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Abstract

Device-to-device (D2D) assisted offloading heavily depends on the participation of human users. The

content preference and sharing willingness of human users are two crucial factors in the D2D assisted

offloading. In this paper, with consideration of these two factors, the optimal content pushing strategy

is investigated by formulating an optimization problem to maximize the offloading gain measured by

the offloaded traffic. Users are placed into groups accordingto their content preferences, and share

content with intergroup and intragroup users at different sharing probabilities. Although the optimization

problem is nonconvex, the closed-form optimal solution fora special case is obtained, when the

sharing probabilities for intergroup and intragroup usersare the same. Furthermore, an alternative group

optimization (AGO) algorithm is proposed to solve the general case of the optimization problem. Finally,

simulation results are provided to demonstrate the offloading performance achieved by the optimal

pushing strategy for the special case and AGO algorithm. An interesting conclusion drawn is that the

group with the largest number of interested users is not necessarily given the highest pushing probability.

It is more important to give high pushing probability to users with high sharing willingness.
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I. INTRODUCTION

Mobile communications have been developed extremely fast [1]–[7]. The explosion in cellular

traffic has instilled a significant strain on the current network infrastructure [8]. A promising

solution is to offload traffic via device-to-device (D2D) communications [9], [10], called D2D

assisted offloading, by exploiting the caching ability of the user equipment (UE) [11], [12]. It

is shown in [13] that the peak-time traffic can be substantially reduced by proactively caching

the contents in UEs or BS at off-peak time. Moreover, D2D caching network with spacial reuse

was proved to have great potential of improving the system throughput [14]. Specifically, in case

multiple UEs request the same content from a base station (BS), instead of serving the multiple

UEs individually with the requested content, the BS first pushes the content to some of these

UEs. For other UEs requesting the content, if the pushed UEs are in the proximity, they can

then get it via D2D communications. Otherwise, the UEs receive the requested content from the

BS. By exploiting D2D assisted offloading in content dissemination, the cellular traffic load can

be relieved from the cellular network infrastructure [15],[16].

The D2D assisted content dissemination process is divided into two stages, content pushing

for pushing content from BS to UEs and content transmission for disseminating contents from

a UE to another UE via D2D communications. It can be seen that human users are directly

involved in D2D assisted content dissemination, which leads to an inevitable impact of the

human behavior on the quality of service (QoS) [17]–[19]. This situation is different from the

situation in traditional network where QoS can be full controlled by the BS. Especially, content

preference and sharing willingness of the human users are two crucial factors in the two stages

of content dissemination.

The content preference features the different desires of human users for the same content.

In this paper, content preference is modeled as the probability that a content is wanted by a

UE. In the pushing stage, given UEs’ content preferences, the BS will initially select some

UEs to push the content. If one of the selected UEs is not interested, the UE will refuse the

pushing request. Several approaches have been adopted to explain content preference [20]–[23].

A common approach is that a content consists of keywords and associated weights [22], [23].

The weights help determine the importance of the keywords inthe content. Then UEs’ different

preferences on the keywords will lead to different content preferences.

The sharing willingness of UEs directly affects the successof establishing D2D links, and it is

a key factor in the content transmission stage. In this paper, the sharing willingness is represented

by the probability that a UE will share the content via D2D communications. In current literature,

the sharing willingness can be either individually based [24]–[26] or group based [27], [28]. The
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investigation in [26] showed that sharing willingness depends on the closeness of the social

relationship between UEs. However, the complexity of tracking its social relationship with each

UE is extremely high. Therefore, in [27] sharing willingness was estimated in a group manner.

Since intragroup UEs have similar human behavior, [28] considered that UEs were more willing

to share contents with intragroup UEs as compared to intergroup UEs.

Even though researchers have revealed that content preference and sharing willingness both

affect the content dissemination process, their joint impact has not been fully investigated in the

current offloading schemes. Some offloading approaches evendid not consider these two factors,

such as [29], [30], where assumptions were made that all UEs in cell requested the same content

and shared it altruistically. The content preference was considered in [22] and [23], where UEs

were assumed unselfish. While in [31], only the sharing behaviors of UEs were considered for

designing offloading approach, but UEs’ content preferences were not addressed. Similarly, in

[32], although the different content preferences were considered, the sharing behaviors of UEs

were simplified as only allowing sharing among a group of UEs.

Since content preference and sharing willingness of human users are all involved in D2D

assisted content dissemination, it is essential to addressthe two factors in designing the pushing

strategy to maximize the traffic offloaded via D2D communications. For instance, if the content

is pushed to the interested UEs who are not willing to share, BS still has to serve the download

for other interested UEs via cellular link. On the contrary,if the content is only pushed to the

UEs who are willing to share but not interested in it, all the pushing requests will be refused.

The interested UEs still need to be served by the BS via the cellular link. In both cases, there is

no traffic offloaded via D2D communications. Therefore, current content dissemination strategies

developed unilaterally either only based on content preference or sharing willingness cannot be

directly applied to D2D assisted offloading. Furthermore, the combination of the two factors

further complicates the pushing strategy design. The formulated optimization problem can be

nonconvex, which cannot be solved by the interior-point methods in polynomial-time [33].

In this paper, content dissemination for D2D assisted offloading is designed and evaluated

under the consideration of the impact of human behaviors. Especially, we investigate the pushing

probabilities for different UEs to maximize the D2D offloaded traffic with the consideration

of their content preferences and sharing willingness. In this paper, UEs are classified into

groups according to their content preferences, and each group shares the content with inter-

and intragroup UEs with different sharing probabilities. For the proposed two stages of content

dissemination process, in the pushing stage, BS pushes the content to some UEs according to

a pushing probability. However, the pushing will only be accepted by the UEs with interests.



4

In the transmission stage, the probability of content sharing via D2D transmission is related to

the sharing willingness of the pushed UEs in each group. Based on this content dissemination

process, the pushing probability for UEs in each group is optimized in order to maximize the

traffic offloaded via D2D communications. The main contributions of this paper are outlined as

follows.

• We define the system offloading gain as the offloaded traffic in aunit area, which is derived

as a function of the pushing probability in each group. In this paper, the main aim is to

maximize the system offloading gain, which is formulated to be an optimization problem,

and an alternative group optimization (AGO) algorithm is proposed to solve it. Although the

formulated optimization problem is nonconvex, the proposed AGO algorithm has polynomial

complexity in terms of the UE group number.

• We have derived a closed-form optimal solution by the Karush-Kuhn-Tucker (K.K.T) condi-

tions for a special case, where UEs share contents with intergroup and intragroup UEs at the

same sharing probability. It should be noted that the optimization problem is still nonconvex

for this special case. In this case, the optimal pushing strategy indicates that groups with

high sharing probabilities always need to offload the large portion of traffic. The group

with largest request density is not necessarily given the highest pushing probability, and its

pushing probability is affected by the sharing behavior of other groups.

• Simulation results are provided to show the offloading performance achieved by the op-

timal pushing strategy in the special case, where the impacts of content preference and

sharing willingness are investigated. The proposed AGO algorithm is also simulated and

the converged result is shown to be near the global optimum.

The rest of this paper is organized as follows. The system model is described in Section II,

and the optimization problem is formulated in Section III. Aclosed-form optimal solution for

a special case is theoretically derived in Section IV and thealgorithm for the general case is

introduced in Section V. Finally, we present the simulationresults in Section VI, and conclude

our work in Section VII.

II. SYSTEM MODEL

In our system, the proposed content offloading scheme focuses on how to disseminate a certain

piece of content (hereafter referred to as the reference content) through the cellular network,

where UEs can share the cached contents via D2D communications. As shown in Fig. 1, the

D2D transmission range is represented by radiusr. For content dissemination, BS first pushes

the reference content to a subset of UEs denoted by the shadedcircles and triangles. Then the
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pushed UEs could transmit the downloaded content to other interested UEs withinr via D2D

links. The D2D links conducted by the pushed UEs are assumed to be all scheduled by BS. Since

all UEs receive the same content from the pushed UEs, it is assumed no co-channel interference

in D2D transmissions [34].1

We assume that UEs are classified intoM disjoint groups according to their content prefer-

ences. The set of group index isM = {1, 2, · · · ,M}. The groupm is denoted byGm. For the

given reference content, we definewm as the request probability that a UE in groupGm requests

the content, where0 ≤ wm ≤ 1(m ∈ M). In another word,wm represents the content preference

of UEs in groupGm for the reference content. The value ofwm for each group can be determined

either by the keywords feature extraction method in [22] [23] or by the machine learning method

in [35] according to the UEs’ download history. In this paper, request probability and content

preference will be used alternatively.

