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ABSTRACT: To investigate enhanced oil recovery processes, we constructed a molecular model 

of a live heavy crude oil (digital oil) and studied the crude oil properties at the reservoir 

temperature and a wide range of pressures. We identified the liquid phase components of the digital 

oil by flash calculation, and calculated the density and viscosity by molecular dynamics 

simulations. The calculated density and viscosity were in good agreement with experimental data. 

To evaluate the effectiveness of various solvents to enhance oil recovery, we calculated the oil 

property changes when different solvents were added to the digital oil. First, we compared methane 

and carbon dioxide (CO2). The results indicated that CO2 was more effective in terms of oil-

viscosity reduction, oil swelling, and diffusion in the oil. Second, we evaluated the effectiveness 

of 11 different solvents: nitrogen, CO2, methane, ethane, propane, n-heptane, n-octane, toluene, 

and three xylene isomers (o-xylene, m-xylene, and p-xylene). Ethane had the greatest effect on oil-

viscosity reduction and oil swelling, and CO2 had the highest diffusion coefficient. From these 

results, ethane and CO2 are appropriate solvents for this crude oil. In addition, it is interesting to 

note that the decreases of the viscosity among the three xylene isomers were different, but there 

were no differences in the swelling factors and diffusion coefficients. The different rotation motion 

characteristics of the xylene isomers can account for the viscosity differences. Such information 

will be helpful for further development of digital oil models. 
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1. INTRODUCTION 

Efficient recovery of heavy oil, which includes extra heavy oil and bitumen, is important with the 

depletion of conventional light oil reserves and the increase of energy demands. The main 

difficulty in heavy oil recovery is that heavy oil is partially or completely immobile under reservoir 

conditions because of its extremely high viscosity and heavy molecular composition.1–4 Enhanced 

oil recovery (EOR) is therefore an essential technique for heavy-oil recovery, even at the early 

development stage. Steam-assisted gravity drainage (SAGD) is the most widely commercialized 

process for bitumen and heavy-oil recovery.5–7 SAGD takes advantages of the strong temperature 

dependency of the bitumen viscosity. The role of steam injection is to provide heat and reduce the 

viscosity of the heavy oil to enable it to move toward the production well. In the SAGD process, 

the steam injected from a horizontal well forms a steam chamber. Under gravity, the heated 

bitumen drains toward the production well, which is located a few meters below the injection well.7 

This process offers several key advantages, including high ultimate recovery and a stable oil 

production rate. However, high energy demands and environmental concerns, such as high carbon 

dioxide (CO2) emission levels and the use of large quantities of fresh water, have prompted the 

need for alternative processes.5–7 

Solvent-aided SAGD (SA-SAGD) has been proposed as an alternative to improve the efficiency 

of SAGD.5–9 In SA-SAGD, a small amount of a hydrocarbon solvent is co-injected with water 

steam to further reduce the viscosity of the bitumen near the chamber edge. This process requires 

a smaller amount of steam (i.e., less consumption of energy and water) to recover the same amount 

of bitumen and can exhibit a higher oil production rate than SAGD.6,9 Vapor extraction (VAPEX), 

a cold-production process, has also been proposed as an alternative for heavy-oil recovery.10–13 In 

VAPEX, vaporized solvents are injected instead of steam, which dissolve in the oil, dilute the oil, 
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and decrease its viscosity. Compared with liquid solvents, vaporized solvents provide a higher 

driving force for gravity drainage of heavy oil and are more easily recoverable.12 

In both SA-SAGD and VAPEX processes, selecting an appropriate solvent for a particular 

reservoir is the most important task because the solvent effectiveness varies depending on the oil 

field.5–7,12,13 For example, the majority of VAPEX studies have used propane as the injected 

solvent because propane is one of the least-expensive hydrocarbon solvents and it has satisfactory 

solubility in heavy oil.12 CO2 has also attracted attention as the solvent. CO2 is more soluble in 

heavy oil than propane, so it can more significantly decrease the oil viscosity.13 In addition, it 

decreases the cost of the injected solvent because CO2 can be recovered from the exhaust and by-

product gases.13 

The oil viscosity is an important factor for evaluating the effectiveness of different 

solvents.2,10,11 For heavy oils, characterizing the viscosity behavior is particularly important 

because even a small change can have large effects on the production rate and recoverable oil 

volume.2 The production rates of SA-SAGD and VAPEX are also strongly dependent on the oil 

viscosity reduction, which in turn depends on dissolution of the solvent in the heavy oil, mainly 

by molecular diffusion.11,14 Therefore, the diffusion coefficient of the solvent is another important 

factor. Molecular diffusion is caused by the concentration gradients of each component in the oil 

