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Abstract: AC photoelectrochemical imaging at electrolyte-semiconductor interfaces provides 12 
spatially resolved information such as surface potentials, ion concentrations and electrical 13 
impedance. In this work, thin films of InGaN/GaN were used successfully for AC 14 
photoelectrochemical imaging, and experimentally shown to generate a considerable photocurrent 15 
under illumination with a 405 nm modulated diode laser at comparatively high frequencies and 16 
low applied DC potentials, making this a promising substrate for bioimaging applications. Linear 17 
sweep voltammetry showed negligible dark currents. The imaging capabilities of the sensor 18 
substrate were demonstrated with a model system and showed a lateral resolution of 7 microns. 19 

Keywords: Photoelectrochemistry; InGaN/GaN epilayer; cell imaging; light-activated 20 
electrochemistry; light-addressable potentiometric sensor. 21 

 22 

1. Introduction 23 

Over the past three decades since first proposed by Hafeman et al. in 1988 [1], photocurrent 24 
imaging with light-addressable potentiometric sensors (LAPS) has received increasing attention for 25 
chemical and biological applications such as the detection of ions [2], redox potentials [3], 26 
enzymatic reactions [4] and cellular activities [5][6][7]. By scanning a designated area of an 27 
electrolyte–insulator–semiconductor (EIS) structure with a modulated light beam, spatiotemporal 28 
AC photocurrent images with the two-dimensional distribution of analytes are produced [8][9]. 29 

To enhance the spatial resolution and photocurrent response, a wide range of semiconductor 30 
substrates have been investigated. Silicon on insulator (SOI) [10][11], ultrathin silicon on sapphire 31 
(SOS) [12] and semiconductor materials such as amorphous silicon, GaAs [13], GaN [14], TiO2 [15] 32 
and In-Ga-Zn oxide [16] were studied. SOS substrates exhibited a high resolution of 1.5 μm with a 33 
focused 405 nm laser beam and a resolution of 0.8 μm using a two-photon effect with a 1250 nm 34 
femtosecond laser [12]. SOS functionalized with self-assembled monolayers (SAMs) as an insulator 35 
has been used for imaging of chemical patterns [17][18][19], microcapsules [20]and yeast cells [21]. 36 
Modifying silicon with SAMs terminated with redox active species allowed the imaging of photo-37 
induced redox currents [22]. 38 

Recently, ITO-coated glass without any insulator was proposed as a low cost and robust 39 
substrate for photoelectrochemical imaging [23][24]. In the absence of an insulator, the AC 40 
photocurrent is largely determined by the anodic oxidation of hydroxide making ITO-LAPS highly 41 
sensitive to pH (70 mV/pH). Photocurrent imaging with ITO-LAPS showed a good lateral 42 
resolution of 2.3 μm [23] and was confirmed to be sensitive to the surface charge of living cells [24]. 43 
ZnO nanorods were used as a substrate for ac photocurrent imaging to monitor the degradation of 44 
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a thin poly (ester amide) film with the enzyme α-chymotrypsin, also showing great potential in 45 
biosensing and bioimaging applications [25]. However, a relatively high applied bias (1.5 V) was 46 
required to achieve sufficiently high photocurrents with ITO and ZnO nanorods for two-47 
dimensional imaging, which could possibly interfere with cellular metabolism. Moreover, due to 48 
low charge carrier mobility, both ITO and ZnO suffered a dramatic decrease in photocurrent with 49 
increasing modulation frequency, resulting in a low working frequency of 10 Hz for imaging. This 50 
could consequently limit their application for high-speed imaging which is required for the 51 
investigation of cellular responses. 52 