Another key factor is the sharing willingness of UEs to sharetheir cached content via

D2D communications, which is represented by the sharing probability. It is observed that UEs

who share common preferences are more likely to have similarpersonality and character [36].

Therefore, we logically assume that the UEs in the same groupalso have the homogeneous

sharing probability. Here, two types of sharing probabilities are considered. We defineρim as

the intragroup sharing probability in groupGm, under which a UE in groupGm will exchange

content with another UE in the same group.ρom denotes the intergroup sharing probability under

which a UE inGm can exchange its content with another UE in another group. Normally, it

holds thatρim ≥ ρom, due to the fact that UEs prefer to share content with those having similar

preferences and social behaviors [28].

The location of the UEs in each group is modeled as a Poisson Point Process (P.P.P) [37] and

is independent from the other group. In P.P.P, the number of UEs in a bounded area is a Poisson

random variable with a constant density. The density reflects the average number of UEs in a

unit area. The UEs’ density in groupGm is denoted byλm, m ∈ M. Under this assumption, for

a UE, it is possible to have UEs from other group in proximity.

As illustrated in Fig. 1, according to different content preferences, UEs are divided into two

groups, i.e.,G1 andG2, which are represented by triangles and circles. Some UEs are able to

get content from the pushed UEs of same or different groups inthe proximity. For example, UE

1 gets the content from UE 3 with intragroup probabilityρi2, and from UE 4 with intergroup

1The transmission for the pushed UEs can be modeled as a practical multicast distributed antenna system in [34]. Since there

is one common content for transmission, the signals from allthe pushed UEs are regarded as useful signals at the other UEs.

Each UE only selects its serving candidates within the D2D distancer.
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Fig. 1: An example of D2D assisted offloading withM = 2, where UE4 and UE3 provide D2D link to UE 1 with

intergroup sharing probabilityρo
1

and intragroup sharing probabilityρi
2
, respectively.

probability ρo1 via D2D communications. All the nearby UEs of UE 2 do not have the content,

so the BS will assist in downloading. In order to clearly describe the dissemination process we

have divided it into two stages; namely, content pushing andtransmission. Details of each stage

are available in the following section.

1) Content Pushing:In this stage, the BS pushes the reference content to some UEswhich are

selected from all theM groups. The probability of UEs in each group that will be selected for

pushing will be optimized in this work. It is assumed that theselection of UEs is done randomly

by the BS for the sake of fairness. For example, the shaded circles in Fig. 1 are randomly chosen

from all the circles. In previous work [22]–[24], [29]–[32], it was assumed that UEs who have

received a pushing request will always accept it. However, UEs will accept the pushing only

when they are interested in the pushed content. Otherwise, they will simply ignore it and refuse

the pushing. Therefore, there will be four kinds of UEs at this stage as shown in Table I.

TABLE I: UE types in content pushing stage

UE Type pushing request ? interested ? UE behavior

UE-A Received Yes accept and download content

UE-R Received No refuse or ignore pushing request

UE-T Not received Yes ask for content transmission

UE-N Not received No irrelevant with dissemination

In Table I, when UEs have received the content pushing request, those who accept the request
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and download the content from BS are referred to as UE-As, while those who refuse the pushing

request are called as UE-Rs. For the other UEs who do not receive pushing request, if they

are interested in the reference content, such as UE 1 in Fig. 1, they will ask for content

transmission. These UEs are named as the UE-Ts. Finally, UEswho are not involved in the

content dissemination process are represented as UE-Ns.

Let cm be the pushing probability for UEs in groupGm. cm also represents the probability

that a UE in groupGm will receive the pushing from the BS. For a UE being a UE-A, there are

two conditions. One is that the UE wants this content, and theother is that a pushing has been

received. Given the UEs densityλm and content request probabilitywm, under the P.P.P model,

we can calculate the density of UE-As in groupGm denoted bylm as

lm = λmwmcm. (1)

Similarly, the density of UE-Ts in groupGm denoted asnm is obtained as

nm = λmwm(1− cm). (2)

The density of UE-Rs and UE-Ns can also be calculated in the same way, which are ignored

for brevity since they are not involved in the upcoming analysis.

2) Content Transmission:Since the UE-Ts did not get the reference content in the content

pushing stage, they will make transmission requests to download it from the BS or the nearby

UE-As. Let Pm denote the probability that a UE-T inGm can download the content via D2D

links, which means there is at least a nearby UE-A will share it via D2D transmission.Pm is

also called as the D2D success probability and will be derived in the rest of this section.

For the P.P.P distribution, the number of UEs is a Poisson random variable with densityλ.

Therefore, the probability that there aren UEs in areaA is calculated as

P (n,A) =
(λA)n

n!
exp(−λA). (3)

Since the content holders are composed of the intragroup UE-As and intergroup UE-As due to

the social sharing willingness. To calculate the density ofcontent holders, we need to get the

density of intragroup UE-As and intergroup UE-As, respectively. For a UE-T inGm, let Lm

denote the density of intragroup UE-As willing to share the content via D2D transmissions. It

is obtained as

Lm = ρimlm = λmwmρ
i
mcm. (4)
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The density of intergroup UE-As from other groups with the willingness to share the content

via D2D transmissions is denoted byOm, which is given by

Om =
∑

k 6=m

ρoklk =
∑

k 6=m

λkwkρ
o
kck. (5)

Based on (3)-(5), the probability that no UE within D2D transmission distancer will transmit

this content to a UE-T inGm is calculated as

P (0, πr2) = exp(−πr2(Lm +Om)), (6)

and the success probabilityPm that a UE-T inGm can download the content by D2D offloading

is obtained as

Pm = 1− P (0, πr2) = 1− exp(−πr2(Lm +Om)). (7)

III. PROBLEM FORMULATION

With the system model in place, we will now characterize the quality of content service for

UEs. Given the UE-T densitynm and the D2D success probabilityPm for UE-Ts, the offloading

gainGm of groupGm is defined as

Gm = nmPm. (8)

Gm can be regarded as the expected offloaded traffic of groupGm in a unit area, which is similar

to the measure of offloading gain used in [38].

The system offloading gainG is the performance measure for a D2D assisted offloading

network.G is defined as the sum of offloading gain over all the groups.

G =
∑

m∈M

Gm =
∑

m∈M

nmPm. (9)

It can be seen from (9) thatG represents the successfully offloaded content copies from all the

M groups, therefore, reflecting the offloading ability of the system. Substitutingnm andPm in

(9) with (2) and (7), we have the following equivalent expression,

G =
∑

m∈M

λmwm(1− cm)(1− exp(−Bλmwmρ
i
mcm −B

∑

k 6=m

λkwkρ
o
kck)). (10)

whereB represents the D2D cooperation area, i.e.,B = πr2.

Given the request probability,wm, user density,λm, intergroup sharing probability,ρim, and

the intragroup sharing probability,ρom, of each group,G is then determined by the pushing

probability cm in all the M groups. In order to show the relationship betweenG and cm, we

consider two extreme cases; namely,all pushing caseandall request case. In all pushing case,
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cm = 1 for all m (m ∈ M). Thennm = 0 for all the M groups. While, inall request case,

cm = 0 for all m. ThenPm = 0 for all m. In both cases,G = 0. Therefore, we aim to find out

the optimal value of pushing probabilitycm for each groupGm to maximizeG.

As our objective is to maximize the offloading gain, the optimization problem is formulated

as

P1 : max
c

G(c) =
∑

m∈M

nmPm, (11a)

s.t. 0 ≤ cm ≤ 1, for all m ∈ M. (11b)

In problemP1, vectorc in (11a) is described byc = [c1, c2, · · · , cM ], and represents the pushing

strategy of the system. The constraint (11b) ensures thatcm, ∀m ∈ M is a valid probability. For

the groups with zero request probabilities, the optimal pushing probabilities are zeros, since all

the pushing requests will be refused. Therefore, in the following solution we assume that all the

M groups have positive request probabilities, i.e.,wm > 0 for all m.

