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SUMMARY 25 

Accumulation of lactate in the tissue microenvironment is a feature of both inflammatory 26 

disease and cancer. Here, we assess the response of immune cells to lactate in the context of 27 

chronic inflammation. We report that lactate accumulation in the inflamed tissue contributes 28 

to the up-regulation of the lactate transporter SLC5A12 by human CD4+ T cells. SLC5A12-29 

mediated lactate uptake into CD4+ T cells induces a reshaping of their effector phenotype, 30 

resulting in increased IL17 production via nuclear PKM2/STAT3 and enhanced fatty acid 31 

synthesis. It also leads to CD4+ T cell retention in the inflamed tissue as a consequence of 32 

reduced glycolysis and enhanced fatty acid synthesis. Furthermore, antibody-mediated 33 

blockade of SLC5A12 ameliorates the disease severity in a murine model of arthritis. Finally, 34 

we propose that lactate/SLC5A12-induced metabolic reprogramming is a distinctive feature 35 

of lymphoid synovitis in rheumatoid arthritis patients and a potential therapeutic target in 36 

chronic inflammatory disorders. 37 

 38 
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INTRODUCTION 41 

The recent discovery of the fundamental role of metabolism in immune cell biology is 42 

contributing immensely to our understanding of immune cell regulation (Buck et al., 2016; 43 

O’Neill et al., 2016). 44 

So far, most studies have focused on the role of metabolic pathways in the 45 

establishment of the immune response. More recently, novel signalling functions of 46 

metabolic intermediates in the regulation of immunity, including the small metabolites 47 

lactate, acetyl-CoA, succinate, itaconate and others have been revealed. The roles of 48 

metabolite signalling stretch from regulation of cytokine production via effects on the cellular 49 

redox state, to interactions with transcription factors binding to specific cytokine promoter 50 

elements, to modulating the activity of transmembrane ion channels, and interference with 51 

cell migration and differentiation. Hence, the signalling functions of metabolites extend 52 

beyond self-regulatory roles and include cell-to-cell communication and sensing of micro-53 

environmental conditions, i.e. within the inflammatory microenvironment, to elicit stress 54 

responses and cellular adaptation (Haas et al., 2015, 2016; Tannahill et al., 2013). 55 

Although known for its role in the muscle-liver Cori cycle and neuron-astrocyte 56 

shuttle, lactate has mainly been seen as a by-product of metabolism or as a biomarker in 57 

critical care at best rather than a bioactive molecule, and its functional effects have thus been 58 

neglected for long time. Far from being inert, lactate accumulation in the disease 59 

microenvironment has major effects on tissue-resident and infiltrating immune cells. 60 

Recently reported outcomes include tumour escape from immune surveillance mechanisms 61 

via reshaping of macrophage and effector T cell functions to immune-suppressive and tumour 62 

promoting regulatory T cells and tumour-associated macrophages (Angelin et al., 2017; 63 

Brand et al., 2016; Colegio et al., 2014; Reina-Campos et al., 2017). In contrast, 64 

accumulation of lactate in the tissue microenvironment in the course of inflammatory 65 
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disorders serves as an amplifier of inflammation (Haas et al., 2015, 2016; Weyand et al., 66 

2017). Lactate has recently been shown to be a major source of carbons for the TCA cycle, 67 

surprisingly even in excess of glucose, both in normal and cancerous tissues (Faubert et al., 68 

2017; Hui et al., 2017). However, whether this contributes to its signalling properties is not 69 

well understood. 70 

The physiological lactate concentration in blood and healthy tissues is approximately 71 

1.5-3mM, but it can rise to 10-40mM at inflamed tissues as shown in tumour 72 

microenvironments, and arthritic joints, as well as atherosclerotic plaques and adipose tissue 73 

in obese individuals. Elevated levels of lactate have also been reported in the serum of 74 

multiple sclerosis and Sjögren’s syndrome patients, in the latter correlating with fatigue and 75 

exercise intolerance (Pucino et al., 2017; Amorini et al., 2014). Lactate is mainly produced in 76 

the cytoplasm during hypoxia or as a consequence of aerobic glycolysis in proliferating cells, 77 

and it is then secreted through the plasma membrane. This transport is dependent on solute 78 

carrier transporters that perform proton-lactate symport (i.e. MCT1-4) or sodium-dependent 79 

transport (i.e. SLC5A8 and SLC5A12). Indeed, only MCT1 (also known as SLC16A1, Km 80 

4.5) and MCT4 (also known as SLC16A3, Km 28) have a high specificity for lactate and 81 

broad tissue expression. Sodium-coupled lactate transport is carried out by the high affinity 82 

transporter SLC5A8 or the low affinity transporter SLC5A12, which have been initially 83 

reported for their expression in kidney (Srinivas et al., 2005; Gopal et al., 2007). More 84 

recently, we have reported the expression of SLC5A12 by CD4+ T cells (Haas et al., 2015). 85 

Even though some transporters facilitate extrusion (e.g. MCT4) and others influx (e.g. 86 

MCT1) of lactate, the main factor determining the transport direction is the lactate gradient, 87 

facilitating lactate import when extracellular lactate is high, such as in inflamed tissues 88 

(Halestrap and Wilson, 2012; Srinivas et al., 2005). 89 
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For more than 50 years, the inflamed joint has been recognized as a site of low 90 

glucose and high lactate concentrations (Goetzl et al., 1971; Treuhaft and MCCarty, 1971), 91 

reflective of the intense cellular turnover in the rheumatoid pannus. Synovial fibroblasts 92 

adopt an anaerobic glycolysis type of metabolism, producing and secreting high amounts of 93 

lactate in the microenvironment. There, lactate contributes to the regulation of the functions 94 

of surrounding cells (i.e. plasticity), including infiltrating immune cells (Fujii et al., 2015). 95 

RA is characterized by three distinctive histological pattern of synovitis (i.e. 96 

pathotypes). In 40% of patients, the inflammatory infiltrate is constituted mainly by 97 

monocyte/macrophages in the synovial sublining, i.e. myeloid pathotype. A rarer subset, 98 

~20% of RA patients, is characterized by a prevalent fibroid signature, i.e. fibroid/pauci-99 

immune pathotype. In the remaining 40% of RA patients, immune cells can be found 100 

spatially-grouped in follicular structures, which can acquire features of secondary lymphoid 101 

organs (SLO) with high T and B cell infiltration and segregation, i.e. lymphoid pathotype. 102 

These structures, which develop in the inflammatory tissue, are called ectopic lymphoid-like 103 

structures (ELS). The recognition that ELS may play a key pathogenic role in autoimmunity 104 

and may be exploited as potential biomarker for disease evolution and response to therapy is 105 

gaining attention (Pitzalis et al., 2013, 2014; Bombardieri et al., 2017). Our group has 106 

recently found that SLC5A12 is highly expressed in human RA synovial tissues. Strikingly, 107 

its levels significantly increased in correlation with the RA synovial tissue T cell score and 108 

with the formation of ELS which are rich in IL17 (Haas et al., 2015; Peters et al., 2011; Jones 109 

et al., 2015; Jones and Jones, 2016), thus suggesting a possible role of lactate/SLC5A12-110 

induced metabolic signaling in promoting chronic inflammation in RA. 111 

Here, we explored the response of CD4+ T cells to lactate in the context of the tissue 112 

microenvironment in inflammatory disorders. We identified several mechanistic steps leading 113 

from the influx of lactate into CD4+ T cells to the plastic reshaping of their effector functions 114 
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and their induced exacerbation of the inflammatory response.  115 
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RESULTS 116 

The expression of the lactate transporter SLC5A12 by immune cells is regulated by 117 

activating and inflammatory stimuli. 118 

Lactate modulates CD4+ T cell migratory abilities and cytokine production via the 119 

sodium-coupled lactate transporter SLC5A12, which is selectively expressed by CD4+ but not 120 

by CD8+ T cells, at least in the murine system (Haas et al., 2015). To assess whether the 121 

expression of SLC5A12 may be regulated by activating stimuli, peripheral blood 122 

mononuclear cells (PBMCs) from healthy control (HC) subjects were activated for 48 hours 123 

with anti-CD3 monoclonal antibody (mAb) or left untreated. Activation led to upregulation 124 

of SLC5A12 by peripheral CD4+ whilst CD8+ T cells were mostly negative (Figures 1A-C). 125 

In the same experiment, activation led to up-regulation of SLC5A12 also by peripheral 126 

CD14+ monocytes and to a less extent by CD19+ B cells (Figures S1A-C), conceivably via 127 

signals initiated by T cell interactions with antigen presenting cells upon CD3 stimulation in 128 

the context of the PBMCs. In comparison, the same immune cell subsets were negative for 129 

SLC5A12 or expressed it at low levels in untreated PBMCs (Figures 1A-C and S1A-C). In 130 

additional experiments we carried out, we observed that SLC5A12 was already upregulated 131 

by CD4+ T cells at the 12-hour activation time point of HC PBMCs and that indeed this time 132 

point may have the peak of SLC5A12 expression on the cell membrane. Indeed, SLC5A12 133 

expression on the membrane was reduced at the subsequent 24- and 48-hour time points 134 

(Figure S1D). 135 

Next, we activated PBMCs from HC or rheumatoid arthritis (RA) subjects for 48 136 

hours with anti-CD3 mAb or left them untreated, and then compared the expression of 137 

SLC5A12 by CD4+ T cells. We found that peripheral RA CD4+ T cells became SLC5A12+ 138 



Pucino, Certo et al. 
 

8 
 

only upon T cell receptor (TCR) engagement, much like their HC counterparts (Figures 1D-139 

F). We analysed the phenotype of CD4+SLC5A12+ T cells in further depth in Figure 3. 140 

To test whether inflammatory cues, in addition to activating stimuli, may also 141 

contribute to the expression of SLC5A12 by CD4+ T cells, we cultured HC or RA PBMCs in 142 

medium supplemented with 5% HC or RA autologous blood serum (BS), respectively, or 143 

with 5% RA synovial fluid (SF). The percentage of CD4+SLC5A12+ T cells was very low in 144 

both non-activated HC and RA PBMCs cultured in medium containing autologous BS or RA 145 

SF (Figures 1D and 1F). Anti-CD3 mAb-mediated activation led to upregulation of 146 

SLC5A12 by CD4+ T cells; however, no difference was observed in the percentage of 147 

CD4+SLC5A12+ T cells from HC and RA PBMCs activated in medium containing 148 

autologous BS (Figures 1E-F). In contrast, anti-CD3 mAb-mediated activation of RA but not 149 

of HC PBMCs in the presence of 5% RA SF led to a robust further upregulation of SLC5A12 150 

by CD4+ T cells as compared to HC and RA CD4+ T cells from PBMCs activated in the 151 

presence of BS (Figures 1E-F). Importantly, we observed that SLC5A12 expression levels 152 

by CD4+ T cells from RA PBMCs activated in the presence of RA SF were comparable to 153 

those expressed by CD4+ T cells in synovial fluid mononuclear cells (SFMCs) from RA 154 

joints in the absence of any ex vivo stimulation (Figures 1E-F). We also found that CD4+ T 155 

cells from RA SFMCs presented high levels of SLC5A12 irrespective of any activating or 156 

inflammatory stimuli we used ex vivo, as compared to CD4+ T cells from RA PBMCs 157 

activated in the presence of autologous BS, suggesting they have already experienced 158 

maximal levels of SLC5A12 inducing factors, i.e. antigen and exposure to inflammatory cues 159 

(Figures 1G). As for RA SFMCs, when we analysed mononuclear cells (MCs) from 160 

inflamed tonsils excised from patients subjected to tonsillectomy, CD4+ T cells were 161 

SLC5A12+, independent of any activating stimuli we used ex vivo (Figures S2A-C, G). 162 

Likewise, analysis of CD14+ and CD19+ cells by FACS or CD68+ and CD20+ cells by 163 
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fluorescence microscopy in the same samples revealed that they were SLC5A12+, 164 

independent of any activating stimuli we used ex vivo (Figures S2D-G). In contrast, CD8+ T 165 

cells were mostly negative for SLC5A12 (Figures S2A-C, G), which was consistent with 166 

data in Figures 1A-C. 167 

We then wondered whether lactate may contribute to the regulation of the expression 168 

of SLC5A12. We generated mAbs targeting SLC5A12 by immunization of rats with a 169 

peptide comprising the predicted main extracellular loop of SLC5A12 (Gopal et al., 2007), 170 

with the aim of inhibiting the carrier function of the transporter. Out of ~ 400-screened 171 

clones, we selected 3C7 for its ability to specifically recognize SLC5A12 (Figure S3). 172 

Treatment of RA SFMCs with 3C7 mAb led to reduced expression of the transporter itself by 173 

CD4+ T cells (Figure 1H). Furthermore, incubation of anti-CD3 and anti-CD28 mAb-174 

activated peripheral CD4+ T cells – isolated from HC PBMCs with magnetic bead-based 175 

negative selection prior to activation – with 10 mM sodium lactate, a concentration similar to 176 

what is measured in RA SF (Haas et al., 2015), contributed to the induction of SLC5A12 177 

expression both at mRNA and protein level. Pre-incubation with a blocking anti-SLC5A12 178 

polyclonal antibody (SLC5A12 Ab; Haas et al., 2015) prevented lactate-induced upregulation 179 

of SLC5A12 (Figures 1I-J). These data suggested that accumulation of extracellular lactate, 180 

such as at sites of inflammation, contributes to the upregulation of the lactate transporter 181 

SLC5A12 by activated CD4+ T cells. 182 

 183 

SLC5A12 facilitates lactate uptake and oxidation by TCA cycle in activated CD4+ T cells. 184 

Having observed an increase in the expression levels of the lactate transporter 185 

SLC5A12 in response to activating and inflammatory stimuli in CD4+ T cells (Figure 1) and 186 

knowing that these cells are mostly MCT1- (Haas et al., 2015), we wondered whether 187 
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SLC5A12 may serve as the main carrier of lactate into activated CD4+ T cells that have 188 

reached the inflamed tissue and hence are exposed to a high concentration of extracellular 189 

lactate. 190 

Indeed, exposure to lactate caused a decrease in glucose uptake by activated CD4+ T 191 

cells, which was reversed by incubation of cells with SLC5A12 Ab (Figure 2A). No 192 

significant change in glutamine uptake was observed in the same experiment indicating a 193 

specific block in glycolysis (Figure 2A). NAD+ is a key co-factor of the sixth reaction of the 194 

glycolytic cascade catalysed by glyceraldehyde 3-phosphate dehydrogenase. As a 195 

consequence of this reaction, NAD+ is reduced to NADH, which acts as an inhibitory 196 

feedback on glycolysis. NADH can be re-oxidised to NAD+ via the lactate dehydrogenase 197 

reaction converting pyruvate to lactate. This reaction is important to maintain a steady flux of 198 

glycolysis. However, lactate dehydrogenase can perform the reverse reaction when cells are 199 

exposed to high levels of extracellular lactate as it happens at the site of inflammation, with 200 

reduction of NAD+ to NADH and consequent inhibitory feedback on glycolysis. Indeed, upon 201 

exposure to lactate we observed a drop in the NAD+/NADH ratio in activated CD4+ T cells, 202 

indicating a relative increase in intracellular NADH (Figure 2B). Data in Figures 2A-B were 203 

consistent with the reduced rate of glycolysis (ECAR) we observed in the presence of lactate 204 

