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Abstract

This thesis comprises three studies on asset pricing under market frictions.

In Chapter One, I derive a model-free formula to estimate the contribution of frictions

to expected returns (CFER) within a formal asset pricing setting. I show that properly

scaled deviations from put-call parity reliably estimate CFER. The estimated CFER

is sizable, it predicts stock returns and it has superior properties than previously

proposed measures of deviations from put-call parity. I find that its predictive power

stems from capturing the effect of market frictions, rather than from omitted factors

and informed option trading. My findings suggest that market frictions, especially

transaction costs, have a sizable effect even on large optionable stocks.

In Chapter Two, I study the effect of CFER on the risk-neutral expected asset return

and the return predictive ability of the risk-neutral skewness (RNS). I show that a

non-zero CFER is equivalent to the violation of the martingale restriction (MR),

that is, the deviation of the risk-neutral expected return from the risk-free rate. I

theoretically and empirically show that Bakshi et al.’s (2003) formula for RNS incurs

a bias when the underlying asset violates MR. I document that the ability of RNS

to predict stock returns stems from its estimation bias due to the violation of MR,

implying that its predictability is driven by the presence of market frictions.

In Chapter Three, I examine the mean-variance portfolio strategy, which uses the

estimated CFER as the mean stock return input. This CFER-based strategy outper-

forms various strategies including the equally-weighted portfolio, minimum variance

portfolios and existing option-based portfolio strategies, especially when constraints

on portfolio weights are imposed. My empirical results complement Jagannathan and
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Ma’s (2002, 2003) theoretical finding that constraints on portfolio weights help to im-

prove the performance of mean-variance portfolio by mitigating measurement errors

in the expected stock returns.
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Introduction

Understanding the determinants of the expected asset return is one of the central

research themes in asset pricing study. In a frictionless market, the expected asset

return is determined by the covariance risk premium term, that is, the covariance

between the stochastic discount factor and the asset return. Researchers have been

devoting enormous effort to investigate the determinants of the covariance risk pre-

mium term. On the other hand, a growing number of studies have been documenting

that market frictions such as margin constraints, short-sale constraints and trans-

action costs also affect the expected asset return, in addition to the covariance risk

premium component.

The purpose of this thesis is to study the contribution of frictions to expected re-

turns (CFER), which is the effect of frictions on the expected return not attributable

to the covariance risk premium term. Specifically, I propose an option-based esti-

mation approach for the CFER of stocks, theoretically and empirically examine the

property of CFER, and investigate the implications of a non-zero CFER on the esti-

mation of option-implied variables and the portfolio selection.

In Chapter One, I develop the theoretical framework I rely on throughout this thesis.

I consider a formal asset pricing setting under market frictions, in which an agent

determines her consumption and portfolio allocation on the stock and equity options

by maximizing her life-time utility. Market frictions are formulated as constraints on

her portfolio allocation choice and transaction costs she incurs for trading financial

assets. Under this setting, the expected stock return is expressed as

(Expected excess return) = CFER + (Covariance risk premium term). (1)

Then, I theoretically and empirically document that the CFER term can be reliably
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estimated by properly scaled deviations from put-call parity, that is, the difference

between the underlying stock price and the synthetic stock price calculated from

option prices.

In the empirical part of Chapter One, I estimate CFER for U.S. common stocks and

obtain the following two important findings. First, I find that the estimated CFER

has strong return predictive power; the long-short spread portfolio of the CFER-sorted

value-weighted decile portfolios earns the average return and risk-adjusted returns of

about 20% per year. I confirm that the strong return predictive ability of CFER is

robust to the recent data snooping concerns and does not stem from omitted risk

factors. Moreover, I show that CFER outperforms the implied volatility spread (IVS)

as a predictor of stock returns. I also document that the size of market frictions is a

more pertinent explanation to the return predictability of CFER than option trading

activity.

Second, market frictions have a non-negligible effect even on optionable stocks

(stocks with liquid option trading) which tend to be large and liquidly traded stocks.

I reconcile this finding with Hou et al. (2018), who document that almost all previously

documented friction-related anomalies vanish once micro-cap stocks are weighted less

in the analysis. This is possible thanks to the ability of CFER to identify outperform-

ing and underperforming stocks due to its theoretical foundation as a risk-adjusted

signed measure of expected return (alpha) which captures the effect of market fric-

tions; on the contrary, common measures of market frictions do not possess this

property. In addition, I theoretically show that the upper bound of the alpha of

CFER-sorted spread portfolios is at least twice the round-trip transaction costs. This

result accommodates the sizable alpha of the CFER-sorted spread portfolio I have

found.

Chapter Two examines the effect of CFER on the risk-neutral expected asset return

and the return predictive ability of the risk-neutral skewness (RNS) by relating the

martingale restriction (MR) to my CFER framework. MR is a property of asset prices

in the absence of market friction first examined by Longstaff (1995); if the market

is frictionless and arbitrage-free, asset prices discounted by the risk-free rate should

be martingales under the risk-neutral measure. I show that equation (1) implies that
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the expected excess return under the risk-neutral measure equals CFER, that is, a

non-zero CFER is equivalent to the violation of MR by the underlying stock.

Next, I show that the Bakshi et al. (2003) (BKM) formulae for risk-neutral mo-

ments (RNMs) do not correctly estimate RNMs if MR is violated. This is due to their

implicit assumption that the underlying asset satisfies MR and hence the expected

risk-neutral return of the underlying equals the risk-free rate. The bias arises because

a wrong expected return value is employed to calculate the central moments (i.e.,

moments around the mean) of the underlying return. To remedy this drawback of the

original BKM formulae, I propose the generalized BKM formulae, which account for

the possible violation of MR, that is, a non-zero CFER.

My empirical analysis in Chapter Two reveals that the violation of MR has an

important effect on the return predictive power of RNS; the estimated RNS based on

the original BKM formula (O-RNS) has strong return predictive power as documented

in the previous literature, whereas the estimated RNS based on my generalized BKM

formula does not predict future stock returns. Furthermore, I provide evidence that

the predictive power of O-RNS stems from its estimation bias caused by the violation

of MR. The bias component is highly correlated with CFER in line with the fact

that CFER measures the degree of the violation of MR. In short, O-RNS predicts

future returns because its estimation bias contains predictive power inherited from

the strong predictability of CFER.

In Chapter Three, I study the application of my CFER framework to the Markowitz

(1952) mean-variance portfolio construction. To this end, I generalize Martin and

Wagner’s (2018) formula for the expected stock return by allowing the existence of

the CFER-type market frictions. This generalized formula expresses the covariance

risk premium term in equation (1) using the risk-neutral simple stock variance of

Martin (2017). Relying on this theoretical result, I examine three mean-variance

portfolio strategies, for which I use CFER, the risk premium component implied by

the risk-neutral simple variance, and the sum of these two components, respectively,

as the estimate of the expected stock returns.

My empirical analysis shows that the mean-variance portfolio strategy for which I

use the estimated CFER as the estimate of the expected stock returns (the Q-CFER
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strategy; Q stands for “quantitative” estimate of the expected return) outperforms

other portfolio strategies which have been documented to have good performance,

including the equally-weighted portfolio (DeMiguel et al., 2009b), minimum vari-

ance portfolios (e.g., Jagannathan and Ma, 2003), and existing option-based portfolio

strategies in DeMiguel et al. (2013), Kempf et al. (2015), and Martin and Wagner

(2018). This finding suggests that, in contrast to the well-documented poor perfor-

mance of the mean-variance portfolio based on the historical sample mean returns,

the option-implied expected stock returns enable us to construct a mean-variance

portfolio which has superior empirical performance.

The outperformance of the Q-CFER strategy suggests that incorporating the effect

of market frictions into the estimation of the expected return is of importance. Tilting

portfolio weights toward stocks with a high CFER component is effective to improve

the portfolio expected return without much increasing the portfolio variance. This is

because the CFER component is not a compensation for risk exposures.

Moreover, I find that imposing constraints on portfolio weights dramatically im-

proves the performance of mean-variance portfolios. This result complements the the-

oretical result in Jagannathan and Ma (2002, 2003) on the mean-variance portfolio

construction. Albeit less famous compared to their seminal result on the minimum

variance portfolio, they also show that portfolio weight constraints on the mean-

variance portfolio problem can be interpreted to have a shrinkage-like effect on the

expected stock returns ; the weight constraints mitigate measurement errors in the

expected stock returns by increasing (decreasing) possibly underestimated (overesti-

mated) expected return elements. Nevertheless, Jagannathan and Ma fail to find the

empirical usefulness of this shrinkage-like effect for the mean-variance portfolios based

on the historical sample mean returns. My result shows for the first time that this

shrinkage-like effect of the weight constraints on the mean-variance portfolio problem

is useful for portfolio selection once the option-implied expected return is employed.

Now, I briefly overview the strands of the literature pertaining to this thesis. To begin

with, the estimation of CFER is pertaining to a number of theoretical and empirical

studies on asset pricing and market frictions. Early studies by He and Modest (1995)

and Luttmer (1996) examine whether the equity risk premium puzzle may be solved by
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taking market frictions into account. A strand of the literature develops asset pricing

models by assuming specific frictions such as liquidity risk (Acharya and Pedersen,

2005), market and funding liquidity constraints (Brunnermeier and Pedersen, 2009),

margin constraints (Gârleanu and Pedersen, 2011; Chabakauri, 2013), margin and

leverage constraints (Frazzini and Pedersen, 2014) and exclusion of strategies with

possible unlimited losses (Jarrow, 2016). Brennan and Wang (2010) and Hou et al.

(2016) propose a reduced form model of frictions/mispricing and asset pricing, that

is, they make no assumption on the type of frictions, yet they make assumptions on

the dynamics of mispricing and the specification of the IMRS to estimate the effect

of mispricing/frictions on expected returns from historical data.

There are also numerous empirical studies which examine the relation between

the cross-section of stock returns and market frictions. Examples include stock-level

illiquidity (Amihud, 2002), short-sale constraints (e.g., Chen et al., 2002; Ofek et al.,

2004; Asquith et al., 2005; Drechsler and Drechsler, 2014), “betting against beta”

effect due to leverage constraints (Frazzini and Pedersen, 2014; Jylhä, 2018), uncer-

tainty about future shorting costs (Engelberg et al., 2018), idiosyncratic volatility

(Ang et al., 2006; Stambaugh et al., 2015), delay in the response of prices to infor-

mation (Hou and Moskowitz, 2005) and intermediaries’ liquidity constraints (Nagel,

2012). Related to this strand of literature, Hou et al. (2018) examine more than 100

friction-related anomaly variables.

My approach for the estimation of CFER is distinct from previous approaches

that measure the effect of frictions on the expected return in three important ways.

First, my CFER measure circumvents assumptions on the dynamics of the effect of

frictions and agents’ preferences, since it has no free parameters. Second, my ap-

proach provides a real-time, forward-looking measure of the effect of frictions on each

individual stock. This is in contrast to the strand of the friction-based anomaly liter-

ature, which captures the effect of frictions via the alphas of portfolios constructed on

backward-looking proxies of market frictions. Third, the quantitative nature of CFER

provides richer predictions compared to other characteristic variables and measures

of deviations from put-call parity found to predict stock returns. This quantitative

nature of CFER plays key roles in all the three studies in this thesis. In Chapter One,

my theoretical framework pins down the quantitative relation between the estimated
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CFER, the empirically estimated alphas and the size of market frictions. Regarding

my analysis on RNS in Chapter Two, the estimated CFER provides the degree of the

violation of MR. This information enables me to measure the bias in O-RNS caused

by the violation of MR. In Chapter Three, I use the estimated CFER as an input to

the mean-variance problem for the formation of the Q-CFER mean-variance portfolio.

My thesis contributes to the literature on the informational content of option prices in

three important ways. First, I document that CFER has superior properties compared

to previously proposed measures based on deviations from put-call parity such as IVS

(e.g., Bali and Hovakimian, 2009; Cremers and Weinbaum, 2010) and the DOTS

measure (Goncalves-Pinto et al., 2019). In Chapter One, I document that IVS and

DOTS are only an approximation of my CFER estimator, and I find that the estimated

CFER outperforms IVS and DOTS as a sorting variable to form portfolios. Moreover,

unlike IVS and DOTS, my theoretical framework allows me to quantitatively relate

CFER to empirically estimated alphas thanks to the fact that CFER is an estimate

of part of the expected return.

Second, Chapter Two contributes to the literature on the return predictive abil-

ity of O-RNS. While it has been well-documented that O-RNS has return predictive

power, the sign of its predictive relation and the mechanism of the predictability are

still open questions. Conrad et al. (2013) document that O-RNS negatively predicts

future returns, consistent with theoretical models in which risk-averse agents accept

lower returns in exchange for positive skewness (e.g., Harvey and Siddique, 2000; Mit-

ton and Vorkink, 2007). On the other hand, a number of recent studies document

that RNS positively predicts future returns (Rehman and Vilkov, 2012; Stilger et al.,

2017; Gkionis et al., 2018; Bali et al., 2018; Borochin and Zhao, 2018; Chordia et al.,

2019), yet there is no consensus on the mechanism for the positive predictive relation

between O-RNS and stock returns. My analysis sheds light on this ongoing debate by

showing that O-RNS does not correctly estimate RNS when the underlying stock vio-

lates MR. This finding invalidates the (implicit) assumption in the previous literature

that O-RNS correctly estimates the true risk-neutral skewness. More importantly, I

document that it is the estimation bias in O-RNS caused by the violation of MR that

predicts future stock returns; the estimation bias is highly correlated with CFER in
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line with the fact that CFER measures the degree of the violation of MR. This implies

that O-RNS predicts stock returns because it proxies CFER and hence signals the

effect of frictions on the expected stock returns. Analogous to my discussion on RNS,

I also find that the predictive power of the Xing et al. (2010) slope measure of the

implied volatility curve stems from its correlation with CFER.

Third, my study in Chapter Two reveals that a non-zero CFER and the violation

of MR result in the incorrect estimation of option-based measures. This point has

to do with the literature which assesses biases in empirically estimated option-based

measures. Bliss and Panigirtzoglou (2002) and Hentchel (2003) examine the effect of

measurement errors in option prices on the estimation of risk-neutral distributions and

implied volatilities, respectively. Dennis and Mayhew (2009) investigate the effect of

measurement errors in option prices and discretely observed strikes on the estimation

of RNMs based on the BKM formulae. Ammann and Feser (2019) extend Dennis

and Mayhew (2009) and investigate robust interpolation methodologies to obtain a

continuum of option prices to calculate RNMs in the presence of measurement errors

and limited number of option price observations. These studies assume that the

underlying satisfies MR and focus on the effect of practical issues such as discretely

traded strikes and measurement errors. My study differs from these studies in that

the bias in RNMs caused by the violation of MR occurs even under an ideal situation

where a continuum of option prices are observable without any measurement errors.

Chapter Three contributes to the literature on the mean-variance portfolio construc-

tion. It has been widely documented that the historical sample mean is notoriously

noisy and the empirical performance of the mean-variance portfolio based on the his-

torical sample mean is poor (e.g., Michaud, 1989; Best and Grauer, 1991; Chopra and

Ziemba, 1993).

The previous literature proposes various ways to reduce measurement errors in

the expected stock returns such as employing a Bayesian approach and factor-based

expected stock return models (e.g., Black and Litterman, 1991; Garlappi et al., 2007;

Lai et al., 2011, among others). Nevertheless, a large proportion of studies have been

focusing on the minimum variance portfolio construction to bypass the estimation

of the expected returns (e.g., Jagannathan and Ma, 2003). My option-based ap-
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proach differs from the existing approaches because my option-based expected stock

return is forward-looking and it incorporates the effect of market frictions on the ex-

pected stock returns. These features enable me to utilize additional information on

the expected stock returns. Consequently, the Q-CFER mean-variance portfolio has

superior performance compared to other existing portfolio strategies.

My analysis also contributes to the literature on the application of option-implied

information for asset allocations and portfolio selection including Aı̈t-Sahalia and

Brandt (2008) and Kostakis et al. (2011), who use the option-implied distributional

information for asset allocations. My analysis is directly related to DeMiguel et al.

(2013), and Martin and Wagner (2018) in that these studies also document that

option-implied information on the expected returns is useful to enhance the portfolio

performance. My Q-CFER mean-variance portfolio outperforms the option-based

strategies proposed in these studies. This is because I utilize richer option-implied

information on the expected stock return to conduct the mean-variance optimization,

whereas these studies utilizes option-based proxies of future stock returns and/or the

cross-sectional ranking information of the expected stock returns.
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Chapter 1

The Contribution of Frictions to

Expected Returns

1.1 Introduction

In a frictionless market, asset expected returns are determined by the covariance be-

tween the stochastic discount factor and the asset’s return (covariance risk premium).

In the presence of market frictions, such as margin constraints and transaction costs,

asset expected returns will also be determined by the contribution of frictions to ex-

pected returns (CFER). The estimation of CFER is of importance because CFER is

inherently part of the expected return. Hence, its estimate can be used to predict

asset returns, reveal the impact of market frictions on expected returns and identify

the dominant type of market frictions.

In this Chapter, we document that properly scaled deviations from put-call parity

calculated from the underlying stock price and the synthetic stock price obtained from

option prices reliably estimate stock’s CFER. Our approach is distinct from previous

approaches that measure the effect of frictions on the expected return in three im-

portant ways. First, our CFER measure circumvents assumptions on the dynamics of

the effect of frictions and agents’ preferences, since it has no free parameters. Second,

our approach provides a real-time, forward-looking measure of the effect of frictions

on each individual stock. Previous studies typically capture this effect via the alphas

of portfolios constructed on backward-looking proxies of market frictions. Third, the

quantitative nature of CFER provides richer predictions compared to other character-
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istic variables and measures of deviations from put-call parity found to predict stock

returns. For example, our theoretical framework pins down the relation between the

estimated CFER, the empirically estimated alphas and the size of market frictions.

We employ a constrained consumption-portfolio choice setting where a marginal

agent trades in both the stock and option market.1 We model market frictions as

constraints on the agent’s portfolio allocation and as transaction costs for trading

assets; we allow market frictions to affect both the stock and option prices. In this

case, the required expected stock return may deviate from the covariance risk premium

in an additive manner:

(Expected excess return) = CFER + (Covariance risk premium term). (1.1)

For instance, in the case where the agent buys stocks, she may demand a greater

than the covariance risk premium expected return to compensate incurred transaction

costs and the cost for posting her wealth as margin. CFER is the wedge between the

expected excess return and the covariance risk premium. Importantly, CFER is not

a compensation for risks, but it solely captures the effect of market frictions which

cause limits of arbitrage.2

Why do scaled deviations from put-call parity reliably estimate the underlying

stock’s CFER? Our argument consists of two steps. First, in Section 1.2.2, we show

that deviations from put-call parity contain information about the effect of frictions

on both the underlying and the synthetic stock. Then, in Sections 1.2.3 and 1.3.3,

we theoretically and empirically examine whether the effect of frictions on the syn-

thetic stock can explain the size of observed deviations from put-call parity. We use

the embedded leverage (Frazzini and Pedersen, 2012) and option margin constraints

(Hitzemann et al., 2017) models, separately, to measure the effect of frictions on op-

tion prices and hence on the synthetic stock. We find that this effect is negligible

compared to the observed deviations from put-call parity. This implies that devi-

1 The existence of such an agent is realistic and it is in line with the recent literature. For
example, a number of studies document that financial intermediaries is a marginal investor who
trades in various financial markets simultaneously (e.g., Adrian et al., 2014; He et al., 2017)

2 There is another strand of literature on the limits of arbitrage, where no constraints on portfolio
allocations are imposed nor transaction costs and hence no CFER term appears (see for a survey
Gromb and Vayanos, 2010 and references therein). Instead, this strand of literature views the risk-
averseness of the agents as a friction. This approach is distinct from ours because it does not render
deviations from the law of one price, which is a key ingredient of our option-based estimation formula
of CFER.
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ations from put-call parity are mainly determined by the effect of frictions on the

underlying stock price, leading to our conclusion that scaled deviations from put-call

parity reliably estimate CFER. This finding does not contradict the literature which

documents that market frictions affect option returns (e.g., Frazzini and Pedersen,

2012; Santa-Clara and Saretto, 2009; Hitzemann et al., 2017) for two reasons. First,

the findings in the previous literature imply that the dollar effect of frictions on op-

tions are non-negligible compared to the option price level. On the other hand, it is

the ratio of the dollar effect of frictions on options to the stock price level that mat-

ters for the effect of frictions on the synthetic stock price; this ratio is much smaller

than the former ratio. Second, the effect of frictions on a synthetic stock equals the

difference between that on a call and on a put option. We find empirically that the

effect of frictions on call and put options tends to have the same sign and similar

magnitude so they roughly offset each other.

We estimate CFER for each optionable U.S. common stock from January 1996 to

April 2016. Four are our main empirical findings. First, we document that CFER

strongly predicts stock returns. A long-short spread portfolio of the CFER-sorted

value-weighted decile portfolios yields a positive and statistically significant average

return of 164 bps per month (t-stat: 5.76). Risk-adjusted returns with respect to

standard asset pricing models are also sizable and statistically significant. For exam-

ple, the Carhart (1997) four-factor alpha of the spread portfolio is 186 bps per month

(t-stat: 6.56). This result is robust to a number of robustness tests and importantly

to recent data snooping concerns (e.g., Harvey et al., 2016; Harvey, 2017; Hou et al.,

2018) thanks to the sufficiently high t-statistics even for the value-weighted portfolios

and the formal theoretical foundation of CFER.

The strong predictive power of CFER might not be surprising in the presence of

the literature which documents that other measures based on deviations from put-call

parity, such as the implied volatility spread (IVS) (e.g., Bali and Hovakimian, 2009;

Cremers and Weinbaum, 2010) and the DOTS measure (Goncalves-Pinto et al., 2019),

predict future stock returns. However, our CFER measure has superior properties

compared to these measures. We show that IVS and DOTS are only an approximation

of our CFER estimator. Consistent with this relation, we find that CFER outperforms

IVS and DOTS. Moreover, in contrast to CFER, IVS and DOTS cannot be related
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quantitatively to their associated empirically estimated alphas because they cannot

be interpreted as an estimate of a part of the expected return. Thus, no explanation

about the size of their alphas has been provided so far. CFER provides such an

explanation thanks to its theoretical properties as we discuss below. Interestingly,

our results on the predictive power of CFER contribute to the debate about the

source of the predictive power of deviations from put-call parity. We document that

the predictive power of CFER is greater for stocks with low option trading volume.

Our friction-based view can accommodate this empirical pattern because we find

that these stocks face larger market frictions. On the other hand, the theory which

attributes the predictive power of IVS to informed option trading yields the opposite

prediction. Our finding is largely in line with Goncalves-Pinto et al. (2019), who

provide evidence that the predictive power of IVS may not be the result of informed

option trading.

Second, we find that the regressions of “CFER-adjusted excess return” (excess

return less CFER) of the CFER-sorted portfolios on risk factors yield insignificant

intercepts. This type of regressions are motivated by the theoretical prediction of

equation (1.1). Our results imply that the predictive power of CFER originates from

estimating the effect of market frictions accurately, rather than from omitted risk

factors, thus corroborating our first finding. Our approach enable us to bypass the

risk-versus-mispricing debate (Hou et al., 2018) which recognizes that it is notoriously

difficult to conclude whether empirically observed anomalies (alphas) are driven by

omitted risk factors (“risk”) or “mispricing” (joint hypothesis problem, Fama, 1991);

other option-implied measures cannot make use of this approach.

Our third finding is that market frictions matter even for large optionable stocks.

The estimated CFER ranges from -1.24% to 0.89% per month in a 5th to 95th per-

centile range; CFER can become twice as large in magnitude as the average U.S.

equity premium (0.5% per month; Mehra, 2012). This result in conjunction with the,

stated above, large alpha of the CFER-sorted long-short portfolio (about 20% per

year) may seem to be in contrast to the findings in the recent literature. For instance,

Hou et al. (2018) document that 95 out of 102 friction-related anomaly variables be-

come insignificant when the effect from microcap stocks is mitigated. This would

imply that friction-related anomalies are largely irrelevant to stocks with sufficient
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option trading which tend to be large stocks.

We reconcile this seemingly contradicting finding by theoretically deriving the

range of possible CFER values by considering specific type of frictions. In the case

where we consider only transaction costs, we show that the value of CFER lies approx-

imately between −2ρ and 2ρ, where 2ρ stands for the round-trip transaction costs.

This result yields two implications which explain why deviations from put-call parity

can result in a large alpha even within the universe of optionable stocks, thus accom-

modating our CFER-sorted spread portfolio’s reported alpha. First, the theoretical

upper bound of the CFER-sorted spread portfolio’s alpha (the expected excess return

not explained by the covariance risk premium) implies that the CFER-sorted port-

folio can earn alpha as big as 2% per month, given the empirically estimated value

of round-trip transaction costs for large stocks (approximately 1%; see e.g., Lesmond

et al., 1999; Hasbrouck, 2009). Second, the size of transaction costs does not have a

monotonic relation with CFER; larger ρ implies that the stock may have very positive

CFER or very negative CFER. This implies that when one sorts stocks based on a

proxy of ρ, the highest ρ portfolio will contain both outperforming and underperform-

ing stocks, and the portfolio may show no abnormal return on average. This explains

the findings of Hou et al. (2018).

Fourth, even though CFER is a “sufficient statistic” which subsumes the overall

effect of any relevant market frictions on expected returns, we find that transaction

costs play a key role for its determination. Fama and MacBeth (1973) regressions

of CFER on a set of market frictions-related variables reveal that CFER is strongly

related to a number of proxies of transaction costs. We also find that the tighter

short-sale constraints are, the more negative CFER becomes. This is in accordance

with previous literature, which documents that stocks which are subject to short-sale

constraints underperform (e.g., Ofek et al., 2004; Drechsler and Drechsler, 2014), yet

we find that the effect of short-sale constraints to CFER is of second order importance.

This is expected because short-sale constraints are less pronounced among big stocks

like our optionable stocks (e.g., D’Avolio, 2002; Asquith et al., 2005).

Our study is related to three strands of literature. First, it draws upon the the-

oretical literature on asset pricing under market frictions, especially Gârleanu and
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Pedersen (2011).3 We share a key insight that deviations from the law of one price

(LoOP) between the underlying and derivatives occur due to limits of arbitrage caused

by market frictions; put-call parity is an example of LoOP between the underlying

stock and a synthetic stock. We differ from their study in two ways. First, they

mainly investigate the bond-CDS basis, whereas we study the deviations between in-

dividual stock prices and their corresponding synthetic stock prices. Second, the focus

of the two studies is different. Gârleanu and Pedersen (2011) investigate theoretically

why violation in the LoOP occurs. We treat the empirically observed deviations from

LoOP as given and study their relation with expected stock returns. Our study is

also related to Brennan and Wang (2010) and Hou et al. (2016), who propose a re-

duced form model of frictions/mispricing and asset pricing. These models make no

assumption on the type of frictions, yet they make assumptions on the dynamics of

mispricing and the specification of the IMRS to estimate the effect of mispricing/fric-

tions on expected returns from historical data. In contrast, the estimation of CFER

does not involve any parameter estimations nor historical data.

The study in this Chapter also complements empirical studies which examine

the relation between the cross-section of stock returns and market frictions such as

stock-level illiquidity (Amihud, 2002), short-sale constraints (e.g., Chen et al., 2002;

Ofek et al., 2004; Asquith et al., 2005; Drechsler and Drechsler, 2014), “betting

against beta” effect due to leverage constraints (Frazzini and Pedersen, 2014; Jylhä,

2018), uncertainty about future shorting costs (Engelberg et al., 2018), idiosyncratic

volatility (Ang et al., 2006; Stambaugh et al., 2015), delay in the response of prices

to information (Hou and Moskowitz, 2005) and intermediaries’ liquidity constraints

(Nagel, 2012). We also document that market frictions affect expected stock returns

even for large stocks, and we reconcile our findings with Hou et al.’s (2018) seemingly

contradicting evidence that most of friction-related anomalies are spurious.

Finally, as discussed above, our research is pertaining to the literature on the

informational content of option prices, especially to studies which document that

3Other related studies include early studies by He and Modest (1995) and Luttmer (1996), who
examine whether the equity risk premium puzzle may be solved by taking market frictions into
account, and a strand of the literature which develops asset pricing models by assuming specific
frictions such as liquidity risk (Acharya and Pedersen, 2005), market and funding liquidity constraints
(Brunnermeier and Pedersen, 2009), margin constraints (Chabakauri, 2013), margin and leverage
constraints (Frazzini and Pedersen, 2014) and exclusion of strategies with possible unlimited losses
(Jarrow, 2016).
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measures based on deviations from put-call parity (Ofek et al., 2004; Bali and Hov-

akimian, 2009; Cremers and Weinbaum, 2010; Muravyev et al., 2016; Goncalves-Pinto

et al., 2019) predict future stock returns.4 Our CFER measure is also related to Mar-

tin (2017), Martin and Wagner (2018) and Kadan and Tang (2017), who show that

the expected stock returns can be estimated quantitatively based on an option-based

forward-looking measure. We differ from them in that we estimate the effect of fric-

tions on the expected return, whereas they estimate the covariance risk premium term

under the frictionless market assumption.

The rest of this Chapter is organized as follows. In Section 1.2, we provide the

option-based formula to estimate CFER within our asset pricing model under market

frictions and discuss the testable predictions of the model. Section 1.3 describes

the data, the way we implement our formula to estimate CFER, and the summary

statistics of the estimated CFER. In Section 1.4, we document the ability of the

estimated CFER to predict stock returns. In Section 1.5, we discuss the relation

between CFER and market frictions. Section 1.6 provides results on robustness tests.

Section 1.7 concludes and discusses the findings.

1.2 Theoretical framework

1.2.1 Asset pricing under market frictions

We assume that the time horizon is finite and discrete, indexed by t = 0, 1, 2, . . . , T .

Three types of assets, the stock, the risk-free bond, and European call and put options

written on the stock, are traded in the market. We denote the stock price by St and

its dividend payment at time t by Dt. The gross stock return and the gross risk-free

rate from time t to t + 1 are denoted by Rt,t+1 and R0
t,t+1, respectively. We assume

that options written on the stock are one-period options (i.e., options traded at time

t mature at t+ 1) and traded at a set of strikes Kt. The time t call (put) option price

with strike price K ∈ Kt is denoted by Ct(K) (Pt(K)).

We assume that there exists an agent who participates in both the stock market

and the option market. She sets her optimal consumption and asset allocations by

4There is also a voluminous literature which finds that other option-based measures predict future
stock returns; see Giamouridis and Skiadopoulos (2011) and Christoffersen et al. (2013) for reviews.
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maximizing her expected lifetime utility, yet her asset allocation is subject to con-

straints caused by market frictions. The assumption of the existence of such an agent

is realistic and it is in line with recent literature; for example, large financial interme-

diaries trade in multiple financial markets including the stock market and the option

market under market frictions, and a growing number of recent studies consider finan-

cial intermediaries to be the marginal investors (e.g., Adrian et al., 2014; He et al.,

2017).

Let θ0t , θ
S
t , θct (K) and θpt (K) be the agent’s position on the risk-free bond, the

stock, the call and put options, respectively, and let θt be the vector of these thetas.

The agent solves the following portfolio-consumption problem,

max
{cj ,θj}

T∑
j=t

βj−tEP
t [u(cj)], (1.2)

where EP
t is the conditional expectation under the agent’s subjective belief P given

the information up to time t, β is the subjective discount factor, u(c) is the time-

separable utility function.5 The agent chooses a consumption stream {cj}j≥t and

portfolio allocations {θt}j≥t subject to the following conditions. First, the agent’s

wealth at time t, Wt, changes over time as follows:

Wt+1 = θ0tR
0
t,t+1 + θSt (St+1 +Dt+1) +

∑
K∈Kt

[
θct (K)(St+1 −K)+ + θpt (K)(K − St+1)

+
]
,

(1.3)

where (x)+ = max(x, 0). Second, the consumption at time t is given by

ct = Wt − θ0t − θSt St −
∑
K∈Kt

[
θct (K)Ct(K) + θpt (K)Pt(K)

]
− TCt(∆θt). (1.4)

In equations (1.3) and (1.4), we normalize the price of the one-period bond at time

t to unity. The last term, TCt(∆θt), is the transaction costs function, which denotes

the dollar amount of transaction costs the agent incurs at time t. We formulate it as

TCt(∆θt) = ρSt St|∆θSt |+ ρ0t |θ0t |+
∑
K∈Kt

(
ρc,Kt Ct(K)|θct (K)|+ ρp,Kt Pt(K)|θpt (K)|

)
,

(1.5)

where positive coefficients ρSt , ρ0t , ρ
c,K
t and ρp,Kt denote the proportional transaction

5The assumption of a time-separable utility function is done for simplicity. Our subsequently
developed asset pricing model holds even for recursive utility functions.
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costs for trading one unit of the respective assets. Equation (1.5) shows that the

transaction costs the agent incurs are given by the product of the transaction cost

per unit of asset (e.g., ρSt St) with the units being traded (e.g., |∆θSt |). Note that the

transaction costs for trading the stock depends on the change in the position |∆θSt |

between time t−1 and t, whereas these for the other assets depend on the level of the

position. This is because we assume that options and the bond are one-period assets

and hence their beginning-of-the-period holdings are zero. Therefore, the change in

the position of these assets coincides with the level of the position at time t.

Third, we formalize market frictions (other than transaction costs) as constraints

on the portfolio allocation of the agent. Specifically, we assume that there are L types

of constraints on the portfolio allocation of the agent:

glt(θt) ≥ 0, l = 1, 2, . . . , L. (1.6)

Even though the functional form of glt (nor the number of frictions L) is not required

for our subsequent theoretical results in this subsection, we provide the margin con-

straint as an example of the constraint function to facilitate the understanding of our

formulation:

gMC
t (θt) = Wt − |θSt |µSt St −

∑
K∈K

(|θct (K)|µct(K)Ct(K) + |θpt (K)|µpt (K)Pt(K)), (1.7)

where µSt , µct(K) and µpt (K) are the margin rates of the stock, call option and put

option, respectively (e.g., µSt St is the margin that traders need to hold when they

trade one unit of the stock). The constraint gMC
t (θt) ≥ 0 imposes that the aggregate

margin the agent needs to hold cannot exceed her wealth Wt. The absolute values

of asset allocations are taken since typically traders need to hold margins both when

they long and short assets.

Let Vt(Wt, θ
S
t−1) be the time-t value function of the constrained maximization

problem (1.2) subject to equations (1.3) to (1.6). The allocation on the stock at the

previous period θSt−1 is treated as a state variable because it affects the transaction

costs incurred at time t and hence the agent’s decision making. On the other hand,

allocations on the bond and options at the previous period are not treated as state

variables because we consider one-period bonds and options.6 Then, the Bellman

6The value function Vt depends on t because we consider a finite horizon model, and the constraint
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equation is given by

Vt(Wt, θ
S
t−1) = max

ct,θt

{
u(ct)+βEP

t [Vt+1(Wt+1, θ
S
t )]
}

s.t. equations (1.3)–(1.6). (1.8)

Given equations (1.3) to (1.6), the first-order condition of the Bellman equation (1.8)

regarding the allocation to the stock θSt yields

St = EP
t [m

∗
t,t+1(St+1 +Dt+1)] +MS

t −
∂TCt
∂θSt

+
β

u′(ct)
EP
t

[
∂Vt+1

∂θSt

]
, (1.9)

where m∗t,t+1 = βV ′t+1(Wt+1)/u
′(ct) is the intertemporal marginal rate of substitution

(IMRS) between time t and t + 1. The second term in the right-hand side is given

by MS
t =

[∑L
l=1 λ

l
t(∂g

l
t(θt)/∂θ

S
t )
]
/u′(ct), where λlt is the Lagrange multiplier of l-

th constraint of equation (1.6). This term captures the effect of market frictions

(other than transaction costs) on the market price of the stock. It can be interpreted

economically as the nominal shadow cost of frictions.7 The third term in the right-

hand side denotes the contemporaneous effect of transaction costs, that is, the amount

of transaction costs the agent needs to incur by trading one more unit of the stock.

