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Abstract—This letter investigates the resource allocation prob-
lem in device-to-device (D2D) communications underlaying a
non-orthogonal multiple access (NOMA )-based cellular network,
where both cellular users and D2D users harvest energy from the
hybrid access point in the downlink and transmit information
in the uplink. We propose a low-complexity iterative algorith-
m to maximize the energy efficiency of the D2D pair while
guaranteeing the quality of service of cellular users. In each
iteration, by analyzing the Karush-Kuhn-Tucker conditions, the
globally optimal solution can be derived in closed form despite
the nonconvexity. Simulation results validate the superiority of
the proposed scheme over the existing schemes.

Index Terms—D2D, NOMA, energy harvesting, resource allo-
cation.

I. INTRODUCTION

Device-to-device (D2D) communications have been con-
sidered as a promising technology to alleviate the explosive
traffic growth in wireless communications. D2D users share
the same resources with cellular users (CUs) under control
of the cellular network, which can effectively improve the
spectral efficiency [1], [2].

The system throughput in D2D underlaying networks is seri-
ously limited by the battery lifetime budget of users. To prong
the lifetime of networks, energy harvesting via radio frequency
has been applied to D2D underlaying networks [3]-[5]. In
[3], joint power control and time allocation was considered
in a D2D underlaying cellular network, where D2D users are
powered by energy harvested from the uplink transmission of a
CU. However, the harvested energy is confined by the limited
transmit power of the CU, and the lifetime of the CU is limited
without energy harvesting. Thus, in our work, we consider a
scheme where both CUs and the D2D-transmitter (Tx) harvest
energy from a hybrid access point (HAP).

In [5], all users are powered by the power station in
the downlink and time division multiple access (TDMA) is
adopted for multi-user transmission in the uplink. Since energy
harvesting utilizes part of the time resource, the transmit time
for each user is seriously limited in TDMA, which leads to
low individual data rates. Recently, non-orthogonal multiple
access (NOMA) has received extensive attention due to its
advantage in improving the spectral efficiency by allowing
multiple users sharing the same resource element and adopting
successive interference cancellation (SIC) in decoding [6],
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[7]. Consequently, the combination of NOMA technology
and energy harvesting is a promising method to improve the
performance in D2D underlaying cellular networks.

In this letter, we consider joint power control and time
allocation problem in a NOMA-based cellular network with
energy harvesting. Our target is to maximize the energy
efficiency of the D2D pair while guaranteeing the quality
of service of CUs. The main contributions are as follows.
We constructively introduce NOMA in a D2D underlaying
network with energy harvesting, and accordingly propose an
energy-efficient algorithm. Besides, we show that the optimal
power of CUs can be effectively derived with given power of
the D2D-Tx. Based on the optimal conditions, we obtain the
globally optimal solution of D2D power and time allocation
in closed form despite the nonconvexity. Simulation results
show that the proposed scheme outperforms the conventional
representative schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a NOMA-based cellular network with one HAP,
K CUs and one pair of D2D users. The HAP plays the role of
energy broadcasting in the downlink and information receiving
in the uplink. The CUs are multiplexed on the same uplink
resource with the underlaid D2D pair. Two-phase transmission
with periodicity 7" is adopted. The CUs and D2D-Tx harvest
energy from the HAP with broadcast power Py in the first
phase with allocated time 7.. During the second phase with
allocated time 7;, all CUs simultaneously transmit information
to the HAP while the D2D-Tx communicates with the D2D-
receiver (Rx). Obviously, 7. + 7; < T should be satisfied.

Perfect channel state information obtained via pilot se-
quences is assumed to be known and constant during time
T. Denote K = {1,---,K} as the set of CUs. In the first
phase, the harvested energy of CU k or the D2D-Tx is

E" = 1.nPohy, Vu € KU{d}, (1)
where hj denotes the channel gain from the HAP to CU k,
hg is the channel gain from the HAP to the D2D-Tx, and 7
is the energy transformation efficiency.