(Figure 2C, left), while the oxygen consumption rate (OCR) in the mitochondria was not 205 

affected by lactate (Figure 2C, right).  206 

We reasoned that these findings might be explained by an uptake of lactate by 207 

activated CD4+ T cells when they are in an inflamed, lactate-rich tissue. Pyruvate may then 208 

enter the TCA cycle, but since we did not observe an increase in mitochondrial OCR, we 209 

wondered what the fates of the lactate-derived carbons were. To test our rationale in a direct 210 

fashion, we performed mass spectrometry-based tracer analysis of [U13C]-lactate. 211 

Specifically, we activated CD4+ T cells and then incubated them with [U13C]-lactate in the 212 
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presence or absence of SLC5A12 Ab, similarly to Figure 2A. We then extracted intracellular 213 

metabolites and performed mass spectrometry analysis. We found that a significant 214 

proportion of 13C-carbons from [U13C]-lactate were incorporated in to pyruvate (M+3) and 215 

citrate (M+2), and that this effect was reduced by incubation with SLC5A12 Ab (Figures 216 

2D-E). Additionally, the M0 (unlabelled isotope) in each of these metabolites is also reduced: 217 

as the antibody blocks the lactate transporter SLC5A12, influx of 13C-lactate but also of 218 

glucose-derived 12C-lactate is reduced as a consequence of SLC5A12  're-importing' some 219 

lactate previously secreted by the cell. Consistent with these data, we found an increase in 220 

citrate and acetyl-CoA levels in activated CD4+ T cells exposed to lactate at different time 221 

points (Figures 2F-G).  222 

Altogether, these data suggested that when exposed to high levels of lactate, such as 223 

those found in an inflamed tissue, activated CD4+ T cells could take up lactate via the 224 

specific carrier SLC5A12. This causes glycolysis to slow down (through NAD) and in turn 225 

leads to more carbons going into the TCA cycle. Therefore, we hypothesized that the carbon 226 

flux we observed may be required to replenish intermediates of the TCA cycle that feed 227 

biosynthetic processes. 228 

 229 

Lactate shapes the effector phenotype of CD4+ T cells at the site of inflammation via 230 

SLC5A12. 231 

 We then tested the effects of exposure to inflamed tissue levels of lactate in the 232 

presence or absence of SLC5A12 Ab on the effector phenotype of anti-CD3 and anti-CD28 233 

mAb-activated CD4+ T cells that were isolated from inflamed tonsils. We observed an up-234 

regulation of IL17A and IFN mRNAs in response to lactate, which was reversed by 235 

incubation with SLC5A12 Ab. IL17-family member IL22 also showed a tendency to 236 
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upregulation in response to lactate. We did not observe any significant modulation in other 237 

cytokines (i.e. inflammatory IL6 or immunosuppressive IL10 and TGF; Figure 3A). 238 

However, the observed upregulations at the mRNA level resulted in only IL17A but not IFN 239 

upregulation at the protein level upon treatment with lactate and again this response was 240 

abolished by incubation with SLC5A12 Ab (Figure 3B). 241 

Supporting the findings of IL17 upregulation, also the mRNA of RORT, the 242 

signature transcription factor of the Th17 T cell subset, was elevated as a consequence of 243 

exposure to lactate and again this response was abolished by incubation with SLC5A12 Ab 244 

(Figure 3C). Interestingly, the expression of the transcription factor FOXO1, which limits the 245 

differentiation of CD4+ T cells into the Th17 subset and the consequent production of IL17 246 

(Ouyang et al., 2009), was reduced by treatment with lactate, even though incubation with 247 

SLC5A12 Ab did not have any effects on its expression (Figure 3C). Consistent with data in 248 

Figure 3A, expression of FOXP3, the signature transcription factor of regulatory T (Treg) 249 

cells producing TGF and ILwas not impacted by lactate treatment (Figure 3C). 250 

Furthermore, we observed a lactate-dependent regulation of PD1 but not of the transcription 251 

factor BCL6 or the chemokine receptor CXCR5 (Figure 3C). 252 

To gain direct insights on the impact of lactate on the effector phenotype of CD4+ T 253 

cells at the site of inflammation, we conducted intracellular staining of CD4+IL17+ (Th17), 254 

CD4+IFN+ (Th1), CD4+PD1+CXCR5+ (Tfh) and CD4+FOXP3+ or CD4+IL10+ (Treg) subsets 255 

from activated MCs from inflamed tonsils  (Figure 3D). Incubation with SLC5A12 Ab 256 

resulted in a reduction in the Th17 and Tfh T cell subsets with a less pronounced reduction in 257 

the Th1 and no modulation of the Treg subsets (Figure 3D). We further characterized the 258 

phenotype of human CD4+SLC5A12+ T cells from 48-hour activated HC PBMCs and 259 

observed that RORt+, CXCR5+PD-1+ICOS+ (Tfh) and Tbet+ are the CD4+ T cell subsets that 260 
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are most positive for SLC5A12 whilst CD25+Foxp3+ (Treg) CD4+ T cells are less frequently 261 

positive for SLC5A12 (Fig 3E, right). Furthermore, we observed that IFN+ (signature 262 

cytokine of Tbet+), IL17A+ (signature cytokine of RORt+) and IL21+ (signature cytokine of 263 

Tfh) CD4+ T cells are mostly positive for SLC5A12, whilst Treg and CD4+ T cells that do not 264 

produce cytokines (Neg CKS) are much less frequently positive for SLC5A12 (Fig 3E, left). 265 

 266 

Lactate induces IL17 expression via nuclear PKM2- and fatty acid synthesis (FAS)-267 

mediated STAT3 phosphorylation. 268 

 We next asked how lactate may promote IL17 expression and whether the lactate 269 

uptake via SLC5A12 and its induced increase of citrate may play a role in this response of 270 

CD4+ T cells. Exposure of activated CD4+ T cells to inflamed tissue levels of lactate caused a 271 

rapid, marked elevation of intracellular reactive oxygen species (ROS; Figure 4A). The 272 

glycolytic enzyme pyruvate kinase M2 (PKM2) functions as a homo-tetramer in the cytosol 273 

converting phosphoenolpyruvate to pyruvate in the last reaction of glycolysis. ROS can 274 

promote the oxidation and subsequent dimerization of PKM2. Dimers of PKM2 localize in 275 

the nucleus where they phosphorylate transcription factors, including signal transducer and 276 

activator of transcription 3 (STAT3), a known transcriptional regulator of IL17 (Shirai et al., 277 

2016; Yang et al., 2007). Indeed, we found that lactate promoted the translocation of PKM2 278 

in the nucleus and the phosphorylation of STAT3 (Figure 4B). Activation of STAT3 279 

occurred as early as 1 hour after cell treatment with lactate (Figure 4B) and could still be 280 

observed at 12 hours (Figure 4C). STAT1, another STAT family-member implicated in Th17 281 

differentiation (Peters et al., 2015), was also phosphorylated at the same time point (Figure 282 

4C). Phosphorylation of STAT1/3 returned to basal levels upon incubation with SLC5A12 283 

Ab (Figure 4C). 284 
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De novo FAS is another biological process that has been implicated in the 285 

differentiation of the Th17 T cell subset (Berod et al., 2014). We observed that activated 286 

CD4+ T cells take up lactate and consequently increase the intracellular pool of citrate and 287 

acetyl-CoA (Figure 2D-G), which are the substrates of FAS. We therefore asked whether 288 

exposure to lactate may induce FAS in these cells, by assessing the activation levels of 289 

acetyl-CoA-Carboxylase (ACC) and 5’-AMP activated protein kinase (AMPK), two key 290 

enzymes in the regulation of fatty acid metabolism. We found that exposure to lactate caused 291 

a decrease in phosphorylated ACC at Serine 79 indicating increased ACC enzymatic activity 292 

(Figure 4D). Consistently, we also detected a decrease in phosphorylated AMPKα at 293 

Threonine 172 (Figure 4D), indicating reduced AMPK enzymatic activity. ACC exists in 294 

humans and other mammals as two isoforms, ACC1 and ACC2. Whereas ACC1 is present in 295 

the cytosol and initiates de novo synthesis of fatty acids by converting acetyl-CoA to 296 

malonyl-CoA (Chirala and Wakil, 2004), ACC2 is associated with the outer mitochondrial 297 

membrane and is a key enzyme in the oxidation of fatty acids (FAO; Abu-Elheiga et al., 298 

2000, 2001). We found a marked decrease in phosphorylated ACC in the cytosol of activated, 299 

lactate-treated CD4+ T cells but no major change in phosphorylated ACC in the mitochondria 300 

(Figure 4E). 301 

To test any effects of lactate on FAO in a more direct fashion, we measured OCR in 302 

activated CD4+ T cells cultured in 2.5mM glucose and 1μM BSA-palmitate that served as a 303 

substrate for FAO, or BSA alone. BSA-palmitate raised OCR as compared to BSA alone, but 304 

lactate did not affect either conditions. Addition of etomoxir, an inhibitor of the key enzyme 305 

carnitine palmitoyltransferase-1 (CPT-1) in the initiation of FAO, reduced BSA-palmitate 306 

OCR to the levels observed in the BSA alone control and again this effect was not affected by 307 

lactate (Figure S4A). 308 
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To test whether lactate feeds fatty acid synthesis, we incubated activated CD4+ T cells 309 

with [U13C]-lactate and traced 13C labelling in palmitate. Lactate 13Cs labelled nearly 50% of 310 

newly synthesized palmitate. This effect was inhibited in cells that were incubated with 311 

SLC5A12 Ab, indicating incorporation of lactate-derived carbons in palmitate backbone 312 

(Figure 4F). An induction of FAS by lactate was also confirmed by an increment in total free 313 

fatty acid (FFA) cellular content (Figure S4B). 314 

Given the importance of both STAT3 and FAS in the differentiation of the Th17 T 315 

cell subset (Shirai et al., 2016; Yang et al., 2007; Berod et al., 2014; Shi et al., 2011), we 316 

asked whether lactate may modulate the expression of IL17 via either or both pathways. We 317 

treated activated CD4+ T cells with 5-(tetradecyloxy)-2-furoic acid (TOFA), a competitive 318 

inhibitor of ACC (Berod et al., 2014), 4-methylene-2-octyl-5-oxotetrahydrofuran-3-319 

carboxylic acid (C75), a fatty acid synthase inhibitor (Shen et al., 2017) and 320 

dehydroepiandrosterone (DHEA), an inhibitor of glucose-6-phosphate dehydrogenase 321 

(G6PDH, Raineri and Levy, 1970; Gordon et al., 1995), a key step in the pentose phosphate 322 

pathway (PPP) providing NADPH equivalents for FAS (see also Figures 6C-E). As expected, 323 

all three inhibitors increased phosphorylated ACC levels (Figure S4C), indicating an 324 

inhibitory effect on FAS. DHEA also increased phosphorylated AMPK (Figure S4C), which 325 

is suggestive of a switch towards FAO. With these three compounds, we then tested the 326 

impact of lactate-induced FAS on STAT3 activation and IL17 production. All three 327 

compounds reduced lactate-induced phosphorylation of STAT3 (Figure 4G) and expression 328 

of IL17A (Figure 4H). Also the AMPK activator aminoimidazole-4-carboxamide 1-β-D-329 

ribofuranoside (AICAR; Corton et al., 1995) and the potent and selective PKM2 activator 330 

N,N’-diarylsulfonamide (DASA), which stabilizes cytosolic PKM2 homo-tetramers and 331 

prevents PKM2 dimers translocation into the nucleus (Anastasiou et al., 2011), markedly 332 

reduced the expression of IL17A (Figure 4H). Interestingly, a co-treatment with DASA and 333 
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C75 or TOFA resulted in an additional reduction of lactate-induced IL17A expression as 334 

compared to each compound alone (Figure 4H). 335 

To further support our findings, we took advantage of a new Crispr/Cas9 Slc5a12 KO 336 

mouse. We show that in response to lactate both ACC and STAT3 phosphorylation as well as 337 

IL17 production are impaired (Fig 4I). 338 

Taken together these data indicate that lactate modulates IL17 expression by 339 

activating two pathways, PKM2 translocation into the nucleus and enhanced FAS, 340 

converging on STAT3-induced transcription of IL17 (Figure 4I). 341 

 342 

Reduced glycolysis and enhanced FAS are the mechanisms through which lactate induces 343 

CD4+ T cell retention in the inflamed tissue. 344 

Building upon our previous findings that inflamed tissue levels of lactate induce a 345 

‘stop migration signal’ in activated CD4+ T cells (Haas et al., 2015; Pucino et al., 2017), we 346 

assessed the impact of interfering with SLC5A12 function – via the use of both SLC5A12 Ab 347 

and the mAbs we generated – on human CD4+ T cell migration in vitro and ability to egress 348 

from the inflamed tissue ex vivo. We started by culturing equal size tissue sections from 349 

juxtaposing areas of tonsil biopsies – isolated from patients who had been subjected to 350 

tonsillectomy – in the presence or absence of lactate and/or SLC5A12 Ab. We then assessed 351 

by flow cytometry the type and number of immune cells released in the culture media in each 352 

condition (Figure 5A). Lactate reduced the egress of CD4+ T cells as compared to the control 353 

condition and this effect was reversed by SLC5A12 Ab. Lactate also reduced the egress of 354 

CD14+ cells but treatment with SLC5A12 Ab did not reverse this effect, indicating SLC5A12 355 
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is not a dominant lactate transporter in this subset. No significant effects were observed by 356 

treatments with lactate and lactate plus SLC5A12 Ab in CD8+ or CD19+ cells (Figure 5B). 357 

We then sought to assess whether a similar effect could be observed in synovial tissue 358 

biopsies from patients who had been subjected to joint replacement. Concurrently, we also 359 

assessed whether the SLC5A12 mAbs we generated were able to reverse lactate-induced 360 

block on CD4+ T cell migratory abilities. We treated activated CD4+ T cells with lactate or 361 

left them untreated in the presence or absence of SLC5A12 Ab or seven SLC5A12 mAb 362 

clones. We then assessed cell chemokinesis in response to the chemokine CXCL10 in trans-363 

wells. As expected, SLC5A12 Ab reversed the ‘stop migration signal’ induced by lactate 364 

(Figure S5A; Haas et al., 2015). In addition, the mAb clones 3C7 and 9G7 were able to 365 

consistently reverse the ‘stop migration signal’ induced by lactate (Figure S5A). 366 

Furthermore, as shown in Figure S3, 3C7 mAb was able to specifically recognize SLC5A12. 367 

We therefore tested 3C7 mAb alongside SLC5A12 Ab in the ex vivo egress model in synovial 368 

tissues. Again, SLC5A12 Ab was able to reverse the lactate-mediated retention of CD4+ T 369 

cell in the tissue and a similar effect was obtained with 3C7 mAb (Figures 5C-D). 370 

