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We compute the persistence for the 2D-diffusion equation with random initial condition, i.e., the
probability p0ðtÞ that the diffusion field, at a given point x in the plane, has not changed sign up to time t.
For large t, we show that p0ðtÞ ∼ t−θð2Þ with θð2Þ ¼ 3=16. Using the connection between the 2D-diffusion
equation and Kac random polynomials, we show that the probability q0ðnÞ that Kac’s polynomials, of
(even) degree n, have no real root decays, for large n, as q0ðnÞ ∼ n−3=4. We obtain this result by using yet
another connection with the truncated orthogonal ensemble of random matrices. This allows us to compute
various properties of the zero crossings of the diffusing field, equivalently of the real roots of Kac’s
polynomials. Finally, we unveil a precise connection with a fourth model: the semi-infinite Ising spin chain
with Glauber dynamics at zero temperature.
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Persistence and first-passage properties have attracted a
lot of interest during the last decades in physics, both
theoretically [1–3] and experimentally [4–7], as well as in
mathematics [8]. For a stochastic process XðtÞ, the per-
sistence P0ðtÞ is the probability that it has not changed sign
up to time t. In nonequilibrium statistical physics, this is an
interesting observable which is nonlocal in time and thus
carries useful information on the full history of the system
on a given time interval [9].
In many physically relevant situations, P0ðtÞ decays

algebraically at late time t ≫ 1, P0ðtÞ ∼ t−θ, where θ is
called the persistence exponent [1–3]. For instance, for
Brownian motion or Lévy flights, which are Markov
processes, θ ¼ 1=2. But in many cases, in particular, for
coarsening dynamics [10], and more generally for non-
Markov processes, the exponent θ is nontrivial and
extremely hard to compute [1–3]. Consequently, there
are very few non-Markov processes, for which θ is known
exactly. One notable example is the 1D Ising chain with
Glauber dynamics. In this case, at temperature T ¼ 0, the
persistence exponent for the local magnetization can be
computed exactly, yielding θIsing ¼ 3=8 [11,12].
Another example that has attracted a lot of attention

[13–19] is the d-dimensional diffusion equation where the
scalar field ϕðx; tÞ at point x ∈ Rd and time t evolves as
∂tϕðx; tÞ ¼ Δϕðx; tÞ, where initially ϕðx; t ¼ 0Þ is a
Gaussian random field, with zero mean and short-range
correlations hϕðx; 0Þϕðx0; 0Þi ¼ δdðx − x0Þ. For a system
of linear size L, the persistence p0ðt; LÞ is the probability
that ϕðx; tÞ, at some fixed point x in space, does not change
sign up to time t [13,14]. We assume that x is far enough
from the boundary, where the system is invariant under
translations, and p0ðt; LÞ is thus independent of x. It was

shown [13,14] that p0ðt; LÞ takes the scaling form, for large
t and large L, with t=L2 fixed

p0ðt; LÞ ∼ L−2θðdÞhðL2=tÞ; ð1Þ

with hðuÞ → c1, a constant, when u → 0 and hðuÞ ∝ uθðdÞ
when u → ∞, where θðdÞ was found, numerically,
to be nontrivial, e.g., θð1Þ ¼ 0.120 50ð5Þ…, θð2Þ ¼
0.187 5ð1Þ… [13,14,16]. Remarkably, the persistence for
d ¼ 1was observed in experiments on magnetization of spin
polarized Xe gas and the exponent θexpð1Þ ≃ 0.12 was
measured [7]. This scaling form (1) shows that p0ðt; LÞ ∼
t−θðdÞ for an infinite system. Alternatively, θðdÞ can also be
obtained, in a finite system of size L, from p0ðt; LÞ ∼
L−2θðdÞ for t ≫ L2. To study p0ðt; LÞ it is useful to introduce
the normalized process XðtÞ ¼ ϕð0; tÞ=hϕð0; tÞ2i [20].
Being Gaussian, XðtÞ is completely characterized by its
autocorrelation function which, for an infinite
system L → ∞, behaves like Cðt; t0Þ ¼ hXðtÞXðt0Þi ¼
½2 ffiffiffiffiffi

tt0
p

=ðtþ t0Þ�d=2. In terms of logarithmic time T ¼ ln t,
YðTÞ ¼ XðeTÞ is a Gaussian stationary process with covari-
ance cðTÞ ¼ ½sechðT=2Þ�d=2 (see Fig. 1). In particular,
cðTÞ ≈ 1 − dT2=16 for T → 0, indicating a smooth process
with a finite density of zero crossings ρ0 ¼ ð2πÞ−1 ffiffiffiffiffiffiffiffi

d=2
p

[21]. Although several very accurate approximation schemes
exist to compute θðdÞ [13–15,22,23], there is not a single
value of d for which this persistence exponent could be
computed exactly. In this Letter, we focus on the case d ¼ 2.
As we show below, this case is particularly interesting
because it is related to a variety of other interesting models
(see Fig. 1), in particular to the celebrated Kac’s random
polynomials [17–19,24]. These are polynomials of degree n
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KnðxÞ ¼
Xn
i¼0

aixi; ð2Þ

where the coefficients ai’s are independent and identi-
cally distributed (i.i.d.) real Gaussian random variables of
zero mean and unit variance. Of course, KnðxÞ has n roots
in the complex plane. These roots tend to cluster, when
n → ∞, close to the unit circle centered at 0. But because
the coefficients ai’s are real, the statistics of the number
of real roots is singular, and it has thus generated a lot of
interest [25,26]. In particular, the average number of real
roots grows, for n ≫ 1, like ∼ð2=πÞ ln n, hence much
smaller than n. It is thus natural to ask: what is the
probability q0ðnÞ that KnðxÞ has no real roots for an even
n? It was shown in Ref. [24] that q0ðnÞ decays to zero as
q0ðnÞ ∼ n−4b where, remarkably, b turns out to be the
persistence exponent for the diffusion equation in d ¼ 2
[17,18], i.e., b ¼ θð2Þ.
To establish the connection between these two problems,

one first notices that almost all the real roots of KnðxÞ lie
very close to �1, in a window of size Oð1=nÞ [27]. In
addition, it was shown in Ref. [24] (see also Ref. [28]) that,
for large n, the real roots of KnðxÞ behave independently
and identically within each of the four subintervals
ð−∞;−1�, ½−1; 0�, [0, 1], and ½1;þ∞Þ. One can thus focus
on one of these intervals, say [0, 1], and consider q̃0ðx; nÞ,
which is the probability that Kn has no real root in ½0; x�,
with 0 < x ≤ 1. Clearly, q0ðnÞ ∼ ½q̃0ð1; nÞ�4 for large n. For
x → 1−, it was shown in Refs. [17–19,24] that the behavior
of q̃0ðx; nÞ is governed by the zero-crossings properties of
the GSP YðTÞ with covariance cðTÞ ¼ sechðT=2Þ, i.e., the
same GSP that governs the zero crossings of the 2D-
diffusion equation (see Fig. 1). In particular, in the scaling
limit n → ∞, x → 1− with nð1 − xÞ fixed [recall that the
scaling region around �1 is of order Oð1=nÞ], one can
show that q̃0ðx; nÞ takes the scaling form [17,18],

q̃0ðx; nÞ ∼ n−bh̃½nð1 − xÞ�; ð3Þ

with h̃ðuÞ → c2, a constant, for u → 0 and h̃ðuÞ ∼ ub

for u → ∞. The large u behavior follows from the
fact that q̃0ðx; n → ∞Þ is well defined. This form (3) is
the exact analogue of the finite size scaling form in Eq. (1),
with n playing the role of L2 and (1 − x) the role of inverse
time 1=t [17,18]. This implies that b ¼ θð2Þ can be
extracted either for finite n, from q̃0ð1; nÞ ∼ n−b, or for
n → ∞ (i.e., for the Gaussian power series) from
q̃0ðx; n → ∞Þ ∼ ð1 − xÞb, as x → 1−. The study of this
exponent b has generated a lot of interest in the math
literature [8,19,24,29–31] and the best existing bounds are
0.1443 38… ¼ 1=ð4 ffiffiffi

3
p Þ ≤ b ≤ 1=4 ¼ 0.25 [29,31].

Main results.—Here, we exploit a connection between
the Kac’s polynomials and the so-called truncated real
orthogonal ensemble of random matrices [32–34] (see
below) to obtain the exact result

b ¼ θð2Þ ¼ 3=16 ¼ 0.1875; ð4Þ

which is fully consistent with numerical simulations
[13,14,16] and the above exact bounds [29,31] as well
as with a recent conjecture in number theory [35]. We also
compute the full probability distribution of the number of
zero crossings Nt of ϕð0; tÞ up to time t. Let pkðt; LÞ ¼
ProbðNt ¼ kÞ and pkðtÞ ¼ pkðt; L → ∞Þ. We show that,
for large t and k, with k= ln t fixed, pkðtÞ takes the large
deviation form proposed in Refs. [17,18],

pkðtÞ ∼ t−φðk= ln tÞ; ð5Þ

where the large deviation function φðxÞ is computed
exactly. Its asymptotic behaviors are given by

φðxÞ ∼

8>><
>>:

3
16
þ x ln x; x → 0

1
2σ2

ðx − 1
2πÞ2; jx − 1

2π j ≪ 1

π2

4
x2 − ln 2

2
x; x → ∞;

ð6Þ

with σ2 ¼ 1=π − 2=π2. Close to the center, for x ¼ 1=ð2πÞ,
the quadratic behavior in Eq. (6) shows that pkðtÞ has a
Gaussian peak, of width σ lnðtÞ, close to its maximum
hNti ≈ lnðtÞ=ð2πÞ. However, away from this central
Gaussian regime, pkðtÞ is flanked, on both sides of hNti,
by nontrivial tails (6)—the right one being, however, still
Gaussian (at leading order), though different from the
Gaussian central part. Finally, we also obtain the large t
behavior of the cumulants hNp

t ic of arbitrary order p

hNp
t ic∼κp lnt; κp¼

2p−2

π2
Xp
m¼1

ð−2Þm−1Γ2

�
m
2

�
SðmÞ
p ; ð7Þ

where SðmÞ
p is the Stirling number of the second kind [36].