In the second phase, the users utilize the energy collected
in the first phase to transmit information. Thus, for all users,
energy consumption should not exceed the harvested energy.
During the first phase, only the constant circuit power is
consumed for user u, i.e., p;,. During the second phase, the
transmit power and the constant circuit power of user u are
denoted by p,, and p¢,, respectively. In practice, p$, > p! due to
the fact that the circuits of information transmission are more
complex than that of energy harvesting [S]. Consequently, the
energy consumption constraints are given by:

Tepz + TiPu + Tip'(;, S EZ? Yu € KU {d} (2)
In the NOMA-based uplink cellular network, K CUs are
multiplexed on the same resource, and SIC is adopted at the



HAP side. With SIC, the information of CUs is decoded in
a decreasing order of the channel gain. Let gpp denote the
uplink channel gain from CU k to the HAP. Assume that

g1B > g2 > -+ > gk . The SINR of CU £ is
SINRj, = — PhIks . Vke K\ {K},
> j—kt1Pi9iB + Pdgis + 0*
and when k£ = K, the SINR is given by ®)
SINRy = M 4)

pagas + 0%’
where ggp is the channel gain from the D2D-Tx to the HAP.

Since the D2D pair reuses the resource of CUs, the achievable
throughput of the D2D pair is given by

Ry =7,Wlogy | 1+ —— 2294 NG
> k1 PkGkd + 02

where W is the system bandwidth, g4 is the channel gain
from CU £ to the D2D-Rx, and g44 is the channel gain between
the users of the D2D pair. The total energy consumption F
of the D2D pair can be given by
Eq = Tepg + Tipa + Tipg. (6)
Now we are ready to formulate the energy efficiency op-
timization problem for a NOMA-based cellular network with
energy harvesting as

. %
Ry o ZWIng (1 + N Prgrato? )

pmgiaém E; TePly + TiPd + TiD§ (7a)
st. T, >0 (7b)
Te+ 7 <T (7¢)

SINRg >y, VkeK (7d)

0<p, <P YueKU{d} (7e)

TePy, + TiDu + Tib§, < TenPohy,Yu € KU {d}, (7f)

where p. = [p1,p2, - ,PK], PP is the maximal transmit
power of user u, and y; is the minimum SINR of CU k € K.

III. POWER CONTROL AND TIME ALLOCATION
Problem (7) is nonconvex due to the objective function (7a)

and constraints (7f). To solve problem (7), the Dinkelbach
method is applied to transform the fractional objective function
into a subtractive function according to the following lemma.

Lemma 1: Solving problem (7) is equivalent to the problem
given by

¥(g) =0, ®)

where the function ¢(q) is defined by
¥(q) =, max Ry — qEq (9a)
st (7b) — (7). (9b)

Since Lemma 1 can be proved by using the same method
n [8], the proof is omitted. Thus, our goal turns to find
a ¢ so that zero is the optimal value of problem (9). To
solve nonconvex problem (9), we first provide the optimal and
feasible conditions and then obtain the optimal solution.
A. Optimal and Feasible Conditions

To solve problem (7), we obtain the following lemmas about
the optimal time utilization and power allocation.

Lemma 2: For problem (7), the maximum energy efficiency
can always be achieved at 7. + 7, = 7.

Proof: Suppose that {p},p}, 7}, 7/} is the optimal so-

lution of (7) with maximum energy efficiency EFE*, and

satisfies 77 + 7, < T'. Then, We construct a new solution
{p:,p},7e,7i}, where 7. = *+T*’ T o= T”Jri* such that
Te. + 7; = T. With the new solutlon constraints (7b) (7f) are
still satisfied and EE = EE* can be verified where EE is
the new energy efficiency. Therefore, the maximum energy
efficiency can always be achieved at 7. + 7, = T'. [ ]

In the following, we define 7 = 7;, and 7. can be replaced
by T — 7 in problems (7) and (9).

Lemma 3: For any optimal solution to problem (7), con-
straints (7d) must hold with equality.