In this work, InGaN/GaN on sapphire was investigated as a new substrate for AC 53 
photoelectrochemical imaging, aiming to solve the above-mentioned problems. InGaN is a 54 
semiconductor alloy with a direct band gap that can be tuned from the near-infrared (0.6 eV, InN) 55 
to the ultraviolet (3.4 eV, GaN) by adjusting the indium concentration. It has been used widely in 56 
developing LEDs [26][27] and photovoltaic devices [28] owing to its strong light emission and 57 
absorption and a wide range of band gaps. InGaN has also gained significant attention in 58 
photoelectrochemistry. With band edges straddling oxygen and hydrogen redox overpotentials, p-59 
type GaN/InGaN nanowires have been investigated in water splitting [29] with advantages of high 60 
carrier mobility, good chemical stability, and band gap tunability. GaN/InGaN nanowires have also 61 
been shown to exhibit excellent optochemical and electrochemical sensor performance, achieving 62 
the detection of pH [30], oxidising gases (O2, NO2 and O3) [31] through photoluminescence, and 63 
electrochemical detection of nicotinamide adenine dinucleotide (NADH) [32]. In this work, it will 64 
be shown that epitaxial layers of InGaN are suitable for photoelectrochemical imaging with good 65 
lateral resolution and have great potential in bioimaging applications.  66 

 67 

2. Experimental section 68 

Materials.  69 

The InGaN/GaN structure was grown on a two-side polished (0001) sapphire substrate in a 70 
Thomas Swan 6x2” metalorganic vapour-phase epitaxy reactor using trimethyl gallium (TMG), 71 
trimethyl indium (TMI), silane (SiH4) and ammonia (NH3) as precursors, while purified hydrogen 72 
and nitrogen were used as the carrier gases. A 40 nm-thick low-temperature (580 °C) GaN 73 
nucleation layer was followed by a 100 nm-thick n-type GaN layer deposited at 1060 ºC in a 74 
hydrogen atmosphere at a constant pressure of 100 Torr. The carrier gas was then switched to 75 
nitrogen, the pressure ramped at 300 Torr and the temperature to 770 ºC for the growth of the 76 
100 nm-thick n-type InGaN epilayer. 77 

All wet chemicals were purchased from Sigma-Aldrich. All solutions in this work were 78 
prepared using ultrapure water (18.2 MΩ cm) from a Milli-Q water purification system (Millipore, 79 
USA). 80 

Preparation and characterisation of sensor chip.  81 

The InGaN/GaN structure was cut into 5 mm × 5 mm pieces. These were ultrasonically cleaned 82 
with acetone, isopropanol and ultrapure water each for 15 min and blow dried with nitrogen. The 83 
InGaN/GaN samples were kept at room temperature before use. The morphology of InGaN/GaN 84 
was examined using a scanning electron microscope (SEM, FEI Inspect F). Ultraviolet–visible (UV-85 
vis) spectra were obtained using a UV−vis spectrometer (PerkinElmer, Lamda 950).  86 

Linear sweep voltammetry (LSV). 87 

LSV of InGaN/GaN was carried out in Dulbecco’s Phosphate Buffered Saline (DPBS) solution 88 
(pH 7.4) using an Autolab PGSTAT30/FRA2 electrochemical workstation (Windsor Scientific Ltd., 89 
UK). A platinum electrode and an Ag/AgCl (3 M KCl) electrode were the counter electrode and 90 
reference electrode, respectively. The scan rate was 10 mV/s. A diode laser (λ = 405 nm, max 91 
50 mW), chopped in 10 s intervals was used as the light source while recording the LSV curves. 92 
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Cell culture. 93 

Before seeding cells, InGaN substrates were sterilized with 70% ethanol and rinsed thoroughly 94 
with sterilized DPBS solution and blown dry. MG-63 human osteosarcoma cells were cultivated in 95 
Dulbecco’s Modified Eagle’s Medium (DMEM, Cat No D6429) supplemented with 10% Fetal 96 
Bovine Serum (FBS, Cat No F9665 and 1% penicillin-streptomycin (Cat No P4333)in an air jacketed 97 
incubator with 5% CO2 at 37 °C with the medium changed every two days. At 70%-80% confluence, 98 
cells were trypsinized by using Trypsin-EDTA (Cat No T3924), and resuspended in 10 % FBS 99 
supplemented DMEM, seeded onto the InGaN surface at a concentration of 2.5x104 cells/mL and 100 
incubated at 37 °C with 5% CO2 for 24 h. 101 

