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We present an asymptotic analysis of the Verblunsky coefficients for the polyno-
mials orthogonal on the unit circle with the varying weight e™V% assuming
that the potential V has four bounded derivatives on [— 1, 1] and the equilib-
rium measure has a one interval support. We obtain the asymptotics as a solu-
tion of the system of “string” equations. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4705276]

. INTRODUCTION

In this paper we consider a system of polynomials orthogonal on the unit circle (OPUC) with a

varying weight. The system can be obtained from {e"k*};:ozo if we use the Gram-Shmidt procedure

in L™ := L, ([—m, ], e V") with the inner product

(f 8)n = / f(x)me—nv(cosx)dx.

Then for any n we get the system of trigonometric polynomials
k
PP Gy =Y cle™,
1=0

which are orthonormal in L. One can see from the Szego’s condition (see e.g. Ref. 17) that the
[e.¢]
system {Pk(”) (X)}k . is not complete in L™. To construct the complete system one should include

also polynomials with respect to e ~**. Hence following Ref. 3 we consider reversed polynomials
k
Q/(cn) ()\) — ezk)\ Pk(n) (_)L) — Z Cl({ifl)et(k—l)x’
1=0

oo
and define the set of functions { X,E") (A)}k
K0 ) = 05 (),
Kot O = € Py (). (1)
oo
It is easy to check (see, e.g., Ref. 3) that the system { x,i") (A)}k o is an orthonormal basis in L™.
Moreover, it was proven in Ref. 3 that the functions X,E") satisfy the five term recurrent relations

ix ., (n) _ (n) (n) (n) (n) (n) (n)
€ Xou_y (W) = =0t oy Xop—p (M) — ot 0y Xy (M)

o 5K O+ P P O (1.2)
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o )= PP ot 2 () + o o sk )

(n) (n)  (n) (n) (n) (n)
=010 Xog (A) + Qo Pyt g (A) 5 (1.3)

(n) (n) ; (n (n) (m)
k

where o = ¢ ck.,)( and p = ¢y /c,(c"',l are called the Verblunsky coefficients of the system

oo
{Xli") L) }k K They satisfy the relations

2 2
(o) + (") =1.

Hence the matrix of the operator C of multiplication by ¢™ in the basis { x,g") (A)}

(see Ref. 3)

o0

has the form
k=0

—a” py” 0 0 0 0
S L R S A L S
B I L L B "
= 0 0 _pén)af‘n) _aén)ain) _pin)agn) pin)p;n) :
0 0 pén)pin) Olén)pz(‘n) _ain)agn) O[A(‘n)'ogn)
0 0 0

The main goal of the paper is to find the first two terms of the asymptotic expansion of afffﬁk for
k = o(m),n — oo. The asymptotics of polynomials orthogonal with respect to a vary-
ing weight plays an important role in many problems of modern mathematics, e.g., approx-
imation theory, combinatorics, theory of random matrices, etc. The polynomials orthogonal
with respect to a varying weight on the real line are now well studied, due to the re-
markable paper (Ref. 4), where it was shown that for real analytic V (1) satisfying also
some growth conditions as |A| — oo, the asymptotics of polynomials Prf'fk A) (k = o(n),n
— 00) orthogonal on the real line (OPRL) with the weight e™"V® is expressed via 6-
functions, which can be constructed in terms of the so-called equilibrium measure (dA)
= p(L)dx, that is obtained as a solution of a classical problem of the potential theory with the
potential V. These results were generalized on the case of V possessing only few derivatives in the
work (Ref. 10). The complete asymptotic expansion of the Jacobi matrix coefficients in the case of
real analytic V and one or two interval equilibrium density p was constructed in Ref. 1. These results
were used to prove universality of local bulk and edge regimes of the hermitian matrix models with
the potential V (see also Refs. 8, 13, and 14). The case of OPUC, with varying weight till now is
not understood so well as the case of classical OP. It is believed that similarly to the real line case,
the asymptotics is closely connected with the behavior of the corresponding equilibrium measure,
which is the minimizer of the functional

T b
Elm] = / V(cos M)m(d)r) — f log e — e | m(dMym(d ),
in the class of unit measures on the interval [ — m, 7] (see Ref. 16 for existence and properties of the
solution). It is well known, in particular, that for smooth V' the equilibrium measure has a density
p which is uniquely defined by the condition that the function

u(L) = V (cos ) _zf log |e* — e | p () d., (15)

takes its minimum value if A € o0 = supp p. From this condition in the case of differentiable V one
can obtain the following integral equation for the equilibrium density p

b/

(V (cosA)) = v.p./ cot

-7

A=

p(u)ydwu, fori € o. (1.6)
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The asymptotics of OPUC with varying weight was constructed in Ref. 9 for the case when the

support o of p is the whole circle. It was proven that in this case P (A) ~ Cye'™ and e =7 (1).

(n)

ik 1D the case of

In the present paper we find the first two terms of the asymptotic expansion of «
one-interval support o of the equilibrium density p. Our main conditions are

Condition Cl: The support o of the equilibrium measure is a single subinterval of the interval
[— @, ], ie.

o =[-6,0], with 6 <. (1.7)

Condition C2: The equilibrium density p has no zeros in (— 6, 0) and
p (W)~ ClaAF0|"%, for A — +6, (1.8)
and the function u()) of (1.5) attains its minimum if and only if ) belongs to o.

Condition C3: V (cos A) possesses 4 bounded derivativesono. =[— 0 — ¢,0 + ¢€].

Remark I: In fact there is one more possibility to have one-interval o. Another case is a
some left symmetric arc of the circle, i.e., [m — 0, + 0]. In this case we replace V (cos x) by
V (cos (m — x)). After this replacement we obtain the support from the condition CIl. The scalar
product (®, e™),, will change on factor (— 1)k = ™. Therefore, one can see from the Gram-Shmidt
algorithm, that coefficients a,((") will change on factor (— 1)*.

