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Abstract 12 

We introduce a new hybrid simulation model to calculate the hydrodynamic dispersion in 13 

pore scale images of real porous media. For this purpose a stochastic particle model for 14 

simulating the advection and diffusion of a solute is coupled to a Lattice-Boltzmann 15 

algorithm to calculate the flow field in complex geometries. The particle method 16 

incorporates second order spatial and temporal resolution to resolve finer features of the 17 

domain. We demonstrate how dispersion coefficients can be accurately obtained in 18 

capillaries, where corresponding analytical solutions are available, even when these are 19 

resolved to just a few lattice units. Then we compute molecular displacement distributions 20 

for pore-spaces of varying complexity: a pack of beads; a Bentheimer sandstone; and a 21 

Portland carbonate. Our calculated propagator distributions are compared directly with 22 

recent experimental PFG-NMR propagator distributions (Scheven et al. (2005) and Mitchell 23 

et al., (2008)), the latter excluding spin relaxation mechanisms. We observe that the 24 

calculated transport propagators can be quantitatively compared with the experimental 25 

distribution, provided that spin relaxations in the experiment are excluded, and good 26 

agreement is found for both the sandstone and the carbonate. However, due to the absence 27 

of explicit micro-porosity from the carbonate pore space image used for flow field 28 

simulations we note that there are fundamental differences in the physical origins of the 29 

stagnant zones for micro-porous rocks between simulation and experiment. We 30 
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demonstrate how subjectivity in the segmentation process leads to different amounts of 31 

stagnancy computed in the same original sample. Finally, we show how the calculations are 32 

affected by the presence of isolated pores which arise from the segmentation process. 33 

 Introduction 34 

The hydrodynamic dispersion of solute particles in porous media is of great importance in 35 

many scientific and engineering applications (Adler 1992), including ground water pollution, 36 

CO2 sequestration and hydrocarbon recovery. The upscaling of dispersion phenomena from 37 

the pore to core scale is complex and a rigorous theoretical description remains an 38 

outstanding scientific challenge (Bijeljic and Blunt 2006). Various numerical methods have 39 

been proposed to investigate dispersion at the pore scale. Historically, network modelling 40 

has been widely used (Bruderer and Bernabé 2001, Bijeljic, Muggeridge et al. 2004, Bijeljic 41 

and Blunt 2006, Acharya, Van der Zee et al. 2007). However, for heterogeneous porous 42 

media, such as carbonate rocks, it is very difficult to extract reliable and unique pore 43 

networks (Knackstedt, Arns et al. 2006). For this reason, direct calculation on three-44 

dimensional pore space images obtained from e.g. micro-CT scanning or Confocal Laser 45 

Scanning Microscopy (CLSM) (Shah, Crawshaw et al. 2013) has been proposed to avoid the 46 

problems associated with network extraction (Ramstad, Idowu et al. 2012). Coelho et al. 47 

(Coelho, Thovert et al. 1997) used a finite difference method to solve for the flow and 48 

dispersion in unconsolidated bead packs and sandstones. (Maier, Kroll et al. 1998) used a 49 

hybrid method, consisting of lattice-Boltzmann (LB) simulations to calculate the flow field 50 

combined with a random-walk particle-tracking method to simulate dispersion in a sphere 51 

pack. They found good agreement with nuclear magnetic resonance (NMR) experiments for 52 

both transient and asymptotic dispersion. Recently, Scheven et al. (Scheven, Verganelakis et 53 

al. 2005, Scheven, Harris et al. 2007) reported molecular displacement (or propagator) 54 

distributions for different rock samples obtained from Pulsed Field Gradient—Nuclear 55 

Magnetic Resonance (PFG-NMR) experiments. They observed that the character of the 56 

propagator distributions strongly depends on the heterogeneity of the porous medium. 57 

Bijeljic et al. (Bijeljic, Raeini et al. 2013), using a Stokes solver for the flow field and a 58 

streamline-based algorithm for solute dispersion, observed agreement with the 59 

experimental NMR propagator results (Scheven, Verganelakis et al. 2005). Yang et al. (Yang 60 

and Boek 2013) developed a new LB algorithm to calculate both the flow field and solute 61 



dispersion in pore space images of different heterogeneity. They quantified the degree of 62 

heterogeneity and calculated the fraction of solute particles trapped by integrating over the 63 

stagnant peak (Yang and Boek 2013). However, it appeared to be difficult to study the 64 

diffusive coupling for long time scales in a quantitative fashion. For this reason, we propose 65 

here a new hybrid algorithm, using LB simulations to solve the flow field coupled with a 66 

streamline-based algorithm for solute dispersion. In addition, we propose a second order 67 

predictor-corrector scheme for particle advection, which is more accurately able to compute 68 

the dispersion of solute in finer features of the pore-space. We observe good agreement 69 

with the experimental propagator distributions (Scheven, Verganelakis et al. 2005, Mitchell, 70 