The cell viability was tested using a fluorescence live/dead assay (Thermo Fisher Scientific, cat. 102 
no.: L3224). MG-63 cells were seeded onto two pieces of InGaN (5 mm × 5 mm) assembled in the 103 
photoelectrochemical imaging chamber at a concentration of 9.4x105 cells/mL and incubated at 104 
37 °C with 5% CO2 for 24 h. One InGaN chip was subjected to a raster scan in DPBS while another 105 
stayed under ambient condition for the same time. Then, 0.5 mL of 2 μM calcein AM, 4 μM 106 
Ethidium homodimer-1 and 8.12 μM of Hoechst 33342 was used to detect the viability of the cells 107 
with and without AC photoelectrochemical imaging. Three different areas in each sample were 108 
checked using a fluorescence microscope (Leica DMI4000B Epifluorescence), and cell photos were 109 
then processed by Image J software for counting cells. 110 

AC photocurrent imaging.  111 

Figure 1 depicts the LAPS set-up used in this work. A diode laser LD1539 (Laser 2000, λ = 405 112 
nm, max 50 mW) intensity modulated at 1 kHz was used as the light source. The sample chamber 113 
was mounted onto an M-VP-25XL XYZ positioning system with a 50 nm motion sensitivity on all 114 
axes (Newport, UK). AC photocurrents were measured with an EG&G 7260 lock-in amplifier with a 115 
platinum electrode and an Ag/AgCl (3 M KCl) electrode acting as the counter and reference 116 
electrodes, respectively. DPBS (pH 7.4) was used as the electrolyte. Optical images of the sensor 117 
surface were obtained with a CMOS camera by illuminating the chip surface with white light from 118 
the front side. A drop of poly(methyl methacrylate) (PMMA) was deposited on the InGaN surface 119 
and dried overnight to obtain a model system for measuring the resolution. 120 

 121 

 122 

Figure 1. Schematic of the LAPS setup with a 405 nm diode laser to generate photo-induced charge 123 
carriers, lock-in amplifier to measure AC photocurrent, and an X-Y-Z stage to move the 124 
electrochemical cell with respect to the laser beam for imaging. 125 
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3. Results and discussion 127 

Characterisation of InGaN/GaN epilayers on sapphire.  128 

The SEM analysis of the InGaN/GaN structure is presented in Figure 2. The SEM top view in 129 
Figure 2a shows the InGaN surface with a high density of pits ((2.26 ± 0.08) x 1010 pits/cm2) ranging 130 
between 20 nm and 50 nm in diameter, as some of the pits have merged. These “V-pits” are well 131 
known in InGaN growth and consist of an inverted hexagonal pyramid emanating from a threading 132 
dislocation formed at the sapphire/GaN interface. The pits open up during InGaN growth which 133 
takes place at relatively low temperatures [33]. The total thickness of the InGaN/GaN epilayer was 134 
about 216.5 ± 6.6 nm as shown in Figure 2b. Four-probe electrical measurements using soldered 135 
indium contacts showed a resistivity of 0.02 Ω·cm due to the n-type conductivity of the epilayers. A 136 
photoluminescence (PL) spectral map (Accent RPM2000, exc = 266 nm) of the 2-inch wafer showed 137 
a strong emission band centred at 448 ± 2 nm indicating an average indium fraction of ca. 17.5% [34]. 138 

Figure 3 shows the UV-vis absorption spectrum of InGaN/GaN. From the inset Tauc-plot [35], 139 
[36], a direct band gap of 2.77 ± 0.03 eV was determined, indicating that the charge carriers in 140 
InGaN/GaN are excited at wavelengths ≤ 448 nm, which is in good correspondence with the PL 141 
mapping result. 142 

The DC photocurrent response of the InGaN/GaN sample was characterised with LSV. As 143 
shown in Figure 4, significant photocurrents were observed at anodic potentials ≥ 0 V. The dark 144 
current was negligible compared to the photocurrent. As with ITO substrates, the photocurrent can 145 
be ascribed to the oxidation of hydroxide ions in the solution. In contrast to ITO, the InGaN layers 146 
show a much lower onset potential of the photocurrent. 147 

 148 

  149 

Figure 2. SEM images of InGaN/GaN: (a) top view and (b) cross-sectional view. 150 