The following simple representation of p plays an important role in our asymptotic analysis

Proposition 2: Under conditions C1-C3

1
p)= 2k AN PM)1,, (1.9
where
0 r_ /
x0) = ieosi—cosdl, poy= [ CESRPZILERI) G )
—9 sin(u — 1) /2 x (1)

The proof is very simple but for the reader’s convenience we give it in the beginning of Sec. III.
It is evident that conditions C1-C3 imply that P(A) does not have roots on interval [ — 9, 6].

Remark 3: If the support of the equilibrium measure is the whole interval [ — , ], then Eq. (1.6)
can be solved using the Hilbert operator.

_ ! U7 ot 22 (v (cos vy — (v "\ da 1.11
p(u)—EJrH/_ﬂcot (Y cos 1)) = (V (eos ) i (L11)

The main result of the paper is the following theorem:

Theorem 4: Consider the system of orthogonal polynomials and the Verblunsky coefficients
defined in (1.2) and (1.3). Let potential V satisfy conditions CI1 - C3 above. Then there exists
&1 > 0 such that for any |m| < en

6
al = (—=1)"*" s cos (5 +x};2m> , (1.12)

where s =1ors= —1 and
V2  om m?
n+m = 5o A~ o\l H 473 5 s
e P(G)sin0/2n+_<0g ”(" o
with P defined in Eq. (1.10).
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Remark 5: The sign of s cannot be explicitly found and may be different for different values of
n. As we are going to use this result in future for the proving of universality conjecture on the edge
of spectrum, we expect that the sign of s will not affect the final result (for the example see Ref. 13).

The proof of Theorem 4 is based on the relation, which is an analog of the string equation for
OP on the real line

Proposition 6: Let X,E”) be the orthogonal functions defined in Eq. (1.1). Then for any k

b4 PR k a(”)
(sin 1) V/ (cos 1) . (1) ™) (e YV Eeshay = i (—1)F! - L. (1.13)
-7 lok

The result was obtained in Ref. 5 but in some different form, therefore we give its proof in Sec.
III. We use Eq. (1.13) as a system of nonlinear equations for oz,({") and solve it by the perturbation
theory method. To construct a zero order solution of the system (1.13), following the method of
Refs. 1 and 13, we use the link of the OPUC with the unitary matrix models, which eigenvalue
distribution has the form

p,,()q,...,k,,):zi 1_[ ’ei*.f—gi’\k’2exp —nZV(eosAj) . (1.14)

M 1<j<k<n j=l1

It is known (see Ref. 11) that all marginal densities of Eq. (1.14) can be expressed using the
orthogonal functions

Y () = P (e Vs, (1.15)
and their reproducing kernel
k—1
Kin o)=Y 9 ) 9" (). (1.16)
=0

These ensembles first appeared in physics, but later their relationship to the pure mathematical
problems was discovered (see, e.g., Ref. 2).

The paper is organized as follows. In Sec. II, we prove the main Theorem 4 using some technical
results. We will prove these results in Sec. III.

Il. PROOF OF BASIC RESULTS

The method of the proof is a version of the one used in Ref. 13 An important part of the proof

is a zero order approximation for the Verblunsky coefficients ai’ik.

Theorem 7: Under conditions of Theorem 4 we have
) kool ? 110 01/2 L
) = (=1)"* s cos 7+ O (nY*log"?*n + (-) . .1)
n

Proof of Theorem 7. The main idea of the proof is to derive an equation with a functional
parameter ¢ for functions w,ﬁ") of Eq. (1.15) from the determinant formulas. Then, choosing appro-
priate parameter ¢, we obtain the equation for the Verblunsky coefficients. Define a new eigenvalue
distribution

k
DPin A1, Ap) = Qk_:l l_[ | — e“'"]zexp {—n Z V(cos)»;)} , (2.2)

1<j<m<k =1
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which differs from Eq. (1.14) by the number of variables (k instead of n). Let

5k,n ()&):/Pk,n()h,)\z,...,)»k)d)uz...d)\k,

2.3)
ﬁk,n (A, M)=/pk,,, ()»,/L,)\g,,...,)\.k)d)\.3...d)\.k,

be the first and the second marginal densities of Eq. (2.2). By the standard argument (see Ref. 11)
we have

Pin (W) = k™" Ky (A, 1),

Pl O 1) = s [ Koo G K ) = [ G 0] @9
where Kj , defined in Eq. (1.16). We will use also the notation
P (M) = %Kk.n A, 2) = Sﬁk,n ). (2.5)
Let ¢ be any 2w -periodic twice differentiable function. Then integrating by parts and using that
|ei’\ — e”‘|2 = cot hom |eM — e”"z, we get

dx

T g

(V (COS )‘))/ 5k+n,n ()“) ¢ ()‘) dr = n71 / ﬁk+n,n ()‘) ¢, ()‘) di

—TT -7

n,n )\‘1 - . < A
7npk+,( M)tan(k—u)/Z

Combining the above relation with the symmetry property O+n.n (A, L) = Prtn.n (4, 1), We obtain

+n+k—1/”~ o)
n

g g

(V (€08 1)) Psnn (M) @ (M) dd = 'fl/ Pesnn (1) @' (1) dn

-7 -7

;5k+n,n (A, 1) d)‘dﬂ

+n+k—1/” o) — o ()
2n . tan (A — ) /2

Using Eqgs. (2.4) and (2.5), and the equality

b4
2
/ |Kk+n,n ()"7 /'L)| d/’L = KkJrn,n ()"7 )\) ,

we obtain from the above

T o) — 9w
. 2tan(h — p) 2P ) Prnn (W) drdp

b4

- (V (cos 1)) pxsnn M) (R dA+ 8, [9] =0,  (2.6)
where

T

1
Sk (9] = 5> [45’ ) +¢" () —

2
2n* J_,

¢ 1) — ¢ (n)

tan (% — 11) /2] | Kt O | drdpe. 2.7)

We replace in Eq. (2.6) k by k — 1, subtract the new relation from Eq. (2.6), and multiply the result
by n. Then we have

T -9

2 b4 5
tan . — o) /2" [, 00 drdp - f (V (cos 1)) ¢ 1) |, G

+50 (@] + 82 [41 =0, (2.8)
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where

(1) 1 i ’ /

¥

¢(k)—¢(u)}
tan (A — ) /2

Km0 O ) 0, O, (w)}drd e,

T -9

@
% 191:= —x tan (A —p) /2

2
Pnsstn ) = p () |92, G drdpa

o [o ol of a.

