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Abstract

The paper develops point estimation and asymptotic theory with respect to a semipara-

metric model for time series with moving mean and unconditional heteroscedasticity. These

two features are modelled nonparametrically, whereas autocorrelations are described by a short

memory stationary parametric time series model. We first study the usual least squares estimate

of the coefficient of the first-order autoregressive model based on constant but unknown mean

and variance. Allowing for both the latter to vary over time in a general way we establish its

probability limit and a central limit theorem for a suitably normed and centred statistic, giving

explicit bias and variance formulae. As expected mean variation is the main source of incon-

sistency and heteroscedasticity the main source of inefficiency, though we discuss circumstances

in which the estimate is consistent for, and asymptotically normal about, the autoregressive

coefficient, albeit inefficient. We then consider standard implicitly-defined Whittle estimates of

a more general class of short memory parametric time series model, under otherwise more re-

strictive conditions. When the mean is correctly assumed to be constant, estimates that ignore

the heteroscedasticity are again found to be asymptotically normal but inefficient. Allowing

a slowly time-varying mean we resort to trimming out of low frequencies to achieve the same

outcome. Returning to finite order autoregression, nonparametric estimates of the varying mean

and variance are given asymptotic justification, and forecasting formulae developed. Finite sam-

ple properties are studied by a small Monte Carlo simulation, and an empirical example is also

included.
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1 Introduction

A vast econometric and statistical literature has developed on the basis of evidence that many time

series are nonstationary. There exists an unlimited number of possible forms of nonstationarity, but

particular kinds have been emphasized. An early and persisting approach represents a changing

mean by a deterministic function such as a polynomial in time with unknown coefficients. More

recently, stochastic trends have widely featured, arising in particular from an autoregressive unit

root, or a fractional model with differencing parameter exceeding 1/2. These stochastic trend

models imply a variance that grows without bound, just as a polynomial trend implies the mean

increases without bound.

Models have also been developed that entail mean variation and heteroscedasticity that may

increase in a different kind of way, or remain bounded, or decay. The present paper models an

observable scalar time series yt, t = 1, ..., n, by

yt = µt + htxt, t = 1, 2, .... (1.1)

The ingredients of (1.1) are described as follows. The µt and ht ≥ 0 are unknown and deterministic,

whereas {xt} is a zero mean covariance stationary process. Thus,

E (yt) = µt, V (yt) = h2
tV (x1) , t = 1, 2, ..., (1.2)

since xt has constant variance. Thus in general yt is nonstationary in both the mean and variance.

However it is covariance stationary with respect to autocorrelations: for t > s

corr(ys,yt) =
hshtE (xsxt)

hsht
√
V (xs)V (xt)

= corr(xs,xt), (1.3)

which depends only on t− s.

The prescription that µt and ht are deterministic rules out numerous models, where yt has

stochastic conditional mean and/or conditional heteroscedasticity, but it nevertheless still covers

a huge literature. In general µt , ht and xt can each be chosen to be parametric or nonparamet-

ric, so there are 23 = 8 types of specification in this respect, going from the purely parametric,

through semiparametric ones to the purely nonparametric. In early days all might well have been

parametric, but, generally speaking, misspecification of µt is liable to lead to inconsistent estimates

of not only its parameters but also those of ht and xt while misspecification of the latter two is

liable to lead not only to inconsistent estimates of their parameters but also invalid inferences on

the parameters of µt. Nowadays, partly reflecting the availability of longer time series data sets, in

particular in finance, one would more likely expect to see a purely nonparametric model, allowing

an asymptotic theory which applies more generally, though results would be sensitive to the choices

of 3 different bandwidths. Semiparametric models are generally motivated by data sets that are

not so large, and/or there is reasonable confidence in a partial parametrization. A common goal

in semiparametric estimation is the achievement of consistency (and asymptotic normality) with
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parametric rate of parameter estimates. A more ambitious goal, which has been achieved in a

number of circumstances in (1.1), is asymptotic efficiency of the parameter estimates, despite the

nonparametric components. An early example of the latter achievement in a model that fits our

specification of (1.1) is Harvey and Robinson (1988), who took µt to be parametric, possibly trend-

ing, took xt to be parametric, in particular pth order autoregressive (AR(p)), and ht nonparametric.

They showed that generalized least squares estimates (that account for both error autocorrelation

and error heteroscedasticity) of the parameters describing µt are adaptive in the sense that they

are not only asymptotically normal but achieve the Gauss-Markov asymptotic efficiency bound.

For this purpose Harvey and Robinson (1988) showed that the estimates of the AR coefficients

describing xt are consistent but they were treated there as nuisance parameters. In the present

paper, for an eventually more general class of parametric models for xt, we focus on properties

of their estimates when ht is nonparametric as in Harvey and Robinson (1988) (and sometimes

treated in a similar way) but also, for the most part, µt varies nonparametrically.

Initially we allow for general variation in µt and ht, but subsequently assume that, predomi-

nately, they change only slowly with respect to t. In particular, we often assume that for a function

m (s) , s ∈ (0, 1) , that satisfies some smoothness conditions,

µt = m(t/n), t = 1, ..., n, (1.4)

with conditions on ht that also restrict their variation. Under (1.4), the homoscedastic special case

of (1.1), with ht ≡ h,
yt = µt + hxt, t = 1, 2, ..., (1.5)

has been extensively studied in the fixed-design nonparametric regression literature (beginning

with, e.g., Priestley and Chao (1972), Gasser and Mueller (1979)). Initially and commonly xt

was assumed to be white noise, but subsequently xt was allowed to be dependent, Robinson (1997)

covering short and long memory and antipersistence, with Guo and Koul (2007) giving a partial ex-

tension to nonparametric heteroscedasticity. The major focus has been the asymptotic, as n→∞,
statistical properties of estimates (usually kernel ones) of m (s) at fixed points s or at s = t/n

under various conditions; under short memory, the rate of convergence is the same as under white

noise but (unlike in stochastic-design nonparametric regression) asymptotic variance is affected,

whereas long memory slows convergence. Note that under (1.1) and (1.4) the yt = ytn form a trian-

gular array but our notation suppresses reference to this fact. The introduction of nonparametric

heteroscedasticity, as in (1.1), has also been considered in a number of references in addition to

Harvey and Robinson (1988), with analogous nonparametric estimation. An alternative, possibly

more appealing, heteroscedastic scenario to (1.5) models the innovations of a time series model to

be heteroscedastic. Further references to this and versions of (1.1) (see also below) include Beran

and Feng (2002), Phillips and Xu (2005), Xu and Phillips (2008), Zhao, Zhang and Li (2014), Zhu

(2016) and Cavaliere, Nielsen and Taylor (2017).

In this paper we assume xt is a linear process with parametric spectral density

fx(u) = (2π)−1k(u; θ), u ∈ Π, (1.6)
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for Π = (−π, π] , k a known function of frequency u, and the p × 1 unknown parameter vector θ.

(Since any scale parameter can be absorbed in h in (1.5), or in ht in (1.1), we do not include an

unknown scalar factor in fx, with the effect that the best one-step-ahead linear predictor of xt has

variance 1.) Thus the model (1.1) is semiparametric, differing from the large literature on models

with nonparametrically time-varying dependence parameters. We cover here only short memory

processes xt, with the effect that fx is bounded and bounded away from zero. Our principle concern

is establishing desirable asymptotic properties of estimates of θ. Thus the µt and ht are mainly

regarded as nuisance functions.

In the constant mean, homoscedastic special case of (1.1) and (1.5)

yt = µ+ hxt, t = 1, 2, ..., (1.7)

yt is covariance stationary, with spectral density h2fx (u; θ) . In this setting a variety of estimates of

θ have been developed and their asymptotic properties established, notably ones which optimize an

exact or approximate Gaussian likelihood, with consistency and asymptotic normality depending

on milder assumptions than Gaussianity; these are sometimes collectively called Gaussian or Whit-

tle estimates (though some authors reserve the latter term for estimates defined in the frequency

domain), the main point being that they all have the same first-order asymptotics under station-

arity. For AR(p) models these estimates include least squares, Yule-Walker and frequency-domain

approximations, all of which are expressed in closed form, whereas for models such as autoregres-

sive moving averages (ARMAs) they are only implicitly defined. Here we investigate such estimates

when in fact (1.1) holds. Predictably bias and variance are affected, but equally predictably given

(1.3) and the fact that under our specification correlation properties of xt are described only by θ,

a suitable handling of a varying mean can lead to consistent and asymptotically normal estimation

of θ, albeit with asymptotic variance (and possibly rate) inflated by heteroscedasticity. Thus we

establish a degree of robustness with respect to a varying mean and variance, though it is important

to stress that our failure to account for heteroscedasticity in point estimation leads to inefficiency,

and thus confidence intervals that are wider, and hypothesis tests that are less powerful, than ones

based on efficient estimates.

The following section examines the implications of time varying mean and heteroscedasticity

and their interactions when xt is AR(1), exploiting the simple, closed form nature of parameter

estimates here to obtain not only convergence in probability and asymptotic normality but explicit

formulae for asymptotic bias and variance that are more or less easy to interpret. Under more

restrictive conditions on µt and ht, Section 3 studies estimates of θ for implicitly defined extremum

estimates of a quite general class of short memory k (.; .) , albeit under stronger conditions on the

innovations in xt, first assuming the overall model is another special case of (1.1),

yt = µ+ htxt, t = 1, 2, ..., (1.8)

and then, to cover (1.1), but assuming variation in µt causes distortion which is confined to low

frequencies we resort to trimming out such frequencies from the discrete-frequency Whittle objective

function. Section 4 specializes to the case xt is AR(p), and develops forecasting formulae. In order
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to implement these we need to estimate the µt and h2
t ; we employ kernel estimates and establish

their consistency and asymptotic normality. Section 5 consists of a small Monte Carlo study of

finite-sample performance. In Section 6 we apply the methods to unemployment data. In both we

focus on AR models. Section 7 briefly discusses some possible extensions of our work. Proofs of

theorems, along with statements of technical lemmas and their proofs, are left to Section 8.

Our paper follows a number of others that combine nonparametric fixed-design regression with

parametric autocorrelation in (1.5), for example Truong (1991), Altman (1993), Hall and Van

Keilegom (2003), Shao and Yang (2011). They employed methods of parameter estimation that

produce the same asymptotic properties to ours, parametric rate and in most cases asymptotic nor-

mality, but deal with nonparametric regression in different ways from our low frequency trimming

approach. However, trimming out of low frequencies to deal wih a nonparametric µt has been used

in settings similar to ours: McCloskey (2010) considered a variety of parametric xt, McCloskey

(2013) and McCloskey and Hill (2017) establishing parametric rate and asymptotic normality of

parameter estimates in case xt follows a long memory stochastic volatility or GARCH model, re-

spectively, for (1.5) with a variety of deterministic and stochastic µt, these authors, like we do

below, employing discrete-frequency Whittle estimation. Similar to our work also, with respect to

(1.8), Dahl and Levine (2006), Figueroa-Lopez and Levine (2013) considered a parametric linear

process contaminated by deterministic nonparametric time varying heteroscedasticity like ours.

2 Bias and inefficiency

The present section indicates the consequences of ignoring mean variation and heteroscedasticity

in the simplest interesting setting, namely in the case xt is a stationary AR(1) process, so

xt = θxt−1 + εt, |θ| < 1, (2.1)

where εt is an uncorrelated white noise sequence with unit variance. Then (cf (1.3)) yt given by

(1.1) still has the autocorrelation properties of an AR(1) with AR coefficient θ, but we estimate the

unknown θ as if yt were generated by (1.7) (which would imply yt is AR(1) with unknown mean

µ and unknown innovations variance h2). An advantage of AR processes is the closed form nature

of various leading parameter estimates, facilitating an examination of the effects of mean variation

and heteroscedasticity under (1.1). It would be straightforward to extend our results to an AR(p)

process, for p > 1, though they become more complicated. Indeed there are closed form estimates

(albeit ones that are inefficient even under the model (1.7)) of pure moving average models (using

method of moments) and of ARMA models (using instrumental variables) so in principle an explicit

study of bias would be possible in these cases also.
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We employ the least squares estimate of θ,

θ̃ =

n∑
t=2

(yt − y) (yt−1 − y)

n∑
t=2

(yt−1 − y)2
, (2.2)

where y = n−1
∑n

t=1 yt. The same first order asymptotic properties established below would result

from using instead, say, the Yule-Walker estimate or the frequency-domain Whittle estimate.

Introduce the abbreviating formulae

M =
∑n

t=1 (µt − µ)2 , N =
∑n

t=2 (µt − µ) (µt−1 − µ) ,

S =
∑n

t=1 h
2
t , T =

∑n
t=2 (ht − ht−1)ht−1,

for µ = n−1
∑n

t=1 µt, and the ’bias’ quantity

bn (θ) =

(
1− θ2

)
(N − θM) + θT

(1− θ2)M + S
.

Theorem 2.1 Let (2.1) hold where

E (εt| Ft−1) = 0, E
(
ε2
t

∣∣Ft−1) = 1, almost surely (a.s.) (2.3)

with Ft the σ−field of events generated by {εs, s ≤ t} , and the ε2
t are uniformly integrable, and let

1 + maxh2
t

S
→ 0 as n→∞. (2.4)

Then as n→∞,

θ̃ − θ − bn (θ)→p 0. (2.5)

Now introduce

U =
∑n

t=2 (ht − ht−1)ht−1x
2
t−1, V =

∑n
t=2 h

2
th

2
t−1, W =

∑n−1
t=1 (µt − µ)2 h2

t ,

and the modified ’bias’ quantity

cn (θ) =

(
1− θ2

)
(N − θM + θU)

(1− θ2)M + S
.

Theorem 2.2 If the conditions of Theorem 2.1 hold, and also

1 + maxh2
t−1h

2
t + S2/n2 +W

V
→ 0 as n→∞, (2.6)

6



and

M = O (n) as n→∞, (2.7)

then as n→∞, ((
1− θ2

)
M + S

)
V −1/2

(
θ̃ − θ − cn (θ)

)
→D N

(
0, 1− θ2

)
. (2.8)

Remarks

1. The martingale difference assumption in (2.3) does not allow conditional heteroscedasticity,

is weaker than assuming the εt are independent, and has long been standard in the literature

on estimates based on quadratic functions such as Whittle estimates following Hannan (1973),

while as in the latter reference (and previously in Anderson and Walker (1964)) because θ is a

dependence parameter we require only the necessary condition of finite second moments of εt,

thereby appealing to another concern of financial econometricians, with our uniform integrability

condition being weaker than the identity of distribution, and thus strict stationarity, assumed in

these references.

2. Condition (2.4) implies that for ht ∼ tφ we must have φ ≥ −1/2, so S ∼ n2φ+1. There is no

upper bound on φ in this case, so we certainly do not require ht to be bounded, but (2.4) rules out

exponential increase.

3. As expected, in general bn (θ) is non-negligible, so θ̃ is inconsistent. When xt is not white noise

this can still be the case when there is heteroscedasticity but no mean-variation, so M = N = 0,

since we do not require that T = o (S) . For example in (albeit extremely unlikely) rapidly oscillating

cases such as ht = 1 (t odd)− 1 (t even) , where 1 (.) is the indicator function, we have T ∼ −2n,

S ∼ n. But T makes no contribution under the mild smoothness condition
n∑
t=2

(ht − ht−1)2 = o (S) .

Indeed assuming

ht = g (t/n) , (2.9)

with g boundedly differentiable (cf Section 4) the left side of the previous equality is O
(
n−1

)
while

if g is substantially positive S increases at rate n.

4. Of course variation in µt is the predominate source of bias such that even if it is generated by

(1.4) with m boundedly differentiable, in general M and N are of exact order n, while S = O (n) for

bounded ht. This is also the case under the alternative scenario of ’asymptotic stationarity’ (Parzen

(1963)), to the extent that, for some γ0 and γ1 ∈ (−γ0 , γ0 ) , n−1M → γ0 , n
−1N → γ1 and bias

only disappears in the measure-zero event θ = γ1 /γ0. On the other hand, as expected, the contri-

butions of µt to numerator and denominator of bn (θ) diminish as xt approaches nonstationarity.

Since N = O (M) and T = O (S) at least bn (θ) is always bounded, though by no means necessarily

to the extent that θ+ bn (θ) has a limit within the stationarity region.

