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Abstract. For both Lévy flight and Lévy walk search processes we analyse the
full distribution of first-passage and first-hitting (or first-arrival) times. These are,
respectively, the times when the particle moves across a point at some given distance
from its initial position for the first time, or when it lands at a given point for the
first time. For Lévy motions with their propensity for long relocation events and
thus the possibility to jump across a given point in space without actually hitting it
("leapovers"), these two definitions lead to significantly different results. We study the
first-passage and first-hitting time distributions as functions of the Lévy stable index,
highlighting the different behaviour for the cases when the first absolute moment of
the jump length distribution is finite or infinite. In particular we examine the limits
of short and long times. Our results will find their application in the mathematical
modelling of random search processes as well as computer algorithms.
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1. Introduction

When a stochastic process x(t) first reaches a given threshold value in many scenarios
follow-up events are triggered: shares are sold when their value crosses a pre-set target
amount, or chemical reactions occur when two reactive particles encounter each other
in space. The time t at which this triggering event first occurs, is either called the
first-hitting (first-arrival) or the first-passage time, as defined below [1, 2, 3]. While
the physical analysis of first-passage time problems has a long history, notably the
seminal works by Smoluchowski [4] as well as Collins and Kimball [5], even for the long-
studied case of standard Brownian motion [6] significant progress has been achieved
within the last decade [2, 7, 8, 9]. In particular, for finite domains interesting results
were unveiled for the mean and global mean first passage times and their geometry-
control [7, 10]. The often minute particle concentrations inside biological cells and
the related concept of the few-encounter limit [11, 12, 13] motivated studies to obtain
the full probability density function (PDF) of first-passage times in generic geometries,
demonstrating strong defocusing (large spread of first-passage times) and an intricate
interplay between geometry- and reaction-control [13, 14].

For non-Brownian stochastic processes additional complications in the determ-
ination of first-passage and first-hitting times arise. Conceptually, such anomalous
diffusion processes are distinguished according to the value of the anomalous diffu-
sion exponent ν in the long time limit of their mean squared displacement (MSD)
〈x2(t)〉 =

∫
x2P (x, t)dx ' Kνt

ν , defined as ensemble average of x2 over the particle
PDF P (x, t) [15, 16, 17, 18, 19, 20]: the range 0 < ν < 1 corresponds to subdiffu-
sion (or dispersive transport), while 1 < ν < 2 is referred to as superdiffusion (or
enhanced transport). Beyond the regime ν = 2 of ballistic transport, we encounter
superballistic motion. Sometimes the range 3 < ν < 5 is called hyperdiffusion [21].
Examples for anomalous diffusion processes include turbulent flows [22], charge carrier
transport in amorphous semiconductors [23], human travel [24], light waves in glassy
material [25], biological cell migration [26, 27, 28, 29], or transport of submicron tracer
particles and fluorescently labelled molecules inside biological cells and their membranes
[18, 30, 31, 32]. Figure 1 shows a schematic representation of the various regimes.

In anomalous diffusion the mentioned complications may arise due to long-ranged
correlations, for instance, in the increments of Mandelbrot’s fractional Brownian
motion [33], whose strongly non-Markovian character precludes the application of
standard analytic methods to determine the first-passage dynamics [34, 35, 36]. Non-
standard first-passage and first-hitting properties also arise for Lévy flight (LF) and
Lévy walk (LW) processes, that are in the focus of this study. LWs and LFs are
among the most prominent models for the description of superdiffusive processes
[15, 16, 17, 20, 37, 38, 39]. Both models represent special cases of continuous time
random walks [3, 40], in which relocation lengths are drawn from a long-tailed Lévy
stable distribution with diverging variance. The difference between them is that LFs
are Markovian processes in which jumps occur at typical time intervals. Therefore,
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Figure 1. Anomalous diffusion regimes as characterised by the power-law scaling with
time of the mean squared displacement (MSD). For normal diffusion the MSD grows
linearly with time. However, other types of "anomalous diffusion" are widely observed,
for which the MSD grows as 〈x2(t)〉 ' tν , where the anomalous diffusion exponent ν
differs from unity. "Subdiffusion" is slower than normal diffusion, corresponding to
ν < 1. Faster diffusion splits into the regimes of "superdiffusion" with 1 < ν < 2,
"ballistic motion" with ν = 2, and "superballistic" with ν > 2.

the resulting LF process is characterised by a diverging MSD 〈x2(t)〉 [3, 15, 40, 41].
LWs, in contrast, include a spatiotemporal coupling between jump lengths and waiting
times, penalising long jumps with long waiting times, effectively introducing a finite
velocity [42]. Jump lengths and waiting times may be coupled linearly, such that the
resulting LW moves in a given direction with a constant speed until velocity reversal
after a given waiting time, the velocity model [43], or the space-time coupling may have
a power-law type [40]. The velocity may also be considered to change from one step to
another [44, 45]. Interestingly, for certain parameters even Lévy walks have an infinite
variance, namely, when there is a distribution of velocities associated with different path
lengths [45]. LFs and LWs are non-ergodic in the sense that long time and ensemble
averages of physical observables are different [19, 20, 45, 46, 47, 48, 49]. The linear
response behaviour and time-averaged Einstein relation of LWs have been studied, as
well [50, 51]. We note that LFs and LWs have also been formulated in heterogeneous
environments [52, 53].

While for Brownian motion the events of first-passage and first-hitting (or first-
arrival) are identical because space is being explored continuously [54], the possibility
of long, non-local jumps lead to "leapovers" [55, 56], single jumps in which a given
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Figure 2. Illustration of the difference between an event of first-passage (top), when
the walker crosses a target at x = 0 in a single jump event and overshoots it by the
leapover length [56], and an event of first-hitting (first-arrival, bottom) at the target.
The initial position of the walker is x = x0.

point is overshot by some leapover length, as illustrated in figure 2: for random walk
processes with diverging variance of the jump length PDF, the event of first-passage
becomes fundamentally different from that of first-hitting, and it is intuitively clear
that first-hitting a target is harder (less likely) than the first-passage.

LFs and LWs have been studied for considerable time, however, the systematic
comparison of some of their first passage properties started only recently [57]. We here
systematically investigate the first-passage and first-hitting properties of LFs and LWs in
one dimension by drawing generic conclusions on their differences and similarities. This
is an important first step in the assessment of these two fundamental random search
processes. Further applications of non-local, Lévy-type search are found in computer
algorithms such as simulated annealing [58]. In higher dimensions the comparison is
more complicated due to various possible definitions of LWs and LFs [59, 60]. In
particular, so far studies of LFs and LWs mostly focused on the long-time features.
However, in all search processes the short-time properties do contribute to the efficiency
of the search [61], and in the light of the aforementioned scenarios of the few-encounter
limit become even more relevant. We therefore pay considerable attention to the
characteristics of the short-time first-passage and first-hitting properties of LFs and
LWs.

Our paper is organised as follows. In section 2 we briefly review the rôle of LFs and
LWs in random search processes, followed by setting the first-passage and first-hitting
scenarios in section 3. Section 4 reports the first-passage properties of LFs and LWs, the
first-hitting properties of both processes are then investigated in section 5. A summary
and discussion is provided in section 6, and details of the mathematical derivations are
deferred to the appendices.
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2. The role of Lévy flights and walks in random target search

The term LF was coined by Benoît Mandelbrot in honour of his advisor, the French
mathematician Paul Lévy, at École Polytechnique in Paris. In his famed treatise on
the fractality of nature [62], Mandelbrot studied random walk processes with scale-
free jump length distributions, leading to fractal trajectories of clusters of local motion
interspersed with long relocations, on all scales.