8(1)

To estimate [¢] we note that

¢ (*) — ¢ (1)
an (A — u) /2
and use also the bound (see e.g., Ref. 15)

< Cle™ — e[ (14'llo + 119" ll) -

/ K1 O, )| | — [P drdp < C.
Combining it with the Schwartz inequality, we have
2 2 172
1 " i i
50 191] = (16l + 16 ) (/ [Kitn-tn G )] [ = e dkdu)

() ) 2 c )
[ oo o] drdn < S (161 +1071) . 29)

For 8(2) [¢] we use the following result of Ref. 7. Let p, := p ™ be the first marginal density of Eq.
(1.14). Then p, converges weakly to the equilibrium density o and for any ¢ € H'(— 7, )

2 _
'/w) pu (1) di — /«m)pm dif < Clply* [¢'],*n P20, (@210)
)\’ —
where || - ||, denotes L, normon [ — 7, 77 ]. Since the function M has abounded derivative
tan(A — ) /2

with respect to u, we obtain
Ik
o101 = |o 101 + €1l

< ¢ (1012 1612 1082+ Bl ) @

We split integral in Eq. (2.8) into two parts. Using Eq. (1.6) for A € o, we obtain

2
v.p. f dx / s oL p o w2, 00|

o PO~ 6w /
- [ anluiy, m\ ([ auo o0 25=25) o0y v cosi )
=80 91+ 800 (4] (2.12)

Equation (1.6) is valid only for A € 0. Below we need to extend this relation on some neighborhood
of 0. Using Eq. (1.9), we obtain the following representation.
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Lemma 8: Under the conditions of Theorem 4, for ¢ defined in C3 and
A€o, =[—0 — &0 + €],V can be represented in the form

0

2
4 -0

A=

(V (cosA)) — cot

P () x (n)du

— _Siég;’\ (P X )+ O (x> () 15,0, forr — +6.  (2.13)

Proofs of this lemma and other auxiliary results can be found in Sec. I1I of the paper. For A € o

we use the exponential bounds for the functions w,ﬁ"). These bounds can be proved analogously to
the corresponding result of Ref. 14.

Proposition 9: Let potential V satisfy conditions C1-C3. Than there exist constants C,C; > 0
and g1 > 0 such that for any integer k satisfying inequality |k| < &1n we have

2
/ ‘w;”jn (x)‘ dr < e~Cnhen g €y (0 P logn + [K| /). (2.14)
Oen i

Combining Eqgs. (2.9), (2.11), (2.12), and (2.13) with Eq. (2.14), we obtain finally the integral
equation

’ Ak m [
v.p. / dx / dug () cot == p () |1, )
Ok —0
1 2
t5o [ sienrg 0P G |, ] da
T ”En.k\”

= (Iplloo + 19 loc + 19" 00)O(en k)  (2.15)
with ¢,  of Eq. (2.14).

Remark 10: If the support of the equilibrium measure is the whole interval [ — r, ], then we
can obtain in a similar way the integral equation for the equilibrium density

i ? / " — k
0 w2, 0 drai = (191 +1671) 0 (10 + 1),

(2.16)

A=

v.p. ¢ () cot

It is easy to see that P(A) of Eq. (1.10) is a twice differentiable strictly positive function on the
interval [ — 6, @]. Taking in Eq. (2.15)

- o=
= P 1 - t )
o (1) () cos 5 cot—

we obtain

2
/ ‘llfé”ﬁn ()\)\ f (@ x,0)dr

- A A 2
+or / signi cot - _ coszx(x)‘w,ﬁ’fgn (x)‘ dh = O (eny |dist(z, o)), (2.17)
ron \0
where
0

f(z,A,0) = v.p./ cot

—0

A—u =M
cot

uw
x (1) cos Ed,u. (2.18)
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Computing f(z, A, 6) we obtain

0

sin i + sinA sinp 4+ sinz
@ 0) = v.p./ ad i X (w) cos Edu
_p COS [L — COS A COS (4 — CO 2
0 sin® 1 + sinAsinz %
=v.p X (n)cos ~dp
_g (cos . — cos L) (cos 4 — cos z) 2
0 —A sin A sin
=v.p./ —l—i-cotZ — < X(u)cosﬁd,u
0 2 COS[L —COSA  COS{L —COSZ 2
=1+ cot 2 (sm Ao (M) —sinzl (7)),
where
o n 50 Coxw 0
I, = —/ x (u)ycos —du = —mwv/2sin” =, L (2) = v.p./ ———————cos ~dL.
) 2 2 _p COS L — COS Z 2
To compute I5(z) we use well known relations (see Ref. 12)
1 a dt J72 — a2 —
S4a (2) 1= —v.p./ L — { I/vzi—as, forz ¢ [-a.al, (2.19)
T —a (z =) Na?—12 0, z€(—a,a),

where 1/4/z2 — a? is defined by the asymptotic ~1/z,z — 00. Then we have for z # +0

_ ! V1 —12dt _ Vsin2 z/2 — sin26/2
ko= \/EL sin? (z/2) /sin? (0/2) — 12 van (1 - sinz/2 L)

Now, using the above results, we obtain from Eq. (2.15)

2 50
/ ’I/IIEQ,, (A)‘ |: sin’ >t cot < (smk — sin Z):| dA
Oen k

2 in?z/2 —sin20/2 k-2
/ i, 69| sinz Y31 Z( STO/2 ot 22 = 0 (0 dist (2. o)) (220)
o sinz/2 2

en.k
Denote R™ the analog of the resolvent for the matrix C™:

(n) _ C(n) +elz

—C(”) — it (2.21)
Then by the spectral theorem
Rf[?k i (2) = / ‘1//15 (X)‘ t—dk
) ) A=z . :
Coipnx T COSZ= ‘1/’1(+n ()»)‘ cot (sinA — sinz) dA.
The above relations combined with Eq. (2.14) allow us to derive from Eq. (2.20) that
. Cf,") wax FCOsz+sin?0/2 + O (8,4 |dist(z, o)~
R (2) = =2 ( ). 2.22)

2cos(z/2) y/sin2z/2 — sin26/2

Integrating the product eiZR::ﬁk.n 4« (z) over the contour £5 = {z|dist(z, o) = §} for some § we
obtain from Eq. (2.22)

o™ + cosz +sin®>6/2
f RV (Ddz = yg ot ——nhntk 2 _4to0 (eard™ 7). (2.23)
£5 g 2c0s(z/2) y/sin2z/2 —sin26/2
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The Cauchy theorem and the spectral theorem yield
f ¢ Rypinixdz = —HmCl i (2.24)
L5

Since the integrand in the rhs of Eq. (2.23) is analytic outside o the integral does not depend on §,
therefore we can compute this integral with § — 0.

C,(Qk’ﬁk + cosz +sin? /2 .
2cos (z/2) /sin?z/2 — sin260/2

_ /9 . Cfﬁik,wk + cos u + sin®6/2

co "
6 cos (j1/2) y/sin26/2 — sin? /2

(n) — 1; iz
1(Cnar) = Tims o fo,

Then, using the change of the variable sin /2 = ¢ with Eq. (2.19) we get

2im
() : (n) (n) 2
I (cmﬁk) = ~47C i~ o (CH,{,H,C — cos?0 /2) . (2.25)
Combining Egs. (2.17), (2.24), and (2.25) we have
" 0
Ct(l-:k.n+k = cos’ 5 + O(&ni)- (2.26)

Then in view of Eq. (2.22) we obtain for the “resolvent”

1 +cosz+ O (g, [dist(z, 0) %)
2cosz/2+/sin?z/2 —sin26/2

(2.27)

(n)
Rn+k,n+k (Z) =

Similarly, integrating the product e ZR,(l'Qk’n 4« (z) over the contour £; and taking § — 0, we get

—4im (C(n)) d,bL + (0] (gn,k)

2 ,/9 2cos /2 cos2u
=—i
ntkntk —6 /sin20/2 — sin? 11 /2

0 0
= —din (3 sin* >~ 4sin’ S+H1+0 (a,,_k)) . (2.28)

From Eq. (1.4) we have

2 _ oo () 0) ) () ()
(C ! )m,m - Cm,m—lcm—lﬁm + Cmnmcrr:lm + Cn1,m+lcm+l,m
—m o~ (n) ~(n) (n)y ~m (n) (n) (), (M)
- Cn:l,mcm—l,m—l + Cn?,mcn?,m + Crr:l,mCm+l,m+l - am—lam-H - (X”:l Olm+2' (229)

Taking into account Eqs. (2.26) and (2.28), we obtain from Eq. (2.29)

0

(n) (n) (n) _(n) _ 2
Oy 1 gyt T 0 @y g p = 2CO8 ) +0 (Smk)
(2.30)

o)1y = —cos? 5t O (en)

To solve the system we multiply the first equation in Eq. (2.30) by affzkafﬁgk +1- By the definition of

the Verblunsky coefficients ‘aﬁ.") < 1, hence using the second equation of Eq. (2.30) we obtain

w ) ™ \? 2 0
(an+k+1) + (an+k) = 2cos 3 + O(&n0)-

Finally, combining the above relations, we obtain Eq. (2.1).
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Remark 11: If the support of the equilibrium measure is the whole circle we can use function

¢ (1) = cot - M,o_1 () in Eq. (2.16) and obtain similarly to Eq. (2.26)
() -12 |k|
Coiknex =0 | n”'“logn + - (2.31)
Proof of Theorem 4. Let
0 0
= rvscos (S ) ot =sin(Ga2). e

where s = + 1 and x,, 4 ,, € [ — 7, ). We have already a priori approximate Eq. (2.1)
1/2
X =0 <n_1/4 log?n + ’T’ ) . (2.33)
n

In this part of the paper we use the string equation for unitary matrix models (1.13). We consider

these equations as a system of nonlinear equations for xfl'jr)m. Denote

c® Cm= cm _ o=
=T g O (2.34)
2
Equation (1.13) can be rewritten as
{L"v (M™)} =y i (2.35)
ntkntk—1 no M '
n—+k
To simplify notations we set
Mj,k = Mﬁj,wk’ Zj,k = Lian:j,nJrk’ ag = agik’ Xe = xr(lrf:k’ (2.36)
) 0 .6 .0
a=cos"—, b=cos—sin—, c¢=sin"—. 2.37)
2 2 2 2
and define M* as a double-infinite matrix with entries
1
M;,k = (Sj,ka + E (8j72,k + 8j,k,2) c. (2.38)
The spectrum and the generalized eigenvectors of the matrix can be parameterized as
M*~{a+ccos2/\ rel-m v = ! e"“} (2.39)
b b 9 \/E

From now we consider matrix M as a double-infinite one and redefine it for J,» k < —nequal to
M*. Tt is convenient for us to extend the function V' from [ — 1, 1] to R in such a way to obtain the
function from £, (R) with the third derivative bounded in £, (R). Denoting V" the Fourier transform
of the extension we have for x € [0, 2]

1 [ o .
V’(x):g / VI (§) e dE. (2.40)

o]

Using Eq. (2.40), V/ (M™) can be represented

~ 1 oo o~
v/ (i), , = 5= [m 7 () {e'fM}i,j dE. (2.41)