In particular, one recovers κ1 ¼ 1=ð2πÞ and κ2 ¼ σ2 ¼
1=π − 2=π2 (see Ref. [22]) and obtains, for instance,

GSP with
c(T ) = sech(T/2)

Di usion equation 
       in d = 2

Truncated random
orthogonal matricesIsing chain with 

Glauber dynamics

GSP with
c(T ) = sech(T/2)

Truncated random
orthogonal matricesIsing chain with

Glauber dynamics

Di usion equation
      in d = 2

FIG. 1. Connections between the four models studied here: they
are related to the same Gaussian stationary process (GSP) with
correlator cðTÞ ¼ sechðT=2Þ. Our main result is the exact value
of the persistence exponent for this GSP, θð2Þ ¼ b ¼ 3=16,
together with the full statistics of its zero crossings (5)–(7).
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κ3 ¼ 4=π − 12=π2. Our main results in Eqs. (4), (6), and (7)
are not only relevant for the 2D-diffusion equation, but
also for the whole class of models discussed in this Letter
that can me mapped onto the GSP, YðTÞ, with correlator
cðTÞ ¼ sechðT=2Þ (see Fig. 1). In particular, the proba-
bility PkðTÞ that it has exactly k zeros up to T is given, for
large T and k ¼ OðTÞ, by PkðTÞ ∼ e−Tφðk=TÞ, with the same
function φðxÞ (6). Similarly, the cumulants of the number
of zero crossings are given by Eq. (7), with the substitution
ln t → T and the same coefficients κp. We further show that
this GSP has a Pfaffian structure: the multitime correlation
functions of sgn½YðTÞ� can be written as Pfaffians [37].
Besides, we demonstrate that the zeros of YðTÞ form a
Pfaffian point process [37]. Finally, we establish an exact
mapping between the 2D-diffusing field and the semi-
infinite Ising spin chain with Glauber dynamics at zero
temperature. As we will see, using the exact result for the
persistence exponent of the full chain, θIsing ¼ 3=8 [11,12],
this connection provides an alternative derivation of the
exact result θð2Þ ¼ b ¼ θIsing=2 ¼ 3=16.
Truncated random orthogonal matrices.—We consider

the set of real orthogonal matrices, of size ð2nþ 1Þ ×
ð2nþ 1Þ (with n a positive integer), uniformly distributed,
with the Haar measure, on the orthogonal group
Oð2nþ 1Þ. Let O be such a real random orthogonal
matrix, such that OOT ¼ I. We define its truncation M2n
as the 2n × 2n random matrix obtained by removing the
last column and row from the matrix O

O ¼
�
M2n u

vT a

�
; ð8Þ

where u, v are column vectors and a is a scalar. Such
truncated matrices, together with their unitary counterpart,
were studied in the context of mesoscopic physics [34,42]
and extreme statistics [43]. The orthogonality condition
OOT ¼ I implies that M2nMT

2n ¼ I − uuT and, hence, all
the eigenvalues ofM2n lie in the unit disk (since their norm
is less than unity). They are the roots of the characteristic
polynomial gMðzÞ ¼ detðzI −M2nÞ, which after some
manipulations, can be written as [44] [Lemma 6.7.2]
(see also [37])

gMðzÞ¼detO detðzM2n− IÞðaþzvTðI−zM2nÞ−1uÞ: ð9Þ

Since the eigenvalues zi’s ofM2n are such that 0 < jzij < 1,
one has necessarily that detðziM2n − IÞ ¼ zNi gMð1=ziÞ ≠ 0

in the right-hand side of Eq. (9). This implies that the zi’s
are the zeros of ½aþ zvTðI − zM2nÞ−1u� [see Eq. (9)].
Expanding in powers of z shows that the eigenvalues of
M2n are the zeroes of the series

F2nðzÞ ¼ aþ
X∞
k¼1

zkvTMk−1
2n u; ð10Þ

with jzj < 1 (note that vTMk−1
2n u are real numbers).

Quite remarkably, one can show [44] that the scaled
sequence of the real coefficients of the series in
Eq. (10), i.e.,

ffiffiffiffiffiffi
2n

p fa; vTu; vTM2nu; vTM2
2nu;…g, con-

verges, as n → ∞, to a sequence of i.i.d. Gaussian random
variables, with zero mean and unit variance. This implies
that, for n → ∞, the real eigenvalues of M2n in Eq. (8) and
the real zeroes of KnðxÞ in Eq. (2) in the interval ½−1; 1�
share the same statistics.
But what about the connection between these two

models for finite n? In fact, it is known that the real
eigenvalues of M2n accumulate close to x ¼ �1, also on a
window of sizeOð1=nÞ [34], like for the Kac’s polynomials
[27]. Hence, if one considers the probability Q̃0ðx; nÞ that
M2n has no real eigenvalue in ½0; x�, it is natural to expect
that, as for Kac’s polynomials (3), for large n and x → 1

keeping nð1 − xÞ fixed, Q̃0ðx; nÞ behaves as

Q̃0ðx; nÞ ∼ n−γH̃(nð1 − xÞ); ð11Þ

where the exponent γ is yet unknown and, a priori, the
scaling function H̃ðuÞ is different for h̃ðuÞ in Eq. (3).
However, for n → ∞, we have seen that q̃0ðx; nÞ and
Q̃0ðx; nÞ do coincide, since they both correspond to the
probability that the (infinite) Gaussian power series has
no real root in ½0; x�. This implies that Q̃0ðx; n → ∞Þ ¼
q̃0ðx; n → ∞Þ ∼ ð1 − xÞb, which, together with the scaling
form (11), shows that γ ¼ b. Finally, since we expect that
Q̃0ð1; nÞ exists, one has H̃ðuÞ → c3, a constant, when
u → 0, and therefore Q̃0ð1; nÞ ∼ n−b for large n. One can
also consider the probability Q0ðx; nÞ that M2n has no real
eigenvalue in ½−x; x�. Using the statistical independence of
the positive and negative real eigenvalues for large n, one
has Q0ðx; nÞ ∼ ½Q̃0ðx; nÞ�2, and in particular Q0ð1; nÞ ∼
n−2b for large n. Using similar arguments, one can show
that the full statistics of the zero-crossings of the diffusion
equation (equivalently of the real roots of KnðxÞ) can be
obtained, at leading order for large n, from the statistics of
the number of real eigenvalues N n of the random matrix
M2n, which we now study. Our analysis follows the line
developed in Ref. [45] where the real eigenvalues of real
Ginibre matrices were studied.
We start with the full joint distribution of the eigenvalues

of M2n (8). Since M2n is real and of even size 2n, it has l
(with l even) real eigenvalues (and possibly l ¼ 0), denoted
by λ1 ≤ … ≤ λl, and m ¼ n − l=2 pairs of complex con-
jugate eigenvalues z1 ¼ x1 þ iy1; z2 ¼ z1;…; z2m−1 ¼
xm þ iym; z2m ¼ z2m−1 with x1 ≤ … ≤ xm. Then the
ordered eigenvalues of M2n conditioned to have l real
eigenvalues have the joint distribution [33,34]

pðl;mÞðλ⃗; z⃗Þ ¼ CjΔðλ⃗; z⃗Þj
Yl
j¼1

wðλjÞ
Y2m
j¼1

wðzjÞ; ð12Þ
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where C≡ Cm;n is a normalization constant,

w2ðzÞ ¼ ð2πj1 − z2jÞ−1; ð13Þ

and Δ is a Vandermonde determinant. The generating
function (GF) of N n (the number of real roots) reads

hesN niM2n
¼

�Y2n
i¼1

1 − ð1 − esÞχRðζiÞ
�

M2n

; ð14Þ

for s < 0, where the product runs over all the eigenvalues
ζi’s (both real and complex) ofM2n. In Eq. (14), χRðzÞ ¼ 1
if z is real and 0 otherwise and h� � �iM2n

denotes an average
over the joint distribution (12), further summed over all
possible ðl; mÞ [46,47]. It turns out that such averages (14)
can be computed explicitly in terms of Pfaffians [46–52], as
follows. Let fðzÞ be any smooth integrable complex
function, and fpjðzÞg2n−1j¼0

be an arbitrary sequence of
monic polynomials of degree j, then

�Y2n
i¼1

fðζiÞ
�

M2n

¼ PfðUfÞ
PfðU1Þ

; ð15Þ

where Pf denotes a Pfaffian [53] and Uf is a skew
symmetric (i.e., antisymmetric) matrix of size 2n × 2n
with entries uj;k ¼ ðpj−1f; pk−1fÞw and skew product