5. Unboundness or decay in µt and/or ht cannot be ruled out, and can increase or decrease

bn (θ) , depending on whether the signal-to-noise ratio diverges or decays to zero, such that, for

example, if M = o (S) (and T = o (S) as discussed above), bn (θ) → 0 for all θ. There is a similar

outcome under sparseness (e.g. when only o (n) of the µt deviate from a constant level).

7



6. As always conditions for a desirably centred central limit theorem are more stringent than

those for consistency. An unfortunate requirement in Theorem 2.2 is W = o (V ) , which can hold

if noise dominates signal but will not hold in many of the situations in which M and N contribute

nonnegligibly to bias in our theorems. Our proofs indicate the presence of a term that is linear in xt

with zero mean and asymptotically normal after suitable norming, and, if W = o (V ) is not imposed,

can influence the form of the limit distribution of θ̃. We have chosen to keep matters relatively

simple so as to obtain centring and norming sequences that lead to the same limit distribution as

under a constant mean and homoscedasticity. Likewise the condition (2.7), ruling out unbounded

µt, is imposed to avoid other complications.

7. The components max h2
t /S → 0 in (2.4) and V →∞ in (2.6) imply the component S →∞

in (2.4), whereas under the non-oscillating condition c ≤ ht/ht−1 ≤ C, where c and C throughout

respectively denote arbitrarily small and arbitrarily large generic constants, maxh2
t−1h

2
t /V → 0 in

(2.6) implies max h2
t /S → 0.

8. The stochastic term U in cn (θ) can be replaced by T/
(
1− θ2

)
, whence cn (θ) can be replaced

in Theorem 2.2 by bn (θ) , under stronger conditions, including Eε4
t ≤ C, but in any case U seems

likely to be dominated by other terms, in the same way as T, as discussed above.

9. The presence of M in the norming factor in Theorem 2.2 could, despite (2.7), be associated

with a norming factor increasing faster than n1/2, albeit with a non-negligible cn (θ) . But when

M = o (S) , as under the constant mean model (1.8) for example, and if θ = 0 or U = op (S) , then

we deduce that

SV −1/2
(
θ̃ − θ

)
→D N

(
0, 1− θ2

)
. (2.10)

The main purpose of establishing a central limit theorem is statistical inference and this requires an

estimate R̃ of R = SV −1/2 such that R̃/R→p 1. Since the h2
t are unknown they must be replaced by

suitable proxies h̃2
t , whence we can form R̃ = S̃Ṽ −1/2 with S̃ =

∑n
t=1 h̃

2
t , Ṽ =

∑n
t=2 h̃

2
t h̃

2
t−1, though

it remains to be shown that R̃/R→p 1. Under (2.9) with smooth g, fixed-design kernel regression of

the (yt − y)2 (assuming no asymptotic bias) can, from (1.2), consistently estimate h2
tvar (x1), where

the second factor can be estimated by (1− θ̃2)−1 or simply ignored for the purpose of approximating

R.

10. The Cauchy inequality confirms that the norming factor SV −1/2 in (2.10) is no greater

than the optimal parametric rate n1/2, and of course it equals n1/2 under homoscedasticity. The

rate could be slower, e.g. it is (n/ log n)1/2 if ht ∼ t−1/4. But of far greater practical importance is

the fact that even if SV −1/2 ∼ an1/2, the Cauchy inequality generally implies a < 1, so that θ̃ is

asymptotically inefficient under heteroscedasticity.

11. Given the large literature on adaptive estimation of semiparametric models we might

attempt to obtain parameter estimates (not only in (2.1) but in the more general time series model

of the rest of the paper) that are as asymptotically as efficient as if the ht (and µt) are known or

parametrically modelled. The fixed design nonparametric regression literature, and (1.2), indicates

that under (1.4) with smooth m and (2.9) with smooth g, kernel estimates of the µt and h2
t var (x1)

are consistent in the presence of quite general, nonparametric, dependence in xt, so they can be

robustly estimated at the outset by µ̃t and ˜h2
t var (x1) without specifying a parametric time series
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model for xt. Then one can form x̃t = (yt − µ̃t) /
( ˜h2

t var (x1)
)1/2

which approximate the xt up to

scale. There is no doubt that one could then consistently estimate a nonparametric spectral density

of xt, with nonparametric rate. It remains to be shown whether estimating θ in (2.1) by least squares

using the x̃t, or proceeding analogously with respect to the more general time series model of the

following section, produces root-n-consistent and asymptotically efficient estimates, but there are

plenty of semiparametric models in which this outcome has been shown to be possible, for example

in the related models of Harvey and Robinson (1988) and Xu and Phillips (2008). Instead, however,

in the rest of the paper we pursue a more modest goal, correcting for mean variation by trimming

out low frequencies in ordinary Whittle estimation based on the yt and obtaining rate-optimal, but

inefficient, parameter estimates.

3 Parameter estimation and asymptotic theory for a more general

time series model

In this section we consider a more general specification of (1.6), where, since we will now consider

implicitly-defined extremum estimates we denote the temporal dependence parameter vector θ0, θ

∈ Rp now denoting any admissible value. We consider first the basic discrete-frequency Whittle

estimate studied by Hannan (1973). As implied above we know the functional form of k(u; θ) in

(1.6). We consider only k (u; θ) satisfying∫
Π

log k(u; θ)du = 0, (3.1)

for all θ, implying that the best one-step-ahead linear predictor of xt has variance 1.

Approximating the Gaussian pseudo likelihood of yt under the stationary model (1.7), after

eliminating h we consider the discrete-frequency Whittle estimate of θ0,

θ̂ = arg min
θ∈Θ

Qn(θ),

where

Qn(θ) =
2π

[n/2]

[n/2]∑
j=1

Iy(uj)

k(uj ; θ)
, (3.2)

in which we introduce the periodogram

Iy(u) = (2πn)−1
∣∣∣ n∑
t=1

yte
itu
∣∣∣2,

the Fourier frequencies uj = 2πj/n, the compact set Θ ⊂ Rp, and [.] denotes integer part.

Note that (3.2) differs from the corresponding objective function of Hannan (1973). His sum-

mation was over [−n/2] < j ≤ [n/2] , whereas for comparability after using evenness of summands,

our summation is over − [n/2] ≤ j ≤ −1, 1 ≤ j ≤ [n/2] . Our omission of the j = 0 term is for the
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familiar purpose of sample mean correction, Hannan (1973) having assumed a known mean. When

n is even we have an extra summand such that there are two (identical) terms corresponding to

j = −n/2 and n/2. The latter distinction has no effect on limit distribution theory.

Denote by∇a the partial derivative operator with respect to a vector a and by ′ the transposition

operator, and let C and c be respectively arbitrarily large and small generic positive constants. We

introduce the following assumptions on the modelling of xt.

Assumption A (i) For an independent and identically distributed (i.i.d.) sequence {εt} such that

E (ε1) = 0, V (ε1) = 1, E
(
ε4

1

)
<∞,

xt =

∞∑
j=0

bjεt−j ,

∞∑
j=0

j|bj | <∞, b0 = 1. (3.3)

(ii) xt has spectral density given by fx(u) in (1.6) such that k(u; θ) is a known function of u,

θ; (3.1) holds for all θ ∈ Θ;

c ≤ k(u; θ) ≤ C, θ ∈ Θ, u ∈ Π; (3.4)

the partial derivatives ∇θk(u; θ),∇uk(u; θ), ∇u∇θk(u, θ), ∇θ∇′θk(u, θ), ∇u∇θ∇′θk(u, θ) exist and

are bounded and continuous functions of u ∈ Π and θ ∈ Θ; the matrix

Ω = (4π)−1

∫
Π
∇θ log k(u; θ0)∇′θ log k(u; θ0)du

is positive definite; and for all u ∈ Π and θ ∈ Θ but θ 6= θ0, k(u; θ) 6= k(u; θ0).

(iii) θ0 is an interior point of the compact set Θ ⊂ Rp.

These conditions are largely taken from Hannan (1973) but are in some respects stronger,

indeed stronger than corresponding conditions in the previous section. He did not require εt to

have finite 4th moment, only finite variance, and relaxed our i.i.d. assumption such that εt and

ε2
t − 1 are martingale difference sequences, as in (2.3). The inequality in (3.3) is more restrictive

than the corresponding one,
∑∞

j=0 jb
2
j < ∞, of Hannan (1973). Note that the condition b0 = 1

follows from (3.1); it would be possible to consider models (such as arise in a signal-plus-noise

setting, for example) that do not satisfy (3.1) if a ’log’ term (which is asymptotically negligible

under (3.1)) were explicitly included in the Whittle objective function. However our conditions

cover standard parameterizations of, for example, the stationary and invertible ARMA (though

given a number of papers, one expects that asymptotics for this could also be covered as a special

case of ones for fractional ARIMAs whether the true, zero, value of the differencing parameter is

known or unknown).

Recall notation S =
∑n

t=1 h
2
t . We also introduce the following conditions on ht.

Assumption B
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Denoting V ∗ :=
∑n

t=1 h
4
t and ∆h,n :=

∑n−1
t=1 |ht − ht+1|+ |hn|, as n→∞

(a) S →∞, (b) log n∆2
h,n = o(S1/2), (c) max |ht| ≤ C, (d)S = O(V ∗). (3.5)

Note that if ht is bounded away from zero, as might often be expected in practice, S increases at

the rate n which obtains under the homoscedastic model (1.7). This is also the case for ht ∼ (t/n)φ,

φ > 0, while another common power law model for heteroscedasticity, ht ∼ tφ, φ 6= 0, (cf remark

2 in Section 2) does not satisfy Assumption B. If (2.9) holds with g a boundedly differentiable

function on (0, 1) , as assumed in the following section, ∆n is bounded but (b) allows, for example,

for a step function ht with non-negligible but finite increments ht − ht+1 at o
(
S1/4/ (log n)1/2 )

points t. On the other hand for ht = w(t/nd), with w bounded, non-negative, square integrable

and Lipschitz continuous and d = dn satisfying d + (n−1/2 log n)/d5/2 → 0, Assumption B holds

with S ∼ nd though it is implied that S increases faster than n4/5. However S ∼ n seems by far

the most plausible outcome and is implied in the following secton and in the ht employed in our

Monte Carlo simulations in Section 5.

Theorem 3.1 Let (1.8) and Assumptions A and B hold. Then, as n→∞,

Qn(θ̂) =
S

n

(
1 +OP (S−1/2)

)
,

S

V ∗ 1/2
(θ̂ − θ0)→D N (0,Ω−1). (3.6)

For a stationary time series yt = µ+hxt, Qn(θ̂) estimates the variance h2 of the forecast error of

the best one-step-ahead linear predictor, while for yt = µ+ htxt under heteroscedasticity Qn(θ̂) ∼
n−1S estimates the average variance of the one-step-ahead forecast error over time t = 1, ..., n. As

in the previous section the norming factor indicates efficiency loss due to heteroscedasticity: under

Assumption B,

|V − V ∗| ≤

∣∣∣∣∣
n−1∑
t=1

ht (ht − ht+1)

∣∣∣∣∣+ h2
n ≤ C (∆h,n + 1) = o (S) ,

so the norming sequences in (2.10) and (3.6) are equivalent. Without a consistent estimate of the

norming factor in (3.6) the theorem is useless in statistical inference, as discussed in Section 2,

where some suggestions are made. And as there, the estimates of the current section are inefficient

in the presence of heteroscedasticity.

We now turn to the general model (1.1), with its changing mean µt. The periodogram was orig-

inally motivated in stationary settings, and it is known that smooth changes in the mean, while not

affecting its properties much at high frequencies, may significantly distort them at low frequencies,

where its value may be boosted. Consequently Whittle estimates may lose the properties estab-

lished in Theorem 3.1. To overcome this problem we trim out low frequencies uj from the objective

function Qn(θ), a device introduced in the long memory literature by Künsch (1986) prompted by

the unboundness of the spectral density at zero frequency, and used by a number of subsequent

authors, with Hurvich, Lang and Soulier (2005), Iacone (2010) and McCloskey and Perron (2013)

using it to cope with nonparametric µt in (1.4) for nonparametric long memory xt, along with Mc-
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Closkey (2013) and McCloskey and Hill (2017) for parametric xt. Following in particular McCloskey

(2013) and McCloskey and Hill (2017), for a small integer ν ≥ 0 introduce

Q(1)
n,ν(θ) =

2π

[n/2]

[n/2]∑
j=ν+1

Iy(uj)

k(uj ; θ)
, (3.7)

the trimmed objective function. Introduce the ’mild trimming’

Assumption C

0 ≤ ν = νn = o(n/S1/2). (3.8)

In Theorem 3.2 below we will show that under Assumption C the estimate

θ̂(1) = argmin
θ∈Θ

Q(1)
n,ν(θ)

preserves the properties of θ̂ established in Theorem 3.1. There is always ambiguity in the choice

of trimming parameter, there is no optimal choice, and none of our conditions provide a clue for

choosing ν in a given data set. We stress also that trimming out of low frequencies can only handle

specialised forms of µt (see Assumption D below) and not many of the more general ones envisaged

in Section 2.

Moreover trimming entails loss of information and may worsen finite sample performance. To

try to mitigate this we introduce also an estimate which incorporates a correction for the trimming.

Notice that under constant mean µt ≡ µ,

E
[ ν∑
j=1

Iy(uj)

k(uj ; θ)

]
∼ (S/n)

ν∑
j=1

k(uj ; θ0)

2π k(uj ; θ)
, (3.9)

see Lemma 8.4(i-ii) in Section 8. We use this structure to build a correction term, since peri-

odograms at higher frequencies allow us to estimate (albeit less precisely) (S/n) by Q
(1)
n,ν(θ) and θ0

by θ̂(1), see (3.9). Thus we introduce

Q(2)
n,ν(θ) =

2π

[n/2]

[ [n/2]∑
j=ν+1

Iy(uj)

k(uj ; θ)
+Qn,ν(θ̂(1))

ν∑
j=1

1

2π

k(uj ; θ̂
(1))

k(uj ; θ)

]
, (3.10)

and set

θ̂(2) = argmin
θ∈Θ

Q(2)
n,ν(θ).

Intuitively one wants to choose ν as small as possible, but this is subject to the smoothness of

µt under (1.4) in (3.11). We describe the degree of smoothness by

12



Assumption D µt is given by (1.4) where m(u) can be written as a Fourier series

m(u) =
∞∑

j=−∞
e−i 2πjuρj , u ∈ (0, 1); ρj = ρ−j , all j 6= 0;

∞∑
j=−∞

|ρj | <∞. (3.11)

Note that the inequality in (3.11) is implied if m satisfies a Lipschitz condition of degree greater

than 1/2.

We now assume lower bounds that trade off relative to the actual rate of decay of the ρj and ν.

Assumption E One of the following conditions holds:

|ρk| ≤ Cφ|k|, k = ±1, ..., (∃0 < φ < 1), and log(n/S1/2)/ν → 0, (3.12)

|ρk| ≤ C|k|−γ , k = ±1, ..., (∃γ > 1), and (n/S1/2)1/(2γ−1)/ν → 0. (3.13)

Recall that for ht = g(t/n) where g is a continuous bounded function one has S =
∑n

t=1 h
2
t ∼

n
∫ 1

0 h
2(u)du, and generally for our leading case S ∼ n the limits in (3.12) and (3.13) can be replaced

respectively by (log n)/ν → 0 and n1/(2γ−1)/ν → 0 respectively. Note also that in this case the

upper bound rate for ν in Assumpton C is o(n1/2). McCloskey (2013) theoretically motivated an

exact trimming rate under certain conditions. However even this would be insufficient to justify a

particular numerical choice of ν for given n.

Theorem 3.2 (i) Let (1.8) and Assumptions A-C hold. Then as n→∞, for k = 1, 2,

Qn,ν(θ̂(k)) =
S

n

(
1 +OP (S−1/2)

)
,

S

V ∗ 1/2
(θ̂(k) − θ0)→D N (0,Ω−1). (3.14)

(ii) Let (1.1) and Assumptions A-E hold. Then (3.14) remains valid.

4 Estimation and forecasting in the AR(p) case

In this section we consider the time-varying, heteroscedastic model (1.1), specializing to the AR(p)

special case of k (u; θ) such that xt in (1.1) is generated by

xt = θ10xt−1...+ θp0xt−p + εt, (4.1)

under the stationarity condition that all zeroes of 1− θ10z...− θp0zp lie outside the unit disk, and

with θ0 = (θ10, ..., θp0)′. Note that for AR(p) xt the objective functions of the previous section

are quadratic in θ, so estimates can be defined in closed form, like those in Section 2, and asymp-

totic properties can be established much more easily than in our proofs for the implicitly-defined

estimates covered in Section 3.
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Forecasting of yt requires estimation of the µt, and deriving useful properties of µt and ht,

requires strengthening Assumptions B, D and E.