Graf von der Schulenburg et al. 2008) for the simpler pore-spaces.  However, the 71 

aforementioned simulation studies have not considered the importance and influence of 72 

the segmentation procedure on the results for micro-porous carbonate samples. We have 73 

considered this systematically in the present study. 74 

Method  75 

The simulation is performed on a 3-dimensional Cartesian lattice with nodes marked as 76 

either fluid or solid describing the geometry. Fluid nodes are associated with a flow vector 77 

which is the solution to the incompressible Stokes flow at the centre of the grid element. 78 

This flow-field is computed using the single-phase multiple-relaxation-time (MRT) lattice 79 

Boltzmann model (d'Humières 2002). 80 

The stochastic tracer method consists of transporting particles through the domain in two 81 

steps. First, a forward integration along the flow vectors describes the advection part, 82 

followed by a random-walk step to simulate diffusion by Brownian motion. To derive the 83 

second order advection scheme, we interpolate a second order velocity field around each 84 

node’s flow vector 𝑽𝟎 using the 6 neighbouring vectors 𝑽±𝒙,𝒚,𝒛 (figure 1). Generally, these 85 

polynomials are written as 86 

 𝑣𝑖(𝑥, 𝑦, 𝑧) = 𝑉0
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where 𝑖 = 𝑥, 𝑦, 𝑧 is the component of the flow vector. The position 𝑥, 𝑦, 𝑧 is relative to the 87 

centre of the node and the grid spacing is such that the distance between the centres of 88 



each neighbour is unity. The coefficients 𝑎, 𝑏 and 𝑐 are to be determined in terms of the 89 

neighbouring vectors. 90 

We may then impose boundary conditions to calculate the 27 advection coefficients for 91 

each node. Two of these conditions are 92 

 𝑣𝑖(0,0,0) = 𝑉0
𝑖  (2) 

   

 𝑣𝑖(±1, 𝑦, 𝑧) = 𝑉±𝑥
𝑖  (3) 

   

These conditions imply that all the 𝑐 coefficients are equal to 1, and thus we only need store 93 

18 coefficients for each fluid node. 94 

Expressions for the 𝑎 and 𝑏 coefficients for a case without adjoining solid nodes can then be 95 

obtained for each component 𝑖 in terms of the neighbouring vectors. For the 𝑥 coefficients 96 

 𝑎𝑥
𝑖  =

𝑉𝑥
𝑖 + 𝑉−𝑥

𝑖

2𝑉0
− 1 (4) 

   

 𝑏𝑥
𝑖 =

𝑉𝑥
𝑖 − 𝑉−𝑥

𝑖

2𝑉0
 (5) 

   

When a neighbouring node is solid, we impose a 0 velocity vector at the boundary, in line 97 

with the half-way bounce-back lattice Boltzmann scheme. For a solid at the +𝑥 node, the 98 

condition is 99 

 𝑣𝑖 (
1

2
, 𝑦, 𝑧) = 0 (6) 

   

Then we obtain expressions for the coefficients with different combinations of adjoining 100 

solids. For the 𝑥 coefficients, with a single solid node at ±𝑥 101 

 𝑎𝑥
𝑖  =

2

3

𝑉±𝑥
𝑖

𝑉0
− 2 (7) 

   

 𝑏𝑥
𝑖 = ±

1

3

𝑉±𝑥
𝑖

𝑉0
± 1 (8) 

   

For solids at both +𝑥 and – 𝑥 102 

 𝑎𝑥
𝑖 = 4  ;   𝑏𝑥

𝑖 = 0 (9) 

   



These expressions are directly extended to the 𝑦 and 𝑧 coefficients. 103 

In lowly resolved features of a geometry represented with just a few fluid nodes, calculating 104 

the average velocity by naively averaging the flow vectors can introduce systematic error. It 105 

should be clarified that the flow vectors from the lattice-Boltzmann algorithm represent the 106 

solution to the Navier-Stokes equation at the centre of the fluid node rather than the 107 

average flow velocity through the node. Therefore, we can extract a better estimate of the 108 

average flow velocity by integrating the 2nd order velocity field over the node volume. 109 

 𝑣𝑎𝑣
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1
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To transport a particle along the flow-field, we carry out a standard second order accurate 110 

predictor-corrector time-step in a similar way to other stochastic approaches (Szymczak and 111 