The last term is pertaining to the future transaction costs. For example, in the case

where the agent expects to unwind her position on the stock in the next period, she

takes the future transaction costs for unwinding into account when she solves the

intertemporal optimization problem. Equation (1.9) shows that the current stock

price deviates from the IMRS-discounted expected future cum-dividend stock price

due to transaction costs and other binding constraints. Equivalently, equation (1.9)

shows that the standard asset pricing formula 1 = EP
t [m

∗
t,t+1Rt,t+1], which holds in

frictionless markets, does not hold. This result echos the findings in He and Modest

(1995) and Luttmer (1996).

functions glt and the transaction costs function TCt may also depend on time-varying parameters.
7 For instance, in the case where the margin constraint (equation (1.7)) is the only constraint,

MS
t becomes MS

t = −(λMC
t /u′(ct))× sgn(θSt )µSt St. The former term is the nominal shadow price of

one unit of wealth pledgeable as margin and the latter part equals the amount of margin that needs
to be posted for trading one unit of the stock. Note that the effect of market frictions on the stock
price, MS

t may depend on the agent’s allocations to other assets, as well. For example, in the above
margin constraint example, the value of MS

t depends on whether the margin constraint is binding
and hence it depends on the total amount of margins the agent needs to post, which is a function of
the vector of allocations θt.
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Option prices satisfy the following first-order conditions:

Ct(K) = EP
t [m

∗
t,t+1(St+1 −K)+] +M c

t (K)− ∂TCt
∂θct (K)

,

Pt(K) = EP
t [m

∗
t,t+1(K − St+1)

+] +Mp
t (K)− ∂TCt

∂θpt (K)
,

(1.10)

where M o
t (K) =

[∑L
l=1 λ

l
t(∂g

l
t(θt)/∂θ

o
t (K))

]
/u′(ct) (o ∈ {c, p}) captures the effect

of market frictions on the market call and put option prices in analogy to MS
t in

equation (1.9).8 Unlike the stock case, the term related to future transaction costs

does not appear in the first-order conditions for options. This is because we consider

one-period options and hence she will no longer trade them as they expire at t+ 1.

The following Theorem provides the asset pricing model under market frictions.

Theorem 1.2.1. Under market frictions, the following asset pricing model holds:

EP
t [Rt,t+1]−R0

t,t+1 = CFERt,t+1 −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m

∗
t,t+1]

, (1.11)

where CFERt,t+1 is the contribution of frictions to the expected return from t to t+1,

defined as

CFERt,t+1 = −
R0
t,t+1

St

(
MS

t −
∂TCt
∂θSt

+
β

u′(ct)
EP
t

[
∂Vt+1

∂θSt

])
. (1.12)

Proof. See Appendix 1.A.1. 2

Four remarks are in order at this point. First, equation (1.11) boils down to the

standard frictionless market asset pricing model when constraints are not binding

and no transaction costs exist, i.e. CFERt,t+1 = 0 as equation (1.12) shows. Second,

CFER is part of the expected excess return, which cannot be explained by the co-

variance risk premium term (the covariance between the asset return and the IMRS)

and hence it does not represent compensation for risk. The CFER term appears due

to the binding constraints on asset allocations and the existence of transaction costs.

Therefore, CFER cannot be interpreted as a new risk factor. Rather, in the Gârleanu

and Pedersen (2011) terminology, one may view CFERt,t+1 as the “alpha” of the

8Regarding the risk-free bond, to simplify the exposition, we assume that EP
t,t+1[m∗t,t+1] =

1/R0
t,t+1 holds, which is equivalent to assuming that there is no effect of frictions on the risk-free

bond market. In Appendix 1.D, we extend the model to allow for a non-zero effect of frictions on
the risk-free bond market. Then, we demonstrate that the effect of frictions on the risk-free rate has
no impact on the results presented in the main body of this Chapter.
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stock, that is, the expected excess return adjusted for risk (Gârleanu and Pedersen,

2011, p.1990). Consistent with this view, in the case where the margin constraints

are the only constraints (i.e., L = 1), CFERt,t+1 coincides with what they call the

alpha, which is the product of the Lagrange multiplier (shadow price) of the margin

constraints and the margin rate of the stock.

Third, even though we name our new component of the expected return the “con-

tribution of frictions to the expected return”, it should be noted that CFER does

not subsume the total effect of frictions. This is because the covariance risk premium

term is also affected by market frictions; the IMRS depends on the agent’s optimal

allocation θt, which the agent chooses by taking the presence of market frictions into

account. Therefore, CFER does not coincide with the difference between the expected

return in this model and the expected return in the hypothetical frictionless market

model. Instead, as we have pointed out above, the CFER term represents the part

of the expected excess return not attributable to the covariance risk premium term,

where the covariance risk premium term is calculated with the IMRS and the stock

return formed in the presence of frictions.

Fourth, CFER is determined by three channels. The first one is the contemporane-

ous binding constrains represented by MS
t . The second type is the contemporaneous

effect of transaction costs represented by ∂TCt/∂θ
S
t . The third one is pertaining to

future transaction costs. For example, in the case where the agent expects to unwind

her position on the stock in the next period, she takes future transaction costs for

unwinding into account when she solves the intertemporal optimization problem.

The literature argues that uncertainty about future transaction costs affect ex-

pected stock returns. For example, Acharya and Pedersen (2005) show that the

stochastic “liquidity cost,” which they model as future transaction costs for selling

stocks, affects stock returns. Engelberg et al. (2018) find that the uncertainty about

future short-selling cost affects prices among the cross-section of stocks. We briefly

argue that the future transaction cost component of CFER at least conceptually in-

corporates these mechanisms. To see this, the last term of CFER equals

β

u′(ct)
EP
t

[
1

St

∂Vt+1

∂θSt

]
= EP

t

[
β
u′(ct+1)

u′(ct)
ρSt+1

St+1

St
sgn(∆θSt+1)

]
due to the envelop theorem. For simplicity, let us assume that the stock pays no
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dividends and no glt(θt) functions in equation (1.6) which depend on the total wealth

(e.g., the margin constraints function) are not binding. Then, this equation equals

EP
t

[
m∗t,t+1Rt,t+1ρ

S
t+1sgn(∆θSt+1)

]
= EP

t [m
∗
t,t+1Rt,t+1]EP

t [ρ
S
t+1sgn(∆θSt+1)]

+ CovPt (m∗t,t+1Rt,t+1, ρ
S
t+1sgn(∆S

t+1)).

This equation shows that uncertainty about future transaction costs (including future

short-selling costs) will affect CFER through the covariance between the stochastic

future transaction costs and the future stock return.

1.2.2 Estimation of CFER: The formula

We assume that the dividend payment at t + 1, Dt+1, is deterministic given the

information up to time t. This assumption is plausible when the time length between

t and t+ 1 is short (e.g., one-month as it will be the case in the subsequent empirical

analysis) because near future dividend payments are usually pre-announced. We

define the synthetic stock price S̃t(K) as

S̃t(K) = Ct(K)− Pt(K) +
K +Dt+1

R0
t,t+1

. (1.13)

This combination of long call, short put and risk-free bond position is called a synthetic

stock because it has the same payoff at time t+1 as the underlying stock, St+1+Dt+1.

Theorem 1.2.2. Assume that Dt+1 is deterministic given the information up to time

t. Then, for any strike K, CFER is decomposed as

CFERt,t+1 = CFERMF
t,t+1(K) + Ut,t+1(K) + Tt,t+1(K), where (1.14)

CFERMF
t,t+1(K) =

R0
t,t+1

St
(S̃t(K)− St), (1.15)

Ut,t+1(K) = −
R0
t,t+1

St
[M c

t (K)−Mp
t (K)], (1.16)

Tt,t+1(K) =
R0
t,t+1

St

(
∂TCt
∂θct (K)

− ∂TCt
∂θpt (K)

)
. (1.17)

Proof. The proof of Theorem 1.2.2 relies on the idea that deviations from put-call

parity, St − S̃t(K), are determined by the difference between the effect of market
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frictions on the underlying stock and that on the synthetic stock. To see this, under the

conditionally deterministic dividend payment assumption, substitution of equation

(1.10) into equation (1.13) yields the synthetic stock price as

S̃t(K) = EP
t [m

∗
t,t+1(St+1+Dt+1)]+(M c

t (K)−Mp
t (K))−

(
∂TCt
∂θct (K)

− ∂TCt
∂θpt (K)

)
. (1.18)

Since the first term in the right-hand side of equations (1.9) and (1.18) are the same,

deviations from put-call parity equal

St − S̃t(K) =

(
MS

t −
∂TCt
∂θSt

+ βEP
t

[
∂Vt+1

∂θSt

])
−
(

(M c
t (K)−Mp

t (K))−
(
∂TCt
∂θct (K)

− ∂TCt
∂θpt (K)

))
.

(1.19)

Then, by scaling equation (1.19) by −R0
t,t+1/St, we obtain

CFERMF
t,t+1(K) = CFERt,t+1 − (Ut,t+1(K) + Tt,t+1(K)). (1.20)

given equations (1.12), (1.15), (1.16) and (1.17). This proves equation (1.14). 2

Theorem 1.2.2 shows that the stock’s CFER equals the sum of the scaled deviation

from put-call parity, CFERMF
t,t+1, and the scaled effect of frictions on the synthetic

stock, Ut,t+1 + Tt,t+1, where Ut,t+1 denotes the effect of constraints and Tt,t+1 denotes

the effect of transaction costs. This is a direct consequence of equation (1.20), which

shows that once scaling by R0
t,t+1/St, the deviation from put-call parity equals the

difference between the effect of frictions on the underlying and that on the synthetic

stock (equation (1.18)). Equations (1.19) and (1.20) echo equation (29) of Gârleanu

and Pedersen (2011), which shows that deviations from LoOP are determined by

market frictions, and they do not depend on preferences nor on the subjective beliefs.

As a result, the calculation of CFERMF
t,t+1 requires no assumptions on the preferences

(IMRS m∗) and subjective beliefs (P), neither estimation of any parameters and hence

we call it the “model-free” (MF) part of CFER. It can be computed from observable

option prices as long as a pair of European call and put options with the same maturity

and strike is available. On the other hand, the effect of frictions on the synthetic stock

(options) is not observable. We discuss its estimation in the next subsection.

37



1.2.3 Estimation of CFER: Modeling the effect of frictions

on options

1.2.3.1 Estimation of Ut,t+1

To estimate Ut,t+1(K), we need to model the effect of frictions on option prices,

M c
t (K) and Mp

t (K) (equation (1.16)). To this end, we employ two alternative models

of frictions. The first is the embedded leverage effect documented by Frazzini and

Pedersen (2012). They theoretically and empirically show that options with high

embedded leverage attract investors who are subject to leverage constraints and hence

these options have lower returns. Their finding suggests that leverage constraints

affect option prices (i.e., non-zero M c
t (K) and Mp

t (K) arise) and hence this may yield

a non-zero Ut,t+1(K). Based on the Frazzini and Pedersen (2014) study on embedded

leverage (EL), we compute

UEL
t,t+1(K) = k(|∆p(K)| −∆c(K)). (1.21)

where ∆p(K) and ∆c(K) are the put and call options’ delta, respectively, and the

coefficient k is the sensitivity of option returns to the level of embedded leverage.

Appendix 1.B.1.1 provides the proof of equation (1.21).

We consider option margins as the second type of market friction in the option

market. Santa-Clara and Saretto (2009) and Hitzemann et al. (2017) document that

margin constraints affect option returns and hence they may also yield a non-zero

Ut,t+1(K). Under margin constraints (equation (1.7)), the calculation of Ut,t+1(K)

yields

UMC
t,t+1(K) = −R0

t,t+1

λMC
t

u′(ct)

[
µct(K)

Ct(K)

St
sgn(θct (K))− µpt (K)

Pt(K)

St
sgn(θpt (K))

]
,

(1.22)

where the superscript MC stands for “margin constraints.” To calculate UMC
t,t+1(K) in

equation (1.22), we need to specify the option margin rates, µct(K) and µpt (K). These

are determined by the option exchange and depend on the strike price as well as on

whether options are bought or sold. To this end, we follow Hitzemann et al. (2017),
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who compute the option margin rates by using the CBOE option margin rules:9

µit(K) = 1, when θit(K) > 0, i ∈ {c, p}, (1.23)

µct(K) =
max(0.2St − (K − St)+, 0.1St)

Ct(K)
, when θct (K) < 0, (1.24)

µpt (K) =
max(0.2St − (St −K)+, 0.1K)

Pt(K)
, when θpt (K) < 0. (1.25)

To simplify the calculation in the latter two cases, we consider options with strikes

which satisfy 8/9 ≤ K/St ≤ 1.1. This range of strikes is not restrictive because we

only use options with strikes which satisfy this range in our subsequent empirical

analysis. Then, given the above margin rules, UMC
t,t+1(K) can be calculated as:

UMC
t,t+1(K) = Et(K)×R0

t,t+1λ
MC
t /u′(ct), where (1.26)

Et(K) =



(Ct(K)− Pt(K))/St when θct (K) > 0 and θpt (K) > 0

−(St −K)/St when θct (K) < 0 and θpt (K) < 0

(0.2 + [Ct(K)− (St −K)+]/St) when θct (K) > 0 and θpt (K) < 0

− (0.2 + [Pt(K)− (K − St)+]/St) when θct (K) < 0 and θpt (K) > 0.

(1.27)

Appendix 1.B.1.2 provides the proof of equations (1.26) and (1.27).

In Section 1.3.3, we will empirically examine the size of Ut,t+1 based on equations

(1.21), (1.26), and (1.27). Appendix 1.B.1 provides supplementary materials on the

estimation of Ut,t+1.

1.2.3.2 Tt,t+1 once mid-option prices are used

Under the standard specification of the transaction cost function, equation (1.5), we

can see from equation (1.12) that the true theoretical value of the stock’s CFER

(CFERt,t+1) does not depend on the transaction costs for trading options, because

∂TCt/∂θ
S
t does not depend on them. On the other hand, our model-free estimator of

CFER (CFERMF
t,t+1) deviates from the true CFER value when the transaction costs

for trading options exist; the Tt,t+1 term in equation (1.14) represents this difference.

9 Even though each option exchange can have a different margin rule, Hitzemann et al. (2017)
document that the CBOE margin rule is the de facto standard margin rule in the U.S. option
exchanges.
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Since the relative transaction costs for trading options are known to be much bigger

than those for trading stocks, this would imply that the Tt,t+1 can be non-negligible

and hence using CFERMF
t,t+1(K) as an estimate of CFERt,t+1 may suffer from non-

negligible bias if traded option prices are used to calculate CFERMF
t,t+1.

Contrary, in the subsequent empirical analysis, we employ mid -option prices (the

average of bid and ask option prices) because the option dataset we will employ (the

OptionMetrics database) provides option bid and ask quotes but does not provide

traded option prices. This results in Tt,t+1 not being required to estimate CFER

because we find that option transaction costs have negligible effect on the mid option

prices. We show this as follows. First, in line with Muravyev (2016), we model

the bid and ask option prices as the sum of the ex-transaction costs option price

(e.g., CexTC
t (K) = EP

t [m
∗
t,t+1(St+1 − K)+] + M c

t (K)), plus the three components of

the bid-ask spread (fixed costs, adverse selection part, inventory risk part) and a

zero-mean market microstructure noise term. Under standard assumptions employed

in the market microstructure literature, we prove that the mid-option price equals

approximately the ex-transaction costs option price; Appendix 1.B.2.1 provides the

details. Then, in Appendix 1.B.2.2, we show via simulation that the error of the

approximation is negligible compared to the magnitude of observed deviations from

put-call parity. This implies that the Tt,t+1 term does not affect option mid prices

and hence it does not need to be known to estimate CFER.

Intuitively, our result that Tt,t+1 is not required to estimate CFER when mid-

option prices are used, comes at no surprise. Our theoretical approach effectively

decomposes the effect of transaction costs to the option price (last term in the right

hand side of equation (1.10)) to the standard components of the bid-ask spread de-

scribed above. Given the evidence that a major component of the option bid-ask

spread is fixed costs (e.g., Huang and Stoll, 1997; Engle and Neri, 2010), which does

not affect the mid-price (Muravyev, 2016, p.678), the mid-option price proxies the

ex-transaction costs option price.

1.2.4 Relation to measures of deviations from put-call parity

Measures of deviations from put-call parity such as the implied volatility spread (IVS)

defined as the difference between the implied volatility (IV) of the call and put options
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with the same strike and maturity (e.g., Bali and Hovakimian, 2009; Cremers and

Weinbaum, 2010) and the DOTS measure of Goncalves-Pinto et al. (2019) have been

documented to predict stock returns. We show that (i) CFERMF
t,t+1(K) may contain

richer (and certainly no less) information than IVS and DOTS regarding future stock

returns, and (ii) neither CFERMF
t,t+1(K) nor other measures of deviations from put-call

parity should be interpreted as a measure of whether the stock is mispriced.

Proposition 1.2.1. Let IV c
t (K) and IV p

t (K) be the Black-Scholes call and put im-

plied volatilities (BS-IVs), respectively. Then, the following approximate equation

holds.

CFERMF
t,t+1(K) ≈

R0
t,t+1Vt(K)

St
(IV c

t (K)− IV p
t (K)), (1.28)

where Vt(K) is the Black-Scholes vega evaluated at a strike K and a volatility equal

to (IV c
t (K) + IV p

t (K))/2.

Proof. See Appendix 1.A.2. 2

Proposition 1.2.2. Let ηct and ηpt be the early exercise premium of the American call

and put option, respectively. Then, the following relation holds:

DOTSt(K) =
CFERMF

t,t+1(K)

R0
t,t+1

+ut, ut =
1

St

[
ηct −

Dt+1

2R0
t,t+1

−
(
ηpt −

K(R0
t,t+1 − 1)

2R0
t,t+1

)]
.

(1.29)

where

DOTSt(K) :=
1

St

(
SUt (K) + SLt (K)

2
− St

)
, (1.30)

and SUt (K) = Cask
t (K)−P bid

t (K)+K+Dt+1/R
0
t,t+1 and SLt (K) = Cbid

t (K)−P ask
t (K)+

K/R0
t,t+1 are the no-arbitrage bounds for the stock price (i.e., SLt ≤ St ≤ SUt ) calcu-

lated from the bid and ask prices of American call and put options (Cbid
t , P bid

t , Cask
t ,

and P ask
t ) with strike K.

Proof. See Appendix 1.A.3. 2

Propositions 1.2.1 and 1.2.2 show that IVS and DOTS are approximately propor-

tional to CFERMF
t,t+1. Therefore, they provide a theoretical friction-based explanation

for the empirically documented ability of IVS and DOTS to predict future stock

returns. Moreover, these results explain formally Goncalves-Pinto et al.’s (2019)
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finding that DOTS and IVS are highly correlated. However, CFERMF
t,t+1 may out-

perform (and certainly not underperform) IVS and DOTS as a cross-sectional pre-

dictor of stock returns. This is because IVS and DOTS are only approximations of

CFERMF
t,t+1. Our theoretical model suggests that CFERMF

t,t+1 is the most appropriate

way to utilize the informational content embedded in deviations from put-call parity.

Intuitively, the “scaling coefficient” R0
t,t+1/St of CFERMF

t,t+1 converts the deviation in

prices (S̃t(K) − St) to a return metric, hence making the model-free CFER a quan-

titative measure of the effect of market frictions on expected stock returns.10 This

is not the case with the two empirical measures of deviations from put-call parity,

because IVS is denominated in (difference in) volatility and Goncalves-Pinto et al.

(2019) interpret DOTS as the level of mispricing (relative to the stock price). The

strength of the predictive power of IVS will depend on the size of the approximation

error in equation (1.28) and on the impact of omitting the vega scaling factor, and

that of DOTS will depend on the size of ut which is a function of the early exercise

premium of the American call and put options.

The distinction between CFERMF
t,t+1 and previous measures of deviations from

put-call parity reveals a common misconception and highlights the interpretation of

CFERMF
t,t+1. Deviations from put-call parity should not be interpreted as a measure

of the current level of mispricing in the underlying stock price, that is, the synthetic

stock price should not be interpreted as a measure of the “fundamental” price. This

can be seen by the fact that the synthetic stock price is “contaminated” by the effect

of frictions to stock prices even when option prices equal their IMRS-discounted payoff

value. In this case, the synthetic stock price (equation (1.18)) equals the expected

IMRS-discounted value of the payoff at time t+1, St+1+Dt+1, where St+1 is affected by

the market frictions (this can be seen by considering (1.9) for time t+1). Equivalently

stated, a positive (negative) CFERMF
t,t+1 should not be interpreted as evidence that

the stock is underpriced (overpriced). By definition, CFERMF
t,t+1, proxies the part of

expected return, which is not explained by the covariance risk premium and hence it

has an alpha interpretation, that is, positive (negative) CFERMF
t,t+1 signifies that the

10CFERMF
t,t+1(K) can be rewritten as CFERMF

t,t+1(K) = R0
t,t+1(S̃t(K)/St − 1). Then, di-

viding equation (1.18) by St yields the relation S̃t(K)/St = EP
t [m

∗
t,t+1Rt,t+1] − (Ut,t+1(K) +

Tt,t+1(K))/R0
t,t+1, that is, the ratio of the two stock prices S̃t(K)/St is a function of the under-

lying stock return.
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stock will outperform (underperform) in the future.11

1.2.5 Properties of CFER and testable hypotheses

Our CFER formula allows us to test the theoretical properties of CFER demonstrated

by the following three hypotheses.

1.2.5.1 Ability of CFER to predict stock returns

HYPOTHESIS 1. The expected asset return is increasing with CFER.

Equation (1.11) shows that the greater CFER is, the greater the asset’s expected

return. Hence, we expect that when we sort stocks in portfolios based on their re-

spective estimated CFER, (i) the post-ranking portfolios’ average return and CFER

will be positively related, and (ii) a long-short spread portfolio where we go long in

the portfolio which contains the stocks with the highest CFER and short in the port-

folio which contains the stocks with the lowest CFER should earn a positive average

return and alpha. Moreover, our discussion in Section 1.2.4 suggests that CFER is

expected to have superior (or at least as good) predictive power compared to the IVS

and DOTS measures of deviations from put-call parity (equations (1.28) and (1.29)).

HYPOTHESIS 2. In the case where the IMRS m∗ is described by a linear com-

bination of risk factors, then the regression of the CFER-adjusted excess return,

Rt,t+1 −R0
t,t+1 − CFERt,t+1 on the risk factors should yield a zero intercept.

It is valid to subtract CFER from excess returns to consider the CFER-adjusted

excess return, Rt,t+1 − R0
t,t − CFERt,t+1 since CFER is a quantitative measure of

part of the expected return. In the case where the IMRS m∗ is described by a linear

combination of risk factors f , then our asset pricing equation (1.11) implies that

EP
t [Rt,t+1]−R0

t,t+1 − CFERt,t+1 = β′REP
t [ft+1], (1.31)

where βR is the vector of the factor betas. Next, consider the following regression

model:

Rt,t+1 −R0
t,t+1 − CFERt,t+1 = α + β′ft+1 + εt+1. (1.32)

11A stock which is underpriced (overpriced) does not necessarily mean that it will outperform
(underperform) in the future unless the friction which causes the mispricing is relaxed.
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Then, the intercept α of equation (1.32) should be zero under the second hypothesis.

This theoretical result is a generalization of the expected return-beta representation

theorem from the case of frictionless markets (Cochrane, 2005, Chapter 12.1) to the

case where market frictions and hence a non-zero CFER exist. Hypothesis 2 provides

a guide to detect the source of (empirically estimated) alphas of the CFER-sorted

long-short portfolio by circumventing the joint hypothesis problem (Fama, 1991).12

In the case where a CFER-sorted long-short portfolio earns a significant positive

alpha (Hypothesis 1), yet one fails to reject Hypothesis 2, this would suggest that the

significant alpha of CFER-non-adjusted return stems from the presence of market

frictions rather than from omitted risk factors in the model employed to calculate the

alpha.

1.2.5.2 Relation of CFER with transaction costs and margin constraints

Up to this point, our CFER measure has a “black-box” property; it subsumes the

effect of all relevant market frictions. Now, we introduce additional structure in our

model to establish the theoretical relation between CFER and specific type of frictions.

We consider three types of market frictions: transaction costs (equation (1.5)), margin

constraints (equation (1.7)), and short-sale constraints. For simplicity, we assume that

the stock’s proportional transaction costs, ρSt , takes one of the following two values

depending on whether the agent short-sells the stock (i.e., θSt < 0 and ∆θSt < 0) or

not:

ρSt =

ρ+ ς if θSt < 0 and ∆θSt < 0,

ρ otherwise,

(1.33)

where ς > 0 reflects the severity of short-sale constraints. The finite value of ς ex-

presses the fact that the transaction costs for short-selling a stock is greater compared

to buying a stock due to stock lending fees (e.g., D’Avolio, 2002) and search costs

(e.g., Duffie et al., 2002). The short-sale ban corresponds to the case ς = ∞. The

following Proposition provides the relation between the range of CFER value, and the

margin constraints, transaction costs and short-sale constraints.

12 Note that a zero intercept is a necessary but not a sufficient condition for asset pricing models to
be valid. The latter would require testing whether the factors are priced something which is beyond
the scope of this study since our focus is not on testing asset pricing models.
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Proposition 1.2.3. Suppose that three types of frictions, transaction costs, margin

constraints, and short-sale constraints are present and modeled by equations (1.5),

(1.7), and (1.33), respectively. Then, CFER satisfies the following approximate in-

equality range:

− 2ρ− ς − λMC
t

u′(ct)
µSt . CFERt,t+1 . 2ρ+

λMC
t

u′(ct)
µSt , (1.34)

The approximate width of the range is given by

2
λMC
t

u′(ct)
µSt + 4ρ+ ς. (1.35)

Proof. See Appendix 1.A.4. 2

Proposition 1.2.3 yields four predictions formulated under Hypothesis 3. First,

stocks with more extreme, ether positive or negative, (smaller) CFER values are sub-

ject to greater (smaller) market frictions. This suggests a U-shape relation between

CFER and proxies of market frictions. Second, equation (1.34) suggests that, higher

transaction costs, tighter margin constraints and severer short-sale constraints imply

larger variations in the cross-section of CFER. Third, the more severe the short sell-

ing constraint is, the more negatively skewed the distribution of CFER values will

be. Therefore, at least over negative CFER sub-samples (which imply the agent sells

the stock since she demands a more negative expected return), severe short-sale con-

straints imply a lower CFER. Finally, expression (1.35) is the theoretical approximate

upper bound of the “alpha” (expected excess return adjusted for risk premium) of

the CFER-sorted spread portfolio; the maximum alpha would be attained when one

buys the stocks with the highest CFER and shorts the stocks with the lowest CFER.

The upper bound of the alpha of the spread portfolios is approximately given by the

sum of twice the round-trip transaction costs, twice the effect of margin constraints

and the short-sale cost.

HYPOTHESIS 3. CFER and market frictions are related as follows:

3-1: An extreme CFER value implies the presence of large frictions.

3-2: Larger frictions imply greater cross-sectional variation in CFER.

3-3: The more severe the short-sale constraint, the more negative CFER becomes.
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3-4: Expression (1.35) provides the upper bound of CFER-sorted long-short portfolio’s

alpha.

We examine the conjectures of Hypothesis 3 in Sections 1.3.4 and 1.5.

Note that in contrast to CFER, other return predicting variables such as IVS and

DOTS, cannot yield Hypothesis 2 and 3 because they are not a quantitative measure

of a part of expected returns.

1.3 Data and CFER estimation

1.3.1 Data sources

We obtain end-of-month U.S. equity option prices and implied volatilities (IVs) from

the OptionMetrics Ivy DB database (OM) via the Wharton Research Data Services.

Our dataset spans January 1996 to April 2016 (244 months). Options written on the

U.S. individual equities are American style. OM calculates IVs via the Cox et al.

(1979) binomial tree model, which takes the early exercise premium of American

options into account. Given that our formula to estimate CFER (Theorem 1.2.2)

relies on European option prices, we convert OM-IVs to the corresponding European

option prices via the Black and Scholes (1973) option pricing formula.13 We also obtain

the risk-free rate and dividend payment data from the OM database to calculate the

present value of dividend payments over the option’s life time. We remove IVs if the

recorded corresponding option bid price is non-positive, the IV is missing, and the

option’s open interest is non-positive. We discard data with time to maturity shorter

than 8 days or longer than 270 days. We keep option data only when the moneyness

K/St is between 0.9 and 1.1 to ensure that the most liquid option contracts are

considered.

We obtain stock returns from the Center for Research in Security Prices (CRSP).

In line with the literature, our stock universe consists of all U.S. common stocks

(CRSP share codes 10 and 11). We obtain the time-series of risk factors in the CAPM,

Fama and French (1993) 3-factor model (FF3), Carhart (1997) 4-factor model (FFC),

and Fama and French (2015) 5-factor model (FF5) from Kenneth French’s website.

13This approach is often taken in the literature (see e.g., Martin and Wagner, 2018).
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We obtain the factors in the Stambaugh and Yuan (2017) mispricing factor model

(SY) from Yu Yuan’s website. We construct various firms’ and stocks’ characteristics

variables (e.g., size, book-to-market, bid-ask spread) based on CRSP and Compustat

database. Appendix 1.C provides the definition and the data source of the various

characteristics variables.

1.3.2 Estimation of CFER: Choice of strikes and maturities

We estimate both the “model-free” CFER (MF-CFER) and “fully-estimated” CFER

(full-CFER). MF-CFER is estimated as the model-free scaled deviations from put-

call parity term, whereas we estimate full-CFER as the sum of MF-CFER and the

estimated U term (the second term in the right-hand side of equation (1.14)). In

the empirical estimation, both MF-CFER and the U term depend on the choice of

strike K and maturity T .14 For simplicity, we describe how we choose K and T to

estimate MF-CFER; we apply the same procedure to calculate the U term and hence

the full-CFER.

Regarding the choice of K, on each end-of-month date t and for each traded option

maturity T for which the call and put IVs are available, we take the weighted average

of the scaled deviations from put-call parity across strikes. We set the weight to be

the open interest of the corresponding options in line with Cremers and Weinbaum

(2010) to reduce possible measurement errors in the options data. As a robustness

check, we also examine the MF-CFER of the traded option with strike price closest

to the forward price ft,T = R0
t,T (St − PV Dt,T ), where PV Dt,T is the present value of

dividend payments during [t+ 1, T ].

Regarding the choice of the options’ maturity, we proceed as follows. The horizon

of the estimated CFER should correspond to the horizon of expected returns. Given

that in the subsequent analysis we will be considering monthly returns, we construct a

30-day constant maturity MF-CFER as follows. First we multiply each average MF-

CFER by 30/dtm, where dtm denotes days-to-maturity. Then, we linearly interpolate

the average MF-CFER obtained from the two traded maturities surrounding the 30-

day maturity to construct the 30-day constant maturity MF-CFER. Note that a

14Even though the left-hand side of equation (1.14) does not depend on K, the empirically es-
timated sum of MF-CFER plus U may vary across K because the estimated U term may contain
estimation errors.
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similar interpolation is employed in the CBOE’s calculation of the VIX index, which

represents the model-free implied volatility over the next 30 days. The estimated

CFER is treated as missing if the 30-day maturity is not bracketed by two traded

maturities. As a robustness check, we also use the MF-CFER closest to 30-days to-

maturity options. We calculate this proxy only when the closest options’ maturity is

between 15-day and 45-day, otherwise we treat the estimated CFER as missing.

In sum, we have two ways on the choice for K, averaged across strikes (AVE)

versus closest to forward-ATM (ATM), and two ways on the choice for T , linearly

interpolated 30-day constant maturity CFER (CM) versus closest to 30-day (CLS).

Thus, there are in total four choices for the pair of K and T labeled, AVE-CM, ATM-

CM, AVE-CLS, and ATM-CLS. Among these four choices, we use the AVE-CM as

the baseline for the purposes of our subsequent analysis, yet its estimation result is

highly correlated with the estimates based on other three ways to estimate CFER.

1.3.3 Estimation of CFER: MF-CFER versus full-CFER

In this subsection, we estimate the full-CFER by alternative models and compute

its correlation with the estimated MF-CFER to shed light on whether CFER can be

estimated accurately by relying only on the model-free scaled deviations from put-

call parity. We estimate the former by estimating the U term separately, for the

embedded leverage and margin constraint models described in Section 1.2.3 for each

pair of call and put options. Then, we construct the AVE-CM (average across strikes,

constant maturity) embedded leverage-based full-CFER (EL-CFER) and the margin

constraints-based full-CFER (MC-CFER) as discussed in Section 1.3.2.

To estimate UEL
t,t+1(K), we use equation (1.21) and set the coefficient on the em-

bedded leverage k to -1.25% per month by following Frazzini and Pedersen (2012).

For option deltas, we use the deltas provided by the OM database.

To estimate UMC
t,t+1(K), we use equations (1.26) and (1.27). We separately es-

timate R0
t,t+1λ

MC
t /u′(ct) and Et(K), then take their product. Regarding the term

R0
t,t+1λ

MC
t /u′(ct), note that it corresponds to the shadow cost of capital, which is

shown to be equal to the spread between the uncollateralized and collateralized risk-

free bond rates (see Gârleanu and Pedersen, 2011).15 Gârleanu and Pedersen (2011)

15While Gârleanu and Pedersen’s (2011) model is a continuous-time one, we formally show this
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find that the shadow cost of capital is time-varying and becomes higher during market

distress periods reaching about 10% per year during the recent financial crisis (p.1982

and Figure 1). As a result, we examine three alternative values for R0
t,t+1λ

MC
t /u′(ct):

10% per year, 5% per year (as a proxy of the time-series average of the shadow price of

capital), and the scaled TED spread (TED spread multiplied by 3.3) to take into ac-

count the time-varying nature of the shadow cost of capital and its reported maximum

value of 10%.16

Regarding the calculation of Et(K), equation (1.27) shows that it depends on the

signs of θct (K) and θpt (K). We infer the signs of these option positions as follows. In

line with Gârleanu et al. (2009) and Hitzemann et al. (2017), we assume that there

are two types of agents, the market-maker and the end-user and we also assume that

the market-maker is the marginal investor considered in Section 1.2.1. Let dct(K)

and dpt (K) be the end-user’s demand for the call and put option, respectively. Then,

at equilibrium, sgn(θct ) = −sgn(dct) and sgn(θpt ) = −sgn(dpt ) hold because options

are in zero net supply. We infer the signs of the end-user’s demand instead of the

market-maker’s position and take the opposite signs. To infer the signs of the end-

user’s demand, we follow Gârleanu et al. (2009) and Hitzemann et al. (2017) and use

the options’ expensiveness, which they proxy by the difference between the historical

volatility and the implied volatility. In particular, we assume that the options’ expen-

siveness is above (below) the reference point s if and only if the end-user’s demand

dt(K) is positive (negative):

expensivenessit(K) < s ⇔ dit(K) < 0 ⇔ θit(K) > 0, i ∈ {c, p}. (1.36)

We estimate the expensiveness measure (i.e., the left hand side of equation (1.36)) as

the difference between the Black and Scholes (1973) implied volatility and the one-

year historical volatility, both of which are provided by the OM database. To select

the value of threshold s, we rely on Gârleanu and Pedersen’s (2011) and Christoffersen

et al.’s (2018) finding that the end-user is a net seller of equity options, which implies

result in our discrete time model by introducing the uncollateralized bond in Appendix 1.B.1.2.
16Note that Gârleanu and Pedersen (2011) regress the estimated shadow price of capital on the

TED spread to obtain the coefficient on the TED spread about 1.8, whereas we multiply the TED
spread by the factor of about 3.3 to match the 10% maximum value. Our choice of the scaling factor
is conservative for our robustness check purposes, because it results in a greater (absolute) value for
UMC
t,t+1.
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that there are more “cheap” options than “expensive” options. This suggests that

the proportion of options whose expensiveness is below s should be greater than 50%.