As mentioned above LFs are Markovian and possess a diverging MSD. In that
sense they are in most cases "unphysical", as they appear to possess an infinite speed.
While spatiotemporally coupled LWs provide a "non-pathological" description with
finite speed, LFs do have their justification in the following senses: first, when the
process involves long-tailed jump lengths in some "chemical" co-ordinate but local jumps
in the physical, embedding space, the argument about a diverging MSD does not hold.
An example is the random search of proteins on a DNA chain that is represented as
a fast-folding chain in three dimensions [63]. Second, when we solely speak about the
spatial trajectory described by the searcher yet are oblivious of the corresponding time
trace, it is legitimate to speak of LFs. Third, the observed motion may be considered
scale-free only within a limited range of relocation lengths, beyond which cutoffs may
exist [64, 65, 66]. Fourth, we note that only very rarely have experimental foraging
studies really tested for LWs [20, 67]. Fifth, in some physical systems the measured
data indicate a divergence of the kinetic energy [68]. Finally, LWs represent a much
harder mathematical problem than LFs while the LF assumption may already provide
valuable insight into the system. For these reasons we study LFs and LWs in parallel,
and we point out their commonalities and differences.

Interest in both LF and LW models in physics arose in the context of simple
one-dimensional deterministic maps that generate superdiffusive motion encountered
within the context of phase diffusion in Josephson junctions [69, 70]. It was then shown
that diffusion in these maps could be understood in terms of LWs [43, 69, 70, 71].
Further motivation to investigate LFs and LWs was sparked by a remark of Michael
Shlesinger and Joseph Klafter, that scale-free motion may present a more efficient means
for exploring space in one and two dimensions as compared to Brownian motion [72].
The argument goes that while Brownian dynamics features repeated returns to already
explored regions causing oversampling [3, 63], scale-free LFs and LWs, in contrast, avoid
these returns and, hence, yield a more efficient search strategy.‡

The high efficiency of Lévy search became famous when experimental data of the
relocation distances of soaring albatross birds were reported to display long, power-law
tails [73]. While this result was discussed controversially in the literature [74, 75], it
prompted the proliferation of the Lévy flight foraging hypothesis. Roughly speaking, this
hypothesis predicts that search processes with Lévy stable relocation length distributions

‡ Note that many search processes indeed run off in effectively two dimensions (land-bound animals,
birds or fish whose lateral motion has a much wider span that the vertical motion) or even one dimension
(proteins searching a DNA, animals foraging in the border region between forests and grassland).
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provide an optimal search strategy by minimising the random search times under certain
conditions, particularly for a low density of targets [67, 76, 77]. Although later many
of the experimental studies testing the Lévy flight foraging hypothesis were found
to contain experimental or methodological errors [20, 67, 78, 79], there exists ample
evidence that many animals in fact do exhibit scale-free movements over a few orders
of magnitude [77], or have at least a search component that is scale-free [75]. From a
theoretical point of view, however, it was shown that even in the case of single-mode
search LFs may not always optimise a suitably defined search efficiency [80, 81]. For
example, if a target is located in the close vicinity of a starting point or the target lies
"windward" (in the direction of an external bias) from the searcher’s starting position,
Brownian motion may outperform the search by LFs. Furthermore, depending on the
precise biological and ecological conditions, often more complex search patterns, for
instance, multimodal or intermittent search strategies, are superior to LFs and LWs
[42, 61, 78, 82, 83, 84, 85, 86]. Generally, most of the intermittent and multimodal
search strategies can be described as a combination of a local exploration mode and
a scale-free (long relocation) mode [78, 87], where the frequent, long, relocations are
described by Lévy motions [61, 82].

Interestingly, there exists a direct connection between the biological strategy of
random search for targets and the mathematical problem of first-passage and first-
hitting. In foraging theory one distinguishes between cruise and saltatory foragers.
While in cruise search the forager looks out for targets during the movements, the
forager is blind for its targets when moving for saltatory search, for which the searcher
needs to land exactly on (or very close to) the target to actually detect it [80, 88]. A
cruise forager searching for a single target, however, is modelled mathematically as a
first-passage problem while saltatory search for a single target corresponds to a first-
hitting problem. Solving these mathematical problems thus sheds light, at least in more
simple, abstract settings, on specific aspects of biological foraging.

As a general rule first-hitting problems appear in most target search problems while
first-passage relates to the crossing of thresholds. The latter problem has been studied
for many decades in the context of Markovian processes (see, for instance, [89]) and much
initial work related to the Gaussian case. Classic applications of first-passage include
vibration [90], sea states, and earthquakes [91]. The first-passage problem also appears
in calculating the time to activation in cases like Gerstein’s and Mandelbrot’s model of
neurons [92], and resonant activation [93]. Further motivation comes from applications
of the area swept out by Brownian motion up to its first passage, where results can
be heuristically motivated from first-passage theory scaling results [94]. Recent interest
has included transitions from the bull-to-the-bear market in finance, extreme value
statistics of temperature records [95], or the diffusion of atoms in a one-dimensional
periodic potential [96] as well as problems of escaping an enemy territory. The existence
of heavy-tailed log-price fluctuations in finance, modelled using α-stable processes in
[97] has indeed been a strong initial motivation for the LF first passage problem.



First-passage and first-hitting times of Lévy flights and Lévy walks 7

3. Setup of the system: determining first-passage and first-hitting times

The problem of first-passage consists in the determination of boundary crossing
dynamics of a searcher. In the general case first-passage properties can be studied
for any kind of domains [1, 2, 10, 13, 14]. In this paper we consider the classical 1D
setting. We are interested in the event when a searcher crosses the origin for the first
time after initially being released at position x0 > 0 (figure 2, upper part). For LFs
the first-passage time corresponds to the moment in time when the searcher first hits
a coordinate on the negative semi-axis. For LWs the first-passage time is defined as
the time needed for a particle to reach the origin, that is, only the fraction of the last
relocation event (from the arrival point of the previous relocation to crossing the origin)
is included in the computation.

A first-hitting event occurs when the end point of a jump arrives exactly at the
origin. In physics literature the first-hitting is often also called the first arrival [80, 98].
Here we will use the term hitting throughout the text to avoid possible ambiguities.
Similar to the first-passage the event of first-hitting may be defined for a domain of
any shape. Here we concentrate on point-like targets. Thus, in the case of LFs the
first-hitting corresponds to an exact landing at the target coordinate. For LWs in our
1D scenario an event of first-hitting occurs when the last relocation ends at the target,
that is, in the LW case this corresponds to a searcher who cannot identify the target
while crossing it during the relocation event.

Our results are either derived from the fractional Fokker-Planck equation [15, 41, 52]
or are obtained from simulations of the discrete Langevin equation

xn+1 − xn = (Kαδt)
1/α ξα(n) (1)

for the searcher’s position xn, where ξα(n) is a set of random variables sampled from
a symmetric Lévy stable distribution with the characteristic function exp (− |k|α). The
time step is chosen as δt = 0.001 for LFs in all cases but those which required higher time
resolution. In that case δt = 0.0001 was used (figure 10). While we keep the generalised
diffusion coefficient Kα of dimension cmα/sec in our analytical results, we set it to unity
in the numerical analyses. The noise ξα(n) was computed following the method described
in [100]. For LFs the time dependence is then simply obtained by adding the time step δt
to a counter at each jump. The set of landing points for LFs exactly corresponds to the
set of end-of-relocation points for LWs and, hence, the same simulation procedure was
used for both processes. For LWs, in turn, the parameter δt is not related to the time
resolution any longer, but rather describes the width of the jump length distribution.
We thus use Kαδt = 0.001 for the first passage of LWs and Kαδt = 0.0005 for the first
hitting problem. In order to compute the time-dependent characteristics for LWs the
durations of relocations were calculated from a given relocation length via the speed v0
of the walk that we take as a constant value. In our simulation of LWs the direction at
the beginning of each relocation event is changed with likelihood 1

2
(that is, the searcher

continues in the same direction with probability 1
2
), as the jump lengths are taken from

the symmetric distribution of the ξα entries.
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Figure 3. PDFs of first-passage times for LFs illustrating the universal Sparre
Anderson-scaling (2) valid in the long time limit. Results for four different stable
indices α are shown, as indicated in the graph. Simulations data (coloured squares)
were obtained from N = 107 runs with initial position of the searchers x0 = 2 and
the generalised diffusion coefficient Kα = 1. Black lines are obtained from equation
(2). Note that for the better visual comparison of the PDFs to the exact asymptotic
scaling, their values are divided by a factor of 10 for α = 1, of 100 for α = 1.5, and
of 1000 for α = 2. The inset shows the behaviour of the prefactor of the long-time
dependence ' t−3/2, Q(α) = x

α/2
0 /[α

√
πKαΓ(α/2)] from equation (2), for different x0

and with Kα = 1. Larger α values lead to more pronounced differences in the values
of Q(α).