043510-11 M. Poplavskyi J. Math. Phys. 53, 043510 (2012)

Applying the Duhamel formula twice to matrices M and M*, we obtain
- 1
OEM — M e / SEM (S M EM 1D gy
0

1 1—t - o ~
— g2 f dt / dse M (SM) M (SM) M U195 for SM =M — M*. (2.42)
0 0

Denote ford =0, 1, 2

f&= {eigﬂ}kﬂ/ =1’ o= {eiéM*}k-ﬁ—d,k—l )
R o o R R N R (2.43)
@ = {isf M M) M “”dt} TED=FE - @ 1E).
0 k+d.k—1
Now we find the first two terms in Eq. (2.42).
R iEM* 1 i i&(a+ccos i —i(k—
PE={M"Y = | e Elatec0s29) ikt ,—ik=1

1
— [ 5 cos(d + 1) pdp.  (2.44)
271
Let {v;} be the coefficients of the Fourier series for the function V' (a + ¢ cos 2¢), i.e.,
1 T
V= — V' (a + ccos2¢) cos kppd . (2.45)
‘ T (1 + Sk,()) /771

Note that vy = 0, for any integer [. By the spectral theorem we obtain

~ ~ 1 T
{Zv' (M)}, = Z Lk_kﬂ,% V' (a + ccos2¢)cos (d + 1) pd¢
d=0,%1,%2 -7 "
Ly k11

== T (Lijsr + Ligor) vo,  (2.46)

where we have used the relation

Proposition 12: Under conditions C1-C3 for vy defined in Eq. (2.45)
2
vy =209 + —.
c

For the second term in Eq. (2.42) we have

"1 ttéM i(1-ngM™
@ =it Z Z f k+d k+18Mk+l kti+d, { }k+l+d|k dr,

l=—0c0d|=-2

and by the spectral theorem and Eq. (2.39) we have

zéfa iéccoqub _eiéccos2x/f (I—d diat
fle= Z Z SMics1 k4 f f M DOHEEATID G Py,

e di—2 dem cos2¢ — cos 2

- (2.47)

Hence, integrating Eq. (2.47) with V' we obtain the second term in Eq. (2.35) in the form

1 SN =~ . 2
- /_ VOF@de= Y 3 MussereaBrosina .48)
I=—0c0d|=-2
where . } / /
Bos = / du / v V'(a + ccos2u) — V' (a + ccos2v) pieutpv) (2.49)
4mc —r cos 2u — cos 2v
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Below we need some properties of these coefficients.

Proposition 13: For any function V satisfying condition C3 coefficient By g depends only on |o|
+ |Bl, i.e. By g = Byo|1ip), equals to zero when o or B is odd and for any positive y

1
By, = — Z v; =0 (y=?). (2.50)
¢ j—ye2N+1

Since §My,; are bounded, the proposition yields that the series in the rhs of Eq. (2.48) is
convergent. Using Egs. (2.35), (2.46), and (2.48), we obtain the equation valid for any k

2 o)

+ (Ligs1 + Lix—1) vo + Z Z LiiraBioarea18Migi kg, + 1"
d.di=—21=—o00

Ly g1
C

Q k
= (- i (1 + —) , (2.51)
Pk n
for

1. &
=5 / Vi) Y TEd)ds.

2
d=-2

Set

Then Zk, j and M ; can be written up to the errors O (Sk) as

b ~ = wrk (€, b~ ~
M2 = —3 (Xk—1 + X)) » Lig—2=(=1) > + 5 (Xe—1 + Xx)
c - - ~ - ~ ~
My j—1 = (—1)"+k_1S§ (Xx—1 — Xx41) s Lik—1 = —sb — sax; + S5 (Xk—1 + Xxs1)
My = b (X + X11) Lix=0 (2.52)
c oo - ~ - c o~ o~
IM jy1 = (—1)"+kS§ (Xx — Xk42) s Li 1 = sb+saXpy — S5 (X + Xr42)
b _ - ~ " c b _ -
SMy jv2 = ) (X1 + Xi42) Ligs2 = (1! (5 + 3 (X1 + xk+2))

Replacing Z,-’ ; and 8M; ; by their first order approximations and reminders we get a system of
equations with respect to X;.

Lemma 14: Under conditions C1-C3 equations (2.51) for {Xi}x<¢,, have the form
~ bk
D AiFi===+Ry, (2.53)
cn

and the Toplitz matrix A has the symbol

§(¢) = Z At = ! jrcj;si ©9/2) P (—2 arcsin <s1n g cos %)) : (2.54)

Reminder Ry, satisfies the bound

k? .
R <C <E + S+ Y Seeu |1|5/2> +r, (2.55)
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where

(n)
Ty

2 00 s )
= C/ ey Hrm”zd%
0 (2.56)

oo

. _ . 12 . et e

Fty (x) = min {y USRS o] Skqass dist™ (@ [—1 1D+ y T IR ¢
§=—00

where || - ||, means the Ly (R) norm, and R*(z) = (M* — zI)™', z= —x + iy.

Equations (2.53) are true only for |k| < e;n. But we extend them to all k € Z redefining
Eq. (2.53) by the identities. All bounds for the reminders will be valid because the reminder for k£ ~
nis of order 1.

Now we start from the bound (2.1) and using the perturbation theory method obtain Eq. (1.12)
in a few steps. Suppose we have proved the bound

Xn = 0 (logf n (n™* + m/n|")). 2.57)
Note that on the first step we have it with @ = 1/4, 8 = 1/2, y = 1/2. This bound yields that
Skras < log? n (n™ + 0 + min {|k/n* + |s/n? , 1}). (2.58)

To estimate the reminder R; we must estimate ry ,(x) first. For this aim we need some properties of
R*. From the spectral theorem we have

1 2 ei(j 7l)¢d¢

R, =G;_:= — _ 2.59
il i 271]0 a—z+ccos2¢ (2.59)

Using this representation we will estimate the sums in the rhs of Eq. (2.56).