ðh; gÞw ¼
Z
R2

hðxÞgðyÞsgnðy − xÞwðxÞwðyÞdxdy

þ 2i
Z
C

hðzÞgðz̄Þsgn½ImðzÞ�wðzÞwðz̄Þd2z; ð16Þ

where wðzÞ is given in Eq. (13). To compute the ratio in
Eq. (15), it is convenient to choose the monic polynomials
pjðzÞ to be skew orthogonal with respect to the product
(16) [with this choice, the denominator in Eq. (15) is easy to
compute [37]]. Using these polynomials [33], the GF in
Eq. (14) can be evaluated explicitly using Eq. (15), leading
to [54] (see also [55])

hesN niMN
¼ det

0≤j;k≤n−1

�
δj;k −

1 − e2s

πðjþ kþ 1=2Þ
�
: ð17Þ

Let us denote by Hn the n × n matrix with entries
hj;k ¼ ½πðjþ kþ 1=2Þ�−1. We write the determinant in
Eq. (17) as detðI − αHnÞ ¼ exp Tr½lnðI − αHnÞ�, with α ¼
ð1 − e2sÞ and then expand the logarithm, to get
detðI − αHnÞ ¼ exp½Pm≥1ðαm=mÞTrðHm

n Þ�. The asymp-
totic analysis of the traces yields [56]

TrHm
n ¼ 1

2π

Z∞

0

sechm
�
πu
2

�
du logn½1þoð1Þ�; n→∞:

By summing up these traces, we obtain

hesN niM2n
¼n½1=ð2πÞ�

R
∞
0
logf1−ð1−e2sÞsech½ðπuÞ=2�gduþoð1Þ: ð18Þ

For s < 0, the integral can be calculated explicitly as

hesN niM2n
∼ nψðsÞ;

ψðsÞ ¼ 1

8
−
� ffiffiffi

2
p

π
cos−1

�
esffiffiffi
2

p
��2

: ð19Þ

By taking s → −∞ we get the probability that M2n has
no real eigenvalues, using Q0ð1; nÞ ¼ ProbðN n ¼ 0Þ ¼
lims→−∞hesN niM2n

∼ n−2b. From Eq. (19), we thus obtain
b ¼ ð−1=2Þlims→−∞ψðsÞ ¼ 3=16, as announced in Eq. (4).
From the GF in Eq. (19), we also obtain the cumulants
ofN n. To export these results to the 2D-diffusion equation,
we recall that the number of zero crossings Nt identifies
with the positive real eigenvalues N þ

n of M2n. Hence, for
n ≫ 1, the number of positive and negative N �

n real
eigenvalues are both independent and identically distrib-
uted [54], one obtains that hesNþ

n iM2n
∼ nψðsÞ=2. By further

expanding ψðsÞ close to s ¼ 0 [37], one finally obtains the
result announced in Eq. (7). Similarly, transposing this
result hesN þ

n iM2n
∼ nψðsÞ=2 to the diffusion equation, one

obtains the large deviation form in Eq. (5) with φðxÞ ¼
maxs∈R½sx − ψðsÞ=2� [57]. From this relation, together
with the expression for ψðsÞ in Eq. (19), we obtain the
asymptotic behaviours given in Eq. (6) [37].
Several results found so far point to an intriguing

connection with the zero temperature Glauber dynamics
of the Ising spin chain [11,12]. First, b ¼ 3=16 is thus half
of the persistence exponent, θIsing ¼ 3=8, found there
[11,12]. In fact, 3=16 is exactly the persistence exponent
corresponding to the spin at the origin of the semi-infinite
Ising chain [11,12]. Furthermore, the expression found for
ψðsÞ in Eq. (19) is strongly reminiscent of the expression
found for the persistence exponent for the q-state Potts
chain, with T ¼ 0 Glauber dynamics [see, e.g., Eq. (2) of
Ref. [11]]. So what is this connection?.
To understand it, let us come back to the 2D-diffusion

field XðtÞ ¼ ϕð0; tÞ=hϕð0; tÞ2i and consider the “clipped”
process sgn½XðtÞ� [58]. As recalled above XðtÞ has the same
statistical properties as the Kac’s polynomials KnðxÞ in
the limit n → ∞ and x → 1. Transposing recent results
obtained for Kac’s polynomials in the limit n → ∞ [59],
we can compute the multitime correlation functions of
sgn½XðtÞ�, which are given by Pfaffians [53]

hsgn½Xðt1Þ� � � � sgn½Xðt2mÞ�i ∼ PfðAÞ ð20Þ
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for 1 ≪ t1 ≪ t2 ≪ � � � ≪ t2m, and where A ¼ ðai;jÞ1≤i;j≤2m
is a 2m × 2m antisymmetric matrix with ai;i ¼ 0 and for
i < j, ai;j ¼ −aj;i where

ai;j ¼
2

π
sin−1 ½hXðtiÞXðtjÞi� ¼

2

π
sin−1

�
2

ffiffiffiffiffiffiffi
titj

p
ti þ tj

�
: ð21Þ

By symmetry, the even correlation functions vanish. For
m ¼ 1, Eqs. (20) and (21) hold for any normalized Gaussian
process. However, for m > 1, this Pfaffian structure, which
holds for the GSP YðTÞ ¼ XðeTÞ, is nontrivial.
Let us now consider the semi-infinite Ising spin chain,

whose configuration at time t is given by fσiðtÞgi≥0, with
σiðtÞ ¼ �1. Initially, σið0Þ ¼ �1 with equal probability
1=2 and, at subsequent time, the system evolves accord-
ing to the Glauber dynamics at T ¼ 0 (see Refs. [11,12]
for details). Using the formulation of the dynamics in
terms of coalescing random walks [11,12], we show that
the multitime correlation functions of σ0 are also given by
the same Pfaffian formula (20), namely, for 1 ≪ t1 ≪
t2 ≪ … ≪ t2m [37]

hσ0ðt1Þ…σ0ðt2mÞi ∼ PfðAÞ; ð22Þ

with precisely the same antisymmetric matrix A (21).
Therefore, we conclude that sgn½XðtÞ� for the 2D-diffu-
sion equation and σ0ðtÞ in the semi-infinite Ising chain
with Glauber dynamics are actually the same process in
the large time limit [60]. One can then use the known
result for the persistence of σ0ðtÞ [11,12] to conclude that
b ¼ 3=16, as found above by a completely different
method. Note that the exact relation found here σ0ðtÞ ∝
sgn½ϕð0; tÞ� (for t ≫ 1), where ϕðx; tÞ is the 2D-diffusing
field, is reminiscent, albeit different from, the so-called
OJK approximate theory [61] in phase ordering kinetics
[62], which instead approximates the 1D spin field by the
sign of the 1D diffusing field.
To conclude, we have computed exactly the persistence

exponent of 2D-diffusion equation, or equivalently the one
of Kac’s polynomials, θð2Þ ¼ b ¼ 3=16. This was done in
two different ways: (i) by using the connection to truncated
random orthogonal matrices, and for which our results are
actually mathematically rigorous [54], (ii) by establishing
an exact mapping to the semi-infinite Ising chain with
Glauber dynamics at T ¼ 0 (see Fig. 1). Thanks to (i), we
computed the full statistics of the number of the zero
crossings (5)–(7). These RMT tools will certainly be useful
to compute other properties of the GSP with correlator
cðTÞ ¼ sechðT=2Þ and of the different physical models
associated with it (see Fig. 1).
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2

1) DERIVATION OF EQS. (9) AND (10) IN THE MAIN TEXT

In this section we discuss the ideas behind the formulae (9) and (10) of the main text in order to give a clear
picture of the connection between truncations of random orthogonal matrices and Kac polynomials. Let O be a
(2n+ 1)× (2n+ 1) orthogonal matrix decomposed as [see Eq. (8) in the main text]

O =

(
M2n u
vT a

)
, (1)

where u and v are column vectors of length n and a is a scalar. We are interested in the eigenvalues of M2n that can
be found as the roots of the characteristic polynomial gM (z) = det (zI2n −M2n).