In all cases considered in this paper a searcher eventually crosses the boundary
or finds the target with unit probability. Hence, the first-passage and first-hitting
properties can be characterised by the properly normalised PDFs. We will denote them
as ℘PF(t) and ℘PW(t) for the first-passage of LFs and LWs, respectively, and ℘HF(t) and
℘HW(t) for the first-hitting of LFs and LWs.

4. First-passage properties of Lévy flights and Lévy walks

In this section we focus on the first-passage dynamics of LFs and LWs. First we analyse
the case of LFs. In the following subsection for LWs we compare the results with the
LF case.

4.1. First-passage for Lévy flights

The first-passage of LFs, due to their Markovian character and the symmetric jump
length distribution is necessarily characterised by the Sparre Andersen-scaling [1, 98] in
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Figure 4. Short time behaviour of the first-passage time PDF for LFs, demonstrating
that the change of the slope at t = 0 occurs for α = 2/3 (for which we observe a
horizontal tangent). Here pjump is the probability that the boundary is immediately
crossed with the first jump. Number of runs: N = 107, initial position: x0 = 5.

the long time limit. The analytical expression for this limiting behaviour reads [56]§

℘PF(t) ∼ x
α/2
0

α
√
πKαΓ (α/2)

t−3/2, (2)

in terms of the initial position x0 and the stable index α of the jump length PDF. Here
and in the following, the symbol ∼ denotes asymptotic equality, ' means asymptotically
equal up to a prefactor (scaling equality), and ≈ means approximately equal. Figure 3
illustrates that the simulations results (coloured squares) are in perfect agreement with
the Sparre Andersen-scaling (2) shown by the black lines for α values that are smaller
and larger than unity. Note the shift by constant factors between the different results.

Considering the corresponding short time behaviour in figure 4 one immediately
realises that only for the case of Brownian motion (α = 2) the PDF increases smoothly
with time from the value zero at t = 0. For LFs with α < 2 the first-hitting PDF
exhibits a non-zero value at t = 0. For small α values (see the curve for α = 0.5 in
figure 4) the PDF decreases monotonically with time, while for larger α values an initial
increase is observed, leading to a maximum beyond which the PDF crosses over to the
long time Sparre Andersen-scaling. LFs with smaller α values have a higher propensity
for long jumps, while for α → 2 the behaviour converges to the known Lévy-Smirnov
law for Brownian motion. The abrupt increase of ℘(t) at t = 0 thus stems from LFs
that directly overshoot the origin with their first jump away from their initial position
x0. The associated probability pjump can be estimated from the survival probability of

§ Note that we here consider the long time limit at fixed initial position. For a discussion of the limiting
behavior in a more general setting, where x0 may diverge, we refer the reader to [99].
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the searcher (for the full derivation see Appendix A),

pjump ≈
Kα sin (πα/2) Γ(α)

πxα0
. (3)

For the α values considered in figure 4 we obtain the concrete values

pjump ≈



K1/2√
2πx0

≈ 0.178, α = 1
2

K1

πx0
≈ 0.064, α = 1

K3/2

2
√

2πx30
≈ 0.0178, α = 3

2

, (4)

where we used x0 = 5 and Kα = 1. These values are in perfect agreement with the
simulations data in figure 4.

Analytically one can also obtain the derivative of the PDF ℘PF(t) for LFs in the
short time limit (Appendix A). It turns out that the monotonic decrease for small α
values changes to the initial increase of the PDF at the value α = 2/3, see figure 4. We
note that in [101] the "limited space displacement" of the trajectory corresponding to
the Cauchy-Lorentz distribution for relatively low noise intensities at short times was
discovered and analyzed.

4.2. First-passage for Lévy walks

As laid out before, LWs spatiotemporally couple each relocation distance x with a time
cost t = x/v0. Nevertheless, starting from a Lévy stable jump length distribution, the
points of visitation of an LW are identical with those of an LF with the same entries
for the sequence of jumps—only the time counter for reaching the points of visitation
differs for both processes. Hence, many properties of LWs can be understood from a
subordination approach [102]: In some sense, to be specified below, an LW process can
be considered as an LF with transformed durations of individual jumps. The PDF for
the relocation times for LWs follows from the jump length PDF of LFs, as we show in
Appendix B. From the point of view of subordination one has to discriminate the two
cases α > 1 and α ≤ 1. Namely, for α > 1 the average duration of a jump is finite,
and thus in the limit of a large number of jumps the time characteristics of LWs and
LFs will only differ by a prefactor but should have the same scaling in time. From this
scaling argument we expect the Sparre Andersen-scaling

℘PW(t) ' t−3/2, α > 1. (5)

to hold for the PDF ℘PW(t) of the first-passage of LWs, as long as 1 < α ≤ 2. Indeed,
the simulations results presented in figure 5 for 4 different values of α nicely corroborate
the Sparre Andersen-3

2
scaling (5).

The problem of escape of LFs and LWs for α > 1 was studied in [57]. The latter
paper also proposes a formula for the effective diffusion coefficient for LWs expressed
through the LW speed v0, the scaling factor σ0 or the Lévy stable jump length PDF, and
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Figure 5. Long time scaling behaviour of the first-passage PDF ℘PW(t) of LWs for
different α > 1. All curves nicely follow the predicted Sparre Andersen-scaling (5).
Number of runs: N = 107, with initial position x0 = 2. Speed of the LW: v0 = 1. Note
that for the better visual comparison of the PDFs their values are divided by factors
of 10 for α = 1.5, of 100 for α = 1.75 and of 1000 for α = 2.

the stable index α (equation (55) in [57]). We derive this formula exactly in Appendix B
and Appendix C. Having an expression for the effective diffusion coefficient KLW

α of LWs
it seems pertinent to apply expression (2) to the LW dynamics. However, the numerical
values obtained in this vein do not coincide with the simulation results. The values from
the analytical results underestimate the simulations data in the limit of long t. This
discrepancy is caused by the differences in the short-time behaviour between LFs and
LWs. Namely, until the front of an LW reaches the boundary, the PDF of first-passage
has a strictly zero value, due to the finite propagation front of LWs [20]. Modelling LWs
by a rescaled LF process obviously neglects this important short-time feature. Hence
a model LF process will exceed the real LW PDF at short times and, for reasons of
normalisation, underestimate the PDF ℘PW(t) at long times.

For LWs with α ≤ 1 the observed long-time scaling deviates from the Sparre
Andersen-scaling, as evidenced by the simulations data shown in figure 6. The fitted
scaling exponents are consistent with the long time scaling

℘PW(t) ' t−α/2−1, α ≤ 1 (6)

considered in [103] which can also be rationalised in subordination terms. Indeed,
the survival probability of an LF in the case of a first-passage scenario is inversely
proportional to the square root of the number n of flights, that is, SLF(n) ' n−1/2. For
α < 1 the number of jumps scales like n ' tα, such that SLF(t) ∼ t−α/2. This scaling
is equivalent to that obtained from the subdiffusive fractional diffusion equation [104].
Since the first-passage time PDF is the negative of the first derivative of the survival
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Figure 6. Long time scaling of the first-passage PDF ℘PW(t) of LWs for different
α ≤ 1. The fitted scaling exponents are in nice agreement with the prediction of
equation (6). The results are obtained from N = 107 runs with initial position x0 = 2,
and relocation speed v0 = 1. Note that for the better visual comparison of the PDFs
their values are divided by a factor of 10 for α = 0.5, of 100 for α = 0.75 and of 1000
for α = 1.

probability, we get ℘PW(t) ' t−α/2−1. A strict derivation of this exponent for LWs can
be found in [105], where the general result for ℘PW(s) is shown to be a function of the
step length distribution in Laplace space. This general expression produces both the
Sparre Andersen-scaling for α > 1 and the exponent −1− α/2 for α < 1.