 151 

Figure 3. UV−vis spectrum of InGaN and inset Tauc-plot. 152 
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 153 

Figure 4. LSV curves of InGaN in the dark and with chopped illumination. 154 

Figure 5a shows the dependence of the AC photocurrent on the modulation frequency 155 
measured at 1.0 V with a focused laser beam. From 10 Hz to 3 kHz, the photocurrent did not change 156 
significantly with the frequency and then it decreased at higher frequencies. Significant 157 
photocurrents were obtained up to modulation frequencies of 10 kHz. The photocurrent became 158 
negligible at frequencies greater that 20 kHz. In contrast, the AC photocurrent measured with ITO 159 
and ZnO previously decreased continuously with increasing modulation frequency above 10 Hz for 160 
ITO and above 30 Hz for ZnO and became negligible at 7 kHz for ITO and 4 kHz for ZnO. This can 161 
be attributed to the significantly higher hole mobilities in InGaN [37] compared to those in ITO [38] 162 
and ZnO [39] as low-mobility minority charge carriers will not contribute to the AC photocurrent at 163 
high frequencies. In this work, 1 kHz was chosen as the modulation frequency since it could offer 164 
high quality images as well as demonstrate the potential for high-speed imaging.  165 

 166 

 167 

Figure 5. (a) Frequency dependence of the AC photocurrent and the background dark current 168 
measured at 1.0 V; (b) Characteristic I−V curve of InGaN/GaN measured in pH 7.4 DPBS at 1 kHz 169 
with a focused laser beam at 18% maximum intensity. 170 

Figure 5b shows the characteristic AC photocurrent−voltage (I−V) curve of InGaN/GaN in the 171 
voltage range -0.6 V to 1.0 V in pH 7.4 DPBS under the illumination of a focused laser beam 172 
(modulation frequency was 1 kHz). It shows that the photocurrent increased with the applied bias, 173 
to a value of 12 nA at 1.0 V. Even at 0 V, a photocurrent of 8.5 nA was observed. The low onset 174 
potential of InGaN/GaN is in accordance with its low flat band potential [40][41], indicating that the 175 
electrode can become depleted by applying a low bias, facilitating the separation of photo-induced 176 
charge carriers. Therefore, it provides the possibility for measurements at zero applied bias. 177 
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Photoelectrochemical imaging using InGaN 178 

Figures 6a and 6b shows the photocurrent images of a PMMA dot on the InGaN surface with a 179 
modulation frequency of 1 kHz using a focused laser beam at a bias of 0.6 V and 0 V (vs. Ag/AgCl) 180 
respectively. The polymer dots were clearly observed in the photocurrent images, with decreased 181 
photocurrent values compared to a blank surface area owing to the high impedance of the PMMA 182 
dot. The image in Figure 6a shows a significant gradient of the photocurrent across the uncoated 183 
area exposed to electrolyte. This can be attributed to the sample not being mounted perfectly 184 
perpendicular to the incoming laser beam resulting in a change of the focused laser spot size across 185 
the sample. Where applications require imaging over a large area, a tilt module for straightening 186 
the sample would have to be integrated into the experimental setup. However, for imaging over 187 
small distances, this effect becomes negligible as will become clear in the next section. The images 188 
in Figure 6b and less obviously in Figure 6a display a periodic pattern in the photocurrent 189 
distribution. It is assumed that this is caused by a striation effect in the InGaN/GaN substrate 190 
similar to the one observed in silicon previously [42] It is worth noting that the ability to image at 0 191 
V will broaden the application of this technique in biological systems and also possesses an 192 
advantage from an energy aspect. To measure the lateral resolution, a photocurrent line scan across 193 
the edge of the polymer film was recorded with a focused laser beam and 1 μm step size (Figure 6c). 194 
The lateral resolution is derived from the full width at half maximum (FWHM) value of the first 195 
derivative of the line [43] (Figure 6d), which is 7 μm for InGaN. This result could be due to a weak 196 
adhesion between PMMA and the InGaN surface, thus not giving a steep edge of the polymer, or 197 
light scattering within the structure. The diffusion length of minority charge carriers in InGaN 198 
should not affect the resolution as it is less than 200 nm and decreases with increasing In content 199 
[44]. Hence, InGaN is promising to produce photocurrent images with a higher resolution. 200 