Proposition 15: Let G; be defined in Eq. (2.59). Then for any integer p

© (X ? max {1, log1/y}
/ (Z |Gy (=x +i)Ps? | dx < €, 22 L (2.60)
% \5=0 y P

To estimate r,S") we use the second bound from the rhs of Eq. (2.56) for small y and the first

bound for sufficiently big y. Combining Eq. (2.56) with Eq. (2.58) we get

C log? n
ey () 5 ~Br 28T

[o¢]
Y 1Gog (—x +ip) (72 4+ 07 +min{[k/n", 1} +|s/n[7), y = n
s=0
JG, y<n?,

where § we will choose on every step. Integrating the square of the last equation over x and using
Egs. (2.60) and (3.25), we obtain

2 C(;,ﬁ.)/ 10g4f3+1 n . (n74ot + n74y + m1n{|k/n|4” , 1} + (ny)—4y) Ly > 1’178
”rk,y(x)Hzf VY 2100 1 _s
y y-logl/y, y<n

The last bound and Eq. (2.56) imply

2
rP < Capyslog?2n (0™ +n7* 407 4+ min {|k/n|*, 1} + 0~ H@=2) - 2.61)
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Now we estimate R;. The term Z Skl ~3/2 can be estimated using Eq. (2.58).

ZSk+2ll 52 —Z+Z

I<n I>n
< C&’ﬁ,%a log? n (n’zo‘ +n7 4 min{|k/n|2y , l} + n’3/2) .
Combining the above relations finally we can estimate the reminder Ry
Ry =0 (K*/n* +n7% +10g ' n (™% + n7>* 4+ min {|k/n|* , 1} 40~ HC7D))

To find X; we find the inverse matrix of {A;_;};__,.. By the spectral theorem

—0Q

. . 1 bd ei(k71)¢
(A )k,l = (A )k 1~ 27[ /ﬂ 5(¢) dd)

From the conditions C1-C2 P(A) > C > 0 on the interval [ — 6, 6], therefore the solution of
Eq. (2.53) can be found as

~_b m—+k 1
M—;Z;(n Mom ) = Pwmwﬂn %ﬁwk ). (2.62)

Since P(A) is a twice differentiable function we have Z |A;1 |2 m* < C. Therefore

m

28+1 )

mikA,,'| /log

k2 k
=0 (Z |4, <n_25 4072 432 4 Q=D i {—2, 1} + min { =
n

+0 §:|A;|G%f+¢%ff) +o (X |4,

Im|<n |m|=n

k2
=0 <n_25 + 072 4 p 2 @D 4 omin {—2, 1} + min {
n n

k|
- ) 1 )

where we use
1y |m _ m\%y _
> = X At [ s e,
n n
|m|<n |m|<n

Using the last inequality for X with o = 1/4, 8 = 1/2, y = 1/2, 8 = 1/4 we obtain bound (2.57) with
a=1/2,=2,y =1.Taking § = 1/2we have o = 1, 8 =5, y = 2 and finally with § = 2/3 we get
a=4/3,8=11,y =2.

~ k k2
Xp = 72 — =+ 0 (log n(n_4/3+ﬁ)).

P (0)sinf/2 n

lll. AUXILIARY RESULTS.
Proof of Proposition 2. To prove Eq. (1.9) we denote
Dy ={z:]z| =1,argz € [-0,06]}.
Consider two functions defined on Dy

F (e“‘) _ i —(V (cos )»))/7

5 G =p0). 3.1
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From Eq. (1.6) we obtain

1 G
F(e) = E”""/g £d;,

where € is Dy with the direction from ¢¢ = ¢~ to ¢,. Then by the standard method (see Ref. 12)
we get

G(z) =

X(Z)v.p./ F(¢) dt (3.2)

2mi e —z X ()

where

X (2) = /(z = ¢0) (z = ¢o)- (3.3)

It is easy to see that X* (e'*) =+/2¢*/2x (1). Using the identity (2.19) we obtain that

d¢
v.p. | ——————— = 0. From the last relation and Eq. (3.1) we obtain Eq. (1.9).
P /s(c—;l)xww 4 4

|
Proof of Lemma 8. Consider the function
cos /2
| P [ P () (cosp —cosB) — P (L) (cos A —COSG)COSA/Z
F() = —/ cot du. (3.4
472 J_, 2 J/cos uw — cos @

We prove first that F coincides with V' on o . For this aim we compute the integral

O A —pcos(u/2)du 0 sink  cos(u/2)du
I (L) =v.p. cot =v.p.
) 2 x (1) _gcosp —cosh  x ()
_sinA sin(6/2) dt . cos(1/2)sign)

= —v.p. =21 ———1 g0y,
V2 —sin(0/2) (sin® /2 — 12) \/sin?6/2 — 12 A/cosf — cos A (=001

where we have used Eq. (2.19). This relation and Eq. (1.6) imply that F (1) = (V (cos 1))’ for
A € 0. Since P is a twice differentiable function, we obtain that F is a differentiable function. Then

FO=V' W], =0=FMN-V'W|__,=0=F©®)=V"0

The function F — V' is a differentiable on o, and equals 0 with its first derivative on o. Hence we
have F (1) — (V (cos 1)) = O (Jcos A — cosB|) for A € 0. \0.

|
Proof of Proposition 6. From the identity
T T /
/ (1" 0 ) eV D) . =0,
-7
and orthogonality (%X;"_)l o), 1 (A)> =0 we get
S Gy Vicosh Ld w
/ sin AV’ (cos 1) x"" (1) xy (Me ™" sty = - d_AXk s X1 - (3.5)
0

To compute the rhs of Eq. (3.5) we use the definition of orthogonal polynomials (1.1) and some
properties of polynomials Pk(") and Q,({"). We assume that k is odd. For even k the proof is similar.
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From the definition of x."’ we obtain

(n)
( ) n —i n —i n
Iw = <—2’(‘; G )> < T (P ) e 0 (A)>
. —i n —i n d n n
= ik (e PR, (). 05 () +< Py (). 0 )(A>>.
From the definition of Pk(") we have
PPGY L™ m=0,....k—1; Q") Le™ m=1,... k. (3.6)

Therefore the first term in the above relation is zero. Hence

Ten =1 @k 1Dy g (2% 05 ).