Next, we asked how the metabolic adaptation of activated CD4+ T cells to inflamed 371 

tissue levels of lactate impacted on their response to migratory stimuli. Glycolysis is required 372 

for the motility of activated, murine CD4+ T cells (Haas et al., 2015) and FAS supports 373 

invasiveness of inflamed tissues by peripheral CD4+ T cells (Shen et al., 2017). 374 

We first analysed the effect of exposure of activated, human CD4+ T cells to lactate 375 

on several glycolytic enzymes in a time-course experiment. We observed reduced levels of 376 

hexokinase 1 (HK1), HK2, phosphofructokinase (PFK), enolase1 and PKM1/2 (Figure 377 

6A), indicating reduced rates of glycolysis, consistent with data in Figures 2A-C. However, 378 

lactate-induced downregulation of HK1 and enolase1 but not of HK2 and PKM1/2 was 379 
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impeded by cell incubation with SLC5A12 Ab (Figure 6B). These data suggest specific 380 

checkpoints of lactate-mediated control of glycolysis, in addition to the observed increased 381 

reduction of NAD+ to NADH, as shown in Figure 2B. Based on our observation that lactate 382 

caused an increase in the intracellular pools of citrate and acetyl-CoA, we investigated 383 

whether lactate may induce post-translational acetylation of cytosolic proteins in a 12-hour 384 

time-course but we did not observe any major changes (Figure S6A). This potential 385 

checkpoint control will require further investigations. 386 

Intracellular localization of HK2 was suggested to serve as a checkpoint channelling 387 

intracellular metabolic fluxes. While cytosolic HK2 mediates glycolysis, VDAC-dependent 388 

binding of HK2 to the outer membrane of mitochondria promotes cell survival (Anderson et 389 

al., 2016; Woldetsadik et al., 2017; Mathupala et al., 2009; Anflous-Pharayra et al., 2007). 390 

Indeed, mitochondrial HK2 may favour glucose-6-phosphate entry in the PPP producing 391 

NADPH equivalents and anabolic intermediates (Cheung et al., 2012). We found an increase 392 

in mitochondrial HK2 after 4-hour lactate treatment as compared to cells left untreated 393 

(Figure 6C). This observation was supported by confocal microscopy data showing co-394 

localization of HK2 with mitochondria upon 4 hour treatment with lactate (Figure 6D). We 395 

also found a reduction in the NADP+/NADPH ratio at 1 hour and 4 hours after cell treatment 396 

with lactate (Figure 6E), consistent with an increased shunt of glucose-6-phosphate into PPP 397 

and with the observed induction of FAS. The observed inhibition of PKM2 may also 398 

contribute to divert glucose into the pentose phosphate pathway and thereby generate 399 

NADPH (Le Goffe et al., 2002). Therefore, we asked whether induction of FAS by lactate 400 

might play a role in the entrapment of CD4+ T cells in the inflamed tissue. Activated CD4+ T 401 

cells were treated with lactate in the presence of DHEA, TOFA and C75 or left untreated and 402 

then subjected to chemokinesis in response to either CCL20 or CXCL10. All compounds 403 

blocking FAS at different key steps released CD4+ T cells from lactate-induced ‘stop 404 
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migration signal’ (Figure 6F). Again, to further support our findings, we took advantage of 405 

the Slc5a12 KO mouse and found that in response to lactate migration response to CXCL10 406 

was impaired  (Fig 6G). 407 

Overall, our findings indicate that lactate-induced inhibition of CD4+ T cell response 408 

to migratory stimuli and retention in the inflamed tissue is due to a metabolic adaptation to 409 

local levels of lactate that entails reduced glycolysis and translocation of HK2 to the outer 410 

membrane of mitochondria, with metabolic fluxes diverted into NADPH-dependent de novo 411 

FAS (Figure S6B). 412 

 413 

Lactate/SLC5A12-induced metabolic reprogramming is operational in the CD4+ T cell 414 

infiltrated RA synovium. 415 

To examine the lactate/SLC5A12-induced metabolic signalling network in the clinical 416 

settings of RA, we took advantage of the pathobiology of early arthritis cohort (PEAC). This 417 

is a cohort of adults over the age of 18 manifesting early symptomatic inflammatory arthritis 418 

(< 12 months) and who are naïve-to treatment with conventional or biologic disease-419 

modifying anti-rheumatic drugs (DMARDs; http://www.peac-420 

mrc.mds.qmul.ac.uk/index.php). Synovial biopsies collected for this cohort were classified 421 

according to histological pattern of synovitis (i.e. lymphoid, myeloid or fibroid; Pitzalis et al., 422 

2013; Cañete et al., 2009) and presence of ectopic lymphoid structures (ELSs). These are 423 

organized aggregates of T and B cells that develop at sites of chronic inflammation and are 424 

associated with more severe disease course and autoimmune responses, as well as reduced 425 

response to therapy (Pitzalis et al., 2013; Cañete et al., 2009). ELSs are rich in CD4+IL17A+ 426 

cells which play a pivotal role in ELS formation and maintenance (Jones et al., 2016). 427 

Synovial biopsies were also classified by histological analysis according to inflammatory 428 

http://www.peac-mrc.mds.qmul.ac.uk/index.php
http://www.peac-mrc.mds.qmul.ac.uk/index.php
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score (Krenn score; Krenn et al., 2002; Pitzalis et al., 2013) and expression of cell-lineage 429 

CD4+ T cell gene modules. As expected, the synovial biopsies with a lymphoid pathotype 430 

were also ELS positive and showed the highest inflammatory score and degree of infiltration 431 

by CD4+ T cells (Figure 7A). 432 

In this cohort we analysed the expression of groups of metabolic genes on synovial 433 

biopsies by RNA-sequencing (n=87). In the lymphoid pathotype, we found evidence of 434 

expected patterns of Th17 differentiation genes, i.e. reduced FOXO1 and increased IL17A, as 435 

well as of ELS genes (Figure 7A). When we analysed the metabolic genes, we found a 436 

downregulation of glycolytic genes concurrent with an upregulation of PPP and TCA cycle 437 

genes in the lymphoid pathotype as compared to the other pathotypes (Figure 7A). 438 

Furthermore, we found a positive correlation between synovial SLC5A12 expression and 439 

disease activity measured as DAS28-CRP (Figure 7B). We also found that DAS28-CRP 440 

correlates with IL17RA (Fig 7B) as well as CXCL13, LTB and FOXO1 (Fig S7A). 441 

Furthermore, some key Th17 and metabolic genes described in our study correlate, and in 442 

particular, FASN with SLC5A12 (Fig 7B) as well as FASN with IL17RA, FASN with 443 

STAT3 and ACACA with STAT3 (Fig S7B). 444 

Overall, our data support a role for lactate/SLC5A12-induced metabolic 445 

reprogramming in CD4+ T cells as a distinctive mechanism operational in the RA subset 446 

characterized by CD4+ T cell infiltration. In further support, we used a well-established 447 

murine model of arthritis where the disease is induced by subcutaneous injection of human 448 

glucose 6 phosphate isomerase and the inflammatory infiltrate into the joints is rich in T cells 449 

(Schubert et al., 2004; Bruns et al., 2009; Iwanami et al., 2008), hence resembling the human 450 

lymphoid RA. SLC5A12 Ab treatment reduced both clinical and histological scores of 451 
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arthritis as compared to the isotype control, and showed a trend effect superior to anti-TNF 452 

treatment (Figures 7C-F).  453 
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DISCUSSION 454 

Historically, lactate has been considered a waste product or at best a biomarker in 455 

critical care. Yet in the past decades, it was already shown to be a major substrate for 456 

oxidative phosphorylation (OXPHOS) in neurons, for gluconeogenesis in the Cori cycle and 457 

for the synthesis of glycogen in the skeletal muscle (Pellerin and Magistretti, 1994; 458 

Magistretti and Allaman, 2018; Cornell et al., 1973). Recent evidence further supports lactate 459 

as a major carbon source for cellular metabolism both in normal and cancerous tissues. 460 

Infusion of [U13C]-lactate in fed and fasted mice, revealed extensive labelling of TCA cycle 461 

intermediates in all tissues (Hui et al., 2017; Faubert et al., 2017). Strikingly, in lung and 462 

pancreatic tumours the contribution of lactate to the TCA cycle was greater than that of 463 

glucose (Faubert et al., 2017). 464 

Here, we showed that lactate accumulation in the inflamed tissue contributes, together 465 

with activating and inflammatory stimuli, to the up-regulation of the sodium-coupled lactate 466 

transporter SLC5A12 on human CD4+ T cells. SLC5A12 is already upregulated by CD4+ T 467 

cells at the 12-hour activation time point of HC PBMCs and indeed this time point may have 468 

the peak of SLC5A12 expression on the cell membrane. Indeed, SLC5A12 expression on the 469 

membrane is reduced at the subsequent 24- and 48-hour time points. These data suggest that a 470 

longer kinetic may not be required. Yet, the 48-hour time point in most of our experiments is 471 

justified by the fact that we need to allow time for cells to respond functionally to lactate. 472 

SLC5A12-mediated lactate uptake by human CD4+ T cells initiated an anabolic 473 

response leading to de novo FAS and involved the translocation of PKM2 in the nucleus. 474 

Both mechanisms contributed to the activation of downstream STAT3 transcription factors. 475 

Such integration between metabolism and signalling modules led to the plastic reshaping of 476 

the CD4+ T effector phenotype within the inflamed tissue. 477 
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Our data are in line with Yabu et al. who showed that lactic acid enhances the 478 

production of IL23/IL17 by CD4+ T cells, acting as a pro-inflammatory signal (Yabu et al., 479 

2011). However, the mechanisms were not known. In line with lactate being a major fuel for 480 

the TCA cycle (Hui et al., 2017; Faubert et al., 2017), we observed an increase in citrate and 481 

acetyl-CoA levels upon exposure of activated CD4+ T cells to lactate at concentrations as in 482 

the chronic inflamed site. Acetyl-CoA is produced by the breakdown of both glucose (by 483 

glycolysis) and fatty acids (by FAO). It then enters the TCA cycle in the mitochondrion and 484 

forms citrate by reacting with oxaloacetate. Citrate can be exported to the cytosol, where it 485 

may be converted back to acetyl-CoA and then serve as a substrate for FAS through 486 

carboxylation in to malonyl-CoA by ACC, the first committed step in the synthesis of fatty 487 

acids. Indeed, after lactate treatment we detected activation of ACC, which in line with our 488 

data has been shown to be indispensable for IL17 production (Berod et al., 2014; Endo et al., 489 

2015). 490 

Our in vitro data were further extended to disease pathobiology by RNA-sequencing 491 

analysis showing a metabolic dysregulation within the synovium of the subset of RA patients, 492 

which is characterized by CD4+ T cell infiltration (~40% of total patients). In particular, these 493 

patients displayed a low expression of glycolysis and increased levels of TCA cycle and PPP 494 

related genes, in line with data published by the Weyand’s group on the peripheral RA CD4+ 495 

T cells (Yang et al., 2013, 2016; Shen et al., 2017). 496 

In contrast to its splice variant PKM1, which is constitutively expressed in most adult 497 

tissues, PKM2 is allosterically activated in a feed-forward regulatory loop by an upstream 498 

glycolytic metabolite, fructose-1,6-bisphosphate (FBP), and is susceptible to inhibition by 499 

growth factor signaling through interaction with phospho-tyrosine containing proteins. These 500 

properties of PKM2 allow proliferating cells to divert glucose into anabolic pathways 501 

emanating from glycolysis in order to meet the increased biosynthetic demands of 502 
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proliferation. Association of PKM2 subunits into homo-tetramers is required for optimal 503 

enzymatic activity (Eigenbrodt et al., 1992). Both reduced FBP and increased ROS cause 504 

decreased PKM2 activity (Anastasiou et al., 2011). Incidentally, lactate uptake causes both 505 

these effects. PKM2 inhibition is able to divert glucose into the pentose phosphate pathway 506 

and thereby generate NADPH (Le Goffe et al., 2002), which in turn provides reducing 507 

equivalents for detoxification of ROS by increasing reduced glutathione (GSH) and hence 508 

allowing cells to withstand oxidative stress. The small-molecule PKM2 activator DASA-10 509 

(NCGC00181061, a substituted N,N′- diarylsulfonamide) prevented inhibition of PKM2 by 510 

H2O2 (Anastasiou et al., 2011). PKM2 has been investigated in atherosclerotic coronary 511 

artery disease (CAD) and RA patient-derived macrophages. Here, the increased glucose 512 

uptake and glycolytic flux due to inflammation fuel the generation of mitochondrial ROS, 513 

which in turn promote the destabilization of the PKM2 tetramer, favoring its dimerization and 514 

subsequent nuclear translocation. Nuclear PKM2 functions as a protein kinase that 515 

phosphorylates the transcription factor STAT3, thus boosting IL6 and IL1β production 516 

(Shirai et al., 2016; Weyand et al., 2017). 517 

In line with these findings, we observed an increase of PKM2 nuclear translocation 518 

with concomitant enhanced STAT3 phosphorylation upon treatment of activated CD4+ T 519 

cells with lactate. STAT3 is implicated in Th17 differentiation (Yang et al., 2007) and 520 

interestingly, the inhibition of PKM2 nuclear translocation with DASA was able to reduce 521 

lactate mediated IL17 production. 522 

Similarly, lactate dehydrogenase A (LDHA) enzymatic activity was recently shown to 523 

be necessary to sustain IFNγ production by CD4+ T cells via induced aerobic glycolysis 524 

(Peng et al., 2016). Genetic deletion of LDHA in CD4+ T cells significantly reduced glucose 525 

consumption and promoted a shift towards oxidative metabolism, as well as the reduction of 526 

IFNγ expression. The decrease in IFNγ transcripts was due to reduced histone acetylation. 527 
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Acetyl-CoA serves as a substrate for lysine acetyltransferases (KATs), which catalyze the 528 

transfer of acetyl groups to the epsilon-amino groups of histone lysines and many other 529 

proteins. Fluctuations in the concentration of acetyl-CoA, reflecting the metabolic state of the 530 

cell, are translated into dynamic protein acetylation that regulates a variety of cell functions, 531 

including transcription, replication, DNA repair, cell cycle progression, and ageing 532 

(Shahbazian and Grunstein, 2007). In the absence of LDHA, the increase in the rate of the 533 

TCA cycle necessary to compensate the drop in glycolysis did not allow the export of acetyl-534 