Proof: Assume that the optimal power of CUs is p} =
[pf, - ,px], the optimal power of the D2D-Tx is pj; and
SINRjg > ~yx is satisfied. With all the other powers of CUs
and p}; fixed, we reduce the power p; to pr,=p;—A, A>0
such that SINRy, > 7. With the new power Py, the objective
function (7a) is increased with satisfying all constraints of (7),
which contradicts that the solution is optimal. Note that there
exists one unique solution satisfying (7d) with equality for all
CUs since the coefficient matrix and the augmented matrix of
corresponding linear equations are row full-rank. Besides, this
unique solution is positive and component-wise minimum. B

Setting constraints (7d) with equality, the optimal power of
CUs can be expressed as

Y& (Pagas + o)

P=— (10)
K JKB ,
i ig;B+ +o
p;;%(zﬁ—’““pj;ﬁ Pgds ), Yk e K\ {K}. (11)
kB
To solve (11), we introduce
Sk =Y _pjgis, VkeK. (12)
j=k
Plugging (12) into (11) yields
Sp—3S S 2
k k-‘rl :’Yk( k+1+pdgdB+0- )7 Vk E ,C\{K} (13)
9kB dkB

Denoting Ay = v + 1, By = Yx(pagan + 02), (13) can be
simplified as

Sk :Aksk—i-l + Bk, Vk E’C\{K} (14)
We obtain S = By from (10) and (12). Solving (14) with
the recursion method, S, is given by

K J—1

Se=> B;[[A, VkeKk,
j=k =k

fz_kl A; = 1. Hence, combining (12) and

_Z; k+1B Hz k+1Al
9dkB

5)

where we define
(15) yields X .
. Zj:k B Hg:k Ay

Pr =

= Cgpa + Dy,

(16)

where Ci = (YkgaB+r9an Zj K1V Hz o (nD) /g,
and D= (yx0o 2 4 ypo? ZJ k+1 74 Hz k+1(’7l +1))/9xB-
According to (16), constraints (7e) can be rewritten as
pa < Py, (17)
where P; = min{mingcx{(P*>* — Dy)/Cr}, P;***}. Note
that problem (7) is feasible only if P; is non-negative, i.e.,
P > Dy, Vk € K. Constraints (7f) can be transformed to

Tpa + 7(p§ — g +nPoha) < nPoThq — Tpy, (18)



D ¢ — o Pyh PoThy, — Tpj,

Tpd+7'< kT Dy Pk+770k)<770 k pk7(19)
Ck Ok
for all £ € K. Consequently, (9) can be simplified as

min —7W log Cpat +q(tpa+7(pg—py)+Tpy)(20a)

T,Pd 2 Eps+F d d d d
st. 0<7<T (20Db)
0<ps<P; (20c)
Tpq + TH < I),, Vke KuU{0}, (20d)

where B = Y0, Crgkas G = E+ gaas F = Yoy Digra +
o2, Hy = pS—py+nPohq, Iy = nPyThe—Tp}y, Hi = (D +
5 —prp+nPohi)/Cl, and I, = (nPoThi,—T'p})/Cr, Vk € K.

Before solving problem (20), feasibility conditions are given
by the following lemma.
Lemma 4: The optimization problem (20) is feasible if and
only if P; >0 and I, > 0,Vk € KU {0}.
Since Lemma 4 can be proved by the contradiction method,
the proof is omitted.
B. Optimal Solution
To solve nonconvex problem (20), the optimal solution
is obtained by analyzing the Karush-Kuhn-Tucker (KKT)
conditions. Specifically, the Lagrangian function of (20) is
Gpa + I
L (1,p4,a1,a2, 51, B2,A) = —7W log, (Epd +F>
+q(mpa + 7(pg — pa) + Tpa) + ar(=7) + az(r = T)
K
+B1(=pa)+B2(pa — Pi)+ Y Ar(tpa + THp—Ii),21)
k=0
where a1, ag, f1, B2, and A = [A, Aa, -+, Ag] = 0 are
non-negative dual variables. All the locally optimal solutions
should satisfy the KKT conditions of problem (20) as follows