As shown in Fig. 2, the solutions ofP1 are presented for different scenarios in the following

section IV and V. First of all, it is easily verified that problemP1 is nonconvex. Therefore, AGO

algorithm with polynomial complexity is proposed in Section V to solve it. However, the optimal

analytical solution can be obtained for a special case, whenintragroup sharing probability equals

intergroup sharing probability, i.e.,ρim = ρom = ρm for anym. We refer to this case as thegroup

independent sharing case. Moreover, based on the sharing probability distribution,the group

independent sharing caseis divided into anon-uniformsharing scenario and apartial-uniform

sharing scenario. Innon-uniformsharing scenario, the sharing probabilities are differentfor

different groups, i.e.,ρk 6= ρm, if m 6= k. In partial-uniform sharing scenario, a part of groups

have the same sharing probability, i.e., there existsρm = ρn, n 6= m. The uniform scenario

where every group has the same sharing probability is a special case ofpartial-uniformsharing

scenario, and thus it is not listed separately. The reason for this classification is that the optimal

pushing strategy forpartial-uniform sharing scenario is not unique. However, a special case of

the alternative optimal solutions will be investigated in Algorithm 1 of Section IV B.

In addition, this classification can be applied to corresponding practical scenarios. A residential

area is an example fornon-uniformsharing scenario, where the residents are of all ages. The

reason is that people in different ages normally have different content preferences and sharing

behaviors. A campus network is a practical scenario forpartial-uniformsharing, where students

prefer different contents but all are willing to share.
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P1: General

case

P2: Group

independent

sharing case

Non-uniform

sharing

Partial-uniform

sharing

i o
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k mr r¹
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Algorithm AGO

in Section V
Closed-form

solution in

Section IV.A

Algorithm I

in Section

IV.B
Scenario Solution

Fig. 2: The considered scenarios and the corresponding solutions.

IV. SOLUTION ANALYSIS FOR GROUP INDEPENDENT SHARING CASE

In thegroup independent sharing case, since the intragroup and intergroup sharing probability

are the same, problemP1 is simplified as

P2 : max
c

Gf(c) =

(
∑

m∈M

tm(1− cm)

)(

1− exp(−B
∑

k∈M

tkρkck)

)

, (12a)

s.t. 0 ≤ cm ≤ 1, m ∈ M. (12b)

where tm = λmwm is the requested density and represents the average number of UEs from

groupGm in unit area requesting this content.

A. Non-uniform Sharing

In this section, we discuss the solution for thenon-uniformsharing scenario. Although Problem

P2 is simplified, it is still nonconvex. However, by the following proof line, we can obtain the

optimal pushing strategy in a closed form. First, a special structure of the optimal solution is

revealed by Lemma 4.1. Second, this special structure is shown to be associated with the order

of sharing probabilities in Lemma 4.2. Then, by applying thespecial structure of the optimal

pushing strategy in K.K.T conditions, one case of the optimal solutions is given in Theorem

4.1. Finally, the general closed-form expression of the optimal pushing strategy is summarized

in Theorem 4.2.

Lemma 4.1: In the optimal pushing strategyc∗ = [c∗1, c
∗
2, · · · , c

∗
M ], at most one group has the

optimal pushing probability lying in the range0 < c∗i < 1, and for all the other groups, i.e.,

j 6= i, c∗j = 0 or c∗j = 1.

Proof: Refer to the Appendix A for the detailed proof. �
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To find the optimal solution, we invoke Lemma 4.1 and investigate the relationship between

the pushing probability,cm, and sharing probability,ρm, in the following lemma.

Lemma 4.2: If the optimal pushing probability for groupGm is between 0 and 1, i.e.,0 <

c∗m < 1, then for any groupGi with ρi < ρm, the optimal pushing probability isc∗i = 0, and for

any groupGj with ρj > ρm, the optimal pushing probability isc∗j = 1.

Proof: Refer to the Appendix B for the detailed proof. �

According to Lemma 4.2, when the groups are sorted in the ascending order of sharing

probabilities, i.e.,ρ1 < ρ2 < · · · < ρM , there exists a special groupGm called the “watershed”

with respect to the all pushing groups (c∗j = 1) and non-pushing groups (c∗i = 0). If the

“watershed” group Gm is determined, the optimal pushing strategy for this D2D offloading

system is obtained, which can be written asc∗ = [0, · · · , 0
︸ ︷︷ ︸

m−1

, c∗m, 1, · · · , 1︸ ︷︷ ︸

M−m

], where(m− 1) zeros

represents the non-pushing group while(M −m) ones are the all pushing groups.

Furthermore, proof of Lemma 4.2 leads to the following two corollaries.

Corollary 4.1: If c∗m = 0, for groupGm, c∗i = 0 for group Gi whereρi < ρm. If c∗m = 1,

c∗j = 1 for groupGj whereρj > ρm.

Similar as Lemma 4.2, Corollary 4.1 can also be proved by K.K.T conditions. Details are omitted

for brevity.

The optimal pushing probability for the “watershed” group is determined according to the

following Corollary 4.2.

Corollary 4.2: Assuming thatM groups are sorted in the ascending order of sharing proba-

bilities, i.e.,ρ1 < ρ2 < · · · < ρM . For groupGm, if the optimal pushing probability0 < c∗m < 1,

then

c∗m =
1

Bρmtm

(

Bρm

m∑

i=1

ti + 1−W(exp(B
M∑

j=m+1

ρjtj +Bρm

m∑

i=1

ti + 1))

)

, (13)

whereW is the Lambert-W function [39].

Proof: Refer to the Appendix C for the detailed proof. �

However, the following key problem is to find the “watershed” group. To solve this problem,

Theorem 4.1 is introduced to show the necessary and sufficient conditions of “watershed” group.

Theorem 4.1: Assuming thatM groups are sorted in the increasing order ofρm, i.e., ρ1 <

ρ2 < · · · < ρM , the optimal solution of problemP2 is c∗ = [0, · · · , 0
︸ ︷︷ ︸

m−1

, c∗m, 1, · · · , 1︸ ︷︷ ︸

M−m

], wherec∗m
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is given by (13), if and only if the following two inequalities






1 +Bρm

m∑

i=1

ti > exp(B
M∑

j=1+m

tjρj), (14)

1 +Bρm

m−1∑

i=1

ti < exp(B
M∑

j=m

tjρj). (15)

hold at the same time.

Proof: Refer to the Appendix D for the detailed proof. �

Theorem 4.1 shows how request density and sharing probability jointly impact the optimal

pushing strategy. Furthermore, it is worth noting that the conditions in Theorem 4.1 guarantee

that (13) is always feasible. Finally, the uniqueness proved by Lemma D.1 is consistent with

Lemma 4.1, which shows that the pushing strategy given by Theorem 4.1 is exclusive. For

simplicity, we define two functions as follows,

f 1
m(tm, ρm) = 1 +Bρm

m∑

i=1

ti − exp

(

B

M∑

j=1+m

tjρj

)

, (16)

f 0
m(tm, ρm) = exp

(

B

M∑

j=m

tjρj

)

− Bρm

m−1∑

i=1

ti − 1. (17)

From Theorem 4.1, we can infer the following two corollaries.

Corollary 4.3: For groupGm, if f 1
m(tm, ρm) ≤ 0, thenc∗m = 0;

Corollary 4.4: For groupGm, if f 0
m(tm, ρm) ≤ 0, thenc∗m = 1.

The proofs of Corollary 4.3 and Corollary 4.4 are also carried out by contradiction, which is

similar to the “if ” proof part in Theorem 4.1. Details are omitted for brevity.Based on the

foregoing analysis, at thenon-uniformsharing scenario, a closed-form optimal solution of the

nonconvex problemP2 is summarized in the following theorem.

Theorem 4.2: Assuming thatM groups are sorted in the orderρ1 < ρ2 < · · · < ρM , the

optimal solution of problemP2 is given as

c∗ =







[0, · · · , 0
︸ ︷︷ ︸

m

, 1, · · · , 1
︸ ︷︷ ︸

M−m

], for all m







f 1
m(tm, ρm) ≤ 0,

f 0
m+1(tm+1, ρm+1) ≤ 0.