and gas phases. This diffusion effect is especially important in the gas injection process because 

concentration gradients easily occur near the injection zone in this process. The molecular 

diffusion coefficients in oils have been characterized in several ways.8,15,16 Ohata et al.15 estimated 

the molecular diffusion coefficients from a combination of experimental data using a pressure–

volume–temperature (PVT) cell and simulation matching to the pressure decay. Imai et al.8 

estimated the molecular diffusion coefficients by reproducing the time-lapse concentration profiles 
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 5

obtained by X-ray computed tomography imaging. The swelling factor, which is defined as the 

ratio of the volume of the oil–solvent mixture to the original oil volume, is also an important 

parameter. Oil swelling is expansion of the oil volume when a solvent contacts the reservoir fluid, 

which can result in enhancement of oil recovery by mobilizing the residual oil and increasing the 

oil saturation and relative permeability.13,17 Understanding these properties leads to selection of an 

effective solvent, field design of the recovery processes, and understanding the oil-recovery 

mechanisms. These properties are determined based on the interactions between the oil 

components and the solvent. It is therefore necessary to understand the oil components and the 

changes in their properties when various solvents are added. 

Owing to the development of computational technology, molecular dynamics (MD) simulations 

are now widely used to investigate oil–water interfacial phenomena,18–23 petroleum engineering,20–

26 oil refinery,27 and asphalt systems.28–30 Molecular models are being developed for 

asphaltenes,31,32 as well as whole crude oil.33,34 One of the advantages of MD simulations is that 

they provide insights that cannot be extracted from experimental data alone. In our previous work, 

we constructed a digital oil model (i.e., a molecular model of crude oil) for a light crude oil,33 as 

well as another digital oil model for a heavy crude oil.34 We also showed the potential application 

of digital oil to asphaltene precipitation prediction.33 In this study, we applied the digital oil model 

to investigate the solvent-based EOR processes of a heavy crude oil. 
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2. METHODOLOGY 

2.1. Overview 

For MD simulations, it is important to construct an accurate molecular model of crude oil. 

Theoretically, a molecular model of crude oil must contain all of the components of that oil. 

However, it is not possible to detect all of these components, especially for a heavy crude oil. Thus, 

the molecular model needs to be appropriately simplified. One approach to characterize a complex 

mixture is to use average data based on measurements of the whole sample.31,32 Digital oil is a 

molecular model of crude oil that is represented as a mixture of the representative molecules of 

each fraction.33,34 Because the representative molecules are generated on the basis of the average 

structural information of that fraction, all of the components do not need to be identified (when 

separation is unworkable). Once we construct a digital oil, we can analyze both its macroscopic 

properties and microscopic phenomena under any thermodynamic conditions by MD simulations. 

A schematic diagram of the EOR study with the digital oil model is shown in Figure 1. In 

this study, we used a heavy crude oil as an example. The American Petroleum Institute (API) 

gravity of the crude oil was 11°–17°. The density of our sample at ambient pressure and 288 K 

was 0.955 g/cm3. In our previous work, we constructed a digital oil model (dead oil model) for 

this heavy crude oil and calculated its physical properties.34 In this study, we first constructed a 

live oil model that contained both dead oil and dissolved gas components. We then calculated the 

density and viscosity at the reservoir temperature and a wide range of pressures by MD simulations 

and compared the results with the experimental data for validation. After confirming the validity 

of the model, we calculated the changes in the oil properties when various solvents were added to 

the digital oil. We finally evaluated the effectiveness of the solvents in terms of oil-viscosity 
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reduction, oil swelling, and solvent diffusion in the oil. We give a brief summary of construction 

and validation of the digital oil model in Section 2.2. We explain the MD simulation details in 

Section 2.3. We discuss identification of the liquid phase components in Section 2.4. We describe 

our experiments on measuring the crude oil properties of a crude oil (density and viscosity) and 

the changes in the properties when adding natural gas (methane) and CO2 in Section 2.5. 