The short-time limit of the first-passage time PDFs of LWs shown in figures 7 and
8 is noticeably different from the behaviour of LFs (compare figure 4). Namely, for LWs
the spatial spreading is limited by a front which travels with the constant speed v0, while
for the LF case the PDF ℘PF(t) has non-zero values at any non-zero time. Before the
front of an LW reaches the origin the PDF of first-passage times is identically zero. At
exactly t = x0/v0 we observe a jump in the value of the first-passage PDF. This jump
corresponds to all those walkers which did not change the direction even once since the
process started. Then, similarly to LFs, the function decays monotonically for small α
or has an intermediate maximum.

We notice that in the limit α = 2 of Gaussian relocations the resulting motion
performed with a constant speed is similar to the model of immortal creepers [106].
For this type of motion the first-passage behaviour was studied. However, in the
model considered in [106] the creepers change direction with a waiting time PDF
ψcreeper(t) = ωe−ωt, where ω is the characteristic turning frequency. In our case one
has to compute the distribution of relocation times from the Gaussian characteristic
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Figure 7. Short-time behaviour of the first-passage PDF of LWs for different α ≤ 1.
The results are averaged over N = 107 runs with initial position was x0 = 2 and LW
speed v0 = 1.

function of the process. For α = 2 in our case (compare Appendix B),

ψ(τ) =
1√
π

v0
σ0

exp

(
−v

2
0τ

2

4σ2
0

)
, 〈τ〉 =

2σ0
v0
√
π
. (7)

Hence the equation (56) for the survival probability derived in [106] is not directly
applicable in our case.

Generally, the jump of ℘PW(t) occurs at the very moment when the propagation
front, the fraction of particles having moved the distance vt without direction changes,
passes through the boundary. This front corresponds to a delta peak with decreasing
amplitude, moving with the wave variable |x| ± v0t (Appendix D). Formally, that is,
the value of the PDF at the time when this peak reaches the boundary is infinite,
℘PW(t0 = x0/v0)→∞, as the survival probability changes as a step function.‖. In the
simulations the PDF values are obtained from collecting crossing events in finite bins
whose size represents the time resolution. Hence, the finite numerical values at t0 are
an artefact of the binning, and a finer mesh will produce larger values of ℘PW(t) (at
t = 2 for the simulations parameters used for figure 8). We verified that this is indeed
the case, as demonstrated by table 1.

The difference in behaviour of the first-passage PDF between the cases α ≤ 1 and
α > 1 as shown in figures 7 and 8 can be explained by the difference in the shape of
the LW propagators (compare figure H1). In fact, for α > 1 the position PDF of LWs
has a front (smaller spikes in figure H1) producing the jump in the first-passage PDF,
then the main, bell-shaped part of the PDF arrives, and the first-passage PDF grows

‖ The prefactor of the δ-function can be computed analytically as shown in Appendix D
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Figure 8. Short-time behaviour of the first-passage PDF of LWs for different α > 1.
The results are averaged over N = 107 runs, the initial position was x0 = 2, and the
LW speed is v0 = 1. The bin size was chosen as 0.1.

Bin size α = 0.5 α = 1.5

10−1 0.998 0.0049
10−2 3.232 0.0011
10−3 10.52 0.0075
10−4 35.16 0.718

Table 1. Values of the LW first passage ℘PW(t) at t = 2 for two different α values
and different bin sizes.

gradually. For α < 1, in contrast, the fronts are the only maxima in the position PDF,
and thus the PDF of first-passage has a non-zero value and then decays monotonically.

5. First-hitting properties of Lévy flights and Lévy walks

In order to observe first-hitting events in a one-dimensional setting, we necessarily
need to require that the first absolute moment 〈|x|〉 of the jump length PDF exists,
corresponding to the requirement α > 1 [61, 81]. For the opposite case of 0 < α < 1 the
associated first-hitting time PDF vanished identically to zero. We do not consider the
latter case here. For LWs an event of first-hitting in our setting occurs when the end
point of a relocation with speed v0 hits the target.

5.1. First-hitting properties of Lévy flights with α > 1

The probability of first-hitting (see figure 2) clearly depends on the exact target size
[107]. Here we will concentrate on the case of point-like targets. Detailed studies of the
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first-hitting properties of LFs were presented in [80, 81, 98]. Analytical derivations are
based on the fractional Fokker-Planck equation [15, 52] with a sink term,

∂f(x, t)

∂t
= Kα

∂αf(x, t)

∂ |x|α
− ℘HF(t)δ(x), (8)

where the fractional derivative is defined in terms of its Fourier transform,∫∞
−∞ exp(ikx)[∂αf(x, t)/∂|x|α]dx = −|k|αf(k, t), where f(k, t) is the Fourier transform
of f(x, t). Equation (8) can be easily modified to include an external drift [81], to the
case of multiple point-like targets [82], or to include an additional Brownian or Lévy
component with different stable index α′ [61, 82]. We consider here a perfectly absorbing
sink. The case of a finite absorption strength can be found in [108].

Equation (8) can be solved in Laplace space for the initial condition f(x, 0) =

δ(x− x0) [98], yielding

℘HF(s) =

∫ ∞
−∞

dk
eikx0

s+Kα |k|α∫ ∞
−∞

dk
1

s+Kα |k|α
, (9)

From inverse Laplace transform of this expression we obtain a new result for the first-
hitting time PDF in time (see Appendix E),

℘HF(t) =
α sin (π/α)K

1/α
α

π
t1/α−1

∫ ∞
0

dk cos(kx0)E1,1/α(−Kαk
αt), (10)

where E1,1/α(−Kαk
αt) is a two-parameter Mittag-Leffler function, which can be defined

by its series expansions [109]

Eα,β(−z) =
∞∑
k=0

(−z)k

Γ(β + αk)
∼

∞∑
k=1

(−1)k+1

zkΓ(β − αk)
, z > 0 (11)

around zero and infinity, respectively. From the latter expansion we immediately recover
the well-established power law asymptotic for the first-hitting time PDF of LFs [98],

℘HF(t) ' t1/α−2 (12)

at long times (compare equation (E.7) and its derivation in Appendix E). We here also
derive the short time scaling law

℘HF(t) ' t1/α (13)

in Appendix F. The full expression (10) can be evaluated numerically to plot the
analytical solution of (8).

To determine the first-hitting time PDF from simulations of a searcher jumping
according to a Lévy stable jump length distribution, we need to endow the target with
a finite size d. This size needs to be large enough to guarantee sufficiently many events
for proper statistics, however, it should be small enough to vouchsafe the point-like
character of the target and thus warrant consistency with equation (8). This correct
size also depends on the time resolution and the time cutoff of the simulation run but
not on the number of runs (see Appendix G). As a criterion for the choice of the target
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Figure 9. First-hitting time PDF for LFs with different α illustrating the long time
scaling law (12), here represented by the black lines with slopes predicted by the
analytical expression. The coloured symbols depict the simulations results. Note that
for better visual comparison the PDFs are divided by a factor of 10 for α = 1.5, of 100
for α = 1.75, and of 1000 for α = 2. We chose Kα = 1.

size we checked agreement with both the expected long-time power law (12) and the
short-time power law (13). We found that for the integration time step δt = 0.001 and
the time limit 103 for every run the proper target sizes are d = 0.06 for α = 2 (Brownian
motion), d = 0.035 for α = 1.75, d = 0.014 for α = 1.5, and d = 0.003 for α = 1.25. In
particular we note here that this question of the finite target size is not limited to Lévy
stable motion, but is also an issue for regular Brownian motion.