[0, · · · , 0
︸ ︷︷ ︸

m−1

, cm, 1, · · · , 1
︸ ︷︷ ︸

M−m

], there exists anm







f 1
m(tm, ρm) > 0,

f 0
m(tm, ρm) > 0.

(18)

wherecm is given by (13).

Proof: The first case is readily obtained by Corollary 4.3 and Corollary 4.4, and the second case

is obtained by Theorem 4.1. Thus, Theorem 4.2 is proved. �
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Algorithm 1 : A special case of optimal pushing strategy forpartial-uniform sharing scenario

Step 1:Sort theM groups in the ascending order ofρm, i.e., ρ1 < · · · < ρk1 = · · · = ρkn <

· · · < ρM .

Step 2:Define group 0 ast0 =
kn∑

k=k1

tk, c0 =
1
t0

kn∑

k=k1

tkck. Substitute group 0 for then groups,

i.e., Gk1 , · · · Gkn .

Step 3:Calculate the optimal pushing strategyc∗ = [c∗1, · · · , c
∗
0, · · · , c

∗
M ] for the M − n + 1

groups according to Theorem 4.2.

Step 4:Set the pushing probabilities of the replacedn groups to be the same asc∗0.

B. Partial-uniform Sharing

In the partial-uniform sharing scenario, we will prove that the optimal pushing strategy is

not unique, and a special case of the alternative optimal pushing strategies will be given in this

section.

Theorem 4.3: If n groups have the same sharing probability, where2 ≤ n ≤ M , the optimal

pushing probabilities of thesen groups are not unique.

Proof: Refer to the Appendix F for the detailed proof. �

Based on the proof of Theorem 4.3, we propose an algorithm to find a special case of the

alternative optimal pushing strategies for thepartial-uniformsharing scenario, which is described

in Algorithm 1. It is worth pointing that the pushing strategy obtained in Algorithm 1 is the

optimal solution, and the obtained offloading gain achievesthe maximum value. It is shown

in the proof of Theorem 4.3 that the variable substitution (group 0) in Step 2transforms the

partial-uniform sharing scenario into an equivalentnon-uniformsharing scenario. In addition,

according to Theorem 4.2, the pushing strategy for the equivalentnon-uniformsharing scenario

in Step 3is the global optimal. Therefore, the solution inStep 4is an optimal solution, although

it is not unique.

C. Impact of System Parameters

In this section, a brief discussion is conducted to show the insights given by the optimal

pushing strategy. According to the above solution analysis, the optimal solution ofpartial-

uniform sharing scenario is obtained by transforming it to the equivalent non-uniformsharing

scenario. Therefore, the following discussion is based on the analytical solution obtained in the

non-uniformsharing scenario.
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Fig. 3: An example of the optimal pushing strategy, where theshaded ratio of each group represents its pushing

probability. The blue blocks represent the above groups, red blocks represent the watershed groups and the yellow

ones represent the below groups. Compared with case (a), case (b) has a largert1, and it leads to a higher “dividing

line”. While case (c) has a largert3 , and it leads to a lower “dividing line”.

An example of the pushing strategy is shown in Fig. 3, where 3 groups are sorted in the order

ρ1 < ρ2 < ρ3. The length of each group is their request density, and the shaded proportion in

each group represents its pushing probability. For example, in the case (a) of Fig. 3, group 3 is

all in shadow as it has the 100% pushing probability. Group 2 is partial shaded due to that the

pushing probability is between 0 and 1. There is no shadow part in group 1 resulting from no

pushing. Therefore, there is a “dividing line” which is responsible to define three types of groups

in the optimal pushing strategy; The “watershed” group with “dividing line”, the “below” groups

with 100% pushing and the “above” groups with 0% pushing. These three types of groups play

different roles in determining the “dividing line”, which are explained in details separately.

1) GroupGm is a “watershed” group:

Proposition 4.1: When the request densitytm ∈ (0,∞) increases, the “dividing line” goes

down, but it is still located in groupGm.

Proof: By taking derivatives off 1
m(tm, ρm) with respect to (w.r.t)tm and f 0

m(tm, ρm) w.r.t tm

respectively, we have

∂f 1
m(tm, ρm)

∂tm
= Bρm,

∂f 0
m(tm, ρm)

∂tm
= Bρmexp

(

B

M∑

j=m

tjρj

)

. (19)
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Therefore, the conditions thatf 1
m(tm, ρm) > 0, f 0

m(tm, ρm) > 0 are always satisfied for group

Gm when tm increases. In addition, we define function

g(c∗m, tm) =

(

Bρm

(
m∑

i=1

ti − tmc
∗
m

)

+ 1

)

exp(−Btmρmc
∗
m). (20)

From (C.1) in Appendix C, the following equation is obtained.

g(c∗m, tm) = exp

(
M∑

j=m+1

Btjρj

)

. (21)

Given the request density and the sharing probability in each group, the RHS of (21) is a positive

fixed value. By taking the derivatives ofg(c∗m, tm) w.r.t c∗m and tm, we have

∂g(c∗m)

∂c∗m
= −Btmρm

(

Bρm

(
m∑

i=1

ti − tmc
∗
m

)

+ 2

)

exp(−Btmρmc
∗
m) < 0, (22)

∂g(c∗m)

∂tm
= −Bc∗mρm

(

Bρm

(
m∑

i=1

ti − tmc
∗
m

)

+ 2

)

exp(−Btmρmc
∗
m) < 0. (23)

Regarding to the results in (22) and (23),c∗m decreases whentm increases. However, groupGm

is still the “watershed” group. �

To explain it further, as illustrated in the case (a) of Fig. 3, increase oft2 makes the shaded

ratio of group 2 decrease, but this will not formulate another group to be the “watershed” group.

Unfortunately, the impact of sharing willingnessρm on the pushing strategy is more complex,

which will be explained in the simulation results.

2) GroupGm is an “above” group:

Proposition 4.2: When the request densitytm ∈ (0,∞) increases, the “dividing line” goes

up.

Proof: We assume that groupGk is the “watershed” group. The following derivatives are obtained.

∂f 1
k (tk, ρk)

∂tm
= Bρm,

∂f 0
k (tk, ρk)

∂tm
= −Bρm. (24)

Therefore, with the increase oftm, f 1
k (tk, ρk) > 0 always holds forGk. Nevertheless,f 0

m(tm, ρm)

decreases withtm.

If condition f 0
k (tk, ρk) > 0 is not satisfied,Gk is not the “watershed” group andc∗k = 1. In this

case, sincef 0
k (tk, ρk) is a decreasing function ofk, only the groupGi, ∀i < k has the possibility

to be the next “watershed” group.

If condition f 0
k (tk, ρk) > 0 is satisfied, for the “watershed” group Gk, (20) is rewritten as

g(c∗k, tm) =

(

Bρk

(
k∑

i=1,i 6=m

ti + tm − tkc
∗
k

)

+ 1

)

exp(−Btkρkc
∗
k). (25)



16

The derivative ofg(c∗k, tm) w.r.t tm is obtained as

∂g(c∗k, tm)

∂tm
= Bρkexp(−Btkρkc

∗
k). (26)

Furthermore, from (C.1) in Appendix C, the following equation holds forg(c∗k, tm).

g(c∗k, tm) = exp

(
M∑

j=k+1

Btjρj

)

. (27)

Sinceg(c∗k, tm) is a decreasing function ofc∗k, we can claim thatc∗k increases withtm. �

Overall, the “dividing line” goes up when the request density of an “above” group increases.

For example, in Fig. 3, group 1 in case (b) has a larger requestdensityt1 compared with case (a).

This leads to the condition thatf 0
2 (t2, ρ2) > 0 is no longer satisfied for group 2. The “dividing

line” goes up to group 1, and it becomes the new “watershed” group.

Proposition 4.3: The optimal solutionc∗ keeps the same with the change ofρm ∈ (0, ρk), as

long as the constraintρm < ρk holds, andρk is the sharing probability of “watershed” group.

Proof: As shown in (13) (16) and (17), whenρm < ρk, ρm is not involved in the expressions of

f 1
k (tk, ρk), f

0
k (tk, ρk) andc∗. Therefore, the proposition is proved. �

Proposition 4.3 implies that the D2D transmission for UEs inthe “above” group are offered

by the groups with high sharing probability. This leads to the result that the pushing strategy

does not change when the sharing probabilities of “above” groups increase.