2.2. Construction of the Digital Oil Model 

A schematic diagram of the procedure to construct a digital oil model for a heavy crude oil is 

shown in Figure 2. It differs from the procedure to construct a digital oil model for a light crude 

oil because we could not identify all of the molecular structures and their mole fractions of the 

light fractions, such as saturates and aromatics, in the heavy crude oil by gas chromatography–

mass spectrometry and gas chromatography with flame ionization detection.33 

For the heavy crude oil, the crude oil was separated into four fractions: saturates, aromatics, 

resins, and asphaltenes (SARA). First, it was diluted with heptane and separated into the 

precipitated asphaltenes and the dissolved maltenes in heptane by filtration and refluxing.34 The 

saturates, aromatics, and resins were then extracted from the maltenes by using an alumina column 

with heptane, toluene, and methanol–toluene solvents. The yields of the SARA fractions for the 

investigated heavy crude oil are given in Table 1. The digital oil model was constructed as a 

mixture of the representative molecules of saturates, aromatics, resins, and asphaltenes. The lost 

components (low boiling-point compounds vaporized during drying) were determined based on 

gas chromatography distillation (GCD) experiments.34 In this specific case, asphaltenes of ~0.4 wt 

% in the crude oil were ignored.34 The representative molecules were generated by quantitative 

molecular representation (QMR),32 a technique that provides a set of molecules consistent with the 
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 8

analytical data, such as the elemental composition, the average molecular mass, and the structural 

types of hydrogen and carbon atoms revealed by 1H and 13C NMR spectroscopy. To enable the 

QMR method to be applicable to saturates, we made two developments: (1) nonaromatic molecules 

could be generated by a new algorithm, which can also generate more branched structures, and (2) 

the molecular mass distribution of the model could be fitted to that obtained from experiments. 

The thus obtained digital oil model was composed of 36 types of representative molecules. We 

validated the model in terms of the double-bond equivalent as a function of the carbon number. 

We also confirmed the validity of the model by comparison with the experimental density and 

viscosity.34 

Crude oil under the reservoir conditions (i.e., live oil) is composed of oil components (dead 

oil) and dissolved gas components. Here, dead oil means a crude oil that does not contain any 

dissolved gas. It is usually a sample at ambient pressure, so the oil has lost its volatile components. 

Live oil means a crude oil containing dissolved gas in solution. It is usually a sample taken from 

a reservoir (e.g., a bottom-hole sample) without loss of the dissolved gas that can be released from 

the solution when the pressure is lower than the bubble point pressure. In our previous work,34 we 

focused on a digital oil model containing only dead oil. The live oil properties under reservoir 

conditions need to be calculated to simulate the EOR processes. Hence, we constructed a live oil 

model by adding gas components to the dead oil model. A snapshot of the digital oil model is 

shown in Figure 3. The proportions of the gas components in the live oil obtained from 

experiments are given in Table 2. Based on these results, the number of molecules of each gas 

component in the live oil model was determined (also given in Table 2). The major component of 

the dissolved gas was the C1 component (CH4), followed by N2, while the CO2, C2, and C3 

components were ignored in the model because of their low concentrations. 
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 9

2.3. MD Simulations 

We calculated the physical properties of the digital oil by MD simulations using the GROMACS 

package (version 5.1.4).35 The CHARMM general force field (CGenFF) was used to describe the 

inter- and intramolecular interactions of the hydrocarbons, including those with heteroatoms.36–39 

In previous studies, it has been shown that the CGenFF (and the CHARMM force field) can 

reproduce the densities of organic liquids and interfacial tension of oil–water interfaces very well 

with deviation of less than 1% and 3%, respectively.21,36,40 For CO2 and nitrogen (N2), the 

transferable potentials for phase equilibria (TraPPE) force field was used.41 The cutoff distances 

were 1.2 nm for both the Lennard-Jones and electrostatic potentials. The Verlet cut-off scheme 

was used, where a pair list is created with a Verlet buffer at neighbor search steps.42 The particle 

mesh Ewald summation method was used for the long-range electrostatic interactions.43 To remove 

excess potential energy, we performed an energy minimization step using the steepest descent 

method. We then performed an isothermal–isobaric (NPT) ensemble simulation using the velocity-

rescaling thermostat44 and Berendsen barostat45 until the system reached equilibrium. The density 

was then calculated by an NPT simulation with the Nosé–Hoover thermostat46,47 and Parrinello–

Rahman barostat48 for 3 ns. The shear viscosity was calculated by equilibrium MD (EMD) 

simulations with the canonical (NVT) ensemble with the Nosé–Hoover thermostat for 5–20 ns. In 

contrast to the non-equilibrium MD (NEMD) method, the EMD method does not require additional 

adjustments of the shear rate, which enables zero-shear viscosity with comparable accuracy and 

reliability to the NEMD method to be obtained.49 The details can be found in our previous 

studies.33,34 The diffusion coefficients of the solvents were also calculated with the same trajectory 

as the viscosity calculation. The temperature was controlled at the reservoir temperature of 323.15 

K and the pressure ranged from 24.2 to 0.48 MPa. 
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 10