Given this finding, we examine three values for s = 0, s = 0.01 and s = 0.02 which,

under the estimation rule given by equation (1.36), yield that roughly 50%, 55%, and

62% of the options in our sample are “cheap,” respectively.

In sum, we examine three alternative values for R0
t,t+1λ

MC
t /u′(ct) and three alter-

native values for Et(K) (depending on three reference point values s to determine

the signs of θct (K) and θpt (K)). This yields nine estimates of UMC
t,t+1(K) and hence

nine estimates of fully estimated MC-CFER in total. Once we estimate Ut,t+1(K)

for each strike K and maturity T , we calculate the average U term, U t,t+1, under

the AVE-CM specification described in Section 1.3.2. U t,t+1 is the difference between

AVE-CM MF-CFER and AVE-CM full-CFER. Two are the main findings regarding

the question whether CFER can be accurately proxied by the estimated MF-CFER.

First, the distribution of U t,t+1 is fairly symmetric around zero. This holds regard-

less of how we model frictions (embedded leverage or option margins) and it suggests

that the model-free proxy of CFER is on average accurate. Second, the magnitude

of U t,t+1 per se is also small. This is because we find that the AVE-CM MF-CFER

and AVE-CM full-CFER are almost perfectly correlated (correlation above 0.96) for

both the embedded leverage and the margin constraints models. In the latter model,

the pairwise correlations between the AVE-CM MF-CFER and each one of the nine

AVE-CM MC-CFER are at least 0.998.

The above results suggest that the effect of frictions on the synthetic stock via

the U term is negligible; in Section 1.4.2, we provide further supporting evidence.

Moreover, our argument in Section 1.2.3.2 and the results in Appendix 1.B.2 suggest

that the Tt,t+1 term in equation (1.20) does not affect the estimation of CFER which

relies on option mid-prices either. Therefore, we can reliably estimate CFER by using

only the model-free part of the CFER formula and in the remaining of this Chapter

we will report results based on the MF-CFER unless stated otherwise.

Note that the fact that U t,t+1 is negligible suggests that the theoretical CFER

value, CFERt,t+1, takes a non-negligible value if and only if the model-free estimate of

CFER, CFERMF
t,t+1, takes a non-negligible value. Therefore, our findings suggest that

it is not likely that the true CFER value is zero (i.e., the expected stock returns are
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driven purely by risk premia) yet deviations from put-call parity are non-zero because

of a non-zero U t,t+1 term (i.e., option prices are affected by frictions). Similarly, our

findings suggest that it is unlikely that deviations from put-call parity may be zero

but CFERt,t+1 is large (i.e., frictions have a large effect on the expected stock return),

because U t,t+1 needs to take a large and similar value to CFERt,t+1 for this case to

occur.

A final remark is in order. Our findings suggest that market frictions have a neg-

ligible effect on U t,t+1. This should not be interpreted as evidence that the option

market is frictionless, though. We reconcile our finding with the previous empirical

evidence that market frictions affect option returns (Santa-Clara and Saretto, 2009;

Frazzini and Pedersen, 2012; Hitzemann et al., 2017) based on the following two clar-

ifications. First, the previous literature implies that the ratio of the effect of frictions

on options over the respective option prices (M c
t (K)/Ct(K) and Mp

t (K)/Pt(K)) are

non-negligible. On the other hand, the size of Ut,t+1(K) is determined by the ratios

M c
t (K)/St and Mp

t (K)/St, which are much smaller than the former ratios because the

denominator (the stock price) is much greater than option prices. Second, the effect

of frictions on the synthetic stock price M c
t (K)−Mp

t (K) can be smaller than that on

individual options (i.e., M c
t (K) and Mp

t (K)). This would occur if M c
t (K) and Mp

t (K)

have the same sign and are of similar size. Then, they would offset each other when

their aggregate effect on the synthetic stock is calculated. This is always the case for

the embedded leverage model and mostly true for the margin constraints model. In

Appendix 1.B.1.3, we discuss these points in detail.

1.3.4 CFER: Summary statistics

Table 1.1, Panel A, reports the summary statistics of the estimated MF-CFER at the

end of each month for each one of the four ways of estimating CFER. We can see that

there are about 333,000 stock-month CFER observations for the case of the AVE-CM

and ATM-CM CFER, whereas this number increases to about 347,000 observations

for the case of the AVE-CLS and ATM-CLS CFER. This yields on average about 1,370

(1,420) stocks in each month in the case of AVE-/ATM-CM CFER (AVE-/ATM-CLS

CFER). This is a sufficient number to form well diversified decile portfolios in the

subsequent analysis. The mean and the median of the estimated CFER are about
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-0.1% and -0.04% per month (30-day), respectively. Results are similar across the

four construction methods of CFER. The distribution of CFER is skewed to the left

and it is highly leptokurtic. The estimated CFER is sizable; it takes both positive

and negative values, ranging from -1.24% to 0.89 % per month (-14% to 11% per

year) in a 5th to 95th percentile range of AVE-CM CFER. Note that this range is

consistent with the theoretically derived CFER bounds, equation (1.34). Lesmond

et al. (1999) and Hasbrouck (2009) document that the round-trip transaction costs

(i.e., 2ρ in equation (1.34)) for large stocks are in the order of 1.0%. Moreover, the

fact that the distribution of the estimated CFER has longer left tail is consistent with

the existence of short-sale constraints (equation (1.34)).

CFER also has fairly large variations; the standard deviation is about 1% and

the interquartile range (IQR, the difference between 75th and 25th percentile points)

is between 47–60 bps on average across stocks over time depending on the CFER

construction method. This magnitude of variation is relatively large compared to the

long-run average U.S. equity risk premium, which is about 50 bps per month (or 6%

per year, see e.g., Mehra, 2012). The percentage of the negative observations of CFER

is about 55% in any of the four construction ways of CFER; CFER takes more often

negative than positive values over the full sample period. Table 1.1, Panel B, reports

that the four ways of computing CFER are almost perfectly correlated. Therefore, the

subsequent analysis is expected to be robust to the choice of the method to estimate

the 30-day CFER.

[Table 1.1 about here.]

Our theoretical considerations in Section 1.2 suggest that the summary statistics

of the estimated CFER should be related to various proxies of market frictions as well

as other option-based measures of deviations from put-call parity. Regarding proxies

of market frictions, we will extensively investigate their relation with the estimated

CFER in Section 1.5. Here, we discuss the relation between the estimated CFER,

DOTS, and IVS. The summary statistics of the estimated CFER are in line with

those of these alternative measures based on deviations from put-call parity. For

example, Cremers and Weinbaum (2010) report that the median of IVS is negative

(see equation (1.28)). They also report that the IVS are highly volatile and exhibit
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substantial cross-sectional variation. Goncalves-Pinto et al. (2019) document that

their DOTS measure has a negative median value and exhibits large variations.

Our theoretical results in Section 1.2.4 yield more specific predictions regarding

the estimated values of CFER, IVS, and DOTS. We show that our model-free CFER is

(approximately) proportional to IVS and DOTS and hence the range of the estimated

CFER and that of IVS and DOTS should also be proportional. We start with com-

paring the range of the estimated CFER and DOTS. Proposition 1.2.2 shows DOTS

and MF-CFER are approximately proportional by the factor of the gross risk-free

rate, which is very close to one. Therefore, we expect that the ranges of the estimated

CFER and DOTS are similar.

Goncalves-Pinto et al. (2019) report the average DOTS of the DOTS-sorted decile

portfolios. They report that the average DOTS of the bottom and the top DOTS-

sorted decile portfolios are -0.92% and 0.79%, respectively. We repeat the same exer-

cise by using AVE-CM CFER as a sorting variable. The average AVE-CM CFER of

the bottom and the top decile portfolios are -1.31% and 0.93%, respectively. There-

fore, the ranges of the average DOTS and AVE-CM CFER are comparable, although

the range of DOTS is slightly narrower. Note that the narrower range of DOTS orig-

inates from the fact that Goncalves-Pinto et al. (2019) do not scale DOTS (equation

(1.30)) by time-to-maturity. Since they use option data whose maturity are no longer

than one month (hence the average maturity across their dataset is shorter than one

month), the unscaled DOTS generally takes a smaller value in magnitude compared

to AVE-CM CFER, which we scale to denote 30-day return.

Next, we compare IVS and MF-CFER. Goncalves-Pinto et al. (2019) also docu-

ment the average IVS of the DOTS-sorted decile portfolios and the that of the bottom

and the top decile portfolios are -12.2% and 9.5%, respectively. This means that the

range of AVE-CM CFER is approximately ten times narrower than that of IVS. This

is consistent with Proposition 1.2.1, which shows that MF-CFER is proportional to

IVS by the factor of R0
t,t+1Vt(K)/St; for one-month at-the-money options, this scaling

coefficient is approximately equal to 0.1. These results suggest that the distribution of

the estimated CFER is aligned with the existing measures of deviations from put-call

parity in a theoretically predicted manner.

[Figure 1.1 about here.]
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Next, we look at the time-series evolution of the estimated CFER. Figure 1.1a

shows the time-series evolution of the monthly median, 25th percentile point and 75th

percentile point of AVE-CM CFER. The monthly median had been mostly negative

until around 2007. Accordingly, the proportion of negatively estimated CFER in each

month had been about 60% to 70% until around 2007, which is higher than that of

the whole observations from 1996 to 2016 (about 55%). The proportion of negatively

estimated CFER before 2007 is in line with Ofek et al. (2004), who use the data

between 1999 and 2001, in that they also report that the underlying stock price is

greater than the synthetic stock price for about two thirds of their observations.

The monthly median CFER experienced a huge drop during the height of the

financial crisis (September to November 2008). This is in line with the temporary

short-sale ban during the market meltdown. The short-sale ban implies that CFER

may take a very negative value, implied by equation (1.34) with ς =∞. This finding

is in line with Grundy et al. (2012) in that their empirical results show that underlying

stock prices became significantly more expensive compared to synthetic stock prices

(i.e., negative model-free CFER) more frequent for banned stocks during the ban

period. After the financial crisis, the monthly median of the estimated CFER clearly

changed its property; the median value fluctuates around zero and it frequently takes

positive value. Unfortunately, as our model does not yield predictions on the average

value of CFER, investigating reasons behind this change is out of the scope of this

study.

Figure 1.1b shows the time-series evolution of the monthly IQR of AVE-CM CFER.

We measure the dispersion of the estimated CFER by using this statistic rather than

the standard deviation because the distribution of CFER is skewed and leptokurtic.

As we have discussed in Section 1.2.5.2, the degree of the dispersion in CFER is deter-

mined by the size of transaction costs, margin constraints and short-sale constraints

among other frictions. The time-series fluctuations in the IQR are in line with this

prediction: most of the spikes in the IQR correspond to market turmoils, such as Rus-

sian default and LTCM crisis (August to September 1998), the collapse of Lehman

Brothers and ensuing market meltdown (September to November 2008), European

debt crisis (November 2011, uncertainty was the highest around the general election

in Greece), and the Chinese stock market turmoils (June 2015 to January 2016). It
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is well documented that the margin (and liquidity) constraints become tighter during

market turmoil periods (Gârleanu and Pedersen, 2011; Nagel, 2012). Hou et al. (2016)

also find that their microstructural friction measure takes greater values during reces-

sions and market distress periods. On the other hand, except these distressed periods,

we can see a secular decline in the size of the IQR. This may reflect the decrease in

transaction costs. For example, Green et al. (2017) document that the decimalization

of quotes in 2001 and the introduction of autoquoting software by the NYSE in 2003

dramatically reduced transaction costs. According to Proposition 1.2.3, a reduction in

transaction costs implies that both the upper bound and lower bound of CFER shrink

toward zero. The behavior of the 25th and 75th percentile points of AVE-CM CFER

in Figure 1.1a supports this conjecture; both the monthly 25th and 75th percentile

points time-series generally shrunk toward zero from the late 1990s to the early 2000s.

Finally, note that the calculation of CFER requires the existence of market option

prices. As a result, our universe of stocks is confined to the optionable stocks (i.e.,

stocks which have options written on them). However, this should not be viewed

as a shortcoming of this study. In line with the results of Cremers and Weinbaum

(2010), our optionable stocks are big stocks; the average market capitalization of

stocks with (without) AVE-CM CFER is about 9.1 billion (0.5 billion) U.S. dollars

over our sample period from 1996 to 2016. Relatedly, albeit we can estimate AVE-

CM CFER for about 27% of stocks (about 1,350 optionable stocks out of 5,000 all

common stocks in each month), these stocks on average account for about 90% of the

aggregate market capitalization of U.S. common stocks over our sample period. In

addition, even though our cross-section of U.S. optionable stocks is subject to smaller

frictions compared to the non-optionable stock universe, still the effect of market

frictions on their expected returns (i.e. CFER) is sizable as reported and we will

further demonstrate in Section 1.4.17

17For example, the average Amihud’s (2002) illiquidity measure of the optionable (non-optionable)
stocks is 0.01 (5.28), and the average relative bid-ask spread of optionable (non-optionable) stocks
is 0.48% (2.50%) over our sample period.
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1.4 CFER as a cross-sectional predictor: Evidence

In this Section, we examine whether CFER predicts equity returns cross-sectionally

by taking a portfolio sorting approach (Hypothesis 1 discussed in Section 1.2.5.1). We

sort stocks in decile portfolios by using the estimated CFER as a sorting criterion.

Portfolio 1 (10) contains the stocks with the lowest (highest) CFER. We form port-

folios at the end of each month. Then, we calculate the post-ranking monthly return

of each portfolio and the zero-cost long-short spread portfolio, where we go long in

Portfolio 10 and short in Portfolio 1. Our testable hypothesis suggests that this zero-

cost long-short portfolio will earn a positive average return. We also compare the

predictive power of MF-CFER and full-CFER. Finally, we test the second hypothesis

discussed in Section 1.2.5.1 and we compare the cross-sectional predictive ability of

the MF-CFER with that of IVS and DOTS.

1.4.1 Predictive power of model-free CFER

Table 1.2 reports the results for both the value-weighted and equally-weighted decile

portfolios cases, where we use the AVE-CM MF-CFER as a sorting variable. In

line with the model’s prediction, we can see that there is a monotonically increasing

relation between the portfolios’ average returns and CFER. Moreover, the average

return of the long-short value-weighted spread portfolio is 1.64% per month. This

value is sizable and statistically significant (t-stat: 5.77). We also calculate the risk-

adjusted returns, in terms of alpha with respect to the CAPM and FFC model.18 Both

αCAPM and αFFC are sizable and statistically significant; αCAPM is 1.70% and αFFC

is 1.86% per month and their t-statistics are above five which is above the threshold

proposed by Harvey (2017) for the purposes of addressing data snooping concerns.

These results show that the estimated CFER predicts future stock returns over and

above other well known risk factors.

The equally-weighted portfolio earns an even more significant average return com-

pared to the value-weighted portfolio; the average return is 1.73% per month, αCAPM

and αFFC are 1.76% and 1.81% per month, respectively and t-statistics are above nine.

18 For all portfolio sort exercises in this Section, we also estimate alphas with respect to FF3, FF5,
and SY models. Results are qualitatively similar and hence we do not report them due to space
limitations.
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Even though the equally-weighted result is stronger than the value-weighted result,

in the subsequent analysis, we focus on the value-weighted results. This is because,

as the value-weighted construction tends to result in lower alphas and t-statistics, our

judgment on the predictive ability of CFER will be more conservative and hence more

credible.

Interestingly, our results suggest that the use of the estimated MF-CFER as a

predictor of the cross-section of stock returns yields economically and statistically

significant alphas even though our universe consists of only large optionable stocks.

This seems to be in contrast to Hou et al. (2018), who document that the alphas

found in a number of asset pricing studies, especially those based on friction-related

variables, become insignificant once small stocks are weighted less in the universe

of test portfolios. We revisit this issue in Section 1.5 where we argue that we can

reconcile this seemingly contradicting finding based on Proposition 1.2.3 developed in

Section 1.2.5.2.

[Table 1.2 about here.]

1.4.2 Predictive power of the fully-estimated CFER

Next, we compare MF-CFER to the fully-estimated CFER in terms of their ability

to predict stock returns cross-sectionally. In the case where results are similar, this

would provide further evidence that CFER can be estimated accurately by using

MF-CFER and that there is no loss of information from omitting the U term. We

compare AVE-CM MF-CFER versus AVE-CM full-CFER. The latter is computed by

the embedded leverage (AVE-CM EL-CFER) and margin constraint (AVE-CM MC-

CFER) models, separately. We sort stocks in value-weighted portfolios by using any

given method to estimate CFER and we report the average returns and alphas for the

respective spread portfolios. Table 1.3 reports the results. Panel A (Panel B), shows

the average return and αCAPM , αFF3, αFFC , αFF5, αSY of the value-weighted decile

spread portfolio where we sort stocks based on the AVE-CM EL-CFER (AVE-CM

MC-CFER). t-statistics of the differences between the MF-CFER results and each

one of the AVE-CM full-CFER results are reported in square brackets.

We can see that the full-CFER predicts future stock returns cross-sectionally just

as it was the case for MF-CFER, which ignores the U term; the average return and
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alphas are sizable and statistically significant for both the embedded leverage and

margin constraints model and they hold for all values of the parameters which appear

in the margin constraint model. However, the differences in the average returns and

alphas of the portfolios constructed under the MF- and full-CFER are statistically

indistinguishable. These results suggest that the effect of leverage and margin con-

straints has a negligible effect on deviations from put-call parity and hence on the

estimation of stocks’ CFER. This result extends the evidence on the almost perfect

correlations of MF- and full-CFER provided in Section 1.3.3 and confirms that CFER

can be estimated accurately by the model-free part of the CFER formula, that is the

scaled deviations from put-call parity.

[Table 1.3 about here.]

1.4.3 Alpha of the CFER-adjusted excess returns

Next, we examine the second hypothesis discussed in Section 1.2.5.1. This serves as

a complementary test of the predictive ability of CFER documented in the Section

1.4.1. Failing to reject the second hypothesis will suggest that the significantly positive

alphas documented in Section 1.4.1 are a result of the (correctly estimated) impact

of market frictions rather than a result of omitted factors.

Table 1.4, Panel A, reports the intercepts of the CFER-adjusted regressions, equa-

tions (1.32), where we regress the CFER-adjusted excess returns of the CFER-sorted

value-weighted decile portfolios and the spread portfolio on a set of factors f . We

examine five models (CAPM, FF3, FFC, FF5, SY). We can see that the intercept

of the regression is statistically insignificant at a 5% significance level whenever the

return of a decile portfolio is used as a dependent variable in almost all cases. An

exception occurs only in the case where the spread portfolio return is regressed on the

market factor (i.e., the CAPM). Moreover, Gibbons et al. (1989) test (untabulated)

does not reject the null hypothesis that all eleven alphas are jointly insignificant for

any one of the five models examined even at a 10% significance level.

We repeat our analysis by discarding CFER values below 1st percentile point or

above 99th percentile point of the CFER distribution across all stocks. Then, we

sort stocks by the estimated CFER. This approach removes possible outliers in the

estimated CFER; the possible outliers of the estimated CFER may affect the value
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of the CFER-adjusted returns and hence the estimated alphas. This data filtering

is similar to the standard convention in the Fama and MacBeth (1973) regressions

(FM, see e.g., Bali et al., 2016). Table 1.4, Panel B, reports the results. All intercepts

now become insignificant at a 5% level. In Panel C, we conduct a further robustness

test and report the result from a quintile portfolio sort analysis (without the previous

truncation of the most extreme CFER values). A quintile portfolio sort is expected to

be more robust to outliers because the formed portfolios contain more stocks and thus

they are more diversified. We can see that the intercept is not statistically different

from zero in all cases.

Our result does not completely eliminate the possibility that the predictability of

CFER is driven by omitted factors, because the factor models we examined above

are approximations of the true unobservable IMRS. However, if these factor models

approximate the true IMRS well, our results suggest that MF-CFER estimates the

additional term to the covariance risk premium term fairly correctly and imply that

the predictability of CFER originates from capturing the effect of market frictions,

rather than from omitted risk factors.

[Table 1.4 about here.]

1.4.4 Model-free CFER versus IVS and DOTS: Evidence

Finally, we compare the cross-sectional predictive ability of AVE-CM MF-CFER to

that of IVS and DOTS. The former is expected to perform better (and certainly

not worse) than the other two measures for the purposes of predicting stock returns

(Propositions 1.2.1 and 1.2.2). We follow Bali and Hovakimian (2009) and calculate

IVS by taking the average of the IVS of available pairs of call and put options across

different strikes and maturities. We construct DOTS in line with Goncalves-Pinto

et al. (2019). Appendix 1.C describes the construction of IVS and DOTS in detail.

Table 1.5 reports the average returns, and alphas for the spread portfolios formed

on AVE-CM MF-CFER, IVS and DOTS. For any given sorting criterion, t-statistics

for each average return and alpha are reported within parentheses. Within square

brackets, we report the t-statistics of the difference between the performance measures

of the CFER-sorted and IVS- (DOTS)-sorted portfolios. For this comparison, the null

hypothesis is that each pair of sorting criteria yields equal results and the alternative
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hypothesis is that the CFER-sorted portfolio outperforms. Regarding the IVS-sorted

spread portfolio, we can see that the CFER-sorted spread portfolio earns a greater

average return by 47 bps and greater alphas by 45–49 bps. Moreover,these differences

are statistically significant. When compared with the DOTS-sorted portfolio, again

the CFER-sorted spread portfolio earns a greater average return by 19 bps and greater

alphas by 27–42 bps, although the economic and statistical differences are generally

smaller than the CFER versus IVS case. This result is expected because DOTS is

not subject to the vega scaling point encountered in IVS, and the additional term ut

over our sample period is small.19 In sum, in line with the previous literature, both

IVS and DOTS predict stock returns, yet MF-CFER outperforms IVS. This confirms

Propositions 1.2.1 and 1.2.2.

[Table 1.5 about here.]

Next, we explore whether the economic mechanism for the predictability of CFER

(compensation for market frictions) is distinct from the one employed to explain the

predictability of IVS. Cremers and Weinbaum (2010) argue that the predictive power

of IVS is due to informed option trading. In the case where informed traders receive

optimistic (pessimistic) information on the future stock performance, they prefer to

buy (sell) call options and/or sell (buy) put options to utilize their information rather

than trading the underlying stock. As a result, new information is incorporated into

option prices prior to the underlying stock price causing deviations from put-call

parity. However, the informed option trading view and our friction-based view can

be complementary because the existence of market frictions is a necessary condition

for the informed trading story to hold; if the market is frictionless, deviations from

put-call parity and hence a non-zero CFER would not occur.

To investigate further whether the predictive power of MF-CFER reflects informed

option trading, we test the following conjecture. If the predictability of MF-CFER is

due to informed option trading, then it should be stronger in stocks which underlie

the more liquid options; Easley et al. (1998) model suggests that informed traders

will trade in options which have higher liquidity. To test our conjecture, we conduct

19 We calculate ut as DOTSt(K)− CFERMF
t,t+1(K)/R0

t,t+1 and find that the monthly time series
of the median of ut is close to half of the net risk-free rate, which is close to zero over our sample
period.
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a dependent bivariate sort, where we first sort stocks into five groups based on their

respective aggregate option trading volume on the sorting date, and then within

each group we sort stocks based on the estimated CFER into quintile portfolios. If

the predictability of MF-CFER is due to informed option trading, then we expect

that the CFER-spread portfolios of the higher option trading bins should earn more

significant returns (i.e., predictive power) compared to those of lower option trading

bins.

Table 1.6 reports the results as well as the average volume and liquidity character-

istics of the stocks in the individual option trading volume bins. We can see that the

greatest average return and alpha are obtained for the smallest option trading vol-

ume bin, which is not consistent with the informed option trading view. The average

return (alpha) of the MF-CFER spread portfolio in the lowest trading volume bin is

1.32 (1.31) versus 0.91 (1.04) in the biggest trading volume bin; the t-statistics also

decrease from about 6 to about 3.2 as we move from the lowest to the highest trading

volume bin. We can also see that stocks in smaller option trading volume bins are

smaller, have wider bid-ask spread, and lower liquidity, that is, these stocks are sub-

ject to larger market frictions. Therefore, our friction-based view is more consistent

with our findings; the CFER-spread portfolio of the smallest option trading volume

bin earns the highest return because its constituent stocks are subject to larger mar-

ket frictions. This implies that the degree of market frictions for trading stocks are

more pertinent to the return predictability than option trading activity.20

[Table 1.6 about here.]

Our findings above are in accordance with Goncalves-Pinto et al. (2019) in two

ways. First, they find that the predictive power of IVS and DOTS does not differ

between stocks which have non-zero option trading volume and those which have

zero option trading volume. This finding and our empirical result above suggest

that deviations from put-call parity convey information on future stock returns even

when there is small or even no option trading volume. Second, they document that

the predictive power of deviations from put-call parity is a manifestation of price

20We repeat a similar bivariate sorting exercise using IVS instead of MF-CFER. We obtain the
same pattern, that is, the predictability of IVS is stronger in lower option trading bins. This is
consistent with our theoretical result that IVS is an approximation (monotonic transformation) of
MF-CFER.
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pressure in the underlying stock market than of informed option trading. They find

that temporary buying (selling) pressure in the stock market tends to mean lower

(higher) DOTS. This mechanism can be accommodated in our theoretical framework

by viewing the agent in our model as a stock market-maker. For example, when the

market-maker faces selling pressure, she provides liquidity by buying the stock. In this

case, she demands higher return (positive CFER) to be compensated for transaction

costs and other friction-related costs (Proposition 1.2.3).

1.5 Relation between CFER and friction variables

In this Section, we test the predictions about the relation between CFER, its as-

sociated spread portfolio alpha, and market frictions we derived in Section 1.2.5.2

(Hypothesis 3). This will allow us to explain why CFER as a measure of the effect of

frictions has strong predictive power even among large stocks.

1.5.1 Degree of frictions and variations in the estimated

CFER

First, we examine the first prediction in Hypothesis 3, that is, an extreme CFER

value implies the presence of large frictions. To this end, we sort stocks in portfolios

according to their CFER values and examine the relation between the estimated

CFER and various firms’ and stocks’ characteristics employed as proxies of market

frictions. We expect that the portfolios in which CFER takes extreme values are

subject to greater frictions.

Table 1.7 reports these characteristics for the CFER-sorted value-weighted decile

portfolios, where we use the AVE-CM MF-CFER as a sorting variable. The results

confirm Hypothesis 3. We can see an inverse U-shaped relation between the estimated

CFER and the SIZE (the logarithm of the market equity) and U-shape relations

between CFER and the relative bid-ask spread (BAS), Amihud’s (2002) illiquidity

measure (Amihud), stock price level, idiosyncratic volatility (IVOL), that is, stocks

with extreme estimated CFER values tend to be smaller, have a wider bid-ask spread,

lower liquidity and lower stock prices. This is in line with Proposition 1.2.3 because

BAS, SIZE and IVOL are natural proxies of transaction costs (e.g., Novy-Marx and
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Velikov, 2016). We also see that there is a U-shape relation between CFER and

variables which proxy short-sale constraints, that is, the relative short interest (RSI)

(see Asquith et al. (2005)), and the estimated shorting fee (ESF) of Boehme et al.

(2006). This may seem to be at odds with the literature, which documents that tight

short-sale constraints are related to future underperformance (i.e., negative CFER);

this implies that CFER should be monotonically (negatively) related to the size of

short-sale frictions. However, our result may be driven by the correlation between

RSI/ESF and other characteristics, which univariate sorts cannot take into account.

Subsequently, we shed light on this relation by running FM regressions, where we

control for other characteristic variables such as firm size and liquidity. Finally, we

also find a U-shape relation between the market beta and book-to-market ratio (B/M),

and the estimated CFER.

The documented U-shape relation between CFER and proxies of transaction costs

ρ such as BAS and IVOL, confirms the prediction of Hypothesis 3-1 and reconciles

the strong ability of CFER to predict stock returns even for optionable stocks with

Hou et al. (2018) results, who document that most of the previously documented

friction-related anomalies become insignificant when the effect from microcap stocks

is mitigated. This is because the U-shape relation implies that when one sorts stocks

based on a proxy of ρ, the highest ρ portfolio contains both outperforming and under-

performing stocks since the larger the market friction, the more extreme the CFER

values are, just as Proposition 1.2.3 predicts. As a result, the average portfolio ab-

normal performance may show not to exist. On the other hand, CFER is a signed

measure of the effect of frictions on the expected return that specifies which stock will

outperform and underperform.

[Table 1.7 about here.]

Next, we examine Hypothesis 3-2 by conducting dependent bivariate sorts. We

first sort stocks in portfolios by their respective proxy for transaction costs. Then,

within any given portfolio, we sort stocks in portfolios based on their respective CFER

and calculate the spread portfolios’ returns. We expect that the average return of the

spread portfolios will increase as a function of the transaction costs proxy. This is

because the variation of CFER will be greater within a group of stocks that is subject
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to larger transaction costs. Table 1.8, Panel A, reports the bivariate dependent sort,

first by BAS, then by CFER. The result verifies our conjecture. The average CFER of

the CFER-sorted spread portfolio increases with the level of the bid-ask spread. The

average return and αFFC of the CFER-sorted spread portfolios also increase with the

level of the bid-ask spread. We find a similar pattern in the CFER-sorted portfolios

in Table 1.8, Panel B, where we use the SIZE as an alternative sorting proxy for

transaction costs. In general, the average CFER, average return, and αFFC of the

CFER-sorted spread portfolios decrease in the level of SIZE.21

[Table 1.8 about here.]

1.5.2 CFER and frictions: Fama-MacBeth regressions

In addition to the portfolio sort approach, we also examine the relation between CFER

and friction-related variables by conducting FM regressions. This constitutes a reverse

engineering approach to identify the dominant market frictions for optionable stocks.

We run univariate as well as multivariate regressions of CFER on SIZE, BAS, IVOL,

Amihud and RSI which are popular proxies of market frictions. For each month

t (t = 1, 2, ..., T ), we estimate the following cross-sectional regression across the i

individual stocks

CFERi,t,t+1 = α + β′Xi,t, (1.37)

where we use AVE-CM MF-CFER as the left-hand side variable and Xi,t is a vector

that contains the characteristics variables of individual stocks. Then, we calculate the

time-series average and the t-statistics of the estimated T cross-sectional intercept α

and the β coefficients. To ensure that our estimates are not driven by extreme values,

we truncate AVE-CM MF-CFER and variables in Xi,t at a 1% threshold level.

Given that the previous analysis has documented a non-linear relation between

CFER and firm characteristics, we conduct the regressions twice by splitting our

CFER sample to positive and negative values. For the positive CFER subsample,

our third hypothesis suggests that more extreme (i.e., higher) CFER corresponds to

stocks which are subject to larger transaction costs and frictions. Therefore, we ex-

pect a negative sign for the coefficient of SIZE, and a positive sign for the coefficient

21We obtain similar results when we use IVOL or Amihud as a proxy for transaction costs.
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of BAS, Amihud and IVOL (smaller firms, wider bid-ask spread, lower liquidity and

higher IVOL correspond to more extreme CFER). For the negative CFER subsample,

we expect the opposite signs for the coefficients of these four variables. Regarding

the coefficient of RSI, we expect the negative coefficient for the negative CFER sub-

samples; a negative CFER is consistent with the agent short-selling the stock because

the agent demands the short-sale to be more “profitable.” In this case, a higher RSI

implies severer short-sale constraints and hence CFER should become more negative.

On the other hand, in the case of stocks with positive CFER, Proposition 1.2.3 makes

no prediction for the sign of the variables which capture short-sale constraints; this is

because short-sale constraints do not matter when the agent buys the stock.

Table 1.9 reports the results. We can see that the coefficients of the SIZE, BAS,

IVOL and Amihud variables have the expected signs both in the univariate and mul-

tivariate regressions. Moreover, they are statistically significant; the only exception

is Amihud for the positive CFER subsample. These findings corroborate that CFER

is related to various liquidity- and transaction costs-related variables in the theoreti-

cally predicted manner. Regarding RSI, we obtain the expected negative sign in the

negative subsample. This shows that, RSI and CFER are negatively related when

the agent sells stocks as theory predicts. The result for the positive subsample is

mixed. Note that the adjusted R2 of the univariate regression of CFER on RSI is

lower than those of the other friction-related variables, especially for the positive sub-

sample. This may suggest that short-sale constraints are of second-order importance

to explain CFER variations compared to the other friction-related variables for our

universe of optionable stocks. This is expected because optionable stocks correspond

to big stocks for which short-sale constraints are not pronounced (see e.g., D’Avolio,

2002; Drechsler and Drechsler, 2014). Most importantly, the documented relation

between CFER and proxies of various market frictions suggests that CFER is a “suf-

ficient statistic” which subsumes the overall effect of any relevant market frictions on

expected stock returns. The FM regression results also confirm that the variations in

CFER is strongly related to transaction costs as suggested by Proposition 1.2.3.

[Table 1.9 about here.]
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1.5.3 Size of alphas and market frictions

The magnitude of alpha of the CFER-sorted spread portfolios reported in Section

1.4.1, is in accordance with the upper bound of the alpha predicted by Proposition

1.2.3; the estimated alpha is close yet below the upper bound implied by equation

(1.35) (Hypothesis 3-4) after substituting empirical estimates of the variables into

equation (1.35). The upper bound is at least as large as twice the round-trip transac-

tion costs (4ρ) and it is approximately 2.0% given the empirically estimated round-

trip transaction costs for large stocks (Lesmond et al., 1999; Hasbrouck, 2009). This

numerical value is largely in line with the convention in the literature as well. For ex-

ample, the stylized transaction costs assumption in Brandt et al. (2009) and DeMiguel

et al. (2019) translates to approximately 4ρ = 1.8% in our universe of stocks over our

sample period. Moreover, the upper bound may be even higher in the presence of

other frictions (e.g., short-sale constraints and margin constraints). In sum, the lim-

its of arbitrage for trading (even big optionable) stocks are large enough to generate

a 2% alpha per month. Therefore, the alphas reported in Table 1.2 are not excessive

given the degree of market frictions investors face.