Ladd 2003) 112 

 𝒙𝑝(𝑡 + 𝑑𝑡) = 𝒙(𝑡) + 𝒗(𝒙(𝑡))𝑑𝑡 (11) 

   

 𝒙(𝑡 + 𝑑𝑡) = 𝒙(𝑡) +
1

2
[𝒗(𝒙(𝑡)) +  𝒗(𝒙𝑝)]𝑑𝑡 (12) 

   

where 𝒙 is the position of the particle at time t, 𝒙𝑝 is the ‘predicted’ position of the particle 113 

at time 𝑡 + 𝑑𝑡 with time-step 𝑑𝑡 and 𝒗 is the flow vector calculated from the polynomial 114 

function of position in equation (1). 115 

Diffusion is simulated by translating the particle over a random-walk vector. The expected 116 

distance a diffusing particle will have travelled in 3D random walk given a diffusion 117 

coefficient 𝐷𝑚 and time-step 𝑑𝑡 is 𝐿 = √6𝐷𝑚𝑑𝑡. We generate a spherically isotropic unit 118 

vector by taking 2 uniform random variates r1 and r2 on [0,1] and apply the following 119 

transformation to obtain polar coordinates 120 

 𝜑 = 2𝜋𝑟1 (13) 
   
 𝜃 = cos−1(1 − 2𝑟2) (14) 

   

These transformations are derived in appendix 1. Finally, we apply the standard 121 

transformation to Cartesian coordinates to obtain a random-walk diffusion vector 122 

(Mostaghimi, Bijeljic et al. 2012) 123 
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 124 

 125 

Validation 126 

We compute the longitudinal dispersion coefficient of a solute undergoing advection and 127 

diffusion in lowly resolved capillaries of three different cross-sections: parallel plates with 128 

infinite width, a square channel and a circular capillary. Each has different merits as a test 129 

case. The parallel-plates geometry is represented exactly by the Cartesian grid and the 130 

Poiseuille flow field is precisely represented to second order. For the square channel, the 131 

geometry is again exactly represented although the analytical flow distribution is no longer a 132 

finite-order polynomial but given by a convergent series. Finally, the circular capillary is not 133 

smoothly represented on the Cartesian lattice (figure 2). 134 

The longitudinal dispersion coefficient 𝐷, often called dispersivity, is defined as half the 135 

time-rate of change in the variance, 𝜎2, of a solute distribution: 𝐷 =
1

2

𝑑

𝑑𝑡
𝜎2. It can be shown 136 

that for any channel geometry the asymptotic (long time) dispersivity is given by (Chatwin 137 

and Sullivan 1982, Dutta and Leighton 2001): 138 

 
𝐷𝑚(𝐷 − 𝐷𝑚)

𝑣𝑎𝑣
2

= 𝑘𝑎2 (16) 

   

where 𝑣𝑎𝑣  is the average flow velocity, 𝐷𝑚 the molecular diffusivity and 𝑎 is the radius or 139 

half the height of the capillary. The constant 𝑘 is a dimensionless parameter, which is solely 140 

dependent on the cross-sectional geometry of the capillary. For a circular capillary 𝑘 =
1

48
 141 

(Aris 1956, Deen 1998), for parallel-plates with infinite width 𝑘 =
2

105
 (Deen 1998, Dutta and 142 

Leighton 2001), and for a square capillary 𝑘 ≈
173

5250
  (Doshi et al. 1978, Chatwin and Sullivan 143 

1982, Dutta and Leighton 2001). The exact value of 𝑘 for the square capillary can be 144 

computed using the equations in the paper by Doshi et al. 1978 or Chatwin & Sullivan 1982.  145 



We generate geometries of heights/diameters varying from 1 to 25 lattice units (l.u.) for the 146 

three cases of parallel plates (2𝑎 is the plate separation), square cross-section capillary (2𝑎 147 

is the height and width), and circular cross-section capillary (2𝑎 is the diameter). We 148 

compute the flow-field inside each geometry with lattice Boltzmann simulation and using a 149 

uniform body-force. The dispersion coefficient is computed by initialising 106 point particles 150 

at the flow distance coordinate 𝑥 = 0 uniformly over the cross-section and running the 151 

simulation until the dispersion coefficient reaches an asymptotic value. The time-step is 152 

chosen such that a particle’s maximum displacement is 10% the characteristic length of the 153 

medium, i.e. 2𝑎 in our simulations which corresponds to 0.5 lattice units. 154 

Figures 3 and 4 show the simulation results plotted against the analytical expressions and 155 

the error from the analytical values respectively for each cross-section and resolution. The 156 

error values themselves will have a contribution from the statistical fluctuations of the 157 

particle distribution during sampling the asymptotic dispersion coefficient of the order 1%. 158 