Assumption F µt is given by (1.4) and ht is given by (2.9), where m(.) and the positive valued

function g(.) have bounded derivatives.

Assumption F is standard in the literature for versions of (1.1) when µt and/or ht are non-

parametric, especially for asymptotic normality properties like those we establish in Theorem 4.1

below. As implied previously the assumption implies that

|µt − µt−1| ≤ Cn−1, |ht − ht−1| ≤ Cn−1, t = 1, ..., n, n ≥ 2. (4.2)

We denote in this section by θ̂ the estimate θ̂(2). By Theorem 3.2,

θ̂ − θ0 = Op(n
−1/2). (4.3)

Of course (4.3) indicates that replacing θ0 by θ̂ will have negligible effect on estimates of µt and ht,

which will have slower, nonparametric, rate. The estimation of µt and ht is relatively straightfor-

ward. Denote

zt := yt −
p∑
j=1

θ̂jyt−j = µt(1−
p∑
j=1

θ̂j) + htεt + η̂t, t = p+ 1, ..., n (4.4)

and zt = 0 for t = 1, ..., p, where η̂t =
∑p

j=1{θ̂j(µt − µt−j) + (htθj − ht−j θ̂j)xt−j} is asymptotically

negligible. Hence, we arrive at the ’regression model’

zt = µ∗t + htεt + η̂t, µ∗t := µt(1−
p∑
j=1

θ̂j). (4.5)

Therefore µ∗t and h2
t can be standardly estimated using kernels,

µ̂∗t := K−1
t

n∑
j=1

ktjzj , ĥ2
t := K−1

t

n∑
j=1

ktj(zj − µ̂∗j )2, t = 1, ..., n, (4.6)

with Kt :=
∑n

j=1 ktj based on the weights ktj := K
(
|t − j|/H

)
for a user-chosen kernel function

K(x) and bandwidth H. In turn, we estimate µt by

µ̂t =
µ̂∗t

1−
∑p

j=1 θ̂j
, t = 1, 2, ..., n. (4.7)

We impose the following standard assumptions on K and H.

Assumption G. K(x) is nonnegative and differentiable, and

K(x), |(d/dx)K(x)| ≤ C(1 + |x|)−β, some β > 2. (4.8)
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Assumption H. As n→∞, H/n+ 1/H → 0.

Theorem 4.1 Let (1.1) and Assumptions A-H hold. Then for any 1 ≤ t = tn ≤ n, as n→∞,

(i)

µ̂t − µt = Op(H
−1/2 +Hn−1); (4.9)

ĥ2
t − h2

t = Op(H
−1/2 +Hn−1).

(ii) If also H = o(n2/3) and minht ≥ c > 0,

Kt

K
1/2
t,2

(1−
∑p

j=1 θj)

ht

(
µ̂t − µt

)
→D N (0, 1), (4.10)

Kt

K
1/2
t,2

1

h2
tvar(ε2

1)1/2

(
ĥ2
t − h2

t

)
→D N (0, 1), (4.11)

where Kt =
∑n

j=1 ktj and Kt,2 =
∑n

j=1 k
2
tj.

The normings have the usual rate (nH)1/2 , computation may be saved by replacing Kt,2 by

nH
∫
K2(x)dx and except for very small or large t.

Theorem 4.1 implies that the estimate ĥt := (ĥ2
t )

1/2 of ht has the property

Kt

K
1/2
t,2

2

htvar(ε2
1)1/2

(
ĥt − ht

)
→D N (0, 1) (4.12)

and allows us to establish the following corollary for residuals

ε̂t = ĥ−1
t (zt − µ̂∗t ), t = 1, 2, ..., n.

Note that the estimates µ̂t, ĥ2
t may not be robust to misspecification of the time series model for

xt, unlike the simpler ones mentioned in Section 2. The following proposition shows that residuals

ε̂t are consistent estimates of εt in (4.1).

Corollary 4.1 Let the assumptions of Theorem 4.1 hold. Then, for any 1 ≤ t = tn ≤ n, as

n→∞,

ε̂t − εt = OP (H−1/2 +Hn−1). (4.13)

Smoothed nonparametric estimates are always sensitive to choice of bandwidth. In the numer-

ical work of Sections 5 and 6 below we use leave-one-out cross-validation (CV), which is described

as minimizing with respect to H∑n
t=1(zt − µ̂∗t,−t)2 for µ̂∗t with µ̂∗t,−t = (

∑n
j=1,j 6=t ktj)

−1
∑n

j=1,j 6=t ktjzj ;∑n
t=1

(
(zt − µ̂∗t )2 − ĥ2

t,−t
)2

for ĥ2
t with ĥ2

t,−t = (
∑n

j=1,j 6=t ktj)
−1
∑n

j=1,j 6=t ktj(zj − µ̂∗j )2.
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However, we do not imply CV is a necessary way of choosing H. In some settings CV has been

shown to be optimal in the sense of asymptotically minimizing integrated mean squared error, but

we establish no such property here. Moreover it is computationally relatively intensive; there is

no reason to assume it will produce the best forecasts; being data-dependent it does not satisfy

Assumption H; even its rate may not satisfy Assumption H; while other evidence suggests it will not

minimize departure from the normal approximations justified in Theorem 4.1. Other, simpler, ways

of choosing H are available, and one wise alternative to an automatic method entails employing a

few arbitrary but sensible-looking H, thereby also gauging sensitivity.

Given y1, ..., yt−1, by (1.1) and (4.1), the theoretical best one-step-ahead forecast ŷ
(opt)
t|t−1 =

E[yt|εs, s ≤ t− 1] of yt is given by

ŷ
(opt)
t|t−1 = µt + ht

p∑
j=1

θj0xt−j . (4.14)

It yields the forecast error yt − ŷ(opt)
t|t−1 = htεt with variance V(htεt) = h2

t . Such a forecast depends

on unknown parameters µt, ht and θj and xt.

A simple one-step-ahead forecast of yt based on estimation results for the model (1.1) is

ŷt|t−1 = ̂µ∗t−1,t−1 +

p∑
j=1

θ̂j|t−1yt−j , (4.15)

where θ̂1|t−1, ..., θ̂p|t−1 are estimated using sample y1, ..., yt−1 and

̂µ∗t−1,t−1 =
( t−1∑
j=1

ktj

)−1( t−1∑
j=1

ktjzj

)

denotes the estimate of µ∗t−1 computed using zj = yj −
∑p

k=1 θ̂k|t−1yj−k, j = p+ 1, ..., t− 1 and the

bandwidth H that minimizes the variance of the in-sample forecast error

(t− t0)−1
t−1∑
s=t0

(zs − ̂µ∗s−1,s−1)2, (4.16)

where t0 is a starting point. We attempt no study of asymptotic properties of these statistics.

Indeed, Theorem 4.1 does not directly cover the one-sided estimates ̂µ∗t−1,t−1 in (4.15), but they

will have only nonparametric rate, as thus will the estimation error in (4.15), thus losing some

advantage in the parametric rate for estimating θ0 and converging slower than is possible with a

correctly specified parametric µt.

An alternative, simpler, estimate of µt mentioned in Section 2, is the well known µ̃t =
∑n

t=1 yjktj/Kt.

Its bias treatment is similar to µ̂t’s, while the stochastic component of (Kt/htK
1/2
t,2 )(µ̃t−µt) can be

shown to be asymptotically normal with zero mean and variance 2πfx (0) under mild conditions,

where fx (u) is the spectral density of xt. This would follow from an extension to heteroscedastic
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weighting (under (4.2)) of (the short memory case of) Theorem 1 of Robinson (1997), under mild

conditions including fx(u) continuous and positive at zero frequency. (Indeed the same theorem

can be extended to provide a CLT under nonparametric long memory and antipersistence, with

studentization discussed in the same reference.) Thus no parametric assumptions on xt are im-

posed, unlike in the derivation of µ̂t, with its parametric whitening. Of course fx (0) is unknown. If,

though, xt is assumed to be AR(p) (4.1), then 2πfx (0) = k(0; θ0) = (1−
∑p

j=1 θj0)−2 to correspond

with (4.10). If the AR(p) assumption is incorrect then the normal approximation fails, like that in

(4.10). But we have the option of replacing fx (0) by a consistent nonparametric estimate (e.g. one

based on AR(p) fitting as above but with p regarded as diverging slowly relative to n), whence we

can justify equally efficient inference to that provided by µ̂t but with a simpler point estimate and

without imposing parametric assumptions on xt.

5 Monte-Carlo simulations

First we report finite-sample properties of estimates of the parameter θ0 in the model

yt = µt + htxt, xt = θ0xt−1 + εt, θ0 = 0.5, εt ∼ IIDN(0, 1) (5.1)

for variety of choices of µt and ht but only for a single sample size n = 512. Even given the

inefficiency of our estimates when ht is not constant, n = 512 might seem a large sample for a

one-parameter model, especially when autocorrelation is modest. Thus we also carried out some

simulations with n = 256, as well as with θ0 = 0.8, using the same functions µt and ht, number of

replications and trimming parameters. As expected there is some deterioration overall with respect

to such changes, in particular the results tend to be worse for larger trimming, the estimates of θ0

tend to be less precise, and the normal approximation is less accurate. Further reducing n, and

choosing θ0 closer to the unit root, would surely lead to further deterioration (simulation results

are available upon request).

We estimate θ0 = 0.5 by θ̂ad = θ̂(2) and θ̂wh = θ̂(1), for arbitrary choices ν = 0, 1, ..., 9 of the

trimming parameter introduced in Section 3. By Theorem 3.2, both estimates, as n and ν increase,

satisfy the normal approximation of (3.14),

S

V ∗ 1/2
(θ̂(k) − θ0)→D N (0, 1− θ2

0), k = 1, 2. (5.2)

The true values of ht were used in (5.2) for evaluation of the 95% confidence interval for θ0.

Of course this makes no logical sense because the paper assumes the ht are unknown, on which

basis a practitioner cannot compute such intervals based on the true ht. On the other hand if the

practitioner knew the ht she would be foolish to use the parameter estimates justified in the paper,

but instead should use ones based on the yt/ht, thereby also obtaining more efficient estimates.

Thus we also obtained some Monte-Carlo results with estimated S, V ∗, namely Ŝ =
∑n

t=1 ĥ
2
t ,

V̂ ∗ =
∑n

t=1 ĥ
4
t , with ĥt as defined in Section 4; equally one could use instead Ṽ =

∑n
t=2 ĥ

2
t ĥ

2
t−1.

The paper falls short of establishing (5.2) after such replacements; we do not verify the property
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R̃/R →p 1 referred to in remark 9 of Section 2. However we computed coverage probabilities as

if the normal approximation holds for the studentized quantity
(
Ŝ/V̂ ∗1/2

)
(θ̂ − θ0), and compared

them with those using the true value of ht. We found almost identical coverage probabilities. In

Tables 1-4 we report coverage using the estimate ĥt with kernel function K(u) = exp(−|u|) and

bandwidth H selected from 1, ..., [2n2/3] with cross-validation.

Note that the unconstrained minimizers of Q
(1)
n,ν(θ) and Q

(2)
n,ν(θ) are respectively described in

closed form as

θ̃(1) =

[n/2]∑
j=ν+1

Iy(uj) cosuj/

[n/2]∑
j=ν+1

Iy(uj),

θ̃(2) =
( 2π

[n/2]

[ [n/2]∑
j=ν+1

Iy(uj) +
Qn,ν(θ̂(1))

2π

ν∑
j=1

∣∣∣1− θ̂(1)eiuj
∣∣∣−2 )−1

×
( 2π

[n/2]

[ [n/2]∑
j=ν+1

Iy(uj) +
Qn,ν(θ̂(1))

2π

ν∑
j=1

∣∣∣1− θ̂(1)eiuj
∣∣∣−2

cosuj
)
,

(where we might replace θ̂(1) by θ̃(1) in the latter). These need not necessarily fall within the

stationary region (−1, 1) (though they are very likely to if θ0 is not near the boundary and n is

reasonably large) but they differ from the constrained minimizers (over Θ = [η − 1, 1− η] , for η ∈
(0, 1)) θ̂(1), θ̂(2) only when the former pair exceed 1− η or are less than η − 1. Thus

θ̂(k) = θ̃(k)1
(
θ̃(k) ∈ Θ

)
+ (1− η) 1

(
θ̃(k) > 1− η

)
+ (η − 1) 1

(
θ̃(k) < η − 1

)
, k = 1, 2,

so θ̂(1), θ̂(2) can be obtained simply by trimming the closed form estimates θ̃(1), θ̃(2), numerical

optimization, and the asymptotic arguments (uniform convergence for consistency, mean value

theorem for asymptotic normality) tailored for implicitly-defined extremum estimates, see Section

3, can be replaced by simpler ones. In case of µt constant and ν = 0, by expanding and using the

property
∑n

j=1 e
ituj = n1(t = 0, modn), when n is odd

θ̃(k) = θ̃

(∑n
t=2 (yt−1 − y)2∑n
t=1 (yt − y)2

)
+

(y1 − y) (yn − y)∑n
t=1 (yt − y)2 = θ̃ +Op(n

−1), k = 1, 2, (5.3)

with θ̃ given by (2.2). For n even θ̃(k) is more complicated (due to our extra summand in the

definition of Qn(θ)) but the final outcome in (5.3) is the same. It follows that θ̃(k) has the same

limit distribution as in (2.10). Moreover, for small enough δ > 0, under Assumption A(iii),

1
(∣∣∣θ̃(k)

∣∣∣ > 1− η
)
≤ 1

(∣∣∣θ̃(k) − θ0

∣∣∣ > δ
)
≤
(
θ̃(k) − θ0

)2
/δ2 = Op(n

−1), k = 1, 2,

from (2.10), so not only is the limit distribution of θ̂(k) also (2.10), but this actually follows from

the proof of Theorem 2.2 and minor side calculations. Nevertheless, in our Monte Carlo study all

θ0 estimates were obtained by numerical optimization with η = 0.1.
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Tables 1-4 report the Monte Carlo average value Eθ̂, root mean squared error (RMSE) and the

95% coverage probabilities (CP) for the estimates θ̂ad and θ̂wh computed for the values ν = 0, 1, ..., 9

of trimming parameter based on 1, 000 replications. We consider constant ht = 1, the sinusoidal

ht = 0.5 + | sin(2πt/n)| and the break ht = 1 + 1(t/n > 0.5). Each of these ht satisfies Assumption

B, but the third ht doesn’t satisfy Assumption F. Notice that for ν = 0, θ̂ad = θ̂wh = θ̂, so that the

estimates θ̂ad, θ̂wh obtained with ν = 0 correspond to θ̂ of 3.2. The first two rows of these tables

show the distortions of the estimator θ̂ arising from the changing mean µt.

Table 1 centers on the case µt = 0. If µt is constant, then obviously no trimming is needed.

The main difference between θ̂ad and θ̂wh lies in that the trimming with higher ν leads to increase

of the negative bias of θ̂wh while the bias of θ̂ad remains close to zero. This distorts substantially

the 95% CP based on θ̂wh even for moderate values of the trimming parameter ν, e.g. for ν = 4 the

CP drops below 90% for all three cases of ht. For θ̂ad, the CPs are not affected by the trimming

and remain close to, but always below, nominal.

Tables 2-3 show that under changing mean µt, the bias in θ̂wh is sometimes substantially

positive, leading to distorted CPs, but it decreases monotonically with increasing ν, while Eθ̂ad

monotonically drops to θ0, and then stays flat (for ν > 3) with the CPs close to the nominal

probability 0.95. Without trimming both estimates θ̂ad, θ̂wh are biased. Overall, the performance

of θ̂ad is found to be preferable in being less sensitive to ν, though in a number of cases CPs are

worse.

Table 4 reports estimation results for µt with a strong break which does not satisfy Assumption

D of Section 3. Nevertheless, we observe a somewhat similar behavior of Eθ̂ and RMSE as in the

case of the smooth µt in Tables 2 and 3. The bias and RMSE of θ̂ad are more stable for moderate

to stronger trimming as opposed to the estimate θ̂wh. Although the CPs remain distorted, the ν

for θ̂ad selected by the above rule confirms consistency of the estimator with satisfactory MSE 1.

