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ABSTRACT: Superhydrophobic conical pillars have great industrial application potential in, for 

example, anti-icing of aircraft wings and protecting high voltage transmission lines from freezing rain 

because of their droplet pancake bouncing phenomenon which is recognized to furthest reduce the liquid-

solid contact time. However, there are still no methods that can large-scale fabricate robust 
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superhydrophobic conical pillars. Here, a mold replication technology was proposed to realize the large-

scale fabrication of superhydrophobic conical pillars with a high mechanical strength. An Al mold with 

intensive conical holes decorated with micro/nanometer-scale structures was fabricated by nanosecond 

laser drilling and HCl etching. The conical shape originated from a near Gaussian spatial distribution of 

the energy and temperature in the radial direction in the laser drilling processes. Robust superhydrophobic 

conical pillars from syringe needle shape to straight conical pillar shape were easily fabricated through 

replication from the Al mold without any extra spray of superhydrophobic nanoparticles. It was also found 

that although all superhydrophobic conical pillars with different shape could generate the droplet pancake 

bouncing, the shape had a great influence on the critical bottom space and the critical Weber number (We) 

to generate pancake bouncing. The pancake bouncing with the shortest contact time of a 68.5% reduction 

appeared on superhydrophobic straight conical pillars with the shape angle of 180°. Overcoming the 

difficulties in the large-scale fabrication and robustness of superhydrophobic conical pillars will promote 

practical applications of the droplet pancake bouncing phenomenon.

KEYWORDS: conical pillars, superhydrophobic, pancake bouncing, large-scale, robust

1. INTRODUCTION

Superhydrophobic surfaces which are inspired from the lotus leaf have been widely studied for more than 

20 years. However, due to the continuous development of new application prospects, such as self-

cleaning1, 2, oil/water separation3, drag-reduction4-6, corrosion-resistance7, anti-bacterium8, anti-icing9-11, 

fog-harvest12-14, pumpless transport of liquid15, 16, condensation-enhancement17-20, and biomedical 

applications21-27, superhydrophobic surfaces still attract more and more attention from the academic 

community. The number of papers about superhydrophobic surface increases every year with > 1670 

papers indexed in the ISI Web of Science in 2018 (Figure S1). Hence, developments on superhydrophobic 

surfaces will be of great interest to the academic community particularly where possibilities of widespread 
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application can be realized. 

Superhydrophobic surface could effectively reduce the liquid-solid contact time compared with 

common hydrophilic or hydrophobic surface because of its >150° contact angle and <10° sliding angle. 

However, the liquid-solid contact time of a water droplet with a certain volume on a superhydrophobic 

flat surface is constant28. How to further reduce the contact time has fascinated many scientists and the 

investigations showed that superhydrophobic point-like macrotexture29, micrometer-scale ridge30-32, 

millimeter-scale ridge32, 33 and submillimeter-scale conical pillars could effectively further reduce the 

liquid-solid contact time34. Among them, superhydrophobic submillimeter-scale conical pillars can 

produce a droplet pancake bouncing phenomenon which is recognized to furthest reduce the liquid-solid 

contact time. That is, the droplet pancake bouncing surface corresponds to the lowest liquid-solid contact 

time which can be worthy of further exploration. Additionally, only superhydrophobic submillimeter-scale 

conical pillars can ensure that all water droplets impacted on the solid surface detach quickly with a 

pancake shape from the substrate, showing great practical application potential at anti-icing from the 

freezing rains. How to fabricate superhydrophobic submillimeter-scale conical pillars is the key to the 

application of the droplet pancake bouncing phenomenon. Liu et al. developed a combined process 

composed of electric spark cutting, chemical oxidation, and fluoroalkylsilane modification to fabricate 

superhydrophobic submillimeter-scale conical pillars on a Cu substrate34. They first constructed conical 

pillars with diameter of 20-200 μm and height of 800-1200 μm and then constructed micro/nanometer-

scale flower-like and needle-like structures and finally reduced the surface energy. Graeber et al. 