For the case of parallel plates, we find no systematic deviation from the analytical result, as 159 

expected. For the square capillary resolved to a 1 and 2 l.u. dimension, the error stems from 160 

fitting a single second order curve to the true infinite order flow-field function. This error 161 

decays quickly as the resolution increases and is negligible for resolutions above 5 l.u. For 162 

the circular case, the diameter is not well defined in the small blocky geometries and so we 163 

have extracted an effective value from the true cross-sectional area 𝐴 such that 2𝑎 =164 

√4𝐴 𝜋⁄  . The deviation from the analytical result is most pronounced in this case, yet 165 

generally below 10% above a 5 l.u. diameter and gradually decreasing over the larger 166 

dimensions. 167 

Propagator Distributions 168 

We now use the model to compute molecular displacement distributions inside images of 169 

real pore-spaces. Three cases are examined, of varying complexity: a pack of beads 170 

exhibiting high regularity and connectivity; a Bentheimer sandstone with a non-171 

homogeneous but well-connected structure; and a Portland carbonate with a 172 

heterogeneous pore-space. Samples were obtained from micro-CT imaging, followed by 173 

segmentation on a Cartesian lattice of solid and pore voxels (Blunt, Bijeljic et al. 2012). In 174 



highly micro-porous carbonate rocks, this segmentation procedure can be subjective and its 175 

effects are considered in this work. 176 

The three porous media chosen allow us to compare the results of simulation with the 177 

experimental NMR data of Scheven et al. (Scheven, Verganelakis et al. 2005) for the three 178 

samples, and the spin loss-corrected data of Mitchell et al. (Mitchell, Graf von der 179 

Schulenburg et al. 2008) for the Bentheimer and Portland samples. Representative samples 180 

are chosen and given in table 1 (Shah 2014) 181 

Sample Dimension (mm) Size (Voxels) Resolution (μm) Porosity 

Beadpack 0.625 2503 2.50 37.9% 

Bentheimer 1.810 4003 4.52 20.9% 

Portland 1.810 4003 4.52 13.7% 

Table 1 – Samples used in the simulation 182 

The beadpack consists of spheres of 86 ± 10μm, which we have found to give the best 183 

quantitative fit to the NMR data, in which beads of 100 ± 20μm are reportedly used. We 184 

have applied the mirroring concept to these samples to guarantee flow and transport 185 

continuity over the boundaries (Yang and Boek 2013). In this approach, the samples are 186 

reflected about the 𝑥 = 0 axis, where 𝑥 is the flow direction. Thus the computational 187 

domain size is now doubled, for example, 500x250x250 lattice units for the beadpack. 188 

The calculations are performed by initialising a set of tracer particles uniformly throughout 189 

each medium and computing the displacement of each particle from its initial position. A 190 

displacement density function can then be obtained at different sample times, or 191 

equivalently, mean Darcy displacements 𝑑 = 𝑣∆𝑡 where 𝑣 is the mean Darcy velocity in the 192 

pore-space and ∆𝑡 is the sample time. The two experimental papers obtain data in different 193 

ways: Scheven et al. employ a constant flow rate, sampling the displacement distribution at 194 

different times whereas Mitchell et al. sample the distribution at a fixed time of ∆𝑡 = 1𝑠 for 195 

a set of different flow rates.  The diffusion coefficient of water at ambient temperature is 196 

used: 𝐷𝑚 = 2.0𝑥10−9𝑚2𝑠−1, and the timescale is derived by matching the experimental 197 

mean Darcy flow velocities or flow rates. 198 



The distributions are shown for each medium at 3 different sample distances in figures 5, 6, 199 

and 7 respectively, overlaid with the corresponding NMR data from Scheven et al. (Scheven, 200 

Verganelakis et al. 2005) for the beadpack and Mitchell et al. (Mitchell, Graf von der 201 

Schulenburg et al. 2008) for the sandstone and carbonate. Scheven et al. also computed 202 

propagators for Bentheimer and Portland samples which include the influence of spin-203 

relaxation. This is demonstrated by comparing the time-dependent mean particle 204 

displacements in the experiment to calculations performed by imposing the same mean 205 