Figures 1 and 2 depict the average value and one realization of the estimates θ̂ad, θ̂wh for

ν = 0, 1, ..., 9 for the model (5.1). To select ν, we suggest plotting θ̂ad for ν = 0, 1, ..., 9 and

choosing the smallest ν from the region of νs where the estimates θ̂ad show some degree of stability,

e.g. ν = 3 in Figure 1, and ν = 2 in Figure 2, or using a priory pre-selected values ν = 4, ..., 7.

(Performance of any given ν will depend on the form of µt and the signal-to-noise ratio.)

Last, we explore through only one replicate estimation of the µt and ht, and forecasting of yt,

as described in Section 4. Of course there is minimal scientific value in results based on a single

replicate. After estimating θ0 by θ̂ad with ν = 4, according to Section 4, estimation of µt and ht was

reduced to a nonparametric regression model (4.5) with an independent noise. The latter allows

estimation of µt and ht by a standard kernel method with bandwidth selected by leave-one-out

cross-validation. Figure 3 reports estimation results on µt and ht based on a sample of size n = 512

for yt generated by (5.1) with µt = sin(2πt/n), ht = 0.5 + | sin(πt/n)|. Figure 4 reports results

with µt = sin(5πt/n), ht = 0.5 + | sin(2πt/n)| and xt ∼ AR(2), θ1 = 0.2, θ2 = 0.4. The kernel

1In the case of possible strong breaks in µt, we suggest pre-filtering the data by some step function. The number
of potential breaks and their location for such step function can found by minimizing residual sums of squares using
the LWZ criterio and trimming parameter 0.2 (see Bai and Perron 1998, 2003). The latter should be subtracted from
the data.
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function K(u) = exp(−|u|) is used, and H is selected from integers 1, ..., [2n2/3] using leave-one-out

cross-validation. To construct a 95% confidence band (CB) for the µt and ht (which consists of

approximate 95% confidence intervals based on (4.10) and (4.12) for each t), we estimate θ by θ̂ad

in (4.10), ht by ĥt in (4.10) and (4.12), while in (4.12) we replace var(ε2
1) by the sample variance

of ε̂2
t with ε̂t given in (4.13).

Figures 3 and 4 show that the estimates µ̂t and ĥt track well the true values of µt and ht, which

fall within the 95% CB, except for the edges of the sample. The standardized residuals ε̂t computed

based on (4.13) show very weak autocorrelation and their sample variance is close to 1.

We also examine the one-step-ahead forecast ŷt|t−1 of yt given in ( 4.15) and based on the

subsample y1, ..., yt−1. In Figures 5 and 6 we plot the forecasts ŷt|t−1 of yt generated by (5.1) and

µt = sin(5πt/n) + 2t/n, ht = 0.5 + | sin(2πt/n)| and µt = 1 + 3× 1(t/n > 7/8), ht = 1, respectively.

For n = 512 we start forecasting at t = 401. To compute ŷt|t−1, we re-estimate θ0 by θ̂ad with ν = 4

and µs and hs for s = 1, ..., t − 1 and choose H from integers 1, ..., [(t − 1)3/4] by cross-validation

setting t0 = t − 50 in (4.16). We compare the results with the forecast ŷt|t−1,ar produced by a

simple AR(1) model estimated by OLS.

Table 5 reports the averages over 100 replications of the mean squared error (MSE)

MSE= 1
512−401

∑512
t=401(yt − ŷt|t−1)2

of the forecast ŷt|t−1 in (4.15), MSE of the forecast ŷt|t−1,ar and the theoretical minimum

MSE(opt)= 1
512−401

∑512
t=401(yt − ŷ(opt)

t|t−1)2 = 1
512−401

∑512
t=401(htεt)

2

for a variety of functions µt and ht under (5.1), with also θ0 = 0, 0.8,−0.5. The last equality follows

from (5.1) and (4.14). It is evident that when µt is constant, ŷt|t−1 and ŷt|t−1,ar are very similar,

but when µt varies ŷt|t−1 is superior in all cases and especially so when there is zero or negative

autocorrelation in xt.

We compare these forecasts with the direct forecast

ŷ
(dir)
t|t−1 = µ̂t−1,t−1(H∗t−1) + êt|t−1, êt|t−1 = b0 + b1et−1

of yt, where

µ̂s−1,s−1(H) =
(s−1∑
j=1

ksj

)−1(s−1∑
j=1

ksjyj

)
, s = 51, ..., t,

is a one-sided kernel estimate of µs obtained using data y1, ..., ys−1,

H∗s−1 = argmin

s−1∑
j=s−50

(
yj − µ̂j−1,j−1(H)

)2
and êt|t−1 is an AR(1) OLS forecast of et based on es = ys − µ̂s−1,s−1(H∗s−1), s = 51, ..., t− 1, with

b0 and b1 denoting the OLS estimates of AR(1) parameters. The MSE of the direct forecast ŷ
(dir)
t|t−1
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is comparable or larger than that of the proposed forecast ŷt|t−1.
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Table 1: Monte-Carlo Eθ̂, RMSE and 95%CP for the estimators θ̂ad and θ̂wh for
(5.1) with µt = 0.

ht = 1 ht = 0.5 + | sin(2πt/n)| ht = 1 + 1(t/n > 0.5)

ν Eθ̂ RMSE CP Eθ̂ RMSE CP Eθ̂ RMSE CP

0 θ̂ad 0.49 0.04 93.1 0.49 0.05 93.3 0.49 0.05 93.1

θ̂wh 0.49 0.04 93.1 0.49 0.05 93.3 0.49 0.05 93.1

1 θ̂ad 0.49 0.04 92.7 0.49 0.05 92.5 0.49 0.05 93.0

θ̂wh 0.49 0.04 92.9 0.49 0.05 92.8 0.49 0.05 93.0

2 θ̂ad 0.49 0.04 92.6 0.49 0.05 92.6 0.49 0.05 92.6

θ̂wh 0.48 0.05 91.9 0.48 0.05 91.7 0.48 0.05 91.4

3 θ̂ad 0.49 0.04 92.5 0.49 0.05 91.7 0.49 0.05 92.1

θ̂wh 0.47 0.05 89.3 0.47 0.05 90.5 0.47 0.05 90.1

4 θ̂ad 0.49 0.04 92.4 0.49 0.05 91.5 0.49 0.05 92.7

θ̂wh 0.47 0.05 86.5 0.47 0.06 88.2 0.47 0.06 88.2

5 θ̂ad 0.49 0.04 92.6 0.49 0.05 91.6 0.49 0.05 92.5

θ̂wh 0.46 0.06 82.7 0.46 0.06 84.7 0.46 0.06 85.9

6 θ̂ad 0.49 0.04 92.3 0.49 0.05 91.4 0.49 0.05 91.8

θ̂wh 0.45 0.06 78.8 0.45 0.07 80.4 0.46 0.07 82.7

7 θ̂ad 0.49 0.04 91.5 0.48 0.05 91.2 0.49 0.05 92.3

θ̂wh 0.45 0.07 74.4 0.45 0.07 75.6 0.45 0.07 79.4

8 θ̂ad 0.48 0.05 91.3 0.48 0.05 90.8 0.48 0.05 91.5

θ̂wh 0.44 0.07 70.2 0.44 0.08 71.4 0.44 0.08 74.9

9 θ̂ad 0.48 0.05 90.6 0.48 0.05 90.0 0.48 0.05 90.5

θ̂wh 0.43 0.08 63.9 0.43 0.08 66.7 0.44 0.08 70.6
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Table 2: Monte-Carlo Eθ̂, RMSE and 95%CP for the estimators θ̂ad and θ̂wh for
(5.1) with µt = sin(5πt/n).

ht = 1 ht = 0.5 + | sin(2πt/n)| ht = 1 + 1(t/n > 0.5)

ν Eθ̂ RMSE CP Eθ̂ RMSE CP Eθ̂ RMSE CP

0 θ̂ad 0.63 0.13 7.2 0.60 0.10 30.3 0.56 0.07 70.1

θ̂wh 0.63 0.13 7.2 0.60 0.10 30.3 0.56 0.07 70.1

1 θ̂ad 0.62 0.13 10.2 0.59 0.10 34.9 0.55 0.07 72.5

θ̂wh 0.61 0.12 13.0 0.58 0.09 40.7 0.55 0.06 78.1

2 θ̂ad 0.56 0.07 62.5 0.54 0.06 79.3 0.52 0.05 91.0

θ̂wh 0.55 0.06 74.0 0.53 0.05 86.9 0.51 0.05 93.0

3 θ̂ad 0.50 0.04 92.7 0.50 0.05 92.5 0.50 0.05 92.2

θ̂wh 0.48 0.04 91.6 0.48 0.05 91.9 0.48 0.05 90.7

4 θ̂ad 0.49 0.04 93.0 0.49 0.05 91.9 0.49 0.05 92.9

θ̂wh 0.47 0.05 87.5 0.47 0.05 88.6 0.47 0.06 88.2

5 θ̂ad 0.49 0.04 92.6 0.49 0.05 91.2 0.49 0.05 92.8

θ̂wh 0.46 0.06 83.7 0.46 0.06 85.2 0.46 0.06 86.1

6 θ̂ad 0.49 0.04 92.1 0.49 0.05 91.4 0.49 0.05 92.0

θ̂wh 0.46 0.06 78.5 0.45 0.06 80.7 0.46 0.07 83.5

7 θ̂ad 0.49 0.04 91.6 0.49 0.05 91.3 0.49 0.05 92.3

θ̂wh 0.45 0.07 74.6 0.45 0.07 75.3 0.45 0.07 79.6

8 θ̂ad 0.48 0.05 91.3 0.48 0.05 90.6 0.48 0.05 91.5

θ̂wh 0.44 0.07 70.6 0.44 0.08 71.5 0.44 0.08 75.0

9 θ̂ad 0.48 0.05 91.0 0.48 0.05 90.1 0.48 0.05 90.3

θ̂wh 0.43 0.08 64.3 0.43 0.08 66.7 0.44 0.08 70.9
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Table 3: Monte-Carlo Eθ̂, RMSE and 95%CP for the estimators θ̂ad and θ̂wh for
(5.1) with µt = 2t/n.

ht = 1 ht = 0.5 + | sin(2πt/n)| ht = 1 + 1(t/n > 0.5)

ν Eθ̂ RMSE CP Eθ̂ RMSE CP Eθ̂ RMSE CP

0 θ̂ad 0.59 0.10 28.7 0.57 0.08 57.4 0.54 0.06 83.5

θ̂wh 0.59 0.10 28.7 0.57 0.08 57.4 0.54 0.06 83.5

1 θ̂ad 0.53 0.05 81.0 0.52 0.05 89.2 0.51 0.05 92.6

θ̂wh 0.53 0.05 86.0 0.52 0.05 91.0 0.50 0.05 93.3

2 θ̂ad 0.52 0.04 88.9 0.51 0.05 91.6 0.50 0.05 92.7

θ̂wh 0.51 0.04 92.8 0.50 0.04 93.3 0.49 0.05 93.2

3 θ̂ad 0.51 0.04 91.8 0.51 0.04 92.4 0.50 0.05 92.8

θ̂wh 0.49 0.04 93.3 0.49 0.05 92.9 0.48 0.05 91.6

4 θ̂ad 0.50 0.04 93.1 0.50 0.05 92.4 0.50 0.05 92.5

θ̂wh 0.48 0.04 92.1 0.48 0.05 91.3 0.47 0.05 89.2

5 θ̂ad 0.50 0.04 93.4 0.50 0.05 92.3 0.49 0.05 93.4

θ̂wh 0.47 0.05 88.4 0.47 0.05 88.8 0.47 0.06 87.1

6 θ̂ad 0.50 0.04 93.5 0.49 0.05 92.3 0.49 0.05 91.7

θ̂wh 0.46 0.05 83.6 0.46 0.06 86.3 0.46 0.06 84.0

7 θ̂ad 0.49 0.04 92.6 0.49 0.05 91.6 0.49 0.05 91.9

θ̂wh 0.46 0.06 78.0 0.45 0.07 80.3 0.45 0.07 80.4

8 θ̂ad 0.49 0.04 92.7 0.49 0.05 91.5 0.49 0.05 92.0

θ̂wh 0.45 0.07 75.1 0.45 0.07 75.2 0.45 0.07 76.8

9 θ̂ad 0.49 0.04 92.2 0.49 0.05 91.6 0.48 0.05 90.7

θ̂wh 0.44 0.07 69.2 0.44 0.08 69.9 0.44 0.08 72.8
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Table 4: Monte-Carlo Eθ̂, RMSE and 95%CP for the estimators θ̂ad and θ̂wh for
(5.1) with µt = 1 + 3× 1(t/n > 0.5).

ht = 1 ht = 0.5 + | sin(2πt/n)| ht = 1 + 1(t/n > 0.5)

ν Eθ̂ RMSE CP Eθ̂ RMSE CP Eθ̂ RMSE CP

0 θ̂ad 0.81 0.31 0.0 0.77 0.27 0.0 0.69 0.20 0.0

θ̂wh 0.81 0.31 0.0 0.77 0.27 0.0 0.69 0.20 0.0

1 θ̂ad 0.61 0.11 17.0 0.58 0.09 43.9 0.55 0.06 78.4

θ̂wh 0.60 0.11 21.0 0.58 0.08 48.5 0.54 0.06 81.9

2 θ̂ad 0.61 0.11 15.8 0.58 0.09 42.5 0.55 0.06 78.2

θ̂wh 0.60 0.10 23.5 0.57 0.08 52.7 0.53 0.06 84.5

3 θ̂ad 0.56 0.07 60.6 0.54 0.06 79.3 0.52 0.05 89.3

θ̂wh 0.54 0.06 78.8 0.52 0.05 89.8 0.50 0.05 93.5

4 θ̂ad 0.56 0.07 60.9 0.54 0.06 79.2 0.52 0.05 90.0

θ̂wh 0.53 0.05 82.3 0.52 0.04 91.9 0.50 0.05 93.3

5 θ̂ad 0.53 0.05 80.6 0.52 0.05 88.5 0.51 0.05 92.7

θ̂wh 0.51 0.04 94.0 0.50 0.04 95.0 0.48 0.05 91.9

6 θ̂ad 0.53 0.05 80.2 0.52 0.05 88.9 0.51 0.05 92.3

θ̂wh 0.50 0.04 94.9 0.49 0.04 94.0 0.47 0.05 89.9

7 θ̂ad 0.52 0.05 87.8 0.51 0.05 91.1 0.50 0.05 92.5

θ̂wh 0.48 0.05 91.8 0.47 0.05 90.0 0.46 0.06 85.4

8 θ̂ad 0.52 0.05 88.0 0.51 0.05 91.1 0.50 0.05 92.2

θ̂wh 0.48 0.05 89.7 0.47 0.05 87.2 0.46 0.06 83.1

9 θ̂ad 0.51 0.04 90.0 0.50 0.04 91.4 0.49 0.05 92.2

θ̂wh 0.46 0.06 82.0 0.45 0.06 80.5 0.45 0.07 77.3
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Figure 1: Average values θ̂ad, θ̂wh (left) and one simulation of θ̂ad and θ̂wh (right) for trimming
parameter ν = 0, 1, ..., 9 and (5.1) with µt = sin(5πt/n), ht = 1.
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 φâd  φŵh 
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Figure 2: One simulation of θ̂ad and θ̂wh for trim-
ming parameter ν = 0, 1, ..., 29 and (5.1) with
µt = 0, ht = 1.
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Figure 3: Estimation results for (5.1) with µt = sin(2πt/n), ht = 0.5 + | sin(πt/n)|. (Top left)
yt, µ̂t, µt and 95% confidence band for µt; (Top right) ht, ĥt and 95% confidence band for ht;
(Bottom left) Sample ACF for residuals ε̂t at lags 1,2,...,10 and 95% confidence band for zero
correlation; (Bottom right) Estimates θ̂ad and θ̂wh of θ0 for trimming parameter ν = 0, 1, ..., 9.
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Figure 4: Estimation results for yt = µt + htxt with µt = sin(5πt/n), ht = 0.5 + | sin(2πt/n)|,
xt ∼ AR(2), θ10 = 0.2, θ20 = 0.4. (Top left) yt, µ̂t, µt and 95% confidence band for µt; (Top
right) ht, ĥt and 95% confidence band for ht; (Bottom left) Sample ACF for residuals ε̂t at lags
1,2,...,10 and 95% confidence band for zero correlation; (Bottom right) Estimates θ̂1,ad, θ̂2,ad and

θ̂1,wh, θ̂2,wh of θ1, θ2 for trimming parameter ν = 0, 1, ..., 9.
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Figure 5: One-step-ahead forecasts ŷt|t−1 and AR(1) forecast
ŷt|t−1,ar for (5.1) with µt = sin(5πt/n) + 2t/n, ht = 0.5 +
| sin(2πt/n)|. Plot of yt and µt.
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Figure 6: One-step-ahead forecasts ŷt|t−1 and AR(1) forecast
ŷt|t−1,ar for (5.1) with µt = 1 + 3× 1(t/n > 7/8), ht = 1. Plot of
yt and µt.
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Table 5: Average MSE of the forecasts ŷt|t−1, ŷt|t−1,ar, ŷ
(dir)
t|t−1, and MSE(opt)

for µ̂t−1,t−1; µ1t = sin(5πt/n) + 2t/n, µ2t = 1 + 3 × 1(t/n > 7/8), µ3t =
1 + 1(17/20 ≤ t/n < 19/20) + 2× 1(t/n ≥ 19/20), h1t = 0.5 + | sin(2πt/n)|,
h2t = 0.5 + | sin(5πt/n)|.