3) GroupGm is a “below” group:

Proposition 4.4: Whentm ∈ (0,∞) andρm∈ (ρm−1, 1] increases, the “dividing line” declines.

Proof: The proof is similar with proposition 4.2. Details are omitted for brevity. �

For example, in Fig. 3, group 3 in case (c) has a largert3 compared with case (a). In case

(c), the conditionf 1
2 (t2, ρ2) > 0 is no longer satisfied for group 2, and group 3 becomes the

“watershed” group.

V. SOLUTION ANALYSIS FOR PROBLEMP1

When the intragroup sharing probabilities are different with the intergroup sharing probabili-

ties, i.e.,ρim 6= ρom, the optimal pushing strategy to theGroup Independent Caseis feasible but

not an optimal solution for problemP1. To solve problemP1, we propose an alternative group

optimization algorithm (AGO) in this section.

For problemP1, it is hard to find the closed-form optimal solution due to itsnonconvexity.

However, this problem has a nice property to be explored as follows. For each groupGm, if the

pushing probabilities of other groups{Gj|j 6= m} are given, the optimal pushing probability of

Gm can be achieved. For groupGm, the pushing probabilities of other groups{Gj|j 6= m} are
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denoted by a vectorc−m = [c1, · · · , cm−1, cm+1, · · · , cM ]. If c−m is given, the offloading gain

is dependent oncm, i.e G(cm|c−m). In this case, the objective function (11a) in problemP1 is

reduced to

G−m(cm) = tm(1− cm)
(
1− exp(−Btmρ

i
mcm − ϕm

)
+

M∑

k 6=m

Qk (1− exp(−Btmρ
o
mcm − Φk)) .

whereϕm =
∑M

k 6=mBtkρ
o
kck, Qk = tk(1− ck),Φk =

∑M
q 6=m,k Btqρ

o
qcq +Btkρ

i
kck.

Therefore, we have the following problem formulated.

P3 : max
cm

G−m(cm), (28a)

s.t. 0 ≤ cm ≤ 1. (28b)

The second derivative of the objective function (28a) is derived as

∂2G−m(cm)

∂c2m
= −Bt2mρmexp(−Btmρ

i
mcm − ϕm)(2 +Btmρ

i
m(1− cm))

−(Btmρ
o
m)

2

M∑

k 6=m

Qkexp(−Btmρ
o
mcm − Φk). (29)

Thus, we can claim that the objective function (28a) is a concave function, and problemP3

is convex. Thanks to the convexity ofP3, the optimal pushing probability is derived in the

following proposition.

Proposition 5.1: The optimal pushing probability for groupGm in problemP3 is c∗m = [Γm]
1
0,

whereΓm is the unique solution of equationgm(x) = 0.

gm(x) = (1 +Btmρ
i
m(1− x))exp(−Btmρ

i
mx− ϕm) +BImρ

o
mexp(−Btmρ

o
mx)− 1, (30)

whereIm =
∑M

k 6=mQkexp(−Φk). x = [a]10 means that ifa > 1, x = 1, if a < 0, x = 0; and if

0 ≤ a ≤ 1, x = a.

Proof: Refer to the appendix G for the detailed proof. �

Based on this, we adopt AGO algorithm to solve the original problemP1. The details of the

proposed iterative algorithm are given in Algorithm 2. In AGO algorithm, the D2D offloading

gain increases after optimizing eachcm as shown in step 7, and the convergence of AGO

algorithm is guaranteed. The computation in each iterationis dominated by step 5, where solution

of transcendental equationgm(x) = 0 is achieved by root-finding algorithm. For simplicity, we

adopt the bisection method [40] to find the root, and the maximum iteration number of bisection

search is denoted byKb. Therefore, the total computation complexity isO(ImaxMKb).
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Algorithm 2 Alternative Group Optimization Algorithm for solving problem P1

Input: UE densitiesλm; popularitieswm; D2D cooperation areaB;maximum iterationsImax

intra- and intergroup sharing probabilitiesρin = [ρi1, · · · , ρ
i
M ], ρout = [ρo1, · · · , ρ

o
M ];

Step 1:Initialize c0 = [0, · · · , 0]; iteration numberi = 0;

Step 2:Repeat for iterationi = 1, 2, · · · , Imax

Step 3:Repeat for groupm = 1, 2, · · · ,M

Step 4:Updateci−m = [ci1, · · · , c
i
m−1, c

i−1
m+1, · · · , c

i−1
M ]

Step 5:Updatecim according to proposition 5.1.

Step 6:Updateci,m = [ci1, · · · , c
i
m, c

i−1
m+1, · · · , c

i−1
M ].

Step 7:UpdateGi,m(ci,m) according to equation(11a);

If m = M , go to step 8. Otherwise, go to step 3.

Step 8:Let i = i+ 1, and go to step 2 untili = Imax

Output: Gi,M(ci), ci,M ;

The convergence of AGO algorithm is proved as follows. Letcim be the optimal pushing

probability for groupGm in i th iteration. Then the offloading gain is obtained asGi,m(cim|c
i
−m)

in step 7. According to step 4 and step 6,Gi,m(cim|c
i
−m) can be rewritten as

Gi,m(cim|c
i
−m) = Gi,m(ci1, · · · , c

i
m, c

i−1
m+1, · · · , c

i−1
M ) = Gi,m+1(ci−1

m+1|c
i
−(m+1)) (31)

After updating the pushing probabilitycim+1 for groupGm+1, the offloading gain is denoted by

Gi,m+1(cim+1|c
i
−(m+1)). Therefore, we have the following inequality.

Gi,m+1(cim+1|c
i
−(m+1)) ≥ Gi,m+1(ci−1

m+1|c
i
−(m+1)) = Gi,m(cim|c

i
−m) (32)

The reason is thatcim+1 is obtained by proposition 5.1, which is the optimal pushingprobability

for groupGm+1 given ci−(m+1) in i th iteration. However, theci−1
m+1 is obtained as the optimal

solution for groupGm+1 in i−1 th iteration, which is not necessarily optimal in current iteration.

Hence, in each iteration of AGO algorithm, the offloading gain is non-decreasing after each group

updates its pushing probability at step 5. Furthermore, theobjective function of problemP1 is

upper-bounded by

G(c) ≤
∑

m∈M

tm(1− cm) ≤
∑

m∈M

tm (33)

Thus, AGO algorithm is convergent.
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VI. SIMULATION RESULTS

In this section, we carry out simulations to evaluate the offloading performance achieved by

the optimal pushing strategy in theGroup Independent Caseand the proposed AGO algorithm.

We consider a single cell scenario where UEs densityλm of each group is set to be 0.05 UE

perm2. The D2D communication range isr = 5m.

A. Offloading Performance in Group Independent Case

In this part, we study the offloading performance achieved bythe optimal pushing strategy

in the Group Independent Case, and the impacts of sharing probability and content request

probability of each group on the optimal pushing strategy.

1) Offloading Performance:Fig. 4 shows the system offloading gainG versus the con-

tent request probability in group 1, where three cases with different system configurations

are considered.ρ1 represents the sharing probability in group 1, andρ2 and w2 represent

the sharing probability and the request probability in group 2, respectively. In general, when

there is an increasing number of UEs requesting the content,the offloading gain grows in

all considered cases, which benefits from the increased UE-Ts’ density and D2D transmission

success probability. Therefore, more UEs can get this content via D2D transmission. Compared

with other cases, Case A has the lowest offloading gain, whichresults from the small sharing

probabilities. Whenw1 = 0, only group 2 has the interested UEs. At this point, Case B hasa

larger offloading gain compared with Case A and Case C, which is due to the higher sharing

probability (0.7) of group 2. However, afterw1 reaches 0.3, the offloading gain in Case B is

less than that of Case C. This is because most of UEs having interests are from group 1 in this
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Fig. 6: Optimal pushing strategy versusw1 with ρ1=0.2,

ρ2 = 0.4, w2 = 0.2
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Fig. 7: Optimal pushing strategy versusρ1 with w1 =

0.4, w2 = 0.6, ρ2 = 0.25

interval. In Case B, most of the interested UEs are from a low sharing group, while the majority

of requests are from a high sharing group in Case C. In Case B, more pushing efforts are made

towards the low sharing group. Therefore, the offloading gain in Case C is better, since there

are more content holders from a high sharing group.