CoA from the mitochondria to the cytosol, thus reducing the pool of acetyl groups available 535 

for histone acetylation. These data demonstrate the regulation of INF-γ production in Th1 536 

cells by lactate metabolism through a fine-tuned epigenetic mechanism of histone acetylation 537 

coupled to cellular metabolism (Peng et al., 2016). 538 

Furthermore, N-Terminal acetylation of cellular proteins initiates specific protein 539 

degradation processes (Hwang et al., 2010). We did not observe increased lysine acetylation 540 

of cytosolic proteins upon cell exposure to lactate, suggesting this may not be the mechanism 541 

responsible for the reduced expression of glycolytic enzymes we observed in the presence of 542 

lactate, which may instead be due to reduced pathway usage consequent to NADH build up in 543 

the cell, as we have shown in line with literature. Moreover, citrate is a known inhibitor of 544 

glycolysis and its accumulation might have been responsible for the inhibition of glycolysis 545 

observed (Newsholme et al., 1977). 546 

In contrast, the immune cell response to lactate in the tumour microenvironment is 547 

quite different from that seen in the context of chronic inflammation. Recent studies have 548 

reported the ability of tumour-derived lactate to suppress the immune response against the 549 

tumour itself, thus creating an environment permissive to the tumour growth (Brand et al., 550 

2016; Angelin et al., 2017; Colegio et al., 2014). 551 
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Lactate accumulation in the inflamed tissue also caused CD4+ T cell retention at the 552 

site of inflammation, as a consequence of impaired cell motility caused by reduced glycolysis 553 

and enhanced fatty acid synthesis. In addition to a reduced glucose flux through glycolysis, 554 

several glycolytic enzymes, including HK, were decreased upon cell exposure to lactate in a 555 

time-dependent manner. HK catalyses the first committed step of glucose metabolism. 556 

Glucose entering the cell through glucose transporters (GLUTs) is phosphorylated by HK to 557 

produce G6P. The two most common isoforms, HK1 and HK2, have overlapping tissue 558 

expression, but different subcellular distributions, with HK1 associated mainly with 559 

mitochondria and HK2 shuttling between mitochondrial and cytoplasmic compartments. HK2 560 

binds to the voltage-dependent anion channel (VDAC), an outer mitochondrial membrane 561 

protein, which interacts with the adenine nucleotide translocase (ANT), forming a contact site 562 

between the outer and inner mitochondrial membranes (Fiek et al., 1982; Vyssokikh and 563 

Brdiczka, 2003).  564 

Accordingly, we found increased mitochondrial localization of HK2 upon lactate 565 

treatment. We also found a reduction of NADP+/NADPH ratio, suggesting a shunt toward 566 

PPP and anabolic metabolism. Moreover, mitochondria-associated HK2 has a pro-survival 567 

function via antagonizing apoptotic Bcl-2 family proteins and thereby protects cells from 568 

apoptosis (Pastorino et al., 2002). This may be a mechanism that allows CD4+ T cell survival 569 

in lactate-rich environments. 570 

Our data fit with RA naive CD4+ T cells displaying low basal glycolysis due to a 571 

deficiency in 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). This caused 572 

a shunt of glucose-6-phosphate (G6P) towards the pentose phosphate pathway (PPP) with 573 

generation of NADPH equivalents and altered activation of ataxia telangiectasia mutated 574 

(ATM), a key enzyme in the control of cell cycle. Such alterations resulted in a high capacity 575 
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of proliferation by RA CD4+ T cells and a switch to pro-inflammatory subsets such as Th1 576 

and Th17 and chronic inflammation (Yang et al., 2013, 2016). 577 

ATP low pyruvate low NADPH high RA CD4+ T cells also displayed increased FAS and 578 

consequent deposition of cytoplasmic lipid droplets. This resulted in the upregulation of the 579 

podosome scaffolding protein TKS5. TKS5hi RA CD4+ T cells spontaneously formed actin- 580 

and cortactin-rich membrane ruffles, which empowered them to penetrate into non-lymphoid 581 

tissue and establish inflammatory infiltrates. All these effects were abolished by FAS 582 

inhibition (Shen et al., 2017). 583 

Building on these results, our data suggest that FAS is not only responsible for 584 

increased infiltration of the inflamed site by CD4+ T cells, but also for their retention in the 585 

site, together with reduced glycolysis, once they have reached it. De novo FAS is required for 586 

Th17 differentiation and pharmacologic inhibition of acetyl-CoA carboxylase, a key enzyme 587 

in FAS, was able to delay the disease and to reduce the severity of experimental autoimmune 588 

encephalomyelitis (EAE), (Berod et al., 2014). Hence, inhibiting FAS and/or promoting 589 

glycolysis may support resolution of inflammation. 590 

If RA CD4+ T cells display a deficit in glycolysis, synovial RA fibroblasts are highly 591 

glycolytic. Indeed, glucose deprivation or glycolytic inhibitors such as 2-deoxy-D-glucose (2-592 

DG), bromopyruvate (BrPa) and 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one, impaired 593 

cytokine secretion, proliferation and migration by synovial fibroblasts as well as disease 594 

severity in a mouse model of arthritis (Garcia-Carbonell et al., 2016). In line with this 595 

evidence, the inducible isoform of hexokinase, HK2, which catalyses the phosphorylation of 596 

glucose to G6P - the first committed step in glucose metabolism - was found highly 597 

expressed by RA as compared to OA synovial fibroblasts. Interestingly, after HK2 silencing, 598 

RA fibroblasts were less invasive while the overexpression of HK2 enhanced the levels of 599 
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MMP, IL6, IL8 other than their migratory capabilities (Bustamante et al., 2018). Altered 600 

metabolism in RA fibroblasts has also been associated with the hypoxic microenvironment 601 

typical of the inflamed sites. Specifically, it was found that hypoxia induced a 602 

downregulation of mitochondrial respiration and an increase of glycolysis in RA fibroblast, 603 

which in turn promoted synovial invasive mechanisms (Biniecka et al., 2014). Hence, it is 604 

tempting to speculate that synovial fibroblasts produce large amounts of lactate in the 605 

arthritic synovium, which infiltrating CD4+ T cells have to face and adapt to. Here, we have 606 

described how they adapt to such condition. 607 

Interestingly, the response to lactate by CD4+ T cells is mediated by a specific sodium 608 

lactate transporter, SLC5A12, which seems to be a major lactate transporter in these cells, 609 

unlike other immune cells, i.e. macrophages. We previously described in Haas et al., 2015 610 

that CD4+ T cells express SLC5A12 but not SLC16A1 (MCT1). Here, we show that when we 611 

interfere with the carrier function of SLC5A12 in CD4+ T cells we see an impairment of 612 

some of their effector functions, namely migration and IL17 production. In comparisons, we 613 

do not see any effects of blocking SLC5A12 in macrophages – although they do express it – 614 

when we assess their migratory response to lactate (Fig 5B). This suggests that SLC5A12 615 

may not be a major lactate transporter in macrophages and/or they may be able to use others, 616 

unlike what we observe in CD4+ T cells.  617 

A selective expression of lactate transporters by immune cells may orchestrate their 618 

spatial distribution inside the inflamed tissue as well as affect their functional response (Ene-619 

Obong et al., 2013; Haworth et al., 2008; Olloquequi et al., 2010). Thus, modulating selective 620 

T cell subsets via targeting specific lactate transporters may provide novel therapeutic tools to 621 

reduce inflammation as well as contributing to a better understanding of the pathogenesis of 622 

chronic inflammation. In this respect, our findings show that SLC5A12 does not particularly 623 

discriminate among CD4+ T cell subsets which is what we would expect since we observe 624 
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~40% SLC5A12+ CD4 T cells whilst only a small fraction of activated CD4+ T cells are 625 

normally IL-17 producers. It remains our message that lactate promotes IL-17 responses via 626 

metabolic rewiring downstream of SLC5A12-mediated lactate uptake and we have elucidated 627 

the mechanisms for this response. It also remains to be assessed whether lactate may 628 

modulate Th1 and/or Tfh responses. 629 

Altogether this evidence supports a role for lactate as a major signalling molecule in 630 

its own right, able to operate the plastic shift of the immune response within the diseased site, 631 

whether in the tumour or the chronic inflammatory environment. In the site of inflammation, 632 

such as the inflamed synovium in rheumatoid arthritis, lactate seems to act as an amplifier of 633 

inflammation leading to the entrapment of CD4+ T cells and stimulation of inflammatory 634 

cytokines. In further support to the signalling activity of lactate, a receptor of lactate, GPR81, 635 

has been identified and involved in the regulation of lipolysis (Liu et al., 2009) and cancer 636 

cell survival (Roland et al., 2014). Lactate binding to GPR81 resulted in the upregulation of 637 

PD-L1, causing the suppression of the effector function of T cells in co-culture experiments 638 

(Feng et al., 2017). 639 

Th17 CD4+ T cells play an important role in RA, multiple sclerosis, psoriasis (Patel 640 

and Kuchroo, 2015). Rising levels of circulating Th17 cells and IL17 were observed in 641 

patients with an inadequate response to anti-TNF-α therapy (Chen et al., 2011). Despite 642 

several studies revealed the importance of IL17 in the pathogenesis of RA, clinical trials with 643 

IL17 blocking agents in RA have not reached striking results so far (Kugyelka et al., 2016), 644 

thus other targets are needed. This can be in part due to the heterogeneity of RA in terms of 645 

pathogenesis and histological patterns of synovitis (Pitzalis et al., 2013). IL17 and IL17R 646 

family members show a high variability in the expression in individual patients (Van Baarsen 647 

et al., 2014). Therefore, it is not surprising that the blockade of IL17A or its receptor with 648 

monoclonal antibodies did not lead to complete disease remission so far. Currently it is more 649 
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likely that IL17 targeting agents could be used to complement/augment current therapies 650 

(Kugyelka et al., 2016). Moreover, IL17-signaling cascade is a complex system. Indeed, it 651 

consists of 6 members with 5 known receptors, thus widening the frontier for the 652 

development of new blocking/modifying agents, which might offer exciting new treatments 653 

in autoimmunity. For this reason, targeting the IL17 axis at different levels (i.e. Th17 654 

differentiation, signaling), including blocking SLC5A12, may provide new therapeutic 655 

avenues for Th17-mediated inflammatory disorders. 656 

 657 

Limitations of study. 658 

Immunization with human recombinant G6PI or with the immune-dominant peptide 659 

G6PI325-339 was shown to induce an inflammatory polyarthritis which can be modulated by 660 

therapeutic interventions aimed at targeting T cell function (i.e. by inducing a switch in the 661 

balance between Th1/Th17 cells and Tregs; Shubert et al., 2004; Yoshida et al., 2016; Hirota 662 

et al., 2017). Based on these observations and our findings of a dominant effect of SLC5A12 663 

on CD4+ T cells, we chose this experimental model of arthritis to test the effect of blocking 664 

SLC5A12. Nevertheless, a caveat to our findings is that the beneficial effects of targeting 665 

SLC5A12 may be due at least in part to its effects of macrophages and/or B cells. This could 666 

be further tested in other models of arthritis, such as collagen-induced arthritis. Anyhow, a 667 

previous demonstration of the functional relevance of SLC5A12 blockade was provided by 668 

us, using a zymosan model of peritonitis (Haas et al., 2015). 669 

Furthermore, intra-articular injections are required in our model currently to achieve 670 

high enough concentration of the antibody within the joint as the effect of anti-SLC5A12 is 671 

elicited at the site of inflammation where high levels of lactate are present. This procedure 672 

would not lead to a biological effect systemically because a single dose of the antibody at the 673 
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concentration used would be too low to achieve sufficient blood concentrations to enter 674 

efficiently other joints/organs. The same can be said for the control antibodies. Thus, we 675 

would not expect any systemic effect clinically. Additionally, we used the contralateral joint 676 

as control as this is routinely used in experimental arthritis, offering the advantage of 677 

minimizing the inherent variability in the severity of arthritis observed among different 678 

animals and allows direct comparison of data (Chen et al., 2015; Min et al., 2013; Mor-679 

Vaknin et al., 2017). Regardless of these caveats to our current study, to advance in the pre-680 

clinical space, our next steps will be to generate and characterize recombinant murine and 681 

humanised mAbs targeting SLC5A12, which we will then administer systemically.  682 
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FIGURE LEGENDS 712 

Figure 1. SLC5A12 expression by CD4+ T cells is regulated by activating and 713 

inflammatory stimuli. 714 

(A-C) Representative flow cytometry plots of SLC5A12 expression by CD4+ or CD8+ T cells 715 

from non-activated (n=3; A) or anti-CD3 mAb-activated (n=6; B) HC PBMCs. 716 

Quantification shown in (C). 717 

(D-F) Representative flow cytometry histograms (D-E) and quantification (F) of SLC5A12 718 

expression by CD4+ T cells from non-activated HC (n=4) and RA (n=4; D, F), or anti-CD3 719 

mAb-activated HC (n=4) and RA (n=5; E-F) PBMCs. CD4+ T cells from non-activated RA 720 

SFMCs (n=8; E-F) were also analysed. Briefly, PBMCs were cultured in RPMI medium 721 

supplemented with 5% RA or HC autologous blood serum (BS), or 5% RA synovial fluid 722 

(SF); SFMCs were cultured in RPMI medium supplemented with 5% autologous SF. 723 

(G) Representative flow cytometry histograms (left) and quantification (right) of SLC5A12 724 

expression by CD4+ T cells from non-activated or anti-CD3 mAb-activated RA SFMCs. 725 

Briefly, cells were cultured in RPMI medium supplemented with 5% FBS (n=3), 5% 726 

autologous BS (n=8) or 5% autologous RA SF (n=8). Activated RA PBMCs cultured in 5% 727 

BS RPMI (n=5) were used as controls (H). MFI, mean fluorescent intensity. 728 

(H) Representative flow cytometry histograms (left) and quantification (right) of SLC5A12 729 

expression by CD4+ T cells from RA SFMCs (n=5) incubated with 3C7 mAb or control rat 730 

sera. 731 

(I-J) SLC5A12 mRNA (n=5; I) and protein [representative western blots (left) and 732 

densitometric quantification (right; n=3); J] expression by CD4+ T cells isolated from HC 733 

PBMCs, then activated with anti-CD3 and anti-CD28 mAb in the presence of sodium lactate 734 

(10mM) and/or SLC5A12 Ab, or left untreated. Lactate-untreated CD4+ T cells (CN - dotted 735 

line) set to 1. 736 
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One-way ANOVA (C, F) or two tailed Student’s t-test (G-J). Data expressed as mean ± s.e.m. 737 

*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. See also Figures S1, S2 and S3. 738 

 739 

Figure 2. Lactate uptake by CD4+ T cells impacts intracellular utilization of central 740 

carbon metabolic pathways. 741 

(A) Glucose and glutamine uptake rates for CD4+ T cells isolated from HC PBMCs, then 742 

activated with anti-CD3 and anti-CD28 mAbs for 24 hours followed by further 48-hour 743 

culture with lactate alone or in the presence of SLC5A12 Ab, or left untreated, in medium 744 

containing low glucose (5mM) and 5% FBS (n=3, each in duplicate). 745 

(B) NAD+ and NADH intracellular levels in CD4+ T cells (n=2) treated with sodium lactate 746 

(10mM) for the indicated time points after 72-hour activation and shown as NAD+/NADH 747 

ratio. Lactate-untreated CD4+ T cells (CN - dotted line) set to 1. 748 

(C) Seahorse measurements of extracellular acidification (left) and oxygen consumption 749 