1.6 Predictive power of CFER: Robustness tests

In this Section, we report a number of further robustness tests on the cross-sectional

predictability of CFER. We use portfolio sorts to examine whether our baseline results

may differ across the four possible ways of constructing CFER. We also investigate

whether results are driven by outliers, stock reversals, non-synchronous trading in the

option and underlying market. We also test whether results are stable over time by

performing a sub-sample analysis. Finally, we conduct FM regression tests to confirm

that CFER is positively related to stock returns.

1.6.1 Robustness tests based on portfolio sorts

First, we examine whether the average return and αFFC of the decile spread portfolio

differ across the four CFER proxies. Table 1.10, Panel A, reports the results. We

can see that the average return and αFFC are sizable and statistically significant in

both the value-weighted and equally-weighted portfolios for any of the four ways of
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computing CFER. In addition, we can see that CFER computed by the AVE-CM

method delivers the highest average return and alpha. This may be due to the fact

that AVE-CM CFER reduces any measurement errors in CFER at each strike by

averaging them and hence the signal to sort stocks in portfolios has greater predictive

power. It may also be the case that the 30-day constant maturity CFER gives cleaner

signals for future outperformance or underperformance in the succeeding month than

the CFER extracted from options with maturity closest to 30-day does.

[Table 1.10 about here.]

Second, regarding the effect of extreme CFER values, we check whether the pre-

dictive power of CFER is driven by few stocks that have extreme CFER value. We

perform two alternative robustness tests based on two respective ways of forming port-

folios. First, we remove stocks whose CFER is below the 1st percentile point or above

the 99th percentile point. Second, we form quintile rather than decile portfolios; each

quintile portfolio has twice as many stocks compared to decile portfolios, portfolio

returns are more robust to the effect of outliers. Table 1.10, Panel B, reports the

average returns and alphas of the long-short portfolio. The first two columns report

the average return and the risk-adjusted return of the decile spread portfolio, where

we remove stocks whose CFER is below 1st percentile point or above 99th percentile

point. We form two spread portfolios as the difference of Portfolio 10 minus Portfolio

1, and Portfolio 9 minus Portfolio 2, respectively. By construction, the latter spread

portfolio contains stocks which have less extreme CFER values. We can see that albeit

the average return and alpha decrease compared to the full sample results, results are

still economically and statistically significant. The third and fourth column of Table

1.10 show the analogous results for the CFER-sorted quintile portfolios. Again, the

average and risk-adjusted returns are economically and statistically significant. The

results suggest that the predictive power of CFER remains even after we discard 40%

of our initial sample with the most extreme CFER observations.

Third, the predictability of CFER may be a manifestation of the short-term rever-

sal effect of Jegadeesh and Titman (1993), which is typically attributed to mispricing

due to microstructural frictions (see Chapter 12 of Bali et al., 2016). To examine this

conjecture, we conduct a 5 × 5 dependent bivariate sort, where we first sort stocks
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according to the previous month return Rt−1,t, and then sort by the AVE-CM CFER.

Hence, we can test whether CFER has predictive power after the previous month

return is controlled. We report results in Table 1.11. The first five columns of Table

1.11 report the average returns of the 25 bivariate-sorted portfolios. The sixth to last

columns report the average returns, αFFC , and the average CFER of the long-short

portfolios of CFER, respectively, after controlling the previous month returns. Over-

all, the spread portfolios’ risk-adjusted returns (seventh column) are still statistically

and economically significant after controlling the previous month return. This sug-

gests that the predictive power of CFER is not subsumed by the short-term reversal

phenomenon.

[Table 1.11 about here.]

Fourth, we examine whether our results on the documented predictive ability of

CFER are of use to real time investors in the presence of non-synchronous trading

in the option and the underlying stock market (Battalio and Schultz, 2006). The

CBOE option market closes after the underlying stock market. Consequently, in real

time, the CFER value computed from option closing prices may not be available to

investors on the close of the stock market. As a result, in real time it may be the

case that investors cannot exploit the CFER signal since the stock market has closed

and hence they cannot trade stocks.22 In this case, inevitably, investors will trade

stocks at the open of the next day. To examine whether the calculated at the end-

of-day CFER may be of use to an investor, we calculate post-ranking returns using

the open-to-close monthly stock return, where the open stock price is that of the first

trading day after the day on which CFER is estimated.

Table 1.12, Panel A, reports the portfolio analysis results, where the open-to-close

return is used. The average return of the spread portfolio is 1.60% per month and

it is almost the same as the average return obtained from the baseline analysis using

close-to-close returns, 1.64%. The FFC alpha is 1.83%, which is again almost the

22The underlying market closes at 4:00 p.m. (EST). Prior to June 23, 1997, the closing time for
CBOE options on individual stocks was 4:10 p.m. On June 23, 1997, CBOE changed the closing
time to 4:02 p.m. (i.e., only two minutes after the closing of the underlying stock market). Since
March 5, 2008, OM reports option prices at 15:59 p.m. These changes minimize the potential non-
synchronicity bias during our sample period. Nevertheless, in the absence of intra-day option prices,
it is not known whether the CFER estimates were available in real time before the stock market
close prior to March 5, 2008.
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same as the corresponding alpha in the close-to-close return case, 1.86%. This result

implies that the predictive power of the estimated CFER prevails even in the presence

of non-synchronous trading in the stock and option market; the predictive power of

CFER does not change overnight.

[Table 1.12 about here.]

Fifth, we examine whether results are robust in the case where we exclude stocks

with low prices. Table 1.12, Panel B, reports the results, where we exclude stocks

whose price level is lower than $10. This filtering criteria removes about 10% of

stocks compared to the baseline analysis. We can see that the average return and

the alphas of the spread portfolio decrease when we remove the low priced stocks.

However, the returns are still highly statistically and economically significant. This

is in contrast with the literature on the predictability of friction-related variables,

where the predictability mainly stems from small, low priced stocks which are more

susceptible to market frictions.

Sixth, we examine whether the predictive cross-sectional power of CFER prevails

in the case where we use different breakpoints to form the decile portfolios. Table 1.12,

Panel C, reports the portfolio sort result, where we form decile portfolios based on the

NYSE breakpoints. Hou et al. (2018) recommend using only NYSE stocks to compute

breakpoints rather than using all stocks. This is because the latter method allows

smaller and more volatile NASDAQ stocks to have a greater relative importance in

the extreme decile portfolios and amplifies asset pricing anomalies. We can see that

the predictive ability of CFER is robust irrespective to the breakpoint method. The

average return and alpha of the spread portfolio are still significant, albeit smaller

compared to these obtained in the baseline analysis.

A remark is in order at this point regarding the validity of our findings in the light

of the growing concerns on data snooping among the asset pricing literature (e.g.,

Harvey et al., 2016; Hou et al., 2018; Harvey, 2017). Our results are reassuring because

the CFER-sorted decile spread portfolio earns significant alphas even when we follow

the construction method recommended by Hou et al. (2018) (i.e., value-weighted and

NYSE breakpoints) and the t-statistics are above five, which is above the thresholds

based on the Bayesianized t-statistics proposed by Harvey (2017). Furthermore, these
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recent studies emphasize the importance of relying on a sound theoretical model to

explain why a certain variable should predict asset returns. Our approach satisfies

this criterion since the predictive power of CFER is justified based on a formal asset

pricing model. Moreover, these studies also emphasize that the design and practical

specifications of empirical studies should not allow ad-hoc flexibility as possible. The

computation of CFER allows little flexibility because it does not require any parameter

estimations nor historical data. The only flexibility is in the choice of strike prices

and maturities, yet we have shown that the predictive power of CFER is robust to

the CFER construction methods (Table 1.10, Panel A).

Seventh, we examine whether the predictive power of CFER still exists over al-

ternative sub-periods. We divide our initial sample period into January 1996 to

December 2006 and January 2007 to April 2016. We choose December 2006 as a

splitting point for the following two reasons: first, 2007 is the onset of the financial

crisis and hence market frictions have increased in the period thereafter. This may

have an effect on the cross-section of CFER values as Figure 1.1b has indicated. Sec-

ond, 2007 coincides with the period where the academic research, which demonstrates

that the option-implied measures extracted from individual equity options predict the

cross-section of future stock returns, has appeared.23 McLean and Pontiff (2016) find

that the publication of academic research on asset pricing anomalies eliminates the

predictability of variables which manifest asset pricing anomalies. Panels A and B of

Table 1.13 report the results. The spread portfolio’s average return and αFFC decrease

by 68 bps and 119 bps, respectively, from the earlier to the more recent sub-sample.

However, the average return and alpha of the spread portfolio are still statistically

and economically significant. These results show that the predictive power of CFER

is not solely driven by financial crisis period.

[Table 1.13 about here.]

1.6.2 Robustness tests: Fama-MacBeth regressions

We complement the robustness tests which use portfolio sorts with FM regressions,

where we regress stock returns on stocks’ characteristics including the estimated

23For instance, Cremers and Weinbaum (2010) and Bali and Hovakimian (2009) working paper
versions appeared on the SSRN website in March 2007 and November 2007, respectively.

70



CFER. These regressions provide additional robustness checks for our results since

they employ all firms without imposing portfolio breakpoints and allow for control

variables (see Hou et al., 2016). Similar to the estimation in Section 1.5, for each

month, we estimate cross-sectional regressions of stock returns on characteristics

variables of individual stocks. Then, we calculate the time-series average and the

t-statistics of the estimated T cross-sectional intercept and the coefficients on char-

acteristics variables. To ensure that our results are not driven by extreme values, we

truncate left-hand side variables at a 1% threshold level.

Table 1.14 reports the results. Model (1) shows that the estimated CFER is posi-

tively related to the stock returns. In Model (2), we employ various control variables

including market beta, SIZE, log of book-to-market ratio, momentum (Rt−12,t−1). We

also include the previous month return Rt−1,t, IVOL, asset growth rate and prof-

itability since it is well-known that these variables have predictive power for future

stock returns (see e.g., Jegadeesh and Titman (1993) for the short-term reversal, Ang

et al. (2006) for IVOL, and Hou et al. (2015) for asset growth and profitability). The

coefficient of the estimated CFER is still positive and statistically significant even

after controlling for these variables.24 In Model (3), we further add three liquidity re-

lated variables, Amihud’s (2002) illiquidity measure, the relative bid-ask spread and

the turnover rate. The estimated coefficient of CFER is virtually unchanged from

Model (2). In Model (4), we further add IVS. The size of the CFER coefficient and

its t-statistic decrease, yet it remains significant at a 1% significance level. On the

other hand, the IVS coefficient is not statistically significant. This corroborates our

findings that IVS is an approximation (monotonic transformation) of MF-CFER and

MF-CFER is a superior predictor of stock returns.

In columns (5) to (10), we report results from conducting FM regressions on two

separate stock universes. First, as we have discussed above (Table 1.12, Panel C),

NASDAQ stocks are smaller and more volatile than NYSE and Amex stocks. Hence,

24In our FM regression results, traditional return predictors such as log book-to-market ratio and
momentum are insignificant. To explore this further, we conduct FM regressions by excluding CFER
from the set of control variables and using all common stocks including non-optionable stocks. In
the case where our stock dataset commences in 1972, these traditional variables have significant
coefficients, whereas if we use the data starting from 1996, they become insignificant. This suggests
that well-known effects such as value and momentum effects are weaker in the recent period covered
by the OM database. Therefore, the insignificant coefficients we obtain for some traditional variables
should not be attributed to the narrower universe of optionable stocks neither to the inclusion of
CFER in the regressions.

71



the FM regression results may be driven by the NASDAQ stocks (see Hou et al.,

2016). To examine this possibility, we repeat the FM regression by splitting our

sample into NYSE/Amex stocks and NASDAQ stocks. Columns (5) and (6) report

respective results. The coefficients of CFER are still highly significant regardless of

whether we use only NYSE/Amex stocks or NASDAQ stocks. Next, as we have seen

in Table 1.7, CFER and various firm and stock characteristics exhibit (inverse) U-

shaped relations. Therefore, it might be the case that this non-linear structure affects

the FM regression results. To address this issue, we split our initial sample based on

the sign of CFER; we split our sample into two parts where the splitting points is a

zero CFER value. Hence, the two parts roughly correspond to the left and right part

of the U-shaped relations so that each subsample has a monotonic relation between

CFER and the firm and stock characteristics. This would be closer to the structure of

the FM regressions. Columns (7) and (8) demonstrate that the coefficient of CFER is

larger for negative CFER samples, but the coefficient of CFER is significant for both

subsamples. Finally, we split our sample into January 1996 to December 2006 and

January 2007 to April 2016 as before and we re-apply the FM regressions. We can see

from the last two columns that the estimated coefficient on CFER becomes slightly

smaller in the latter period, but they are statistically significant in both sub-periods.

[Table 1.14 about here.]

1.7 Conclusions and implications

We derive a novel formula to estimate the contribution of frictions to expected re-

turns (CFER) within a formal asset pricing setting. CFER is the wedge between the

expected excess return and the covariance risk premium, and captures the effect of

market frictions to expected stock returns. We show that properly scaled deviations

from put-call parity reliably estimate the underlying stock’s CFER as follows. First,

we show that deviations from put-call parity contain information about the effect of

frictions on both the underlying and the synthetic stock. Then, we empirically esti-

mate the effect of frictions on the synthetic stock and document that it is negligible

compared to the observed cross-sectional deviations from put-call parity. Our CFER

formula provides a forward-looking measure of the effect of frictions to stock prices
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and it requires no estimation of parameters.

We estimate CFER for each optionable U.S. common stock. Our empirical findings

contribute to two strands of the literature. First, we contribute to the literature on

the informational content of option prices. We find that CFER has a strong predictive

power, which is robust to the recent data snooping concerns and does not stem from

omitted risk factors. Moreover, we show that CFER has superior properties than other

measures of deviations from put-call parity and outperforms the implied volatility

spread as a predictor of stock returns. We document that the size of market frictions is

a more pertinent explanation to the return predictability than option trading activity.

Second, we contribute to the literature on the relation between market frictions

and stock returns. The large magnitude and variation of the estimated CFER and its

associated strong predictive power suggest that market frictions have a non-negligible

effect on even large optionable stocks. We reconcile this finding with Hou et al. (2018),

who document that almost all previously documented friction-related anomalies van-

ish once micro-cap stocks are not included in the analysis. This is possible thanks

to the ability of CFER to identify outperforming and underperforming stocks due to

its theoretical foundation as a risk-adjusted signed measure of expected return (al-

pha) which captures the effect of market frictions; on the contrary, common measures

of market frictions do not possess this property. Moreover, we theoretically show

that the upper bound of the alpha of CFER-sorted spread portfolios is at least twice

the round-trip transaction costs, thus accommodating the magnitude of alpha of the

CFER sorted spread portfolio.

1.A Proofs

1.A.1 Proof of Theorem 1.2.1

First, note that dividing both sides of equation (1.9) by St yields

1 = EP
t [m

∗
t,t+1Rt,t+1] +

1

St

(
MS

t −
∂TCt
∂θSt

+
β

u′(ct)
EP
t

[
∂Vt+1

∂θSt

])
. (1.A.1)
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Application of the property of covariances, Covt(X, Y ) = Et[XY ] − Et[X]Et[Y ], to

equation (1.A.1) yields

EP
t [m

∗
t,t+1Rt,t+1] = CovPt (m∗t,t+1, Rt,t+1) +

EP
t [Rt,t+1]

R0
t,t+1

(1.A.2)

because EP
t [m

∗
t,t+1] = 1/R0

t,t+1. Substituting (1.A.2) to (1.A.1) and rearranging terms

yields equation (1.11), where CFERt,t+1 is defined in equation (1.12). 2

1.A.2 Proof of Proposition 1.2.1

Deviations from put-call parity S̃t(K) − St can be rewritten as the difference be-

tween the observed call price Ct(K) and the hypothetical call price C̃t(K), which is

calculated as if put-call parity would hold, that is,

C̃t(K) = Pt(K) + St −
K +Dt+1

R0
t,t+1

. (1.A.3)

Let BScall(IV ) (BSput(IV )) be the Black-Scholes call (put) option function viewed

as a function of the implied volatility parameter. Then, by the definition of the BS-IV,

IV c
t (K) and IV p

t (K) satisfy Ct(K) = BScall(IV
c
t (K)) and Pt(K) = BSput(IV

p
t (K)),

respectively. Moreover, it follows that

C̃t(K) = BSput(IV
p
t (K)) + St −

K +Dt+1

R0
t,t+1

= BScall(IV
p
t (K)), (1.A.4)

because the pair of the Black-Scholes European call and put option prices with

the same volatility satisfies the put-call parity. This shows that Ct(K) − C̃t(K) =

BScall(IV
c
t (K)) − BScall(IV p

t (K)). Therefore, a first-order Taylor series approxima-

tion of BScall(IV
c(K))−BScall(IV c(K)) around the mid volatility point (IV c

t (K) +

IV p
t (K))/2 yields

Ct(K)− C̃t(K) = BScall(IV
c
t (K))−BScall(IV p

t (K)) ≈ Vt(K)(IV c
t (K)− IV p

t (K)),

(1.A.5)

where Vt(K) is the Black-Scholes vega, ∂BScall(σ)/∂σ, evaluated at the mid IV point

(IV c
t (K) + IV p

t (K))/2. By substituting this approximation into equation (1.15),

we obtain equation (1.28). This derivation shows that the approximation error in

(1.28) originates from the higher-order terms of the Taylor series approximation of
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BScall(IV
c
t (K))−BScall(IV p

t (K)). 2

1.A.3 Proof of Proposition 1.2.2

Substituting the definition of SUt and SLt into equation (1.30) yields

DOTSt =
1

St

(
Cmid
t (K)− Pmid

t (K)− St +
1

2

(
1 +

1

R0
t,t+1

)
K +

Dt+1

2R0
t,t+1

)
, (1.A.6)

where Cmid
t and Pmid

t are the mid price of American options. By the definition of ηct

and ηpt , Ct := Cmid
t − ηct and Pt := Pmid

t − ηpt are the European option prices. Then,

by substituting the definition of the synthetic stock price (equation (1.13)), we obtain

DOTSt =
S̃t(K)− St

St
+

1

St

[(
ηct −

Dt+1

2R0
t,t+1

)
−
(
ηpt −

1

2

(
1− 1

R0
t,t+1

))]
. (1.A.7)

The first term in the right hand side of equation (1.A.7) is CFERMF
t,t+1(K)/R0

t,t+1.

This completes the proof of equation (1.29). 2

1.A.4 Proof of Proposition 1.2.3

First, to prove the upper bound of equation (1.34), consider the case where the agent

buys (i.e., ∆θSt > 0) and longs (i.e., θSt > 0) the stock at time t. Once dividing by St,

the first-order condition for the stock given the margin constraint function (equation

(1.7)) and the transaction cost function (equation (1.5)) yields

1 = EP
t [m

∗
t,t+1Rt,t+1]−

λMC
t

u′(ct)
µSt − ρ+

β

u′(ct)
EP
t

[
1

St

∂Vt+1

∂θSt

]
. (1.A.8)

The last term in equation (1.A.8) equals

β

u′(ct)
EP
t

[
1

St

∂Vt+1

∂θSt

]
= ρEP

t

[
β
u′(ct+1)

u′(ct)

St+1

St
sgn(∆θSt+1)

]
. (1.A.9)

due to the envelop theorem ∂Vt+1/∂θ
S
t = u′(ct+1)ρSt+1sgn(∆θSt+1).

We can further approximate equation (1.A.9) as

ρEP
t

[
β
u′(ct+1)

u′(ct)

St+1

St
sgn(∆θSt+1)

]
≈ ρEP

t

[
β
u′(ct+1)

u′(ct)
Rt,t+1sgn(∆θSt+1)

]
≈ ρEP

t

[
m∗t,t+1Rt,t+1sgn(∆θSt+1)

]
.

(1.A.10)

At the first approximation, we replace the ex-dividend return St+1/St with the cum-
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dividend return Rt,t+1 = (St+1 + Dt+1)/St. Its approximation error is negligible be-

cause the product of the dividend-to-price ratio Dt+1/St (the difference between the

ex- and cum-dividend return) and the proportional transaction costs ρ is small; given

typical values of these variables, the product is less than one basis point. At the second

approximation, we employ an approximation u′(ct+1) ≈ ∂Vt+1/∂Wt+1. This relation

holds exactly when the margin constraints are not binding. Even when the margin

constraints are binding, one can show that the approximation error is negligible given

the empirical estimate of the shadow price of the margin constraint.25

Substituting equation (1.A.10) into (1.A.8) yields

1 + ρ ≈ EP
t

[
m∗t,t+1Rt,t+1(1 + ρ · sgn(∆θSt+1))

]
− λMC

t

u′(ct)
µSt . (1.A.11)

Since m∗t,t+1Rt,t+1 is non-negative and 1− ρ ≤ 1 + ρ · sgn(∆θSt+1), we obtain

1 + ρ & (1− ρ)EP
t [m

∗
t,t+1Rt,t+1]−

λMC
t

u′(ct)
µSt . (1.A.12)

Dividing both sides of equation (1.A.12) by 1 − ρ and using EP
t [m

∗
t,t+1Rt,t+1] = 1 +

R0
t,t+1CFERt,t+1, which is implied by equation (1.9), yield

CFERt,t+1 .
2ρ

(1− ρ)R0
t,t+1

+
λMC
t µSt

(1− ρ)R0
t,t+1u

′(ct)
. (1.A.13)

Since (1− ρ)R0
t,t+1 in the denominators is close to one, further approximation proves

the right inequality in equation (1.34).

To prove the lower bound case of equation (1.34), consider a situation where the

agent short-sells the stock. In this case, the first-order condition for the stock yields

1− (ρ+ ς) = EP
t [m

∗
t,t+1Rt,t+1] +

λMC
t

u′(ct)
µSt +

β

u′(ct)
EP
t

[
1

St

∂Vt+1

∂θSt

]
. (1.A.14)

We follow the same approximation argument for the last term in equation (1.A.14)

to obtain the following equation in analogy to equation (1.A.11):

1− (ρ+ ς) ≈ EP
t

[
m∗t,t+1Rt,t+1(1 + ρ · sgn(∆θSt+1))

]
+
λMC
t

u′(ct)
µSt . (1.A.15)

25The envelop theorem yields ∂Vt+1/∂Wt+1 = u′(ct+1) +λMC
t+1 = u′(ct+1)(1 +λMC

t+1 /u
′(ct+1)). The

“approximation coefficient,” 1+λMC
t+1 /u

′(ct+1), is close to one given the estimate of the shadow price
of the margin constraints, which is at most about 0.8% per month (see the discussion in Section
1.3.3).
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This time, we use the inequality 1 + ρ · sgn(∆θSt+1) ≤ 1 + ρ and obtain

1− (ρ+ ς) . (1 + ρ)EP
t [m

∗
t,t+1Rt,t+1] +

λMC
t

u′(ct)
µSt . (1.A.16)

Then, some more algebra proves the left inequality in equation (1.34).

Note that the approximate equality holds at (1.A.12) for the upper bound ((1.A.16)

for the lower bound) when sgn(∆θSt+1) = −1 (sgn(∆θSt+1) = 1) almost surely. This

means that CFER attains the maximum (minimum) possible value when the agent

expects to sell (buy) the stock in the next period for sure. Such a situation may arise

when the stock market-maker is forced to increase (decrease) her stock inventory

drastically due to large selling (buying) pressure at time t and hence she wishes to

decrease (increase) the stock inventory level in the next period for sure. In sum, the

extreme CFER value occurs when the agent expects to unwind her time t trading

in the next period for sure. In this case, she demands CFER to deviate at least by

the round-trip transaction costs for compensating the contemporaneous and expected

future transaction costs. Our discussion here is a generalization of He and Modest’s

(1995) result, where they implicitly assume that the agent always unwinds her position

taken at time t in the next period.

Finally, the latter statement of Proposition (equation (1.35)) follows from the

inequality range, equation (1.34). 2

1.B CFER estimation: Effect of frictions on op-

tions

Theorem 1.2.2 shows that CFER equals the sum of the model-free CFERMF
t,t+1(K)

term and the effect of frictions on the synthetic stock Ut,t+1(K) + Tt,t+1(K), where

Ut,t+1(K) represents the effect of constraints on allocations and Tt,t+1(K) represents

the effect of transaction costs for trading options. In this Section, we provide necessary

material and discussion which complement our discussion in Sections 1.2.3 and 1.3.3.

Specifically, in Appendix 1.B.1, we explain how we assess the unobservable Ut,t+1(K),

which is proportional to M c
t (K) −Mp

t (K) (equation (1.16)). In Appendix 1.B.2, we

explain how we treat Tt,t+1(K) in our estimation framework.
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1.B.1 Estimation of Ut,t+1: Effect of constraints on options

1.B.1.1 Embedded leverage model

Frazzini and Pedersen (2012) document that option returns are lower (compared to the

covariance risk premium term) by 1.25% per month per unit of embedded leverage. In

line with their empirical findings, we model the CFER term arising due to the embed-

ded leverage effect as kΩt(K), where Ωt(K) is option’s embedded leverage and k is the

sensitivity of option returns to the embedded leverage. Call (put) option’s embedded

leverage is defined as Ωc
t(K) = |∆c

t(K)St/Ct(K)| (Ωp
t (K) = |∆p

t (K)St/Pt(K)|), where

∆c
t(K) (∆p

t (K)) is the call (put) option’s delta. Then, option returns are expressed

as

EP
t [R

c
t,t+1(K)]−R0

t,t+1 = −R0
t,t+1Cov

P
t (m∗t,t+1, R

c
t,t+1(K)) + kΩc

t(K),

EP
t [R

p
t,t+1(K)]−R0

t,t+1 = −R0
t,t+1Cov

P
t (m∗t,t+1, R

p
t,t+1(K)) + kΩp

t (K),
(1.B.1)

where Rc
t(K) = (St+1−K)+/Ct(K) and Rp

t (K) = (K−St+1)
+/Pt(K) are the return of

call and put options, respectively.26 Given that two equations in (1.B.1) are equivalent

to M c
t (K) = kCtΩ

c
t(K)/R0

t,t+1 and Mp
t (K) = kPtΩ

p
t (K)/R0

t,t+1, Ut,t+1(K) satisfies the

following equation under this embedded leverage model (the superscript EL stands

for “embedded leverage”):

UEL
t,t+1(K) = −

R0
t,t+1

St

(
kCt(K)Ωc

t(K)

R0
t,t+1

− kPt(K)Ωp
t (K)

R0
t,t+1

)
= k(|∆p(K)| −∆c(K)).

(1.B.2)

1.B.1.2 Margin constraints model

First, we prove equations (1.26) and (1.27). Given equation (1.22), it suffices to show

− 1

St
[µct(K)Ct(K)sgn(θct (K))− µpt (K)Pt(K)sgn(θpt (K))] = Et(K), (1.B.3)

where the sign function sgn(x) returns 1 (-1) if x is positive (negative). We can

further calculate the left-hand side of equation (1.B.3) for each one of four possible

combinations of the signs of θct (K) and θpt (K) as follows.

When θct (K) > 0 and θpt (K) > 0, the margin rule is µct(K) = µpt (K) = 1 and

26For simplicity, we abstract from option transaction costs based on our discussion in Section
1.2.5.2.
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the left-hand side of equation (1.B.3) boils down to (Ct − Pt)/St. When θct (K) <

0 and θpt (K) < 0, the margin rule are given by µct(K)Ct(K) = 0.2St − (K − St)
+

and µpt (K)Pt(K) = 0.2St − (St −K)+ under our assumption that 8/9 ≤ K/St ≤ 1.1.

Therefore, the left-hand side of equation (1.B.3) simplifies to

1

St

[
−(0.2St − (K − St)+) + (0.2St − (St −K)+)

]
= −St −K

St
. (1.B.4)

When θct (K) > 0 and θpt (K) < 0, the margin rule is µct(K) = 1 and µpt (K)Pt(K) =

0.2St − (St −K)+ and the left-hand side of equation (1.B.3) is calculated as

1

St

[
Ct + (0.2St − (St −K)+)

]
= 0.2 + [Ct − (St −K)+]/St. (1.B.5)

Finally, when θct (K) < 0 and θpt (K) > 0, the margin rule becomes µct(K)Ct(K) =

0.2St − (K − St)+ and µpt (K) = 1 and the left-hand side of equation (1.B.3) becomes

− 1

St

[
Pt + (0.2St − (K − St)+)

]
= −

(
0.2 + [Pt − (K − St)+]/St

)
. (1.B.6)

These complete the proof of equation (1.27). 2

Next, we prove that the spread between the uncollateralized and collateralized

bond rates coincides with R0
t,t+1λ

MC
t /u′(ct) if we extend our model to include both

the collateralized and uncollateralized risk-free bonds. Let Ru
t,t+1 be the return of the

uncollateralized bond and θut be the agent’s position on the uncollateralized bond.

The equations for the consumption (1.4) and the margin constraint (1.7) change to

ct = Wt − θ0t − θut − θSt St −
∑
K∈Kt

[
θct (K)Ct(K) + θpt (K)Pt(K)

]
− TCt(∆θt),

gMC
t (θt) = Wt − θut − |θSt |µSt St−

=
∑
K∈Kt

[
|θct (K)|µct(K)Ct(K) + |θpt (K)|µpt (K)Pt(K)

]
≥ 0,

respectively. For simplicity, we assume that no transaction costs are needed to trade

the risk-free bonds. Then, the first-order conditions of the collateralized bond (θ0t ) is

unchanged and given by 1 = EP
t [m

∗
t,t+1R

0
t,t+1], whereas the first order condition of the

uncollateralized bond (θut ) is 1 = EP
t [m

∗
t,t+1R

u
t,t+1]− λMC

t /u′(ct). From these two first

order conditions, we obtain Ru
t,t+1 −R0

t,t+1 = R0
t,t+1λ

MC
t /u′(ct). 2
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1.B.1.3 Why is Ut,t+1 negligible although market frictions affect option

returns?

Even though Frazzini and Pedersen (2012) and Hitzemann et al. (2017) document

that the embedded leverage effect and the margin constraints have a non-negligible

effect on option returns, respectively, our analysis suggests that these two types of

market frictions have a negligible effect on U t,t+1. This is possible due to the following

two reasons.

First, the findings in the previous literature on option returns suggest that the

ratios M c
t (K)/Ct(K) and Mp

t (K)/Pt(K) are not negligible. To see this point for the

case of call options (put options can be treated similarly), the transformation of the

first-order condition of the call option, equation (1.10), yields

EP
t [R

c
t,t+1(K)]−R0

t,t+1 = −R0
t,t+1Cov

P
t (m∗t,t+1, R

c
t,t+1(K))−R0

t,t+1

M c
t (K)

Ct(K)
+R0

t,t+1

∂TCt
∂θct (K)

Ct(K)
,

(1.B.7)

where the second term in the right-hand side denotes the effect of constraints on

call option returns. On the other hand, Ut,t+1(K) becomes small if M c
t (K)/St and

Mp
t (K)/St are small (equation (1.16)). These ratios are much smaller than the ratios

M c
t (K)/Ct(K) and Mp

t (K)/Pt(K) because the denominators of the former (the stock

price) is much larger than those of the latter (option prices).27 Therefore, it is possible

that the effect of market frictions on option returns is not negligible, yet Ut,t+1(K) is

negligible.

Second, Ut,t+1(K) is proportional to the difference between M c
t (K) and Mp

t (K)

and hence they would mostly offset each other in the case where they have the same

sign and they are of similar size. Their signs are always the same for the embedded

leverage effect model because M c
t (K) = k∆c

t(K) and Mp
t (K) = k|∆p

t (K)| always

have the same sign (see equation (1.B.2)). For the margin constraints model, M c
t (K)

and Mp
t (K) have the same sign when the agent’s allocations to call and put options

have the same sign. We find that call option and put options’ “expensiveness” are

strongly correlated, and hence the signs of θct (K) and θpt (K) determined based on

equation (1.36) are the same for approximately 90% of call and put option pairs used

27For example, Ct(K)/St is less than 0.05 for a one-month at-the-money option price under the
Black and Scholes (1973) model when a typical value of 40% for equity’s volatility is used.
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to estimate AVE-CM CFER, regardless of the three choices of the threshold value s.

Moreover, the degree of the offsetting effect is stronger for near at-the-money (ATM)

options because the absolute value of the delta of call and put options are similar,

and the amount of margins required for call and put options are similar when the

sign of allocations to them (θct and θpt ) are the same. These results suggest that the

offsetting effect between M c
t (K) and Mp

t (K) reduces the size of Ut,t+1(K) for most of

the cases, especially for near ATM options which we use in the estimation of CFER.

1.B.2 Transaction costs for trading options and option mid-

prices

1.B.2.1 A theoretical approximation

For brevity, we describe the model for call prices. Put prices are described similarly.

We assume that the agent in our model is an option market-maker. In line with

the theoretical model considered in Muravyev (2016), we assume that the bid and

ask option prices Cbid
t (K) and Cask

t (K), respectively, are the end-of-period pre-trade

price set by the market-maker conditional on getting a fixed moderate size trade x.

These are given by

Cbid
t (K) = EP

tb
[m∗t,t+1(θt + x)(St+1 −K)+] +M c

t (K)− ϕx+ ϑbt ,

Cask
t (K) = EP

ta [m
∗
t,t+1(θt − x)(St+1 −K)+] +M c

t (K) + ϕx+ ϑat ,
(1.B.8)

where EP
tb

(EP
ta) denotes the conditional expectation given the information up to time

t and getting a sell (buy) order and ϕ ≥ 0 is the unit fixed costs. The terms ϑbt and

ϑat represent microstructure noise caused by tick size and other frictions in the bid

and ask price, respectively, and assumed to be zero mean random variables which are

uncorrelated with other variables.

Let CexTC
t (K) = EP

t [m
∗
t,t+1(θt)(St+1 −K)+] + M c

t (K) be the ex-transaction costs

call price. Then,

Cbid
t (K) = CexTC

t (K) + Ibidt (K) + J bidt (K)− ϕx+ ϑbt ,

Cask
t (K) = CexTC

t (K) + Iaskt (K) + Jaskt (K) + ϕx+ ϑat ,
(1.B.9)
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and Ibidt (K) and Iaskt (K) denote the adverse selection risk part,

Ibidt (K) = EP
tb

[m∗t,t+1(θt + x)(St+1 −K)+]− EP
t [m

∗
t,t+1(θt + x)(St+1 −K)+],

Iaskt (K) = EP
ta [m

∗
t,t+1(θt − x)(St+1 −K)+]− EP

t [m
∗
t,t+1(θt − x)(St+1 −K)+],

(1.B.10)

while J bidt (K) and Jaskt (K) denote the inventory risk part,

J bidt (K) = EP
t [(m

∗
t,t+1(θt + x)(St+1 −K)+ −m∗t,t+1(θt)(St+1 −K)+],

Jaskt (K) = EP
t [(m

∗
t,t+1(θt − x)(St+1 −K)+ −m∗t,t+1(θt)(St+1 −K)+].

(1.B.11)

Then, the mid-call price Cmid
t (K) = (Cask

t (K) + Cbid
t (K))/2 equals

Cmid
t (K) = CexTC

t (K)+
Ibidt (K) + Iaskt (K)

2
+
J bidt (K) + Jaskt (K)

2
+
ϑbt + ϑat

2
. (1.B.12)

Under the standard assumption in the market microstructure literature that the bid

and ask prices are linear in the impact of the order flow (see Muravyev, 2016 and

references therein), it follows that Ibidt (K) ≈ −Iaskt (K). Moreover, for a moderate

size of expected trade x, the first-order Taylor series approximation of the IMRS

parts m∗t,t+1(θt + x) and m∗t,t+1(θt − x) around θt shows that the inventory risk part

is also symmetric in the first-order approximation level, that is, J bidt (K) ≈ −Jaskt (K).