Fig. 5 shows the system offloading gainG versus the sharing probability in group 1. In Fig.

5, whenρ1 is less thanρ2, the system offloading gain stays the same in all the considered cases.

The reason is that the pushing effort is made to the UEs in group 2, and no pushing is made

to the group 1 in this interval. The D2D communications are supplied by the content holders

in group 2, since they are more willing to share. Only when thesharing probability of group

1 is larger than group 2, the UEs in group 1 will receive pushing from BS. This indicates that

the emphasis of pushing is always placed in the group with higher sharing probability. After

ρ1 is larger thanρ2, the system offloading gain increases withρ1. This is because most of the

pushing effort is made to group 1 in this interval. Thus, the growth of ρ1 makes the UE-Ts

easier to find D2D helpers, so that the system offloading gain increases. The offloading gain in

Case B is less than that of Case A, which results from the smaller request probability in group

2. Similarly, since the request probability of group 2 in Case C is largest, the offloading gain in

Case C is the largest. It is interesting to see that the offloading gain increases no matter whether

the increased requests belong to a high sharing group. This implies that the proposed pushing

strategy is attractive for distributing the “popular” contents.

2) Optimal Pushing Strategy:Fig. 6 shows the optimal pushing probability in each group

and the associate D2D success probability versus the content request density in group 1. In the

Group Independent Case, the D2D success probability is the same for each group. Thus, the
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subscript ofPm is ignored and it is rewritten asP. In Fig. 6, whenw1 increases, the pushing

probability in group 2 increases to 1 due to the higher sharing probability. Whenw1 is larger

than 0.4, the number of UE-As in group 2 is not large enough to cope with the requests from

increased number of UE-Ts in group1. This leads to the increase of pushing probability of group

1. For the D2D success probabilityP, it increases due to more pushing efforts are made. The

increasing rate ofP becomes slow whenw1 > 0.2, because most of the interested UEs in the

high sharing group have already got the pushing, and the increased pushing efforts are made to

UEs in low sharing group.

Fig. 7 shows the optimal pushing strategy versus the sharingprobability in group 1. When

ρ1 < ρ2, the pushing effort is made in group 2 due to a higher sharing probability. Only when

ρ1 > ρ2, the pushing effort is changed to group 1. However, it is interesting to see that the

pushing probability decreases with the growth ofρ1. This is because the content holders are

more willing to offer D2D transmission, and the pushing effort can be saved. For the D2D

success probabilityP, it stays the same whenρ1 < ρ2 because the pushing probability is not

changed. Since the sharing probability in group 1 increases, P keeps to go up, though the pushing

probability decreases.

B. AGO Algorithm Performance

In this part, we will study the proposed AGO algorithm performance in terms of convergence

property and the impact of initializations due to the nonconvexity of the original problemP1.

For each system configuration, content request probabilitywm is randomly drawn from uniform

distribution in interval [0,1]. Given the constraint thatρom ≤ ρim, the intergroup sharing probability

ρom and intragroup sharing probabilityρim are randomly drawn from uniform distribution in

interval [0,0.3] and [0.7,1], respectively.

1) Convergence Property:Fig. 8 shows the total offloading gain versus the number of itera-

tions for AGO algorithm with different number of groups. As shown in Fig. 8, the total offloading

gain increases with iterations. The algorithm converges rapidly to the optimum value within

2 iterations for all considered cases, which makes this method attractive for implementation.

Therefore, we set the maximum iteration number to be 2 in the following simulations.

Fig. 9 illustrates the convergence behavior at the first iteration of AGO algorithm. As expected,

we can see that the offloading gain increases after each groupupdates its pushing probability in

step 5. This result also verifies the theoretical results given in proposition 5.1.

2) Impact of Initialization: Although the convergence of AGO algorithm is guaranteed, dif-

ferent initializations may result in different local maximum due to the nonconvexity of problem

P1. To test the impact of different initializations, four methods are investigated forM = 3. In
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Fig. 9: Convergence behavior in the first iteration of AGO

algorithm

0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration

O
ffl

oa
di

ng
 g

ai
n

 

 

Optimal cin initialization
Zero initialization
Random initialization

Optimal cout initialization
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exhaustive search

Fig. 10,cout represents the optimal pushing strategy achieved inGroup Independent Casewhere

only intergroup sharing probabilities are considered, i.e., ρm = ρom. Similarly, cin represents

the optimal pushing strategy achieved inGroup Independent Casewhere ρm = ρim. In zero

initialization, the pushing probability of each group is set to be zero. In random initialization, the

pushing probability of each group is randomly generated. InFig. 10, AGO algorithm converges to

the same optimum for all considered cases within 2 iterations, which shows that AGO algorithm

is not sensitive to the initialization value. In addition, Fig. 10 shows thatcout initialization is

closer to the potential optimum compared with other methods.

Fig. 11 compares the performance of AGO algorithm and exhaustive search method in 30

randomly generated system realizations. The pushing strategy in AGO algorithm is initialized
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by cout, and the iteration number is set to be 2. The search step size for pushing probability

of each group in exhaustive search is0.001, and its total complexity is(1001)M . It can be

seen that the converged optimum is almost the same as that of exhaustive search, which can be

approximately viewed as the globally optimum.

VII. CONCLUSION

In this paper, with the consideration of content preferenceand sharing willingness of the

human users, we investigated the optimal pushing strategy to maximize the system offloading

gain. UEs are classified into groups according to their content preferences, and shared content

with intergroup and intragroup UEs at different sharing probabilities. In the content dissemination

process, only the UEs having interests in the content will accept the content pushing. The D2D

transmissions are affected by the different sharing probabilities between groups. By optimizing

the pushing probability in each group, the system offloadinggain in terms of offloaded traffic was

maximized. Although the optimization problem is nonconvex, the closed-form optimal pushing

strategy was achieved in a special case when intergroup sharing probability is same with the

intragroup sharing probability. In addition, an alternative group optimization algorithm, AGO,

was proposed to solve the general case of the optimization problem. Finally, the simulation

results showed that the converged result of AGO algorithm isnear the global optimum. The

impacts of the content preference and sharing willingness on the optimal pushing strategy were

also uncovered. Specifically, the following insights can beobserved.

• The sharing willingness of human users is crucial to offloading performance. Therefore, the

pushing effort should be focused on people who are more willing to share for them to carry

out D2D assisted content offloading.

• When the majority of the interested people have low sharing willingness, the offloading

gain achieved is less as compared to the opposite case, wheremajority of interested users

are willing to share the content, even though more pushing effort is made.

When the proposed offloading algorithm is applied to the multiple contents scenario, a coupling

effect will be considered due to the limited energy budget ofUEs. Moreover, the frequency

resource allocation and interference management could be integrated into the proposed scheme,

which will be investigated in our future work.

APPENDIX A

PROOF OFLEMMA 4.1

Assuming that there exist two different groupsGi and Gj , such that their optimal pushing

probabilitiesc∗i and c∗j are between zero to one, i.e.,0 < c∗i < 1 and 0 < c∗j < 1. Since the
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objective functionGf (c) of problemP2 has the maximum value at pointc∗, c∗ is the solution

of the following equation set:

∂Gf (c)

∂ci
= 0,

∂Gf (c)

∂cj
= 0. (A.1)

To make it more clear, the equation set is rewritten as

1 + Bρi
∑

k∈M

tk(1− ck) = exp

(

B
∑

k∈M

tkρkck

)

, (A.2)

1 +Bρj
∑

k∈M

tk(1− ck) = exp

(

B
∑

k∈M

tkρkck

)

. (A.3)

In the non-uniformsharing scenario, we haveρi 6= ρj , so that the equation set has no feasible

solution. Hence, the assumption is invalid, and there is at most one groupGi in which the optimal

c∗i is between0 and1. �

APPENDIX B

PROOF OFLEMMA 4.2

For problemP2, it is not hard to verify that the linear independence constraint qualification

(LICQ) [41] holds for all feasible pushing strategies. Therefore, the qualification applies at the

global optimum. This implies that the Karush-Kuhn-Tucker (K.K.T) conditions are necessary

conditions for the global optimum. The Lagrangian associated with problemP2 is written as

L(α,β, c) =
∑

m∈M

tm(1− cm)

(

1− exp(−B
∑

k∈M

tkρkck)

)

+
∑

m∈M

αmcm −
∑

m∈M

βm(cm − 1).

