i) = 0 (C.2b)

∂L1

∂q̄k(i)
=

gk(i)nk(i)

(ln 2)(Γσ2nk(i) + gk(i)q̄k(i))

+ ζνk
∑

l∈K\{k}

gkl(i)− νk + η3k(i) = 0, (C.2c)

for all i ∈ M, k ∈ K, where function h(x) is defined in (B.2).
For the optimal solution to problem (14), we observe that

mk(i) = 0 if and only if qk(i) = 0 and nk(i) = 0 if and only
if q̄k(i) = 0, as otherwise the sum rate (14a) can be further
increased. Based on (C.2a) and the complementary slackness
conditions, we have

mk(i) =
gk(i)vk(i)

C(i)

∣∣∣∣ qk(i)

Pmax

, (C.3)

where C(i) = Γσ2

h−1(ϕ(i)) , h−1(x) is the inverse function of
h(x), and a|b = max{a, b}. From (C.2b), nk(i) can be derived
as

nk(i) =
gk(i)q̄k(i)

C(i)
. (C.4)
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Substituting (C.3) and (C.4) into (7b) with equality from
Lemma 1, we have∑

k∈K

(
gk(i)vk(i)

C(i)

∣∣∣∣ qk(i)

Pmax

+
gk(i)q̄k(i)

C(i)

)
= 1. (C.5)

Since the left term of equation (C.5) monotonically decreases
with C(i), the root C(i) satisfying (C.5) with given q̄qq can be
obtained via the bisection method.

Plugging (C.4) into (C.2c) yields

η3k(i) = − gk(i)

(ln 2)(Γσ2 + C(i))
+νk

1− ζ0
∑

l∈K\{k}

gkl(i)

 .

(C.6)
Combining (C.6) and η3k(i) ≥ 0, we get

C(i) ≥ gk(i)

(ln 2)νk

(
1− ζ0

∑
l∈K\{k} gkl(i)

) − Γσ2 , Dk(i).

(C.7)
Assume that there exists one unique minimal value in se-
quence {D1(i), · · · , DK(i)}, and w(i) = argmink∈KDk(i).
When there exists more than one maximal values in sequence
{D1(i), · · · , DK(i)}, we can arbitrarily choose one index
w(i) with the maximal value Dw(i)(i). Based on (C.6) and
(C.7), we have η3k(i) > η3w(i)(i) ≥ 0 and

q̄k(i) = 0, ∀k ∈ K \ {w(i)}. (C.8)

For nonnegative multiplier η3w(i)(i), two cases are considered.

1) If η3w(i) > 0, we have q̄w(i)(i) = 0 and C̃(i) satis-
fying

∑
k∈K

gk(i)vk(i)

C̃(i)

∣∣∣ qk(i)

Pmax

= 1 from (C.5) and (C.8).

Considering (C.7), we further have C̃(i) > Dw(i)(i).
2) If η3w(i)(i) = 0, we have C(i) = Dw(i)(i).

Based on (C.5) and (C.8), we can obtain q̄w(i)(i) =
Dw(i)(i)−

∑
k∈K gk(i)vk(i)|qk(i)Dw(i)/Pmax

gw(i)(i)
, which indicates

that C̃(i) ≤ Dw(i)(i).
As a result, the optimal q̄k(i) is presented in (16) and (17).

Given (mmm,nnn, q̄qq), the Lagrange function of problem (14) can
be written by

L2(qqq,vvv,ννν, µ,ηηη0, ηηη4, ηηη5) =

1

M

∑
i∈M

∑
k∈K

mk(i) log2

(
1 +

gk(i)vk(i)

Γσ2mk(i)

)

+
∑
k∈K

∑
i∈M

νk

(
ζgk(i)

∑
l∈K

ql(i)− ζgk(i)vk(i)

+ζ0

k−1∑
l=1

glk(i)q̄l(i) + ζ0

K∑
l=k+1

glk(i− 1)q̄l(i− 1)− q̄k(i)

)
+
∑
i∈M

∑
k∈K

η0k(i) (Pmaxmk(i)− qk(i))

+µ

(
Pavg −

1

M

∑
i∈M

∑
k∈K

qk(i)

)
+
∑
i∈M

∑
k∈K

η5k(i)vk(i)

+
∑
i∈M

∑
k∈K

η4k(i)(qk(i)− vk(i)), (C.9)

where µ, ηηη4 = {η4k(i)}i∈M,k∈K and ηηη5 = {η5k(i)}i∈M,k∈K
are nonnegative Lagrangian multipliers associated with the
corresponding constraints of problem (14). According to [32],
the optimal solution of problem (14) with given (mmm,nnn, q̄qq)
should satisfy:

∂L2

∂qk(i)
= −η0k(i)−

µ

M
+ ζνk

∑
l∈K

gl(i) + η4k(i) = 0

(C.10a)
∂L2

vk(i)
=

gk(i)mk(i)