 201 

Figure 6. AC photocurrent images of a PMMA dot on InGaN measured at 0.6 V (a) and 0 V (b); X 202 
axis line scan across the polymer edge (indicated by the red arrow in (a)) at 0.6 V (c) and its 203 
corresponding first derivative plot (d). 204 
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Cell imaging on InGaN 206 

Figure 7a shows a photocurrent image of an MG-63 cell seeded on the InGaN surface obtained 207 
at a bias of 1.05 V, with a light modulation frequency of 1 kHz. The cell profile is clearly observed, 208 
as the photocurrent is smaller in the cell attachment area than on the blank surface. Both, 209 
photocurrent image and the corresponding optical image (Figure 7b) show good correlation. Apart 210 
from the cell in the centre of the image (outline superimposed in blue in Figure 7a), another three 211 
cells are visible towards the edges (outlines superimposed in red in Figure 7a). As the latter cells are 212 
rounded, it can be assumed that they are not attached to the sensor surface and do therefore not 213 
cause a significant change in the local photocurrent. The photocurrent under a cell attached to the 214 
semiconductor surface is affected by the narrow gap (> 10 nm) formed between the cell membrane 215 
and the surface as described previously for cells cultured on ITO [24]. The photocurrent is caused 216 
by the oxidation of hydroxide. Transport of hydroxide to the surface is hindered by diffusion into 217 
the narrow electrolyte gap between cell and surface, thereby reducing the photocurrent under the 218 
cell. The negative surface charge of the cell causes an additional reduction in the transport of 219 
hydroxide ions to the surface. Hence, a correlation between the photocurrent and the cell surface 220 
charge was found [24]. 221 

 222 

Figure 7. (a) AC photocurrent image of a mesenchymal stem cell on InGaN surface (cell shapes from 223 
(b) superimposed in blue for an attached cell and red for non-attached cells) and (b) its 224 
corresponding optical image. 225 

Cell viability. 226 

To check the invasiveness of InGaN-based AC photocurrent imaging, cell viability for cells 227 
with and without AC photocurrent raster scan were tested (Figure 8). Calcein AM can permeate 228 
through intact cell membranes and react with the intracellular enzyme esterase, giving an intensely 229 
green fluorescence in live cells (excitation/emission 495 nm/515 nm). Ethidium homodimer-1 only 230 
passes through disrupted membranes, emitting intense red fluorescence in dead cells upon binding 231 
to nucleic acids (excitation/emission 495 nm/635 nm). Hoechst stain is a cell-permeant nuclear 232 
counterstain that emits blue fluorescence when bound to dsDNA (excitation/emission 350 nm/461 233 
nm) to determine cell numbers. Results shows that 98.92% ± 0.15% MG-63 cells on the surface were 234 
viable after a photocurrent raster scan compared to 98.97% ± 0.11% on a control sample, indicating 235 
this imaging technique has no negative effect on the cells. 236 

 237 
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 238 

Figure 8. (a)(b)(c) Fluorescence microscope images of MG-63 cells taken after photocurrent 239 
imaging, living cells with intact membranes appeared green, dead cells with collapsed 240 
membrane appeared red, and the nuclei of the cells appeared blue. (d)(e)(f) Images of 241 
MG-63 cells that were not subjected to imaging. 242 

 243 

4. Conclusions 244 

An In0.175Ga0.825N/GaN structure on sapphire was investigated as a substrate for photocurrent 245 
imaging without any modification. It showed a considerable photocurrent under illumination with 246 
a 405 nm diode laser. Clear photocurrent images of a PMMA dot were obtained with a focused laser 247 
beam at 1 kHz modulation frequency, indicating a unique advantage over ITO and ZnO studied 248 
previously. In addition, photocurrent imaging at a low bias (0 V) was demonstrated and 249 
photocurrent imaging of a cell was achieved, showing a great potential of InGaN for applications in 250 
bioimaging and biosensing. 251 

 252 
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