We first recall that, for a block matrix U of the form

U =

(
A B
C D

)
, (2)

where A,B,C and D are matrices (with A and D invertible), the determinant detU can be written in two different
ways as

detU = detA det(D − CA−1B) (3)

= detD det(A−BD−1C) . (4)

Let us consider the following (2n+ 1)× (2n+ 1) rectangular matrix X [1]

X =

(
I2n − zM2n u
−vT z−1a

)
,

then for a 6= 0 and assuming that I2n − zM2n is an invertible matrix, one can write (using Eqs. (3) and (4))

detX = det (I2n − zM2n)
(
z−1a+ vT (I2n − zM2n)

−1
u
)

(5)

= z−1a det
(
I2n − zM2n + za−1uvT

)
. (6)

In Eq. (6) one recognizes the inverse of the top left corner of O−1. Indeed, the block inversion formula gives

O−1 =

(
(M2n − a−1 uvT )−1 B̃

C̃ D̃

)
(7)

where the matrices B̃, C̃ and D̃ are not needed here. Since O is an orthogonal matrix, O−1 = OT and hence (from
Eqs. (1) and (7)) we obtain

(M2n − a−1 uvT )−1 = MT
2n =⇒M2n − a−1 uvT = (M−1

2n )T (8)

Therefore, Eq. (6) can be written as

detX = z−1adet
(
I2n − z(M−1

2n )T
)

= z−1a detM−1
2n det (M2n − zI2n) . (9)

This yields

det (zI2n −M2n)

det (zM2n − I2n)
= detM2n

(
1 + za−1vT (I2n − zM2n)

−1
u
)

=
detM2n

a

(
a+ zvT (I2n − zM2n)

−1
u
)
. (10)

Notice that the inverse of the block matrix O in (1) can also be written as

O−1 =

(
Ã′ B̃′

C̃ ′ (a− vTM−1
2n u)−1

)
, (11)

where the matrices Ã′, B̃′ and C̃ ′ are not needed here. Since O is an orthogonal matrix, O−1 = OT and hence (from
Eqs. (1) and (11)) we obtain

a = (a− vTM−1
2n u)−1 . (12)
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On the other hand, applying the formula in Eq. (3) to the block matrix O in (1), we obtain

detO = detM2n det(a− vTM−1
2n u) =

detM2n

a
, (13)

where, in the last equality, we have used the identity (12). Finally, by combining Eq. (10) and (13), we obtain the
formula given in Eq. (9) in the main text.

With probability one the eigenvalues of M2n are interior points of the unit disc, since M2nM
T
2n = I−uuT < I. For

|z| < 1 one can write the r.h.s. of Eq. (9) in the main text as a series (up to the sign of detO)

F2n (z) = a+

∞∑
k=1

zkvTMk−1
2n u . (14)

All the roots of the series which are inside of the unit circle are the eigenvalues of matrix M2n and vice versa. Finally,
one can show [2] that the scaled sequence of the coefficients of the series F2n given by

√
2n{a,vT u,vT M2n u,v

TM2
2n u, · · · }

converges, as n → ∞, to the sequence of i.i.d. Gaussian random variables, with zero mean and unit variance. This
implies that, for large N , the eigenvalues of truncated random orthogonal matrices behave identically to zeros of
random Kac series, studied in [4] and discussed above. And one can check that, if we put n → ∞ in the kernel of
the Pfaffian point process describing the distribution of eigenvalues of random matrices M2n, then the corresponding
limiting kernel coincides with the one obtained in [4] (see, [3] for details).

Interestingly in a recent preprint [5], the authors, using similar ideas, found another models of random polynomi-
als/series (related to the complex Kac polynomials/series) whose zeros behave as the eigenvalues of a corresponding
ensemble of random matrices. This can be thought as another confirmation of a strong connection between the zeros
of random functions and eigenvalues of random matrices.

2) DERIVATION OF THE FORMULA GIVEN IN EQ. (17) IN THE MAIN TEXT

We present the main steps leading to Eq. (17) in the main text and refer reader to [6] for further details. Let
M2n be a truncated random orthogonal matrix, as defined in Eq. (1). Its spectrum consists of ` real eigenvalues
λ1 ≤ . . . ≤ λ` and m = n − `/2 pairs of complex conjugate eigenvalues z1,2 = x1 ± iy1, . . . , z2m−1,2m = xm ± iym
whose joint distribution was derived in [7] and given by Eq. (12) in the text. It is well-known in random matrix
theory (see, eg [8, 9]) that such conditional distributions give rise to Pfaffian point processes which satisfy Eq. (15)
in the text [9]. Choosing the polynomials

P2j (z) = z2j , P2j+1 (z) = z2j+1 − 2j

2j + 1
z2j−1 , (15)

which are orthogonal with respect to the skew product in Eq. (16) in the main text [3], we get〈 ∏
ζ∈specM2n

f (ζ)

〉
M2n

= Pf (Uf ) /Pf (U1) ,

where

(Uf )i,j =

∫
R2

sgn (y − x) f (x) f (y)Pi−1 (x)Pj−1 (y)w (x)w (y) dxdy

+2i

∫
C

f (z) f (z̄)Pi−1 (z)Pj−1 (z̄) sgn (=z)w (z)w (z̄) d2z,

(U1)i,j =

∫
R2

sgn (y − x)Pi−1 (x)Pj−1 (y)w (x)w (y) dxdy + 2i

∫
C

Pi−1 (z)Pj−1 (z̄) sgn (=z)w (z)w (z̄) d2z.
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Let us denote by
(
U

(r)
1

)
i,j
,
(
U

(c)
1

)
i,j

the two integrals with respect to real and complex variables in the right hand

side (r.h.s.) of the above expressions. Then one can see that with f(z) = 1− (1− es)χR(z) we have

(Uf )i,j = e2s
(
U

(r)
1

)
i,j

+
(
U

(c)
1

)
i,j

= (U1)i,j + (e2s − 1)
(
U

(r)
1

)
i,j
. (16)

We now focus on the computation of both
(
U (r)

)
i,j

and
(
U (c)

)
i,j

for i, j = 1, 2, · · · , 2n. First we note that both

integrals vanish if i and j are of the same parity. This can be seen from

(
U (r)

)
i,j

=
1

2π

1∫
−1

1∫
−1

sgn (y − x)Pi−1(x)Pj−1(y)
(
1− x2

)− 1
2
(
1− y2

)− 1
2 dxdy

∣∣∣∣∣x, y → −x,−y
∣∣∣∣∣ =

1

2π
(−1)i+j

1∫
−1

1∫
−1

sgn (x− y)Pi−1(x)Pj−1(y)
(
1− x2

)− 1
2
(
1− y2

)− 1
2 dxdy = −

(
U (r)

)
i,j
.

For complex part we write

(
U (c)

)
i,j

=
i

π

∫∫
D

sgn (y)Pi−1 (x+ iy)Pj−1 (x− iy)
dxdy

((1− x2 + y2)2 + 4x2y2)
1/2

.

After expanding both polynomials in powers of x, y we can see that the terms with odd powers of x and even powers
of y cancel due to the symmetry of integrand. If i and j have the same parity, then there are no other terms in the
expansion. Besides, it is easy to see that both

(
U (r,c)

)
i,j

are skew symmetric by interchanging i ↔ j and we study

below only the terms of the form
(
U (r,c)

)
2p+1,2q+2

. For the real part we obtain

(
U (r)

)
2p+1,2q+2

=
1

2π

1∫
−1

1∫
−1

sgn (y − x)x2p

(
y2q+1 − 2q

2q + 1
y2q−1

)
dxdy√

1− x2
√

1− y2

=
1

2π(2q + 1)

1∫
−1

x2p dx√
1− x2

1∫
−1

sgn(y − x)
d

dy

(
−y2q

√
1− y2

)
dy

=
1

π(2q + 1)

1∫
−1

x2p+2qdx =
2

π(2q + 1)(2p+ 2q + 1)
. (17)

For the complex part we write

(
U (c)

)
2p+1,2q+2

=
2i

π

∫∫
D+

(x+ iy)
2p

(
(x− iy)

2q+1 − 2q

2q + 1
(x− iy)

2q−1

)
dxdy

((1− x2 + y2)2 + 4x2y2)
1/2

, (18)

where D+ is an upper half unit disk, and use

(
∂

∂x
+ i

∂

∂y

)
(x− iy)

2q

√
(1− x2 + y2)

2
+ 4x2y2

1− (x+ iy)
2 = −2(2q + 1)

(
(x− iy)

2q+1 − 2q
2q+1 (x− iy)

2q−1
)

((1− x2 + y2)2 + 4x2y2)
1/2

.
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Performing the integration in (18) we get

(
U (c)

)
2p+1,2q+2

= − i

π(2q + 1)

 1∫
0

dy(x+ iy)2p(x− iy)2q

√
(1− x2 + y2)

2
+ 4x2y2

1− (x+ iy)
2

∣∣∣x=
√

1−y2

x=−
√

1−y2

+i

1∫
−1

dx(x+ iy)2p(x− iy)2q

√
(1− x2 + y2)

2
+ 4x2y2

1− (x+ iy)
2

∣∣∣y=
√

1−x2

y=0


=

1

π(2q + 1)

(
1 + (−1)p−q

) 1∫
−1

(√
1− x2 + ix

)2p−1 (√
1− x2 − ix

)2q

dx− 1

π(2q + 1)

1∫
−1

x2p+2qdx

=
1

(2q + 1)
δp,q −

2

π(2q + 1)(2p+ 2q + 1)
. (19)

By adding the real (17) and complex (19) parts together we obtain [using Eq. (16)] (U1)i,j = 1
j−1 , if i = j − 1 is odd,

(U1)i,j = − 1
j , if i = j + 1 is even and zero otherwise. One can then easily check that

Pf U1 =
n∏
j=1

(2j − 1)−1,

and use the above formulae in Eqs. (17) and (19), together with Eq. (16), to show the formula (17) given in the text.