oL Gpg + F
P 1 c _ T
5. = Wlog, (Epd +F> +q(pa + pg — pa)
K
—on+az+ Y Ar(pa+ Hp) =0 (22a)
k=0
oL _Tw( G . E N\
Opas 2\ Gpg+F Eps+F e
K
B+ B2+ Y MT=0 (22b)
k=0
a1(-1)=az(7=T)=pB1(-pa) =B2(pa—P7)=0 (22¢)
MNe(Tpa +7Hy, — 1) =0, Yk eKU{0} (22d)
(200) — (20d), a1, avg, B1, B2, Ak > 0, Y€ KU {0}, (22¢)

To obtain the globally optimal solution, we find all feasible
solutions to KKT conditions (22) and pick the best one as the
final result. It can be easily observed that p;j = 0 or 7 = 0
or 7 =T are not optimal solutions to problem (9), since the
achievable throughput of the D2D pair is O in this case. Thus,
pqg =0 or 7 =0 or 7 =T are neither the optimal solutions
to problem (20). According to constraints (20b) and (20c),
the optimal solution to problem (20) falls into two cases: (1)
0<7<T,0<pa < P;; QQ0<7<T, pg=PFP;. We
obtain all solutions that satisfy the KKT conditions in each
individual case.

1y

2)

Case 0 <7 <T,0<pg <Pj

According to (20d), a feasible region of (7, p4) consists
of K + 1 linear constraints. In the following, solutions
(1,pq) that satisfy (20d) are classified into: a vertex
point, a boundary point and an inner point.

a) If the solution is located in a vertex, at least two of
the constraints in (20d) hold with equality. For finite K,
we can traverse all couples of K +1 constraints to obtain
the exact 7 and py. Assume that the ¢-th constraint and
the j-th constraint in (20d) hold with equality, the closed
form of p; and 7 can be given by

. LH,— LH
Pi= T (23a)
I — I
e 23b
Y= (23b)

Considering (22e), we can check whether (23) is a
feasible solution to problem (20).

b) If the solution is located in a boundary, we assume
that the ¢-th constraint in (20d) is the only one that
holds with equality. From (22¢)-(22d), all dual variables,
except \;, equal to zero. Then, (22) can be simplified as

g+ TH; = I; (24a)
Gpd 4+ F)
—W1 =) + 4 — )
0gy ( Fpat F q(pa + pg — py)
+Xi(pa + H;)=0 (24b)
W G E
1n2< GpatF Epd+F>+qT+ 7=0. (24c)
W G

Substituting >\’L = T3 GpatF WEJ’-F> —q from

(24c¢) into (24b) yields
f(pa) — (pa + Hi) f'(pa) + M =0, (25)

where f(pq) = —W log, (giji?) and M is a constant

defined by ¢(p§ — pl; — H;). Defining

9(pa) = f(pa) — (pa + Hi) f'(pa) + M, (26
we have ¢'(ps) = —(pa + Hi)f"(pa) < O since
f"(pa) > 0. Hence, g(pg) is monotonically decreasing,
which indicates that (25) has one unique solution. From
(25), (26) and (24a), we can obtain

Py =9""(0) (27a)
™= ) (27b)

where g~!(-) is the inverse function of g(-). Whether
(27) is a feasible solution should be checked from (22e).
¢) If the solution is located inside the feasibility region,
all dual variables are equal to zero. With 5; = 55 = 0
and A = 0, pg can be uniquely obtained from (22b).
Since the objective function (20a) is a linear function of
T with given pg, the optimal 7 always lies in the maximal
or minimal point, which contradicts that the solution is
located inside the feasibility region. Hence, the globally
optimal solution dose not exist in this situation.