µt ht θ0 MSE(ŷt|t−1) MSE(ŷt|t−1,ar) MSE(ŷ
(dir)
t|t−1) MSE(opt)

0 1 0 1.026 1.001 1.028 0.998

0.5 1.026 1.001 1.204 0.998

0.8 1.029 1.002 1.098 0.998

-0.5 1.025 1.001 1.012 0.998

0 h1t 0 1.297 1.264 1.302 1.259

0.5 1.297 1.264 1.521 1.259

0.8 1.300 1.265 1.400 1.259

-0.5 1.297 1.265 1.280 1.259

µ1t h1t 0 1.449 2.386 1.451 1.259

0.5 1.377 1.593 1.527 1.259

0.8 1.325 1.336 1.398 1.259

-0.5 1.492 4.118 1.664 1.259

µ2t 1 0 1.404 3.359 1.393 0.998

0.5 1.230 1.739 1.312 0.998

0.8 1.153 1.219 1.176 0.998

-0.5 1.610 6.888 1.789 0.998

µ3t h2t 0 1.519 2.327 1.519 1.303

0.5 1.438 1.596 1.605 1.303

0.8 1.388 1.379 1.456 1.303

-0.5 1.608 3.650 1.691 1.303
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6 Empirical application

In this section, we illustrate how the proposed estimation and forecasting methodology in Sections

3-4 can be applied to real data. We examine the monthly seasonally adjusted US civilian unem-

ployment rate during the period 1970-20162. A variety of univariate parametric models has been

used to model the US unemployment rate, see for example Montgomery et al. (1998), van Dijk,

Franses and Paap (2002) and Deschamps (2008). Since the dynamics of the unemployment rate

are mainly driven by the business cycle, various nonlinear univariate models have been considered

besides ARIMA models. Montgomery et al. (1998) study the quarterly unemployment US rate for

the period 1948-1993. Among other things, they compare ARIMA models for unemployment with

threshold autoregression (TAR) and Markov switching autoregression (MSA) models for changes

in unemployment. These authors find that for one-step-ahead forecasting unemployment, TAR and

MSA models outperform ARIMA models in terms of mean squared error (MSE) during periods

of economic contractions, but underperform during period of economic expansions, so that for the

whole period the ARIMA approach gives the same forecasting performance as TAR and slightly

better than MSA. Van Dijk, Franses and Paap (2002) examine the monthly US unemployment

rate for the period 1970-1999 using the fractionally integrated threshold autoregression (FI-TAR),

the fractionally integrated smooth transition autoregression (FI-STAR), the fractionally integrated

autoregression (ARFI) as well as the STAR model. The authors find that the introduction of long

memory does not lead to an improved fit, but no comparison is done in terms of out-of-sample

forecasting. Deschamps (2008) compares the performance of the logistic smooth transition autore-

gression (LSTAR), the Markov switching autoregression (MSAR) and AR models for forecasting

the yearly change of the logistic transformation of deseasonalized monthly US unemployment rate

during the period 1960-2004. He finds that LSTAR and MSAR models have better mean absolute

forecasting error than AR ones, but the difference is small leading the author to conclude that

all three models can provide a fairly good forecasting of unemployment, although no comparison

was done in periods of economic contractions and expansions like in Montgomery et al. (1998).

From a nonparametric perspective, Golan and Perloff (2004) use simplex methods to forecast the

quarterly US unemployment rate using the same data as in Montgomery et al. (1998) and compare

their results without though discriminating between economic contractions and expansions. For

one-step-ahead forecasting their method gives slightly worse MSE than the simple ARIMA(1,1,0)

for unemployment. Overall, it seems that the simple ARIMA(1,1,0) for one-step-ahead forecasting

of US unemployment is the best from the univariate parametric and nonparametric methods that

have been used, although this is not the case during periods of economic contractions 3. Moreover,

in Montgomery et al. (1998) and Golan and Perloff (2004), the univariate approach is compared

with forecasting from multivariate parametric models and with forecasts from surveys; the authors

find that survey forecasts have the smallest MSE overall.

We denote by Ut the unemployment rate at month t and evaluate its first differences yt = ∆Ut

resulting to a sample of n = 567 observations. We fit model (1.1) to changes in unemployment

2The source of the data is Federal Reserve Bank of St. Louis.
3We should note that for multi-steps-ahead forecasting, the performance of the ARIMA(1,1,0) deteriorates and

becomes worse than the above parametric and nonparametric methods.

31



yt assuming that xt follows an AR(1) model. The estimation results are presented in Figure 7.

We first estimate the AR(1) parameter θ using the adjusted Whittle estimator θ̂ad with trimming

parameters ν = 0, 1, ..., 9. The estimates θ̂ad drop initially with ν, become flat for ν = 3, 4 and

then start dropping again. We pick trimming parameter ν = 4 for which θ̂ad = 0.16. We then

estimate the functions µt and ht with kernel function K(u) = exp(−|u|), and bandwidth selected

from 15, ...., [2n2/3] in cross-validation. For the evaluation of the standard error in the 95% CB

for µt we employ the estimates ĥt of ht and θ̂ad for θ in (4.10), while to evaluate SD in (4.12) for

ht we use the estimate ĥt and replace var(ε2
1) by the sample variance of ε̂2

t . We observe that the

estimated mean µ̂t of changes in unemployment fluctuates around 0, with a tendency of positive

changes observed during periods of recessions and negative changes during periods of growth4. It is

interesting to notice that µ̂t starts becoming positive shortly before the beginning of recessions and

negative shortly after the end of the recessions. The estimated ĥt seems to be also non-constant

with a tendency of higher values during periods of lengthy recessions and lower values during

periods of growth or short recessions. The standardized residuals ε̂t show some first order negative

autocorrelation5, while their Jarque-Bera statistic does not reject normality.

We also explore one-step-ahead forecasting of changes in unemployment rate yt. We start

forecasting at t = 401 in every step re-estimating the AR parameter and the functions µt and ht.

We use ν = 4, K(u) = exp(−|u|), select H from 1, ..., [(t − 1)3/4] and set t0 = t − 50 in cross-

validation (4.16). The results of one-step-ahead forecasting, ŷt|t−1, and those from a simple AR(1)

model estimated by OLS, ŷt|t−1,ar, are compared in Figure 8 with the data. It shows that the forecast

ŷt|t−1 is superior to the AR(1) forecast ŷt|t−1,ar during and around the period of recession, while in

other times the two forecasts look similar. The MSE of all the forecasts ŷt|t−1, t = 401, ..., 567, is

0.026, while that of ŷt|t−1,ar is 0.028, so that we have an improvement of around 7%. Concentrating

on the recession period, we find MSE of 0.040 for ŷt|t−1 and 0.077 for ŷt|t−1,ar, an improvement of

48%. We tried also the direct forecasting method ŷ
(dir)
t|t−1 which was nearly identical to ŷt|t−1 because

of weak autocorrelation in the data.

4We use the NBER chronology for the dating of recessions.
5We also estimated model (1.1) assuming xt follows an AR(2) and an ARMA(1,1) model, but the first order

autocorrelation in the standardized residuals was not removed.
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Figure 7: Model fitting to the first differences of unemployment rate yt, t = 1, ..., 567. Model:
yt = µt + htxt, xt ∼ AR(1). Shaded areas correspond to recessions. (Top left) Estimated mean
µ̂t and 95% confidence band for µt; (Top right) Estimated ĥt and 95% confidence band for ht;
(Bottom left) Sample ACF for standardized residuals ε̂t at lags 1,2,...,10 and 95% confidence band
for zero autocorrelation; (Bottom right) Adjusted Whittle estimate (θ̂ad) and 95% confidence band
for θ0 with trimming parameter ν = 0, 1, ..., 9.
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Figure 8: One-step-ahead forecasts ŷt|t−1 of the first differences of
unemployment rate yt, forecast based on AR(1) model, ŷt|t−1,ar,
and estimated mean µ̂t. Shaded area correspond to recession.
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7 Final comments

We have developed estimation and inference for a nonstationary semiparametric time series model in

which mean and variance can nonparametrically change with time and stationary autocorrelations

are described parametrically. A number of directions for further research come to mind.

1. The practitioner may well lack reliable prior information on the parametric specification

of k (u; θ) , so there is risk of inconsistent estimation, biased forecasts and invalid inferences. In

case µt is constant, (1.3) suggests that sample autocorrelations of yt will consistently estimate

population autocorrelations of xt, giving hope that model choice procedures, such as AIC, or modi-

fications thereof, will help to choose k (u; θ) from the yt data. When µt is not constant this will not

work, and it appears one should begin by estimating µt, which can be done consistently by simple

nonparametric regression of yt (rather than the k (u; θ)− dependent approach of Section 4) .

2. Given that Whittle estimates for parametric stationary long memory models have analogous

asymptotic properties to those for short memory ones (following Fox and Taqqu (1986)), it would

seem possible to extend our results to allow xt to have stationary long memory.

3. First-differencing of macroeconomic series is widely practised, as in Section 6, with a view

to removing a unit root. If in (1.1) actually zt = xt − xt−1 is stationary with short memory

yt − yt−1 = µt − µt−1 + htzt + (ht − ht−1 )xt−1 = htzt +Op

(
t1/2/n

)
,

under (1.4) and (2.9) and bounded differentiability; properties of estimates of parameters describing

zt remain to be studied. More generally nonstationary fractional models for xt with unknown
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memory parameter can be considered, where a time varying mean may or may not be dominated

by a stochastic trend. It has been found that the Whittle estimates of Section 3 are inconsistent

in the presence of nonstationarity, unlike suitably tapered versions (Velasco and Robinson (2000))

or conditional-sum-of-squares estimates (Hualde and Robinson (2011)).

4. Observable explanatory variables may seem relevant to explaining yt. With µt a known

function of such explanatory variables and nonparametrically smoothly time-varying coefficients,

as in Robinson (1989), where the latter can be estimated using kernels, similar results to ours should

be available; the same kind of approach was used by Dahlhaus (1997) to model to time-varying

dependence parameters. We could allow ht to similarly depend on explanatory variables.

8 Proofs

8.1 Proofs of Section 2.

Proof of Theorem 2.1. We have

θ̃ − θ =
n∑
t=2

(yt − y − θ (yt−1 − y)) (yt−1 − y) /
n−1∑
t=1

(yt − y)2 . (8.1)

Defining, hx = n−1
∑n

t=1 htxt, the denominator of (8.1) is

n−1∑
t=1

(
µt − µ+ htxt − hx

)2
= M + 2

n−1∑
t=1

(µt − µ)
(
htxt − hx

)
+
n−1∑
t=1

(
htxt − hx

)2
.

Since xt has has mean zero and bounded spectral density it is easily seen that hx has mean zero and

variance O
(
S/n2

)
, and

∑n−1
t=1 (µt − µ)htxt has mean zero and variance W , where, for example,

W = O
(
maxh2

tM
)

= o (MS) under (2.4). Since also
∑n−1

t=1 (µt − µ) = µ − µn = O(M1/2) we

conclude that the denominator of (8.1) is

M +
n∑
t=2

h2
t−1x

2
t−1 + op(M

1/2S1/2) +Op

(
M1/2S1/2/n

)
+Op(S/n)

= M +
n∑
t=2

h2
t−1x

2
t−1 + op (M + S) .

Now
n−1∑
t=1

h2
t

(
x2
t − Ex2

t

)
=
∞∑
j=0

θ2j
n−1∑
t=1

h2
t ηt−j +

∞∑
j,k=0,j 6=k

θjθk
n−1∑
t=1

h2
t εt−jεt−k, (8.2)

where ηt = ε2
t − 1. With 1(.) denoting the indicator function, for some K ∈ (0,∞) , write

η′t = ηt1 (|ηt| ≤ K)−E (ηt1 (|ηt| ≤ K) |Ft−1) , so E (η′t |Ft−1) = 0 a.s. It follows that the η′t are un-

correlated with zero mean and variance bounded by 4K2. Thus uniformly in j, E(
∑n−1

t=1 h
2
t η
′
t−j)

2 ≤
4K2

∑n−1
t=1 h

4
t = O

(
K2 maxh2

tS
)

= o
(
K2S2

)
. On the other hand, with η

′′
t = ηt1 (|ηt| > K) −
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E (ηt1 (|ηt| > K) |Ft−1) we have E|
n−1∑
t=1

h2
t η
′′
t−j | ≤ 2 maxE|η′′t |S = o (S) as K → ∞, by uniform

integrability of the ε2
t . Since η′t + η

′′
t = ηt − E (ηt |Ft−1) = ηt by (2.3) it follows that the first term

on the right of (8.2) is op (S) . Omitting the easy proof that the second term on the right of (8.2)

has mean zero and variance o
(
S2
)
, it follows that

S−1
n−1∑
t=1

h2
t

(
x2
t − Ex2

t

)
→p 0. (8.3)

It immediately follows that the denominator of (8.1) is M + S/
(
1− θ2

)
+ op (S +M) .

The numerator of (8.1) is∑n
t=2

(
µt − µ+ htxt − hx− θ

(
µt−1 − µ+ ht−1xt−1 − hx

)) (
µt−1 − µ+ ht−1xt−1 − hx

)
= N − θM +

n∑
t=2

(
htxt − hx− θ

(
ht−1xt−1 − hx

)) (
ht−1xt−1 − hx

)
(8.4)

+
∑n

t=2 (µt − µ− θ (µt−1 − µ))
(
ht−1xt−1 − hx

)
(8.5)

+
∑n

t=2

(
htxt − hx− θ

(
ht−1xt−1 − hx

))
(µt−1 − µ) . (8.6)

Both terms (8.5) and (8.6) have mean zero and variance O (W ) = o (MS) , while, since htxt −
θht−1xt−1 = ht (xt − θxt−1) + θ (ht − ht−1)xt−1, the sum in (8.4) is∑n

t=2 htht−1εtxt−1 + θ
∑n

t=2 (ht − ht−1)ht−1x
2
t−1 +Op (S/n) . (8.7)

For the second term in (8.7) we have S−1
∑n

t=2 (ht − ht−1)ht−1

(
x2
t−1 − Ex2

t−1

)
→p 0, in the

same way as (8.3), while the first term is op(S) because it has mean zero and variance O (V ) =

O
(
maxh2

tS
)

= o
(
S2
)
. Thus the numerator of (8.1) is N − θM + θT/

(
1− θ2

)
+ op (S +M) . The

proof is complete.

Proof of Theorem 2.2. From the proof of Theorem 2.1 we can write(
1− θ2

)
M + S

V 1/2

(
θ̃ − θ −

(
1− θ2

)
(N − θM + θU) +Op

(
W 1/2 +M/n+ S/n

)
(1− θ2)M + S + op (M + S)

)

= V −1/2
(
1− θ2

) n∑
t=2

htht−1εtxt−1/ (1 + op (1)) .