Now using Eq. (3.6) one more time and equality H P,f") H = 1 we obtain

Ten =i Qk+ 1)(105,'?+1 )= 1o Q(")(A)>

= =i Gk + Do (1 0% ) = =i @k + Dy o (P G )

(n> (n)
= —iQk+1) 2"“ O — iQk+1) 2“‘ (3.7)
Czk 2% P2k+1

Relations (3.5) and (3.7) give us Eq. (1.13).
[ |

Proof of Proposition 12: We prove the proposition, using Eq. (1.6). Consider the difference
— 2v and its integral representation.

/g

1
vy —2vp = — V' (a + ccos2¢) (cos2¢ — 1)de.

A 0
Changing the variables with sin 5= sin > sin ¢, we get

A2
n/)L

1
vy — 2vp = m/ —V’(cos A)sin A

And finally, using Eq. (1.6), we obtain
1 A— in X /2dA 2
vy —2vp = —/du,o (m) v.p./cot o sin%/

c [ g

2
p(uwdu = -
2 /sin20/2 —sin2 1/2 C/a ¢

Proof of Proposition 13: We prove first Eq. (2.50) for V' (a + ¢ cos2u) = cos 2ku with k > 0.
B is symmetric over changing « - —«, 8 — — B,a<> . Hence, we can assume 8 > o« > 0. For
odd « or 8 we will have 0, because of the ratio under the integral in Eq. (2.49) does not change after
the shift u — 7 + u and v — w + v. Therefore we change « — 2o and 8 — 2. And finally,
changing 2u — u and 2v — v in Eq. (2.49) we obtain

® cos ku — coskv
B : du ——— cosau cos fu.
20,28
= 4nc . cosu — CoSv

To compute this integral we use two evident relations

T sinl 1, 1 is odd,
/ ik udu:Znsignl-{ (3.8)

_p Sinu 0, 1 is even.
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dv = 2w — .
_z COSU — COSV sinu

T coslu — coslv sinlu
/ B (3.9

Now to apply Egs. (3.8) and (3.9) we transform integral for BM 2p as follows

cosau — Cosav

1 T T
BY  — —/ du/ dv (cosku — coskv) —— cos Bv
228 qp2e | _,, ( ) coSu — COSv p

cos ku — coskv
du dv cos v cos Bv
o CcoSuU — COSV

4nc

We write the first integral as a sum of two parts: one with cos ku and the other with cos kv. Then
in the second part we integrate over u using Eq. (3.9). In the second integral above we similarly
integrate over u and use Eq. (3.9). Then we obtain

1 d T cosou — CoSQU
B(zlg,zﬁ = —/ ducosku/ dv—————————cos v

2
4mc J_, ,n cosu — COoS v
1 T sinkv — sinav
+ — v——— cos v cos Bu.
2mce sin v

) CoS ol — COS AV . . .
Note that the function f, (v) := ———— can be represented as a trigonometric polynomial
cosu — Cosv

of v with degree not bigger than « — 1, therefore the first integral in the above relation is equal to
0if B > «. And finally we have

w 1 Tsintk—a—pB)v+sintk —a+pv
B2a2ﬁ__ - d
’ drc sinv

el k-a—pean+1
—1 o, otherwise

(3.10)

oo
Now using Eq. (3.10) and the Fourier expansion V' (a + ¢ cos 2¢) = Z vy €os 2k¢, we obtain the

k=0
first equality in Eq. (2.50). To estimate B, 25 we use the Schwarz inequality

1
Z vor| < v,fk6 (oz + B)” 5/2)

k—a—Be2N+1 k>2a+2/3 k>2a+2,3

Proof of Lemma 14 Using Eq. (2.52) in Eq. (2.51) we obtain

b a. | c. l+a . C
=+ X1 — 5 Ok + Xpg2) Fvo | S X1 + ——=— (=X + Xig1) — S Xk42
c c 2 2 2 2

[ee]

+ E |: (Biar12) — Biai—2)) Riesai—1 — Xes241)
|=—00

2
+ 7 (Bar4) — Bri—aj2142)) Rerai2 — Xesar)

b2 ~ ~
- (B\4z—2| - B|41—4\) (Xk421—2 + Xky21-1)
b2
ey (Biar2) — Biai—api2i42)) Kerar + Fiis1)

2 ~ ~ b k 1.
+ b° (Bl — Biar—) Frqai—1 + Xigr) | = - I+ ol Bl + Ry, (3.11)
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where R; accumulates the errors of Egs. (2.51) and (2.52). It is easy to see that

l=—00

k? = n
[Ry| < C (; + Sk + Z (Sk + Sera) (Bpar—g | + ... + ‘B|41+4})> +r.

Recollecting terms with X; we obtain the system (3.11) in the form (2.53). Definitions (2.53) and
(2.54) and system (3.11) imply

85(¢)=Ao+2)_ Ascos(g)

=1

1—0+a)vy c c
= —avo—i—f—i—cvocosqb—i—vz (4_1 - Ecoqu)—}—ZacosqS—l—Za)

20—1
+Y vy <§ (cos (2l + 1) ¢ — cos (2l — 1)) — 2a cos 2l — 2a — 4a (Z Coskqb))
=1

k=1

21-2
+ Z Vai_n (% (cos (21 —2)¢p — cos (21) ¢) + 2acos (2l — 1) ¢ + 2a + 4a (Z cos k¢>)
=2

k=1

> 1 1
= (csinqﬁ + 2a cot%) ;(—l)l_' sinl¢vy — 2”2 + v (—a — % + ccos¢> + 3

=_ <a + ¢ sin? %) (Z vy (1) %20052 % + v0> . (3.12)