Figure 9 shows the long-time behaviour of the first-hitting time PDF for LFs. The
PDFs obtained from simulations (coloured symbols) are well fitted by the theoretical
result (E.7). In figure 10 we illustrate the corresponding short-time behaviour for the
first-hitting time PDF. The black curves show the exact analytical solution computed
from equation (10). Orange triangles are the simulation results. The correspondence
between the analytical expression and the simulations is excellent. The blue curves
correspond to the first term in the expansion (F.2) proportional to t1/α, which apparently
works better for smaller α. For α = 2 all coefficients in expansion (F.2) become equal
to zero, that is, it does not work for the Brownian case. Generally, the terms of the
expansion depend on time as tk+1/α with k being the degree of the expansion. Once more
terms of the expansion are added the quality of the approximation improves substantially
(red curves in figure 10).
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Figure 10. Short-time asymptotic for the first-hitting time PDF of LFs. The black
lines are computed from the full expression (10), the blue lines show the power-law
(13) with the exact prefactor as given by the first term in expansion (F.2), equation
(F.4). The red lines shows the sum of the first three terms of the expansion, combining
equations (F.4), (F.5). and (F.6). Parameters: Kα = 1 and x0 = 1.
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Figure 11. Long-time behaviour of the first-hitting time PDF of LWs. The exponents
derived from the simulations coincide with those for LFs calculated above, within the
error margin. The target sizes were the same as for the LFs. Parameters: x0 = 1 and
v0 = 1.
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Figure 12. Short-time behaviour of first-hitting time PDF of LWs. Parameters:
x0 = 1 and v0 = 1. Left: linear scale. Right: logarithmic scale.

5.2. First-hitting probability for Lévy walks with α > 1

In figure 11 we show the numerical data for this case in the limit of long times.
The numerically determined scaling exponents nicely coincide with those obtained
analytically and numerically for LFs (compare figure 9). The reason for this similarity
is the same as for the case of first-passage: In the long time limit for α > 1 both
processes have the same scaling behaviour due to the existence of a finite scale of the
jumps in the processes. The only difference is that the prefactors in both cases may
differ, corresponding to a renormalisation of the mean step time.

Naturally, the short-time properties of the first-hitting behaviour depicted in figure
12 for LWs differ from the corresponding shape for LFs, in analogy to our observations
for the first-passage case. Namely, no first-hitting event can occur before the LW front
reaches the target. Then a jump in the value occurs at t = x0/v0. Similar to our
discussion of the first-passage time PDF we attempted to insert an effective diffusion
coefficient KLW

α in the known long-time expressions for LFs, equation (E.7). Given that
this did not succeed for the first-passage scenario, it is not surprising that an effective
description in terms of LFs cannot approximate the LW behaviour.

6. Conclusions

LFs and LWs are broadly used models for efficient random search processes. In this paper
we systematically analysed and compared the first-passage and first-hitting properties
for two different models of Lévy motion, namely, LFs and LWs. We demonstrated that
for α > 1 the results of these two models are qualitatively identical at long times due
to the finite average length of a relocation. The situation drastically changes for α < 1

when the scaling of the PDFs heavily depends on the exact model (see the summary in
table 2). This difference does not come as a surprise in view of the strong difference
of the propagators of the two models, particularly, the finite propagation front of LWs.
Nevertheless, having quantitative data for the associated first-passage and first-hitting
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First-passage First-hitting

Brownian motion ℘PBM(t) = ℘HBM(t) = x0√
4πK2t3

exp
(
− x20

4K2t

)
Brownian creepers ℘PBC(t) ' t−3/2 ℘HBC(t) ' t−3/2

Lévy flights (1<α < 2) ℘PF(t) ' t−3/2 ℘HF(t) ' t1/α−2

Lévy flights (α ≤ 1) ℘PF(t) ' t−3/2 ℘HF(t) = 0

Lévy walks (1 < α ≤ 2) ℘PW(t) ' t−3/2 ℘HW(t) ' t1/α−2

Lévy walks (α ≤ 1) ℘PW(t) ' t1−α/2 ℘HW(t) = 0

Table 2. Comparison of the long-time asymptotes of the first-passage and first-hitting
PDFs for LFs and LWs.

time PDFs is valuable for any concrete analysis of search models based on LFs and LWs.
While our findings are consistent with the results for the escape from an interval

established in [57], we observed that the exact short-time behaviour of LFs and LWs
influences the whole first-passage and first-hitting time PDFs, and particularly alters the
amplitude factor of the long-time scaling behaviour of LWs with an effective diffusion
coefficient. In this short-time limit the PDF of the first-passage time of LFs jumps
instantly to a finite value, which is not typical for the first-hitting of LFs. In the case of
LWs the short time behaviour is defined by the passage of the propagation front through
the boundary or the target. Strictly speaking the front passes instantly through any
coordinate. Hence, the value of the PDF should be formally infinite at that instant.
Obviously, this feature is smoothened in simulations and real observations due to finite
binning, but it reveals itself through a strong dependence of the value of the PDF at
this instant on the time resolution of the simulations. In essence we showed that it is
important to know the entire first-passage or first-hitting PDF in order to reach fully
quantitative conclusions.

It will be interesting to extend the results reported herein to higher dimensions
and/or multiple target scenarios. Higher-dimensional LFs and LWs can be defined in
different ways [59, 60], and it is not a priori clear whether the difference in definitions
modifies the behaviour for the first-passage and first-hitting time PDFs. In the case of
multiple targets, for instance, disks distributed randomly in a plane, the associated first-
passage and first-hitting time PDFs to locate these disks would move this problem closer
to biological reality. One might think of, as an example, a bee searching for flowers, a
situation amenable to experiments [110]. Measuring the first-passage and first-hitting
time PDFs may help to put the LF foraging hypothesis on more rigorous theoretical
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grounds, which is a long-standing open problem.
Another interesting direction to study is the combination of Lévy-type processes

with resetting, as studied, for instance, for mean first passage and arrival times in [111].
Moreover, it will be interesting to explore in more detail the impact of a bias on the first-
passage and first-hitting time PDFs similar to the analyses in [80, 81]. Biologically this
would relate to the problem of chemotaxis when cells migrate according to a chemical
concentration gradient to find inflammation sites [112]. Similarly, extensions of the
present results in general external potential fields [113] should be studied, including
phenomena such as barrier crossing, stochastic resonant activation, and noise-enhanced
stability phenomena [114]. Further applications to pursue include population dynamics
and biophysical models [115], as well as the modelling of the dynamics in Josephson
junctions [116], to mention but a few stray examples. We moreover note that it should
be analysed how distributed transport parameters (such as Kα) may modify the results
for first-passage and first-hitting, similar to what happens for Brownian processes [117].
Finally, it will be interesting to study more complex, many-body scenarios such as
hunting in flocks [118].

Appendix A. Short-time behaviour of the first-passage of Lévy flights

The finite value pjump of the jump in the short-time behaviour of LFs (figure 4) can be
estimated by computing the survival probability at short times by using the asymptotic
expression for large x. For the purpose of this derivation we assume that the starting
position is at x = 0 while the boundary is at x = x0, which is physically identical to our
original setting. The survival probability at short times reads

S (t) =

∫ x0

−∞
fα(t, x)dx, (A.1)

where the symmetric Lévy stable PDF in the limit |x| → ∞ is [37, 56]

fα(t, x) ∼ C1(α)
Kαt

|x|1+α
, C1(α) =

1

π
sin(πα/2)Γ(1 + α). (A.2)

The first-passage time density is the negative derivative of the survival probability,

℘PF(t) = −dS (t)

dt
. (A.3)

Conversely,

1−S (t) =

∫ ∞
x0

fα(t, x)dx =
C1(α)Kαt

αxα0
. (A.4)

Hence

pjump = ℘PF(t→ 0) =
Kα sin(πα/2)Γ(α)

πxα0
. (A.5)

In order to estimate the slope at t = 0 we will compute whether the values of the
PDF increase or decrease at short times. As we established above the probability to
cross a boundary within an infinitesimal time ∆t1 reads

p1 = 1−S (∆t1) =

∫ ∞
x0

fα(∆t1, x)dx =
C1(α)Kα∆t1

αxα0
. (A.6)
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The probability to be in the vicinity of some x ≤ x0 after ∆t1 is fα(∆t1, x)dx.
Concurrently the probability to cross the boundary in time ∆t2 after the original time
interval ∆t1 if a walker landed at x is