Given (2.6) it remains to prove that(
1− θ2

)1/2
V −1/2

∑n
t=2 htht−1εtxt−1 →D N (0, 1) as n→∞. (8.8)

Since E (εtxt−1 |Ft−1) = 0 a.s. we employ a martingale central limit theorem (e.g. Brown (1971)),

which entails requires proving that, as n→∞,

∑n
t=2 h

2
th

2
t−1E

(
ε2
tx

2
t−1 |Ft−1) /

n∑
t=2
h2
th

2
t−1Eε

2
tx

2
t−1 →p 1, (8.9)
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and, for any ε > 0,

V −1
∑n

t=2 h
2
th

2
t−1E

(
ε2
tx

2
t−11

(
|htht−1εtxt−1| ≥ εV 1/2

))
→ 0. (8.10)

Applying (2.3), (8.9) follows because

V −1
n∑
t=2
h2
th

2
t−1

(
x2
t−1 − Ex2

t−1

)
→p 0,

whose proof is identical to that of (8.3), given (2.6). To establish the Lindeberg condition (8.10)

we first bound the left side by

V −1
∑n

t=2 h
2
th

2
t−1E

(
ε2
tx

2
t−11εt

)
+ V −1

∑n
t=2 h

2
th

2
t−1E

(
ε2
tx

2
t−11xt

)
(8.11)

for 1εt = 1
(
ε2
t ≥ εV 1/2/maxhtht−1

)
, 1xt = 1

(
x2
t−1 ≥ εV 1/2/maxhtht−1

)
. Now uniform integrabil-

ity of the ε2
t implies the same of the x2

t because

x2
t =

K∑
j=0

θ2jε2
t−j +

K∑
j=0

θ2jε2
t−j +

∞∑
j,k=0,j 6=k

θj+kεt−jεt−k,

where for any finite K the first term is uniformly integrable, the second has expectation that is

O
(
θ2K

)
= o (1) uniformly in t as K → ∞, and the final one has finite variance. After applying

(2.3) the second term in (8.11) is bounded by maxE
(
x2
t−11xt

)
→ 0 from (2.6). The first term in

(8.11) equals, for any K ∈ (0,∞) ,

V −1
n∑
t=2

h2
th

2
t−1E

(
ε2
tx

2
t−11

(
x2
t−1 ≤ K

)
1εt
)

+ V −1
n∑
t=2

h2
th

2
t−1E

(
ε2
tx

2
t−11

(
x2
t−1 > K

)
1εt
)
.

The first term is bounded by K maxE
(
ε2
t 1εt

)
→ 0 as n→∞, the second is bounded by

V −1
n∑
t=2

h2
th

2
t−1E

(
ε2
tx

2
t−11

(
x2
t−1 > K

))
≤ maxE

(
x2
t−11

(
x2
t−1 > K

))
→∞ as K →∞,

after applying (2.3) once again. This completes the proof of (8.10), thence of (8.8) and thence of

the theorem.

8.2 Proofs of Section 3.

Proof of Theorem 3.1. Though only an initial consistency proof is needed, we begin by estab-

lishing a parametric rate. We prove

θ̂ − θ0 = OP (S−1/2), (8.12)
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Set un(θ) = S ||θ − θ0||2, where ||.|| denotes the Euclidean norm. It suffices to show that for any

ε > 0 there exists K = Kε such that

P{un(θ̂) ≥ K} ≤ ε (8.13)

for n sufficiently large. Denote ΨK = {θ : θ ∈ Θ, un(ψ) ≥ K}. Then,

P{un(θ̂) ≥ K} ≤ P ( inf
θ∈ΨK

{Qn(θ)−Qn(θ0)} ≤ 0)

= P ( inf
θ∈ΨK

{un(θ)−1(Qn(θ)−Qn(θ0))} ≤ 0). (8.14)

Write

Qn(θ)−Qn(θ0) =
1

[n/2]

{
Un(θ) +

S

n
Tn(θ)

}
, (8.15)

where

Un(θ) =

[n/2]∑
j=1

{kj(θ0)

kj(θ)
− 1
}{2πIy,j

kj(θ0)
− S

n

}
, Tn(θ) =

[n/2]∑
j=1

{kj(θ0)

kj(θ)
− 1
}
, (8.16)

and Iy,j = Iy(uj), kj(θ) = k(uj ; θ). Since infθ(h1(θ) + h2(θ)) ≥ infθ h1(θ) − suph2(θ), (8.14) is

bounded by

P{un(θ̂) ≥ K} ≤ P
(

sup
θ∈ΨK

∣∣∣Un(θ)

un(θ)

∣∣∣ ≥ inf
θ∈ΨK

∣∣∣(S/n)Tn(θ)

un(θ)

∣∣∣). (8.17)

It is shown in Lemma 8.2 below that as n→∞, K →∞,

inf
θ∈ΨK

(un(θ)−1(S/n)Tn(θ)) ≥ c1, E sup
θ∈ΨK

|un(θ)−1/2Un(θ)| ≤ c2,

where c1 > 0, c2 > 0 do not depend on K,n. Thus,

P{un(θ̂) ≥ K} ≤ P
(

sup
θ∈ΨK

∣∣∣ Un(θ)

un(θ)1/2K1/2

∣∣∣ ≥ c1

)
, (8.18)

because un(θ) ≥ K for θ ∈ ΨK . So, as n→∞, K →∞,

P{un(θ̂) ≥ K} ≤ (c1K
1/2)−1E

[
sup
ΨK

|un(θ)−1/2Un(θ)|
]
≤ (c2/c1)K−1/2 → 0.

This proves (8.12).

To show the first claim in (3.6), write

Qn(θ̂)− (S/n) = {Qn(θ0)− (S/n)}+ {Qn(θ̂)−Qn(θ0)} =: vn,1 + vn,2.

We shall prove that

vn,k = (Sn/n)OP (S−1/2), k = 1, 2 (8.19)
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which implies (8.12). Since fx(uj) = (2π)−1kj(θ0),

vn,1 = Qn(θ0)− (S/n) = [n/2]−1

[n/2]∑
j=1

( Iy,j
fx(uj)

− (S/n)
)

= [n/2]−1qn,[n/2],

where qn,[n/2] is as in (8.52). By (8.54), E|qn,[n/2]| ≤ CS1/2. Hence, vn,1 = OP (S1/2/n) =

(S/n)OP (S−1/2) which proves (8.19) for vn,1. In addition, it implies Qn(θ0) = OP (S/n).

Smoothness assumptions on kθ(u) imply |kj(θ̂)−1 − kj(θ0)−1| ≤ C||θ̂ − θ0||kj(θ0)−1. Thus,

|vn,2| =
2π

[n/2]

∣∣∣[n/2]∑
j=1

(
kj(θ̂)

−1 − kj(θ0)−1
)
Iy,j

∣∣∣ ≤ C||θ̂ − θ0||Qn(θ0) = OP (S−1/2)(S/n). (8.20)

Hence, vn,2 satisfies (8.19). This completes the proof of (8.12).

Next we prove the second claim in (3.6). By the mean value theorem,

∇θQn,y(θ̂)−∇θQn,y(θ0) = ∇θ∇′θQn,y(θ∗)(θ̂ − θ0)

for some θ∗ such that ‖θ∗ − θ̂‖ ≤ ‖θ̂ − θ0‖; strictly speaking a different value is generally needed

for each element. With probability tending to 1, ∇θQn,y(θ̂) = 0. We will show that

(2π)
[n/2]

2π
∇θ∇′θQn,y(θ∗) = S Ω(1 + oP (1)), (8.21)

(2π)(V ∗)−1/2 [n/2]

2π
∇θQn,y(θ0)→D N (0,Ω). (8.22)

Since S = O(V ∗) by (3.5)(d), and θ̂ − θ0 = OP (S−1/2), this implies Ω(S/V ∗ 1/2)(θ̂ − θ0) →D

N (0,Ω−1) which proves (3.6).

To show (8.21), it suffices to prove that

nS−1‖∇θ∇′θQn(θ∗)− (S/[n/2])Ω‖ = oP (1). (8.23)

We have

‖∇θ∇′θQn(θ∗)− (S/[n/2])Ω‖ ≤ ‖∇θ∇′θ(Qn(θ∗)−Qn(θ0))‖
+‖∇θ∇′θQn(θ0)− E∇θ∇′θQn(θ0)‖+ ‖E∇θ∇′θQn(θ0)− (S/[n/2])Ω)‖ =: jn,1 + jn,2 + jn,3.

It remains to show that for k = 1, 2, 3,

jn,k = oP (S/n). (8.24)

By Assumption A, jn,1 ≤ C‖θ∗− θ0‖Jn, Jn = n−1
∑[n/2]

j=1 Ihx(uj). By Theorem 8.1(i), EJn ≤ CS/n
which implies Jn = OP (S/n). Since ‖θ∗ − θ0‖ = OP (S−1/2) this proves (8.24) for jn,1. By

Assumption B and Theorem 8.1(ii), jn,2 = OP (V ∗ 1/2n−1) = oP (Sn−1) which proves (8.24) for
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k = 2.

To verify (8.24) for jn,3, notice that by Theorem 8.1(i),

E∇θ∇′θQn(θ0) =
2π

[n/2]

1

2π

∫ π

0
∇θ∇′θk(u; θ0)−1fx(u)duS + o(S/n) =

S

[n/2]
Ω + o(

S

n
),

noting that from (3.1), standard arguments give∫ π

0
(∇θ∇′θk−1(u; θ0))k(u; θ0)du =

∫ π

0
k(u; θ0)−2∇θk(u; θ0)∇′θk(u; θ0)du

=

∫ π

0
∇θ log k(u; θ0)∇′θ log k(u; θ0)du = 2πΩ.

Thus, jn,3 = o(S/n) which completes the proof of (8.24) and (8.21).

Next we prove (8.22). Write

(2π)(V ∗)−1/2 [n/2]

2π
∇θQn,y(θ0) = (s1,n, ...., sp,n)′, sj,n :=

2π

V ∗ 1/2

[n/2]∑
j=1

(d/dθj)k
−1(uj , θ0)Iy(uj).

Condition (3.1) implies that
∫ π

0 (d/dθj)k
−1(u, θ0)fx(u)du = 0, j = 1, ..., p. Hence, by Theorem

8.1 (ii-iii), for j = 1, ..., p, sj,n →D N (0, v2
j ) where v2

j = (2π)
∫ π

0

(
(d/dθj)k

−1(u, θ0)fx(u)
)2
du =

(4π)−1
∫ π
−π
(
(d/dθj) log k(u, θ))2du. In turn, (8.22) can be verified using the Cramer-Wold device.

This completes the proof of the theorem.

The next proposition provides a useful criterion for the proof of Theorem 3.2.

Proposition 8.1 Let Assumptions A and B hold. Let θ̃ = argminθ∈ΘQ̃n(θ) where

Q̃n(θ) := Qn,hx(θ) +
2π

[n/2]
cn(θ)

and cn(θ) is such that

E[supθ∈Θ |cn(θ)|] ≤ CS1/2, (8.25)

E[supθ∈Θ |cn(θ)− cn(θ0)|/S1/2‖θ − θ0‖] ≤ C. (8.26)

Then,

θ̃ − θ0 = OP (S−1/2), Q̃n(θ̃) =
S

n

(
1 +OP (S−1/2)

)
. (8.27)

In addition, let θ̂ = argminθ∈ΘQn,hx(θ). If E[supθ∈Θ ‖∇θcn(θ)‖] = o(S1/2), then

θ̃ − θ̂ = oP (S−1/2). (8.28)
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Proof of Proposition 8.1. To prove the first claim in (8.27), using (8.15), write

Q̃n(θ)− Q̃n(θ0) = Qn,hx(θ)−Qn,hx(θ0) +
2π

[n/2]
(cn(θ)− cn(θ0))

=
1

[n/2]

{
Un(θ) + 2π(cn(θ)− cn(θ0)) +

S

n
Tn(θ)

}
.

The same argument as in the proof of Theorem 3.1 implies that P{un(θ̂) ≥ K} ≤ pn,1 +pn,2, where

pn,1 := P
(

sup
θ∈ΨK

∣∣∣ Un(θ)

un(θ)1/2K1/2

∣∣∣ ≥ c1/2
)
, pn,2 := P

(
sup
θ∈ΨK

2π
∣∣∣cn(θ)− cn(θ)

un(θ)1/2K1/2

∣∣∣ ≥ c1/2
)
.

We showed in the proof of Theorem 3.1 that pn,1 ≤ (2c1/c2)K−1/2. By (8.26),

pn,2 ≤ CK−1/2E[supθ∈Θ |cn(θ)− cn(θ0)|/S1/2‖θ − θ0‖]→ 0 as K →∞.

This implies P{un(θ̂) ≥ K} → 0 as n, K →∞.

To verify the second claim in (8.27), write

Q̃n(θ̃)− (S/n) =
(
Qn,hx(θ̃)− (S/n)

)
+

2π

[n/2]
cn(θ̂).

Since ||θ̃ − θ0|| = OP (S−1/2), then |Qn,hx(θ̃)− (S/n)| = (S/n)OP (S−1/2), see the proof of the first

claim in (3.6). In turn, by (8.25), n−1cn(θ̂) = (S/n)OP (S−1/2), which proves the second relation

in (8.27).

It remains to prove (8.28). With probability tending to 1, ∇θQ̃n(θ̃) = 0, ∇θQn,hx(θ̂) = 0, and

0 = ∇θQ̃n(θ̃)−∇θQn,hx(θ̂) +
2π

[n/2]
∇θcn(θ) = Qn,hx(θ∗)(θ̃ − θ̂) +

2π

[n/2]
∇θcn(θ)

=
S

[n/2]
Ω(θ̃ − θ̂) + rn(θ), rn(θ) =

(
∇θ∇′θQn,hx(θ∗)− S

[n/2]
Ω
)
(θ̃ − θ̂) +

2π

[n/2]
∇θcn(θ).

By Assumption A, Ω is positive definite. Hence, by the mean value theorem, for some θ∗ such that

‖θ∗ − θ̂‖ ≤ ‖θ̃ − θ̂‖,

‖θ̃ − θ̂‖ ≤ n

S
||Ω−1|| sup

θ∈Θ
‖rn(θ)‖ ≤ C n

S
{‖θ̃ − θ̂‖‖∇θ∇′θQn(θ∗)− S

[n/2]
Ω‖+ S−1 sup

θ∈Θ
‖∇θcn(θ)‖}.

By (8.27) and (8.12), ‖θ̃ − θ̂‖ ≤ ‖θ̃ − θ0‖+ ‖θ̂ − θ0‖ = OP (S−1/2), by (8.23) (n/S)‖∇θ∇′θQn(θ∗)−
S

[n/2]Ω)‖ = oP (1), and by the assumptions of the proposition, S−1 supθ∈Θ ‖∇θcn(θ)‖ = oP (S−1/2).

Hence, ‖θ̃ − θ̂‖ = oP (S−1/2) which proves (8.28) and completes the proof of the proposition.

Proof of Theorem 3.2 For k = 1, 2, we can write

Q(k)
n,ν(θ) = Qn,hx(θ) +

2π

[n/2]
c(k)
n (θ), c(k)

n (θ) :=
[n/2]

2π
(Q(k)

n,ν(θ)−Qn,hx(θ)). (8.29)
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By Proposition 8.1, to prove

θ̂(k) − θ0 = OP (S−1/2) (8.30)

it suffices to verify that c
(1)
n (θ) in (i) and c

(2)
n (θ) in (ii) satisfy conditions (8.25) and (8.26).

We have

c(1)
n (θ) =

[n/2]∑
j=ν+1

Iy(uj)− Ihx(uj)

k(uj ; θ)
−

ν∑
j=1

Ihx(uj)

k(uj ; θ)
,

c(2)
n (θ) = c(1)

n (θ) + c̃n(θ), c̃n(θ) := Q(1)
n,ν(θ̂(1))

ν∑
j=1

1

2π

k(uj ; θ̂
(1))

k(uj ; θ)
. (8.31)

Since for θ ∈ Θ, k−1(uj ; θ) ≤ C and |k−1(uj ; θ)− k−1(uj ; θ0)| ≤ C||θ − θ0||, we obtain

|c(1)
n (θ)| ≤ C(Jn,1 + Jn,2), Jn,1 :=

∑[n/2]
j=ν+1 |Iy(uj)− Ihx(uj)|, Jn,2 :=

∑ν
j=1 |Ihx(uj)|,

|c(1)
n (θ)− c(1)

n (θ0)|/||θ − θ0|| ≤ C(Jn,1 + Jn,2).

Similarly,

|c̃n(θ)| ≤ CνQ(1)
n,ν(θ̂(1)) ≤ CJn,3, Jn,3 := νn−1

∑[n/2]
j=ν+1 Iy(uj);

|c̃n(θ)− c̃n(θ0)|/||θ − θ0|| ≤ CJn,3.