Note also that the fixed costs part ϕ does not appear in equation (1.B.12) in line with

Muravyev (2016); this shows that the fixed costs part does not affect the mid-option

price albeit it is documented to be the biggest part of the bid-ask spread. This leads

to the following approximation:

Cmid
t (K) ≈ CexTC

t (K) +
ϑbt + ϑat

2
, (1.B.13)

that is, apart from random microstructure noise caused by tick size and other frictions,

the mid-option price provides a good approximation of the ex-transaction costs option

price.

1.B.2.2 Evaluation of measurement errors: Simulation results

To reinforce that the mid-option price is approximately equal to the ex-transaction

costs option price, we assess the size of the market microstructure error terms in
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equation (1.B.13) by employing a simulation setting when the AVE-CM CFER needs

to be calculated. We assume that ϑat and ϑbt follow a zero-mean i.i.d. uniform distri-

bution over [−d/2, d/2], where d > 0 is the option tick size. This setup is in line with

Bliss and Panigirtzoglou (2002) and Dennis and Mayhew (2009), who assume that

observed option prices contain zero-mean measurement errors arising from various

frictions such as illiquidity and discrete option price quotes; if the true option price is

rounded to the nearest discrete quote, the maximal size of the measurement error is

d/2. The market microstructure term in the estimated AVE-CM CFER is the average

of 4N i.i.d. uniform random variables scaled by R0
t,t+1/St when N pairs of call and

put options are used; each call and put option pair involves four measurement error

variables (errors in the bid and ask prices of call and put option, respectively). We

calculate the probability distribution of this error term numerically.

In our dataset, the one-month risk-free rate is on average R0
t,t+1 = 1.002 (i.e., 20

bps per month), the median stock price is around St = $30. The median number of

pairs of call and put options used to estimate AVE-CM CFER is N = 3. We follow

Dennis and Mayhew (2009) and set d to $0.1, which is the biggest possible tick size of

option quotes according to the CBOE contract specifications. Then, we find that the

magnitude of the market microstructure noise term in AVE-CM CFER is less than

4.6 bps with probability greater than 90%.28 Given that the AVE-CM CFER ranges

from -1.24% to +0.89% per month in a 5th to 95th percentile range (see Table 1.1),

we conclude that the simulated bias of the microstructure noise stemming from the

last term in equation (1.B.13) is negligible.

Furthermore, we examine an alternative, more conservative setup where the in-

formation risk and the inventory risk components are not necessarily symmetric. In

this situation, the maximum size of the measurement error in the mid-price (i.e., the

last three terms in equation (1.B.12) altogether) is the half of the bid-ask spread. To

assess the size of the measurement error in AVE-CM CFER under this situation, we

assume that the measurement error in each option follows a zero-mean i.i.d. uniform

distribution over [−d/2, d/2], where d is now set to the half of the bid-ask spread. The

measurement error term in the estimated AVE-CM CFER is the average of 2N i.i.d.

uniform random variables (errors in the mid call and put prices, respectively) scaled

28For simplicity, we assume that the equally-weighted average is taken across strikes and two
maturities.
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by R0
t,t+1/St. We set d = $0.25, which is the average bid-ask spread of the options we

use for the calculation of AVE-CM CFER. We find that the measurement error term

in AVE-CM CFER is less than 16 bps with probability greater than 90%, which is

still negligible compared to the magnitude of AVE-CM CFER.

1.C Description of variables

Relative bid-ask spread (BAS): We calculate the daily relative bid-ask spread

as BASid = (Sask,id −Sbid,id )/(0.5(Sask,i +Sbid,i)). Then, we average the daily bid-

ask spread over the past one year. We require there are at least 200 non-missing

observations. Data are obtained from the CRSP database.

Amihud’s illiquidity measure: We calculate daily Amihud’s (2002) illiquidity

measure as the ratio of the absolute daily return to the dollar trading volume,

Illiqid = |Ri
d|/(SidV olid), where Ri

d and V olid are the daily return and the trading

volume of i-th stock on day d. Then, we average daily illiquidity measure over

the past one year. We require there are at least 200 non-missing observations.

The stock returns, stock prices, and trading volumes are obtained from the

CRSP database. The trading volume of the NASDAQ equities is adjusted by

following Gao and Ritter (2010).

SIZE: Size is the natural logarithm of the market equity. The market equity is

calculated as the product of the number of outstanding share with the price of

the stock at the end of each month. Data are obtained from the CRSP database.

Idiosyncratic volatility (IVOL): In each month, we regress the daily excess

returns over the past 12 months on the Fama and French (1993) three factors to

obtain the residual time-series εid. Then, we calculate the idiosyncratic volatility

(IVOL) as

IV OLit =

√
1

N(d)− 1

∑
d∈D

(εid)
2,

where D is the set of non-missing days in the past 12 months. We require there

are at least 200 non-missing observations. Stock return data are obtained from

the CRSP database and the Fama and French (1993) three factors data are
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obtained from Kenneth French’s website.

Beta: In each month, we regress daily stock excess returns over past 12 months

on the daily excess market return to obtain the beta. We require there are

at least 200 non-missing observations. Stock return data are obtained from the

CRSP database. We use the excess market return provided at Kenneth French’s

website.

Relative short interest (RSI): The relative short interest (RSI) is calculated

as the ratio of the number of short interest to the number of outstanding share.

The short interest data is obtained from the Compustat North America, Supple-

mental Short Interest File via the WRDS. Until the end of 2006, the Compustat

records the short interest at the middle of any given month (typically 15th day

of each month). Since 2007, the short interest file contains the short interest at

the middle of months and the end of months. We use the end-of-month short

interest data since 2007 because we sort stocks in portfolios at the end-of-each

month in our analysis. The number of outstanding share is obtained from the

CRSP database.

Estimated shorting fee (ESF): We follow Boehme et al. (2006) to calculate

the estimated shorting fee as

ESF = 0.07834 + 0.05438 · V RSI − 0.00664 · V RSI2 + 0.000382 · V RSI3

− 0.5908 ·Option+ 0.2587 ·Option · V RSI

− 0.02713 ·Option · V RSI2 + 0.0007583 ·Option · V RSI3,

where V RSI is the vicile ranking of the RSI, that is, V RSI takes the value 1

if the firm’s RSI is below 5th percentile, 2 if the RSI is between 5th and 10th

percentile and so on. Option is a dummy variable that takes 1 if option trading

volume in the month is non-zero and takes 0 otherwise. Option trading volume

data is obtained from the OM database.

Book-to-Market equity (B/M): We follow Davis et al. (2000) to measure book

equity as stockholders’ book equity, plus balance sheet deferred taxes and invest-

ment tax credit (Compustat annual item TXDITC) if available, minus the book
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value of preferred stock. Stockholders’ equity is the value reported by Compus-

tat (item SEQ), if it is available. If not, we measure stockholders’ equity as the

book value of common equity (item CEQ) plus the par value of preferred stock

(item PSTK), or the book value of assets (item AT) minus total liabilities (item

LT). Depending on availability, we use redemption (item PSTKRV), liquidating

(item PSTKL), or par value (item PSTK) for the book value of preferred stock.

From June of each year t to May of t + 1, the book-to-market equity (B/M) is

calculated as the ratio of the book equity for the fiscal year ending in calendar

year t− 1 to the market equity at the end of December of year t− 1. We treat

non-positive B/M data as missing.

Profitability: We follow Fama and French (2015) to measure profitability as rev-

enues (Compustat annual item REVT) minus cost of goods sold (item COGS)

if available, minus selling, general, and administrative expenses (item XSGA) if

available, minus interest expense (item XINT) if available all divided by (non-

lagged) book equity. From June of year t to May of t+ 1, we assign profitability

for the fiscal year ending in calendar year t− 1.

Investment: We follow Fama and French (2015) to measure investment as the

change in total assets (Compustat annual item AT) from the fiscal year ending

in year t − 1 to the fiscal year ending in t, divided by t − 1 total assets. From

June of year t to May of t + 1, we assign investment for the fiscal year ending

in calendar year t− 1.

Turnover rate: We calculate daily turnover rate as the ratio of trading volume

to the number of outstanding share. Then, we average daily turnover rate over

the past one year. We require there are at least 200 non-missing observations.

Trading volume and the number of outstanding share are obtained from the

CRSP database. The trading volume of the NASDAQ equities is adjusted by

following Gao and Ritter (2010).

Implied-volatility spread (IVS): We follow Bali and Hovakimian (2009) to

construct IVS. Specifically, we keep IV data for options which have (i) posi-

tive bid price, (ii) positive open interest, (iii) bid-ask spread is smaller than
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50% of the mid price. Then, we average all available IVS extracted from op-

tions with maturities between 30 days and 91 days and with the absolute value

of the log moneyness | log(K/S)| smaller than 0.1.

DOTS: We follow Goncalves-Pinto et al. (2019) to keep pairs of call and put

options with the same maturity and strike if (i) their day-to-maturity is between

8-days and 31-days, (ii) their IV does not exceed 250%, (iii) their bid prices are

strictly positive and (iv) their open interest is greater than zero.

On each end of month t, DOTS of i-th stock at j-th strike price is calculated as

follows:

DOTSit,j =

Si,Uj +Si,Lj
2

− Sit
Sit

,

where Si,Uj = Ci,ask
t (Kj) − P i,bid

t (Kj) + Kj + PV Di
t and Si,Lj = Ci,bid

t (Kj) −

P i,ask
t (Kj) + PV Ki

t,j. PV Di
t and PV Ki

t,j are the present value of dividend

payments and the strike price Kj. Then, DOTS of i-th stock in month t is

calculated as

DOTSit = 100 ·
J∑
j=1

CPBASit(Kk)
−1∑J

k=1CPBAS
i
t(Kj)−1

DOTSit,j,

where CPBASit(K) = Ci,ask
t (K)− Ci,bid

t (K) + P i,ask
t (K)− P i,bid

t (K) is the sum

of call and put option bid-ask spreads for i-th stock at strike K and J is the

number of option pairs. Option and dividend data are obtained from the OM

database.

1.D The risk-free bond market with market fric-

tions

In the main body, we assume that market frictions have no effect on the risk-free bond

to keep the exposition simple. In this Appendix, we provide the extended model where

we relax this assumption. Then, we show that this modification has a negligible effect

on our model-free CFER measure. This justifies our approach in the main model to

employ a simplifying assumption regarding the effect of frictions on the risk-free bond

market.
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1.D.1 The generalized definition of CFER

For simplicity, we assume that trading the risk-free bond does not incur transaction

costs. This is a reasonable approximation because transaction costs for trading the

risk-free bond is much smaller than those for trading individual stocks and options.

Therefore, in what follows, the effect of market frictions means the effect originated

from the constraints on the allocation (equation (1.6)). In the case where market fric-

tions affect the risk-free bond, the first-order condition for the bond price is analogous

to equation (1.9) and it is given by

1 = EP
t [m

∗
t,t+1R

0
t,t+1] +M0

t,t+1, (1.D.1)

where M0
t,t+1 =

[∑L
l=1 λ

l
t∂g

l
t(θt)/∂θ

0
t

]
/u′(ct). By defining R̃0

t,t+1 = 1/EP
t [m

∗
t,t+1], equa-

tion (1.D.1) can be transformed into

R̃0
t,t+1 −R0

t,t+1 = R̃0
t,t+1M

0
t,t+1. (1.D.2)

The difference R̃0
t,t+1−R0

t,t+1 can be interpreted as the effect of frictions on the risk-free

rate. Consistent with this interpretation, equation (1.D.2) shows that R̃0
t,t+1 = R0

t,t+1

holds if and only if the effect of frictions on the risk-free bond is zero (i.e., M0
t,t+1 = 0).

By using the new expression for EP
t [m

∗
t,t+1] to transform the Euler equation (1.9),

the asset pricing equation is generalized to

EP
t [Rt,t+1]−R0

t,t+1 = −
CovPt (m∗t,t+1, Rt,t+1)

EP
t [m

∗
t,t+1]

+ (R̃0
t,t+1 −R0

t,t+1)

−
R̃0
t,t+1

St

(
MS

t,t+1 −
∂TCt
∂θSt

+
β

u′(ct)
EP
t

[
∂Vt+1

∂θSt

])
.

(1.D.3)

Since CFER is the part of the expected return which is not explained by the covariance

risk premium, the definition of CFER is generalized to

CFERt,t+1 = −R̃0
t,t+1

NS
t

St
+ (R̃0

t,t+1 −R0
t,t+1), where (1.D.4)

NS
t = MS

t −
∂TCt
∂θSt

+ βEP
t

[
∂Vt+1

∂θSt

]
. (1.D.5)

Note that equation (1.D.4) nests the definition of CFER presented in the main

body of this Chapter; in the case where the risk-free rate is not affected by frictions,
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the equality R̃0
t,t+1 = R0

t,t+1 holds and equation (1.D.4) boils down to equation (1.12).

Moreover, this generalization of the definition of CFER does not affect the cross-

sectional variation in CFER because R̃0
t,t+1 − R0

t,t+1 is common across all stocks; the

variation in CFER is determined again by the value of the first term in equation

(1.D.4) just as it was the case with the definition of CFER in the main body. As a

result, the evidence on the cross-sectional predictability of CFER presented in Section

1.4 is not affected by assuming that there is no effect of market frictions on the risk-free

bond market.

1.D.2 Scaled deviations from put-call parity

For the ease of exposition, in what follows we fix K and suppress the strike argument

K in option-related terms. Under the generalized framework, the synthetic stock price

S̃t = Ct − Pt + (K +Dt+1)/R
0
t,t+1 becomes

S̃t = EP
t [m

∗
t,t+1(St+1 +Dt+1)] + (M c

t −M
p
t )−

(
∂TCt
∂θct

− ∂TCt
∂θpt

)
+

(
1

R0
t,t+1

− 1

R̃0
t,t+1

)
(K +Dt+1).

(1.D.6)

The last term in the right-hand side of equation (1.D.6) reflects the fact that the effect

of frictions on the risk-free bond transmits to the synthetic stock price because the

synthetic stock position involves the investment in the risk-free bond by the amount

of K +Dt+1. Then, taking the difference between St and S̃t yields

St− S̃t = NS
t − (M c

t −M
p
t )+

(
∂TCt
∂θct

− ∂TCt
∂θpt

)
−
R̃0
t,t+1 −R0

t,t+1

R0
t,t+1R̃

0
t,t+1

(K+Dt+1). (1.D.7)

Scaling the both sides of equation (1.D.7) by −R0
t,t+1/St yields

CFERMF
t,t+1 =

R0
t,t+1

St
(S̃t − St)

= −R0
t,t+1

NS
t

St
− Ut,t+1 − Tt,t+1 +

(
R̃0
t,t+1 −R0

t,t+1

) K +Dt+1

R̃0
t,t+1St

,
(1.D.8)

where Ut,t+1(K) and Tt,t+1(K) is the same as in Theorem 1.2.2. Then, subtracting
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equation (1.D.8) from (1.D.4) and rearranging terms yields

CFERt,t+1 = CFERMF
t,t+1+Ut,t+1+Tt,t+1−(R̃0

t,t+1−R0
t,t+1)

[
K +Dt+1

R̃0
t,t+1St

− 1 +
NS
t,t+1

St

]
.

(1.D.9)

Equation (1.D.9) shows that CFERt,t+1 now contains an additional unobservable

term

− (R̃0
t,t+1 −R0

t,t+1)

[
K +Dt+1

R̃0
t,t+1St

− 1

]
︸ ︷︷ ︸

A1

− (R̃0
t,t+1 −R0

t,t+1)
NS
t,t+1

St︸ ︷︷ ︸
A2

(1.D.10)

in addition to Ut,t+1 and Tt,t+1 terms (see equation (1.20)).

1.D.3 The evaluation of the additional term

In what follows, we demonstrate that the additional terms in equation (1.D.10) due to

a non-zero effect of frictions to the risk-free bond market is negligible. Therefore, the

model-free CFER (i.e., scaled deviations from put-call parity) still proxies the true

CFER accurately even when we allow the risk-free bond to be affected by frictions.

We begin by discussing a plausible value for R̃0
t,t+1 − R0

t,t+1, which measures the

size of the effect of market frictions on the risk-free rate. The effect of frictions on the

risk-free rate has been studied extensively from the perspective of the risk-free rate

puzzle; the empirically observed risk-free is too low given standard theoretical models

with plausible values for the preference parameters. A strand of studies consider a

model with market frictions, especially the borrowing constraints, which makes the

observed risk-free rate (i.e., R0
t,t+1) lower than R̃0

t,t+1. The consensus in this literature

is that R̃0
t,t+1 −R0

t,t+1 > 0.

However, there is no consensus on its empirical magnitude. Kogan et al. (2007)

consider a borrowing constraints model and report a calibrated simulation result that

the short-term risk-free rate is lowered possibly by 1.5% per year. Constantinides et al.

(2002) calibrate their borrowing constrained model and report that the borrowing

constraints lower the long-term bond rate by about 4% to 6% per year. Even though

this value is much higher than that in Kogan et al. (2007), it may be due to the

difference in the maturity of bond under consideration. Heaton and Lucas (1996)

examine whether borrowing constraints and transaction costs can solve the equity
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risk premium puzzle and the risk-free rate puzzle simultaneously. They report that

unrealistically large transaction costs are necessary to decrease the risk-free rate to

solve the risk-free rate puzzle, and in such a case, the model’s risk-free rate decreases

by about 4% per year. Given these results in the previous literature, we set R̃0
t,t+1 −

R0
t,t+1 to 0.5% per month (6% per year) in the subsequent discussion.

Now, we evaluate A1 and A2 in equation (1.D.10) separately. First, we transform

A1 as

A1 =
R̃0
t,t+1 −R0

t,t+1

R̃0
t,t+1

[(
K

St
− 1 +

Dt+1

St

)
− (R̃0

t,t+1 − 1)

]
. (1.D.11)

Then, taking the absolute value and using R̃0
t,t+1 ≥ R0

t,t+1 ≥ 1 yields

|A1| ≤ |R̃0
t,t+1 −R0

t,t+1| ×
(∣∣∣∣KSt − 1

∣∣∣∣+
Dt+1

St
+ |R̃0

t,t+1 − 1|
)
. (1.D.12)

To further evaluate this inequality, recall that we use only near at-the-money options

(|K/St − 1| ≤ 0.1). Given a plausible yet conservative dividend yield of 4% per year,

Dt+1/St is about 0.01 (= 4%/4) because U.S. firms typically pay dividends quarterly.

The value of R̃0
t,t+1 − 1 = (R̃0

t,t+1 − R0
t,t+1) + (R0

t,t+1 − 1) is at most 1% per month

(i.e., R̃0
t,t+1 ≤ 1.01) under our numerical assumption on R̃0

t,t+1 − R0
t,t+1 because the

observed risk-free rate R0
t,t+1−1 is at most 0.5% per month during our sample period.

Therefore, we obtain

|A1| ≤ 0.5%× (0.1 + 0.01 + 0.01) ≈ 6 bps. (1.D.13)

Note that this is an upper bound and usually |A1| is much smaller because the mon-

eyness of options used is much closer to one (i.e., |K/St − 1| ≈ 0). Therefore, we can

conclude that the A1 term is negligible compared to the variation in the estimated

CFERMF
t,t+1.

Next, we evaluate A2. To this end, by ignoring the negligible Ut,t+1, Tt,t+1 and A1

terms in equation (1.D.9), we obtain the following approximation relation:

CFERMF
t,t+1 ≈ CFERt,t+1 + A2 = −R0

t,t+1

NS
t,t+1

St
+ (R̃0

t,t+1 −R0
t,t+1). (1.D.14)
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With some more algebra, we obtain the following approximation relation:

A2 = (R̃0
t,t+1 −R0

t,t+1)
NS
t,t+1

St
≈ −

(R̃0
t,t+1 −R0

t,t+1)

R0
t,t+1

CFERMF
t,t+1 +

(R̃0
t,t+1 −R0

t,t+1)
2

R0
t,t+1

.

(1.D.15)

Under the assumption of R̃0
t,t+1 − R0

t,t+1 = 0.5%, the value of the second term in the

right-hand side of equation (1.D.15) is negligible (0.25 bps). The first term in the

right-hand side of equation (1.D.15) is proportional to CFERMF
t,t+1 by the factor of

(R̃0
t,t+1 − R0

t,t+1)/R
0
t,t+1 ≈ 0.5%. Therefore, this term results in a negligible relative

error; when |CFERMF
t,t+1| is smaller than 3%, it results in at most only 1.5 bps of

absolute error.29 All in all, we conclude that A2 is negligible.

To sum up, the additional term in the CFERMF
t,t+1 formula caused by the effect of

frictions on the risk-free rate, equation (1.D.10), is negligible. Therefore, the model-

free CFER (i.e., the scaled deviations from put-call parity) is still a good proxy of the

true CFER even when market frictions affect the risk-free bond market.

29The 1st percentile to 99th percentile range of AVE-CM CFER is from -2.9% to +2.1%. Therefore,
|CFERMF

t,t+1| ≤ 3% holds for almost all samples except a small number of outliers.
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Figure 1.1. Time Series of the monthly IQR of AVE-CM CFER

Figure 1.1a illustrates the time-series of the monthly median (solid line), the 25th and
75th percentile points (two dotted lines) of AVE-CM CFER. Figure 1.1b illustrates
the time-series of the monthly IQR (difference between the 75th and 25th percentile
points) of AVE-CM CFER. At the end of each month, we calculate the median, 25th
and 75th percentile points, and IQR of the individual stocks’ AVE-CM CFER values.
The unit of the y-axis is % per 30-day. The estimation period spans January 1996 to
April 2016 (244 months).
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Table 1.1. Estimated CFER: Summary statistics

Entries in Panel A report the summary statistics of the estimated model-free CFER at the end of

each month for the four different ways of estimating CFER. These are denoted by a combination

of the method of choosing strikes (AVE or ATM) and the method of choosing maturities (CM or

CLS) of options. In AVE methods, (1) and (3), we average CFER across available strikes, whereas

in ATM methods, (2) and (4), we choose the strike closest to the forward price. In CM methods,

(1) and (2), we interpolate CFER across the estimated CFER of traded maturities to obtain a 30-

day constant maturity CFER, while in CLS methods, (3) and (4), we choose the traded maturity

closest to 30 days. The row for N reports the total number of month-stock CFER observations,

the row for IQR reports the interquartile range (75th minus 25th percentile values), and the last

row, % of CFER < 0, reports the proportion of observations with negatively estimated CFER. The

estimation period spans January 1996 to April 2016 (244 months). The unit of statistics (except

skewness, kurtosis, and % of CFER < 0) is % per 30-day. Entries in Panel B report the pairwise

Pearson correlation coefficients between the four estimated CFER measures.

Panel A: Summary statistics of CFER
(1) AVE-CM (2) ATM-CM (3) AVE-CLS (4) ATM-CLS

N 333,234 333,234 347,073 347,073
mean -0.09 -0.09 -0.10 -0.10
standard deviation 0.88 0.89 1.09 1.10
skewness -1.95 -1.88 -1.59 -1.53
kurtosis 69.32 68.92 69.97 69.20
minimum -27.67 -27.67 -35.60 -35.60
5th percentile -1.24 -1.25 -1.54 -1.55
Median -0.04 -0.04 -0.04 -0.04
95th percentile 0.89 0.89 1.14 1.15
maximum 24.96 24.96 32.72 32.72
IQR 0.47 0.46 0.60 0.60
% of CFER< 0 55.3% 55.1% 54.9% 54.6%

Panel B: Correlation between different measures of CFER
(1) AVE-CM (2) ATM-CM (3) AVE-CLS (4) ATM-CLS

(1) AVE-CM 1
(2) ATM-CM 0.986 1
(3) AVE-CLS 0.989 0.974 1
(4) ATM-CLS 0.973 0.989 0.984 1
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Table 1.2. AVE-CM CFER-sorted decile portfolios: Cross-sectional predictability

Entries in Panel A report the average CFER, average post-ranking return and results for the risk-adjusted returns (α) of the AVE-CM CFER-sorted value-

weighted decile portfolios and the spread portfolio, with respect to the CAPM and Carhart (1997) four-factor model. On the last trading day of each month

t, stocks are sorted in ascending order based on AVE-CM CFER and then value-weighted decile portfolios are formed. We then calculate the return of these

portfolios and the spread portfolio in the succeeding month-(t+ 1). Entries in Panel B report the average CFER, average post-ranking return and alphas of the

AVE-CM CFER-sorted equally-weighted decile portfolios and the spread portfolio. The estimation period spans January 1996 to April 2016 (244 months) for

both Panels. t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in parentheses. The unit of the average returns and alphas (average

CFER) is % per month (30-day). N is the average number of stocks in each decile portfolio.

AVE-CM CFER-sorted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Value-weighted portfolios
Ave. CFER -1.31 -0.53 -0.31 -0.18 -0.09 -0.01 0.07 0.18 0.36 0.93 2.24
Ave. return -0.18 0.23 0.54 0.49 0.79 0.89 0.99 0.92 1.15 1.46 1.64

(-0.36) (0.60) (1.58) (1.64) (2.57) (2.82) (3.20) (2.73) (3.19) (3.38) (5.77)
αCAPM -1.15 -0.58 -0.23 -0.25 0.04 0.13 0.24 0.13 0.33 0.55 1.70

(-5.69) (-3.41) (-1.96) (-2.47) (0.42) (1.29) (2.30) (1.16) (2.30) (2.77) (5.91)
αFFC -1.11 -0.62 -0.26 -0.23 0.00 0.12 0.24 0.18 0.44 0.75 1.86

(-6.52) (-3.74) (-2.28) (-2.28) (0.02) (1.16) (2.38) (1.50) (2.54) (3.52) (6.56)
N 134.9 135.0 134.9 135.1 134.7 135.3 134.9 135.0 134.9 135.0 —

Panel B: Equally-weighted portfolios
Ave. CFER -1.58 -0.55 -0.32 -0.19 -0.09 -0.01 0.07 0.18 0.37 1.14 2.73
Ave. return -0.35 0.49 0.65 0.76 0.86 0.97 0.93 1.02 1.08 1.38 1.73

(-0.65) (1.09) (1.54) (1.94) (2.24) (2.62) (2.42) (2.58) (2.49) (2.76) (9.10)
αCAPM -1.41 -0.46 -0.24 -0.12 0.00 0.11 0.07 0.12 0.14 0.35 1.76

(-5.62) (-2.63) (-1.59) (-0.86) (0.01) (0.97) (0.63) (1.00) (0.77) (1.53) (9.60)
αFFC -1.31 -0.45 -0.27 -0.10 -0.04 0.07 0.04 0.13 0.17 0.50 1.81

(-9.61) (-3.79) (-2.55) (-0.99) (-0.47) (0.79) (0.40) (1.48) (1.41) (2.61) (9.42)
N 134.9 135.0 134.9 135.1 134.7 135.3 134.9 135.0 134.9 135.0 —
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Table 1.3. AVE-CM Full CFER-sorted decile portfolios: Cross-sectional
predictability

Entries report the average return and the five risk-adjusted returns (α’s) with respect to the CAPM,

Fama and French (1993) three-factor model, Carhart (1997) four-factor model, Fama and French

(2015) five-factor model, and Stambaugh and Yuan (2017) mispricing-factor model, of the spread

portfolio of the CFER-sorted value-weighted decile portfolios. The first two rows report the results

based on the model-free AVE-CM CFER, which ignores Ut. Panel A shows the results based on

the fully-estimated CFER, where Ut is estimated based on the embedded leverage model. Panel B

shows the results based on the fully-estimated CFER, where Ut is estimated based on the margin

constraints model. For the margin constraints model, we consider nine alternative fully-estimated

AVE-CM CFER. Each one of the nine alternative CFERs corresponds to the value of R0
t,+1λ

mc
t

and the value of the reference point of the option expensiveness s, which determines the value of

Et(K). The analysis spans January 1996 to April 2016 (244 months). t-statistics are adjusted

for heteroscedasticity and autocorrelation and reported in the parentheses. The t-statistics of the

difference between the baseline result and each one of the fully-estimated CFER-sorted results are

reported in square brackets. The unit of all variables is % per 30 days.

Ave. Ret αCAPM αFF3 αFFC αFF5 αSY
Panel A: Embedded leverage model

Baseline result 1.64 1.70 1.78 1.86 1.58 1.70
(5.77) (5.91) (6.36) (6.56) (5.63) (5.21)

Fully-estimated 1.54 1.61 1.66 1.75 1.41 1.56
(6.22) (6.37) (6.30) (6.71) (5.98) (5.63)
[-0.60] [-0.53] [-0.74] [-0.66] [-0.95] [-0.76]

Panel B: Margin constraints model

R0
t,t+1ψ = s = 0.00 1.58 1.64 1.75 1.83 1.49 1.63

10% per year (5.28) (5.30) (5.95) (6.16) (5.45) (4.84)
[-0.56] [-0.50] [-0.27] [-0.23] [-0.72] [-0.42]

s = 0.01 1.61 1.66 1.77 1.85 1.50 1.65
(5.42) (5.36) (5.99) (6.25) (5.56) (4.94)
[-0.25] [-0.31] [-0.11] [-0.08] [-0.55] [-0.26]

s = 0.02 1.73 1.79 1.89 1.97 1.65 1.78
(5.58) (5.49) (6.03) (6.35) (5.66) (5.07)
[0.82] [0.73] [0.84] [0.68] [0.45] [0.42]

R0
t,t+1ψ = s = 0.00 1.57 1.63 1.71 1.76 1.49 1.56

5% per year (5.46) (5.55) (6.14) (6.09) (5.54) (5.12)
[-0.94] [-0.99] [-0.91] [-1.03] [-0.98] [-1.12]

s = 0.01 1.63 1.69 1.79 1.85 1.53 1.65
(5.52) (5.42) (5.97) (6.28) (5.46) (4.95)
[-0.10] [-0.12] [0.07] [-0.04] [-0.44] [-0.30]

s = 0.02 1.69 1.76 1.86 1.93 1.62 1.76
(5.54) (5.61) (6.15) (6.43) (5.63) (5.20)
[0.55] [0.59] [0.72] [0.49] [0.27] [0.34]

R0
t,t+1ψ = s = 0.00 1.60 1.66 1.74 1.78 1.49 1.56

Time-varying (5.50) (5.65) (6.20) (6.18) (5.42) (5.09)
[-0.64] [-0.69] [-0.70] [-0.86] [-1.06] [-1.14]

s = 0.01 1.60 1.66 1.74 1.78 1.50 1.57
(5.54) (5.70) (6.24) (6.19) (5.46) (5.15)
[-0.58] [-0.63] [-0.65] [-0.87] [-0.96] [-1.09]

s = 0.02 1.64 1.71 1.79 1.82 1.55 1.62
(5.59) (5.74) (6.24) (6.16) (5.55) (5.20)
[0.10] [0.10] [0.10] [-0.42] [-0.39] [-0.64]



Table 1.4. CFER-adjusted excess returns: Alphas of CFER-sorted portfolios

Entries in Panel A report the intercepts αCAPM and αFFC of the regressions of CFER-adjusted excess returns Rt,t+1 − R0
t,t+1 − CFERt,t+1 on a set of risk

factor(s) of the CAPM and Carhart (1997) four-factor model, respectively (i.e., equation (1.32)). On the last trading day of each month t, stocks are sorted in

ascending order based on AVE-CM CFER and then value-weighted decile portfolios are formed. We then calculate the average CFER as well as the return in

the succeeding month-(t + 1) of these portfolios and the spread portfolio to calculate the CFER-adjusted excess return. Entries in Panel B report αCAPM and

αFFC , where we eliminate CFER observations below 1st percentile and above 99th percentile point. Entries in Panel C report αCAPM and αFFC , where we form

quintile portfolios instead of the decile portfolios. The estimation period spans January 1996 to April 2016 (244 months) for all Panels. t-statistics are adjusted

for heteroscedasticity and autocorrelation and reported in the parentheses. The unit of all variables is % per month.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Decile sort with all available CFER
αCAPM 0.17 -0.05 0.08 -0.07 0.14 0.15 0.17 -0.04 -0.02 -0.37 -0.55

(0.94) (-0.29) (0.70) (-0.66) (1.41) (1.42) (1.65) (-0.38) (-0.14) (-1.95) (-2.31)
αFFC 0.22 -0.08 0.05 -0.05 0.10 0.13 0.17 0.00 0.09 -0.16 -0.39

(1.44) (-0.50) (0.45) (-0.48) (1.01) (1.31) (1.68) (0.04) (0.49) (-0.79) (-1.57)
Panel B: Decile sort where CFER below 1st or above 99th percentile are eliminated

αCAPM 0.02 0.00 0.11 -0.02 0.11 0.12 0.13 0.06 -0.02 -0.33 -0.36
(0.13) (0.02) (1.03) (-0.16) (1.18) (1.12) (1.26) (0.52) (-0.14) (-1.78) (-1.57)

αFFC 0.03 -0.02 0.09 0.00 0.08 0.09 0.13 0.08 0.09 -0.16 -0.19
(0.18) (-0.12) (0.91) (0.05) (0.80) (0.94) (1.32) (0.79) (0.52) (-0.84) (-0.88)

Panel C: Quintile sort with all available CFER
AVE-CM CFER-sorted value-weighted quintile portfolios Spread

1 (Lowest) 2 3 4 5 (Highest) 5-1
αCAPM 0.00 0.01 0.14 0.08 -0.17 -0.17

(-0.02) (0.15) (1.70) (1.00) (-1.29) (-0.85)
αFFC -0.01 0.01 0.11 0.09 -0.02 -0.01

(-0.08) (0.17) (1.46) (1.14) (-0.14) (-0.06)
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Table 1.5. Predictive power of CFERMF
t,t+1(K), Implied Volatility Spread

(IVS), and DOTS

Entries report the average return and five risk-adjusted returns (alphas) with respect to the CAPM,

Fama and French (1993) three-factor model, Carhart (1997) four-factor model, Fama and French

(2015) five-factor model, and Stambaugh and Yuan (2017) mispricing-factor model of the spread

portfolio of AVE-CM CFERMF
t,t+1(K), IVS and DOTS-sorted value-weighted decile portfolios. For

any given sorting criterion, t-statistics for each average return and alpha are reported within paren-

theses. t-statistics of the difference between the performance measures of the CFER-sorted and IVS

(DOTS)-sorted portfolios are reported within square brackets. For this comparison, the null hypoth-

esis is that each pair of sorting criteria yields equal results and the alternative hypothesis is that the

CFER-sorted portfolios outperform. The critical value is 1.64. One asterisk denotes significance at

a 5% level of significance. The analysis spans January 1996 to April 2016 (244 months). t-statistics

are adjusted for heteroscedasticity and autocorrelation and reported in parentheses. The unit of all

variables is % per month.