∫∞
x0−x fα(∆t2, x)dx. Hence the probability to cross

the boundary within (∆t1,∆t2 + ∆t1) becomes

p2 =

∫ x0

−∞
dx1

∫ ∞
x0−x1

fα(∆t1, x1)fα(∆t2, x2)dx2. (A.7)

For simplicity we assume that ∆t1 = ∆t2. Then,

p2 =

∫ ∞
−∞

dx1

∫ ∞
x0−x1

fα(∆t1, x1)fα(∆t1, x2)dx2

−
∫ ∞
x0

dx1

∫ ∞
x0−x1

fα(∆t1, x1)fα(∆t1, x2)dx2

=

∫ ∞
−∞

dx1

∫ ∞
x0

fα(∆t1, x1)fα(∆t1, x2)dx2

+

∫ ∞
−∞

dx1

∫ x0

x0−x1
fα(∆t1, x1)fα(∆t1, x2)dx2

−
∫ ∞
x0

dx1

∫ ∞
x0

fα(∆t1, x1)fα(∆t1, x2)dx2

−
∫ ∞
x0

dx1

∫ x0

x0−x1
fα(∆t1, x1)fα(∆t1, x2)dx2

= p1 − p21 +

∫ x0

−∞
dx1

∫ x0

x0−x1
fα(∆t1, x1)fα(∆t1, x2)dx2. (A.8)

The latter integral can be computed analytically as follows,∫ x0

−∞
dx1

∫ x0

x0−x1
fα(∆t1, x1)fα(∆t1, x2)dx2

= (C1(α)Kα∆t1)
2

∫ x0

−∞

dx1
|x1|1+α

∫ x0

x0−x1

dx2
|x2|1+α

=
(C1(α)Kα∆t1)

2

x2α0

∫ 1

−∞

dx′1
|x′1|1+α

∫ 1

1−x′1

dx′2
x

′1+α
2

=
(C1(α)Kα∆t1)

2

αx2α0

∫ 1

−∞

dx′1
|x′1|1+α

(
1

(1− x′1)α
− 1

)
. (A.9)

In order to get an analytical result for the last integral we will split it into two parts
from −∞ to 0 and from 0 to 1. The first part without the prefactor is∫ 0

−∞

dx′1
|x′1|1+α

(
1

(1− x′1)α
− 1

)
=

∫ ∞
0

dy

y1+α

(
1− (1 + y)α

(1 + y)α

)
=

∫ ∞
0

zα−1
(

1

(1 + 1/z)α
− 1

)
dz

=

∫ ∞
0

z2α−1
(
(z + 1)−α − z−α

)
dz = B(2α,−α), (A.10)
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where B(x, y) stands for the beta function and the last equality follows from formula
2.2.12.5 in [119] and is valid for 0 < α < 1. The second part produces∫ 1

0

dx′1
x

′1+α
1

(
1

(1− x′1)α
− 1

)
=

∫ 1

0

dy

(1− y)1+α

(
1

yα
− 1

)
= lim

z→1

∫ 1

0

dy

(1− zy)1+α

(
1

yα
− 1

)
= lim

z→1

{∫ 1

0

y−α+1−1(1− y)2−α−(1−α)−1(1− zy)−1−αdy − 1

αz
(1− zu)−α

∣∣∣u=1

u=0

}
= lim

z→1

{
Γ(1− α)

Γ(2− α)
2F1 (1 + α, 1− α, 2− α; z)− 1

αz

1

(1− z)α
+

1

αz

}
, (A.11)

where 2F1 (1 + α, 1− α, 2− α; z) is the hypergeometric function obtained through the
integral definition which is valid in this case for α < 1. This hypergeometric function
can be transformed according to 15.3.6 from [120] as follows

2F1 (1 + α, 1− α, 2− α; z) =
Γ(2− α)Γ(−α)

Γ(1− 2α)
2F1 (1 + α, 1− α, 1 + α; 1− z)

+ (1− z)−α
Γ(2− α)Γ(α)

Γ(1 + α)Γ(1− α)
2F1 (1− 2α, 1, 1− α; 1− z) . (A.12)

For z → 1 the hypergeometric functions in the last expression will converge to 1.
Assembling all of the pieces we obtain the following formula,∫ 1

0

dx

x1+α

(
1

(1− x)α
− 1

)
=

1

α
+

Γ(1− α)Γ(−α)

Γ(1− 2α)
=

1

α
− 4α

√
πΓ(1− α)

αΓ(1/2− α)
. (A.13)

Finally, collecting all the contributions to p2 we get

p2 = p1 − p21 + p21

(
1− 4α

√
πΓ(1− α)

Γ(1/2− α)
− Γ(1− α)Γ(2α)

Γ(α)

)
= p1 + p21

(
4α
√
παΓ(−α)

Γ(1/2− α)
− Γ(1− α)Γ(2α)

Γ(α)

)
= p1 − p21

4απ3/2 (1 + 2 cos(πα))

Γ(1/2− α)Γ(α) sin(2πα)
. (A.14)

The last expression clearly shows that with decreasing α at α = 2/3 the probability to
cross the boundary within an interval of time (∆t1, 2∆t1) gets lower than p1 due to the
change in sign of the second term in (A.14). Thus, ℘PF(t) decreases for α < 2/3 at short
t and at first grows for α > 2/3.

Appendix B. Derivation of the average time of jump, the jump duration
distribution and its long-time expansion for Lévy walks, 1 < α ≤ 2

In order to estimate the effective diffusion coefficient of LWs one has to know the
distribution of durations of the jumps, the average jump duration as well as its long-time
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behaviour. The characteristic function of a symmetric Lévy stable process is

φ(k) = exp
(
− σα0 |k|α

)
. (B.1)

The distribution of the jump lengths can be expressed in terms of Fox H-functions as
[15, 121]

fα(x) =

∫ ∞
0

dk

π
cos(kx)e−σ

α
0 |k|α =

1√
πx
H11

12

[
xα

2ασα0

∣∣∣∣∣ (1, 1)(
1
2
, α
2

)
,
(
1, α

2

) ] .
The jump duration is coupled to the jump length distribution, τ(x) =

∣∣∣ xv0 ∣∣∣. Then the
relocation time distribution reads

ψ(τ) =

∫ ∞
−∞

dxδ(τ − τ(x))fα(x) =

∫ ∞
−∞

dxδ

(
τ −

∣∣∣∣ xv0
∣∣∣∣) fα(x)

=

∫ 0

−∞
dxδ

(
τ +

x

v0

)
fα(x) +

∫ ∞
0

dxδ

(
τ − x

v0

)
fα(x)

= 2

∫ ∞
0

dxδ

(
x

v0
− τ
)
fα(x) = 2v0fα(v0τ). (B.2)

Hence, ψ(τ) yields in the form

ψ(τ) =
2√
πτ
H11

12

[
vα0

2ασα0
τα

∣∣∣∣∣ (1, 1)(
1
2
, α
2

)
,
(
1, α

2

) ] . (B.3)

One can easily check that the latter function is properly normalised,
∫∞
0
ψ(τ)dτ = 1.