Darcy flow velocity in the samples. Figure 8 shows the mean displacement of the solute 206 

particles, 〈𝑥〉 relative to the mean Darcy displacement for each medium, and may be 207 

compared with Scheven’s experimental data. Our calculations imply that the mean particle 208 

displacement is very close to the Darcy displacement: 
〈𝑥〉

𝑑
≈ 1 for all cases whereas the 209 

experimental ratios converge to 1.03 (beadpack), 1.2 (Bentheimer) and 1.3 (Portland). In 210 

later publications, the authors of the experimental NMR work considered this to be due to 211 

loss of spins, particularly close to solid grain boundaries and is thus most pronounced in the 212 

micro-porous carbonate (Scheven, Seland et al. 2004, Mitchell, Graf von der Schulenburg et 213 

al. 2008, Hussain, Mitchell et al. 2013). To solve this problem, Mitchell et al. (2008) have 214 

obtained flow propagators excluding the influence of NMR relaxation times T1 and T2. 215 

These spin relaxation mechanisms usually give a loss of signal that depends on the 216 

displacement of the flowing spins. The exclusion of T1 and T2 allowed acquisition of 217 

quantitative propagator data (Mitchell et al. (2008)). For this reason, we directly compare in 218 

figure 6 our calculated propagators for the Bentheimer sandstone and micro-porous 219 

Portland carbonate, with the recent experimental propagator data obtained by Mitchell et 220 

al. (2008).  We note that to obtain different displacements in this set of NMR experiments 221 

the flow rate was changed and the time interval for acquisition kept constant. This resulted 222 

in a range of Peclet numbers, in contrast to the simulations of the beadpack in which the 223 

flow rate and therefore the Peclet number was kept constant.  224 

With the adjusted mean, the beadpack distributions agree well with the experimental data 225 

which converges to a Gaussian distribution. Two statistical measures are useful for 226 

quantifying the convergence behaviour: the Skewness and Kurtosis Excess, defined as 227 

 𝛾 =
𝜇3

𝜇2
3/2

      𝑎𝑛𝑑     𝜅 =
𝜇4

𝜇2
2 − 3 (17) 



   

where 𝜇𝑖 is the 𝑖th central moment of the distribution, such that 𝜇2 is recognised as the 228 

variance. The skewness measures the symmetry of a distribution about the mean and the 229 

kurtosis excess is a measure of peakedness: 0 for a Gaussian distribution; <0 for a more 230 

sharply peaked distribution; and >0 for a flatter distribution. These are shown in figure 9 for 231 

the beadpack which are seen to be converging towards 0, implying that the beadpack 232 

distribution tends towards a Gaussian in the long-time limit. 233 

The time-dependent skewness of the Bentheimer and Portland distributions are also given 234 

in figure 10 using the experimental parameters of Scheven et al. Since we can identify two 235 

peaks in the propagator distributions (figures 6 and 7) of these samples: a stagnant 236 

component about zero displacement and a moving peak around the mean displacement, 237 

the kurtosis excess is not meaningful in these cases. The Bentheimer skewness tends 238 

towards 0 on a longer timescale than the beadpack and in accordance with the observation 239 

that the stagnant peak in the propagator distribution decreases with time as solute in less-240 

well-connected areas of the pore structure diffuse into flowing regions. The carbonate 241 

distributions however are not seen to become symmetric over the time-scale examined. 242 

This observation is further quantified by measuring the fraction of solute which is contained 243 

in the stagnant peak of the propagator distributions over time. We adopted the following 244 

measure of this fraction, 𝑆(𝑡) 245 

 𝑆(𝑡) = 2 ∫ 𝑃(𝑥′, 𝑡)
0

−∞

𝑑𝑥′ (18) 

   

where 𝑥′ is the scaled unit 𝑥/𝑑 and we are assuming that the stagnant peak is symmetric 246 

about zero displacement. The stagnant fractions against time for the three samples are 247 

given in figure 11 using the experimental parameters of Scheven et al. The beadpack 248 

stagnant fraction disappears the most quickly, but is not immediately 0. This can be seen in 249 

the early propagator distribution figure 5a as the slightly pronounced bump at the zero 250 

displacement and might reasonably be explained as the small amount of solute in the 251 

immediate vicinity behind beads having to diffuse a short way into a flowing streamline. The 252 

stagnant component in the sandstone appears to decay to almost zero on the simulation 253 

time-scale, but takes considerably longer than the beadpack, reflecting the increased 254 

complexity of the sandstone structure. Nonetheless, this implies that the pore structure is 255 



completely connected. The same conclusion cannot be drawn for the carbonate, whose 256 

stagnant fraction asymptotically persists as around 20% of the normalised distribution. This 257 