(right) rates (ECAR and OCR, respectively) by 12-hour-activated CD4+ T cells (n=3, 750 

technical replicates). One hour prior to the experiment, cells were seeded in a 96-well 751 

microplate in XF Assay medium in the presence of 10mM of glucose. Sodium lactate 752 

(10mM) or PBS were injected during measurement. Data representative of n=2 independent 753 

experiments. 754 

(D-E) 13C tracing of [U13C]-lactate into pyruvate and citrate. Activated CD4+ T cells were 755 

incubated for 48 hours with [U13C]-lactate in the presence or absence of SLC5A12 Ab in 756 

medium containing low glucose (5mM) and 5% FBS (n=2, each in duplicate). Polar 757 

metabolites were extracted, analysed by LC-MS and peak areas of mass isotopologues 758 

normalized to cell number are represented. 759 
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(F-G) Acetyl-CoA (F) and citrate (G) intracellular levels in CD4+ T cells (n=3) treated with 760 

sodium lactate (10mM) for the indicated time points after 72-hour activation. Lactate-761 

untreated CD4+ T cells (CN - dotted line) set to 1. 762 

Two tailed Student’s t-test. Data expressed as mean ± s.e.m. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 763 

0.001.  764 

 765 

Figure 3. Lactate shapes the effector phenotype of CD4+ T cells at the site of 766 

inflammation via SLC5A12. 767 

(A) Relative mRNA expression levels of IL17A, IL22, IFN, IL6, IL10, and TGF as assessed 768 

by qRT-PCR in tonsil CD4+ T cells treated with sodium lactate (10mM) and/or SLC5A12 769 

Ab, or left untreated (n=5). Levels of mRNA of each cytokine expressed by lactate-untreated 770 

CD4+ T cells were set to 1 (CN - dotted line). 771 

(B) IL-17A and IFN ELISAs from supernatants of tonsil CD4+ T cells treated as in (A), 772 

(n=5, each in duplicate). 773 

(C) Relative mRNA expression levels of RORT, FOXO1, FOXP3, PD1, CXCR5, and BCL6 774 

as assessed by qRT-PCR in tonsil CD4+ T cells treated as in (A), (n=5). Levels of mRNA of 775 

each cytokine expressed by lactate-untreated CD4+ T cells set to 1 (CN - dotted line). 776 

(D) Representative flow cytometry plots of CD4+IL17+, CD4+FOXP3+, CD4+PD1+CXCR5+, 777 

CD4+IFN+, and CD4+IL10+ tonsil CD4+ T cells incubated in the presence or absence of 778 

SLC5A12 Ab (left; n=3). Quantification bar charts (right). 779 

(E) Percentage of IFN+, IL17A+, IL21+, Treg (CD25+Foxp3+) and cytokine-negative (Neg 780 

CKS; left) or RORt+, Treg (CD25+Foxp3+), Tfh (CXCR5+PD-1+ICOS+) and Tbet+ (right) 781 

CD4+SLC5A12+ T cell subsets in 48-hour activated human HC PBMCs (n=5).  782 

Two-tailed Student’s t-test. Data expressed as mean ± s.e.m. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 783 

0.001. 784 
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 785 

Figure 4. Lactate induces IL17 via nuclear PKM2- and FAS-mediated STAT3 786 

phosphorylation. 787 

CD4+ T cells were isolated form HC PBMCs and activated with anti-CD3 and anti-CD28 788 

mAb. 789 

(A) ROS levels in CD4+ T cells (n=3) treated with sodium lactate (10mM) for the indicated 790 

time points after 72-hour activation. PBS and H2O2 were used as negative and positive 791 

control, respectively. 792 

(B) Representative western blots showing nuclear PKM1/2, P-STAT3, STAT3 and cytosolic 793 

PKM1/2 in activated CD4+ T cells treated with sodium lactate (10mM) for the indicated time 794 

points or left untreated (CN). Histone H3 and -Actin were used as controls for nuclear and 795 

cytosolic fraction, respectively. Data representative of n=3 independent experiments. 796 

(C) Representative western blots (left) and densitometric quantification (right; n=3) of P-797 

STAT3, STAT3, P-STAT1 and STAT1 expression by activated CD4+ T cells treated with 798 

sodium lactate (10mM) and/or SLC5A12 Ab, or left untreated. Untreated CD4+ T cells (CN - 799 

dotted line) set to 1. 800 

(D) Representative western blots (left) and densitometric quantification (right; n=3) of P-801 

ACC, ACC, P-AMPK and AMPK expression by activated CD4+ T cells treated with sodium 802 

lactate (10mM) for the indicated time points or left untreated (CN). Untreated CD4+ T cells 803 

(CN - dotted line) set to 1. 804 

(E) Representative western blots showing cytosolic and mitochondrial P-ACC and ACC in 805 

activated CD4+ T cells treated with sodium lactate (10mM) for the indicated time points or 806 

left untreated (CN). -Actin and VDAC were used as controls for cytosolic and 807 

mitochondrial fraction, respectively. Data representative of n=2 independent experiments. (F) 808 

Mass-spectrometry carbon tracer analysis of palmitate in 48-hour [U13C]-lactate-fed activated 809 
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CD4+ T cells treated as in Figure 2D (n=4, time points 0, 24 and 48 hours and n=2, time 810 

points 72 and 96 hours). 811 

(G) Representative western blots (left) and densitometric quantification (right; n=2) of P-812 

STAT3 and STAT3 expression by activated CD4+ T cells treated with sodium lactate 813 

(10mM) alone or in combination with C75 (10uM), TOFA (20uM) and DHEA (20uM), or 814 

left untreated (CN). Untreated CD4+ T cells (CN - dotted line) set to 1. 815 

(H) IL-17A and IFN ELISAs from supernatants of activated CD4+ T cells treated with 816 

sodium lactate (10mM) alone or in combination with C75 (10uM), TOFA (20uM), DHEA 817 

(20uM), DASA (20uM), AICAR (1mM), or left untreated (n=5, each in duplicate; for 818 

lactate+DASA+C75 or lactate+DASA+TOFA, n=2, each in duplicate). 819 

(I) Representative western blots (left) and densitometric quantifications (right; n=3) of P-820 

ACC, ACC, P-STAT3 and STAT3 expression by activated CD4+ T cells from Slc5a12 WT or 821 

KO mice, treated with sodium lactate (10mM) or left untreated (CN). Also, IL-17A ELISA 822 

from supernatants of activated CD4+ T cells from Slc5a12 WT or KO mice, treated with 823 

sodium lactate (10mM) or left untreated (n=3, each in duplicate).  824 

Two-tailed Student’s t-test (A, C, F, H and I) or one-way ANOVA (G). Data expressed as 825 

mean ± s.e.m. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001; ###P ≤ 0.001 versus lactate (H). 826 

(J) Schematic depicting the described findings: lactate modulates IL17 expression by 827 

activating two pathways, PKM2 translocation into the nucleus and FAS induction, 828 

converging on STAT3-induced transcription of IL17. See also Figure S4. 829 

 830 

Figure 5. SLC5A12 blockade promotes the egress of CD4+ T cell from the inflamed 831 

tissue. 832 

(A) Organ culture schematic describing the analysis performed to assess the egress of 833 

mononuclear cells (MCs) from the inflamed tissue.  834 
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(B) Analysis of MCs (CD4+, CD8+, CD19+ and CD14+) egress from tonsil tissues (n=3, each 835 

in duplicate) cultured with sodium lactate (10mM) and/or SLC5A12 Ab, or left untreated. 836 

Untreated MCs (CN - dotted line) set to 100. 837 

(C-D) Representative flow cytometry plots (D) and quantification (E) of egressed CD4+ T 838 

cells from RA synovial tissues (n=3) cultured with sodium lactate (10mM) and/or SLC5A12 839 

Ab, 3C7 mAb, 10E11 mAb, or left untreated. Untreated MCs (CN - dotted line) set to 100. 840 

Two-tailed Student’s t-test. Data expressed as mean ± s.e.m. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 841 

0.001. See also Figure S5. 842 

 843 

Figure 6. Lactate reduces the motility of CD4+ T cells via reduced glycolysis and 844 

enhanced FAS. 845 

(A) Representative western blots (left) and densitometric quantification (right; n=3) of HK1, 846 

HK2, PFK, enolase 1 and PKM1/2 expression by activated CD4+ T cells treated with 847 

sodium lactate (10mM), or left untreated. Untreated CD4+ T cells (CN - dotted line) set to 1.  848 

(B) Representative western blots (left) and densitometric quantification (right; n=3) of HK1, 849 

HK2, enolase 1, PKM1/2, GCK and aldolase expression by activated CD4+ T cells treated 850 

with sodium lactate (10mM) and/or SLC5A12 Ab, or left untreated. Untreated CD4+ T cells 851 

(CN - dotted line) set to 1. 852 

(C) Representative western blots showing mitochondrial and cytosolic HK2 in activated 853 

CD4+ T cells treated with sodium lactate (10mM) for the indicated time points or left 854 

untreated (CN). VDAC and-Actin were used as controls for mitochondrial and cytosolic 855 

fraction, respectively. Data representative of n=2 independent experiments. 856 

(D) Representative immunofluorescence images of untreated and lactate-treated CD4+ T 857 

cells. Co-staining for hexokinase 2 (green), mitotracker (red), and DAPI (blue). Scale bar: 10 858 

μm. 859 
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(E) NADP+ and NADPH intracellular levels in CD4+ T cells (n=5) treated with sodium 860 

lactate (10mM) for the indicated time points after 72-hour activation and shown as 861 

NADP+/NADPH ratio. Lactate-untreated CD4+ T cells (CN - dotted line) set to 1. 862 

(F) In vitro chemokinesis of activated CD4+ T cells in response to CCL20 (500 ng/ml; n=4) 863 

or CXCL10 (300 ng/ml; n=3) in the presence of sodium lactate (10mM) with or without the 864 

metabolic drugs C75 (10uM), TOFA (20uM) and DHEA (20uM). Untreated CD4+ T cells 865 

(w/o CXCL10 - dotted line) were set to 100. 866 

(G) In vitro chemokinesis of activated CD4+ T cells (n=4) from Slc5a12 WT or KO mice in 867 

response to CXCL10 (300 ng/ml; 4 hours) in the presence of sodium lactate (10mM). 868 

Untreated CD4+ T cells (CN - dotted line) were set to 100. 869 

Two-tailed Student’s t-test (A, B and E) or one-way ANOVA (F, G). Data expressed as mean 870 

± s.e.m. ∗P ≤ 0.05; ∗∗P ≤ 0.01; ∗∗∗P ≤ 0.001; #P ≤ 0.05 vs lactate + chemokine. See also 871 

Figure S6. 872 

 873 

Figure 7. SLC5A12 expression correlates with RA disease activity and its blockade 874 

improves clinical scores in a murine model of (CD4+ T cells joint-enriched) arthritis. 875 

(A) Heat-map showing RNA-sequencing expression of groups of metabolic genes 876 

differentially expressed (FDR<0.05) between synovial biopsies (n=87) from early rheumatoid 877 

arthritis. Synovial biopsies were classified as positive or negative for ectopic lymphoid 878 

structures (ELS) by histological analysis. Upper tracks show synovial histology inflammatory 879 

score (Krenn score), expression level of cell-lineage CD4+ T cell gene modules, ELS 880 

histology grouping and overall histology pathotype (lymphoid, myeloid or fibroid). 881 

(B) Synovium SLC5A12 transcript positively correlates with delta disease activity score 882 

(DAS28-CRP) calculated as the difference between DAS28-CRP at baseline and DAS28-883 

CRP at 6 months and FASN transcript; also shown is the positive correlation between the 884 
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inflammatory score DAS28-CRP with IL17RA transcript (n=87). Correlation analyses 885 

performed using Spearman's correlation coefficients. 886 

(C-F) Arthritis score in mice treated with the indicated antibodies versus controls. Arrows 887 

indicate days at which antibodies were injected. A score of 0 indicates no clinical signs of 888 

arthritis; a score of 1 for each of the toes, pad and ankle indicates swelling and redness. 889 

Maximum score for each paw is 7 (n=6 per group; C). Representative images of the paws at 890 

day 21 post-immunization showing the effects (i.e. swelling, redness) of treatment with 891 

SLC5A12 Ab as compared to the SLC5A12 isotype control antibody (D). Histological score 892 

in pads of mice subjected to different treatments, as shown (each dot corresponds to the 893 

assessment of an H&E slide acquired from the representative group, n=19-24 slides/group; 894 

E). IHC with haematoxylin counterstain showing immune infiltrate (arrows) in the pad of 895 

mice treated with SLC5A12 Ab as compared to isotype control antibody-treated mice (F). 896 

Two-tailed Student’s t-test (C, E). Data represent mean ± SD ∗P ≤ 0.05; ∗∗P ≤ 0.01; #P ≤ 897 

0.05. See also Figure S7. 898 

  899 
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STAR★METHODS 900 

Lead Contact and Materials Availability 901 

Further information and requests for resources and reagents should be directed to and 902 

will be fulfilled by the Lead Contact, Claudio Mauro (c.mauro@bham.ac.uk). Mouse lines 903 

used in this study are available at INFRAFRONTIER/EMMA (www.infrafrontier.eu), 904 

(Allele: Slc5a12em1(IMPC)Wtsi). There are restrictions to the availability of SLC5A12 905 

monoclonal antibodies due to intellectual property and ongoing patenting. 906 

Experimental Model and Subject Details 907 

Patient Samples 908 

Blood, synovial fluids and synovial tissues were obtained from the same cohort of 909 

rheumatoid arthritis (RA) patients diagnosed according to the revised American College of 910 

Rheumatology (ACR) criteria (Aletaha et al., 2010). Demographic and clinical characteristics 911 

of the study cohort are presented in Table S1. 912 

Healthy individuals, age and sex matched with RA patients (Table S1), were recruited 913 

through NHS blood and transplant service. Individuals with cancer, infections or other 914 

inflammatory comorbidities were excluded. Written informed consent was obtained by all 915 

participants according to ethical approval from National Research Ethics Service Committee 916 

London (LREC07/Q0605/129).  917 

For RNA-sequencing analysis, mRNA was extracted from synovial tissue samples 918 

obtained by ultrasound-guided biopsy from patients with early active RA (< 12 months' time) 919 

who were naïve-to-treatment with disease modifying anti-rheumatic drugs (DMARDs) 920 

(n = 87). Patients were enrolled in the Pathobiology of Early Arthritis Cohort (PEAC, details 921 

at http://www.peac-mrc.mds.qmul.ac.uk/index.php) at the Centre for Experimental Medicine 922 

mailto:c.mauro@bham.ac.uk
http://www.peac-mrc.mds.qmul.ac.uk/index.php
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and Rheumatology at Queen Mary University of London (REC 05/Q0703/198, London, UK), 923 

as previously described (Kelly et al., 2015; Humby et al., 2019; Lewis et al., 2019). All 924 

patients belonging to this cohort underwent baseline ultrasound-guided biopsy on the most 925 

inflamed accessible joint. Afterward, patients started treatment with conventional DMARDs 926 