fabricated a polymer mold with conical holes by 3D printing, and then replicated submillimeter-scale 

conical polymeric pillars35. Since the surface of the pillars was too smooth, superhydrophobic PTFE 

nanoparticles were sprayed on top to render the submillimeter-scale conical polymeric pillars 

superhydrophobic. However, the aforementioned methods have certain deficiencies. The processing 
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efficiency of electric spark cutting is very low, resulting in a time consuming and costly fabrication 

processes for a large-scale surface. Theoretically, mold replication technology is high efficiency, low cost, 

and easy in operation. However, the non-metal mold obtained by 3D printing is easy to wear out and the 

smooth replica needs extra spray treatment to acquire superhydrophobicity. In addition, the adhesive force 

between the sprayed superhydrophobic nanoparticles and the replica is low, resulting in a low mechanical 

strength. The reported method did not take advantage of mold replication technology and is still low 

efficiency and high cost. It is still an unanswered question as to how to fabricate a metal mold with 

intensive conical holes and how to cancel extra spray treatment but still acquire superhydrophobicity. 

These are important questions to decide if the mold replication technology can fabricate large-scale 

superhydrophobic conical pillars with high efficiency and low cost. Moreover, further exploration of 

whether superhydrophobic conical pillars with a larger diameter besides submillimeter-scale can generate 

the pancake bouncing is required.

Nanosecond laser is often used to drill holes on metal substrates because of its high efficiency and low 

cost. However nanosecond laser with a near Gaussian spatial distribution of the energy and temperature 

in the radial direction in the laser drilling processes has a fatal disadvantage for drilling holes with a high 

depth-diameter ratio in that conical holes often occur, which is tried to be avoided in the industry. Here, 

we made full use of the aforementioned disadvantages and drilled intensive conical holes on Al substrate 

by nanosecond laser. After HCl etching to decorate micro/nanometer-scale structures on the inner wall of 

the conical holes, the Al mold was obtained. Robust superhydrophobic conical pillars from syringe needle 

shape to straight conical pillar shape were easily fabricated through replication from the Al mold without 

any extra spray of superhydrophobic nanoparticles. Bouncing dynamics of an impacting water droplet 

shows that the replicated superhydrophobic conical pillars with different shapes and bottom diameter from 

submillimeter to millimeter could generate the pancake bouncing phenomenon. This developed method 
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makes full use of the advantages of mold replication technology to fabricate large-scale superhydrophobic 

conical pillars with high efficiency and low cost.

2. EXPERIMENTAL

2.1 Fabrication of Superhydrophobic Conical Pillars

The fabrication processes of superhydrophobic conical pillars is shown in Figure 1. Prior to laser drilling, 

an aluminum (Al, purity > 99%, Alighting Co., Shanghai) plate with thickness of 2 mm was ultrasonically 

washed in deionized water and air-dried. Then, intensive conical holes with different shape and size 

(diameter, height, and space) were drilled on the Al plate in ambient condition with humidity of 30-50% 

and temperature of 20-25 °C by nanosecond laser (wavelength 1064 nm, pulse duration 100 ns, repetition 

rate 20 kHz, spot size 100 μm). The scanning speed was 500 mm/s and the scanning times for each hole 

was 60 times. After laser drilling, the Al plate was ultrasonically washed in deionized water and immersed 

in the 0.4 mol/L aqueous HCl (Alighting Co., Shanghai) solution for 2 min to construct micro/nanometer-

scale structures on the inner wall of the conical holes. After another ultrasonic wash in deionized water, 

the Al mold was obtained. Then, polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, Germany), 

which was used as the representative casting body, was poured onto the Al mold and baked at 60°C for 3 

h in a vacuum drying oven. The mass ratio of PDMS and cross-linker was 10:1. After knockout, the 

intensive conical pillars were replicated. Finally, the replica was immersed in a 1.0 wt % ethanol solution 

of FAS (fluoroalkylsilane, C8F13H4Si(OCH2CH3)3, Degussa Co., Germany) for 30 min and heated at 50 °C 

for 10 min. Thus, superhydrophobic conical pillars were fabricated. It is worth noting that the Al mold 

can be reused.

Page 5 of 25

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

Figure 1. Schematics of the fabrication processes of superhydrophobic conical pillars.