suggests that a similar fraction of the pore-space has no connection to a flowing path 258 

through the domain. Such an effect may be an artefact of the image segmentation process, 259 

rather than a physical one. We also note that the stagnant fractions for the beadpack and 260 

sandstone samples match the NMR data of Scheven et al. very closely, suggesting that 261 

spurious spin relaxation mechanisms are at least uniform over the displacement 262 

distributions. The stagnant peak is greatly over-predicted in the carbonate sample which is 263 

consistent with experimental spin losses being most pronounced in the low-flow micro-264 

porous regions. 265 

Figure 12 gives the stagnant fractions computed for the Bentheimer and Portland samples 266 

for the Peclet numbers (flow rates) alongside the loss-corrected NMR data of Mitchell et al. 267 

(2008). The trapped fraction in the Bentheimer is again seen to reach near-zero as the flow 268 

rate (flow distance at 𝑡 = 1𝑠) increases with Peclet number. The carbonate once again 269 

apparently reaches an asymptotic trapped fraction of 20% – 25%. Agreement with the 270 

experimental NMR data is relatively good but differences in the Bentheimer propagator 271 

distributions (figure 6a,b and c) suggests some uncertainty in matching the flow rates or 272 

diffusion coefficients with experiment. Nonetheless, the stagnant peak of the carbonate is 273 

much more closely matched as would be expected from excluding spin-loss effects 274 

concentrated in the micro-porous zones. 275 

Despite the quantitative agreement, there are important differences between the 276 

simulations and experiment for the Portland carbonate which need to be pointed out. 277 

Chiefly, we note that simulation is performed on a segmented version of the pore-space. As 278 

such, any transport through micro-porous zones in the experiment is not incorporated into 279 

the calculation, but binarized into either fully permeable porous zones, or impermeable 280 

solid phase. This process in inherently subjective and we now demonstrate this 281 

systematically, returning to the time-dependant calculation of stagnant peaks which helps 282 

to elucidate the connectivity of the pore-space. 283 

The segmentation process takes a continuum-valued (grey-scale) image from a micro-CT 284 

scan and converts this to a discrete set of phases.  In general the principle for all 285 



segmentation methods is based on separating the phases by detecting similarities and 286 

discontinuities in intensity grey value and partitioning the phases accordingly with the help 287 

of different edge detection algorithms and labelling similar regions of each phase.  In this 288 

study, a non-local means filter followed by a seeded watershed algorithm was used to 289 

segment the images into 2 phases: pore and grain (Jones, Arns et al. 2009, Andrew, Bijeljic 290 

et al. 2013, Shah, Crawshaw et al. 2013). A seeded watershed algorithm relies not only on 291 

the intensity of an image but also on the gradient magnitude of an image with the seed 292 

generated by the use of 2D histograms. The 2D Histogram Segmentation module within the 293 

Avizo Fire 8.0 program has two main processes: (1) initialization of voxels into two or more 294 

phases using the concept of the region growing method based on 3D voxel intensity and 295 

gradient magnitude and (2) expansion of initially assigned voxels in step 1 so that all the 296 

voxels are labelled using the watershed transform.  For highly micro-porous samples, the 297 

histogram data in step 1 is not sharply defined, so that the researcher’s choice may play a 298 

role in the result. 299 

To highlight the subjectivity of this process further, we took the same initial grey-scale 300 

image of Portland carbonate and performed four new segmentations leading to a range of 301 

porosities 9.0%, 12.9%, 15.0% and 17.9%. Figure 13 shows a slice of the original image along 302 

with the equivalent segmented result. Also highlighted is an example of a clearly micro-303 

porous grey-scale zone segmented into pore in the 12.9% porosity sample, but as a solid 304 

zone in the 9.0% sample. 305 

The flow rate used was that of Scheven et al. (ref.). The stagnant fraction was computed 306 

again by equation 18 and the result shown against time in figure 14. The discrepancy 307 

between the different samples is immediately obvious, a factor of more than 2 difference 308 

between the lowest and highest porosities. The lowest porosity sample had the highest 309 

fraction of stagnant solute over the simulation, with a gradually decreasing trapped fraction 310 

with increasing porosity. The physical interpretation is less clear. We might expect that in 311 

the lowest porosity sample, only fully porous areas of the original image have been 312 

segmented into pore-space and a few of the most porous micro-pore zones. As the porosity 313 

of the segmented images increases, more of the micro-porous (grey-scale) areas are 314 

included. These pores of micro-porous origin would be expected to have the highest 315 

likelihood of being isolated from flowing zones, and thus comprise permanently trapped 316 



solute. This then suggests that stagnant zone of the 9.0% porous sample should decay most 317 

fully in the long-time limit and the higher porosity images should reach asymptotic values 318 

increasing with porosity. 319 

Whether such behaviour is observed in reality is beyond the time-scale of our simulations. 320 