2.4. Identification of the Liquid Phase Components 

The bubble point is the pressure and temperature at which the first bubble of gas comes out of the 

solution in oil. When the pressure is decreased below the bubble point pressure, the crude oil 

separates into the gas and liquid phases. In experiments, the physical properties of the liquid phase 

are measured below the bubble point pressure. However, in our MD simulations, phase separation 

could not be observed owing to size limitation.33 There are several options to overcome this 

problem. The first option is to use an extraordinarily large system to clearly observe the vapor and 

liquid phases.22 To this end, a coarse-grained force field24 may be helpful to save computational 

cost. The second option is to perform a Gibbs ensemble Monte Carlo (GEMC) simulation, which 

allows two simulation boxes for the liquid and vapor phases. However, GEMC requires high 

computational cost, especially for large systems like our case. The third option is to perform a 

phase equilibrium calculation, namely, a flash calculation, which is widely used in the petroleum 

industry because of its low calculation cost. In this study, we performed a flash calculation using 

a PVT simulator (PVTsim Nova 4.0, Calsep, Kongens Lyngby, Denmark). In the PVT simulator, 

the PVT model was composed of heavy components and dissolved gas. The heavy components 

consisted of heavy hydrocarbons with carbon numbers of seven or more (C7+), while the dissolved 

gas consisted of CO2, N2, and light hydrocarbons (C1–C3). In the flash calculation of the crude oil, 

17 types of pseudocomponents were used (12 heavy components and 5 dissolved gas components). 

When we constructed the cubic equation of state (EoS) model, we modeled the pseudocomponents 

based on the Pedersen approach.50 In this approach, the critical temperature, critical pressure, and 

acentric factor of each component were estimated by the correlation proposed by Pedersen et al.,50 

that is, the effect of the naphthenic and aromatic components in each pseudocomponent was 

included through the density and molecular weight.50 We used the Peng–Robinson EoS. The EoS 
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 11

model was adjusted to match the PVT experimental data. From the flash calculation, we obtained 

the proportions of each component in both the gas and liquid phases. The liquid component of the 

digital oil was then reconstructed based on the results of the flash calculation. Similarly, we 

determined the liquid components by flash calculations of digital oil–solvent mixtures for solvents 

such as CO2, N2, methane, ethane, and propane. 

2.5. Measurement of the Crude Oil Properties 

We measured the physical properties (density and viscosity) of the crude oil (a live oil) at the 

reservoir temperature (323.15 K) and a wide range of pressures (24.2–0.48 MPa) using a PVT 

cell.15 In the PVT experimental system, the temperature was maintained using a thermostat. A free 

piston separated the oil sample and silicon oil, which controls the pressure. The interface level 

between the liquid and vapor phases was determined by a charge coupled device camera and a 

high-resolution cathetometer, which can resolve the changes at the 0.01 mm level. The 

experimental system included a densimeter and a viscometer to measure the density and viscosity 

of the liquid phase. Natural gas (methane) and CO2 were considered as the first two candidate 

solvents (for EOR applications) because they can be easily obtained in oil fields. When adding a 

solvent, the density and viscosity were measured in the same way. The largest injection amount of 

solvent was predetermined by referring to the reservoir pressure (~17 MPa). For methane and CO2, 

they were 18.0 mol % (1.74 wt %) and 53.4 mol % (19.3 wt %) of the crude oil, respectively. 

These experimental data were used for comparison with the calculated data. 
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3. RESULTS AND DISCUSSION 

3.1. Physical Properties of the Live Oil Model 

To validate the live oil model, we calculated the oil density at the reservoir temperature (325.15 

K) and a wide range of pressures (24.2 to 0.48 MPa). The calculated density as a function of 

pressure (dotted line) in comparison with the experimental data is shown in Figure 4. These values 

were in good agreement in the high-pressure range (≥10.4 MPa), but not in the low-pressure range 

(<10.4 MPa). This indicates that phase separation could not be observed at the spatial and time 

scale used in the MD simulations, which leads to calculating the total density of the gas and liquid 

phases. To identify the liquid phase components at each pressure, we performed flash calculations 

using the PVT simulator. The composition of the liquid phase at each pressure obtained from a 

flash calculation is given in Table 3. All of the heavy components (C7+) were still in the liquid 

phase even below the bubble point pressure, while the dissolved gas components vaporized as the 

pressure decreased. We then reconstructed a digital oil model that contained only the liquid phase 

components and calculated its density at various pressures (solid line, Figure 4). The densities 

were in good agreement with the experimental values at all of the pressures (deviation <2%). 