2.2 Characterization 

The micro structures and surface morphology of the samples were characterized using a scanning electron 

microscope (SEM, SUPRA 55 SAPPHIRE, Germany). The contact angle (CA) of a 5 μL water droplet on 

the samples was measured using an optical contact angle meter (Krüss, DSA100, Germany). The dynamic 

bouncing processes of water droplets with volume of 21 μL on the samples were characterized using a 

high speed camera (NAC, MEMRECAM HX-7S, Japan) at 10000 frame/s. For a water droplet, when the 

ratio (Q) of the lateral extension diameter (djump) at the detachment moment from the sample surface and 

the maximum lateral extension diameter (dmax) in the jumping processes is larger than 0.8, that is Q = 

(djump/dmax) > 0.8, the pancake bouncing is obtained32, as shown in Figure S2. The Weber number We is 

defined as We = ρv2r0/γ, where ρ, v, r0, and γ relate to the density, impact velocity, radius, and surface 

tension of water droplets, respectively. The bottom diameter, height, and bottom space of the conical 
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pillars were defined as D, H, and S, as shown in Figure S3.

3. RESULTS AND DISCUSSION

It is well known that surface micro/nanometer-scale structures and low surface energy are necessary for 

superhydrophobicity. Although the nanosecond laser could easily drill conical holes on an Al substrate, 

the substrate surface was rather smooth and the inner wall of the holes was not rough enough (Figure 2(a)), 

resulting in that the replica substrate surface and the external surface of the replicated conical pillars were 

also smooth (Figure 2(b)). Such a smooth surface cannot obtain superhydrophobicity even after FAS 

modification. For water droplet on the replica substrate surface, the contact angle was only 138° (Figure 

2(c)). For water droplet on the replicated conical pillars, the water droplet penetrated into the voids 

between the conical pillars, showing a typical Wenzel hydrophobic state (Figure 2(d))36. In order to 

construct micro/nanometer-scale structures on the substrate surface and the inner wall of the conical holes, 

after laser drilling an HCl etching process was introduced, which effectively formed the micro structures 

required for superhydrophobicity37. Figure 2(e) shows the SEM image of the Al substrate after laser 

drilling and HCl etching. It can be seen that the substrate surface and the inner wall of the conical holes 

were rough and composed of micro/nanometer-scale pits and protuberances. After replication, the replica 

substrate surface and the external surface of the replicated conical pillars were also rough (Figure 2(f)). 

With further FAS modification, superhydrophobicity was obtained. Water droplet on the replica substrate 

surface showed a spherical shape with contact angle of 163° (Figure 2(g)). Water droplet on the replicated 

conical pillars also showed a spherical shape whose bottom has a composite contact region composed of 

liquid-solid contact region and liquid-air contact region (Figure 2(h)), showing Cassie-Baxter 

superhydrophobic state. Thus, superhydrophobic conical pillars were fabricated. 
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Figure 2. Surface morphology of the Al mold and the replica. (a) SEM images with different 

magnifications of the Al mold obtained by laser drilling. (b) SEM images with different magnifications of 

the conical pillars with D=210 μm, H=640 μm, and S=180 μm replicated from the Al mold obtained by 

laser drilling. (c) The replica substrate surface was smooth and had a water CA of 138°. (d) The surface 

of the replicated conical pillars was not rough enough and water droplet on it showed a Wenzel 

hydrophobic state. (e) SEM images with different magnifications of the Al mold obtained by laser drilling 

and HCl etching. (f) SEM images with different magnifications of the conical pillars with D=210 μm, 

H=640 μm, and S=180 μm replicated from the Al mold obtained by laser drilling and HCl etching. (g) The 

replica substrate surface was rough and had a water CA of 163°. (h) The surface of the replicated conical 

pillars was rough and water droplet on it showed a Cassie-Baxter superhydrophobic state. The processing 
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power of nanosecond laser for the conical holes in (a) and (e) was 9 W.

In the replication processes of the conical pillars by the Al mold, it was surprising to find that the conical 

pillars with special shape were obtained besides the common straight conical pillars simply by adjusting 

the processing power of the nanosecond laser. In order to describe the conical pillars more clearly, the 

conical pillar was divided into two parts composed of head part and base part, as shown in Figure 3 (a). A 

shape angle β was then defined, which is the angle between the tangent lines along conical pillars contour 

at the cross point of head part and base part. The influence of the processing power P of the nanosecond 

laser on the β at different bottom diameter is shown in Figure 3(b). It can be seen that the β at different 

bottom diameter changes with the same trend that the β increased with the increase of the processing 

power P. The conical pillar changed from syringe needle shape with the β of 139-147° to straight conical 

pillar shape with the β of 180° with the increase of the β, as shown in Figure 3(c) and 3(d). It was also 

observed that the required processing power for the straight conical pillar increased with the increase of 

the bottom diameter. All the conical pillars with different shape replicated from the Al mold obtained by 

laser drilling and HCl etching show superhydrophobicity with CA > 160°.