However it is possible to illuminate this issue further. As a final analysis, we applied a 321 

filtering algorithm to each image which removed isolated pores i.e. any pore not percolating 322 

to a flowing face through at least one of its 6 Cartesian neighbours. A comparison of 323 

stagnant fractions between filtered and unfiltered images is given in figure 15. The order of 324 

the curves is maintained: the 9.0% sample most stagnant and the 17.9% sample the least so. 325 

However, where the curves for the 3 highest porosity samples are consistently lower in the 326 

filtered image (consistent with discounting the permanently trapped solute), the 9.0% 327 

porous sample maintains roughly the same profile in both filtered and unfiltered 328 

simulations. This confirms that most or all of the stagnant solute in this image is not 329 

permanently trapped, but should diffuse out of slow regions after a longer time. On the 330 

other hand, the higher porosity segmentations do contain isolated stagnant zones so that 331 

the curves in the unfiltered cases should eventually reach an asymptotic, non-zero value. 332 

Finally, the slower decay of the 9.0% porous sample indicates that the flowing pore-space is 333 

more constricted, becoming less so with increasing porosity. 334 

Conclusion 335 

We detailed a stochastic transport simulation method able to resolve the velocity field 336 

smoothly in fine areas of a simulation domain. This was compared with the analytical 337 

dispersion results in capillaries and shown to be accurate even with very lowly resolved 338 

channels. 339 

Using this method, it was possible to match transport propagators to corresponding NMR 340 

experimental data quantitatively for a beadpack and sandstone. For the micro-porous 341 

Portland carbonate sample, we compared our calculated propagator distributions directly 342 

with recent experimental propagator distributions (Mitchell et al., (2008)). These 343 

measurements excluded spin relaxation mechanisms associated with NMR relaxation times 344 

T1 and T2, thus allowing acquisition of quantitative propagator data (Mitchell et al. (2008)). 345 

Indeed, this comparison shows that the calculated transport propagators can be semi-346 



quantitatively compared with the experimental distribution, provided that spin relaxations 347 

in the experiment are excluded, but note that the experiment and simulations are not 348 

entirely physically consistent because stagnant zones arising from micro-pores are not 349 

included in the simulation, but instead stem from badly-connected or isolated macro-pores 350 

which can depend on the segmentation procedure. 351 

For such geometries whose transport behaviour is strongly influenced by micro-porous 352 

zones, models which incorporate continuum porosity and permeability grid cells are more 353 

appropriate. If effective dispersion coefficients can be assigned to micro-porous areas, 354 

combined with a probabilistic entry/exit scheme for particles crossing from porous to micro-355 

porous zones, the transport behaviours can be more accurately predicted, thus avoiding 356 

subjective segmentation procedures. 357 
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Figures 370 

 371 

Fig 1. Centre node velocity vector V0 and its 6 nearest neighbours 372 

 373 

Fig 2. Capillaries of differing cross-section: parallel plates, square channel and circular cross-section 374 

of height (diameter) 20 lattice units. Velocity profiles range from fastest zones in red to slowest in 375 

blue. 376 

 377 

Fig 3. The value of 𝑘𝑎2 computed for capillaries of the given cross-sections compared to the 378 

analytical solution. 379 
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 380 

Fig 4. The percentage error in the calculation relative to the exact expression. These values 381 

themselves are subject to an error of ±1% because of the statistical fluctuation of the particle 382 

distribution 383 

 384 

 385 

Fig 5a, b, c. Propagator distribution in Beadpack at different sample times compared to the NMR 386 

results of Scheven et al. (2005) (dashed lines). 387 
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 388 

389 

 390 

Fig 6a, b, c. Propagator distribution in Bentheimer sandstone at the same sample time (t = 1s) with 391 

increasing flow rates and Peclet numbers: a) Pe = 5; b) Pe = 64; c) Pe = 81. Calculated distributions 392 

are indicated with a blue line, in comparison with the propagator data obtained by Mitchell et al. 393 

(2008), indicated by a black dashed line. 394 
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 398 

 399 

Fig 7a, b, c. Propagator distribution in Portland carbonate at the same sample time (t = 1s) with 400 

increasing flow rates and Peclet numbers: a) Pe = 7.2; b) Pe = 36; c) Pe = 116. Calculated distributions 401 

are indicated with a blue line, in comparison with the propagator data obtained by Mitchell et al. 402 