Average return αCAPM αFF3 αFFC αFF5 αSY
MF-CFER-sorted 1.64 1.70 1.78 1.86 1.58 1.70

(5.77) (5.91) (6.36) (6.56) (5.63) (5.21)
IVS-sorted 1.17 1.23 1.30 1.38 1.14 1.25

(4.90) (4.76) (4.94) (5.24) (4.64) (4.25)
[2.03*] [1.91*] [1.93*] [1.87*] [1.66*] [1.66*]

DOTS-sorted 1.45 1.42 1.46 1.47 1.31 1.28
(5.61) (4.93) (4.99) (4.98) (4.70) (4.19)
[1.02] [1.54] [1.72*] [1.99*] [1.31] [1.89*]
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Table 1.6. Bivariate dependent sort: Controlling for option trading volume

Entries report the result of the bivariate dependent sort, where we first sort stocks based on the aggregate option trading volume (OV), and then within each

group of the OV level, we further sort stocks into quintile portfolios by the AVE-CM MF-CFER criterion. Rows correspond to the level of the first sorting

variable, OV, and the first to the fifth columns correspond to the level of the second sorting variable,AVE-CM MF-CFER. Sixth to eighth columns report the

average returns, Carhart (1997) four-factor alpha, and the average CFER of the spared, respectively, of the spread portfolio (the highest CFER portfolio minus

the lowest MF-CFER portfolio). The four right columns report the average value of the option trading volume (OV) and the underlying stocks’ characteristics,

log market capitalization (SIZE), relative bid-ask spread (BAS) and Amihud’s (2002) illiquidity measure of five portfolios within each OV level. The estimation

period spans January 1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of

the average returns and alphas (average CFER) is % per month (per 30-days). The unit of BAS is % of the mid stock price and Amihud measure is multiplied

by 1000 for the readability.

Ave. ret. of AVE-CM MF-CFER-sorted portfolios Spread portfolio (5-1) Average characteristics
1 (lowest) 2 3 4 5 (highest) Ave. ret. αFFC Ave. CFER OV SIZE BAS Amihud

OV 1 0.29 0.81 0.85 1.17 1.60 1.32 1.31 1.83 9 14.78 0.44 4.40
(smallest) (0.77) (2.53) (2.84) (3.78) (4.46) (6.39) (5.91) (17.86)
2 0.53 0.71 0.94 1.11 1.32 0.79 0.85 1.56 64 15.20 0.42 3.27

(1.40) (2.19) (3.03) (3.46) (3.58) (4.37) (4.78) (16.67)
3 0.53 0.47 0.98 1.26 1.23 0.70 0.80 1.36 245 15.62 0.39 2.24

(1.31) (1.40) (3.29) (3.96) (3.21) (3.00) (3.32) (13.29)
4 0.41 0.42 0.93 0.96 1.40 0.99 1.04 1.16 979 16.21 0.37 1.17

(0.90) (1.30) (3.16) (3.20) (3.54) (3.28) (3.77) (11.06)
OV 5 0.03 0.53 0.83 0.94 0.94 0.91 1.04 0.88 32815 17.87 0.30 0.26
(largest) (0.07) (1.70) (2.56) (2.98) (2.42) (3.26) (3.27) (12.65)
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Table 1.7. Characteristics of AVE-CM CFER-sorted value-weighted decile portfolios

Entries report the average value of various characteristics of decile portfolios as well as the difference between the highest CFER decile portfolio and the lowest

CFER decile portfolio. On the last trading day of each month t, stocks are sorted in ascending order based on AVE-CM CFER and then value-weighted decile

portfolios are formed. We then calculate the value-weighted average value of characteristics. BAS is the relative bid-ask spread, Amihud is Amihud’s (2002)

illiquidity measure (multiplied by 1000), SIZE is the natural log of the market equity, St is the stock price level, IVOL is the idiosyncratic volatility, beta

is the regression coefficient of stock returns on the market portfolio return, RSI is the relative short-interest, ESF is the estimated shorting fee, B/M is the

book-to-market ratio, and N is the number of average stocks in each portfolio. See Appendix 1.C for the detailed description of each variable. The data period

spans January 1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

CFER -1.31 -0.53 -0.31 -0.18 -0.09 -0.01 0.07 0.18 0.36 0.93 2.24
(-15.88) (-12.34) (-10.92) (-9.52) (-7.03) (-1.25) (7.26) (13.59) (15.08) (16.17) (15.38)

BAS 0.48 0.39 0.35 0.34 0.33 0.31 0.31 0.34 0.37 0.44 -0.04
(2.67) (2.51) (2.14) (2.31) (2.15) (2.18) (2.25) (2.34) (2.28) (2.69) (-2.89)

Amihud 5.60 1.84 0.97 0.55 0.37 0.31 0.36 0.55 1.17 3.82 -1.78
(6.96) (6.13) (5.09) (5.74) (6.26) (5.94) (7.93) (7.50) (7.70) (6.23) (-4.76)

SIZE 15.34 16.30 16.81 17.14 17.43 17.47 17.46 17.20 16.66 15.76 0.42
(221.77) (192.45) (320.21) (386.63) (372.29) (292.14) (282.72) (255.42) (268.91) (189.59) (3.96)

St 36.72 49.00 58.69 62.37 68.08 69.36 70.39 60.62 52.92 39.08 2.35
(23.40) (23.50) (18.87) (20.09) (22.06) (22.03) (16.44) (18.72) (18.38) (15.68) (1.33)

IVOL 39.53 31.74 28.24 26.37 24.93 24.69 24.89 26.22 29.07 35.21 -4.32
(18.06) (13.67) (10.23) (10.25) (9.40) (9.46) (9.82) (10.76) (13.13) (12.95) (-7.30)

Beta 1.20 1.12 1.05 1.02 1.01 1.01 1.03 1.04 1.07 1.16 -0.04
(53.61) (79.84) (132.19) (86.01) (69.39) (59.49) (72.21) (102.76) (102.44) (55.50) (-2.04)

RSI 6.19 3.97 2.99 2.52 2.22 2.09 2.19 2.47 3.14 4.28 -1.90
(19.54) (30.61) (46.87) (39.76) (35.74) (22.78) (19.30) (21.57) (32.74) (29.84) (-8.41)

ESF 0.57 0.43 0.35 0.30 0.27 0.25 0.26 0.29 0.36 0.47 -0.11
(13.46) (8.30) (8.82) (8.37) (6.80) (8.83) (9.00) (8.96) (9.20) (9.08) (-6.52)

B/M 0.53 0.47 0.44 0.43 0.41 0.40 0.40 0.42 0.44 0.48 -0.05
(13.32) (19.51) (22.86) (19.74) (13.87) (13.75) (13.49) (13.55) (16.70) (16.02) (-4.30)

N 134.93 135.02 134.89 135.06 134.69 135.25 134.94 135.00 134.91 135.05 —
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Table 1.8. Performance of CFER-sorted portfolios: Bivariate dependent
sorts controlling for relative bid-ask spread or SIZE

Entries in Panel A report the result of the bivariate dependent sort, where we first sort stocks based

on the relative bid-ask spread (BAS), and then within each group of the BAS level, we further sort

stocks into quintile portfolios by the AVE-CM CFER criterion. Rows correspond to the level of the

first sorting variable, BAS, and the first to the fifth columns correspond to the level of the second

sorting variable,AVE-CM CFER. Sixth to the last columns report the average returns, Fama and

French (2015) five-factor alpha, and the average CFER, respectively, of the spread portfolio (the

highest CFER portfolio minus the lowest CFER portfolio). Entries in Panel B report the result,

where we use SIZE (the log of market equity) as the first sorting variable instead of BAS. The

estimation period spans January 1996 to April 2016 (244 months). t-statistics are adjusted for

heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of the average returns and

alphas (average CFER) is % per month (per 30-days).

Ave. returns of Ave. αFFC Ave.
AVE-CM CFER-sorted portfolios return CFER

1 (Lo) 2 3 4 5 (Hi) Spread portfolio (5-1)
Panel A: Relative bid-ask spread-sorted dependent bivariate sort

BAS 1 0.11 0.63 0.65 0.76 0.84 0.74 0.86 0.75
(narrowest) (0.25) (1.65) (1.54) (1.75) (2.19) (3.47) (3.29) (13.71)
BAS 2 0.31 0.48 0.81 0.70 1.09 0.78 0.69 1.05

(0.72) (1.24) (2.37) (1.78) (2.59) (3.31) (2.96) (10.63)
BAS 3 0.41 0.59 0.98 0.93 1.30 0.89 0.93 1.34

(1.01) (1.52) (2.56) (2.26) (3.03) (3.26) (3.22) (12.30)
BAS 4 0.14 0.70 0.68 0.85 1.48 1.33 1.48 1.70

(0.30) (1.56) (1.69) (2.06) (3.22) (4.60) (4.62) (14.90)
BAS 5 -0.42 0.28 0.85 0.78 1.53 1.95 1.94 2.64
(widest) (-0.72) (0.57) (1.79) (1.64) (3.29) (5.54) (5.90) (14.59)

Panel B: Size-sorted dependent bivariate sort
SIZE 1 -0.62 0.48 0.72 0.96 1.22 1.84 1.79 3.18
(smallest) (-1.00) (0.85) (1.31) (1.63) (2.06) (6.54) (6.39) (16.56)
SIZE 2 0.16 0.86 0.85 0.94 1.28 1.12 1.12 1.95

(0.30) (1.70) (1.84) (2.02) (2.53) (4.94) (4.94) (14.13)
SIZE 3 0.30 0.78 0.86 0.96 1.26 0.96 1.04 1.46

(0.66) (1.83) (2.06) (2.33) (3.07) (4.82) (4.86) (15.77)
SIZE 4 0.70 0.76 0.99 1.20 1.21 0.51 0.57 1.01

(1.72) (1.98) (2.77) (3.35) (3.27) (3.01) (3.14) (12.43)
SIZE 5 0.33 0.69 0.78 0.88 0.94 0.61 0.67 0.65
(largest) (1.03) (2.52) (2.48) (2.96) (2.89) (3.50) (3.65) (12.64)
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Table 1.9. CFER and firms’ and stocks’ characteristics: Fama-MacBeth
regressions

Entries in Panel A report the results from Fama and MacBeth (1973) regressions of AVE-CM CFER

on SIZE (log of market equity), relative bid-ask spread (BAS), idiosyncratic volatility (IVOL), Ami-

hud’s (2002) illiquidity measure, and relative short interest (RSI), where we use positive CFER

subsamples. Entries in Panel B report the results, where we use negative CFER subsamples. Even

though the intercept is included in the regressions, we do not report them due to space limitations.

The time-series averages of the estimated coefficients of the cross-sectional regressions are reported.

t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in the parentheses.

The time-series averages of adjusted R2 and the number of observations N employed in the cross-

sectional regressions are reported in the last two rows of each Panel. The data period spans January

1996 to April 2016 (244 months).

(1) (2) (3) (4) (5) (6)
Panel A: Positive CFER subsample

SIZE -0.11 -0.06
(-14.46) (-14.92)

BAS 1.22 0.55
(4.52) (6.24)

IVOL 0.78 0.19
(15.13) (3.65)

Amihud 17.94 1.38
(6.98) (0.67)

RSI 0.85 -0.44
(9.96) (-5.04)

adj. R2 14.3% 10.2% 9.0% 10.3% 0.7% 16.7%
N 579.6 554.5 565.2 565.7 495.6 451.0

Panel B: Negative CFER subsample
SIZE 0.15 0.05

(15.49) (9.72)
BAS -1.57 -0.92

(-4.08) (-4.48)
IVOL -1.10 -0.32

(-12.79) (-7.11)
Amihud -20.68 -6.13

(-6.97) (-4.26)
RSI -1.57 -0.31

(-14.17) (-4.63)
adj. R2 14.8% 12.6% 12.5% 10.5% 2.8% 19.0%
N 718.5 672.7 694.9 695.2 595.0 528.5
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Table 1.10. Robustness tests: (i) Comparison of methods to estimate
CFER, (ii) Removing extreme CFER values

Entries in Panel A report the average return and Carhart (1997) four-factor model alpha of the

spread portfolio of CFER-sorted value-weighted decile portfolios, where each column uses one of

four estimation methods of CFER. The first row denotes the method of choosing strikes (AVE:

taking average across available strikes, ATM: choosing the strike closest to the forward price) and

the second row denotes the method of choosing maturities (CM: interpolating traded maturities to

construct 30-day constant maturity CFER, CLS: choosing the traded maturity closest to 30 days).

Entries in Panel B report the average return and Carhart (1997) four-factor model alpha of the

spread portfolio of AVE-CM CFER-sorted value-weighted portfolios. The first column shows the

result, where we truncate AVE-CM CFER values at a 1% level, that is, we remove CFER samples

below 1st percentile point or above 99th percentile point. The second column reports the result of

the modified spread, where we long the second highest CFER portfolio (portfolio 9) and short the

second lowest CFER portfolio (portfolio 2). The third column reports the quintile portfolio sort

results, and the last column reports the modified spread of the quintile portfolios, where we long the

second highest CFER portfolio (portfolio 4) and short the second lowest CFER portfolio (portfolio

2). The estimation period spans January 1996 to April 2016 (244 months). t-statistics are adjusted

for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of the mean returns and

alphas are % per month.

Panel A: Comparison between four estimation methods of CFER
Strike AVE ATM
Maturity CM CLS CM CLS

Value-weighted decile spread portfolio
Average return 1.64 1.56 1.49 1.38

(5.77) (5.44) (5.33) (4.89)
αFFC 1.86 1.77 1.60 1.51

(6.56) (6.20) (5.55) (5.33)
Equally-weighted decile spread portfolio

Average return 1.73 1.56 1.67 1.54
(9.10) (8.92) (9.15) (8.95)

αFFC 1.81 1.65 1.75 1.62
(9.42) (9.18) (9.12) (9.21)

Panel B: Mitigating the effect of extreme CFER values
Truncated decile sort (VW) Quintile sort (VW)
Spread (10-1) Spread (9-2) Spread (5-1) Spread (4-2)

Average return 1.43 0.92 1.11 0.43
(6.08) (4.19) (5.59) (3.37)

αFFC 1.65 0.93 1.29 0.43
(7.05) (3.77) (5.65) (3.27)
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Table 1.11. Bivariate dependent sort on CFER: Controlling for previous
month return

Entries report the result of the bivariate dependent sort, where we first sort stocks based on the

previous month return, Rt−1,t, and then within each group of the bid-ask spread level, we further

sort stocks into quintile portfolios by the AVE-CM CFER criterion. Rows correspond to the level

of the first sorting variable, the previous month return Rt−1,t, and the first to the fifth columns

correspond to the level of the second sorting variable, AVE-CM CFER. The sixth to last columns

report the average return, αFFC , and the average CFER of the CFER-sorted spread portfolios,

respectively. All returns are value-weighted returns. The estimation period spans January 1996 to

April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-

adjusted t-stat). The unit of the mean returns and alphas are % per month.

Ave. returns of Ave. αFFC Ave.
AVE-CM CFER-sorted portfolios return CFER

1 (Lo) 2 3 4 5 (Hi) Spread portfolio (5-1)
Rt,−1,t 1 -0.51 0.34 1.15 0.44 1.28 1.79 2.02 1.72
(lowest) (-0.78) (0.65) (2.45) (0.86) (1.99) (4.87) (5.02) (13.33)
Rt,−1,t 2 0.50 0.76 1.04 1.04 1.30 0.80 0.90 1.24

(1.10) (2.23) (2.79) (2.98) (3.51) (2.83) (2.83) (13.69)
Rt,−1,t 3 0.31 0.35 0.78 1.16 1.44 1.14 1.22 1.12

(0.82) (1.06) (2.44) (3.71) (3.96) (4.39) (4.40) (14.42)
Rt,−1,t 4 0.58 0.51 0.81 0.76 0.97 0.39 0.52 1.11

(1.53) (1.68) (2.59) (2.33) (2.75) (1.44) (1.83) (15.30)
Rt,−1,t 5 0.00 0.41 0.58 0.93 0.85 0.85 0.96 1.52
(highest) (-0.00) (0.93) (1.51) (2.21) (2.04) (2.88) (3.15) (18.81)
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Table 1.12. Robustness tests: Non-synchronicity, Low stock price level, and NYSE breakpoint

Entries in Panel A report the average return and Carhart (1997) four-factor model alpha of the spread portfolio of AVE-CM CFER-sorted value-weighted decile

portfolios, where the returns are calculated as the open-to-close return. The open-to-close return is the return from the open price on the first trading date

after the portfolio formation in month-t to the close price of the end of month-t + 1. Entries in Panel B report the average return and αFFC of the AVE-CM

CFER-sorted value-weighted decile portfolios, where we discard stocks whose price level is below $10. Entries in Panel C report the the average return and αFFC

of the AVE-CM CFER-sorted value-weighted decile portfolios, where we calculate decile portfolios’ breakpoints based on NYSE stocks only. The estimation

period spans January 1996 to April 2016 (244 months). t-statistics are adjusted for heteroscedasticity and autocorrelation (HAC-adjusted t-stat). The unit of

the mean returns and alphas are % per month.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Open-to-close return (non-synchronicity)
Ave. return -0.21 0.22 0.52 0.48 0.77 0.87 0.97 0.90 1.13 1.39 1.60

(-0.43) (0.57) (1.52) (1.59) (2.51) (2.77) (3.16) (2.66) (3.12) (3.21) (5.58)
αFFC -1.14 -0.63 -0.28 -0.25 -0.01 0.10 0.23 0.16 0.42 0.69 1.83

(-6.73) (-3.80) (-2.42) (-2.41) (-0.14) (0.99) (2.27) (1.30) (2.40) (3.20) (6.40)
Panel B: Eliminating stocks whose price is below $10

Ave. return -0.09 0.28 0.49 0.52 0.79 0.91 0.89 0.98 1.05 1.26 1.35
(-0.18) (0.79) (1.49) (1.75) (2.62) (2.82) (2.99) (2.95) (3.00) (3.23) (5.79)

αFFC -1.03 -0.51 -0.29 -0.20 0.01 0.10 0.17 0.23 0.35 0.55 1.57
(-5.07) (-3.27) (-2.92) (-2.03) (0.07) (0.99) (1.68) (2.15) (2.18) (3.15) (5.96)

N 122.0 122.2 122.1 122.2 121.8 122.3 122.1 122.2 122.1 122.1 —
Panel C: NYSE breakpoints

Ave. return -0.02 0.48 0.51 0.60 0.80 0.90 0.88 1.11 0.93 1.33 1.35
(-0.04) (1.38) (1.51) (2.01) (2.58) (2.79) (2.96) (3.48) (2.66) (3.26) (5.33)

αFFC -0.95 -0.34 -0.27 -0.13 0.00 0.10 0.16 0.36 0.18 0.63 1.58
(-4.92) (-2.56) (-2.28) (-1.19) (-0.04) (0.99) (1.45) (3.26) (1.45) (3.25) (5.85)

N 182.0 136.6 124.0 118.7 115.3 115.3 117.3 122.1 134.0 181.1 —
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Table 1.13. Robustness test: Sub-sample analysis

Entries in Panels A and B report the average return and Carhart (1997) four-factor model alpha of the spread portfolio of AVE-CM CFER-sorted value-weighted

decile portfolios over January 1996 to December 2006 and January 2007 to April 2016, respectively. t-statistics adjusted for heteroscedasticity and autocorrelation

and reported in the parentheses. The unit of all variables is % per month.

AVE-CM CFER-sorted value-weighted decile portfolios Spread
1 (Lowest) 2 3 4 5 6 7 8 9 10 (Highest) 10-1

Panel A: Sub-sample, January 1996–December 2006
Average return -0.19 0.30 0.57 0.49 0.89 0.99 1.13 0.82 1.42 1.76 1.95

(-0.31) (0.60) (1.33) (1.19) (2.25) (2.41) (2.77) (1.90) (2.79) (3.04) (5.02)
αFFC -1.20 -0.71 -0.36 -0.33 -0.02 0.16 0.33 -0.02 0.74 1.20 2.41

(-5.48) (-2.96) (-1.87) (-2.18) (-0.12) (1.07) (1.99) (-0.12) (2.54) (3.84) (6.38)
Panel B: Sub-sample, January 2007–April 2016

Average return -0.17 0.15 0.51 0.50 0.66 0.77 0.81 1.03 0.84 1.10 1.27
(-0.21) (0.24) (0.94) (1.07) (1.38) (1.57) (1.72) (1.97) (1.59) (1.69) (3.24)

αFFC -0.87 -0.49 -0.16 -0.10 -0.01 0.09 0.14 0.34 0.18 0.35 1.22
(-3.36) (-2.03) (-0.99) (-0.78) (-0.05) (0.97) (1.16) (2.44) (1.07) (1.56) (3.12)
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Table 1.14. Predictive power of CFER: Fama-MacBeth regressions

Entries report the results from Fama and MacBeth (1973) regressions of stock returns on AVE-
CM CFER, market beta, SIZE (log of market equity), log of book-to-market (logBM), Momentum
(Rt−12,t−1), previous month return Rt−1,t, idiosyncratic volatility (IVOL), profitability (operational
profit to book equity), investment (asset growth rate), Amihud’s (2002) illiquidity measure, rela-
tive bid-ask spread (BAS), turnover rate (TO), and implied volatility spread (IVS). See Appendix
1.C for detailed definition of these variables. The time-series averages of the estimated coefficients
of the cross-sectional regressions are reported. t-statistics are adjusted for heteroscedasticity and
autocorrelation and reported in the parentheses. The time-series averages of adjusted R2 and the
observation number N of cross-sectional regressions are reported in the last two rows. Columns
(1) to (4) report the results using all samples from January 1996 to April 2016. Columns (5) and
(6) report the results using only NYSE/Amex and NASDAQ stocks, respectively. Columns(7) and
(8) report the results using only the observations with non-negative and negative AVE-CM CFER,
respectively. Columns (9) and (10) report the results using only the observation over 1996-2006 and
2007-2016, respectively.

All sample NYSE NAS CFER CFER 1996– 2007–
Amex DAQ ≥ 0 < 0 2006 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
CFER 0.62 0.39 0.40 0.30 0.53 0.31 0.46 0.46 0.41 0.38

(7.78) (5.60) (5.60) (2.93) (4.12) (3.23) (2.78) (4.01) (4.14) (3.70)
Beta -0.03 -0.02 0.03 -0.02 -0.06 0.19 -0.01 0.19 -0.26

(-0.12) (-0.07) (0.11) (-0.08) (-0.20) (0.63) (-0.03) (0.48) (-0.64)
SIZE -0.11 -0.12 -0.13 -0.14 0.01 -0.06 -0.11 -0.12 -0.12

(-1.92) (-1.95) (-1.88) (-2.22) (0.12) (-0.88) (-1.78) (-1.23) (-1.71)
logBM 0.11 0.11 0.13 0.11 0.15 0.14 0.08 0.32 -0.13

(1.12) (1.14) (1.26) (1.28) (1.36) (1.24) (0.85) (2.29) (-1.19)
Mom -0.02 -0.01 -0.06 0.09 -0.11 -0.05 -0.04 0.24 -0.31

(-0.05) (-0.03) (-0.18) (0.22) (-0.38) (-0.14) (-0.10) (0.77) (-0.47)
Rt−1,t -1.12 -1.26 -1.05 -0.53 -1.78 -1.55 -0.88 -2.50 0.21

(-1.58) (-1.81) (-1.52) (-0.64) (-2.47) (-1.91) (-1.18) (-2.91) (0.20)
IVOL -0.01 0.00 0.00 -0.02 0.01 0.00 0.00 0.00 -0.01

(-1.47) (-0.51) (-0.65) (-2.07) (0.87) (-0.27) (-0.75) (0.16) (-1.10)
Profit 0.27 0.28 0.32 0.22 0.27 0.37 0.42 0.53 0.00

(2.07) (1.92) (1.98) (1.73) (0.88) (2.00) (2.35) (2.12) (-0.00)
Invest -0.33 -0.33 -0.32 -0.46 -0.25 -0.39 -0.28 -0.34 -0.32

(-3.76) (-3.64) (-3.46) (-2.98) (-2.48) (-2.64) (-2.60) (-3.24) (-2.01)
Amihud -14.62 -0.10 -2.51 0.92 -34.98 -17.24 -2.77 -28.59

(-2.43) (-0.53) (-0.09) (0.12) (-2.06) (-1.08) (-0.45) (-2.68)
BAS 0.44 -17.22 0.47 -0.66 0.52 0.70 0.10 0.84

(0.62) (-2.28) (0.53) (-0.66) (0.44) (0.71) (0.16) (0.62)
TO -0.12 0.65 0.18 -0.26 -0.36 -0.08 -0.11 -0.14

(-0.72) (0.82) (0.86) (-0.94) (-1.82) (-0.48) (-0.37) (-1.27)
IVS 3.01

(1.71)
Int. 0.88 2.84 2.92 2.97 3.32 1.09 2.17 2.72 3.05 2.76

(2.17) (3.03) (2.83) (2.69) (3.00) (0.52) (1.85) (2.56) (1.84) (2.29)
Adj R2 0.2 9.0 9.2 9.8 10.7 7.6 10.1 9.9 10.4 7.8
N 1323 1009 940 782 549 402 430 514 776 1134
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Chapter 2

Martingale Restriction,

Risk-neutral Skewness, and Future

Stock Returns

2.1 Introduction

A voluminous literature has documented that market frictions such as short-sale con-

straints, margin and transaction costs affect asset returns.1 While this literature

mainly examines the effect of frictions on asset returns under the physical probability

measure, relatively little research has been done on the implications of the presence

of market frictions under the risk-neutral probability measure and for the calculation

of option-implied variables.

In this Chapter, we fill this gap by relating the martingale restriction (MR) to a

formal theoretical setting which models market frictions. MR is a property of asset

prices in the absence of market frictions first examined by Longstaff (1995); if the

market is frictionless and arbitrage-free, asset prices discounted by the risk-free rate

should be martingales under the risk-neutral measure (the first fundamental theorem

1Early studies by He and Modest (1995) and Luttmer (1996) argue that the equity risk premium
puzzle can be explained by considering the effect of market frictions on the expected asset returns.
Brunnermeier and Pedersen (2009), Gârleanu and Pedersen (2011), Chabakauri (2013), and Frazzini
and Pedersen (2014) among others show that margins and leverage constraints affect asset returns.
A number of studies document that short-sale constraints affect stock returns (e.g., Chen et al.,
2002; Ofek et al., 2004; Asquith et al., 2005; Drechsler and Drechsler, 2014). Moreover, Hou et al.
(2018) examine more than 100 market friction-related stock anomaly variables.
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of asset pricing; Harrison and Kreps, 1979; Harrison and Pliska, 1981). The violation

of MR suggests the presence of market frictions and it would call for a revisit of

the voluminous theoretical and empirical literature which is based on the martingale

assumption on asset prices.

Our study allows us to make three contributions. First, we revisit Longstaff (1995)

and propose a novel and robust way to test MR. Moreover, we document that the MR

testing way proposed by Longstaff (1995) may result in spurious judgment on whether

MR is violated. Second, we explore the implications of the violation of MR for the

estimation of risk-neutral moments (RNMs). RNMs are the building block in the

vast literature which examines the informational content of option prices to address

a number of questions in finance such as asset pricing, stock return predictability and

asset allocation. The Bakshi et al. (2003) (BKM) formulae are the current de facto

standard estimation method of RNMs. However, the BKM formulae are based on the

assumption that the underlying asset satisfies MR; its violation may lead to biases in

the estimated RNMs. We derive generalized formulae to estimate RNMs compatible

with the possible violation of MR. Third, we document that the RNS estimated by the

original BKM formula (O-RNS) predicts future stock returns, whereas the estimated

RNS based on our generalized formula which accounts for the violation of MR (G-

RNS) does not. More importantly, we find that the predictive power of O-RNS stems

from its bias component caused by the violation of MR. These findings shed light on

the ongoing debate on the mechanism behind the ability of O-RNS to predict future

stock returns as we will discuss in the literature review Section below.

MR predicts that the risk-neutral expected asset return equals the risk-free rate.

Our MR testing approach examines whether there is a wedge between the risk-neutral

expected asset return and the risk-free rate. A non-zero wedge signifies that MR is

violated due to the presence of market frictions. We show that this wedge term

equals the CFER (contribution of frictions to expected returns) term of Hiraki and

Skiadopoulos (2019) (HS).2 By considering a general setting in which an agent faces

transaction costs and constraints on her portfolio allocation choice caused by market

frictions, HS show that the expected excess return of the asset under the physical

probability measure equals the sum of CFER and the covariance between the in-

2Chapter One of this thesis is based on Hiraki and Skiadopoulos (2019).
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tertemporal marginal rate of substitution (IMRS) and the asset return. We define

the “risk-neutral” probability measure in the HS setting by using the (scaled) IMRS

as a Radon-Nikodým derivative. Then, we show that the expected excess return under

this risk-neutral measure equals CFER, that is, the CFER term is the wedge between

the risk-neutral expected return and the risk-free rate. Therefore, we can test MR by

testing whether CFER is zero or not. Our CFER-based approach provides a robust

and easily implementable way to test MR; HS show that CFER can be reliably esti-

mated in a model-free manner from a properly scaled deviations from put-call parity.

On the other hand, we document that the implied stock price approach to test MR

proposed by Longstaff (1995) may reject MR spuriously even if MR holds. In partic-

ular, we document that empirical results found in the implied stock price literature

is not evidence for the violation of MR, but a mechanical reflection of a well-known

stylized fact that the implied volatility (IV) of out-of-the money (OTM) equity put

options are greater than those of at-the-money (ATM) options (negative IV skew).

Next, we show that the original BKM formulae do not correctly estimate RNMs if

MR is violated (i.e., CFER is non-zero). This is because the derivation of the original

BKM formulae relies on the implicit assumption that the risk-neutral expected asset

return equals the risk-free rate, which does not hold under the violation of MR. The

bias in the estimation of RNMs arises because a wrong risk-neutral expected return

is employed to calculate the central moments (i.e., moments around the mean) of

returns. We remedy this drawback by providing the generalized BKM formulae, in

which we set the risk-neutral expected asset return to the sum of the risk-free rate

and the CFER of the underlying asset.

In addition, we investigate the behavior of the Black and Scholes (1973) (BS) IV

under the violation of MR because this is related to the estimation of RNS in two ways.

First, IV is often used to estimate RNMs as an input to interpolate discretely observed

option prices.3 We document, by means of simulation, that using the standard BS-IV

as an input to interpolate option prices results in incorrectly estimated RNS in the

case where MR is violated. Second, the slope of IV curves (e.g., difference between

OTM option’s IV and ATM option’s IV) is frequently interpreted as a proxy of RNS

3Since the theoretical formulae of BKM requires a continuum of option prices with respect to the
strike price, typically discretely observed option prices are interpolated and extrapolated to obtain
a continuum of option prices. To this end, BS-IVs of options rather than their option prices are
typically interpolated and extrapolated.
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(e.g., Bali et al., 2018). However, we show that in the presence of market frictions, a

non-zero IV slope measure does not necessarily mean that the underlying distribution

is not log-normal, in contrast to the common perception. To remedy these issues,

we propose the robust IV, which accounts for the possible violation of MR in the

calculation of IV. Our simulation result shows that using the robust IV as an input

to interpolate option prices reduces the estimation bias in the RNS. Moreover, the

robust IV curve is a more appropriate ingredient to calculate the slope of the IV curve

because a zero slope of the robust IV curve means that the underlying distribution is

log-normal.

We test whether the S&P 500 index and U.S. individual equities violate MR based

on our new testing approach and find that both the index and individual stocks

frequently violate MR. We find that the 30-day risk-neutral expected return of the

S&P 500 index deviates from the risk-free rate on average by 1% to 2% per year. The

degree of the violation of MR is generally larger for individual stocks. We find that the

time-series average deviation of the 30-day risk-neutral expected return of individual

stocks from the risk-free rate is greater than 1% per year for almost all stocks and

greater than 3% for more than half of stocks. This finding validates our motivation

to theoretically and empirically investigate the effect of MR on the estimated RNMs.

Next, we compare the estimated O-RNMs and G-RNMs. We find that the viola-

tion of MR has a substantial effect on the estimated RNS but not on the estimated

model-free implied volatility and risk-neutral kurtosis. Importantly, we find that

the difference between O-RNS and G-RNS is economically significant; we find that

O-RNS predicts the cross-section of future returns in line with the literature (e.g., Stil-

ger et al., 2017), whereas G-RNS does not. Furthermore, we empirically document

that the predictive power of O-RNS stems from its estimation bias component caused

by the violation of MR. The bias component is highly correlated with CFER in line

with the fact that CFER measures the degree of the violation of MR. In a nutshell,

O-RNS predicts future returns because its bias component contains predictive power

inherited from the strong predictability of CFER documented in HS.

The remaining part of this Chapter is organized as follows. In Section 2.2, we

review the related literature and discuss our contributions. In Section 2.3, we outlay

the theoretical framework for testing MR. We also discuss the relation between our
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approach and the existing implied stock price approach proposed by Longstaff (1995).

In Section 2.4, we propose the generalized BKM formulae for the estimation of RNMs

and the robust IV, both of which account for the possible violation of MR. Section 2.5

explains data sources and empirical procedures for the estimation of CFER and RNMs

as well as their summary statistics. Section 2.6 investigates the return predictive power

of O-RNS and G-RNS. Section 2.7 concludes this Chapter.

2.2 Related literature and our contributions

We contribute to three strands of literature. The first has to do with studies which

document that O-RNS predicts stock returns. While it has been well-documented

that O-RNS has return predictive power, the sign of its predictive relation and the

mechanism of the predictability are still open questions. Conrad et al. (2013) docu-

ment that RNS negatively predicts future returns, consistent with theoretical models

in which risk-averse agents accept lower returns in exchange for positive skewness

(e.g., Harvey and Siddique, 2000; Mitton and Vorkink, 2007). On the other hand,

a number of more recent studies document that RNS positively predict future re-

turns, yet there is no unanimous consensus regarding the mechanism which generates

positive return predictive power.

There are two proposed explanations for the positive predictive relation. The

first one is a limits-of-arbitrage explanation: O-RNS signals the future abnormal

stock performance due to the presence of market frictions. For example, Rehman

and Vilkov (2012) find that stocks with more negative O-RNS underperform stocks

with less negative O-RNS. They argue that this is because stocks with more negative

O-RNS are relatively overpriced and this overpricing is not corrected fast due to limits-

of-arbitrage. Stilger et al. (2017) document that it is the interplay between the stock

overpricing and short-sale constraints that explains the result in Rehman and Vilkov

(2012). Gkionis et al. (2018), in contrast to the previous literature which focuses on

the negative informational content of O-RNS for future stock returns, document that

stocks with relatively high O-RNS signal future stock outperformance. They argue

that these stocks are underpriced and they have a greater downside risk which may

discourage arbitrage activities in the underlying stock compared to stocks with more
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negative O-RNS values. Chordia et al. (2019) document that “the positive RNS-return

relation is more pronounced for stocks with higher limits-to-arbitrage and illiquidity”

(p.28), although they argue that the limits-of-arbitrage story cannot fully explain the

predictive power of O-RNS.

The second explanation relies on the idea that the option market attracts informed

traders (e.g., Easley et al., 1998); informed traders resort to the option market to uti-

lize their private information on the future stock performance and consequently private

information is incorporated into option prices and in option-implied measures (e.g.,

RNS) prior to the stock price. For example, pessimistic informed traders may utilize

their private information through the option market by buying OTM put options and

selling OTM call options. According to the demand-based option pricing theory (e.g.,

Bollen and Whaley, 2004; Gârleanu et al., 2009), this trading pressure would increase

(decrease) put (call) option prices, resulting in a lower RNS. Chordia et al. (2019)

argue that this informed option trading channel drives the predictive power of O-RNS

based on their finding that O-RNS observed prior to scheduled and non-scheduled cor-

porate news strongly predicts post-news stock returns. Bali et al. (2018) decompose

O-RNS into a systematic part and an unsystematic part and find that the unsys-

tematic component is robustly related to expected stock returns. They argue that

the unsystematic RNS component represents firm-specific information which informed

investors can utilize.