Page 9 of 25

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

Page 10 of 25

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



11

Figure 3. The influence of the processing power of the nanosecond laser on the shape of the replicated 

conical pillars. (a) The schematics of the evolution processes of the shape of the replicated conical pillars. 

(b) The influence of the processing power P of the nanosecond laser on the β at different bottom diameters. 

(c) The side view of the replicated conical pillars with different β at different bottom diameter. (d) SEM 

images with different magnifications of the replicated conical pillars with 3 typical shapes.

The conical pillar with different shape angle β was replicated from the conical hole with different shape 

angle β. Figure 4 provides an explanation for the conical hole with different shape angle β. Since the laser 

spot is often much smaller than the required hole diameter, the laser spot often performs spiral scanning 

from the inside to the outside and then from the outside to inside again for each scanning time, as shown 

in Figure 4(a). The total scanning times can be set by manipulator and was set at 60 times here. In the 

drilling processes, energy and temperature were a near Gaussian spatial distribution in the radial direction 

that is the energy and temperature presented a decreasing trend from the center to the edge of the hole38, 

39. The higher energy and temperature indicate a faster removing velocity of the Al material. Thus, a 

conical hole was formed. For the low processing power, the area of high energy and temperature near the 

hole center is small, resulting in the syringe needle shape with the small β. With the increase of the 

processing power, the area of high energy and temperature near the hole center became larger gradually, 

resulting in a larger β. Thus the straight conical pillar with the β of 180° was eventually formed, as shown 

in Figure 4(b). Therefore, for the hole with certain diameter, the shape angle β was determined by the 

processing power. In addition, similar to β, the depth of the hole with certain diameter was also determined 

by the processing power, as shown in Figure S4. 
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Figure 4. The schematics of the trajectory of the laser spot for each scanning time (a) and the schematics 

of the variation of the area of high energy and temperature near the hole center with the processing power 

of the laser (b). The gradual change of the color from green to red indicates the increase of the temperature.

The dynamic behavior of an impacting water droplet on superhydrophobic conical pillars with different 

shape was then studied in order to explore if the pancake bouncing phenomenon could occur on 

superhydrophobic conical pillars replicated from Al mold. For a superhydrophobic flat surface, an 

impacting water droplet with volume of 21 μL and We of 14 spread laterally first to a thin film, then 

recoiled, and finally detached from the substrate with an elongated shape, as shown in Figure S5 and 

Video S1. The total liquid-solid contact time was 22.7 ms. However, in contrast to superhydrophobic flat 
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surface, the dynamic behavior of an impacting water droplet on superhydrophobic conical pillars was 

completely changed. Figure S6 and 5 shows the bouncing processes of water droplet with volume of 21 

μL on superhydrophobic conical pillars with different bottom diameter D (S=210 μm and β=180°) at 

We=14. The impacting water droplet also spread laterally first to a thin film, then recoiled, but finally 

detached from the substrate with a pancake shape and a reduced liquid-solid contact time. It is also worth 

noting that all superhydrophobic conical pillars with the bottom diameters from 180-1260 μm could 

generate the pancake bouncing phenomenon with tcontact smaller than 10.7 ms and Q larger than 0.81. The 

pancake bouncing with the shortest contact time and a 68.5% reduction (tcontact=7.1 ms, Q=0.91) in contact 

time compared with the conventional bouncing occurred at D=420 μm (Video S2). 

Figure 5. Variations of the liquid-solid contact time tcontact and Q of a water droplet (21 μL) with the 

bottom diameter D of superhydrophobic conical pillars (S=210 μm and β=180°) at We=14 (a) and the 

detachment moment of the water droplet impacting on superhydrophobic conical pillars with different D 

(b).