3) DERIVATION OF THE FORMULA FOR THE CUMULANTS GIVEN IN EQ. (7) OF THE MAIN
TEXT

In this section, we derive the expression for the cumulants κp of the number of zero crossings Nt of the 2d-diffusing
field up to time t, given in Eq. (7) in the main text. As explained in the text, the statistical properties of Nt for large
t are obtained from the number of positive real eigenvalues N+

n of the truncated orthogonal random matrix M2n [see
Eq. (1)] for which we have shown in the paper that

〈esN+
n 〉M2n

∼ nψ(s)
2 (20)

where ψ(s) is given in Eq. (19) in the main text. The cumulants of N+
n , denoted as 〈[N+

n ]p〉cM2n
can be obtained from

the following expansion

ln〈esN+
n 〉M2n =

∞∑
p=1

sp

p!
〈[N+

n ]p〉cM2n
∼ ψ(s)

2
lnn , (21)

where in the second estimation we have used (20). Therefore, to compute these cumulants, we need to expand ψ(s)
for small s. It is then convenient to start from Eq. (18) and expand the logarithm to get

ψ(s) = − 1

2π

∞∑
m=1

1

m
(1− e2s)m

∫ ∞
0

du sechm
(πu

2

)
= − 1

2π2

∞∑
m=1

1

m
B

(
m

2
,

1

2

)
(1− e2s)m , (22)

valid for s ≤ 0 where we have used ∫ ∞
0

du sechm
(πu

2

)
=

1

π
B

(
m

2
,

1

2

)
, (23)

with B(a, b) being the Euler beta function. We now expand (e2s − 1)m in (22), which yields

(e2s − 1)m =

( ∞∑
p=1

(2s)p

p!

)m
=

∞∑
p=m

(2s)p

p!

∑
p1+...+pm=p,pi≥1

p!

p1!p2! . . . pm!
. (24)
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Let us denote the last sum by cm,p. We first notice that the binomial theorem yields

∑
p1+...+pm=p,pi≥0

p!

p1!p2! . . . pm!
= (1 + 1 + . . .+ 1)

p
= mp.

However, to calculate cm,p we need to subtract all terms with pi = 0 for at least one 1 ≤ i ≤ m. For this purpose,
we use the inclusion-exclusion principle as follows. First we subtract all the terms with pj = 0 for a given value of j.
There are m choices of index j and all terms with pj = 0 sum up to

∑
p1+...+pm=p
pj=0,∀i 6=j pi≥0

p!

p1!p2! . . . pm!
= (m− 1)

p
.

Next we add all the terms containing pj = pk = 0 for a given pair j < k. These terms sum up to

∑
p1+...+pm=p

pj=pk=0,∀i 6=j,k pi≥0

p!

p1!p2! . . . pm!
= (m− 2)

p
,

and there are
(
m
2

)
choices of pair of indices j < k. Continuing the calculation we obtain

cm,p = mp −m(m− 1)p +

(
m

2

)
(m− 2)p − . . . =

m∑
`=0

(−1)`
(
m

`

)
(m− `)p = m!S(m)

p , (25)

where, in the last equality, we have used the definition of Stirling number of the second kind S(m)
p [10]. Combining

Eqs. (22), (24) and (25) we find

ψ(s) = − 1

2π2

∞∑
m=1

(−1)m(m− 1)!B

(
m

2
,

1

2

) ∞∑
p=m

(2s)p

p!
S(m)
p . (26)

One can the use induction and the recurrence relations for Stirling numbers to show

S(m)
p ≤ 2p

p!

m!
, (27)

which, together with the asymptotic behaviour for B
(
m
2 ,

1
2

)
∼
√

2π
m for m � 1, yields that the double infinite sum

in (26) is absolutely convergent for small values of s. One can thus interchange the order of the summation over m
and p to obtain

ψ(s) =

∞∑
p=1

sp
2p−1

π2p!

p∑
m=1

(−2)m−1S(m)
p Γ2

(m
2

)
. (28)

Finally, by combining Eqs. (21) together with the small s expansion of ψ(s) in (28), we obtain that 〈[N+
n ]p〉cM2n

∼
κp lnn where the expression for the cumulants κp is given in Eq. (7) in the main text.

4) ASYMPTOTIC EXPANSION OF THE LARGE DEVIATION FUNCTION ϕ(x)

In this section, we study the large deviation function ϕ(x) defined in Eq. (5) in the main text and obtain its
asymptotic behaviours given in (6) in the main text. This function ϕ(x) is defined in term from ψ(s) given in Eq.
(19) of the text

ϕ(x) = max
s∈R

(
s x− ψ(s)

2

)
, ψ(s) =

1

8
− 2

π2

(
cos−1

(
es√

2

))2

. (29)
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Note that the function ψ(s), initially defined for s < 0 (see Eq. (18) in the text) can be analytically continued to any

positive s > 0, where ψ(s) is actually also real. The maximum of (s x− ψ(s)
2 ) in Eq. (29) is attained at a unique point

s∗ which satisfies

x− 1

2
ψ′(s∗) = 0⇐⇒ x = F(z∗) with


z∗ =

es
∗

√
2

F(z) =
2 z

π2
√

1− z2
cos−1(z) .

(30)

Note that the function F(z) is a monotonously increasing function such that F(z → 0) → 0 and F(z → ∞) → ∞
such that its inverse F−1(z) is well defined for any z ∈ R+. In particular, one can show that its asymptotic behaviours
are given by

F−1(z) ∼
{

πz + 2πz2 , z → 0
1
2 e

π2

2 z , z →∞ .
(31)

Therefore using Eqs. (29) and (30), we obtain that ϕ(x) reads

ϕ(x) = s∗x− ψ(s∗)

2
(32)

= x ln(
√

2 z∗)− 1

16
− π2

4
x2 +

π2

4

( x
z∗

)2

, z∗ = F−1(x) , (33)

where, in (33), we have used the equation (30). Using this expression (33) together with the asymptotic behaviours
of F−1(x) in Eq. (31), we obtain the asymptotic behaviours of ϕ(x) as

ϕ(x) ∼


3

16
+ x lnx+ x(ln(π

√
2)− 1) , x→ 0

π2

4
x2 − x

2
ln 2− 1

16
, x→∞

(34)

the first terms of which give the behaviours given in Eq. (6) in the text.
We complete our analysis of the large deviation function ϕ(x) by analysing its behaviour near its minimum, which is

reached for x = 1/(2π) – this thus corresponds to the peak of the distribution of the number of zeros. For x = 1/(2π),
it is easy to show that the maximum of sx− ψ(s)/2 is reached for s∗ = 0, which, together with Eq. (29) shows that
ϕ(x = 1/(2π)) = 0. Furthermore, for x close to 1/(2π), i.e. for 0 < |x − 1/(2π)| � 1, one can show, by solving
Eq. (30) perturbatively, that s∗ behaves as

s∗ =
π2

π − 2

(
x− 1

2π

)
+O

((
x− 1

2π

)2
)
. (35)

By injecting this behavior (35) into Eq. (29), i.e. ϕ(x) = s∗ x− ψ(s∗)/2, one finds

ϕ(x) =
π2

2(π − 2)

(
x− 1

2π

)2

+O
((

x− 1

2π

)3
)
, (36)

as announced in the second line of Eq. (6) in the test.
We end this section by a remark: here we have studied the distribution p̃k(n), with k = 0, · · · , 2n, of the number

N+
n of the real (positive) eigenvalues of M2n in the limit where both k and n are large, and k = O(lnn), and this

regime p̃k(n) ∼ n−ϕ(k/ lnn). However, there might well exist different scaling regimes, for instance for k = O(n), as in
the case of the real Ginibre matrices [11]. In fact, for truncated orthogonal matrices the case k = 2n was investigated
in [12] and it would be interesting to study the generic case α = k/(2n), for k and n large.

5) REAL RANDOM SERIES AS A PFAFFIAN POINT PROCESS AND THE FORMULAE (20)-(21) OF
THE MAIN TEXT

In this section, we recall the main results obtained in Ref. [4] and derive the expression given in Eqs. (20) and (21)
in the text. In Ref. [4] where the authors considered the ”limiting case” of Kac polynomials of degree n → ∞ and
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studied the distribution of the associated roots. More precisely, let {ak}∞k=0 be a sequence of i.i.d. real standard
Gaussian random variables and let

f (z) =

∞∑
k=0

akz
k,

be an analytic function inside the unit disk D. As a function of the real parameter x ∈] − 1, 1[, {f(x)}−1<x<1 is a
real Gaussian process with covariance kernel R(x, y) = E[f(x)f(y)] = (1 − x y)−1. The real zeros of f are random
points on (−1, 1) and their distribution can be studied by using the remarkable formula due to Hammersley [13] for
the m-point correlation function ρm(x1, · · · , xm) of real zeros. It reads

ρm (x1, x2, . . . , xm) =
E [|f ′(x1)f ′(x2) . . . f ′(xm)||f(x1) = f(x2) = . . . = f(xm) = 0]

(2π)m/2
√

det(R(xi, xj))
, (37)

The r.h.s. can be also rewritten by noting that

(
2

π

)m/2
1√

detR(xi, xj)
E [|f ′(x1)f ′(x2) . . . f ′(xm)||f(x1) = f(x2) = . . . = f(xm) = 0]

= lim
s1→x1+0

lim
s2→x2+0

. . . lim
sm→xm+0

∂m

∂x1∂x2 . . . ∂xm
E [sgn f(x1) sgn f(x2) . . . sgn f(xm) sgn f(s1) sgn f(s2) . . . sgn f(sm)] .