(methotrexate, leflunomide and/or sulphasalazine and/or hydroxychloroquine and/or 927 

corticosteroids). The response to treatment was evaluated at six months according to DAS28-928 

CRP (Fransen et al., 2009). 929 

Cell Isolation and Culture  930 

Peripheral blood mononuclear cells (PBMCs) from healthy controls (HC) and paired 931 

PBMCs and synovial fluid mononuclear cells (SFMCs) were obtained from RA patients. 932 

PBMCs and SFMCs were isolated by density gradient centrifugation [lymphoprep (Stemcell 933 

Technologies) and histopaque 1077 (Sigma-Aldrich), respectively]. Cells (2 × 106/mL) were 934 

cultured in 48-well plates (37°C, 5% CO2) in medium (RPMI 1640 - ThermoFisher) 935 

supplemented with 10% FBS (ThermoFisher) or 10% autologous blood serum or 10% RA 936 

synovial fluid and activated with 0.2μg/ml anti-CD3 monoclonal antibody (CD3 mAb, 937 

eBioscience) or left non-activated, according to well-established protocols (Pucino et al., 938 

2015; Landegren et al., 1984; Van Wauwe et al., 1980). 939 

For the experiments with human tonsils, tissues were mashed through a cell strainer 940 

and mononuclear cells (MCs) were isolated. Cells were cultured (2 × 106/ml, 37°C, 5% CO2) 941 

in RPMI 1640 plus 10% FBS and activated with 0.2μg/ml anti-CD3 mAb (ThermoFisher 942 

Scientific) or left non-activated.  943 

All samples from HC (PBMCs and tonsils) were gender- and age- matched with 944 

samples (SFMCs, PBMCs) from RA patients (for details see Table S1). 945 
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CD4+ T cells were purified from human PBMCs or MCs, or from spleen and lymph 946 

nodes of Slc5a12 WT or KO female mice by negative selection using a magnetic cell 947 

separation (EasySep, Stem Cell Technology), cultured in RPMI 1640 plus 10% FBS (37°C, 948 

5% CO2) and then stimulated for 3 days in the presence of anti-CD3 and anti-CD28 mAbs 949 

coated dynabeads (0.1 beads per cell; ThermoFisher Scientific). 950 

For cytokine detection, in the final 4 hours of culture, cells were treated with 50ng/ml 951 

PMA and 500ng/ml ionomycin and 1:1.000 brefeldin A (Sigma-Aldrich), followed by surface 952 

staining of CD4 (RPA-T4, Biolegend). 953 

Mouse Models 954 

We thank the Wellcome Trust Sanger Institute Mouse Genetics Project (Sanger 955 

MGP) and its funders as well as INFRAFRONTIER/EMMA (www.infrafrontier.eu), for 956 

accepting our gene nomination for Slc5a12, and for generating and providing the 957 

Crispr/Cas9 mutant mouse line (Allele: Slc5a12em1(IMPC)Wtsi) in the C57BL/6N background 958 

(White et al., 2013; Skarnes et al., 2011; Bradley et al., 2012; Pettitt et al., 2009). All 959 

procedures were consented by the UK Home Office and animals were sacrificed following 960 

an accepted Schedule 1 method.  961 

DBA/1 female mice purchased from Charles River were immunized s.c. with 20μg 962 

human hG6PI synthetic peptide (hG6PI325-339; ThermoFisher Scientific) in CFA (Sigma-963 

Aldrich). The indicated amount of peptide was mixed with CFA in a 1:1 ratio (v/v) and 964 

emulsified by sonication. For induction of arthritis, 100μl of the emulsion was injected 965 

subcutaneously at the base of the tail. At day 7 – a time point at the onset of the disease – 966 

and 11 post-induction, mice were left untreated or treated with intra-articular injection of 967 

20µl of 0.1mg/ml antibody into the rear paws; Infliximab (Remicade, Janssen Biologics), 968 

anti-TNF (TN3-19.12, BD bioscience), anti-SLC5A12 (Atlas Antibodies), Iso-TNF (BD 969 
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biosciences) and Iso-SLC5A12 (Atlas Antibodies). Specific antibody and the 970 

corresponding isotype control were injected into the right or left back paw of the same 971 

mouse. The development of disease was monitored daily by visually assessing the arthritis 972 

score. A score of 0 indicates no clinical signs of arthritis; a score of 1 for each of the 973 

fingers, pad and ankle indicates swelling and redness. Maximum score for each paw is 7. 974 

A trained observer who was blinded to the immunization status of the mice performed the 975 

scoring.  976 

All mice were group-housed and maintained under SPF health/immune status in 977 

individually ventilated cages with standard enrichment. Mice were housed in a temperature 978 

(24°C) and humidity-controlled room on a 12 h light/dark cycle (lights on 7:00) with ad 979 

libitum access to water and food. 980 

Method Details 981 

Flow Cytometry 982 

In order to assess SLC5A12 expression on different immune cell types, we stained 983 

PBMCs or tonsil MCs or RA SFMCs with Live/Dead (ZOMBIE/NIR, fixable viability dye, 984 

1:1000, BioLegend) for 15 minutes at room temperature protected from light to allow 985 

detection and exclusion of dead cells from the analysis. Without washing, cells were then 986 

stained with BV711–labelled anti–CD4 (clone RPA-T4, 1:100), PE/Dazzle–labelled anti–987 

CD8 (clone HIT8a, 3:1000), FITC–labelled anti–CD14 (clone 63D3, 1:100), PeCy7–labelled 988 

anti–CD19 (clone HIB19, 1:100). Rabbit anti-SLC5A12 unconjugated primary antibody 989 

(4:1000, HPA060904 – Atlas Antibodies) was added after fixing and permeabilizing cells 990 

(fixation-permeabilization buffer; eBioscience) for 30 minutes followed by Alexa Fluor-555 991 

goat anti-rabbit (1:1000, Invitrogen) secondary antibody. Polyclonal rabbit IgG (DAKO) was 992 

used as isotype control. 993 
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To assess the impact of SLC5A12 blockade on cytokine production and CD4+ T cell 994 

subsets, we stained activated tonsil MCs, treated with or without SLC5A12 Ab (48 hours), 995 

with BV711–labelled anti–CD4 (clone RPA-T4, 1:100), BV421–labelled anti–PD1 (clone 996 

EH12.2H7, 1:100) and PerCP/Cyanine5.5 anti-human CXCR5 (clone J252D4, 5:100). 997 

Thereafter, we washed, fixed, and permeabilized cells (fixation-permeabilization buffer; 998 

eBioscience) and stained with BV450-labelled anti-IL17A (clone BL168, 5:100), AF488-999 

labelled anti-FOXP3 (clone 206D, 2.5:100), PE-labelled anti-IL10 (clone JES3-19F1, 5:100), 1000 

FITC-labelled IFNclone 4S.B3, 3:100). Intracellular staining was assessed by flow 1001 

cytometry using a LSR Fortessa II (BD Biosciences) and FlowJo version 7.6.5 software. All 1002 

monoclonal antibodies were from Biolegend. 1003 

To assess SLC5A12 expression on T cell subsets identified on the basis of 1004 

transcription factors expression or cytokines production, healthy donors PBMCs were 1005 

activated for 48h and  incubated with Leucocyte Activating cocktails (BD) for the last 3 1006 

hours.  Cells were first stained for Live/Dead Zombie for 15 minutes at room temperature 1007 

protected from light, washed and incubated for 10 minutes with human Fc TruStain FcX 1008 

(BioLegend, 5:100) to block Fc receptors (CD16, CD32, CD64) and avoid non-specific 1009 

binding. Surface antigens were stained with BV510-labelled anti-CD14 (clone 63D3, 1:100), 1010 

BV510-labelled anti-CD19 (clone HIB19, 1:100), PE/Dazzle 594-labelled anti-CD4 (clone 1011 

A161A1, 1:100), APC Cy7-labelled anti-CD8 (clone SK1, 1:100), BV605-labelled anti-1012 

CXCR5 (J252D4, 5:100), PECy7-labelled anti-ICOS (clone C398.4A, 1:100), PerCpCy5.5-1013 

labelled anti-PD1 (clone EH12.2H7, 1:100), PECy5-labelled anti-CD25 (clone BC96, 1:100) 1014 

(BioLegend). Cells were then fixed, permeabilized (fixation-permeabilization buffer; 1015 

eBioscience) and stained first with Pacific Blue-labelled anti-Tbet (clone 4B10, 2:100), PE-1016 

labelled anti-Foxp3 (clone 206D, 2.5:100), BV711-labelled anti-IL17A (clone BL168, 1017 

5:100), BV785-labelled anti-IFNγ (clone 4S.B3, 3:100), Alexa647-labelled anti-IL21 (clone 1018 
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3A3-N2, 3:100) (BioLegend) and BV650-labelled anti-RORγt (clone Q21-559, 2:100) (BD 1019 

Biosciences). Rabbit anti-SLC5A12 unconjugated primary antibody (0.4:100, HPA060904 – 1020 

Atlas Antibodies) was then added for 30 minutes followed by Alexa Fluor-555 goat anti-1021 

rabbit (1:1000, Invitrogen) secondary antibody. 1022 

Cells were acquired using a LSR Fortessa II (BD Biosciences) flow cytometer and 1023 

analysed with FlowJo version 7.6.5 software. All monoclonal antibodies were from 1024 

Biolegend. 1025 

Immunofluorescence, Immunohistochemistry and Confocal Microscopy 1026 

For SLC5A12 single and double (with CD4, CD8, CD20 or CD68) 1027 

immunofluorescence, after antigen retrieval (S2367, Dako; 45 minutes) and block of non-1028 

specific binding (1 hour), paraffin-embedded tonsil tissue sections were incubated for 1 hour 1029 

with anti-SLC5A12 Ab (1:50, Novus Biologicals) and then overnight at 4°C with anti-CD4, 1030 

anti-CD8, anti-CD20 or anti-CD68 (1:50, Dako). The following day, slides were washed in 1031 

PBS and incubated with fluorochrome-conjugated secondary antibodies (1:300, Invitrogen, 1032 

Eugene, Oregon, USA). The slides were then washed in PBS for up to 5 minutes, mounted in 1033 

fluorescence mounting medium (DakoCytomation) containing 1 μg/ml DAPI, and examined 1034 

by Olympus IX81 fluorescence microscope. The list of primary and secondary antibodies is 1035 

shown in KEY RESOURCES TABLE. 1036 

For the intracellular detection of HK2, human CD4+ T cells cultured on glass 1037 

coverslips were incubated for 5 minutes with 300 nM mitotracker deep red FM 1038 

(ThermoFisher Scientific) at 37°C in 5% CO2. After the incubation period, cells were washed 1039 

twice and fixed/permeabilized in permeabilization/fixation buffer (Bioscience) overnight at 1040 

4°C. After washing with PBS, cells were incubated with the primary antibodies against anti-1041 

HK2 (dilution 1:200, Cell Signaling Technology) for 1 hour at room temperature followed by 1042 

30 minutes incubation with 1:200 secondary Alexa Fluor 555 conjugated goat anti-rabbit 1043 
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(Invitrogen). Alexa Fluor 488 phalloidin (ThermoFisher) for the actin staining was also added 1044 

at this stage. One million cells resuspended in 100 ul PBS were counterstained with DAPI to 1045 

detect nuclei, spun in the cytospin (250 rpm for 5 minutes) to allow the attachment to the 1046 

coverslips and then mounted for microscopy. All images were acquired using a confocal 1047 

microscope LSM880 (Zeiss). 1048 

FFPE tissue blocks from murine paws were sectioned at a thickness of 3 μm using a 1049 

Leica RM1235 microtome. Sections were mounted on to Superfrost plus (+) slides and left to 1050 

dry in a slide rack at room temperature for 30 minutes. Slides were heated (60ºC) for a 1051 

minimum of 30 minutes prior to staining. Tissue sections were stained with haemotoxylin and 1052 

eosin (H&E), mounted with DePex and left to dry overnight. Slides were imaged using an 1053 

Olympus BX61 microscope for initial grading. 0 = normal; 1 = minimal infiltration of 1054 

inflammatory cells in synovium and periarticular tissue of affected joints; 2 = mild 1055 

infiltration. 3 = moderate infiltration with moderate oedema. If referring to paws, restricted to 1056 

affected joints; 4 = Marked infiltration affecting most area with marked oedema. 1057 

Chemokinesis Assays and Tissue Organ Culture 1058 

Chemokinesis assays were performed in 5μm trans-well inlays (Corning). One hour 1059 

before the assay, CD4+ T cells purified from human PBMCs were incubated with sodium 1060 

lactate (10mM) and pre-treated (1 hour) with SLC5A12 polyclonal Ab (2.5 ug/ml, Atlas 1061 

antibodies) or monoclonal mAbs (dilution 1: 50; SLC5A12 mAb clones: 3C7, 4G2, 6E1, 1062 

7C1, 9G4, 9G7 and 10E11) purified from sera of rat immunized with SLC5A12 recombinant 1063 

peptide or left untreated. In some experiments sodium lactate treated cells were pre-treated (2 1064 

hours) with metabolic drugs: C75 (10uM), TOFA (20uM), DHEA (20uM), DASA (20uM), 1065 

AICAR (1mM) or left untreated. For experiments with CD4+ T cells from spleen and lymph 1066 

nodes of Slc5a12 WT or KO female mice, cells were incubated with sodium lactate (10mM) 1067 
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or left untreated. In all the assays 3 x 105 lymphocytes suspended in migration medium 1068 

(RPMI 2% FCS) were seeded in the upper trans-well chamber; CXCL10 (300 ng/ml) or 1069 

CCL20 (500 ng/ml) chemokines were added to the lower chamber. Migrated T cells were 1070 

counted in cell counting chambers 4 hours after seeding, and then the percentage of migrated 1071 

cells was calculated.  1072 

For the analysis of egressed MCs, equal size tissue sections from juxtaposing areas of 1073 

tonsil or synovium biopsies were seeded in 48-well-plates in RPMI 1640 supplemented with 1074 

10% FBS and treated as indicated in figure. After 4 hours of tissue culture, the supernatants 1075 

containing egressed cells were collected, followed by staining MCs for CD4, CD8, CD19 or 1076 

CD14 and counting by FACS the percentage of events for each cell type. Data were then 1077 

expressed as percentage fold change as compared to the respective controls. 1078 

Metabolic Profiling 1079 

Real-time measurements of extracellular acidification rate (ECAR) and oxygen 1080 

consumption rate (OCR) were performed with a Seahorse XF96 Extracellular Flux Analyser 1081 

(Agilent). Briefly, CD4+ T cells were grown in RPMI medium supplemented with 10% FBS. 1082 

One hour before the experiment, 3 x 105 CD4+ T cells were seeded in a 96-well microplate in 1083 