The influence of the bottom space S and shape angle β of superhydrophobic conical pillars on the liquid-

solid contact time tcontact and Q was then studied. The bottom diameter D, volume of water droplet and We, 
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were 420 μm, 21 μL and 14, respectively. As shown in Figures 6(a) and 6(b), when the bottom space S 

was small, all superhydrophobic conical pillars with different shape angle β generated the pancake 

bouncing phenomenon with a small tcontact and a large Q. With the increase of S, the bouncing dynamics 

on all superhydrophobic conical pillars with different shape angle β were transformed into the 

conventional bouncing. However, the critical bottom space S to generate the pancake bouncing was 

different for superhydrophobic conical pillars with different β. The larger β results in a larger critical S for 

the pancake bouncing. The critical S to generate the pancake bouncing for superhydrophobic conical 

pillars (D=420 μm) with β of 147°, 165°, and 168° were 90 μm, 210 μm, and 290 μm, respectively. We 

also found that although all superhydrophobic conical pillars with different β can generate the pancake 

bouncing, the liquid-solid contact time tcontact decreased with the increase of β, while Q increased with the 

increase of β. As shown in Figure 6(c), for S=90 μm, the (tcontact, Q) for the β of 147°, 165°, and 168° were 

(9.5 ms, 0.81), (8.3 ms, 0.87), and (7.1 ms, 0.92), respectively. 
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Figure 6. Variations of the liquid-solid contact time tcontact (a) and Q (b) of a water droplet (21 μL) with 

the bottom space S of superhydrophobic conical pillars with different β (D=420 μm) at We=14. (c) The 

detachment moment of the water droplet impacting on superhydrophobic conical pillars with different β.

The influence of We on the liquid-solid contact time tcontact and Q for superhydrophobic conical pillars 

with different β was also studied. Figures 7(a) and 7(b) show the variation of tcontact and Q with We on 

superhydrophobic conical pillars with different β. The bottom diameter D was 420 μm, the bottom space 

S was 90 μm, and the volume of the water droplet was 21 μL. We found a step-like variation of tcontact and 

Q with We. When the We was smaller than a critical value, a large tcontact and a small Q remained stable, 

indicating the conventional bouncing. When the We increased into the critical value, the tcontact decreased 

sharply and the Q increased sharply. The conventional bouncing was completely transferred into the 

pancake bouncing. With the further increase of We, tcontact and Q remained stable. The critical We to 

generate the pancake bouncing decreased with the increase of the β and was 14, 11.6, and 9.3 for the β of 

147°, 165°, and 180°, respectively. Further, in agreement with Figure 5, although all superhydrophobic 

conical pillars with different β can generate the pancake bouncing with We > the critical value, the tcontact 

decreased with the increase of the β, while Q increased with the increase of the β.
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Figure 7. Variations of the liquid-solid contact time tcontact (a) and Q (b) of a water droplet (21 μL) with 

the We on superhydrophobic conical pillars with different β (D=420 μm and S=90 μm).

Apart from the observed pancake bouncing of droplet with room temperature (~ 20°C), we have also 

tested the dynamic bouncing processes of cold and hot water droplets on superhydrophobic conical pillars. 

After all, anti-icing was one of the important application prospects of the droplet pancake bouncing surface. 

Figure S7 shows the bouncing processes of water droplets with temperature of 2°C, 5°C, 20°C, 50°C and 

70°C on superhydrophobic conical pillars with D=420 μm, S=90 μm, and β=180° at We=19. All water 

droplets with low temperature as well as high temperature also showed a typical pancake bouncing with 

tcontact ~ 4.9 ms, indicating possible application in the freezing and high temperature environment. 

Since the pancake bouncing of a water droplet can occur on the replicated superhydrophobic conical 

pillars from the laser-drilled Al mold, we explored if the method developed here could be realized for the 

large-scale fabrication. We first drilled the intensive conical holes by laser on the Al substrate with an area 

of 80 mm×80 mm. After chemical etching, the large-scale Al mold was obtained (Figure 8(a)). Then, the 

PDMS conical pillars (D=830 μm, S=90 μm, and β=180°) with area of 80 mm × 80 mm were replicated. 

After FAS modification, superhydrophobic conical pillars with area of 80 mm × 80 mm were obtained, as 

shown in Figure 8(b). 
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Figure 8. Digital photo of the large-scale Al mold with intensive conical holes (a) and the replicated 

superhydrophobic conical pillars with D=830 μm, S=90 μm, and β=180° (b). The area of the mold and 

sample was 80 mm × 80 mm.