=1

On the other hand, from the definition (1.10) we have

0 / = inl
P <2arcsin (sinz sin %)) =2 /2 (1 — csin? %) ((1 — cos v)lg;vy Ssllrll“j) — v0> . (3.13)

The equality can be obtained from Eq. (1.10) by the change of variables sin A/2 = sin 6/2sin /2 and
sinu/2 = sin6/2sinv/2

Py )_/9 V(X)) = V' () dx
W=, 7 A= Joosh—cosd

sin
2

_ A T sinv/2cos u/2V’' (a + ccosv) —sinu/2cosA/2V'(a + ccosu) du
N x sinu/2cos /2 —sinv/2cosA/2 cosA/2

7 cos /2 (sin? v/2V' (a + ccosv) — sin® u/2V’ (a + ¢ cosu
5 p/2 (sin” 0/2V" (a ) = sin’u/2V )
. sin2u/2 — sin? v/2
T V’(a+ccosu)—V’(a—|—ccosv)d

- coSu — COS v

= 2cos,u/2<(1—cosv) u—2nvo.) (3.14)

Now, using the definition of vy and equality

/‘” coslu—coslvd ) sinlv

U = 27 —; )
_z COSU — COSV S v

we obtain Eq. (3.13). Therefore,

/1 —ccos? % 0 &
——— = P —2arcsin (| sin — cos — .
2 2

) =
() e

(3.15)
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To estimate the reminder we will use the inequality

0o __ 1 . 2 o ,
dx| < | ——n w2l P d/A 22 1> dg,
‘/wf(x)g(x) x _\/ans)/o ey £ Py y\/ [ R@P I+ a
(3.16)
where Py (1) = +, g(x) any s —times differentiable function with g € L, and f € L,. The
7 (2 +12)

inequality was proposed in Ref. 6. It can be obtained from the Schwartz inequality

\ [ g

1 R
= ‘2—/ f(E)?(E)dE‘
T J-c0

1 © 172 00 172
—2s -~ 2 2s
<—</ |f & QlEl+1) dé) (/ g &I 2+ 1) dé) ;

- 2

and exact computation of the Fourier transform of P,

~ 1 > y .
Pey= L it gy — g ~Iyliél
v (&) T[-/;oo y2+t26 sign(y)e

Now, using that

2
2

1, ~~
”f*PyH;: b ||ny|

and the definition of the I" function we obtain

1 9 R ) 1 0o
-y 2s—1 P. dy = f —yQI&|+1) Z‘Y_ld -2 1 —2s )
F(2s)/0 e y? 7| Py ()| dy ran ) ¢ y*ldy = Q&1+ 1)

Finally, combining the above relations, we get Eq. (3.16). We use this inequality for V' and 7 d)
with s = 3.

l g ~ ? *
‘va/(sn(s;d)ds chf ey |r @)« P[5 dy
T 0

o0
- 2
=cv [ ey ) n Ry
On the other hand, for any self-adjoint linear operator A and any linear B we have

1 o~ . 1
_/ P, (&) MdE = —TG 4 (—x +iy).
2 T

1 e~ . ) 1 (3.17)
E / oixé Py (f)elASlBe’AE(l_t)dé — ;SGA (—x 4+ iy) BG A (—x +iy),
where G4(z) = (A — z)~'. Hence from Egs. (2.43) and (3.17) we have
1
(F % P) () = —FResasr (—x +i). (3.18)
1
(fO*Py) (x) = ;SR,:MJ(_, (—=x +iy), (3.19)
1
(f'*P)(x)= ;8 {R* (—x +iy)SMR* (—x + iy)}k”’kil . (3.20)
Using the resolvent identity, (3.18), (3.19), and (3.20) we obtain
(r*Py)(x) = (f*Py)(x)— (fO*Py)(x)— (f1 *Py)(x)
=93 {R* (—x +iy)SMR(—x +iy)SMR* (—x + iy)}kﬂl!ki1 . (3.21)
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Now we are ready to estimate r(d) x Py.

|r(d)* Py| < |{R*(=x +iy) MR (—x +iy) SMR* (—x + iy) ex_1, exra)|

< IRI (R (—x +iy) SMPR* (=3 = 19), .,y 14

R (x = i) MR (—x +iy), L (322)

Both roots can be estimated using the definition of §M and Eq. (2.59). Finally we obtain

(o]
|r(d)* Py| < IRI Y 1Gal Sipas (3.23)

§=—00

For sufficiently small y we will use another bound

(@) * Py| < [(f * Py) (0)] + |(f0*Py)(x)|+|(fl*Py)(x)|

= C (IRI+ IR+ 18M ({R* @ R* @) g0 + (R QR @) _y,y))

d=-2

d=2
<cC (an +HIR+ Y (R @R @}Hd,kﬂ,) . (324

Proof of Proposition 15 It is easy to see that we can prove this proposition for even p. For odd
p it follows from the Schwartz inequality. The definition (2.59) implies

1 .
— G s —21s¢.
a—z+ccos2¢ ; u¢
Hence

e—2is¢

1 b
Gos|? 52 = GSZI’_/ - 4
Zl xls Z 28 2n J_pa—7+ ccos2p ¢

I\ /" 9% 1 1 i
B 4) 2 J_,\0¢p*Pa—z+ccos2p ) a—7+ ccosg

TP 1 2 m d
= cp/ de < C},yfzpf ¢

. d
PP a — 7z + ccos2¢ _x la —z 4 ccos2¢|? ¢
From the residue theorem we obtain

= Cpy 713G,

Go= ————, where§2+2a;zf+1=()and|§|<l-
c(¢2=1) ¢

Therefore,
1
Iz =1[]z —cosf[’

Finally, combining all above bounds, we obtain

2
G ; ZSZp dx < C"” 74}772/
/w(stl ! ) =ty —o0 Iz = 1]z = cos 0|

Cpy~*"2max {log1/y, 1}. (3.25)

|Gol =

IA
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