We will show that for k = 1, 2, 3,

EJn,k = o(S1/2), n→∞, (8.32)

which proves (8.25) and (8.26).

We start with EJn,1.

i) Let yt = µ+ htxt. The equality∑n
t=1 e

ituj = 0, j = 1, ...., n− 1 (8.33)

implies Iy(uj) = Ihx(uj) and hence, Jn,1 = 0.

ii) Let yt = µt + htxt. Denote Iµ(uj) = (2π)−1
∣∣∑n

t=1 e
itujµt

∣∣. Since

|Iy(uj)− Ihx(uj)| = |Iµ+hx(uj)− Ihx(uj)| ≤ 2(Iµ(uj)Ihx(uj))
1/2 + Iµ(uj),

then E|Iy(uj) − Ihx(uj)| ≤ C(I
1/2
µ (uj)(S/n)1/2 + Iµ(uj)). Recall that Iµ(uj) = (2π/n)|Dµ,n(uj)|2

where Dµ,n(uj) is as in Lemma 8.3(iii).
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Suppose that µt and ν satisfy (3.12). Then by Lemma 8.3(iii), |Dµ,n(uj)| ≤ Cnφj , and

EJn,1 ≤ C
[n/2]∑
j=ν+1

(
n1/2φj(S/n)1/2 + nφ2j

)
≤ C(S1/2φν + nφ2ν) = o(S1/2) (8.34)

because by (3.12), nφ2ν = o(S1/2) and φν = o(1).

Let µt and ν satisfy (3.13). Then by Lemma 8.3(iii), |Dµ,n(uj)| ≤ Cnj−γ . So,

EJn,1 ≤ C
[n/2]∑
j=ν+1

(n1/2j−γ(S/n)1/2 + nj−2γ) ≤ C(S1/2ν−γ+1 + nν−2γ+1) = o(S1/2) (8.35)

because by (3.13), nν−2γ+1 = o(S1/2) and ν →∞. This proves (8.32) for EJn,1.

Next we prove (8.32) for EJn,2. By Lemma 8.4(i)-(ii) and (3.5)(b), EIhx(uj) ≤ C((S/n) +

n−1 log n∆2
h,n ≤ C(S/n). Hence, EJn,2 ≤ Cν(S/n) = o(S1/2), by (3.8).

To prove (8.32) for EJn,3, notice that Jn,3 ≤ νn−1(Jn,1 +
∑[n/2]

j=ν+1 Ihx(uj)). We showed, that

EJn,1 = o(S1/2). Thus, using Ihx(uj) ≤ C(S/n), we obtain

EJn,3 ≤ Cνn−1(S1/2 +

[n/2]∑
j=ν+1

(S/n)) ≤ C((ν/n)S1/2 + ν(S/n)) = o(S1/2),

by (3.8). This verifies (8.32) for EJn,3 and completes the proof of (8.30) in the parts (i) and (ii) of

the theorem.

In addition, (8.27) implies the first claim in (3.14).

To show the second claim in (3.14), write

θ̂(k) − θ0 = θ̂ − θ0 + (θ̂(k) − θ̂), k = 1, 2

where θ̂ = argminθ∈ΘQn,hx(θ). By Theorem 3.1, (S/V ∗ 1/2)(θ̂(k) − θ0)→ N (0,Ω−1). We will show

that

θ̂(k) − θ̂ = oP (S−1/2) (8.36)

which implies (S/V ∗ 1/2)(θ̂(k) − θ̂) = oP ((S/V ∗ 1/2) = oP (1) by (3.5)(d). The latter proves (3.14).

By Proposition 8.1, to verify (8.36) it suffices to show that c
(k)
n (θ), k = 1, 2 in (8.29) have

property E[supθ∈Θ ‖∇θcn(k)(θ)‖] = o(S1/2). The latter follows from (8.32), noting that under

Assumption A, supθ∈Θ ‖∇θc
(k)
n (θ)‖ ≤ C(Jn,1 + Jn,2 + Jn,3). This proves (3.14) and completes the

proof of the theorem.

8.3 Proofs of Section 4.

The following lemma is used to prove Theorem 4.1.
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Lemma 8.1 (i) Under the assumptions of Theorem 4.1(i), µ̂∗t given in (4.6) satisfies

µ̂∗t − µ∗t = Op(H
−1/2 +Hn−1). (8.37)

(ii) In addition, if H = o(n2/3) and mint ht ≥ c > 0, then

Kt

K
1/2
t,2

1

ht
(µ̂∗t − µ∗t )→D N (0, 1). (8.38)

(iii) In addition, ĥ2
t satisfies (4.9) in Theorem 4.1(i) and (4.11) in Theorem 4.1(ii).

Proof of Lemma 8.1. (i) We start with the proof of (8.37). By (4.5), zj − µ∗t = hjεj + etj where

etj := (µ∗j − µ∗t ) + η̂j . Write

µ̂∗t − µ∗t := K−1
t

n∑
j=1

ktj(zj − µ∗t ) = sn,t + rn,t (8.39)

where sn,t := K−1
t

∑n
j=1 ktjhjεj , rn,t = K−1

t

∑n
j=1 ktjetj . We shall show that

(Kt/K
1/2
t,2 )sn,t →D N (0, h2

t ), (8.40)

|rn,t| ≤ OP (Hn−1 + n−1/2)ξnt (8.41)

where OP (Hn−1 + n−1/2) does not depend on t and Eξ2
nt ≤ C for all t and n. Since (Kt/K

1/2
t,2 ) =

sH1/2(1+o(1)) where s =
∫
K(u)du/(

∫
K2(u)du)1/2 > 0, (8.40) and (8.41) imply (8.37) and (8.38).

To prove (8.40), write (Kt/K
1/2
t,2 )Snt =

∑n
j=1 bnjεj where bnj := K

−1/2
t,2 ktjhj . Notice that∑n

j=1 bnj → 1,
∑n−1

j=1 |bnj − bn,j+1|+ |bnn| = o(1), (8.42)

see e.g. the proof Lemma 12.2.1 in Giraitis, Koul and Surgailis (2012). By Proposition 4.3.1. in

Giraitis Koul and Surgailis (2012), (8.42) implies (8.40).

To show (8.41), notice that by (4.2), |µ∗j−µ∗t | = |δn| |µj−µt| ≤ C(|t−j|/n) = O(H/n)(|t−j|/H),

while

|η̂j | ≤ C{n−1 + (n−1 + an)vj}, an =
∑p

k=1 |θk0 − θ̂k|, vj =
∑p

k=1 |xj−k| (8.43)

where by (4.3), an = OP (n−1/2) and Ev2
j ≤ C. Hence, etj = OP (Hn−1 + n−1/2)e∗tj with e∗tj =

(|t− j|/H) + vj + 1. Thus,

|rn,t| ≤ OP (Hn−1 + n−1/2)ξnt, ξnt := K−1
t

n∑
j=1

ktje
∗
tj (8.44)

where Eξ2
nt ≤ C(K−1

t

∑n
j=1 ktj((|t− j|/H) + 1))2 ≤ C for all t and n, which proves (8.41).
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(iii) Recall that Eε2
t = 1. Then,

ĥ2
t − h2

t = K−1
t

∑n
j=1 ktj{(zj − µ̂∗j )2 − h2

t } = sh2;nt + r′nt, (8.45)

where sh2;nt = K−1
t

∑n
j=1 ktjh

2
j (ε

2
j − 1) and r′nt = K−1

t

∑n
j=1 ktj{(zj − µ̂∗j )2 − h2

jε
2
j}.

The same argument as in the proof of (8.40) implies that

(Kt/K
1/2
t,2 )sh2,nt →D N (0, h4

tvar(ε2
1)). (8.46)

We will show that

r′nt = oP (H−1/2) +OP (Hn−1), (8.47)

which together with (8.46) proves the part (iii) of this lemma.

To prove (8.47), write (zj − µ̂∗j )2 − h2
jε

2
j = (zj − µ̂∗j − hjεj)2 + 2(zj − µ̂∗j − hjεj)2hjεj . Then, by

(4.5) and (8.39),

(zj − µ̂∗j )2 − h2
jε

2
j = (−sn,j − rn,j + η̂j)

2 + 2(−sn,j − rn,j + η̂j)hjεj = −2sn,jhjεj + ηj

where ηj = (−sn,j − rn,j + η̂j)
2 + 2(−rn,j + η̂j)hjεj . Hence,

r′nt = r′nt,1 − 2r′nt,2, r′nt,1 = K−1
t

n∑
j=1

ktjηj , r′nt,2 = K−1
t

n∑
j=1

ktjsn,jhjεj .

Using (8.43) and (8.44), we can bound ηj ≤ Cs2
n,j + OP (Hn−1 + n−1/2)ξ̃nj with Eξ̃2

nj ≤ C and

Es2
n,j ≤ CK

−1
j ≤ CH−1 where C does not depend on j, n. Clearly, this implies r′nt,1 = OP (Hn−1)+

oP (H−1/2).

To evaluate r′nt,2, write sn,j = K−1
j kjjεj + s′n,j , where s′n,j = K−1

j

∑n
l=1:l 6=j kjlεl. So,

E[r′nt,2
2
] ≤ 2E(K−1

t

n∑
j=1

ktjs
′
n,jεj)

2 + 2E(K−1
t

n∑
j=1

ktj{K−1
j kjjεj})2

≤ CK−2
t

n∑
j=1

k2
tjE(s′n,j)

2Eε2
j + C(K−2

t

n∑
j=1

k2
tjk

2
jjK

−2
j Eε2

j ) ≤ CH−2

which implies that r′nt,2 = oP (H−1/2). This completes the proof of (8.47) and the lemma.

Proof of Theorem 4.1. Set δn = 1−
∑p

k=1 θ̂k, δ = 1−
∑p

k=1 θk0. By (4.7),

µ̂t − µt =
µ̂∗t
δn
− µ∗t

δ
=
µ̂∗t − µ∗t

δ
+
µ̂∗t − µ∗t

δ
(
δ

δn
− 1) +

µ∗t
δ

(
δ

δn
− 1).

By stationarity of (xt), δ 6= 0, and by (4.3), δ/δn − 1 = OP (n−1/2). Hence (4.9) for µ̂t follows from

(8.37), while (4.10) follows from (8.38) of Lemma 8.1, noting that Kt/K
1/2
t,2 = O(H1/2) = o(n1/2).

Finally, (4.9) and (4.11) for ĥ2
t are shown in Lemma 8.1(iii).
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Proof od Corollary 4.1. By (4.4) and (4.5),

ε̂t − εt =
zt − µ̂∗t
ĥn

− εt =
htεt + η̂t + µ∗t − µ̂∗t

ĥn
− εt =

(ht − ĥt)εt + η̂t + (µ∗t − µ̂∗t )
ĥn

.

By (8.37), µ∗t − µ̂∗t = OP (H−1/2 + Hn−1) while (8.43) implies η̂t = OP (n−1/2) = oP (H−1/2). It is

easy to see that (4.9) implies ĥ−1
t = OP (1) and ht−ĥt = OP (H−1/2+Hn−1). Moreover, εt = OP (1).

This yields ε̂t − εt = OP (H−1/2 +Hn−1) which completes the proof of (4.13).

8.4 Auxiliary results

Lemma 8.2 Let Tn(θ) and Un(θ) be given by (8.16). Suppose that assumptions of Theorem 3.1

hold. Then, as n→∞ and K →∞,

inf
θ∈ΨK

{(S/n)Tn(θ)/un(θ)} ≥ c1, (8.48)

E sup
θ∈ΨK

{Un(θ)/un(θ)1/2} ≤ c2 (8.49)

where constants c1 > 0 and c2 > 0 do not depend on n and K.

Proof. We start with the proof of (8.48). Set u∗n(θ) = n||θ − θ0||2. Using similar argument as in

the proof of Lemma 7.1 in Giraitis, Hidalgo and Robinson (2001), it follows that

inf
θ∈Θ: |u∗n(θ)|≥K

{Tn(θ)/u∗n(θ)} ≥ c. (8.50)

Observe that (S/n)Tn(θ)/un(θ) = Tn(θ)/u∗n(θ). Moreover, S ≤ cn, and therefore, ΨK = {θ ∈ Θ :

un(θ) ≥ K} ⊂ {θ ∈ Θ : u∗n(θ) ≥ K/c}. Hence, (8.50) implies (8.48).

Proof of (8.49). Write Un(θ) in (8.16) as Un(θ) =
∑[n/2]

j=1 bj,θvn,j where

bj,θ =
kj(θ0)

kj(θ)
− 1, vn,j =

2πIy,j
kj(θ0)

− S

n
=

Iy,j
fx(uj)

− S

n
. (8.51)

By summation by parts,

|Un(θ)| ≤
[n/2]−1∑
l=1

|bl,θ − bl+1,θ||qn,l|+ b[n/2],θ||qn,[n/2]|, qn,l =

l∑
j=1

vn,j . (8.52)

Smoothness properties of k(u; θ) imply that |bj,θ − bj+1,θ0 | ≤ C||θ − θ0||n−1, |bj,θ| ≤ C||θ − θ0||
where C does not depend on j and θ ∈ Θ. Hence,

|Un(θ)| ≤ C||θ − θ0||
(
n−1

[n/2]−1∑
l=1

|qn,l|+ |qn,[n/2]|
)
, (8.53)
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where qn,l does not depend on θ. We will show that

E|qn,l| ≤ CS1/2, l = 1, ..., [n/2] (8.54)

where C does not depend on l and n. Indeed,

qn,l =

l∑
j=1

f−1
x,j

(
Iy(uj)− EIy(uj)

)
+

l∑
j=1

f−1
x,j

(
EIy(uj)−

S

n
fx,j
)

=: qn,1;l + qn,2;l.

By Theorem 8.1(ii), E|qn,1;l| ≤ var(qn,1;l)
1/2 ≤ CS1/2. On the other hand, by Lemma 8.4(i)-(ii),

assumption f−1
x,j ≤ C and (3.5),

|qn,2;l| ≤ C
l∑

j=1

n−1 log n∆2
h,n ≤ C log n∆2

h,n ≤ CS1/2,

which implies (8.54). Thus,

E[ sup
θ∈ΨK

|Un(θ)|/un(θ)1/2] ≤ S−1/2
(
n−1

[n/2]−1∑
l=1

E|qn,l|+ E|qn,[n/2]|
)
≤ C

which proves (8.49).

Recall notation Dh,n(u) :=
∑n

t=1 e
ituht, |u| ≤ π.

Lemma 8.3 Let Assumption B holds. Then

(i) sup|u|≤π |Dh,n(u)u| ≤ C∆h,n,

(ii)
∫

Π |Dh,n(u)|du ≤ C log n∆h,n,

(iii) |Dµ,n(uj)| ≤

Cnφj if (3.12) holds,

Cnj−γ if (3.13) holds, for j = 1, ..., [n/2].

Proof. (i) Using summation by parts, we can write

Dh,n(u) =
∑n−1

t=1 (ht − ht+1)st(u) + hnsn(u), where st(u) =
∑t

j=1 e
iju.

Moreover, |st(u)| = | sin(tu/2)/ sin(u/2)| ≤ Ct/(1 + t|u|) ≤ C|u|−1, |u| ≤ π where C > 0 does not

depend on 1 ≤ t ≤ n. Hence,

|Dh,n(u)| ≤ C{
n−1∑
t=1

|ht − ht+1| |u|−1 + |hn| |u|−1} ≤ C∆h,n |u|−1, |u| ≤ π, (8.55)

since t/(1 + t|u|) ≤ |u|−1, which proves (i).
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(ii) For 1 ≤ t ≤ n,
∫

Π t(1 + t|u|)−1du ≤ 2
∫ nπ

0 (1 + u)−1du ≤ C log n. Therefore, by (8.55),

∫
Π
|Dh,n(u)|du ≤ C

n−1∑
t=1

|ht − ht+1| log n+ C|hn| log n ≤ C∆h,n log n.

(iii) By (3.11), for j = 1, ..., [n/2],

Dµ,n(uj) =

n∑
t=1

eituj
( ∞∑
p=−∞

e−i putρp
)

=

∞∑
p=−∞

ρp
( n∑
t=1

eituj−p
)

= n

∞∑
k=−∞

ρj+kn

where the last equality follows from (8.33) and equality ei tuj = ei tuj+kn , k = ±1,±2, ....