XF Assay medium (Dulbecco’s Modified Eagle’s Medium, DMEM) in the presence of 10 1084 

mM glucose. Sodium lactate or PBS were injected during measurement. Fatty acid oxidation 1085 

was analysed by measuring OCR in the presence of palmitate. Briefly, 2.5 x 105 CD4+ T cells 1086 

were seeded in a 96-well microplate in XF Assay Modified DMEM containing 2.5mM 1087 

glucose. Fifteen minutes before the assay, control cells were treated with 40μM etomoxir to 1088 

block CPT-1a. Just before starting the measurements, cells were treated with 167μM BSA-1089 

palmitate or BSA alone (Sigma-Aldrich). During the assay 1μM oligomycin and 1μM FCCP 1090 

were injected. All data were analysed using XF software. 1091 
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Intracellular metabolites content was determined by using dedicated quantification 1092 

kits [NAD+/NADH Quantification Colorimetric Kit, Citrate Colorimetric/Fluorimetric Assay 1093 

Kit (BioVision), Acetyl CoA Fluorimetric Assay Kit (BioVision) and NADP+/NADPH 1094 

Colorimetric Assay Kit (Abcam)], according to the manufacturer’s instructions.  1095 

Reactive oxygen species (ROS) were measured using the fluorescent probe carboxy-1096 

H2DCFDA (ThermoFisher Scientific). FFAs were measured with Free Fatty Acid 1097 

Colorimetric/Fluorometric Assay Kit (Abcam). 1098 

Metabolomics and Stable Isotope Tracing 1099 

Following isolation, CD4+ T cells were initially activated in media with anti-CD3 and 1100 

anti-CD28 mAbs for 24 hours followed by further 48 hours culture with lactate alone or in 1101 

the presence of SLC5A12 Ab in medium containing low glucose (5mM) and 5% FBS. Spent 1102 

medium was collected and processed for metabolite extraction as described (Mackay et al., 1103 

2015). Briefly, medium from each condition was diluted 50 fold with cold extraction solvent 1104 

consisting of 50% methanol, 30% acetonitrile and 20% water. Polar metabolites were 1105 

extracted by vortexing the tubes for 10 minutes followed by centrifugation at 16,000 × g for 1106 

10 minutes at 4°C. The supernatants were transferred to glass vials and analysed by LC-MS 1107 

as described (MacKay et al., 2015). Glucose and glutamine concentrations in the spent 1108 

medium were quantified using external calibration curves generated by spiking in different 1109 

concentrations of 13C-glucose and 13C-glutamine in the medium and extraction into extraction 1110 

solvent. Peak areas from the samples were extrapolated to the standard curve peak areas and 1111 

absolute concentrations of glucose and glutamine were obtained. Uptake rates of metabolites 1112 

(glucose and glutamine) were calculated as difference in concentrations normalized to the 1113 

area under the growth curve of cells.  1114 
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For lactate tracing into polar metabolites, CD4+ T cells were activated for 24 hours in 1115 

low glucose medium in a 6-well cell culture plate. The medium was then replaced with fresh 1116 

medium containing 10mM [U13C]-lactate (Sigma-Aldrich) with or without SLC5A12 Ab and 1117 

cells were cultured for additional 48 hours. Medium was removed by centrifugation and 1118 

metabolites were extracted from the cell pellets with cold extraction solvent (50% methanol, 1119 

30% acetonitrile and 20% water). The LC-MS parameters for data acquisition were kept the 1120 

same as described (Mackay et al., 2015).   1121 

For lactate tracing into palmitate, CD4+ T cells were activated for 24 hours in low 1122 

glucose medium (5mM) in a 6-well cell culture plate. The medium was then replaced with 1123 

fresh medium containing 10mM [U13C]-lactate (Sigma-Aldrich) with or without SLC5A12 1124 

Ab for 0, 24, 48, 72 and 96 hours. At the end of each time point, medium was aspirated and 1125 

cell pellets were treated with 750µl of 1:1 cold PBS: methanol and total lipid fraction was 1126 

extracted in 500µl of chloroform. This extract was dried under inert nitrogen, reconstituted in 1127 

90 µl chloroform and total fatty acids were derivatized using the transesterification reagent 1128 

MethPrep II (Thermofisher Scientific, UK) before analysis by GC-MS as described 1129 

(Tumanov et al., 2015).  1130 

Molecular signalling and Western blot analyses 1131 

For western blot analyses, proteins were extracted by lysing anti-CD3/CD28 mAbs 1132 

activated CD4+ T cells (2-4 x 106 per condition) in RIPA lysis buffer (65mM Tris-HCl, pH 1133 

7.5, 150mM NaCl, 1mM EDTA, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS 1134 

and protease inhibitor cocktail tablets (#04693132001, Roche). Equivalent amounts of protein 1135 

(30μg), as determined by standard Bradford assay (Bio-Rad), were loaded, separated by SDS-1136 

PAGE and transferred to polyvinyildene difluoride membranes using a transfer apparatus 1137 

according to the manufacturer’s protocols (Bio-Rad). After incubation with 5% non-fat milk 1138 
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in TBST (10mM Tris pH 8.0, 150mM NaCl, 0.5% Tween 20) for 60 minutes, membranes 1139 

were washed twice with TBST and incubated overnight at 4°C with a 1:1000 dilution of 1140 

primary antibodies against pSTAT3, STAT3, pSTAT1, STAT1, PKM1/2, pACC, ACC, 1141 

pAMPK, AMPK, HK1, HK2, enolase1, GCK, Aldolase, Acetyl lysine, Histone H3, VDAC, 1142 

β-Actin (Cell Signalling Technology), PFK (Novus Biologicals), SLC5A12 (Abcam) 1143 

Membranes were then incubated for 1 hour at room temperature with horseradish peroxidase-1144 

conjugated anti-mouse or anti-rabbit antibodies (1:2000). Blots were washed twice with 1145 

TBST and developed with the ECL system (Amersham Biosciences) according to the 1146 

manufacturer’s protocols. Density of bands was calculated with ImageJ software. 1147 

Nuclear, mitochondrial and cytosolic fractions were extracted by using Nuclear 1148 

Extraction Kit (Abcam) and Mitochondria Isolation Kit for Cultured Cells (Thermo 1149 

Scientific) according to the manufacturer's instructions. 1150 

RNA Isolation, Reverse Transcription and qRT-PCR 1151 

Total RNA was isolated from 1 x 106 CD4+ T cells or 10mg RA synovial tissue using 1152 

RNeasy Mini kit (Qiagen) according to the manufacturer’s instructions and assessed for 1153 

quality and quantity using absorption ratios of 260/280 nm and 260/230 nm. Cells were lysed 1154 

in RLT lysis buffer and nucleic acids were precipitated with 70% ethanol and RNA bound to 1155 

spin columns. Following several washing steps, RNA was eluted in dH2O. The isolated RNA 1156 

was reverse transcribed to complementary DNA (cDNA) using commercially available kits 1157 

according to the manufacturer’s instructions (Applied Biosystems). Briefly, 1 μg of total 1158 

RNA was mixed with buffer, deoxy-nucleotides (dNTPs) and reverse transcriptase and 1159 

incubated for 2 hours at 30°C, followed by a 5 minutes heat inactivation step at 85°C. cDNA 1160 

was diluted to 10 ng/μl and stored -80°C for subsequent use. 1161 
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Quantitative gene expression analysis was performed using SYBR Green Supermix 1162 

(Biorad) in CFX connect light cycler (Biorad), according to the manufacturer’s instructions. 1163 

Gene relative expression was calculated using the ΔΔct method (Livak and Schmittgen, 1164 

2001) and normalized to a reference control (GAPDH or ß-Actin). Primers for qRT-PCR 1165 

were designed with the assistance of online tools (Primer 3Plus) using at least one exon 1166 

junction binding-site per primer pair where possible. A complete list of primers is available in 1167 

KEY RESOURCES TABLE. Size and specificity of PCR products were confirmed by gel 1168 

electrophoresis. 1169 

RNA Sequencing Analysis 1170 

Detailed methodology and analysis of whole RNA-Seq dataset are described in Lewis 1171 

et al., 2019). RNA was extracted from synovial tissue homogenised at 4°C in Trizol reagent. 1172 

Library preparation was performed using TruSeq RNA Sample Preparation Kit v2 (Illumina). 1173 

Multiplexed libraries were sequenced on Illumina HiSeq2500 to generate 50 million paired-1174 

end 75 base pair reads per sample. Synovium transcript abundances were quantified from 1175 

RNA-Seq FASTQ files over GENCODE v24/GRCh38 transcripts using Kallisto v0.43.0. 1176 

Estimated read counts generated using tximport 1.6.0 were normalised using DESeq2 1.18.1, 1177 

accounting for average transcript length correction, incorporating batch, sex and pathotype as 1178 

model covariates. Transcript abundances were normalised and converted to regularised log 1179 

expression (RLE). Differential gene expression analysis was performed using DESeq2 with 1180 

likelihood ratio test between pathotype or ELS group. Q-values were calculated using 1181 

Benjamini-Hochberg false discovery rate (FDR), with a cut-off of Q ≤ 0.05 to define 1182 

differentially expressed genes. 1183 

Gene sets highly specific to immune cell tissue types were derived based on CAGE 1184 

sequencing data from the FANTOM5 project (Dimont et al., 2014). Module scores specific 1185 
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for T cell subsets were analysed for correlation with metabolic gene expression in synovial 1186 

tissue. 1187 

Hierarchical clustering within seven groups of metabolic genes differentially 1188 

expressed between synovial biopsies classified as positive or negative for ELS by histological 1189 

analysis (FDR ≤ 0.05) was performed using Euclidean distance metric and Ward’s linkage 1190 

method and plotted using ComplexHeatmap 1.17.1. 1191 

Metabolic genes were selected via the use of the KEGG pathway database. 1192 

ELISA 1193 

Secreted IL17A and IFN were measured in cell culture supernatants from 2-4 x 106 1194 

CD4+ T cells/well with a human IL17A (homodimer) and IFN ELISA Ready-SET-Go Assay 1195 

(fisherscientific) respectively, according to the manufacturer’s instructions. 1196 

Quantification and Statistical Analysis 1197 

Statistical details of experiments can be found in the figure legends. All data are 1198 

expressed as ± SD or ± SEM as indicated in figure legends. Statistical tests were selected 1199 

based on appropriate assumptions with respect to data distribution and variance 1200 

characteristics. Statistical significance was determined using unpaired Student's t test or 1201 

ANOVA (one- or two-way). ll statistical analysis were carried out in GraphPad Prism7. 1202 

Significant differences are indicated as follows: ∗p ≤ 0.05, ∗∗p ≤ 0.01, ∗∗∗p ≤ 0.001. 1203 

Data and Code Availability 1204 

RNA-Seq data are deposited at ArrayExpress and are accessible via accession E-1205 

MTAB-6141 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6141). 1206 

Supplemental Information 1207 



Pucino, Certo et al. 
 

55 
 

Supplemental information includes seven supplemental figures with related legends 1208 

and one supplemental table.  1209 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Acetylated-Lysine Antibody Cell Signaling 
Technology 

Cat#9441 

Acetyl-CoA Carboxylase Antibody Cell Signaling 
Technology 

Cat#3662 

Aldolase A Antibody Cell Signaling 
Technology 

Cat#3188 

AMPKα (D63G4) Rabbit mAb Cell Signaling 
Technology 

Cat#5832 

CD14 mouse antibody (clone 63D3) BioLegend Cat#367123 

CD14 mouse antibody (clone M5E2) BioLegend 301804 

CD19 mouse antibody (clone HIB19) BioLegend Cat#302241 

CD19 mouse antibody (clone SJ25C1) BioLegend 363012 

CD20 (CD20cy) mouse antibody (clone L26) Dako GA60461-2 

CD25 mouse antibody (clone BC96) BioLegend Cat#302607 

CD3 monoclonal antibody (OKT3) ThermoFisher 
Scientific 

MA1-10175 

CD4 mouse antibody (clone 4B12) Dako M731001-2 

CD4 mouse antibody (clone RPA-T4) BioLegend Cat#300558 

CD4 rat antibody (clone A161A1) BioLegend Cat#357411 

CD68 mouse antibody (clone PG-M1) Dako M087601-2 

CD8 mouse antibody (clone C8/144B) Dako M710301-2 

CD8 mouse antibody (clone HIT8a) BioLegend Cat#300930 

CD8 mouse antibody (clone SK1) BioLegend Cat#344713 

CXCR5 mouse antibody (clone J252D4) BioLegend Cat#356929 

Dynabeads Human T-Activator CD3/CD28 ThermoFisher 
Scientific 

Cat#11161D 

Enolase-1 Antibody Cell Signaling 
Technology 

Cat#3810 

Foxp3 mouse antibody (clone 206D) BioLegend Cat#320108 

GCK Antibody Cell Signaling 
Technology 

Cat#3782 

Hexokinase I (C35C4) Rabbit mAb Cell Signaling 
Technology 

Cat#2024 

Hexokinase II (C64G5) Rabbit mAb Cell Signaling 
Technology 

Cat#2867 

Histone H3 Antibody Cell Signaling 
Technology 

Cat#9715 

ICOS mouse antibody (clone C398.4A) BioLegend Cat#313519 

IFNγ  mouse antibody (clone 4S.B3) BioLegend Cat#502541 

IL10 mouse antibody (clone JES3-19F1) BioLegend Cat#506804 

IL17A mouse antibody (clone BL168) BioLegend Cat#512328 

IL21 mouse antibody (clone 3A3-N2) BioLegend Cat#513006 

MitoTracker™ Deep Red FM ThermoFisher 
Scientific 

M22426 

PD1 mouse antibody (clone EH12.2H7) BioLegend Cat#329913 

Phospho-Acetyl-CoA Carboxylase (Ser79) (D7D11) Rabbit 
mAb 

Cell Signaling 
Technology 

Cat#11818 

Key Resource Table



 