(ln 2)(Γσ2mk(i) + gk(i)vk(i))
− ζνkgk(i)

+ η5k(i)− η4k(i) = 0, (C.10b)

for all i ∈ M, k ∈ K.
According to (C.10a), we obtain

η4k(i)− η0k(i) =
µ

M
− ζνk

∑
l∈K

gl(i). (C.11)

If µ
M − ζνk

∑
l∈K gl(i) > 0, we have η4k(i) > 0 since

η0k(i) ≥ 0 and qk(i) = vk(i) according to the complementary
slackness conditions. If µ

M − ζνk
∑
l∈K gl(i) < 0, we have

η0k(i) > 0 since η4k(i) ≥ 0 and qk(i) = Pmaxmk(i)
according to the complementary slackness conditions. If µ

M −
ζνk

∑
l∈K gl(i) = 0, it is optimal to arbitrarily choose qk(i)

in [vk(i), Pmaxmk(i)]. According to the above analysis, the
optimal q∗k(i) can be expressed as

q∗k(i) =

{
vk(i) if µ

M > ζνk
∑
l∈K gl(i)

Pmaxmk(i) if µ
M ≤ ζνk

∑
l∈K gl(i)

(C.12)

for all i ∈ M, k ∈ K.
Based on (C.10) and the complementary slackness condi-

tions, we can calculate the optimal v∗k(i) as

v∗k(i)=
mk(i)

(ln 2)ζνkgk(i)
−Γσ2mk(i)

gk(i)

∣∣∣∣qk(i)
0

, ∀i ∈ M, k ∈ K,
(C.13)

where a|cb = min{max{a, b}, c}. Due to the fact that the
objective function (14a) is an increasing function of v∗k, the
optimal q∗k(i) and v∗k(i)are given by (19) and (20), respectively.

APPENDIX D
PROOF OF THEOREM 3

Given (qqq, q̄qq,vvv), the Lagrange function of problem (7) can
be written by

L3(mmm,nnn,ϕϕϕ,ηηη0, ηηη1, ηηη2) =
∑
k∈K

Uα(R̄
DL
k ) +

∑
k∈K

Uα(R̄
UL
k )

+
∑
i∈M

∑
k∈K

ηk0(i) (Pmaxmk(i)− qk(i))

+
∑
i∈M

ϕ(i)

(
1−

∑
k∈K

(mk(i) + nk(i))

)
+
∑
i∈M

∑
k∈K

η1k(i)mk(i) +
∑
i∈M

∑
k∈K

η2k(i)nk(i), (D.1)

where R̄DL
k and R̄UL

k are defined in (24) and ((25)). According
to [32], the optimal solution of problem (7) with given (qqq, q̄qq,vvv)
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should satisfy:

∂L3

∂mk(i)
= (R̄DL

k )−αh

(
gk(i)vk(i)

Γσ2mk(i)

)
− ϕ(i) + η0k(i)

+ η1k(i) = 0 (D.2a)
∂L3

∂nk(i)
= (R̄UL

k )−αh

(
gk(i)q̄k(i)

Γσ2nk(i)

)
− ϕ(i) + η2k(i) = 0,

(D.2b)

for all i ∈ M, k ∈ K. By solving equations (D.2) and
using complementary slackness conditions, the optimal mk(i)
and nk(i) can be calculated as (22) and (23), respectively.
Substituting (22) and (23) into (7b) with equality from Lemma
1, we find that ϕ(i) should satisfy (26).

With fixed (mmm,nnn), the Lagrange function of problem (7) can
be written by

L4(qqq, q̄qq,vvv,ννν, µ,ηηη0, ηηη3, ηηη4, ηηη5) =∑
k∈K

Uα(R̄
DL
k ) +

∑
k∈K

Uα(R̄
UL
k )

+
∑
i∈M

∑
k∈K

νk

(
ζgk(i)

∑
l∈K

ql(i)− ζgk(i)vk(i)

+ζ0

k−1∑
l=1

glk(i)q̄l(i)+ζ0

K∑
l=k+1

glk(i− 1)q̄l(i− 1)−q̄k(i)

)
+
∑
i∈M

∑
k∈K

η0k(i) (Pmaxmk(i)− qk(i))

+µ

(
Pavg −

1

M

∑
i∈M

∑
k∈K

qk(i)

)
+
∑
i∈M

∑
k∈K

η4k(i)(qk(i)− vk(i)) +
∑
i∈M

∑
k∈K

η3k(i)q̄k(i)

+
∑
i∈M

∑
k∈K

η5k(i)vk(i). (D.3)

The optimal solution of problem (7) with given (mmm,nnn) should
satisfy:

∂L4

∂qk(i)
= −η0k(i)−

µ

M
+ ζνk

∑
l∈K

gl(i) + η4k(i) = 0

(D.4a)
∂L4

∂q̄k(i)
=

gk(i)nk(i)

(ln 2)(R̄UL
k )α(Γσ2nk(i) + gk(i)q̄k(i))

+ ζ0νk
∑

l∈K\{k}

gkl(i)− νk + η3k(i) = 0 (D.4b)

∂L4

vk(i)
=

gk(i)mk(i)

(ln 2)(R̄UL
k )α(Γσ2mk(i) + gk(i)vk(i))

− ζνkgk(i) + η5k(i)− η4k(i) = 0, (D.4c)

for all i ∈ M, k ∈ K. Similar to (C.11) in Appendix C, the
optimal qk(i) can be presented in (27). According to (D.4)
and complementary slackness conditions, the optimal q̄k(i)
and vk(i) can be calculated as (28) and (29), respectively.