Let (3.12) hold. Then |ρj+kp| ≤ Cφ|j+kn|. Notice that |j + kn| ≥ (|k| − 1)n + j for |k| ≥ 1

and j ≤ [n/2]. Indeed, |j + kn| ≥ |k|n − j ≥ (|k| − 1)n + n − j ≥ (|k| − 1)n + j. Hence,∑∞
k=−∞ |ρj+kn| ≤ Cφj

∑∞
k=0 φ

kn ≤ Cφj/(1− φ) which implies (iii).

Let (3.13) hold. Then, |ρj+kp| ≤ C|j + kn|−γ . Observe that |j + kn| ≥ j(2|k| − 1) for |k| ≥
1. Indeed, n/j ≥ 2, and thus, |j + kn| ≥ |kn| − j ≥ j(|k|(n/j) − 1) ≥ j(2|k| − 1). Hence,∑∞

k=−∞ |ρj+kn| ≤ Cj−γ
(
1 +

∑∞
k=1(2k − 1)−γ

)
≤ Cj−γ . This proves (iii) and completes the proof

of the lemma.

Set fx,j = fx(uj), Ax,j = Ax(uj) where Ax(u) =
∑∞

k=0 e
−iukbk.

Lemma 8.4 Let yt = htxt, t = 1, ..., n and Assumptions A and B hold. Then for 1 ≤ j ≤ k ≤
[n/2],

(i) E|whε,j |2 = (2π)−1(S/n), E[whε,jwhε,k] = (2πn)−1Dh2,n(uj−k),

(ii)
∣∣E[wy,jwy,k]− 2πfx,`E[whε,jwhε,k]

∣∣ ≤ Cn−1 log n∆2
h,n, ` = j, k;

(iii)
∣∣E[wy,jwhε,k]−Ax,`E[whε,jwhε,k]

∣∣ ≤ Cn−1 log n∆2
h,n, ` = j, k.

Proof. (i) Since E[εtεs] = 1(t = s), we have

E[whε,jwhε,k] = (2πn)−1
∑n

t,s=1 e
ituj−isukhthsE[εtεs] = (2πn)−1Dh2,n(uj−k), (8.56)

E|whε,j |2 = (2πn)−1
n∑
k=1

h2
k = (2π)−1(S/n).

(ii) Recall that Ext = 0 and E[xtxs] =
∫ π
−π e

i(t−s)ufx(u)du. Hence,

E[wy,jwy,k] = (2πn)−1
∑n

t,s=1 e
ituj−isukhthsE[xtxs] (8.57)

= (2πn)−1
∫

ΠDh,n(u+ uj)Dh,n(−u− uk)fx(u)du.
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Since
∫

Π e
itudu = 0 for t = 1, 2, ...; = 2π for t = 0, then∫

ΠDh,n(u+ uj)Dh,n(−u− uk)du =
∫

Π

∑n
t,s=1 e

i(t−s)u+i(tuj−suk)hthsdu

= 2π
∑n

t=1 e
ituj−kh2

t = 2πDh2,n(uj−k).

Combining this equality with (8.57), we obtain

E[wy,jwy,k] = (2πn)−1
∫

ΠDh,n(u+ uj)Dh,n(−u− uk)(fx(u)− fx(uk))du

+fx(uk)n
−1Dh2,n(uj−k) =: qn;jk + fx(uk)n

−1Dh2,n(uj−k). (8.58)

We shall show below that

|qn;jk| ≤ Cn−1 log n∆2
h,n (8.59)

which together with (8.58) and the part (i) of the lemma proves (ii) for ` = k. (For ` = j, (8.58)

follows using similar argument.) First we show that∣∣Dh,n(−u− uk)(fx(u)− fx(uk))
∣∣ ≤ C∆h,n, |u| ≤ π. (8.60)

Indeed, by assumption, fx(u) = fx(−u) and |(d/dx)fx(u)| ≤ C.

Let |u + uk| ≤ π. Then |fx(u) − fx(uk)| = |fx(−u) − fx(uk)| ≤ C|u + uk| and (8.60) holds by

Lemma 8.3(i).

Let |u+uk| > π. Then u, uk ∈ (0, π] which implies |2π−u−uk| ≤ π and |2π−u−uk| ≥ |u−uk|.
Therefore, |fx(u)− fx(uk)| ≤ C|u−uk| ≤ C|2π−u−uk|. Thus, |Dh,n(−u−uk)(fx(u)− fx(uk))| ≤
|Dh,n(2π − u− uk)(2π − u− uk)| ≤ C∆h,n by Lemma 8.3(i). This proves (8.60).

Using (8.60) in (8.58) and subsequently applying Lemma 8.3(i-ii), we obtain

|qn;jk| ≤ Cn−1∆h,n

∫
Π
|Dh,n(u+ uj)|du ≤ 2Cn−1∆h,n

∫
Π
|Dh,n(u)|du ≤ Cn−1 log n∆2

h,n

which completes the proof of (8.59).

(iii) We have E[xtεs] =
∫

Π e
i(t−s)fxε(u)du, where fxε(u) = (2π)−1Ax(u) is the cross-spectral density.

Hence,

E[wy,jwhε,k] = (2πn)−1
∑n

t,s=1 e
ituj−isukhthsE[xtεs]

= (2πn)−1
∫

ΠDh,n(u+ uj)Dh,n(−u− uk)fxε(u)du.

Thus, (iii) follows by the same argument as in the proof of (ii), noting that under Assumption B,

|(d/du)fxε(u)| ≤ C.

In the following theorem we discuss asymptotic properties of the sum

Sn,y :=
∑[n/2]

j=1 v(uj)Iy(uj) (8.61)
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where Iy(uj) is the periodogram based on observations y1, ..., yn and v(u), u ∈ [0, π] is a continuous

bounded function with a bounded derivative. Denote cum4(ε0) = (var(ε2
0)− 2).

Theorem 8.1 Let Assumptions A and B hold. Then the sum Sn,y in (8.61) has the following

properties:

(i) ESn,y = 2π

∫ π

0
v(u)fx(u)duS + o(S1/2),

(ii) var(Sn,y) = AV ∗ + o(V ∗), A = 2π

∫ π

0
v2(u)f2

x(u)du+ cum4(ε0)
(

2π

∫ π

0
v(u)fx(u)du

)2
,

(iii)
Sn,y − ESn,y
(var(Sn,y))1/2

→D N (0, 1).

In particular, if
∫ π

0 v(u)fx(u)du = 0, then

(V ∗)−1/2Sn,y →D N (0, v2), v2 = 2π

∫ π

0
v2(u)f2

x(u)du. (8.62)

Proof. (i) By Lemma 8.4(i)-(ii), E[Iy(uj)] = fx(uj)S/n + O(log n ∆2
n,hn

−1) where logn ∆2
n,h =

o(S1/2) by assumption (3.5)(b). Hence,

ESn,y :=
∑[n/2]

j=1 v(uj)EIy(uj) =
(
n−1

∑[n/2]
j=1 v(uj)fx(uj)

)
S + o(S1/2).

Since the derivative of the function v1(u) = v(u)fx(u) is bounded, n−1
∑[n/2]

j=1 v(uj)fx(uj) =

2π
∫ π

0 v1(u)du + O(n−1). Noting that S/n = O(1) = o(S1/2) and S = O(V ∗), this proves the

claim (i) of the lemma.

(ii) Denote S
(appr)
n,hε :=

∑[n/2]
j=1 v(uj)|Ax(uj)|2Ihε(uj). We shall show that

(a) var(Sn,y − S(appr)
n,hε ) = o(V ∗); (b) var(S

(appr)
n,hε ) = AV ∗ + o(V ∗) (8.63)

which implies the claim (ii) of the lemma. Using Proposition 6.2.1 of Giraitis, Koul and Surgailis

(2012) (see e.g. the proof of Corollary 6.2.1 therein), we can bound

var(Sn,y − S(appr)
n,hε ) ≤ C

[n/2]∑
j,k=1

|v(uj)v(uk)|

×
∣∣∣E[wy,jwy,k]|2 + |Ax,j |2|Ax,k|2|E[whε,jwhε,k]|2 − 2|Ax,k|2|E[wy,jwhε,k]|2

∣∣∣.
By assumption (3.5)(b), log n ∆2

n,h = o(S1/2). Hence, by Lemma 8.4(ii)-(iii),

|E[wy,jwy,k]|2 =
(
|Ax,j |2E[whε,jwhε,k] + o(n−1S1/2)

)(
|Ax,k|2E[whε,jwhε,k] + o(n−1S1/2)

)
,

|E[wy,jwhε,k]|2 =
∣∣Ax,jE[whε,jwhε,k] + o(n−1S1/2)

∣∣2.
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By Lemma 8.4(i) and 8.3(i), E|whε,j |2 = (2π)−1(S/n) and |E[whε,jwhε,k]| = (2πn)−1|Dh2,n(uj−k)| ≤
C|j − k|−1∆h2,n for j 6= k. Hence,

var(Sn,y − S(appr)
n,hε ) ≤ C

[n/2]∑
j,k=1: j 6=k

( ∆h2,n

|j − k|
o(
S1/2

n
) + o(

S

n2
)
)

+ C

[n/2]∑
j=k=1

(S
n
o(
S1/2

n
) + o(

S

n2
)
)

= log n∆h2,no(S
1/2) + o(S) = o(S),

since log n∆h2,n ≤ C log n∆h,n = o(S1/2) by (3.5). This proves (8.63)(a), since S = O(V ∗).

Next we prove (8.63)(b). Since fx(u) = |Ax(u)|2/2π, setting v1(u) = v(u)fx(u), we can write

S
(appr)
n,hε =

1

n

n∑
t,s=1

[n/2]∑
j=1

ei(t−s)ujv1(uj)hshtεsεt =

n∑
t,s=1

c∗n(t, s)εsεt,

where c∗(t, s) = hthscn(t − s), cn(t) := n−1
∑[n/2]

j=1 v1(uj) cos(tuj), t = 1, 2, · · · . The matrix C∗n =

(c∗n(t, s))t,s=1,··· ,n is a symmetric n× n matrix with real entries. Hence,

var(S
(appr)
n,hε ) = 2

n∑
s,t=1: t6=s

(c∗n(t, s))2 + var(ε2
0)

n∑
t=1

(c∗n(t, t))2 (8.64)

= 2‖C∗n‖2 + (var(ε2
0)− 2)c2

n(0)V ∗.

where ‖C∗n‖2 =
∑n

s,t=1(c∗n(t, s))2 and cn(0) = n−1
∑[n/2]

j=1 v1(uj)→ 2π
∫ π

0 v1(u)du.

We shall show that

‖C∗n‖2 = 2−1(2π

∫ π

0
v2

1(u)du)V ∗ + o(V ∗), (8.65)

which together with (8.64) and (8.63) implies

var(Sn,y) = var(S
(appr)
n,hε )(1 + o(1)) = AV ∗ + o(V ∗) (8.66)

and proves Theorem 8.1(ii). It remains to verify (8.65). Write

‖C∗n‖2 =

n∑
t,s=1

h2
th

2
sc

2
n(t− s) =

n∑
t,s=1

h4
t c

2
n(t− s) +

n∑
t,s=1

h2
t (h

2
t − h2

s)c
2
n(t− s) =: qn,1 + qn,2.

We will show that

(a) qn,1 = π(

∫ π

0
v2

1(u)du)V ∗(1 + o(1)), (b) gn,2 = o(S). (8.67)

By assumption, S ≤ CV ∗. Hence, (8.67) implies (8.65). We have

qn,1 = n−2

[n/2]∑
j,k=1

v1(uj)v1(uk)

n∑
t=1

h4
t

( n∑
s=1

cos((t− s)uj) cos((t− s)uk)
)
.
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For j + k < n, it holds
∑n

s=1 cos((t− s)uj) cos((t− s)uk) = (n/2)1(j = k), see (6.2.32) in Giraitis,

Koul and Surgailis (2012). Hence, as n→∞,

qn,1 = (1/2)n−2

[n/2]−1∑
j=1

v2
1(uj)V

∗(n/2) +O(n−1V ∗) = π(

∫ π

0
v2

1(u)du)V ∗(1 + o(1)),

because n−1
∑[n/2]−1

j=1 v2
1(uj)→ 2π

∫ π
0 v2

1(u)du.

It remains to evaluate qn,2. Let L > 1 be fixed. Then,

|qn,2| ≤
n∑

t,s=1

|h2
t (h

2
t − h2

s)c
2
n(t− s)| ≤

n∑
t,s=1:|t−s|≥L

[...] +
n∑

t,s=1:|t−s|<L

[...] = qn,2;1 + qn,2;2.

First we show that

|cn(t− s)| ≤ C|t− s|−1, 0 < |t− s| < n. (8.68)

Indeed, by the same argument as in (8.55),

|
[n/2]∑
j=1

v1(uj)e
iuj | ≤ C|u|−1{

[n/2]−1∑
j=1

|v1(uj)− v1(uj+1)|+ |v1(u[n/2])|} ≤ C|u|−1, 0 < |u| ≤ π,

because v1(u) has bounded derivative and therefore |v1(uj)− v1(uj+1)| ≤ Cn−1.

Since cos((t− s)uj) = cos(ut−sj) = (eiut−sj + e−iut−sj)/2, this implies

|cn(t− s)| = n−1|
∑[n/2]

j=1 v1(uj) cos((t− s)uj)| ≤ Cn−1|ut−s| ≤ C|t− s|−1

which proves (8.68).

By (8.68) and assumption |ht| ≤ C, t ≥ 1,

qn,2;1 ≤ C
∑n

t,s=1:|t−s|≥L h
2
t |t− s|−2 ≤ CL−1S.

On the other hand, using |cn(t− s)| ≤ Cn−1
∑[n/2]

j=1 1 ≤ C and |h2
t (h

2
t −h2

s)| ≤ C|ht−hs|, we obtain

qn,2;2 ≤ C
∑n

t,s=1:|t−s|<L |ht − hs| ≤ CL
∑n−1

j=1 |hj − hj+1| ≤ CL∆h,n,

since |ht − hs| ≤
∑t+L

j=t−L |hj − hj+1| for |t− s| < L. Hence, for any L > 1,

qn,2 ≤ C(L−1S + L∆h,n) = o(S)

since by (3.5)(b), ∆h,n = o(S). This completes the proof of (8.68)(b).

(iii) We shall show that

‖C∗n‖sp = o(‖C∗n‖). (8.69)
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It is well known, see e.g. Theorem 6.2.2 in Giraitis, Koul and Surgailis (2012), that (8.69) implies

(var(S
(appr)
n,hε ))−1/2(S

(appr)
n,hε − E[S

(appr)
n,hε ])→D N (0, 1)

which together with (8.63) and (8.66) proves Theorem 8.1(iii).

We proceed to the proof of (8.69). Let x ∈ Rn be such that ‖x‖2 = 1. By definition, ‖C∗‖2sp =

max||x||=1 ‖C∗nx‖2. Let L > 1. Then,

‖Cnx‖2 =

n∑
t=1

h2
t (

n∑
s=1

h2
scn(t− s)xs)2 ≤ 2(rn,1 + rn,2)

where rn,1 =
∑n

t=1 h
2
t (
∑n

s=1: |t−s|≥L h
2
scn(t − s)xs)2, rn,2 =

∑n
t=1 h

2
t

(∑n
s=1: |t−s|<L h

2
scn(t − s)xs

)2
.

To bound rn,1, from (8.68) and h2
s ≤ C we obtain

rn,1 ≤ C
n∑
t=1

h2
t (

n∑
s=1: |t−s|≥L

|t− s|−1|xs|)2 ≤ C
n∑
t=1

h2
t

n∑
s=1: |t−s|≥L

|t− s|−2‖x‖2 ≤ CL−1S.

In turn, bounding |cn(t − s)| ≤ C, h2
t ≤ C, h2

s ≤ C and using the inequality (a1 + .... + aL)2 ≤
L(a2

1 + ...+ a2
L), we obtain

rn,2 ≤ C
n∑
t=1

(
n∑

s=1: |t−s|<L

|xs|)2 ≤ CL
n∑
t=1

n∑
s=1: |t−s|<L

x2
s ≤ CL

n∑
s=1

x2
s(

n∑
t=1: |t−s|<L

) ≤ CL2‖x‖2 = CL2.

Hence, for any L > 1, it holds ‖Cnx‖2 ≤ C(L−1S + L2). Since S →∞, this implies

‖Cnx‖2 = o(S) = o(V ∗) = o(‖C∗n‖2)

which completes the proof of (8.69) and Theorem 8.1(iii).
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