We also calculated the viscosity of the digital oil and compared it with experimental data. A 

comparison of the calculated and measured viscosities is shown in Figure 5. The calculated 

viscosity of the full components of the digital oil (dotted line) monotonically decreased with 

decreasing pressure, while the measured viscosities (open symbols) increased below the bubble 

point pressure. However, the calculated viscosity of the liquid phase (solid line) showed a similar 

trend to the measured viscosity. Like a previous study of dead oil,34 the deviation from the 

measured viscosity was systematic with the calculated value being ~1.5 higher than the 
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experimental value. From these results, combining digital oil and flash calculation enables the 

physical properties of the liquid phase to be calculated, thereby confirming the validity of the live 

oil model in terms of the density and viscosity under the reservoir conditions. 

3.2. Case Study 1: Comparison of CH4 and CO2 

We performed two case studies using the live oil model to investigate the effective EOR processes. 

In case study 1, we evaluated the effectiveness of natural gas (CH4) and CO2 as injected solvents. 

These two solvents are considered to be promising candidates to enhance the recovery of this crude 

oil. The solvents were added to the digital oil up to their solubility limits. The injected CH4 and 

CO2 corresponded to 18.0 mol % (1.74 wt %) and 53.4 mol % (19.3 wt %) of the digital oil, 

respectively. The amount of injected CO2 was about three times higher than that of CH4 because 

CO2 has higher solubility in the oil. The compositions of the liquid phases at each pressure in the 

cases of CH4 and CO2 injection are given in Tables 4 and 5, respectively. Based on these results, 

we constructed digital oil–solvent mixtures. We then evaluated the effectiveness of each solvent 

by calculating the viscosity and swelling factor of the digital oil with the digital oil–solvent 

mixtures, and the diffusion coefficient of each solvent in the digital oil. 

3.2.1. Viscosity Comparison. The viscosities of the digital oil alone, digital oil–CH4 mixture, 

and digital oil–CO2 mixture in comparison with the experimentally measured values are shown in 

Figure 6. Like the calculated results for the crude oils (i.e., both live oil and dead oil),34 the 

deviation was systematic with the calculated value being ~1.5 higher than the experimental value. 

CO2 decreased the oil viscosity more significantly than CH4. In addition, CH4 decreased the oil 

viscosity only in the high-pressure range (≥11.8 MPa), while CO2 decreased the oil viscosity at all 

of the pressures. We also confirmed that addition of solvents caused the bubble point pressures to 
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increase. From all of the results, CO2 has a greater influence on EOR in terms of oil-viscosity 

reduction. 

3.2.2. Oil Swelling Comparison. The swelling factors of the digital oil by CH4 and CO2 in 

comparison with the experimentally measured values are shown in Figure 7. The swelling factor 

in this study was calculated as the ratio of the volume of the oil–solvent mixture to the original oil 

volume (at 0.48 MPa). The calculated swelling factors were in good agreement with the 

experimental values for both CH4 and CO2. We confirmed that the swelling factors did not increase 

above the bubble point pressures. CO2 swelled the oil by ~21%, while CH4 swelled it by ~5% at 

each bubble point pressure. This also indicates that CO2 has a greater influence on EOR in terms 

of oil swelling. 

3.2.3. Diffusion Coefficient Comparison. The calculated diffusion coefficients of CH4 and 

CO2 in the digital oil are shown in Figure 8. The diffusion coefficients of both solvents increased 

with increasing pressure, while they slightly decreased when the pressure exceeded the bubble 

point pressures of ~20 MPa. The diffusion coefficient of CO2 was about twice that of CH4, which 

indicates that CO2 can more easily diffuse in the heavy oil compared with CH4. Therefore, it can 

be concluded that CO2 is more suitable as the solvent for EOR in terms of diffusion in the oil. We 

did not have measured diffusion coefficient data for the same crude oil, but data was available for 

a crude oil from the same oil field. The density of that sample at ambient pressure and 288 K was 

0.988 g/cm3. The measurement was at 17 MPa and 323 K. Our calculated data were in agreement 

with the measured data15 in terms of the order of magnitude (~10−9 m2/s) and the fact that the 

diffusion coefficient of CO2 was larger than that of CH4. 
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 15

Consequently, CO2 is an effective solvent in terms of oil-viscosity reduction, oil swelling, and 

diffusion in the oil. This is mainly because CO2 has high solubility in the heavy oil, which results 

in a large number of molecules added to the digital oil. We thus found that the solubility of the 

solvent has a great influence on EOR. 