The average jump duration can be computed for α > 1 (otherwise it diverges) as

〈τ〉 =

∫ ∞
0

dττψ(τ) =
2√
π

∫ ∞
0

dτH11
12

[
vα0

2ασα0
τα

∣∣∣∣∣ (1, 1)(
1
2
, α
2

)
,
(
1, α

2

) ]

=
2

α
√
π

∫ ∞
0

dtt1/α−1H11
12

[
vα0

2ασα0
t

∣∣∣∣∣ (1, 1)(
1
2
, α
2

)
,
(
1, α

2

) ]

=
2

α
√
π

(
2σ

v0

)α 1
α

Γ

[
1
2

+ α/2
α
, 1− 1− 1/α

1− 1− α/2
α

]

=
4

α
√
π

σ0
v0

Γ
(
− 1
α

)
Γ
(
−1

2

) =
2σ0
πv0

Γ

(
1− 1

α

)
, (B.4)

using the properties of the H-function [121]. Our result exactly coincides with equation
(54) in [57], where it was derived as an approximate formula. We show here that it is
actually an exact expression (the factor v0 missing in the corresponding equation of [57]
is just a misprint there). From the distribution we obtain the exact form in Laplace
space and expand it at small s corresponding to long times. The Laplace transform of
equation (B.2) reads [121]

L (ψ(τ)) = ψ̃(s) = L

(
2√
πτ
H11

12

[
vα0

2ασα0
τα

∣∣∣∣∣ (1, 1)(
1
2
, α
2

)
,
(
1, α

2

) ])
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=
2√
π
H12

22

[
vα0

2ασα0
s−α

∣∣∣∣∣ (1, α) , (1, 1)(
1
2
, α
2

)
,
(
1, α

2

) ]

=
2√
π
H21

22

[
2ασα0
vα0

sα

∣∣∣∣∣
(
1
2
, α
2

)
,
(
0, α

2

)
(0, α) , (0, 1)

]
. (B.5)

The expansion of the latter H-function for s→ 0 has a ratio of nominally infinite values
due to the presence of zeros among the coefficients. In order to solve this problem we
introduce the infinitesimal parameter ε and treat the H-function as a limit of another
H-function with non-zero coefficients ε, namely,

H21
22

[
2ασα0
vα0

sα

∣∣∣∣∣
(
1
2
, α
2

)
,
(
0, α

2

)
(0, α) , (0, 1)

]
= lim

ε→0
H21

22

[
2ασα0
vα0

sα

∣∣∣∣∣
(
1
2
, α
2

)
,
(
ε, α

2

)
(ε, α) , (ε, 1)

]
. (B.6)

The expansion of the latter H-function reads ([119, 121]),

H21
22

[
z

∣∣∣∣∣
(
1
2
, α
2

)
,
(
ε, α

2

)
(ε, α) , (ε, 1)

]
=

∞∑
k=0

2Γ
(
ε− 1

α
(ε+ k)

)
Γ
(
1
2

+ 1
2
(ε+ k)

)
√
πΓ
(
ε− 1

2
(ε+ k)

) (−1)kz(ε+k)/α

k!α

+
∞∑
k=0

2Γ (ε− α(ε+ k)) Γ
(
1
2

+ 1
2
(ε+ k)

)
√
πΓ
(
ε− 1

2
(ε+ k)

) (−1)kzε+k

k!
, (B.7)

where z = 2ασα0 s
α/(vα0 ). Using the known behaviour of the Gamma function for small

arguments, Γ(ε) ∼ 1/ε, we obtain the following expansion,

ψ(s) ∼ 1− 〈τ〉 s+ Asα + . . . , (B.8)

where 1 has contributions from zeroth orders of both sums, 〈τ〉 is given by expression
(B.4), and A reads

A = −2α+1σα0√
πvα0

Γ(−α)Γ (1/2 + α/2)

Γ (−α/2)
=

σα0
vα0 | cos(πα/2)|

. (B.9)

This form can be shown to be equivalent to the corresponding expression in [57].

Appendix C. Derivation of the effective long-time diffusion coefficient of
LWs, 1 < α ≤ 2

Let us start from equation (29) in [20],

P (k, s) =

[
Ψ̃(s+ ikv) + Ψ̃(s− ikv)

]
P0(k)

2− [ψ(s+ ikv) + ψ(s− ikv)]
, (C.1)

where Ψ̃(s) is the Laplace transform of the survival probability and can be expressed
through ψ(s) as Ψ̃(s) = [1 − ψ(s)]/s, and for long times (small s) we have ψ(s) ∼
1− 〈τ〉 s+ Asα. Hence,

P (k, s) ∼ P0(k) [2 〈τ〉 − A ((s+ ikv)α−1 + (s− ikv)α−1)]

2s 〈τ〉 − A ((s+ ikv)α + (s− ikv)α)
. (C.2)

The expressions in the round brackets can be expanded,

(s± ikv)α ∼ e±
iπα
2 |k|αvα0

(
1± sα

ikv

)
. (C.3)
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The last expansion assumes the condition s� |k|v0 � 1. After neglecting higher powers
in s one gets

P (k, s) =
P0(k)

s− A|k|αvα0 cos
(
πα
2

)
/ 〈τ〉

. (C.4)

Alternatively,

P (k, s) =
P0(k)

s+KLW
α |k|α

, (C.5)

where

KLW
α =

Avα0
∣∣cos

(
πα
2

)∣∣
〈τ〉

=
2σα0 sin

(
πα
2

)
Γ(−α)Γ(1 + α)

∣∣cos
(
πα
2

)∣∣
π 〈τ〉

=
σα−10 sin

(
πα
2

)
Γ(−α)Γ(1 + α)

∣∣cos
(
πα
2

)∣∣ v0
Γ
(
1− 1

α

)
=
σα0
〈τ〉

, (C.6)

where 〈τ〉 is given by equation (B.4). The last result is exactly the intuitive definition
of the diffusivity from a continuous time random walk perspective. The second line in
equation (C.6) corrects the formula (55) in [57].

Appendix D. Estimation of the jump in the first-passage time PDF of LWs

The jump in the first-passage time PDF of LWs corresponds to the probability stored
in the ballistically moving front peak of the position PDF [20]. The density of particles
in these peaks reads (equation (32) in [20])

Gfront(x, t) =
1

2
Ψ(t)

(
δ(x− vt) + δ(x+ vt)

)
. (D.1)

From the equations above we can compute the survival probability as a function of time.
In Laplace space Ψ̃(s) = [1− ψ(s)]/s. From expression (B.5),

ψ̃(s)

s
=

2√
πs
H21

22

[
2ασα0
vα0

sα
(
1
2
, α
2

)
,
(
0, α

2

)
(0, α) , (0, 1)

]
. (D.2)

Its inverse Laplace transform reads [121],

L −1

(
ψ̃(s)

s

)
=

2√
π
H21

32

[
2ασα0
vα0

t−α

∣∣∣∣∣
(
1
2
, α
2

)
,
(
0, α

2

)
(1, α)

(0, α) , (0, 1)

]

=
2√
π
H12

23

[
vα0

2ασα0
tα

∣∣∣∣∣ (1, α) , (1, 1)(
1
2
, α
2

)
,
(
1, α

2

)
, (0, α)

]
. (D.3)

The survival probability as a function of t is then

Ψ(t) = 1− 2√
π
H12

23

[
vα0

2ασα0
tα

∣∣∣∣∣ (1, α) , (1, 1)(
1
2
, α
2

)
,
(
1, α

2

)
, (0, α)

]
. (D.4)
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This is an exact analytical result. The value of this H-function can be found from an
expansion in t [119],

H12
23

[
vα0

2ασα0
tα

∣∣∣∣∣ (1, α) , (1, 1)(
1
2
, α
2

)
,
(
1, α

2

)
, (0, α)

]

=
2

α

∞∑
k=0

Γ(2k + 1)Γ
(
2k+1
α

)
Γ
(
k + 1

2

)
Γ(2 + 2k)

(
v0t

2σ0

)1+2k
(−1)k

k!
(D.5)

The last two equations allow one to compute the value of Gfront. Unless the argument
of the H-function is too big the series (D.5) converges quite fast.