We shed light on the ongoing debate on the O-RNS predictive power in three im-

portant ways. First, our findings support the limits-of-arbitrage explanation as the

mechanism behind the predictive power of O-RNS. We theoretically and empirically

show that the presence of market frictions (i.e., the violation of MR) results in esti-

mation biases in O-RNS. Furthermore, we document that it is the bias component of

O-RNS caused by the violation of MR that predicts future stock returns; we find that

the bias component is highly correlated with CFER in line with the fact that CFER

measures the degree of the violation of MR (i.e., the deviation of the risk-neutral

expected return from the risk-free rate). Since CFER is the effect of frictions on the

expected stock returns, O-RNS signals the effect of frictions on the expected stock

returns via its correlation with CFER.

Second, our CFER-based story can explain both the positive (higher O-RNS pre-
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dicting future outperformance) and negative (lower O-RNS predicting future under-

performance) informational contents simultaneously. This is in contrast to the existing

literature which finds it challenging to explain the positive and negative informational

contents in a single type of market frictions. For example, the explanation based on

the short-sale constraints employed by Stilger et al. (2017) can explain only the neg-

ative informational contents of O-RNS, whereas Gkionis et al.’s (2018) explanation

based on the downside risk can explain only the positive informational contents of

O-RNS.

Third, we find that the predictive power of O-RNS is more pertaining to the market

frictions than the informed option trading explanation. We compare the predictive

power of O-RNS in the two subsamples: stocks with non-zero option trading volume

and those without any option trading. Then, we find that the predictive power of

O-RNS does not differ qualitatively between these two subsamples. This finding is at

odds with the informed option trading story, which predicts that the predictive power

of option-implied variables is more pronounced when option trading volume is larger.

On the other hand, this finding supports the limits-of-arbitrage explanation for the

predictive power of RNS, because stocks with zero option trading tend to be smaller

stocks which face a considerable degree of market frictions. This finding is largely

in line with Goncalves-Pinto et al. (2019), who show that their option-based return

predictor, DOTS, does not exhibit the different level of predictability among stocks

with zero and non-zero option trading volume.

In addition to the literature on the predictive power of RNS, this Chapter con-

tributes to the two strands of literature. First, we contribute to the literature on

testing MR. Longstaff (1995) tests MR for the S&P 100 index and finds that it vio-

lates MR. Follow-up studies examine MR for other major equity indices including the

S&P 500 (Strong and Xu, 1999), the German DAX index (Neumann and Schlag, 1996;

Huang et al., 2016), and the South Korean KOSPI 200 index (Guo et al., 2013). All

these studies test MR by examining the difference between the market stock price and

the implied stock price extracted from an option pricing model (typically the Black

and Scholes, 1973 model). We contribute to this literature in two ways. First, we

demonstrate that the implied stock price approach may result in spurious rejection

of MR even if MR holds. For example, we show that the BS-model-based implied
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stock price approach does not constitute a valid MR test in the case where the true

risk-neutral underlying distribution is not log-normal. Second, our CFER-based MR

test approach is free from the drawback of the implied stock price approach. This

is because the estimation of CFER is model-free; the estimation of CFER and hence

our CFER-based MR test approach do not depend on a specific option pricing model.

We also contribute to the literature which assesses biases in empirically estimated

option-based measures. Bliss and Panigirtzoglou (2002) and Hentchel (2003) examine

the effect of measurement errors in option prices on the estimation of risk-neutral dis-

tributions and IVs, respectively. Dennis and Mayhew (2009) investigate the effect of

measurement errors in option prices and discretely observed strikes on the estimation

of RNMs based on the BKM formulae. Ammann and Feser (2019) extend Dennis

and Mayhew (2009) and investigate robust interpolation methodologies to calculate

RNMs in the presence of measurement errors and limited number of option price ob-

servations. These studies assume that the underlying satisfies MR and focus on the

effect of practical issues such as discretely traded strikes and measurement errors to

the calculation of option-based quantities. Our study differs from these studies in that

the bias in RNMs caused by the violation of MR occurs even under an ideal situation

where a continuum of option prices are observable without any measurement errors.

Our analysis in this Chapter focuses on a specific issue of the skewness of stocks,

namely, the return predictive power of RNS estimated based on the BKM formulae.

However, it is worth noting here that the literature on the skewness of asset returns

has much broader coverage. For instance, there are theoretical and empirical studies

which show that both the systematic skewness and idiosyncratic skewness of securi-

ties measured under the physical measure are relevant to their returns. Kraus and

Litzenberger (1976) propose a three-moment CAPM in which the systematic skew-

ness affects expected returns and Harvey and Siddique (2000) find that the systemic

skewness risk is priced. Mitton and Vorkink (2007) find that unsystematic skewness

affect equilibrium asset prices. Barberis and Huang (2008) find a negative relation

between individual stock skewness and expected return, while Boyer et al. (2010)

find that the expected idiosyncratic skewness predicts cross-section of stock returns

negatively. This strand of studies is closely related to the literature on lottery-like

stocks, which argues that investors have preference on stocks with positively skewed
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payoff distribution and hence these stocks command lower returns. Kumar (2009),

Bali et al. (2011), and Filippou et al. (2018) among others provide empirical support

for this story.

Another important research topic of the skewness is the skew risk premium. A

seminal work by Kozhan et al. (2013) proposes an option-based skew swap that pays

the difference between the implied skew and realized skew. They find that the skew

risk premium of the S&P 500 index exists and positive, that is, on average the implied

skew is lower than the realized skew. Ruf (2012) studies the skew risk premium of

commodity futures options and find that the skew risk premium increases when the

degree of limits-of-arbitrage increases. Harris and Qiao (2018) find that individual

stocks’ skew risk premium is positive and the skew risk premium is negatively related

to future stock returns. Lin et al. (2019) develop an equilibrium asset and option

pricing model, which yields an analytical expression for the relation between the

market equity premium and the skew risk premium.

2.3 Theoretical framework

2.3.1 The martingale restriction: Definition and implications

We consider a financial market where three types of assets trade: the risk-free bond,

a risky asset (the stock) and options written on the risky asset. We assume that

the instantaneous risk-free rate is constant and given by rf . The gross risk-free bond

return from time t to T is denoted by Rf
t,T where Rf

t,T = erf (T−t). We denote the stock

price at time t by St. The stock pays dividends and D̃t,T denotes the time T value of

the aggregate dividends paid over the period (t, T ], that is,

D̃t,T =
∑
t<j≤T

Rf
j,TDj. (2.1)

We define the cum-dividend gross stock return from t to T by Rt,T = (ST + D̃t,T )/St.

The time-t price of a call (put) option with strike price K and maturity T is denoted

by Ct(K,T ) (Pt(K,T )) and τ = T − t denotes the length of return horizon and

options’ time-to-maturity. We call the discounted value of the asset with the dividends

reinvested (if applicable) the discounted (cum-dividend) price process. For example,
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the discounted cum-dividend stock price process is defined as {(St + D̃0,t)/R
f
0,t}t≥0.

For the discounted price process of non-dividend paying assets such as options, we

simply call it, for example, the discounted call price process {Ct(K,T )/Rf
0,t}t≥0.

The first fundamental theorem of asset pricing (FFTAP, Harrison and Kreps,

1979; Harrison and Pliska, 1981) states that in a frictionless market, the no-arbitrage

condition is equivalent to the existence of a risk-neutral probability measure Q, under

which the discounted (cum-dividend) price process of any asset is a martingale. In

other words, FFTAP yields the following martingale restriction on the dynamics of

the traded asset prices as a testable implication.

Definition 2.3.1 (Martingale restriction). The martingale restriction (MR) is said

to be satisfied if the discounted (cum-dividend) price process of any traded asset is a

martingale under a risk-neutral probability measure.

MR yields a number of important implications regarding the price and the ex-

pected return of any traded asset. First, under MR, the martingale property of the

discounted cum-dividend stock price yields

St + D̃0,t

Rf
0,t

= EQ
t

[
ST + D̃0,T

Rf
0,T

]
⇔ St =

1

Rf
t,T

EQ
t [ST + D̃t,T ], (2.2)

where EQ
t [.] denotes the expectation under the Q-measure conditional on the infor-

mation set at time t. Equation (2.2) is the so-called risk-neutral valuation formula,

that is, the current stock price equals the discounted value of the expected future

cum-dividend stock price under Q. Second, equation (2.2) implies that the expected

stock return Rt,T satisfies

EQ
t [Rt,T ] = Rf

t,T , (2.3)

that is, the Q-expected stock return equals the risk-free rate.

Third, in the asset pricing literature, FFTAP is stated under the physical measure

P (see e.g., Aı̈t-Sahalia and Lo, 1998; Cochrane, 2005). For each risk-neutral measure,

a corresponding stochastic discount factor (SDF) is defined as mt,T = e−rf τ (dQ/dP),

where dQ/dP is the Radon-Nikodým derivative for the change of measure from P

to Q. Then, by definition, Q and mt,T are related through the following change of
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measure equation,

EP
t [mt,T (ST + D̃t,T )] =

1

Rf
t,T

EQ
t [ST + D̃t,T ]. (2.4)

Equations (2.2) and (2.4) yield

1 = EP
t [mt,TRt,T ]. (2.5)

Moreover, equation (2.5) yields the following asset pricing equation:

EP
t [Rt,T ]−Rf

t,T = −Rf
t,TCov

P
t (mt,T , Rt,T ), (2.6)

that is, the expected excess return is determined by the covariance between the SDF

and the asset’s return.

Testing MR is of paramount importance because the above argument shows that

the important asset pricing relations including equations (2.2) to (2.6) hold if and

only if MR holds. Specifically, we will document that the violation of equation (2.3)

results in biases in the estimated RNMs based on BKM formulae.

2.3.2 Testing MR via CFER

Our approach to test MR relies on the idea that the violation of MR implies the

presence of market frictions. Equivalently stated, a violation of equation (2.3) implies

the presence of a wedge between the risk-neutral expected stock return EQ
t [Rt,T ] and

the risk-free rate Rf
t,T , which captures the effect of market frictions. We quantify this

wedge term by using the Hiraki and Skiadopoulos (2019) (HS) general asset pricing

setting which accounts for market frictions.

The HS model is an agent-based model, where a marginal agent chooses her con-

sumption ct and asset allocations θt (a vector of allocations to each asset) over the

stock, the risk-free bond and one-period options to maximize her expected lifetime

utility
∑

j≥t EP
t [u(cj)].

4 This maximization problem is subject to the following dy-

4The time-separable utility form is employed for the sake of simplicity. The HS setting works
under more general utility functions including the recursive utility.
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namics of the agent’s wealth Wt,

ct = Wt − θ0t − θSt St −
∑
K

[θct (K)Ct(K) + θpt (K)Pt(K)]− TCt(θt − θt−1),

Wt+1 = θ0tR
f
t,t+1 + θSt (St+1 +Dt+1) +

∑
K

[
θct (K)(St+1 −K)+ + θpt (K)(K − St+1)

+
]
,

where TCt is the transaction costs function and (x)+ = max(x, 0). The asset alloca-

tion is also subject to L constraints,

glt(θt) ≥ 0, l = 1 . . . , L. (2.7)

With these constraints, the Bellman equation of the optimization problem is given

by

Vt(Wt, θ
S
t−1) = max

ct,θt

{
u(ct) + βEP

t [Vt+1(Wt+1, θ
S
t )]
}
.

The allocation on the stocks at time t − 1 is treated as a state variable because it

affects the transaction costs and hence the agent’s decision making. On the other

hand, since we assume that options and the risk-free bond are one-period asset, their

past allocations do not enter as state variables. The first-order condition of the agent

regarding the allocation on the stock yields

St = EP
t [m

∗
t,t+1(St+1 +Dt+1)] +

L∑
l=1

λlt
u′(ct)

∂glt
∂θSt
− ∂TCt

∂θSt
+

β

u′(ct)
EP
t

[
∂Vt+1

∂θSt

]
, (2.8)

where m∗t,t+1 = β(∂Vt+1/∂Wt+1)/u
′(ct) is the agent’s intertemporal marginal rate of

substitution (IMRS) between time t and t+1, and λlt is the Lagrange multiplier of the

constraint, equation (2.7). By transforming equation (2.8), HS derive the following

asset pricing equation,

EP
t [Rt,t+1]−Rf

t,t+1 = −Rf
t,t+1Cov

P
t (m∗t,t+1, Rt,t+1) + CFERt,t+1, (2.9)

where

CFERt,t+1 = −
Rf
t,t+1

St

(
L∑
l=1

λlt
u′(ct)

∂glt
∂θSt
− ∂TCt

∂θSt
+

β

u′(ct)
EP
t

[
∂Vt+1

∂θSt

])
, (2.10)

is the contribution of frictions to the expected return of the stock, which represents the

wedge between the expected stock return and its covariance risk premium term caused
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by constraints on the portfolio allocations (e.g., margin constraints) and transaction

costs.

Under this framework, we define the new probability measure Q∗ by using the

scaled IMRS Rf
t,Tm

∗
t,T as a Radon-Nikodým derivative via the change of measure

formula (equation (2.4) with mt,T being replaced with m∗t,T ). In other words, we define

the Q∗-measure by utilizing the agent-based equilibrium model structure instead of

resorting to FFTAP to claim the existence of such a measure; the latter route is

not available because the market is not frictionless. Under this definition of the Q∗-

measure, we obtain the following result.

Lemma 2.3.1. Under the HS model, the following relation holds.

EQ∗

t [Rt,t+1] = Rf
t,t+1 + CFERt,t+1. (2.11)

Proof. See Appendix 2.A.1. 2

Equation (2.11) implies that we can still call the Q∗-measure the “risk-neutral

measure.” This is because equation (2.9) collapses to (2.11) if the agent has a risk-

neutral preference in the sense that the IMRS m∗t,t+1 is constant.

Lemma 2.3.1 allows us to draw three remarks. First, the comparison of equations

(2.3) and (2.11) shows that the asset violates MR if and only if CFER is non-zero.

Second, Lemma 2.3.1 shows that the Q∗-expected return of the risky asset is not

observable and it may vary across different assets given that CFER is not observable

and it is asset specific. This invalidates a fundamental principle which prevails in the

case of no frictions: the expected return of a risky asset under the risk-neutral measure

equals the observable risk-free rate and hence it is not an unknown parameter. Third,

from an empirical point of view, equation (2.11) shows that one can test whether MR

holds by testing whether CFER is zero. This test can be implemented because HS

show that CFER can be reliably estimated as a scaled deviation from put-call parity.

2.3.3 Relation to the implied stock price approach

Longstaff (1995) studies first whether a stock price satisfies MR empirically by testing

whether equation (2.2) holds. To this end, he assumes that the unobservable right-

hand side of equation (2.2) can be estimated by the implied stock price S∗t extracted
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from the observed market option prices, that is, he assumes that

S∗t = e−rf τEQ∗

t [ST + D̃t,T ]. (2.12)

Under this assumption, Longstaff (1995) and subsequent studies typically test MR by

investigating whether the relative difference between the implied stock price and the

observed stock price

∆t =
S∗t − St
St

(2.13)

is different from zero.

To extract the implied stock price, we proceed as follows. First, an option pricing

model h(ξ, St, K, τ, rf , D̃t,T ), where ξ denotes the set of parameter(s), is selected.

For example, a typical choice in the literature is the Black and Scholes (1973) (BS)

model. In this case, ξ consists of one parameter, the volatility. Then, S∗t is calculated

by minimizing the sum of squared errors between the observed option prices Ot(K,T )

and model-based option prices h(ξ, S∗t , K, τ, rf , D̃t,T ) by treating the current stock

price argument as a parameter to be estimated in addition to the model parameters

in ξ:

min
ξ,S∗

t

∑[
Ot(K,T )− h(ξ, S∗t , K, τ, rf , D̃t,T )

]2
. (2.14)

At the first glance, the implied stock price and CFER are two distinct variables

because the former is about the price of the stock whereas the latter is about the

return of the stock. However, dividing both sides of equation (2.12) by St and using

equation (2.11) yield

∆t =
CFERt,T

Rf
t,T

. (2.15)

Therefore, as long as equation (2.12) holds, we can view the implied stock price

approach as an alternative way to estimate CFER. In this case, the implied stock

price approach and the CFER approach would be equivalent ways to test MR because

∆t = 0 is equivalent to CFERt,T = 0. The correspondence between the implied stock

price and the expected stock return (or CFER) is not surprising given the one-to-one

correspondence between the discounted present value of assets and the discount rate;

the expected future stock price discounted by the risk-free rate (i.e., the implied stock

price in equation (2.12)) coincides with the observed market price if and only if the
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expected stock return (i.e., the discount rate for the stock) equals the risk-free rate.

However, in the case where equation (2.12) does not hold, the two approaches

are not equivalent; adding and subtracting e−rf τEQ∗

t [ST + D̃t,T ] to the numerator of

equation (2.13) yields

∆t =
S∗t − e−rf τE

Q∗

t [ST + D̃t,T ]

St
+
CFERt,T

Rf
t,T

, (2.16)

where the first term in the right-hand side does not vanish unless equation (2.12) holds.

Most importantly, in this case, the implied stock price approach does not constitute a

valid test of MR because ∆t will differ from zero even if CFER is zero (i.e., even if MR

holds). Interestingly, the literature has largely overlooked investigating the validity

of the crucial assumption of the implied stock price approach, equation (2.12), and

hence the validity of the implied stock price approach as a way of testing MR.

We explore the extent to which the implied stock price approach constitutes a valid

test of MR. We consider the most frequently considered situation in the literature,

where the option price model is set to the BS model. The following Proposition

showcases a situation where the implied stock price approach based on the BS option

pricing model constitutes a valid test of MR.

Proposition 2.3.1. Assume that options satisfy MR but the underlying stock may

violate MR. Assume further that (i) the true Q∗-distribution of ST is log-normal, and

(ii) there are at least two observed option prices input to the minimization problem

described in equation (2.14). Then,

∆BS
t :=

S∗t,BS − St
St

=
CFERt,T

Rf
t,T

, (2.17)

where S∗t,BS is given as the solution of equation (2.14) in the case where the option

pricing model used to extract the implied stock price is the BS model.

Proof. See Appendix 2.A.2. 2

Proposition 2.3.1 shows that the implied stock price approach using the BS model

constitutes a valid test of MR (i.e., MR holds if and only if ∆BS
t = 0) if the true Q∗-

distribution follows a log-normal distribution. On the other hand, we show, by means

of simulation where we assume the stock price satisfies MR, that the BS model-based
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implied stock price approach spuriously rejects MR if the true Q∗-distribution of the

future stock price is not log-normal.

The simulation setup is as follows. We choose St = 100, τ = 1/6 and rf = 4%. For

dividends, we set D̃t,T = 0.5, which corresponds to an about 3% annualized dividend

yield. Call and put options trade at strikes K = 80, 85, . . . , 120 (i.e., nine strikes).

We assume that both the underlying stock and options satisfy MR under the true Q∗

measure. In this case, option prices are given by the risk-neutral valuation formula

Ct(K,T ) = e−rf τEQ∗

t [(ST −K)+], and Pt(K,T ) = e−rf τEQ∗

t [(K − ST )+], (2.18)

where (x)+ = max(x, 0). We assume that the Q∗-distribution of the stock price may

not be log-normal and hence the BS implied volatility (BS-IV) curve may be skewed,

that is, the graph of the BS-IV as a function of the option moneyness (the strike-to-

stock price ratio) may not be flat. We model the BS-IV curve as a linear function

of moneyness IV (K/St) = σATM + k(K/St − 1). We set the at-the-money (ATM)

volatility, σATM to 20%. The coefficient k controls the slope of the IV skew. We

examine five realistic values for the slope coefficient k: k = ±1/2, k = ±1/4 and

k = 0. For example, k = −1/2 corresponds to the situation where the BS-IV at

K = 80 (i.e., moneyness = 0.8) is 30% and that at K = 120 (i.e., moneyness = 1.2)

is 10%. Then, we convert the given BS-IV at each traded strike to the respective

call and put option prices by using the BS option pricing functions with deterministic

dividend payments, that is,

Ct(K,T ) = BScall(St, K, τ, rf , D̃t,T , IV ) = (St − e−rf τD̃t,T )Φ(d1)− e−rf τKΦ(d2),

(2.19)

where Φ is the cumulative density function of the standard normal distribution and

d1 =
log
(
St−e−rf τ D̃t,T

K

)
+ (rf + 1

2
IV 2)τ

IV
√
τ

, and d2 = d1 − IV
√
τ . (2.20)

The put option price is given by

Pt(K,T ) = BSput(St, K, τ, rf , D̃t,T , IV ) = e−rf τKΦ(−d2)− (St − e−rf τD̃t,T )Φ(−d1).

(2.21)

This construction ensures that the underlying satisfies MR, too. To see this,
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Ct(K)−Pt(K) = St−e−rf τD̃t,T −e−rf τK follows from the definition of BS-IV via the

BS functions (equations (2.19) and (2.21)), while Ct(K)−Pt(K) = e−rf τEQ∗

t [ST −K]

follows from equation (2.18). These two equations yield St = e−rf τEQ∗

t [ST + D̃t,T ].5

Note that converting the same BS-IV to obtain the call and put option prices is

crucial to ensure that the underlying satisfies MR; in Section 2.4.4, we will show that

the violation of MR is equivalent to the non-zero implied volatility spread (i.e., the

difference between the call BS-IV and put BS-IV at the same strike). Given these

generated option prices, the two parameters, the implied stock price S∗t and the BS

volatility parameter σ∗, are obtained by solving equation (2.14).

Table 2.1 reports the simulation result. In line with the literature on testing MR,

we estimate S∗t and σ∗ using a set of call options and a set of put options, separately.

We also report the estimate of (annualized) CFER as ĈFER = Rf
t,T ∆̂t/τ under the

implied stock price approach (equation (2.15)). Here, we view the implied stock price

approach as an alternative way to estimate the underlying stock CFER by imposing

its key assumption, equation (2.12). We can see that the two parameters, S∗t and

σ∗, are correctly estimated under k = 0, that is, the implied stock price approach

identifies correctly that MR holds ad hence it constitutes a valid test of MR in this

case. This is in line with Proposition 2.3.1 because k = 0 corresponds to a situation

where the true Q∗-distribution follows a log-normal distribution. On the contrary,

when k is negative (positive), S∗t is estimated to be lower (higher) than St regardless

of using either call options or put options. Therefore, even though we assume that

the underlying satisfies MR, the implied stock price approach spuriously rejects MR

when the slope of the IV curve is non-zero.

[Table 2.1 about here.]

We explain the mechanism which yields S∗t > St in the case where k < 0 (i.e.,

negative IV skew case). The implied stock price S∗t is chosen so that the BS-IVs of

the model-based option prices h(ξ, S∗t , K, τ, rf , D̃t,T ) fit the negatively skewed BS-IVs

of the observed option prices as close as possible. For a set of call options, for this

to occur, in-the-money (ITM) calls should be more “expensive” (in terms of the BS-

IV) compared to out-of-the-money (OTM) calls. To achieve this, the implied stock

5Note that we make no assumption that the BS model is the true model, but we simply use it as
a translation mechanism to map IVs to option prices. In fact, the designed simulation admits that
the BS model is not the true model unless k = 0.
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price approach sets S∗t higher than St. This is equivalent to setting a positive ĈFER

(equation (2.15)) and hence setting the estimate of the expected stock return under

Q∗ greater than the risk-free rate (equation (2.11)). Therefore, choosing S∗t > St

makes call options more expensive by setting the expected stock return higher. In

addition, this effect is stronger for ITM call options than OTM call options. This is

because one can benefit from a higher expected stock price only in the case where

call options expire in-the-money, which is more likely for ITM options than OTM

options. Figure 2.1a shows the effect of choosing a higher value for S∗t ; compared

to the “initial” BS model-based IV curve where the parameters are set to S∗t = St

and σ∗ = σATM (the gray thin line), the BS model-based IV with a higher S∗t (the

blue dotted line) locates closer to the true simulated IV curve (the black thick line).

Finally, σ∗ is estimated lower than the average IV level (i.e., σATM) to offset increases

in call option prices due to a higher S∗t which would prevent fitting the level of the

given IV curve. Figure 2.1b shows the effect of choosing a lower value for σ∗; the BS

model-based IV curve with lower σ∗ (the red dashed line) locates closer to the true

simulated IV line compared to the BS model-based IV curve with σ∗ = σATM (the

blue dotted line). For the case of put options, a negative IV skew means that OTM

puts are more “expensive” (in terms of the IV) compared to OTM puts. To create

such a pattern, again a higher S∗t is chosen. This is because choosing S∗t > St makes

put options cheaper and this effect is stronger for ITM put options than OTM ones

(Figure 2.1c) for an analogous reason to the call case. Finally, σ∗ is estimated higher

than σATM to offset decreases in put option prices due to a higher S∗t which again

would prevent fitting the level of the IV curve (Figure 2.1d).

[Figure 2.1 about here.]

Our simulation results are in line with the empirical results reported in the lit-

erature; Longstaff (1995) and the follow-up studies report that the estimated stock

price is greater than the current stock price (i.e., S∗t > St) in more than 90% of the

cases in their samples. Although the previous literature views this as evidence for

the violation of MR, our simulation results suggest that the findings in the previous

literature is a mechanical reflection of the empirical stylized fact that index options

exhibit negative IV skews.

A remark is in order at this point. Our simulation exercise shows that the implied
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stock approach rejects MR spuriously in the case where the BS model is chosen to

calculate the implied stock price and an IV skew exists. In other words, even if CFER

equals zero, ∆BS
t may not equal zero, which implies that the key assumption of the

implied stock price approach, equation (2.12), may not supported by the data. In

addition, the spurious rejection of MR under the implied stock price approach may

also be a result of the selected (possibly mis-specified) option pricing model. This

manifests that the implied stock price approach is subject to the joint hypothesis

problem, that is, testing a property of the true risk-neutral distribution (i.e., MR) by

assuming a specific model for the risk-neutral distribution.

On the contrary, testing MR under the CFER-approach circumvents the joint

hypothesis problem as well as the assumption shown by equation (2.12); our estimated

CFER equals scaled deviations from put-call parity and hence its calculation does

not require an option pricing model nor equation (2.12). Note, however, that there

is the following caveat about our CFER-based approach for testing MR. Deviations

from put-call parity means that either the underlying stocks or synthetic stocks (i.e.,

options) or both violate MR due to the effect of market frictions. Therefore, our

CFER-based MR testing approach would result in a spurious judgment when the

underlying stock does not violate MR but deviations from put-call parity occurs due

to the violation of MR by options. Empirical findings in HS suggest that such a

situation is not likely to occur. However, it should be noted that their conclusion relies

on specific models of the effect of frictions on option prices (Frazzini and Pedersen

(2012) and Hitzemann et al. (2017)), and hence their judgment is model dependent.

2.4 Estimation of risk-neutral moments: Theory

In this Section, we develop the theory for the estimation of RNMs under the possible

violation of MR. In Section 2.4.1, we provide the generalized Bakshi et al. (2003)

(BKM) formulae for the estimation of RNMs in the case where the underlying asset

violates MR.

Then, in Section 2.4.2, we investigate the behavior of BS-IV under the violation of

MR. This is of importance for the purposes of studying the effect of violations of MR

to RNMs for two reasons. First, IV is an essential ingredient to obtain a continuum of
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option prices from discretely observed option prices and hence to estimate RNMs; our

simulation result in Section 2.4.3 shows that the usage of the original BKM formulae

and the standard IV results in biases in the estimated RNS in the case where MR is

violated. Second, the slope of IV curves (e.g., the difference between OTM option’s

IV and ATM option’s IV) is frequently interpreted as a proxy of RNS (e.g., Bali et al.,

2018). However, in Section 2.4.4, we show that a non-zero IV slope measure does not

necessarily mean the underlying distribution is not log-normal in the case where MR

is violated. This is in contrast to the common perception that the presence of IV

skew indicates departure from log-normality. To remedy these issues, we propose the

robust IV, which accounts for the possible violation of MR in the calculation of IV.

2.4.1 The generalized Bakshi et al. (2003) formula

To derive the original BKM formulae, both the underlying and options are assumed

to satisfy MR. We relax the assumption that the underlying satisfies MR, whereas

we keep the MR assumption for the option prices. Admittedly, the assumption that

option prices satisfy MR is strong because it implies that option prices are not affected

by market frictions, in contrast to the previous literature (e.g., Frazzini and Pedersen,

2012; Hitzemann et al., 2017) which documents that market frictions affect option

prices. Note that we do not need this assumption for the estimation of CFER and

hence for our CFER-based test for the violation of MR by the underlying. Indeed,

HS do not assume that options satisfy MR, but they empirical find that the effect of

frictions on options seems to have negligible impact on the estimation of CFER. On

the other hand, we need this assumption to derive the generalized BKM formulae.

Otherwise, relaxing the MR assumption for options would not allow the estimation of

RNMs in a model-free manner since model-free ways to estimate the effect of frictions

on options are yet to be proposed. Our formulae also generalize BKM in that we

allow the underlying asset to pay dividends.

Let rt,T = log((ST + D̃t,T )/St) be the log cum-dividend return of the underlying

stock. The (generalized) BKM formulae estimate the central moments of the distribu-

tion of rt,T . The model-free implied volatility (MFIV), risk-neutral skewness (RNS),

and risk-neutral kurtosis (RNK) of the Q∗-distribution of rt,T are denoted byMFIVt,T ,

RNSt,T and RNKt,T , respectively. We consider the derivative which delivers a payoff
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(rt,T )n with a positive integer n at time T . We call this derivative the “power-n log

return contract” and we denote its present value as M(n)t,T = e−rf τEQ∗

t [(rt,T )n].6

Proposition 2.4.1 (Generalized BKM formulae). Assume that the underlying may

violate MR, yet option prices satisfy MR. Then, the MFIV, RNS and RNK are given

by

MFIVt,T =

√
erf τM(2)t,T − µ̃2

t,T

τ
, (2.22)

RNSt,T =
erf τM(3)t,T − 3erf τ µ̃t,TM(2)t,T + 2µ̃3

t,T

[erf τM(2)t,T − µ̃2
t,T ]3/2

, (2.23)

RNKt,T =
erf τM(4)t,T − 4erf τ µ̃t,TM(3)t,T + 6erf τ µ̃2

t,TM(2)t,T − 3µ̃4
t,T

[erf τM(2)t,T − µ̃2
t,T ]2

, (2.24)

where

µ̃t,T = CFERt,T + erf τ − 1− erf τ

2
M(2)t,T −

erf τ

6
M(3)t,T −

erf τ

24
M(4)t,T (2.25)

is the forth-order Taylor series approximation of the risk-neutral expected log stock

return (i.e., µ̃t,T ≈ EQ∗

t [rt,T ]). The value of the power-n log return contracts M(n)t,T

is given by

M(n)t,T =

∫ ∞
St−D̃t,T

η(K;St, n)Ct(K,T )dK+

∫ St−D̃t,T

0

η(K;St, n)Pt(K,T )dK, (2.26)

where

η(K;St, n) =
n

(K + D̃t,T )2

(n− 1) log

(
K + D̃t,T

St

)n−2

− log

(
K + D̃t,T

St

)n−1
 .

(2.27)

Proof. See Appendix 2.A.3. 2

Proposition 2.4.1 provides the formulae to calculate RNMs in a setting where MR

may be violated. These formulae modify the BKM formulae in two ways. First, the

risk-neutral mean of the log stock return µ̃t,T is modified (equation (2.25)). The ex-

pression for the risk-neutral mean log stock return in BKM’s original study (equation

(39) of BKM) does not contain the CFER term, reflecting their assumption that the

6BKM call the power-2, -3, and -4 log return contracts the volatility, cubic and quartic contracts.
They also denote M(n)t,T (n = 2, 3, 4) by Vt,T , Wt,T , and Xt,T , respectively.
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underlying satisfies MR. Therefore, unless CFER is zero, the original BKM formulae

mis-estimate the RNMs of the log stock return because they use a mis-measured mean

of the log stock return to calculate central moments.

The second modification is that our formulae consider the cum-dividends return

whereas BKM assume that the underlying pays no dividends. The inclusion of divi-

dends modifies the new formulae in two ways compared to BKM. First, the boundary

between the call and put integration regions in equation (2.26) changes to St − D̃t,T

from St in the original BKM formulae. Second, the “weighting” function, equation

(2.27), also changes. These two changes occur because the payoff function changes

from the power of the ex-dividend log return (log(ST/St))
n to that of the cum-dividend

log return (log((ST + D̃t,T )/St))
n.

Regarding our modification on the dividend paying stocks, Proposition 2.4.1 pro-

vides RNMs of the cum-dividend return. The next Proposition provides formulae for

the RNMs of the ex-dividend return, rext,T = log(ST/St).

Proposition 2.4.2 (Generalized BKM formulae for the ex-dividend return). To es-

timate the RNMs of the ex-dividend return, the value of power-n contracts is given

by

M(n)t,T =

∫ ∞
St

ηex(K;St, n)Ct(K,T )dK +

∫ St

0

ηex(K;St, n)Pt(K,T )dK, (2.28)

where

ηex(K;St, n) =
n

K2

[
(n− 1) log

(
K

St

)n−2
− log

(
K

St

)n−1]
. (2.29)

Moreover, the expected log stock return, equation (2.25), should be modified to the

following equation:

µ̃t,T = CFERt,T +erf τ− D̃t,T

St
−1− e

rf τ

2
M(2)t,T −

erf τ

6
M(3)t,T −

erf τ

24
M(4)t,T . (2.30)

The functional forms of equations (2.22) to (2.24) do not change.

Proof. See Appendix 2.A.4. 2

Note that equations (2.28) and (2.29) are the same as the original BKM formulae.

This is because both our formulae in Proposition 2.4.2 and BKM’s original formulae

are about the payoff function log(ST/St)
n. However, in contrast to BKM, we assume
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that the underlying asset pays dividends and this modifies the mean of the log stock

return, equation (2.30), which now contains an additional term, −D̃t,T/St. This

reflects the fact that the ex-dividend expected return is lower than the cum-dividend

expected return by D̃t,T/St.

Finally, we briefly discuss the possible bias in the estimation of RNMs due to the

assumption that option prices obey the MR. To this end, let us assume that options

violate MR and option prices are expressed as Ct(K) = EQ∗

t [(ST − K)+]/Rf
t,T +

M c
t (K) and Pt(K) = EQ∗

t [(K − ST )+]/Rf
t,T + Mp

t (K), where M c
t (K) and Mp

t (K)

denote the effect of frictions on call and put option, respectively. By revisiting the

proof of Proposition 2.4.1 with these notations, it follows that Ct(K,T ) and Pt(K,T )

in equation (2.A.7) should be replaced with Ct(K,T )−M c
t (K) and Pt(K,T )−Mp

t (K),

respectively. This change leads to the modification of equation (2.26) to

M(n)t,T =

∫ ∞
St−D̃t,T

η(K;St, n)Ct(K,T )dK +

∫ St−D̃t,T

0

η(K;St, n)Pt(K,T )dK

−
∫ ∞
St−D̃t,T

η(K;St, n)M c
t (K)dK −

∫ St−D̃t,T

0

η(K;St, n)Mp
t (K)dK.