3.3. Case Study 2: Investigation of Effective Solvents 

In case study 2, we investigated the solvents by evaluating the oil property changes when various 

solvents were added to the digital oil. The candidate solvents were N2, CO2, methane (CH4), 

ethane, propane, n-heptane, n-octane, toluene, and the three isomers of xylene (o-xylene, m-xylene, 

and p-xylene). All of the solvents were added to the digital oil at 10 wt %. The number of molecules 

of each solvent was calculated according to each molecular mass (Table 6). Note that the solubility 

limits of N2 and methane were less than 10 wt %, that is, the vapor phases emerged when these 

two solvents were added at 10 wt %. We therefore identified the liquid phase components of the 

digital oil–N2 and digital oil–methane mixtures by flash calculation (Table 7). The properties 

evaluated were the viscosity, swelling factor, and diffusion coefficient of the solvent. The pressure 

and temperature were controlled at 17.0 MPa and 323.15 K, respectively, which were the same as 

the reservoir conditions. 

3.3.1. Viscosity Comparison. A comparison of the calculated viscosities of the digital oil–

solvent mixtures is shown in Figure 9. Ethane decreased the oil viscosity the most. CO2 and 

propane also significantly decreased the oil viscosity, while the liquid solvents, including heavier 

alkanes (n-heptane and n-octane) and aromatics (toluene and xylene), only slightly decreased the 

oil viscosity. N2 actually increased the oil viscosity. In the digital oil, the numbers of N2 and 

methane molecules in the simulation system were 13 and 279, respectively (Table 2). However, 
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when N2 was injected into the crude oil, the numbers of N2 and methane molecules in the 

simulation system became 122 and 81, respectively (Table 7). This large relative change of the 

molecule numbers should account for the increase in the viscosity. Interestingly, the decreases in 

the viscosity were different among the three isomers of xylene. This indicates that the isomers 

have different influences on the oil viscosity. 

3.3.2. Oil Swelling Comparison. A comparison of the swelling factors of the digital oil by 

different solvents is shown in Figure 10. Ethane swelled the oil the most, followed by propane, n-

heptane, and n-octane. Methane only slightly swelled the oil and N2 did not swell the oil. In fact, 

the oil shrank when injecting N2. This is in good accordance with the above findings of the 

viscosity changes, where an increase of the viscosity was observed. In addition, no differences 

were observed between the three isomers of xylene in terms of the swelling factors. 

3.3.3. Diffusion Coefficient Comparison. A comparison of the diffusion coefficients of the 

solvents in the digital oil is shown in Figure 11. CO2 had the highest diffusion coefficient in the 

digital oil. Ethane also had a high diffusion coefficient. Liquid solvents, including heavier alkanes 

(n-heptane and n-octane) and aromatics (toluene and xylene), showed much lower diffusion 

coefficients. In addition, no significant differences were observed among the three isomers of 

xylene in terms of the diffusion coefficients. 

3.4. Discussion 

3.4.1. Implications for EOR Applications. In this study, a heavy crude oil sample was used as a 

target oil to study the EOR processes. In this oil field, there are two different reservoirs: “shallow” 

and “deep” reservoirs. The heavy crude oil used in this study was obtained from the shallow 

reservoir. The deep reservoir is a gas condensate reservoir. This oil field has not yet been in 
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production, so several EOR processes are now being extensively studied by experiments and 

simulations. Natural gas (methane) injection is considered to be a candidate (for EOR applications) 

because it can be easily recovered from the deep reservoir. In addition, this oil field is located near 

a carbon dioxide capture and storage site, so CO2 injection is also a promising candidate. 

Therefore, first, we compared methane and CO2 by calculating the oil property changes when 

methane or CO2 was added to the digital oil. The results indicated that CO2 was more effective in 

terms of oil-viscosity reduction, oil swelling, and diffusion in the oil. Furthermore, we evaluated 

the effectiveness of 11 different solvents. Ethane had the greatest influence on oil-viscosity 

reduction and oil swelling, and CO2 had the highest diffusion coefficient. From these results, 

ethane and CO2 are appropriate solvents for this crude oil. This indicates that vaporized solvents 

have advantages for recovery of heavy oil compared with liquid solvents.12 

3.4.2. Importance of the Solubility for Vaporized Solvents. Here, we will discuss the 

importance of the solubility of the solvent for enhancement of oil recovery. In case study 1, the 

number of CO2 molecules added to the digital oil was about five times more than that of methane 

molecules, which resulted in the high effectiveness of CO2. In case study 2, the results showed that 

lighter normal alkanes were more effective. However, methane did not show high effectiveness, 

even though it is the lightest normal alkane. The difference between methane and the other normal 

alkanes was that the vapor phase emerged when 10 wt % methane was added to the digital oil 

owing to its low solubility (1.74 wt %). This indicates that solvents, especially vaporized solvents, 

require satisfactory solubility for high effectiveness in enhancing EOR. Consequently, from case 

studies 1 and 2, the solubility of the solvent is an essential factor for investigation of the effective 

EOR processes. This is the reason why ethane and CO2 showed great influences on EOR. 
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3.4.3. Mechanisms of the Effect of the Xylene Isomers on the Viscosity: Role of the 

Rotational Relaxation Time. To investigate the relationship between the xylene isomers and the 

viscosity, we calculated the rotational correlation functions of the xylene isomers in the digital oil. 