(38)

The above formula clearly shows the importance of the so-called sign-correlation function for the Gaussian process
f(t) defined as

S (x1, x2, . . . , x2k) = E [sgn f(x1) sgn f(x2) . . . sgn f(x2k)] . (39)

The computation of the r.h.s. of (37) can then be carried out as follows. Since f(.) is a Gaussian process of covariance
R(x, y), one can show that the process f(.) conditioned on f(x0) = 0 for some x0 ∈]− 1, 1[, denoted as (f(.)|f(x0) =
0) is also a Gaussian process. Let x1, x2, . . . , xm ∈] − 1, 1[, then the Gaussianity of f(.) yields that the vector
~f0 = (f(x0), f(x1), . . . , f(xm)) is normally distributed with zero mean and covariance matrix Σ0 = {R(xi, xj)}mi,j=0,

i.e. p
(
~f0

)
∝ exp

{
− 1

2
~f0Σ0

~f0

T
}

. A simple calculation yields the distribution of the vector ~f = (f(x1), . . . , f(xm))

conditioned on the event f(x0) = 0 as

p
(
~f
)
∝ exp

{
−1

2
~f Σ22

~fT
}
, where Σ−1

0 =

(
Σ11 Σ12

ΣT12 Σ22

)
,

where Σ11 is a scalar, Σ12 is a row vector of size m and Σ22 is an m×m matrix. The block inversion formula yields

(Σ22)ij = R (xi, xj)−R(xi, x0)R−1(x0, x0)R(x0, xj).

This proves that the conditional process (f(.)|f(x0) = 0) is Gaussian with covariance

R̃(x, y) = R(x, y)− R(x, x0)R(x0, y)

R(x0, x0)
. (40)

For the special case considered here where R(x, y) = 1/(1− xy), it is easy to check that

R̃(x, y) = R(x, y)− R(x, x0)R(y, x0)

R(x0, x0)
= R(x, y)µ(x, x0)µ(y, x0), with µ(x, x0) =

x− x0

1− xx0
, (41)

which shows that (f(·)|f(x0) = 0) is a Gaussian process equal in distribution to µ(·, x0)f(·). This is a crucial property,
satisfied by this special correlator R(x, y) = 1/(1− xy). Using the linearity of the derivative, one gets [4]

(f ′(x1), f ′(x2), . . . , f ′(xn)|f(x1) = f(x2) = . . . = f(xm) = 0)
d
= (M(x1,x)f(x1),M(x2,x)f(x2), . . . ,M(xm,x)f(xm)),

(42)
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where M(·,x) =

(∏
i

µ(·, xi)
)′

with the derivative taken with respect to the first argument and hence, one can check

that M(xi,x) = 1
1−x2

i

∏
j 6=i

xi−xj
(1−xixj)2 . Combining Eqs. (38) and (42), one gets, after some manipulations [4]

∂2n

∂x1∂x2 . . . ∂x2n
S(x1, x2, . . . , x2n) =

(
2

π

)n
1√

detR(xi, xj)

∏
i

M(xi, t)E [f(x1)f(x2) . . . f(x2n)]

=

(
2

π

)n∏
i<j

sgn(xj − xi) Pf (K11(xi, xj)) =

(
2

π

)n∏
i<j

sgn(xj − xi)
∂2n

∂x1∂x2 . . . ∂x2n
Pf (K22(xi, xj)) , (43)

where

K (x, y) =

(
K11 (x, y) K12 (x, y)
K12 (x, y) K22 (x, y)

)
=

 x−y√
1−x2
√

1−y2(1−xy)2

√
1−y2
1−x2

1
1−xy

−
√

1−x2

1−y2
1

1−xy sgn(x− y) arcsin
√

1−x2
√

1−y2
1−xy

 , (44)

with K11(x, y) = ∂2

∂x∂yK22(x, y), K12(x, y) = ∂
∂xK22(x, y) and K21(x, y) = ∂

∂yK22(x, y). We refer the reader to Ref. [4]

for the details of the computations leading to the Pfaffian expression given in Eqs. (43) and (44). Finally, using
appropriate boundary values of both sign-correlation function and corresponding Pfaffian we can integrate over the
xi’s on both sides of (43) to get that, for any ordered 2n-tuples −1 < x1 < x2 < . . . < x2m < 1, one has

S(x1, x2, . . . , x2m) =

(
2

π

)m
Pf(K22(xi, xj)) . (45)

We now use this identity (45) to compute ρm(x1, · · · , xm) from Eqs. (37) and (38). It is then convenient to relabel the
variables and use Eq. (45) with the relabelling x2i+1 → xi and x2i = si. With this relabelling, we can now differentiate
Eq. (45) with respect to the variables of odd indices and then take the limit x2i → x2i−1 for all i = 1, . . . ,m, according
to Eq. (38). This yields finally [4]

ρm(x1, · · · , xm) = π−m Pf (K(xi, xj)) . (46)

We can now use this result (46) to compute the multi-time sign-correlation function for the 2d-diffusion field.
Indeed, the 2d-diffusion field ϕ(0, t) coincides, for large time t � 1, with the Kac polynomials f(x) for x close 1
[14, 15]. More precisely, if one considers the normalised process X(t) = ϕ(0, t)/〈ϕ2(0, t)〉, one has

X(t) =
ϕ(0, t)

〈ϕ2(0, t)〉
d' f(x = 1− 1/t) , t→∞ . (47)

Therefore, from Eqs. (39) and (45), one obtains that the multi-time correlation functions of sgnX(t) also have a
Pfaffian structure with kernel K22(xi = 1− 1/ti, xj = 1− 1/tj) with ti, tj � 1. Finally, using that

K22(xi = 1− 1/ti, xj = 1− 1/tj) ≈ sgn(tj − ti)arcsin

(
2
√
ti tj

ti + tj

)
, ti, tj � 1 , (48)

we obtain the formulae given Eqs. (20) and (21) in the text. In particular, specifying Eqs. (45) and (48) to m = 1,
we obtain

〈X(t1)X(t2)〉 ≈ sgn(t2 − t1)
2

π
arcsin

(
2
√
t1 t2

t1 + t2

)
, t1, t2 � 1 . (49)

6) PFAFFIAN STRUCTURE OF THE GSP WITH CORRELATOR c(T ) = sech(T/2)

In this section we extend the ideas of [4] to another process that plays a crucial role in our study (see Fig. 1 in the
main text), namely the stationary GSP Y (T ) with correlation function c(T ) = sech(T/2) and study the corresponding
distribution of zeros. Similarly to (37) we compute the correlation functions of the zeros by studying the conditional
process (Y (·)|Y (t) = 0), which is also a GSP with correlation function (see Eq. (40) in the previous section)

c(x− y)− c(x− t)c(y − t)
c(0)

= sech

(
x− y

2

)
− sech

(
x− t

2

)
sech

(
y − t

2

)
= c(x− y) tanh(x− t) tanh(y − t),
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where the last equality can be checked by using standard (hyperbolic) trigonometric relations. Therefore (X(·)|X(t) =

0)
d
= µ(·, t)X(t) with µ(x, t) = tanh x−t

2 . Now using the linearity of the derivative we obtain (cf. (42))

(f ′(t1), f ′(t2), . . . , f ′(tm)|f(t1) = f(t2) = . . . = f(tm) = 0)
d
= (M(t1, t)f(t1),M(t2, t)f(t2), . . . ,M(tm, t)f(tm)),

with M(·, t) =

(∏
i

µ(·, ti)
)′

and M(ti, t) = 1
2

∏
j 6=i

tanh
ti−tj

2 . Using that d
dt sgn(t) = 2δ(t), we obtain (for more details

see [4] and references therein)

∂2m

∂t1∂t2 . . . ∂t2m
E [sgnX (t1) . . . sgnX (t2m)] = 22mE [δ (X(t1))X ′(t1) . . . δ (X(t2m))X ′(t2m)]

=
2m

πm
√

det c(ti − tj)
E [X ′(t1) . . . X ′(t2m)|X(t1) = . . . = X(t2m) = 0] ,

where, in the last equality, we used the explicit expression for the probability density of vector the (X(ti)) at 0. Using
the previous result on the conditional process (X(.)|X(t) = 0) and the Wick theorem, we obtain (cf. (43))

∂2m

∂t1∂t2 . . . ∂t2m
E [sgnX (t1) sgnX (t2) . . . sgnX (t2m)] =

(
2

π

)m
1√

det sech
ti−tj

2

∏
i

M(ti, t)E [X(t1)X(t2) . . . X(t2m)]

= (−2π)
−m

∏
i<j

tanh2 ti−tj
2√

det sech
ti−tj

2

Hf

(
sech

ti − tj
2

)
, (50)

where Hf(A) – the so called Hafnian – for a 2m × 2m symmetric matrix A = (ai,j)1≤i,j≤m is defined as Hf(A) =
1/(2mm!)