Appendix E. Derivation of the long-time limit of the first-hitting time PDF
of LFs, 1 < α ≤ 2

We start from equation (9). The integral in the numerator can be computed analytically
and reads ∫ ∞

−∞
dk

1

s+Kα |k|α
=

2π

α sin(π/α)

s1/α−1

K
1/α
α

. (E.1)

Hence equation (9) can be rewritten as

℘HF(s) =
α sin(π/α)K

1/α
α

π

∫ ∞
0

dk
s1−1/α

s+Kα|k|α
cos(kx0). (E.2)

From the relation (1.80) in [122] we know that

tβ−1Eα,β(−atα)÷ sα−β

sα + a
, (E.3)

where ÷ stands as a notation for the Laplace transform pair and Eα,β(t) is the two-
parameter Mittag-Leffler function. Hence, we get equation (10),

℘HF(t) =
α sin (π/α)K

1/α
α

π
t1/α−1

∫ ∞
0

dk cos(kx0)E1,1/α(−Kαk
αt). (E.4)

This equation clearly shows that for α = 1 the PDF of first-hitting the target is exactly
zero, ℘HF = 0 (the prefactor is equal to zero in this case). Now we consider the long-time
limit t→∞. Rewriting the previous equation as

℘HF(t) =
α sin (π/α)K

1/α
α

π
t1/α−1

∫ ∞
0

dkE1,1/α(−Kαk
αt)

− α sin (π/α)K
1/α
α

π
t1/α−1

∫ ∞
0

dk(1− cos(kx0))E1,1/α(−Kαk
αt). (E.5)

Consider separately the first and the second contribution. The first integral is zero,∫ ∞
0

dkE1,1/α(−Kαk
αt) ∼ (Kαt)

−1/α
∫ ∞
0

dk′E1,1/α(−k′α)

∼ 1

α
(Kαt)

−1/α
∫ ∞
0

y1/α−1E1,1/α(−y)dy
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∼ lim
z→∞

∫ z

0

y1/α−1E1,1/α(−y)dy

∼ lim
z→∞

z1/αE1,1+1/α(−z)

∼ lim
z→∞

z1/α
1

z
= 0, (E.6)

where we used formula (1.99) in [122]. In the second integral the Mittag-Leffler function
can be substituted by its large argument limit, E1,1/α(−Kαk

αt) → −1/[Kαk
αtΓ(1/α −

1)], because at small values of k the expression (1− cos(kx0)) disappears. Then,

℘HF(t) = −
α sin

(
π
α

)
K

1/α−1
α

πΓ(1/α− 1)t1/α−2

∫ ∞
0

1− cos(kx0)

kα
dk

= −
α sin

(
π
α

)
πΓ(1/α− 1)

Γ(2− α) sin
(
πα
2

)
α− 1

xα−10 K1/α−1
α t1/α−2

=
sin
(
π
α

)
Γ(2− α) sin

(
πα
2

)
πΓ(1/α)

xα−10 K1/α−1
α t1/α−2, (E.7)

which exactly coincides with result (A.9) in [61] and is equivalent to the corresponding
expression in [98].

Appendix F. Derivation of the short-time limit of the first-hitting time
PDF of LFs

Here we compute the power-law of the first-hitting time PDF of LFs in the limit of short
times. It is again convenient to start from equation (10). We change the variable as
y = k(Kαt)

1/α. Hence,

℘HF(t) =
α sin (π/α)

π
t−1
∫ ∞
0

dy cos

(
yx0

(Kαt)1/α

)
E1,1/α(−yα). (F.1)

Introducing the notation λ = x0/(Kαt)
1/α and using the definition of the Mittag-Leffler

function,

℘HF(t) =
α sin (π/α)

π
t−1
∫ ∞
0

dy cos (λy)
∞∑
n=0

(−yα)n

Γ(n+ 1/α)

=
α sin (π/α)

π
t−1

∞∑
n=0

∫ ∞
0

dy cos (λy)
(−yα)n

Γ(n+ 1/α)
=
∞∑
n=0

In(t), (F.2)

where In(t) is the n-th term of the expansion of ℘HF(t) in a power series. With the help
of equation (II.25) for improper integrals in [123],∫ ∞

0

τ ke−iωτdτ =
Γ(k + 1)

ωk+1
e−

1
2
(k+1)πi (F.3)

we compute the terms one by one. For convenience we use the shorthand notation
C(α) = α sin(π/α)

π
. Then,

I0(t) = C(α)t−1
1

Γ(1/α)

∫ ∞
0

dy cos(λy) = 0,
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Figure G1. Dependence of the long-time exponent of the PDF of first-hitting on the
target size for LFs. Note that for better visual comparison of the PDFs their values
were divided by a factor of 10 for d = 0.014, of 100 for d = 1, and of 1000 for d =∞.
In the first three cases the target was centred at x = 0. For d = 10 the target is centred
at x = −5. Parameters: α = 1.5, Kα = 1, x0 = 1, and δt = 0.001. The number of
runs is 2× 106.

I1(t) = C(α)t−1
−1

Γ(1 + 1/α)

Γ(α + 1)

λα+1
Re
[
(−i)α+1

]
= C(α)t−1

−1

Γ(1 + 1/α)

Γ(α + 1)

λα+1
Re exp

(
−iπ

2
(1 + α)

)
= − C(α)t−1

−1

Γ(1 + 1/α)

Γ(α + 1)

λα+1
sin
(πα

2

)
= C(α)

Γ(1 + α) sin(πα/2)

Γ(1 + 1/α)

K
1+1/α
α

xα+1
0

t1/α, (F.4)

I2(t) = C(α)
Γ(2α + 1)

Γ(2 + 1/α)(− sin(πα))

K
2+1/α
α

x2α+1
0

t1+1/α, (F.5)

I3(t) = C(α)
Γ(3α + 1)

Γ(3 + 1/α)(− sin (3πα/2))

K
3+1/α
α

x3α+1
0

t2+1/α. (F.6)

Appendix G. The target size selection in the simulations

Our theoretical framework for LFs includes the notion of a point-like target. However,
in the simulations the target size should be non-zero if the target is to be successfully
located. Thus the target should not be too small such that it can actually be hit
successfully. At the same time it should not be too large, otherwise this would result in
the scenario of the first-passage, and thus the scaling exponent would converge to the
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Figure G2. Dependence of the long-time exponent of the PDF of first-hitting on the
time resolution in the simulations of LFs when the target size is fixed (the best choice
for the δt = 0.001 was selected). Note that for better visual comparison of the PDFs
their values were divided by a factor of 10 for δt = 0.005 and of 100 for δt = 0.01.
Parameters: α = 1.5,Kα = 1, x0 = 1, and d = 0.014.

universal Sparre-Andersen result. One has to choose the target size correctly. From the
theory the asymptotic behaviour at long times is known to be ℘HF(t) ' t1/α−2 [98]. In
figure G1 we show how the exponent at long times depends on the target size for the
time resolution δt = 0.001. For very small targets the exponent is closer to -1 (data
1 in figure G1) and the Sparre-Andersen limit can be obtained when large targets are
considered (data set 4 in figure G1 corresponds to the case in which the starting point
was distance 1 away from the boundary of the target with d = 10). We also checked
that this automatically leads to the proper power law with scaling exponent 1/α at
short times. Vice versa one could use the short-time power law to get the best fit target
size with the correct long-term first-hitting PDF statistics. Note that in order to get
the exponents in figure G1 we averaged the data in the time interval [50, 1000]. For any
fixed d and δt the exponent decreases slightly when the frame of averaging is moved
towards longer t. No matter how small the target is chosen, the proper point-like target
long-time scaling will be observed at some time scale. However, any simulation has
a finite duration. Hence, it is reasonable to choose a target size which leads to the
theoretical scaling within the time cutoff limit of the run. The set of best choices for
other α used is listed in the main text.

Since the overshoots also depend on the time discretisation one has to adjust it
as well. In figure G2 we show how the long time characteristics change with δt while
keeping the target size d = 0.014 for α = 1.5. The change of δt leads to deviations
from the proper long-time behaviour of the first-hitting PDF. Importantly, the number
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Figure H1. LW PDF for α = 0.5 and α = 1.5 at t = 0.5, for v = 1. For α = 0.5 the
PDF is U-shaped while for α = 1.5 the PDF is bell-shaped. In both cases the horizon
of the PDF is at |x| = 0.5, note the spikes at |x| = 0.5 for α = 1.5.

of runs does not affect the exponent obtained by averaging over a fixed interval of time.
However, the accuracy of defining of the exponents increases with the number of runs.

Appendix H. Shape of the Lévy walk propagator

The shape of the LW propagator discussed in section 4.2 is shown in figure H1.
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