Two different vectors were chosen: the normal vector of the aromatic plane and the vector from 

the A atom to the B atom, which are defined in Figure 12(a). The reorientation correlation time 

was calculated by the time correlation function: C 𝑡 𝐮 𝑡 ∙ 𝐮 0 , where 𝐮 is the vector that 

is considered. Following Zhang and Greenfield,28 we regressed the calculated results using the 

modified Kohlrausch–Williams–Watts function:51 𝑃 𝛼 exp 𝑡 𝜏⁄ 1

𝛼 exp 𝑡 𝜏⁄ . The time correlation functions of the normal vector of the aromatic plane 

and the A–B vector in the aromatic plane, and the corresponding regression curves are shown in 

Figure 12(b) and (c). The rotational relaxation times (τ ) and regression results using the modified 

Kohlrausch–Williams–Watts function are given in Table 8. It is interesting to note that the τ  

value of the normal vector of the aromatic plane of o-xylene is the largest, which corresponds well 

with it having the highest viscosity among the isomers. However, the values for m-xylene and p-

xylene show the opposite trend to the calculated viscosities. This contradiction can be solved by 

considering the A–B vector, as shown in Figure 12. In this case, because the moment of inertia of 

p-xylene is higher than that of m-xylene, the rotational relaxation time of p-xylene is higher than 

that of m-xylene. Differing from Zhang and Greenfield,28 it is still difficult to unify the picture and 

predict the viscosity with all of the calculated rotational relaxation times, because the comparison 

here was made based on different molecules, whereas it was the same molecule at different 

temperatures in their study. This information, that is, there is a significant influence of isomers on 

the viscosity, can be used for further development of the digital oil model. In most cases, isomers, 

like the xylene isomers, may not be distinguishable from each other in terms of the structural 
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parameters determined by NMR spectroscopy. Therefore, if we consider a variety of isomers for 

the representative molecules, the viscosity of the digital oil could change while maintaining the 

structural parameters. 

 

4. CONCLUSION 

To investigate the effectiveness of solvents for enhancing the EOR processes, we constructed a 

digital oil model of a live oil that consisted of the dead oil and dissolved gas components. The 

digital oil model of the dead oil was from our previous work.34 We identified the liquid phase 

components of the digital oil at several pressures by flash calculation and calculated the density 

and viscosity of the liquid phase. The calculated properties were in good agreement with the 

experimental data. We then evaluated the oil property changes when different solvents were added 

to the oil. The main results and recommendations are as follows: (1) Vaporized solvents showed 

advantages for recovery of heavy oil compared with liquid solvents in terms of oil-viscosity 

reduction, oil swelling, and diffusion in the oil. (2) Ethane had the greatest influence on oil-

viscosity reduction and oil swelling, and CO2 had the highest diffusion coefficient. From these 

results, ethane and CO2 are appropriate solvents for this crude oil. (3) The solubility of the solvent, 

especially for vaporized solvents, is an essential factor for investigation of the effective EOR 

processes. (4) Isomers can have different influences on the oil viscosity, even though their 

molecular properties are very similar. Such information will be used for further development of 

the digital oil model. In the current work, we combined a PVT simulator and MD simulations to 

study the live oil properties. In future, it will be interesting to perform large-scale MD 
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simulations,24 such as with coarse-grained digital oil models, to identify the liquid phase 

components using molecular models. 
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Figure 1. Schematic diagram of the solvent based EOR study with digital oil. 
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Figure 2. Construction of a digital oil model for a heavy crude oil. This diagram was constructed 

based on the procedure described in Ref. [34]. Note that CHNS means elemental analysis, MM 

(GPC) means molecular mass measurement by gel permeation chromatography, 1H and 13C NMR 

spectroscopy reveal the structural types of hydrogen and carbon atoms, QMR represents the 

quantitative molecular representation based on the average data (e.g., the average molecular mass), 

and extended QMR considers the mass distribution resulting from GCD experiments. Extended 

QMR can generate molecular structures without aromatic rings. The lost components were 

determined based on GCD experiments. 
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Figure 3. Snapshot of the digital oil at 24.2 MPa and 325.15 K (a). The insert shows the 

representative molecules with the highest mole percentage for saturates (b), lost components (c), 

aromatics (d), resins (e), and dissolved gases CH4 (f) and N2 (g). The mole fraction breakdown is 

given in Table 1. After equilibrium, the simulation box had dimensions of ~7.75 nm × 7.75 nm × 