∑
σ∈S2m

∏m
i=1 aσ(2i−1),σ(2i), where S2m is the group of permutations of 2m elements. The denominator in

the above formula can be evaluated by using the following formula for a Cauchy’s determinant

det

(
1

1− xiyj

)k
i,j=1

=

∏
1≤i<j≤k

(xi − xj) (yi − yj)∏
1≤i,j≤k

(1− xiyj)
,

with xi = eti and yj = −e−tj . We then obtain

det sech
ti − tj

2
= 22m det

1

1 + eti−tj
= 22m

∏
1≤i<j≤2m

4 sinh2 ti−tj
2

22m
∏

1≤i<j≤2m

4 cosh2 ti−tj
2

=
∏

1≤i<j≤2m

tanh2 ti − tj
2

,

and after combining with Eq. (50), we get

∂2m

∂t1∂t2 . . . ∂t2m
E [sgnX (t1) sgnX (t2) . . . sgnX (t2m)] = (2π)

−m ∏
1≤i<j≤2m

sgn(tj − ti) tanh
ti − tj

2
Hf

(
sech

ti − tj
2

)
.

Using a formula due to Ishikawa, Kawamuko, and Okada [16]∏
1≤i<j≤2n

xi − xj
xi + xj

Hf

(
1

xi + xj

)2n

i,j=1

= Pf

(
xi − xj

(xi + xj)2

)2n

i,j=1

, (51)

we obtain the derivative of the multi-time spin-correlation function under as a Pfaffian. Indeed, by taking xi = eti

we obtain

∂2m

∂t1∂t2 . . . ∂t2m
E [sgnX (t1) . . . sgnX (t2m)] = (2π)−m

∏
i<j

sgn(tj − ti) Pf

(
sinh

ti−tj
2

cosh2 ti−tj
2

)
.

Spin correlation function can now be obtained by direct integration. As a boundary condition one should use decay
of correlation functions at infinity. All together this implies that for t1 < t2 < . . . < t2m

E [sgnX (t1) sgnX (t2) . . . sgnX (t2m)] = (2π)
−m

Pf

(
8 arctan tanh

ti − tj
4
− 2π sgn (ti − tj)

)
.
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time

t = 0

time

i = 0 i = 0 i = 6i = 6

FIG. 1. Illustration of the mapping between the Glauber dynamics (53), in the left panel, and coalescing paths, in the right
panel. Left panel: at each time steps, the state of the orange spins are changed (while the black spins stay the same) and
they take the value of the neighbouring spin inside the square box. Right panel: the arrow of time is reversed such that the
initial configuration of the walks is actually the final state of the spin system. At each time step a given path connects the sites
i and j (with j = i− 1, i or i+ 1) such that σj is the “ancestor” of σi. For instance, during the final step in the left panel, the
spin at site i = 0 took the value of the neighbouring spin at site i = 1, hence the first step of the walk that starts at i = 0 goes
from i = 0 to i = 1.

Performing differentiation and taking limits we finally obtain

ρm (t1, t2, . . . , tm) = π−m Pf

 1
4

sinh
ti−tj

2

cosh2 ti−tj
2

1
2 sech

ti−tj
2

− 1
2 sech

ti−tj
2 2 arctan tanh

ti−tj
4 − 1

2π sgn(ti − tj)

 , (52)

with the convention that sgn(0) = 0.

7) GLAUBER DYNAMICS FOR THE ISING MODEL ON A HALF LINE AND MAPPING TO THE
2d-DIFFUSION EQUATION

We consider a semi-infinite Ising spin chain, whose configuration at time t is given by {σi(t)}i≥0, with σi(t) = ±1.
Initially, the system is in a random initial configuration where σi(0) = ±1 with equal probability 1/2 and, at subsequent
time, the system evolves according to the Glauber dynamics. Within each infinitesimal time interval ∆t, every spin
is updated according to

σi(t+ ∆t) =


σi(t) , with proba. 1− 2∆t,

σi−1(t) , with proba. ∆t,

σi+1(t) , with proba. ∆t,

(53)

while the site at the σ0(t) evolves via σ0(t+ ∆t) = σ0(t) with probability 1−∆t and σ0(t) = σ1(t) with probability
∆t.

Derrida et al. in [17, 18] noticed that if one traces back in time the value of the spin i at time t, one obtains a
random walk that connects the site i at time t through its various ancestors to a particular site i0 at initial time t = 0
(see Fig. 1). And consequently σi(t) = σi0(0). It is important to notice that, in this mapping, the arrow of time has
to be reversed (see Fig. 1). Then, for instance, to compare the values of the spin σi(t) and σj(t) at two different sites
i and j, one considers two random walkers starting at site i and j. After time t, two different situations may then
have occurred: (i) either the two random walkers have “coalesced” into a single walker that “ends up” on site k0, and
consequently σi(t) = σj(t) = σk0(0), (ii) or the random walkers have not met each other and therefore σi(t) = σi0(t)
while σj(t) = σj0(t) with i0 6= j0. Using this mapping to coalescing random walkers, the authors of [17, 18] computed
the persistence probability pIsing(t) for the Ising chain and found that, for large t � 1, pIsing(t) ∼ t−θIsing with
θIsing = 3/8. They further generalized this result to the q-states Potts model (q = 2 corresponding to the Ising model)
and found that the persistence probability pPotts(t) decays as [17, 18]

pPotts(t) ∼ t−θ̂(q) , θ̂(q) = −1

8
+

2

π2

[
cos−1 2− q√

2q

]2

. (54)
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real 
 time

t = 0

t = T

t1

t2

t3

reversed  
time

⌧ = 0

⌧ = T

T � t1

T � t2

T � t3

i1 i2 i3

FIG. 2. Illustration of the mapping to coalescing random walks to compute the multi-time correlation functions of the spin
at the origin at N = 3 different times t1, t2 and t3 . In this specific realisation of the Glauber dynamics with a given initial
configuration at t = 0, one reads immediately σ0(t1)σ0(t2)σ0(t3) = (σ1(0))2 σ4(0). Note that, at all time, i1 ≤ i2 ≤ i3.

Remarkably, the expression for θ̂(q) in (54) bears strong similarities with the function ψ(s), associate to the 2d-
diffusing field given in the text in Eq. (19). Below we show that this is not just a coincidence: indeed we exhibit a
mapping between the (semi-infinite) Ising-chain with Glauber dynamics and the 2d-diffusion equation with random
initial conditions. Using the formulation of the Glauber dynamics (53) in terms of coalescing random walks, that the
multi-time correlation functions of σ0 are given by a Pfaffian, as given in Eq. (20) in the text, for t1 < t2 < · · · < t2m

〈σ0(t1) · · ·σ0(t2m)〉 ∼ Pf(A) , ai,j = sgn(j − i)〈σ0(ti)σ0(tj)〉 (55)

with ai,j as given in Eq. (21) in the text for ti, tj � 1. From these identities for any correlation function in Eq. (20)
in the text and in Eq. (55) above, we conclude that sgn(X(t)) for the 2d-diffusion equation and σ0(t) in the semi-
inifinite Ising chain with Glauber dynamics are actually exactly the same process in the large time limit. Therefore
we conclude that their persistence properties do coincide and therefore b = 3/16, as announced in Eq. (4) in the text.

To compute these multiple-time correlation functions 〈σ0(t1) · · ·σ0(tN )〉 we again use the mapping of the T = 0
Glauber dynamics to coalescing random walks (see Fig. 2). A remarkable simplification occurs when one considers
the site at the boundary i = 0 of the semi-infinite [17, 18]. Indeed, when N walkers start from the origin at times
T − tN < T − tN−1 < · · · < T − t1 the positions of the path at any time t remain always in the same order, i.e.
i1 ≤ i2 ≤ iN , since when a walker is at the origin, it can only hop to the right (see Fig. 2). As we will see, the main tool
for computing the multi-time correlation functions is the probability ci,j that two walkers, starting at T − ti > T − tj ,
with i < j, do not meet up to time T . This probability ci,j is of course independent of T and reads, for tj > ti � 1
with ti/tj fixed, [17, 18]

ci,j '
4

π
tan−1

√
tj
ti
− 1 , for tj > ti � 1 . (56)
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Similarly, if 1� tj < ti, one finds [17, 18]

ci,j = −cj,i , for ti > tj � 1 . (57)

In Ref. [17, 18], this result (56) was generalized to compute the propability c
(k)
j1,j2,...,j2k

that no pair of random walks
(among the 2k random walkers) with labels j1, j2, . . . , j2k meets up to time T . It turns out that it can be written as
a Pfaffian,

c
(k)
j1,j2,...,j2k

= Pf {ci,j}i,j=j1,...,j2k =
1

k! 2k

∑
σ∈S2k

ε(σ)cjσ(1),jσ(2) · · · cjσ(2k−1),jσ(2k) , (58)

where the sum is over the group of permutations S2k of the indices {j1, j2, · · · , j2k} and ci,j is the anti-symmetric
matrix defined in Eqs. (56) and (57).