(B.1)

where α = [α1, α2, · · · , αM ], β = [β1, β2, · · · , βM ]. αm and βm are the non-negative dual

variables associated with the constraintscm ≥ 0 andcm − 1 ≤ 0, respectively.

Thus, we have the following K.K.T conditions.

∂L(α,β, c)

∂cm
= 0, ∀m ∈ M, (B.2)

αmcm = 0, ∀m ∈ M, (B.3)

βm(cm − 1) = 0, ∀m ∈ M, (B.4)

αm ≥ 0, βm ≥ 0, ∀m ∈ M, (B.5)

0 ≤ cm ≤ 1, ∀m ∈ M. (B.6)

From (B.2), we can obtained that

exp(−B
∑

k∈M

tkρkck)

(

Bρm
∑

k∈M

tk(1− ck) + 1

)

− 1 =
1

tm
(βm − αm), for allm ∈ M. (B.7)
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At the global optimal pushing strategy, if0 < c∗m < 1, thenαm = 0, andβm = 0. Therefore,

following equation holds,

Bρm
∑

k∈M

tk(1− ck) + 1 = exp(B
∑

k∈M

tkρkck). (B.8)

For the groupGi, from its associated K.K.T condition∂L
∂ci

= 0, the following equation holds

in the global optimal pushing strategy,

exp(−B
∑

k∈M

tkρkck)

(

Bρi
∑

k∈M

tk(1− ck) + 1

)

− 1 =
1

ti
(βi − αi). (B.9)

If ρi < ρm, combing (B.9) with (B.8), it can be derived that

βi − αi < 0. (B.10)

Given the fact that the dual variables are non-negative, thus αi > 0 and c∗i = 0. Similarly, for

groupGj , if ρj > ρm, from its associated K.K.T condition that∂L
∂cj

= 0, we can obtain that

βj − αj > 0. (B.11)

Therefore, it can be inferred thatβj > 0 and c∗j = 1. �

APPENDIX C

PROOF OFCOROLLARY 4.2

According to Theorem 4.2, for each groupGi with 1 ≤ i ≤ m − 1, the optimal pushing

probability isc∗i = 0. For each groupGj with m+ 1 ≤ j ≤ M , the optimal pushing probability

is c∗j = 0, so that (B.8) is simplified to

Bρm(

m∑

i=1

ti − tmc
∗
m) + 1 = exp

(
M∑

j=m+1

Btjρj +Btmρmc
∗
m

)

. (C.1)

By employing the following equation that

eax+b = cx+ d → x = −
d

c
−

1

a
W(−

a

c
eb−

ad
c ), (C.2)

whereW is the Lambert-W function, the equation (13) is obtained. �
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APPENDIX D

PROOF OFTHEOREM 4.1

Lemma D.1: Assuming thatM groups are sorted in the orderρ1 < ρ2 < · · · < ρM , then

there is at most one group that satisfies the conditions (14) and (15) at the same time.

Lemma D.1 is introduced to facilitate the proof, where its proof is provided in Appendix E.

The proof of Theorem 4.1 goes by contradiction for both the “if ” part and the “only if” part.

First consider the proof of the “if ” part. If the conditions in (14) and (15) hold for groupGm

at the same time, we suppose that groupGm is not the “watershed” group. According to Lemma

4.1, the optimal pushing probability of groupGm is eitherc∗m = 1 or c∗m = 0. In the following

part, we will show that the assumptionc∗m = 1 contradicts condition (15) andc∗m = 0 contradicts

condition (14).

If c∗m = 1, according to Corollary 4.1, it is inferred thatc∗j = 1 for all groupsGj with

m + 1 ≤ j ≤ M . Therefore, the optimal pushing strategy isc∗ = [c∗1, · · · , c
∗
m−1, 1, · · · , 1︸ ︷︷ ︸

M−m+1

], and

the K.K.T condition (B.7) is reduced to

exp

(

−B

m−1∑

i=1

tiρic
∗
i − B

M∑

j=m

tjρj

)(

Bρm

m−1∑

i=1

ti(1− c∗i ) + 1

)

− 1 =
1

tm
(βm − αm). (D.1)

In addition, sincec∗m = 1, thenαm = 0 andβm ≥ 0. The following inequality is inferred from

(D.1).

Bρm

m−1∑

i=1

ti(1− c∗i ) + 1 ≥ exp

(

B

m−1∑

i=1

tiρic
∗
i +B

M∑

j=m

tjρj

)

. (D.2)

Due to the fact that0 ≤ ci ≤ 1, from the RHS of (D.2), we obtain that

exp

(

B

m−1∑

i=1

tiρic
∗
i +B

M∑

j=m

tjρj

)

≥ exp(B
M∑

j=m

tjρj). (D.3)

From the LHS of (D.2), the following inequality is obtained.

Bρm

m−1∑

i=1

ti + 1 ≥ Bρm

m−1∑

i=1

ti(1− c∗i ) + 1. (D.4)

Substituting (D.4) and (D.3) in (D.2), the following inequality is obtained, which contradicts

condition (15).

Bρm

m−1∑

i=1

ti + 1 ≥ exp(B
M∑

j=m

tjρj). (D.5)
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If c∗m = 0, according to Corollary 4.1, we infer thatc∗i = 0 for all groupsGi with 1 ≤ i ≤ m−1.

Therefore, the optimal pushing strategy isc∗ = [0, · · · , 0
︸ ︷︷ ︸

m

, c∗m+1, · · · , c
∗
M ]. The K.K.T condition

in (B.7) is reduced to

exp(−B

M∑

j=m+1

tjρjc
∗
j)

(

Bρm

M∑

j=m+1

tj(1− c∗j) +Bρm

m∑

i=1

ti + 1

)

− 1 =
1

tm
(βm − αm). (D.6)

In addition, sincec∗m = 0, thenαm ≥ 0 andβm = 0, the following inequality is inferred from

(D.6).

Bρm

M∑

j=m+1

tj(1− c∗j) +Bρm

m∑

i=1

ti + 1 ≤ exp

(

B

M∑

j=m

tjρjc
∗
j

)

. (D.7)

Due to the fact that0 ≤ cj ≤ 1, the following inequalities are obtained from the RHS and the

LHS of (D.7), respectively.

exp

(

B

M∑

j=m

tjρjc
∗
j

)

≤ exp

(

B

M∑

j=m

tjρj

)

, Bρm

M∑

j=m+1

tj(1−c∗j )+Bρm

m∑

i=1

ti+1 ≥ Bρm

m∑

i=1

ti+1.

(D.8)

Combine (D.8) with (D.7), the following inequality is readily obtained.

Bρm

m∑

i=1

ti + 1 ≤ exp

(

B

M∑

j=m

tjρj

)

. (D.9)

Obviously, (D.9) contradicts the condition (14).

Overall, if the conditions in (14) and (15) hold for groupGm at the same time, the optimal

solution of groupGm is larger than 0 and less than 1. Therefore, the optimal solution of P2 is

obtained asc∗ = [0, · · · , 0
︸ ︷︷ ︸

m−1

, c∗m, 1, · · · , 1︸ ︷︷ ︸

M−m

], wherec∗m is given by (13).

Next, consider the “only if” part. Suppose thatc∗ = [0, · · · , 0
︸ ︷︷ ︸

m−1

, c∗m, 1, · · · , 1︸ ︷︷ ︸

M−m

] is the optimal

pushing strategy, meanwhile condition (14) or condition (15) is not satisfied. Nevertheless, the

following proof proves that there exists a different pushing strategy which achieves a larger

offloading gain thanc∗. The offloading gain achieved byc∗ is

Gf(c
∗) =

(
m∑

i=1

ti − tmc
∗
m

)(

1− exp

(

−B

M∑

j=m+1

tjρj − Btmρmc
∗
m

))

. (D.10)

According to the proof of Corollary 4.2, the following equation holds forc∗m.

Bρm

(
m∑

i=1

ti − tmc
∗
m

)

+ 1 = exp

(
M∑

j=m+1

Btjρj +Btmρmc
∗
m

)

. (D.11)
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Substituting the RHS and LHS of equation (D.11) into (D.10),we have the following two

equivalent expressions, respectively.