Case 0 <7 <T,pg=P]

With pg = Pj, (20a) is a linear function of 7 where
the optimal solution must lie in the boundary of fea-
sible region. In addition, (20c) can be transformed to
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T < Pi+H;’ arg milgexu{o} (Pd*+Hk)'
Since 7 is strictly positive, the optimal 7* must satisfy

T = Pd*{"i 77; if the objective function is monotonically
I GP;+F
decreasing, i.e., both —W log, (ﬁh) +q(P;+p5—
r I;
Py) < 0 ‘and’O < prim,
solution is given by
Pa = g

T

&3]
a

—_

where 7 =

< T are satisfied, the optimal
(28a)

. i Iy,
" T kekutoy (pwk ) B

Compare all locally optimal solutions ﬁom all cases, the one
which minimizes the objective function of problem (20) is
accepted as the globally optimal solution.
C. Algorithm and Complexity Analysis

The optimal NOMA-based power control and time al-
location (NOMA-OPT) algorithm to solve problem (7) is
presented in Algorithm 1. The major complexity lies in Case 1
in each iteration, where Case la involves a complexity of
O(K?) for traversing K + 1 constraints, and Case 1b has
a complexity of O(K log,(1/€)) due to the bisection method
with a tolerance of e. Thus, the total complexity of the NOMA-
OPT is O(LK? + LK log,(1/¢)), where L is the number of
iterations.

Algorithm 1: NOMA-OPT

1: Initialization Set the maximum tolerance £ and ¢ = qq.

2: repeat

3:  With fixed g, obtain the optimal (7%, p};) of (20).

4 Set qpre = ¢, ¢ = (T*W10g2 (ggji?)) J(T*ph +
7" (PG — Pa) + Tpy)-

5. until |gpre — g| < e.
6: Output pg = pjj, 7 = 7,7 = T — 7%, pp = Crpj +
Dy, Vk € K.

IV. SIMULATION RESULTS

There are three CUs randomly located within the network.
The channel gains are modeled as 148.1 + 37.61og;, D [9],
where D is the distance measured in kilometers. The other
main system parameters are given as 7=0.9, T=10s, 0> =
—174 dBm/Hz, W = 20 KHz, ¢ = 1077, P™® = 50 mW,
pS =10 mW, pl, =5 mW, Yu € KU{d} , and v, =79, Vk€K.

Fig. 1 illustrates the convergence behavior of the proposed
algorithm corresponding to different values of the maximum
transmit power of the HAP while setting 7o = 9. It can be
seen from Fig. 1 that no more than four iterations are needed
to approach the optimal solution.

We compare the NOMA-OPT with the following three
schemes: TDMA-based power and time optimization in [5]
where CUs occupy different time slots with the D2D pair

—6—NOMA-OPT
—&— TDMA-OPT[5]
—%— NOMA-OPFT[7]|{
—6— NOMA-OTFP

Energy efficiency (bits/Joule)
5
o
o

2000
00—
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SINR requirement of CUs
Fig. 2. Energy efficiency versus different o with Pp=2 W.

underlaying whole information transmission time (labeled as
‘TDMA-OPT’), optimal NOMA-based power control with
fixed time allocation in [7] where the time is equally divided
between two phases (labeled as ‘NOMA-OPFT’) and optimal
NOMA-based time allocation with maximum transmit power
(labeled as ‘NOMA-OTFP’).

From Fig. 2, it can be observed that energy efficiency of
each scheme decreases with the increased SINR requirement
of CUs, since the power of the D2D-Tx is limited as SINR
increases. Fig. 2 also illustrates that the proposed scheme
is superior over NOMA-OPFT scheme and NOMA-OTFP
scheme due to the joint optimization of time and power in our
scheme. Furthermore, our scheme also outperforms TDMA-
OPT scheme. The reason is that less time is utilized in energy
harvesting in TDMA, which leads to low transmit power and
low energy efficiency of the D2D pair.

] ) ~ V. CONCLUSION ] ]
This letter investigates power control and time allocation

problem of a D2D underlaying NOMA-based cellular network
with energy harvesting. The optimal energy efficiency of
the D2D pair is achieved by solving the KKT conditions.
Simulation results show that the proposed scheme yields larger
energy efficiency than the existing representative schemes. The
resource allocation of a multi-carrier network with multiple

D2D pairs is left for future work.
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