Let us start with the two-point correlation function 〈σ0(ti)σ0(tj)〉 which can easily be computed using the mapping
to coalescing random walks (see Fig. 2). If, after time t the two paths, starting at t− ti and t− tj have not coalesced,
which happens with probability ci,j then σ0(ti)σ0(tj) = σj0(0)σk0(0) for some j0 6= k0. Thus, after averaging over the
initial conditions σj0(0) = ±1, as well as σk0(0) = ±1, with equal probability, we see that such non-coalescing paths
give a vanishing contribution to the two-point correlation function 〈σ0(ti)σ0(tj)〉. On the contrary, if the two paths have
coalesced, which happens with probability 1− ci,j , then there exists a site j0 such that σ0(ti)σ0(tj) = (σj0(0))2 = 1,
which remains 1 after averaging over the initial condition σj0(0) = ±1. Hence, such coalescing paths give a contribution
1− ci,j to the two-time correlation function and therefore, for tj > ti � 1 with ti/tj fixed, one has

〈σ0(ti)σ0(tj)〉 = 1− ci,j ' 2− 4

π
tan−1

√
tj
ti

=
4

π
tan−1

√
ti
tj
, (59)

where, in the last equality, we have used tan−1(x) = π/2− tan−1(1/x). Using the identity

tan−1(x) =
1

2
sin−1

(
2x

1 + x2

)
, for 0 < x < 1 , (60)

we obtain from (59) that the two-time correlation function 〈σ0(ti)σ0(tj)〉 reads, for tj > ti � 1

〈σ0(ti)σ0(tj)〉 '
2

π
sin−1

(
2
√
ti tj

ti + tj

)
. (61)

Similarly, using the relation in (57), we obtain, for ti, tj � 1,

〈σ0(ti)σ0(tj)〉 ' sign(j − i) 2

π
sin−1

(
2
√
ti tj

ti + tj

)
, (62)

which thus coincides precisely with the 2-point correlation of sgn(X(t))) given in Eq. (49), with X(t) the normalised
2d-diffusing field.

We now prove relation (55) for any m ≥ 1. Let us denote T < t2m < . . . < t1 and use the mapping to coalescing
random walks in Z+ starting from the origin at times T − t1 > T − t2 > . . . > T − t2m (see Fig. 2). As explained in
the case m = 1, if two of the random walks meet before time T , the corresponding spins have the same ancestor and
therefore the same value. On the contrary, if they do not meet, the values of the spins take independently different
values ±1 with probabilities 1/2. Assume then that the RWs end up at the points x1 ≤ x2 ≤ . . . ≤ x2m. For every
partition m = (n1, n2, . . . , nm′) of 2m = n1 +n2 + · · ·+nm′ we introduce the event Am consisting of paths satisfying

Am =
{

configurations of coalescing RW with x1 = . . . = xn1
< xn1+1 = . . . = xn1+n2

< . . . < x2n−nm′+1 = . . . = x2m

}
.

(63)
We denote by y1, y2, . . . , ym′ the distinct points among x1, x2, . . . , x2m (see Fig. 3). It is useful to introduce
∆1, . . . ,∆m′ which are the corresponding intervals of indices, i.e.,

∆1 = [1, n1] , ∆` = [n1 + . . .+ n`−1 + 1, n1 + . . .+ n`] for ` ≥ 1 , (64)

as well as N1 = 1, N2 = n1 + 1, . . . , Nm′ = n1 + · · · + nm′−1 + 1 which are the left endpoints of these intervals
∆1,∆2, . . . ,∆m′ . The only configurations that will contribute to the expectation in the l.h.s. of (55) are such that
all ni are even. Indeed,

E [σ0(t1)σ0(t2) · · ·σ0(t2m)|Am] = E [σx1
(0)σx2

(0) · · ·σx2m
(0)|Am] = Pr [Am]

m′∏
j=1

E0

[
σnjyj (0)

]
= Pr [Am] I2|n1,...,nm′

,

(65)
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FIG. 3. Sample paths configuration for 2m = 12 random walkers ending up in m′ = 4 distinct points y1 < y2 < y3 < y4
and coalesced into 4 groups of sizes n1 = 2, n2 = 2, n3 = 4, n4 = 4. This configuration belongs to the set Am for partition

m = (2, 2, 4, 4). The partition m complies with non-intersection events c
(k)
j1,j2,...,j2k

such that all (j1, j2, . . . , j2k) belong to

different intervals chosen from ∆1 = [1, 2] ,∆2 = [3, 4] ,∆3 = [5, 8] ,∆4 = [9, 12]. For example, c
(2)
1,3, c

(2)
4,11, c

(4)
1,3,5,9, etc.

where I2|n1,...,nm′
imposes that all the ni’s are even. In Eq. (65), we have used the independence between the spins at

time zero and denoted by E0 the average over the initial condition. Therefore, one can now rewrite multi-time spin
autocorrelation function as follows

〈σ0(t1)σ0(t2) · · ·σ0(t2m)〉 =
∑
m

E [σ0(t1)σ0(t2) · · ·σ0(t2m)|Am] =
∑

m|ni∈2N

Pr [Am] . (66)

The next step is to expand the Pfaffian in the right hand side of (55) by using the decomposition formula valid for
any anti-symmetric matrices A,B of the same size 2m× 2m (see e.g. [19])

Pf (A+B) =
∑

J⊂{1,2,...,2m}

(−1)
∑
jk−|J|/2 Pf (A|J) Pf (B|Jc) , (67)

where the sum runs over all even sized subsets J = (j1, j2, · · · , j|J|) with |J| elements (Jc denoting its complementary
in the set {1, 2, · · · , 2m}) and A|J denotes a minor of the matrix A containing rows and columns with indices taken
from J (and the Pfaffian of the empty matrix is taken to have value 1). By specializing this formula (67) to the

matrices A = {sgn (j − i)}2mi,j=1 (with the convention that sgn(0) = 0) and B = −{ci,j}2mi,j=1, with ci,j as defined in

Eqs. (56) and (57) we get

Pf (sgn (j − i)− ci,j) =

m∑
k=0

∑
1≤j1<j2<...<j2k≤2m

(−1)
j1+j2+...+j2k Pf {ci,j}j1,j2,...,j2k (68)

=

m∑
k=0

∑
1≤j1<j2<...<j2k≤2m

(−1)
j1+j2+...+j2k c

(k)
j1,j2,...,j2k

(69)

where, in the second line, we have used that the Pfaffian appearing in the first line has a probabilistic interpretation
in terms of non-intersecting paths [see Eq. (58)]. Note that when applying the formula (67) to the aforementioned
matrices A and B we have used that Pf(A|J) = 1 for all even sized subset J as well as Pf(B|Jc) = (−1)|J

c| Pf(−B|Jc).
We recall that the event Am with partition m = (n1, n2, . . . , nm′) of 2m = n1 + · · · + nm′ consists of paths that

meet at m′ distinct points y1, y2, . . . , ym′ at time T [see Eq. (63), Fig. 3]. Therefore the probability of this event is

the sum of all probabilities c
(k)
j1,j2,...,j2k

with the constraint that the indices j1 < j2 < . . . < j2k belong to different
intervals ∆` of the partition (64). In this case we will say that J comply with m and write J ∼ m. We can thus
rewrite the right hand side of Eq. (69) as

Pf (sgn (j − i)− ci,j) =
∑
m

αm Pr[Am] , αm =

m∑
k=0

∑
J∼m

(−1)
j1+j2+...+j2k . (70)
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If J ∼ m then the index j1 belongs to an interval ∆p1 , for some p1. Therefore, all the subsets J′ = {j′1, j2, . . . , j2k}
which differ from J only by the first index j′1 such that j′1 ∈ ∆p1 also complies with the partition m. By summing
over such groups of subsets, i.e. over j1, gives

Σp1 :=
∑

j1∈∆p1

(−1)
j1 =

{
0, if np1 is even,

(−1)
Np1 , if np1 is odd .

(71)

Grouping now the subsets J that differ by two indices, and then by three indices, etc, we finally get

αm =

[m′/2]∑
k=0

∑
1≤p1<p2<...<p2k≤m′

2k∏
`=1

Σp` , (72)

where the empty product corresponding to k = 0 is assumed to be equal to 1 and where [x] means the integer part of x.
The identity (72) means that the coefficient αm is equal to the sum of all even products of variables Σ1,Σ2, . . . ,Σm′ .
This can be easily rewritten as

αm =
1

2

m′∏
`=1

(1 + Σ`) +

m′∏
`=1

(1− Σ`)

 . (73)

If for some m all ni’s are even then for any ` we have Σ` = 0 and consequently αm = 1. For partitions containing odd
intervals we denote `1 and `2 to be numbers of the first two intervals of odd length. Then N`1 is odd and Σ`1 = −1
and the first term in above expression vanishes. But one can also see that N`2 is even and Σ`2 = 1 which implies that
the second term vanishes as well. Therefore we see that αm 6= 0 if and only if all ni are even. And hence the Pfaffian
in the left hand side of Eq. (70) can be written as

Pf (sgn (j − i)− ci,j) =
∑

m|ni∈2N

Pr [Am] = 〈σ0(t1)σ0(t2) · · ·σ0(t2m)〉 , (74)

where, in the last equality, we have used Eq. (66). Finally, using the asymptotic behaviour of 1 − ci,j for ti < tj in
Eqs. (59) and (61), we obtain the result announced in Eq. (22) in the text.
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