(2008), indicated by a black dashed line. Isolated pores are present in the calculations, which add to 403 

the stagnant peak. The segmented image porosity is 13.5%. 404 
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 405 

Fig 8. Computed mean particle displacement relative to mean Darcy displacement. Parameters 406 

match the experimental values used by Scheven et al.: constant mean Darcy flow rates of 910μms-1 407 

(beadpack), 1030μms-1 (Bentheimer) and 1260μms-1 (Portland) sampled over time. 408 

 409 

Fig 9. Kurtosis Excess and Skewness of propagators computed for the beadpack propagator 410 

distribution over time with a flow rate of 910μms-1. 411 
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Fig 10. Skewness computed for propagators of Bentheimer sandstone and Portland carbonate with 413 

parameters used by Scheven et al.: mean Darcy velocities of 1030μms-1 (Bentheimer) and 1260μms-1 414 

(Portland) sampled over time. 415 

 416 

Fig 11. Fraction of solute stagnant over time computed for the three samples using the experimental 417 

parameters and against the NMR data of Scheven et al. 418 

 419 

Fig 12. Fraction of solute stagnant over time computed for the Bentheimer and Portland samples 420 

against Peclet number using the parameters and against the NMR data of Mitchell et al. 421 
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 422 

Figure 13. Two-dimensional cross-section of three dimensional micro-CT image of Portland 423 

carbonate. (a) Original image. (b) Segmented porosity – 9 %. (c) Segmented porosity – 12 %. (d) 424 

Segmented porosity – 15 %. (e) Segmented porosity – 18 %. Circled in a), b), and c) – a microporous 425 

region segmented into macro-pore as the segmented porosity is increased from 9% to 12%. 426 

 427 

 428 

Fig 14. Fraction of solute stagnant over time for different segmentations of Portland carbonate, 429 

labelled by their porosity. 430 
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 431 

Fig 15. Fraction of solute stagnant for Portland carbonate overlaid with data from filtered images 432 

(isolated pores removed) and labelled by the unfiltered image porosity. 433 
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 Appendix 1 512 

We have the area of a small surface element, dS on a sphere in terms of the radial distance r, 513 

azimuthal angle 𝜃 on the range [0, 𝜋] and the polar angle 𝜑 on the range [0, 2𝜋] 514 

 𝑑𝑆 = 𝑟2𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 A1.1 
   

A random isotropic point on the spherical surface has the following probability of being in the 515 

infinitesimal ranges [𝜃, 𝜃 + 𝑑𝜃] and [𝜑, 𝜑 + 𝑑𝜑] 516 

 𝑃(𝜃, 𝜑)𝑑𝜃𝑑𝜑 =  
𝑑𝑆

4𝜋𝑟2
=

1

4𝜋
𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑 A1.2 

   
We require the probability to be the same everywhere and therefore we will equate the cumulative 517 

probability for the respective variables with those of uniform variates. The cumulative probability 518 

distribution is thus 519 

 𝑃𝑐(𝜃, 𝜑) = ∫ 𝑑𝜃
𝜃

0

∫ 𝑑𝜑
𝜑

0

 𝑃(𝜃, 𝜑) =
1

4𝜋
(1 − 𝑐𝑜𝑠𝜃)𝜑 A1.3 

   
The complete cumulative probability distributions for the variables 𝜑  and 𝜃  are therefore 520 

respectively 521 

 𝑃𝑐(𝜋, 𝜑) =  
1

2𝜋
𝜑 A1.4 

   

 𝑃𝑐(𝜃, 2𝜋) =  
1

2
(1 − 𝑐𝑜𝑠𝜃) A1.5 

   
For a random variate 𝑟𝑖, uniformly distributed over the interval [0, 1], we have the probability of 522 

being in the range [𝑟𝑖, 𝑟𝑖 + 𝑑𝑟𝑖] and the cumulative probability respectively 523 

 𝑃(𝑟𝑖)𝑑𝑟𝑖 = 𝑑𝑟𝑖 A1.6 
   
 𝑃𝑐(𝑟𝑖) = 𝑟𝑖 A1.7 
   



Finally, taking two uniform random variates 𝑟1  and 𝑟2 , we equate these with the cumulative 524 

probability distributions for 𝜑  and 𝜃  respectively to obtain expressions for random spherical 525 

coordinates in terms of uniform distributions 526 

 𝜑 = 2𝜋𝑟1 A1.8 
   
 𝜃 = cos−1(1 − 2𝑟2) A1.9 
   

 527 