Gf(c
∗) =

1

Bρm
(exp(Rm) + exp(−Rm)− 2), Gf(c

∗) =
BρmL

2
m

BρmLm + 1
. (D.12)

whereLm =
m∑

i=1

ti − tmc
∗
m andRm =

M∑

j=m+1

Btjρj +Btmρmc
∗
m.

If the condition (14) is not satisfied, the following inequality holds.

1 +Bρm

m∑

i=1

ti ≤ exp

(

B

M∑

j=1+m

tjρj

)

. (D.13)

We define a feasible pushing strategy asc0 = [0, · · · , 0
︸ ︷︷ ︸

m

, 1, · · · , 1
︸ ︷︷ ︸

M−m

]. It is easy to verify that the

objective value ofP2 achieved byc0 is

Gf (c
0) =

m∑

i=1

ti

(

1− exp

(

−B

M∑

j=m+1

tjρj

))

. (D.14)

Then, according to equation (D.13), it can be inferred that

Gf (c
0) ≥

Bρm

(
m∑

i=1

ti

)2

Bρm
m∑

i=1

ti + 1
. (D.15)

Denote functionu(x) = ax2

ax+1
. We haveu′(x) = ax2+2ax

(ax+1)2
> 0, ∀x > 0. Therefore, functionu(x)

is a strictly increasing function. Since
m∑

i=1

ti > Lm, it can be obtained thatGf (c
0) > Gf (c

∗).

Therefore, this contradicts with the presumption thatc∗ is the optimal pushing strategy.

If the condition (15) is not satisfied, we can find another feasible solution denoted byc1 =

[0, · · · , 0
︸ ︷︷ ︸

m−1

, 1, · · · , 1
︸ ︷︷ ︸

M−m+1

]. It is easy to verify thatGf(c
1) > Gf (c

∗), which also contradicts thatc∗ is

global optimum. The proof is similar with the procedure from(D.13) to (D.15), and it is omitted

for brevity. Therefore, thec∗ = [0, · · · , 0
︸ ︷︷ ︸

m−1

, c∗m, 1, · · · , 1︸ ︷︷ ︸

M−m

] is the optimal solution of problemP2,

wherec∗m is given by (13),only if the two conditions (14) and (15) hold at the same time.

By combining the proofs of the “if ” part and the “only if” part, Theorem 4.1 is proved.�

APPENDIX E

PROOF OFLEMMA D.1

We prove the uniqueness by contradiction. It is assumed thattwo different groupsGm and

Gk both satisfy the two conditions (15) and (14). Without loss of generality, it is assumed that
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ρk > ρm. In this case, sinceM groups are sorted in the orderρ1 < ρ2 < · · · < ρM , then

k − 1 ≥ m. For groupGk, the condition (15) is written as

1 +Bρk

k−1∑

i=1

ti < exp

(

B

M∑

j=k

tjρj

)

. (E.1)

However, for the left hand side (LHS) of (E.1), we have the following inequality

1 +Bρm

m∑

i=1

ti < 1 +Bρk

k−1∑

i=1

ti. (E.2)

For the right hand side (RHS) of (E.1), we have

exp

(

B

M∑

j=k

tjρj

)

≤ exp

(

B

M∑

j=m+1

tjρj

)

. (E.3)

Substituting (E.2) and (E.3) into (E.1), the following inequality is obtained.

1 + Bρm

m∑

i=1

ti < exp(B
M∑

j=m+1

tjρj). (E.4)

However, according to the above assumption, condition (14)also holds for groupGm, which is

contradictory to (E.4). Whenρk < ρm, similar proof will follow. Therefore, when the sharing

probabilities are different by different groups, there is at most one group that satisfies (14) and

(15) at the same time. �

APPENDIX F

PROOF OFTHEOREM 4.3

Sort theM groups in the ascending order ofρm, i.e.,ρ1 < · · · < ρk1 = · · · = ρkn < · · · < ρM .

Let K = {k1, · · · , kn} denotes the set of groups with the same sharing probability.We define a

new group 0 with sharing probability thatρ0 = ρk1 = · · · = ρkn , and the request density of this

group 0 is denoted ast0, which is given by

t0 =
kn∑

k=k1

tk, c0 =
1

t0

kn∑

k=k1

tkck. (F.1)

wherec0 is the pushing probability of group 0.

By substituting group 0 for the groups inK , problemP2 is reduced to

P2.1 : max
cm,c0

Gf =

(
∑

m∈M′

tm(1− cm) + t0(1− c0)

)(

1− e
−B

∑

m∈M′

tmρmcm−Bt0ρ0c0
)

, (F.2a)

s.t. 0 ≤ cm ≤ 1, m ∈ M′, (F.2b)

0 ≤ c0 ≤ 1. (F.2c)
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whereM′ is set of the leftM − n groups, i.e.,M′ = M − K. Obviously, problemP2.1 is

the same as thenon-uniformsharing scenario, except that total group number is changedto

M − n+ 1, and the optimal solution can be obtained directly from Theorem 4.2.

We denote the optimal pushing strategy of group 0 asc∗0. It is easy to verify that for a given

c∗0, there exists multiple(c∗k1, · · · , c
∗
kn
) that satisfy the following condition.

t0c
∗
0 =

kn∑

k=k1

tkc
∗
k. (F.3)

For example, a special case isc∗k1 = · · · = c∗kn = c∗0. �

APPENDIX G

PROOF OFPROPOSITION5.1

SinceP3 is a convex problem and satisfies the Slater’s condition, we can solveP3 by solving

its dual problem due to the zero gap between them [33]. The Lagrangian associated with this

problem is written as

Lm(cm, γm, ηm) = G−m(cm) + γmcm − ηm(cm − 1). (G.1)

where γm and ηm denote the dual variables associated with constraintcm ≥ 0 and cm ≤ 1,

respectively. The dual problem ofP3 is given by

min
γm,ηm

sup
cm

Lm(cm, γm, ηm). (G.2)

Accordingly, the K.K.T conditions are given by

∂Lm(cm, γm, ηm)

∂cm
= 0, (G.3)

γmcm = 0, (G.4)

ηm(cm − 1) = 0, (G.5)

γm ≥ 0, ηm ≥ 0, (G.6)

cm ≥ 0, 1− cm ≥ 0. (G.7)

For simplicity, we define function

gm(x) = (1 +Btmρm(1− x))exp(−Btmρmx− ϕm) +BImρ
o
mexp(−Btmρ

o
mx)− 1. (G.8)

whereIm =
∑M

k 6=mQkexp(−Φk).

It is easy to verify thatg′m(x) < 0, so thatgm(x) is a monotonically decreasing function w.r.tx

for all m ∈ M. First, it follows that lim
x→−∞

gm(x) → +∞ > 0, and lim
x→+∞

gm(x) = −1 < 0. This
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implies that functiongm(x) = 0 has a unique solution for eachm ∈ M. The unique solution

for a givenm is denoted byΓm, which can be calculated by the root-finding algorithms, e.g.,

the bisection method.

By taking the deritivative of the Lagrangian w.r.tcm, (G.3) is given by

gm(cm) +
1

tm
(γm − ηm) = 0. (G.9)

Then we discuss the optimal solution satisfying K.K.T conditions in the three possible regions

of Γm, i.e., (−∞, 0), [0, 1], and(1,+∞), respectively.

• When Γm ∈ (−∞, 0), we havegm(cm) < 0 for any cm ∈ [0, 1]. Therefore, from (G.9),

we can infer thatγm − ηm > 0. Since dual variables are non-negative, we can claim that

γm > 0 and the optimal pushing probabilityc∗m = 0.

• When Γm ∈ [0, 1], due to the complementary slackness conditions in (G.4) and(G.5), it

follows thatγm = ηm = 0. Thus, the optimal pushing probabilityc∗m = Γm.

• WhenΓm ∈ (1,+∞), gm(cm) > 0 for cm ∈ [0, 1]. Therefore, we haveηm > 0 andc∗m = 1.

Overall, we can conclude that the optimal pushing probability for groupGm in problemP3

is [Γm]
1
0, wherea = [x]10 means that ifx > 1, a = 1; if x < 0, a = 0, and if 0 ≤ x ≤ 1, a = x.

Thus, the Proposition 5.1 is proved. �
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