To show the higher mechanical strength and robustness of superhydrophobic conical pillars obtained 

by our method compared with that obtained by spraying superhydrophobic nanoparticles, we scratched 

two types of samples by steel ruler with thickness of 200 μm, as shown in Figure S8. Figures 9(a1) and 

9(b1) show the SEM images of superhydrophobic conical pillars replicated from the laser-drilled and HCl-

etched Al mold before and after steel ruler scratch for 20 times. No changes was observed on the surface 

morphology and the impacting water droplets showed the pancake bouncing phenomenon both on 

superhydrophobic conical pillars before and after scratch, as shown in Figures 9(a2) and 9(b2). Figures 

9(c1) and 9(d1) show the SEM images of superhydrophobic conical pillars obtained by replication from 

the laser-drilled Al mold and spraying commercial Never-wet superhydrophobic nanoparticles before and 

after steel ruler scratch for 3 times. Before scratch, the replica substrate surface and the external surface 

of the replicated conical pillars were coated with nanoparticles and the impacting water droplet showed 

the pancake bouncing phenomenon (Figure 9(c2)). After scratch, the nanoparticles were scraped and left 

some smooth regions on the substrate surface. Superhydrophobicity and the pancake bouncing 

phenomenon were also lost and the impacting water droplets even could not detach from the scratched 

conical pillars, as shown in Figure 9(d2) and Video S3. The poor adhesive force between the sprayed 

superhydrophobic nanoparticles and the replica resulted in poor mechanical strength. Therefore, the cancel 

of extra spray treatment in our method greatly improve the mechanical strength and robustness of 

superhydrophobic conical pillars.
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Figure 9. Surface morphology of superhydrophobic conical pillars and bouncing state of an impacting 

water droplet on them before and after scratch. (a1) SEM images with different magnifications of 

superhydrophobic conical pillars replicated from the laser-drilled and HCl-etched Al mold and (a2) the 

detachment moment of a water droplet (21 μL) impacting on them at We=14. (b1) SEM images with 

different magnifications of superhydrophobic conical pillars replicated from the laser-drilled and HCl-

etched Al mold after scratch for 20 times and (b2) the detachment moment of a water droplet (21 μL) 

impacting on them at We=14. (c1) SEM images with different magnifications of superhydrophobic conical 

pillars obtained by replication from the laser-drilled Al mold and spraying commercial Never-wet 

superhydrophobic nanoparticles and (c2) the detachment moment of a water droplet (21 μL) impacting on 

them at We=14. (d1) SEM images with different magnifications of superhydrophobic conical pillars 

obtained by replication from the laser-drilled Al mold and spraying commercial Never-wet 
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superhydrophobic nanoparticles after scratch for 3 times and (d2) an impacting water droplet (21 μL, 

We=14) on them could not detach from the surface. The D, H, S, and β of superhydrophobic conical pillars 

were 420 μm, 830 μm, 210 μm, and 180°, respectively.

4. CONCLUSION

In summary, an Al mold with intensive conical holes decorated with micro/nanometer-scale structures 

were fabricated by nanosecond laser drilling and HCl etching. Through the replication of the Al mold, 

robust superhydrophobic conical pillars with different shapes ranging from syringe needle shape to 

straight conical pillar shape were easily fabricated without requiring any spray of superhydrophobic 

nanoparticles. The formation mechanism of the aforementioned different shape is attributed to the near 

Gaussian spatial distribution of energy and temperature in the radial direction in the laser drilling processes, 

which results in a shape that can be controlled by the processing power of the laser. We then systemically 

studied the influence of bottom diameter, bottom space, shape angle, and Webber number (We) on the 

contact time and bouncing shape of the impacting water droplets. It was revealed that superhydrophobic 

conical pillars with different shape and bottom diameter from submilimeter to millimeter could generate 

the pancake bouncing phenomenon. However, the critical bottom space and the critical We to generate the 

pancake bouncing was affected largely by the shape angle. The critical bottom space increased while the 

critical We decreased with the increase of the shape angle. In addition, the liquid-solid contact time for the 

pancake bouncing decreased with the increase of the shape angle and the shortest contact time with a 68.5% 

reduction appeared on superhydrophobic straight conical pillars with the shape angle of 180°. This mold 

replication technology is easily extended to large-scale fabrication of robust superhydrophobic conical 

pillars, which will promote the practical applications of the droplet pancake bouncing phenomenon.
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The bouncing dynamics of a water droplet impacting on Never-wet spray coated superhydrophobic conical 

pillars before and after steel ruler scratch for 3 times (AVI)
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