7.75 nm. 
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Figure 4. Densities calculated using the full components of the digital oil and the liquid phase of 

the digital oil and the experimentally measured values at different pressures. 
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Figure 5. Calculated viscosities using the full components of the digital oil and the liquid phase 

of the digital oil and the experimentally measured values at different pressures. 
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Figure 6. Calculated viscosities of the digital oil, digital oil–CH4 mixture, and digital oil–CO2 

mixture in comparison with the experimentally measured values. 
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Figure 7. Calculated swelling factors of the digital oil, digital oil–CH4 mixture, and digital oil–

CO2 mixture in comparison with the experimentally measured values. Note that both the 

experimental and calculated swelling factors were derived based on the density ratio. 
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Figure 8. Calculated diffusion coefficients of CH4 and CO2 in the digital oil. 

  

Page 34 of 42

ACS Paragon Plus Environment

Energy & Fuels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35

 

 

 

Figure 9. Comparison of the calculated viscosities of the digital oil on adding different solvents. 

The green bar is the viscosity on adding each solvent. The orange bar is the original viscosity of 

the digital oil alone. 
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Figure 10. Comparison of the swelling factors of the digital oil on adding different solvents. The 

green bar is the swelling factor on adding each solvent. The orange bar is the original volume of 

the digital oil alone. 
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Figure 11. Comparison of the diffusion coefficients of different solvents in the digital oil. 
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Figure 12. (a) Molecular structures of the xylene isomers, (b) time correlation function of the 

normal vector of the aromatic plane, and (c) time correlation function of the A–B vector in the 

aromatic plane. The A and B atoms used in each xylene isomer are labeled in (a). 
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Table 1. Yields of the SARA fractions in the crude oil sample 

Fraction Saturates Aromatics Resins Asphaltenes
Lost 

components 

Yield 
(wt %) 

41.1 16.1 3.0 0.4 39.4 

 

Table 2. Mole fraction and number of molecules of the gas components in the live oil model 

Component mol % Number of molecules 

N2 1.06 13 

CO2 0.04 0 

C1 23.03 279 

C2 0.05 0 

C3 0.00 0 

C7+ (dead oil) 75.82 917 
 

Table 3. Composition of the liquid phase of the live oil model at each pressure 

 Number of molecules in liquid phase 

 Pressure [MPa] 

 P>9.84 6.31 4.24 2.17 0.48 

N2 13 5 2 0 0 

C1 279 183 126 66 15 

C7+ (dead oil) 917 917 917 917 917 
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Table 4. Composition of the liquid phase of the live oil model at each pressure on adding CH4 

 Number of molecules in liquid phase 

 Pressure (MPa) 

 P>17.18 11.82 4.24 

N2 13 6 1 

C1 557 375 133 

C7+ (dead oil) 917 917 917 
 

Table 5. Composition of the liquid phase of the live oil model at each pressure on adding CO2 

 Number of molecules in liquid phase 

 Pressure [MPa] 

 P>18.45 13.89 10.44 8.38 4.93 

N2 1 1 0 0 0 

CO2 1363 1048 802 641 368 

C1 215 166 111 77 31 

C7+ (dead oil) 917 917 917 917 917 
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Table 6. Number of molecules of each solvent added to the digital oil 

Solvent Molecular mass 
Number of 
molecules

N2 28 998  

CO2 44 635 

methane 16 1746  

ethane 30 931 

propane 44 635 

n-heptane 100 279 

n-octane 114 245 

toluene 92 304 

o-xylene 106 264 

m-xylene 106 264 

p-xylene 106 264 
 

Table 7. Compositions of the liquid phases of the digital oil–N2 and digital oil–methane mixtures 

 Number of molecules 

 Solvent 

 N2 methane 

N2 122 2 

C1 81 574 

C7+ (dead oil) 917 917 
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Table 8. Xylene rotational relaxation times and the regression results using the modified 

Kohlrausch–Williams–Watts function51 

 Normal vector of aromatic plane 

 α β τ0 τKWW Integration (τC) 

o-xylene 0.89 0.58 14.9 2.02 13.6 

m-xylene 0.91 0.65 12.6 1.40 11.7 

p-xylene 0.87 0.64 9.21 1.96 8.39 
 A-B vector 

 α β τ0 τKWW Integration (τC) 

o-xylene 0.86 0.70 7.65 2.83 7.12 

m-xylene 0.91 0.62 13.5 2.45 12.7 

p-xylene 0.90 0.73 15.0 2.43 13.9 
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