APPENDIX E
PROOF OF THEOREM 4

Given (qqq, q̄qq,vvv), the Lagrange function of problem (32) can
be written by

L5(θ,mmm,nnn,ψψψ1,ψψψ2,ϕϕϕ,ηηη0, ηηη1, ηηη2) =

θ +
∑
k∈K

ψ1k(R̄
DL
k − θ) +

∑
k∈K

ψ2k(R̄
UL
k − θ)

+
∑
i∈M

ϕ(i)

(
1−
∑
k∈K

(mk(i) + nk(i))

)
+
∑
i∈M

∑
k∈K

η0k(i)(Pmaxmk(i)− qk(i))

+
∑
i∈M

∑
k∈K

η1k(i)mk(i) +
∑
i∈M

∑
k∈K

η2k(i)nk(i), (E.1)

where ψψψ1 = {ψ1k}k∈K and ψψψ2 = {ψ2k}k∈K are nonnegative
Lagrangian multipliers associated with (32b) and (32c), re-
spectively. According to [32], the optimal solution of problem
(32) with fixed (qqq, q̄qq,vvv) should satisfy:

∂L5

∂θ
= 1−

∑
k∈K

(ψ1k + ψ2k) = 0 (E.2a)

∂L5

∂mk(i)
= ψ1kh

(
gk(i)vk(i)

Γσ2mk(i)

)
− ϕ(i) + η0k(i)

+ η1k(i) = 0 (E.2b)
∂L5

∂nk(i)
= ψ2kh

(
gk(i)q̄k(i)

Γσ2nk(i)

)
− ϕ(i) + η2k(i) = 0, (E.2c)

for all i ∈ M, k ∈ K. By solving equations (E.2b)-(E.2c) and
using complementary slackness conditions, the optimal mk(i)
and nk(i) can be calculated as (34) and (35), respectively.
Substituting (34) and (35) into (7b) with equality from Lemma
1, we find that ϕ(i) should satisfy (36).

Given (mmm,nnn), the Lagrange function of problem (7) can be
written by

L6(θ,qqq, q̄qq,vvv,ψψψ1,ψψψ2, ννν, µ,ηηη0, ηηη3, ηηη4, ηηη5) =

θ +
∑
k∈K

ψ1k(R̄
DL
k − θ) +

∑
k∈K

ψ2k(R̄
UL
k − θ)

+
∑
k∈K

∑
i∈M

νk

(
ζgk(i)

∑
l∈K

ql(i)− ζgk(i)vk(i)

+ζ0

k−1∑
l=1

glk(i)q̄l(i)+ ζ0

K∑
l=k+1

glk(i− 1)q̄l(i− 1)−q̄k(i)

)

+µ

(
Pavg −

1

M

∑
i∈M

∑
k∈K

qk(i)

)
+
∑
i∈M

∑
k∈K

η0k(i)(Pmaxmk(i)− qk(i)) +
∑
i∈M

∑
k∈K

η3k(i)q̄k(i)

+
∑
i∈M

∑
k∈K

η4k(i)(qk(i)−vk(i))+
∑
i∈M

∑
k∈K

η5k(i)vk(i). (E.3)

The optimal solution of problem (32) with fixed (mmm,nnn) should
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satisfy:

∂L6

∂θ
= 1−

∑
k∈K

(ψ1k + ψ2k) = 0 (E.4a)

∂L6

∂qk(i)
= −η0k(i)−

µ

M
+ ζνk

∑
l∈K

gl(i) + η4k(i) = 0

(E.4b)
∂L6

∂q̄k(i)
=

gk(i)ψ2knk(i)

(ln 2)(Γσ2nk(i) + gk(i)q̄k(i))

+ ζ0νk
∑

l∈K\{k}

gkl(i)− νk + η3k(i) = 0 (E.4c)

∂L6

vk(i)
=

gk(i)ψ1kmk(i)

(ln 2)(Γσ2mk(i) + gk(i)vk(i))

− ζνkgk(i) + η5k(i)− η4k(i) = 0, (E.4d)

for all i ∈ M, k ∈ K. Similar to (C.11) in Appendix C,
the optimal qk(i) is given in (37). According to (E.4) and
complementary slackness conditions, the optimal q̄k(i) and
vk(i) can be calculated as (38) and (39), respectively.
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