Phospho-AMPKα (Thr172) (40H9) Rabbit mAb Cell Signaling 
Technology 

Cat#2535 

Phospho-Stat1 (Tyr701) (58D6) Rabbit mAb Cell Signaling 
Technology 

Cat#9167 

Phospho-Stat3 (Tyr705) (D3A7) XP® Rabbit mAb Cell Signaling 
Technology 

Cat#9145 

PKM1/2 (C103A3) Rabbit mAb Cell Signaling 
Technology 

Cat#3190 

Rabbit polyclonal anti-PFK Novus Biologicals NEP1-37473 

RORγt mouse antibody (clone Q21-559) BD Biosciences Cat#563424 

SLC5A12 Antibody Atlas Antibodies HPA060904 

SLC5A12 Antibody Abcam Ab107749 

SLC5A12 Antibody  Novus Biologicals NBP2-49322 

SLC5A12 monoclonal (clone 10E11) Aldevron GmbH N/A 

SLC5A12 monoclonal (clone 3C7) Aldevron GmbH N/A 

SLC5A12 monoclonal (clone 4G2) Aldevron GmbH N/A 

SLC5A12 monoclonal (clone 6E1) Aldevron GmbH N/A 

SLC5A12 monoclonal (clone 7C1) Aldevron GmbH N/A 

SLC5A12 monoclonal (clone 9G4) Aldevron GmbH N/A 

SLC5A12 monoclonal (clone 9G7) Aldevron GmbH N/A 

Stat1 (D1K9Y) Rabbit mAb Cell Signaling 
Technology 

Cat#14994 

Stat3 (D3Z2G) Rabbit mAb Cell Signaling 
Technology 

Cat#12640 

Tbet mouse antibody (clone 4B10) BioLegend Cat#644807 

VDAC (D73D12) Rabbit mAb Cell Signaling 
Technology 

Cat#4661 

β-Actin (13E5) Rabbit mAb Cell Signaling 
Technology 

Cat#4970 

Biological Samples   

Blood obtained from healthy anonymous adult donors N/A N/A 

Mouse paw tissue N/A N/A 

Synovial fluids obtained from rheumatoid arthritis patients N/A N/A 

Synovial tissues obtained from rheumatoid arthritis patients N/A N/A 

Tonsils from subjects undergoing tonsillectomy N/A N/A 

Chemicals, Peptides, and Recombinant Proteins 

AICAR Merck Cat#A9978 

C75 Santa Cruz 
Biotechnology 

SC-202511 

DASA Merck Cat#550602 

DHEA Cayman  Cat#15728 

Etomoxir Merck Cat#236020 

FCCP Merck Cat#C2920 

Histopaque 1077 Sigma-Aldrich Cat#10771 

Leukocyte Activation Cocktail BD Biosciences Cat#550583 

Lymphoprep Stemcell 
Technologies 

Cat#07801 

Oligomycin Merck Cat#495455 

Palmitate Sigma-Aldrich P9767 

Sodium L-lactate Sigma-Aldrich Cat#71718 



 

TOFA Santa Cruz 
Biotechnology 

SC-200653 

Critical Commercial Assays 

Citrate Colorimetric/Fluorimetric Assay Kit BioVision Cat#K655-100 

EasySep™ Human CD4+ T Cell Isolation Kit STEMCELL 
Technologies 

Cat#17952 

EasySep™ Mouse CD4+ T Cell Isolation Kit STEMCELL 
Technologies 

Cat#19852 

Free Fatty Acid Assay Kit – Quantification abcam Cat#ab65341 

H2DCFDA ThermoFisher 
Scientific 

Cat#D399 

Human IFN gamma ELISA Ready-SET-Go!™ Kit fisherscientific Cat#15541107 

Human IL-17A (homodimer) ELISA Ready-SET-Go!™ Kit fisherscientific Cat#15501077 

Mitochondria Isolation Kit for Cultured Cells ThermoFisher 
Scientific 

Cat#89874 

NAD+/NADH Quantification Colorimetric Kit BioVision Cat#K337-100 

NADP/NADPH Assay Kit Abcam Cat#ab65349 

Nuclear Extraction Kit abcam Cat#ab113474 

PicoProbeTM Acetyl CoA Fluorimetric Assay Kit BioVision Cat#K317-100 

Zombie NIR™ Fixable Viability Kit BioLegend Cat#423105 

Deposited Data 

Raw data files for RNA sequencing ArrayExpress https://www.ebi.
ac.uk/arrayexpr
ess/experiment
s/E-MTAB-6141 

Experimental Models: Cell Lines 

Human: MCs from tonsils (primary) N/A N/A 

Human: PBMCs from healthy controls (primary) N/A N/A 

Human: PBMCs from rheumatoid arthritis patients (primary) N/A N/A 

Human: SFMCs from rheumatoid arthritis patients (primary) N/A N/A 

Mouse: CD4+ T cells from Slc5a12 WT or KO mice (primary) N/A N/A 

Experimental Models: Organisms/Strains 

Mouse: SLC5A12 KO (Allele: Slc5a12em1(IMPC)Wtsi) Sanger Institute N/A 

Oligonucleotides 

BCL6 forward primer: 5’-CGAATCCACACAGGAGAGAAA-3’ Invitrogen 347017 U4335 
(B08) 

BCL6 reverse primer: 5’-ACGCGGTATTGCACCTTG-3’ Invitrogen 347017 U4335 
(B09) 

CXCR5 forward primer: 5’-GCTAACGCTGGAAATGGA-3’ Invitrogen 347017 U4335 
(C04) 

CXCR5 reverse primer: 5’-GCAGGGCAGAGATGATTT-3’ Invitrogen 347017 U4335 
(C05) 

Foxo1 forward primer: 5’-AGGGTTAGTGAGCAGGTTACAC-3’ Invitrogen 347017 U4335 
(C02) 

Foxo1 reverse primer: 5’-TGCTGCCAAGTCTGACGAAA-3’ Invitrogen 347017 U4335 
(C03) 

Foxp3 forward primer: 5’-CTGACCAAGGCTTCATCTGTG-3’ Invitrogen 347017 U4335 
(A06) 

Foxp3 reverse primer: 5’-ACTCTGGGAATGTGCTGTTTC-3’ Invitrogen 347017 U4335 
(A07) 



 

GAPDH forward primer: 5’-TCCTCTGACTTCAACAGCGA-3’ Invitrogen 347017 U4335 
(B02) 

GAPDH reverse primer: 5’-GGGTCTTACTCCTTGGAGGC-3’ Invitrogen 347017 U4335 
(B03) 

IFNγ forward primer: 5’-GGCATTTTGAAGAATTGGAAAG-3’ Invitrogen 347017 U4335 
(B04) 

IFNγ reverse primer: 5’-TTTGGATGCTCTGGTCATCTT-3’ Invitrogen 347017 U4335 
(B05) 

IL10 forward primer: 5’-ACCTGCCTAACATGCTTCGAG-3’ Invitrogen 347017 U4335 
(B10) 

IL10 reverse primer: 5’-CCAGCTGATCCTTCATTTGAAAG-3’ Invitrogen 347017 U4335 
(B11) 

IL17A forward primer: 5’-TGTCCACCATGTGGCCTAAGAG-3’ Invitrogen 347017 U4335 
(A08) 

IL17A reverse primer: 5’-GTCCGAAATGAGGCTGTCTTTGA-
3’ 

Invitrogen 347017 U4335 
(A09) 

IL22 forward primer: 5’-TCCAGAGGAATGTGCAAAAG-3’ Invitrogen 347017 U4335 
(D07) 

IL22 reverse primer: 5’-ACAGCAAATCCAGTTCTCCAA-3’ Invitrogen 347017 U4335 
(D08) 

IL6 forward primer: 5’-AGTGAGGAACAAGCCAGAGC-3’ Invitrogen 347017 U4335 
(E07) 

IL6 reverse primer: 5’-GTCAGGGGTGGTTATTGCAT-3’ Invitrogen 347017 U4335 
(E08) 

PD1 forward primer: 5’-ACCTGGGTGTTGGGAGGGCA-3’ Invitrogen 347017 U4335 
(B12) 

PD1 reverse primer: 5’-GGAGTGGATAGGCCACGGCG-3’ Invitrogen 347017 U4335 
(C01) 

RORγt forward primer: 5’-CCTGGGCTCCTCGCCTGACC-3’ Invitrogen 347017 U4335 
(A04) 

RORγt reverse primer: 5’-TCTCTCTGCCCTCAGCCTTGCC-3’ Invitrogen 347017 U4335 
(A05) 

SLC5A12 forward primer: 5’-GTGTGCTGTCTTCTCTGGCT-3’ Eurofins MWG 
Operon 

H680 31-3128-
11/12 

SLC5A12 reverse primer: 5’-GCCACAAAAAGTCCTGGCAG-
3’ 

Eurofins MWG 
Operon 

H680 31-3128-
12/12 

TGFβ forward primer: 5’-AGCGACTCGCCAGAGTGGTTA-3’ Invitrogen 347017 U4335 
(A10) 

TGFβ reverse primer: 5’-GCAGTGTGTTATCCCTGCTGTCA-
3’ 

Invitrogen 347017 U4335 
(A11) 

Β-Actin forward primer: 5’-AGTTGCGTTACACCCTTTCTTG-3’ Invitrogen 347017 U4335 
(A12) 

Β-Actin reverse primer: 5’-TCACCTTCACCGTTCCAGTTT-3’ Invitrogen 347017 U4335 
(B01) 

Software and Algorithms 

GraphPad Prism 7 GraphPad Software, 
Inc 

http://www.grap
hpad.com/scien
tific-
software/prism/ 

FlowJo 7.6.5 Tree Star www.flowjo.com 

ImageJ ImageJ https://imagej.ni
h.gov/ij/ 
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Figure S1. Related to Figure 1. SLC5A12 expression and kinetic in immune cells 

from human peripheral blood. 

(A-C) Representative flow cytometry plots of SLC5A12 expression by CD14+ monocytes 

or CD19+ B cells from non-activated (n=3; A) or anti-CD3 mAb-activated (n=6; B) HC 

PBMCs. Quantification shown in (C). One-way ANOVA (C). (D) Kinetic of SLC5A12 

expression by HC PBMCs CD4+ T cells (n=5-6) activated for the indicated time points. 

Data expressed as mean ± s.e.m. ***P ≤ 0.001. 
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Figure S2. Related to Figure 1. SLC5A12 expression in immune cells from human 

tonsils. 

(A-F) Representative flow cytometry plots of SLC5A12 expression by non-activated (n=4; 

A, D) or anti-CD3 mAb-activated (n=4; B, E) tonsil MCs gated for CD4+, CD8+ (A-B), 

CD14+ and CD19+ (D-E). Quantification shown in (C, F). One-way ANOVA. Data 

expressed as mean ± s.e.m. *P ≤ 0.05; ***P ≤ 0.001. (G) Representative 

immunofluorescence images of tonsils and related quantification. Co-staining for SLC5A12 

(red), CD3, CD4, CD20 or CD68 (green), and DAPI (blue). Scale bar: 50μm. 
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Figure S3. Related to Figure 1. SLC5A12 monoclonal antibodies binding  in human 

CD4+ T cells. 

Representative flow cytometry plots of SLC5A12 expression by CD4+ T cells from anti-CD3 

mAb-activated HC PBMCs. Cells were pre-incubated for 1 hour in the presence or absence 

of SLC5A12 recombinant peptide (1:100) before a further incubation with SLC5A12 mAbs 

(3C7 IgG or 10E11 IgG). Alexa Fluor 555 goat anti-rat (1:1000, Invitrogen) was used as 

secondary antibody. 

Activated PBMCs (gated on CD4+) 

Control 3C7 mAb 

3C7 mAb +  

rhSLC5A12 

S
L
C

5
A

1
2

 

10E11 mAb 
10E11 mAb 

 + rhSLC5A12 

5.3% 10% 4.5% 2.8% 3.6% 

CD4 

103 104 0 105 -103 

0 

103 

104 

105 

-103 

103 104 0 105 -103 103 104 0 105 -103 103 104 0 105 -103 103 104 0 105 -103 

0 

103 

104 

105 

-103 

0 

103 

104 

105 

-103 

0 

103 

104 

105 

-103 

0 

103 

104 

105 

-103 



A                                                                B                                  

0 1 4 0 1 4 0 1 4 Time (h) 

Figure S4. Related to Figure 4. Effects of lactate on CD4+ T cells lipid metabolism.  

(A) Seahorse measurements of fatty acid oxidation (FAO)-driven oxygen consumption rates 

(OCR) by activated CD4+ T cells treated with sodium lactate (10mM) for 1 or 4 hours in the 

presence of Glucose (2.5mM) with BSA, BSA-palmitate (167μM) or BSA-palmitate plus 

etomoxir (40uM), (n=3). (B) Free fatty acid (FFA) intracellular levels in activated CD4+ T cells 

(n=4) treated with sodium lactate (10mM) for 4 hours. (C) Densitometric quantification of 

western blot analysis (n=2) of P-ACC, ACC, P-AMPK and AMPK expression by activated 

CD4+ T cells treated with C75 (10uM), TOFA (20uM) or DHEA (20uM), or left untreated. 

Untreated CD4+ T cells (Ctrl - dotted line) set to 1. 

Two-way ANOVA (A) or two-tailed Student’s t-test (B-C). Data expressed as mean ± s.e.m. *P 

≤ 0.05; **P ≤ 0.01. 
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    A  

Figure S5. Related to Figure 5. Effects of SLC5A12 mAbs on human CD4+ T cell 

migration.   

(A) In vitro chemokinesis of activated CD4+ T cells (n=5) in response to CXCL10 (300 

ng/mL; 4 hours) in the presence of sodium lactate (10mM) with or without SLC5A12 Ab or 

the mAb clones 3C7, 4G2, 6E1, 7C1, 9G4, 9G7 or 10E11. Untreated CD4+ T cells (w/o 

CXCL10 - dotted line) were set to 100. Two-tailed Student’s t-test. Data expressed as mean 

± s.e.m. *P ≤ 0.05; #P ≤ 0.05 versus lactate. 

200 

400 

600 

800 

1000 
M

ig
ra

ti
o

n
 (

%
 c

o
n
tr

o
l)
 

0 

CN 

* * 

Lactate 

CXCL10 

# 

# 
# 

# 



A                                                   B 

Acetyl lysine 

ß-Actin 

            

Lactate 

(kDa) 

- 225 

- 150 

- 102 

- 76 

- 52 

- 45 

Figure S6. Related to Figure 6. Acetylation is not required for lactate induced 

metabolic reprogramming in CD4+ T cells.  

(A) Representative western blots of acetyl lysine-conjugated cytosolic proteins in activated 

CD4+ T cells treated with sodium lactate for the indicated time points. (B) Schematic 

depicting the described findings: lactate-induced inhibition of CD4+ T cell response to 

migratory stimuli is due to a metabolic adaptation to inflamed tissue levels of lactate that 

results in reduced glycolysis and translocation of HK2 to the outer membrane of 

mitochondria, which in turn supports NADPH-dependent de novo fatty acid synthesis 

(FAS). 



A                                                    

Figure S7. Related to Figure 7. Analysis of key transcripts related to disease activity 

and Th17 signature in RA patients. 

(A) Correlations between the inflammatory score DAS28-CRP with CXCL13, LTB and 

FOXO1 transcripts (n=87). (B) Correlations between the following transcripts: FASN vs 

IL17RA, FASN vs STAT3 and ACACA vs STAT3 (n=87). Correlation analyses performed 

using Spearman's correlation coefficients. 

B                                                    



Table S1. Related to Patients section in STAR METHODS. Demographical patient 

data. ESR, Erythrocyte Sedimentation Rate; CRP, C-Reactive Protein; DAS28, Disease 

Activity Score; DMARDs, Disease-Modifying Antirheumatic Drugs; RF, Rheumatoid 

Factor; CCP, anti-Cyclic Citrullinated Peptide. 

 

Study cohort  Treatment  

Age 35-76   

Gender Female (n=6) 
Male (n=2) 

DMARDs 87% 

Parameters  Steroids 12% 

ESR  2-50   
CRP 5-26 Biologics 62% 
DAS28 <2.1 75% RF+ and/or CCP+ (%) 65% 
DAS28 >5.2 25%   
Erosive 63%   