(2.31)

Equation (2.31) shows that, when options violate MR, the power-n log return contract

price equals the sum of the two integral terms in the right-hand side of equation (2.26)

(the two integrals in the first line) and the integrals of the effect of frictions on option

prices across different strikes (the two integrals in the second line). This means that

our formula in Proposition 2.4.1 results in the estimation bias in the power-n log

return contract price, which equals the sum of the last two terms in equation (2.31).

Unfortunately, this bias component cannot be estimated in a model-free manner

because there are no model-free ways to estimate the effect of frictions on options,

M c
t (K) and Mp

t (K). Nevertheless, to get a feeling of the magnitude of this bias, let us

assume that the effect of frictions on option prices, M c
t (K) and Mp

t (K), is proportional

to their option prices with the constant coefficient a, that is, M c
t (K) = aCt(K) and

Mp
t (K) = aPt(K) for any strike K. In this case, the bias component equals a times the

right-hand side of equation (2.26). This means that our estimation formula, equation

(2.26), has a relative error of a. Therefore, the bias in the power-n log return contract

is not large as long as the relative size of the friction-related term of options to their
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option prices is not large. Moreover, this bias component can become even smaller if

the sign of effect of frictions M c
t (K) and Mp

t (K) varies across strikes (for example due

to measurement errors) as they offset each other to some extent when the integral

across strikes are taken. In any case, examining the bias component under more

realistic settings is beyond the scope of this thesis and hence it is best left for future

research.

2.4.2 IV and the violation of MR: Log-normal case

Next, we investigate the behavior of BS-IV under the violation of MR. To provide an

analytically tractable discussion, we consider a situation where the underlying stock

may violate MR, yet it follows a log-normal distribution. In particular, we assume

that the future stock price ST follows a log-normal distribution under the Q∗-measure,

that is,

ST ∼ Lognormal

(
log(St − e−rSτD̃t,T ) + rSτ −

σ2τ

2
, σ2τ

)
, (2.32)

where rS is the continuously compounded risk-neutral expected return of the stock,

erSτ = EQ∗

t [Rt,T ], σ is the constant volatility (i.e., annualized standard deviation)

parameter, and D̃t,T is the aggregate dividend payment between t and T assumed to

be known at time t.7

In the presence of market frictions (i.e., non-zero CFER), MR does not hold and

rS will differ from rf since

Rf
t,T + CFERt,T = EQ∗

t [Rt,T ] = erSτ 6= erf τ = Rf
t,T , (2.33)

where the first equality comes from equation (2.11).

Next, we calculate the price of options under this setting. To this end, we assume

that option prices satisfy MR and thus option prices are still given by equation (2.18).

7To show that rS is the continuously compounded risk-neutral expected return, we calculate the
mean of the log-normal distribution, equation (2.32). This yields

EQ∗

t [ST ] = exp
(

log(St − e−rSτ D̃t,T ) + rSτ
)

= erSτ (St − e−rSτ D̃t,T ) = erSτSt − D̃t,T .

Some more algebra shows that EQ∗

t [Rt,T ] = erSτ under the deterministic dividend D̃t,T assumption.
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Then, the call option price is given by

Ct(K,T ) = e(rS−rf )τ × e−rSτEQ∗

t [(ST −K)+] = e(rS−rf )τBScall(St, K, τ, rS, D̃t,T , σ),

(2.34)

where BScall(S,K, τ, r,D, σ) is the BS function with deterministic dividend payment,

equation (2.19). The relation e−rSτEQ∗

t [(ST −K)+] = BScall(St, K, τ, rS, D̃t,T , σ) holds

because the left-hand side is the price of a call in the case where the “risk-free rate”

is rS. Similarly, the put option price is given by

Pt(K,T ) = e(rS−rf )τBSput(St, K, τ, rS, D̃t,T , σ). (2.35)

Two remarks are in order regarding equations (2.34) and (2.35). First, when MR

is satisfied (i.e., rS = rf ), the pricing formulae boil down to the standard BS functions

with deterministic dividends. Second, under the violation of MR, the option pricing

functions are a function of seven arguments (St, K, τ, σ, rf , D̃t,T and rS) rather than a

function of six arguments as in the case of the BS model. This is because the risk-free

rate used to discount future expected payoff (equations (2.34) and (2.35)) and the

continuously compounded expected stock return differ in the case where MR does not

hold.

The BS-IV is defined implicitly via the following equations:

IV c
t = BS−1call(Ct;St, K, τ, rf , D̃t,T ), and IV p

t = BS−1put(Pt;St, K, τ, rf , D̃t,T ),

(2.36)

where BS−1call(C;S,K, τ, r, D̃) (BS−1put(P ;S,K, τ, r, D̃)) is the inverse function of the

BS call (put) option function, viewed as a correspondence between the volatility

parameter and option price given other parameters. The following Proposition shows

the properties of the BS-IV defined through equation (2.36) in the case where option

prices (Ct and Pt in the respective right-hand side arguments in equation (2.36)) are

given by equations (2.34) and (2.35), respectively.8

Proposition 2.4.3. (a) Let IV c
t (K) (IV p

t (K)) be the BS-IV of the call (put) option

8 Therefore, we define BS-IV via the BS model which prevails in the case of frictionless markets
but then we use a setting with frictions in the underlying asset to see how frictions affect BS-IV.
Our approach is not internally inconsistent. The fact that we use BS-IV does not mean that market
option prices and the underlying asset price are not affected by frictions; the BS formula serves as
a translation mechanism between market option prices and IV and it does not imply that the BS
formula is the correct option pricing formula.
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price given by equation (2.34) (equation (2.35)), that is,

Ct(K,T ) = e(rS−rf )τBScall(St, K, τ, rS, D̃t,T , σ) = BScall(St, K, τ, rf , D̃t,T , IV
c
t (K))

(2.37)

Pt(K,T ) = e(rS−rf )τBSput(St, K, τ, rS, D̃t,T , σ) = BSput(St, K, τ, rf , D̃t,T , IV
p
t (K)),

(2.38)

Then, IV c
t (K) and IV p

t (K) satisfy the following approximate equations, respectively:

IV c
t (K) ≈ σ +

CFERt,T√
τRf

t,T

St

St − e−rf τD̃t,T

Φ(d1)

φ(d1)
, (2.39)

IV p
t (K) ≈ σ − CFERt,T√

τRf
t,T

St

St − e−rf τD̃t,T

Φ(−d1)
φ(−d1)

, (2.40)

where φ(x) and Φ(x) are the probability density function and the cumulative density

function of the standard normal distribution and

d1 =
log

St−e−rf τ D̃t,T
K

+ (rf + σ2

2
)τ

σ
√
τ

. (2.41)

(b) When CFERt,T = 0, then IV c
t (K) = IV p

t (K) = σ holds. On the other hand,

when CFERt,T is positive (negative), IV c
t (K) is greater (smaller) than σ for any

strike and decreasing (increasing) in K, whereas IV p
t (K) is smaller (greater) than σ

for any strike and increasing (decreasing) in K.

Proof. See Appendix 2.A.5. 2

Proposition 2.4.3 showcases two interesting findings about the properties of the BS-

IV. First, in the case where the underlying violates MR, the BS-IV does not correctly

estimate the volatility parameter of the log-normal distribution.9 For instance, when

CFER is positive, the call (put) BS-IVs overestimate (underestimate) the true σ.

Figure 2.2 manifests this finding by showing the IVs given by equations (2.39) and

(2.40) as a function of moneyness with time-to-maturity τ = 1/8 (about 45 days), the

9Hentchel (2003) analyzes how the IV as an estimate of the true volatility is biased due to
measurement errors in option prices, the underlying prices, the risk-free rate (which equals the
expected stock return under the MR assumption) and other parameters. Our result is related to his
analysis because the bias in our case can be interpreted as a result of using the wrong value for the
expected stock return when inverting the BS function.
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risk-free rate rf = 3%, the annualized CFER CFERt,T/τ = 1%, the deterministic

dividend-to-stock D̃t,T/St = 0.5% (i.e., 4% annualized dividend yield) and the log-

normal volatility parameter σ = 20%.10 This pattern appears because call (put)

options are more expensive (cheaper) compared to the BS model case (i.e., rS = rf )

when CFERt,T > 0 because a higher stock drift rS makes call (put) options more

(less) likely to expire in-the-money.

[Figure 2.2 about here.]

Second, the BS-IVs are not constant across strikes in the case where MR is violated

despite the fact that the risk-neutral distribution of the underlying is log-normal. For

instance, in the case where CFER is positive, Proposition 2.4.3 (b) shows that the call

(put) IV curve is decreasing (increasing) in K. Therefore, the IV skew in this case

is a result of market frictions and it would spuriously suggest that the underlying

distribution is not log-normal. This finding is related to Leland (1985) and Çetin

et al. (2006), who also show that market frictions may result in skewed IV curve even

if the underlying follows a log-normal distribution.

To remedy these drawbacks of the conventional BS-IV, we propose the robust IV

(henceforth, we will call the conventional IV the standard BS-IV to distinguish it from

the robust IV).

Definition 2.4.1 (Robust IV). Let rS be the continuously compounded Q∗-expected

stock return, which will differ from rf if market frictions are present. Then, the robust

IV, IVrob, is defined implicitly via

e−(rS−rf )τCt(K,T ) = BScall(St, K, τ, rS, D̃t,T , IV
c
rob),

e−(rS−rf )τPt(K,T ) = BSput(St, K, τ, rS, D̃t,T , IV
p
rob).

(2.42)

We implicitly define the robust IV by equating the option price adjusted by

e−(rS−rf )τ with the BS model price which uses rS rather than rf as an input. In

contrast, the standard BS-IV is obtained by equating the unadjusted option price

with the BS model price which uses the rf as an input. In the case where the under-

lying satisfies MR (i.e., rS = rf ), equation (2.42) boils down to the definition of the

10Note that the numerical value of CFER is in line with the evidence we will present in Section
2.5, which shows that the CFER of the S&P 500 may be as extreme as ±1%.
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standard BS-IV. This suggests that the robust IV generalizes the standard BS-IV by

accounting for the possible violation of MR.

The generalization of the standard IV to the robust IV is of importance because the

latter eliminates the two drawbacks of the standard IV discussed above, arising from

violations of MR. First, the robust IV correctly estimates the volatility parameter

σ when the underlying distribution is log-normal. This can be shown by comparing

equations (2.34), (2.35), and (2.42). Second, in the case where the underlying follows

a log-normal distribution, the robust IV is constant across strikes and equals to σ even

when MR is violated. This suggests that the slope of the robust IV curve is a better

proxy of the risk-neutral skewness of the underlying stock because a zero IV slope

calculated based on the robust IV would ensure that the asset price is log-normally

distributed.

2.4.3 Estimation of RNMs: Simulation results

The violation of MR may affect the estimation of RNMs via two channels. The first

channel is via the theoretical formulae used for their computation, and the second

channel is via the IVs used in the process of obtaining a continuum of option prices

by interpolation given that in practice option prices trade for discrete rather than a

continuum of strikes. To quantify how these two channels may affect the estimation

of RNMs, we conduct a simulation exercise.

We assume that the stock price follows the log-normal distribution, equation

(2.32), and the stock may violate MR (i.e., rS 6= rf ).
11 The current stock price is set

to St = 100, the risk-free rate is rf = 3%, the time-to-maturity is τ = 1/12. For sim-

plicity, we assume no dividend payment. The volatility parameter is set to σ = 30%.

We consider three cases of the expected stock return rS: rS = rf , rS = rf + 3%, and

rS = rf − 3%. Since the log stock return, log(ST/St), follows a normal distribution,

the true MFIV, RNS, RNK are σ = 30%, zero, and three, respectively, regardless of

the value of rS.

We generate a realistic set of option prices as follows. We assume that options

trade at K = 94, 95, . . . , 108. These strikes approximately cover the delta range from

11This setup is similar in spirit to Dennis and Mayhew (2009), who analyze how microstructural
biases affect the estimation of RNS under the log-normality assumption.
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0.2 to 0.8, corresponding to the delta range in the OptionMetrics Volatility Surface

file, which we use in the subsequent empirical analysis. We calculate these option

prices based on equations (2.34) and (2.35). Then, we calculate the standard BS-IV

of these options. Unless rS = rf , the standard BS-IV curve is not flat (Proposition

2.4.3). On the other hand, the robust IV curve is flat at the level of σ = 30%.

In line with the standard estimation procedures in the literature (e.g., Stilger

et al., 2017), we interpolate the discrete option IVs by the cubic Hermite polynomial

in the moneyness-IV metric and extrapolate IVs horizontally beyond the highest and

lowest strikes. We follow Stilger et al. (2017) and interpolate and extrapolate call

IVs and put IVs, separately. Then, we convert the interpolated IV curves to 1001

option prices over the equally-spaced strikes in the moneyness range [1/3, 3]. Finally,

we numerically calculate the integrals in the BKM formulae and calculate the RNMs.

To perform these procedures, we have two choices regarding the type of IV to be

interpolated and two choices regarding the type of the RNM formulae. These yield

four estimation specifications, OS-, OR-, GS-, and GR-RNMs. The first letter of

the prefix stands for the type of the formulae (the “Original” BKM formulae or the

“Generalized” BKM formulae) and the second letter stands for the type of the IVs

used for the IV interpolation (the “Standard” IVs or the “Robust” IVs).

Table 2.2 reports the result of the estimated RNMs by the four specifications. We

can see that MFIV and RNK are not affected by the violation of MR in our simulated

situation. On the other hand, RNS is affected both by the choice of the BKM formula

and the employed IVs. Unless both the generalized formulae and the robust IV are

employed, the estimated RNS differs from the true value of zero. This result shows

that both the explicit consideration of CFER in the BKM formulae and the use of

the robust IV for the inter- and extrapolation matter for the estimation of RNS.

[Table 2.2 about here.]

Why does the input IV to the interpolation and extrapolation process matter?

Roughly speaking, this is because the extrapolation of the standard IV results in

biases in the extrapolated option prices, and these biases transmit to the power-n log

return contract.

To fix ideas, we consider a positive CFER case. In this case, the call and put

standard IV curves are given by the two dotted lines in Figure 2.3. In the extrapolation
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step, the IV curves are horizontally extended beyond the observed moneyness range

(i.e., the two solid lines in Figure 2.3). Since the extrapolated call (put) line is above

(below) the true standard IV line, this means that the extrapolation of the standard

IV curve results in the overestimation (underestimation) of the extrapolated call (put)

option prices in the case CFER is positive.

[Figure 2.3 about here.]

Then, how the overestimation of OTM call options and underestimation of OTM

put options transmit to the power-n log return contract prices? We answer this

question based on the following Lemma about the sign of the weighting function

η(K;St, n) in equation (2.26).

Lemma 2.4.1. For odd-degree power-n log return contracts, η(K;St, n) satisfies the

following inequalities.

η(K;St, n)


< 0 K/St < 1,

≥ 0 1 ≤ K/St ≤ en−1,

< 0 K/St > en−1.

(2.43)

For even-degree power-n log return contracts, η(K;St, n), satisfies the following in-

equalities.

η(K;St, n)

≥ 0 K/St ≤ en−1,

< 0 K/St > en−1.

(2.44)

Proof. See Appendix 2.A.7. 2

To simplify our discussion, we ignore the respective last cases in equations (2.43)

and (2.44) about the far deep call OTM region K/St > en−1. This simplification

is innocuous for empirical applications because call option prices in this deep OTM

region are typically negligible and do not much affect the calculation of the call integral

in equation (2.26).

Equation (2.43) shows that the η function of the odd -degree power-n contract is

negative in the put OTM region and positive in the call OTM region. Therefore, the

undervaluation of OTM put options and the overvaluation of OTM call options both

result in an upward bias in the power-3 contract price which enters in the calculation
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of RNS. Therefore, a positive CFER results in an upward bias in the estimated RNS

via the bias in OTM option prices arisen during the extrapolation process.

On the other hand, equation (2.44) shows that the η function of the even-degree

power-n contract is always non-negative. Consequently, the overvaluation in OTM

call prices and undervaluation in OTM put prices have the opposite effect on the

power-2 and power-4 contract prices, leaving these prices largely unaffected. This

explains why MFIV and RNK are largely unaffected by the bias arisen during the

extrapolation process.

2.4.4 Relation to the IV slope measure

Xing et al. (2010) (XZZ) find that the difference between the standard IV of an OTM

put and that of an ATM call, XZZ = IV p
OTM − IV c

ATM negatively predicts the cross-

section of future stock returns. Their finding is consistent with the recent literature

on RNS which documents a positive relation between RNS and future realized stock

returns, given that the XZZ measure is a crude measure of RNS (e.g., a higher value

of XZZ implies that the risk-neutral distribution of the asset returns is skewed to the

left).

However, the XZZ measure can be decomposed in two components:

XZZ = IV p
OTM − IV

c
ATM = (IV p

OTM − IV
p
ATM) + (IV p

ATM − IV
c
ATM) = POMA− IV S,

(2.45)

where POMA = IV p
OTM − IV

p
ATM is the put out-minus-at IV skew measure studied

by Doran and Krieger (2010) and Fu et al. (2016) and IV S = IV c
ATM − IV p

ATM is

the implied volatility spread studied by Bali and Hovakimian (2009) and Cremers and

Weinbaum (2010) among others.

Regarding the POMA component, Proposition 2.4.3 shows that POMA is not

equal to zero even when the underlying price follows a log-normal distribution, in the

case where MR is violated.12 The IVS component also biases the calculation of RNS

because it is the difference between the call and put option IVs at the same strike and

hence it is not related to RNS. Instead, Proposition 2.4.3 shows that a non-zero IVS

12Existing literature reports either insignificant predictive power of POMA (Fu et al., 2016) or
even positive relation between POMA and future returns (Doran and Krieger, 2010). This suggests
that the POMA component should not be the source of negative relation between XZZ and future
returns.
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arises in the case where MR is violated; given the property of the cumulative standard

normal density function Φ(x) + Φ(−x) = 1, subtracting equation (2.40) from (2.39)

yields

IV c
t (K)− IV p

t (K) ≈ CFERt,T

Rf
t,T

St

St − e−rf τD̃t,T

1√
τφ(d1)

=
St

Rf
t,TVBS(K)

CFERt,T ,

(2.46)

where VBS(K) = (St − e−rf τD̃t,T )φ(d1)
√
τ is the BS vega (i.e., the sensitivity of

option prices to the change in the volatility parameter). Therefore, a non-zero IVS

arises if CFER is non-zero, that is, it is an evidence of the violation of MR.13 These

considerations cast doubt on whether the XZZ measure proxies RNS accurately.

However, the XZZ measure will proxy RNS accurately if the IV slope is calculated

using the robust IV rather than the standard IV. First, as we have discussed at the

end of Section 2.4.2, POMA (i.e., the slope of the put IV curve) calculated based on

the robust IV curve is a better proxy of RNS because a zero robust IV slope means

that the asset price is distributed log-normally. Second, the following Proposition

shows that IVS equals zero and hence it does not affect the XZZ measure once the

robust IVs are used.

Proposition 2.4.4. Assume that call and put option prices satisfy MR, that is, they

satisfy the risk-neutral valuation formulae (equation (2.18)). Let IV c
rob and IV p

rob be

the robust IV calculated from the call and the put option prices with the same strike

price, respectively. Then, IV c
rob = IV p

rob holds regardless of the distribution of the

underlying asset.

Proof. See Appendix 2.A.6. 2

In Section 2.6.5, we document that the XZZ slope measure calculated based on the

robust IV does not predict future stock returns. We also document that the predic-

tive power of the XZZ measure based on the standard IV stems from its mechanical

negative correlation with IVS and CFER.

13HS show that equation (2.46) holds regardless of the distribution of the future underlying price.
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2.5 Data and estimation results

2.5.1 Dataset

We obtain daily option prices and IVs for January 1996 to December 2017 from the

two OptionMetrics Ivy DB (OM) data files, the Volatility Surface (VS) file and the

Standardized Options (SO) file. OM estimate the IV surface of call options and put

options separately, and these two files provide the estimated IVs and corresponding

European option prices at standardized maturities such as 30, 60, 91, 182, and 365

day-to-maturity. We use 30-day-to-maturity data because subsequently we use the

estimated RNS as a sorting variable to construct monthly-rebalanced portfolios. The

VS file provides option IVs, option prices, and strike prices at 13 standardized delta-

denominated strikes (calls at 0.2, 0.25, . . . , 0.8 delta and puts at -0.2, -0.25, . . . , -0.8

delta). The SO file provides call and put option prices at the forward at-the-money

(ATM), K = Ft,T = erf τSt − D̃t,T . We also obtain the underlying price and the

risk-free rate data from the OM database.

Note that the theoretical formulae to estimate CFER and RNMs rely on European

option prices, whereas exchange listed U.S. options are American style. However, the

use of the OM VS and SO files is not a problem for our empirical estimation procedures

because these files provide the IVs and corresponding European option prices adjusted

for the early exercise premium. Our treatment is in line with recent studies using the

OM dataset (e.g., Martin and Wagner, 2018).

We obtain stock return data from CRSP. We also calculate the market beta,

firm size, book-to-market, profitability, and investment characteristics from CRSP

and Compustat databases. See Appendix 2.B.1 for the detailed description of these

characteristics variables. Our universe of individual equities is the U.S. common stocks

traded at NYSE/Amex/NASDAQ. To obtain this universe, we link the OM database

with the CRSP database and keep only the common stocks (CRSP SHRCD: 10 or

11) traded at NYSE/Amex/NASDAQ (CRSP EXCHCD 1, 2, or 3). Appendix 2.B.2

explains how we link the OM, CRSP, and Compustat databases. Finally, we obtain

standard risk factors (such as the Fama and French, 1993 three factors) from the

respective author’s website.
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2.5.2 Estimation procedures for the option-implied variables

We estimate CFER for U.S. individual common stocks traded at NYSE/Amex/NAS-

DAQ as well as the S&P 500 index. HS document empirically that the scaled devia-

tions from put-call parity reliably estimate CFER accurately, that is,

CFERt,T ≈
Rf
t,T

St
(S̃t(K)− St), (2.47)

where S̃t(K) = Ct(K,T )−Pt(K,T ) +K/Rf,t,T + D̃t,T is the price of a synthetic stock

price. To calculate the synthetic stock prices, we use the pairs of put and call prices

with 30 day-to-maturity at the forward ATM strike recorded in the OM SO file.We

back out the dividend payment D̃t,T from the forward price recorded in the OM SO

file. Appendix 2.B.3 provides the detailed estimation procedure of CFER.

We estimate the individual stocks’ risk-neutral moments (RNMs) via the original

BKM formulae adjusted for dividend payments (O-RNMs) and via the generalized

BKM formulae (G-RNMs), separately, to examine to what extent the violation of

MR in the underlying affects the estimated value of RNMs.

To estimate the O-RNMs, we use equations (2.26) and (2.27) by setting CFER

equal to zero in equation (2.25) because O-RNMs are computed assuming that MR

holds. We follow Stilger et al. (2017) and Borochin and Zhao (2018) to interpolate the

(standard) IVs obtained from the OM VS file by the cubic Hermite polynomial interpo-

lation in the moneyness-IV metric, and extrapolate horizontally beyond the observed

option moneyness. We interpolate and extrapolate call IVs and put IVs, separately.

Then, we convert the splined IV curves to 1001 option prices at equally-spaced strikes

over the moneyness range [1/3, 3] and numerically calculate the integrals. Note that,

strictly speaking, the O-RNMs estimation formulae do not exactly coincide with the

original formulae in BKM due to the modification regarding dividend payments. In

Section 2.6.1, we will document that this modification does not drive our empirical

findings. We estimate G-RNMs just as we do for O-RNMs with the difference being

that we (i) use the estimated 30-day CFER in equation (2.25), and (ii) interpolate

the robust IV instead of the standard IV since our simulation result in Section 2.4.3

shows that using the standard IV may bias RNMs. To obtain the robust IVs, we

use option prices in the SO file in conjunction with equation (2.42). We disentangle
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how these two modifications in the IV input and the employed formulae affect the

empirically estimated RNS in Section 2.6.1.

We treat both the O-RNMs and G-RNMs missing if the estimated CFER is not

available.14 We also discard very few month-stock IV surface observations if either

calls’ or puts’ strikes recorded in the OM VS file are not strictly monotonic in deltas.

Such a case may occur when the interpolated IV surface exhibits a very steep skew.

See Appendix 2.B.4 for a detailed description of the calculation of RNMs.

Finally, we calculate two IV slope measures as follows. First, we calculate the

original XZZ measure as XZZo = IV p(−0.2) − IV c(0.5), where IV c(d) (IV p(d))

stands for the standard call (put) IV at option’s delta equal to d. We obtain 30-day-

to-maturity IVs from the OM VS file. Next, we calculate the robust XZZ measure

based on the same formulae, yet we use the robust IVs, that is, XZZr = IV p
rob(−0.2)−

IV c
rob(0.5). To obtain the robust IVs, we convert implied option prices recorded in

the OM VS file and then we use equation (2.42) to calculate the robust IVs.

2.5.3 The estimated CFER: Do U.S. stocks violate MR?

2.5.3.1 S&P 500 index

Figure 2.4a depicts the daily estimated 30-day-to-maturity CFER of the S&P 500

index. We can see that the estimated CFER is highly volatile; the proportion of

CFER being positive is about 48% in our sample, that is, the estimated CFER takes

positive and negative values with almost the same frequency. This suggests that the

Q∗-expected return of the S&P 500 index is greater or smaller than the risk-free rate

with almost the same probability. This result is in contrast to the results obtained

by the studies which test MR via the implied stock approach. These studies find

that S∗t > St for more than 90% of samples which would imply a positive CFER for

most of the time; this correspondence between CFER and the implied stock price

approach stems from equation (2.15), which holds under the key assumption of the

implied stock approach. As we have shown in Section 2.3.3, the result in the previous

literature is likely to reflect a negative IV skew rather than a violation of MR.

Given the high volatility of the daily estimated CFER, to visualise the pattern of

14This situation occurs when the OM VS file contains the data, yet the OM SO file does not. Since
there is only one such month-stock observation, this treatment is unlikely to affect our analysis.
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the dynamics of CFER, Figure 2.4b plots the 21-trading day moving average of the

absolute value of the estimated CFER, which measures the degree of the departure

of the index from MR (see equation (2.11)). Two remarks can be drawn. First,

CFER takes extreme values periods of market distress such as the collapse of the

IT bubble (around October 2000) and the market meltdown over the recent financial

crisis (around October 2008). This is expected given that in these periods markets

frictions and hence violations of MR intensify. This pattern is consistent with the

findings in HS regarding the CFER of individual stocks; they find that individual

stocks tend to take more extreme CFER values during periods where the market is

distressed.

Second, apart from the sporadic extreme values of CFER, the S&P 500 index’s

CFER exhibits a salient downward trend in absolute value terms. In particular, until

2003, the absolute value of CFER lies between 1% to 3% per year, whereas after

2003, it decreased to less than 1% for most of times. This pattern is in line with HS

who show theoretically that the absolute value of CFER is less than the round-trip

transaction costs, implying that the decline in the absolute CFER value is related to

a decline in transaction costs. Indeed, transaction costs decreased during early 2000s

due to various institutional reforms.15

[Figure 2.4 about here.]

To assess the statistical significance of the violation of MR, we test the statistical

significance of the time-series mean of the absolute CFER by means of a 95% (±2σ)

confidence interval; the absolute value of CFER measures the magnitude of the de-

viation of the risk-neutral expected return from the risk-free rate (equation (2.11)),

that is, it measures the magnitude of the violation of MR.16

15For example, Green et al. (2017) argue that “the adoption of Reg. FD in October 2000 and
the decimalization of quotes in January 2001 ” reduced “effective spreads, price impact, and trading
costs.” They also point out that the introduction of the autoquoting software by NYSE between
January and May 2003 “led to dramatic reductions in trading frictions and costs” (Green et al., 2017,
p.4424). Similarly, French (2008) documents that the per transaction “trading costs” of passive
investment backed out from securities firms’ commissions and trading gains data decreased by the
half from mid 1990s to 2000s.

16We do not examine the mean of the time-series of the raw estimated CFER. This is because a
negligible time-series mean CFER does not imply that the magnitude of CFER is always negligible
and hence the stock satisfies MR. For example, the mean of the raw estimated CFER can be close
to zero if it takes large positive and negative CFER values yet with similar frequency. The absolute
value of our estimated CFER (the scaled deviations from put-call parity) is similar in spirit to
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The 95% confidence interval of the mean value of the absolute CFER is 1.27%±

0.08% per year, when we use the full sample of CFER values. Given the aforemen-

tioned salient decline in the absolute CFER value, we also split the observations into

1996 to 2002 and 2003 to 2017. The ±2σ confidence interval of the former period

is 1.98% ± 0.1%, whereas that of the latter period is 0.94% ± 0.06%. Therefore, the

mean absolute CFER is statistically different from zero in both periods and it is also

economically non-negligible (e.g., compared to the U.S. equity premium, which Fama

and French, 2002 estimate as 4.32% per year).

2.5.3.2 Individual equities

Next, we investigate the estimated CFER of individual equities. We estimate CFER

for 12.2 million stock-day observations from 1996 to 2017 for 6,824 distinct stocks.

This yields, on average, estimated CFER for about 2,200 stocks on each trading day.

Table 2.3, Panel A, reports the summary statistics of the daily estimated CFER. We

can see that the estimated CFER exhibits large variations; the standard deviation

is 15.9% per year and the range from fifth to 95th percentile points reaches 31.0%

per year. This suggests that the estimated CFER can take economically large value.

Compared to the magnitude of variation, the mean and median of the estimated

CFER are close to zero (-1.1% and -0.6% per year, respectively), implying that the

estimated individual stock CFER take positive and negative values with almost the

same probability. Regarding the absolute value of CFER, which reflects whether

MR holds for individual stocks, the mean and median are 6.8% and 2.8% per year,

respectively. This implies that market frictions have an economically non-negligible

impact on the expected return of individual stocks and MR is violated for these stocks.

Panel B reports the summary statistics of the estimated CFER over the end-of-month

trading dates. We can see that the summary statistics are qualitatively the same with

those obtained from the all daily estimated CFER.

[Table 2.3 about here.]

Similar to the S&P 500 index case, we test for each stock whether MR holds by

assessing whether its time-series mean absolute CFER is statistically different from

the market dislocation index proposed by Pasquariello (2014) in that it is calculated based on the
absolute value of deviations from the law of one price.

144



zero. We adopt a critical value of three for the t-test to decide on the significance.

In addition, we record the number of stocks which violate MR and at the same time

their respective absolute CFER is greater than a reference point. We consider four

alternative values for the reference point, zero, 1%, 2%, and 3% per year (the zero

reference point corresponds to testing whether the MR is violated).

The left part of Table 2.3, Panel C, reports the result of this counting exercise

based on the daily estimated CFER, where there reference value is specified in the

first column. We conduct this counting exercise over the following three groups: stocks

with at least 21 non-missing CFER observations, those with at least 1,200 non-missing

observations, and those with 2,500 non-missing observations. From the second to fifth

rows in Panel C, we can see that the mean absolute CFER is significantly larger than

1% per year for virtually all stocks, regardless of the number of non-missing CFER

observations. Moreover, about 75% of four stocks with at least 21 valid observations

have the mean absolute CFER larger than 3% per year. In short, this result suggests

that almost all stocks have significantly positive CFER (i.e., violating MR) and for a

large part of stocks, the magnitude of the violation of MR is economically sizable.

We repeat the same exercise using only the end-of-month estimated CFER and the

result is reported in the right part of Panel C. Compared to the daily observations case,

the proportion of the stocks which have statistically significant positive mean absolute

CFER decreases. However, this is a mechanical result; the monthly dataset contains

far less observations and hence the standard deviations would be larger. Nevertheless,

the implication is the same with the analysis using the daily observations. Around

90% stocks have the mean absolute CFER greater than 1% and about 40% of stocks

have the mean absolute CFER greater than 3%.

These results together with the findings in HS strongly suggest that individual

stocks’ expected returns are affected by market frictions, that is, individual stocks’

CFER is not negligible and hence individual stocks frequently violate MR.

2.5.4 Generalized RNMs: Summary statistics

As a preliminary step, for any given RNM, we provide summary statistics and compute

the correlation between O-RNM and G-RNM to assess the effect of the violation of

MR in the underlying on the estimated RNMs. We report the summary statistics of
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end-of-month observations since we use only end-of-month RNMs in the subsequent

monthly-rebalancing portfolio analysis. Our untabulated results confirm that there

are no qualitative differences in the summary statistics if we use all daily observations.

Table 2.4, Panel A, reports the descriptive statistics of CFER and the estimated

RNMs. We also report the difference between O-RNMs and G-RNMs (e.g., ∆MFIV

equals O-MFIV minus G-MFIV). This difference can be interpreted as the bias in

the estimated O-RNMs due to ignoring the violation of MR. We estimate CFER and

RNMs for 582,796 month-stock observations over 264 months period from January

1996 to December 2017. Therefore, on average, the estimated CFER and RNMs are

available for about 2,200 stocks in each month. The median of ∆MFIV, ∆RNS and

∆RNK are close to zero (-0.02, -0.01, and 0.01, respectively). This implies that the

bias in the O-RNMs takes positive and negative sign by almost the same probability.

Next, we focus on the ratio of the standard deviation of ∆RNM and that of the

respective G-RNM. By viewing the decomposition O-RNM = G-RNM + ∆RNM as

the decomposition of O-RNM into the true RNM and the bias term, this ratio of

standard deviations can be interpreted as a rough measure of the “noise-to-signal”

ratio. The ratio of the MFIV is about 6% (∼ 1.52/26.68), that of RNS is about 48%

(∼ 0.23/0.48) and that of RNK is 34% (∼ 0.39/1.15). Therefore, the impact of bias

in the estimated O-RNMs is the biggest for RNS.

Table 2.4, Panel B, reports the pairwise Pearson and Spearman correlations be-

tween O-RNMs and G-RNMs as well as those between ∆RNM and CFER. We can

see that O-RNMs and G-RNMs are almost perfectly correlated for MFIV (1.00 for

both Pearson and Spearman coefficients) and for RNK (0.94 and 0.96 for Pearson and

Spearman coefficients, respectively) and thus the CFER-adjustment has a negligible

impact for the estimated MFIV and RNK. On the other hand, in the case of RNS, the

two correlation coefficients are 0.90 and 0.89, respectively. Even though these values

are still high, in Section 2.6, we show that the difference between O-RNS and G-RNS

creates significant differences in their predictive power for the cross-section of future

stock returns.

We can also see that the correlation between CFER and RNMs takes its highest

values for O-RNS (0.36 and 0.34), whereas it is almost zero for G-RNS. Moreover,

the correlation of CFER with ∆RNM takes its highest value for ∆RNS (0.82 and
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0.97). This suggests that the correlation between CFER and O-RNS stems from the

correlation between CFER and the “bias” term in the O-RNS due to the violation of

MR, ∆RNS.

[Table 2.4 about here.]

2.6 Predictive power of the risk-neutral skewness

In Section 2.5.4, we have found that the violation of MR in the underlying affects

mostly RNS among the three RNMs. In this Section, we investigate further whether

the difference between G-RNS and O-RNS is economically significant, too. This will

shed light on whether the violation of MR are economically significant for the purposes

of computing RNS. In Section 2.6.1, we document that O-RNS predicts the cross-

section of future stock returns, whereas G-RNS does not. In Section 2.6.2, we confirm

these findings by conducting further robustness tests. The ability of O-RNS to predict

future stock returns is of particular interest; as we have seen in Section 2.2, there is no

unanimous agreement on the sign of this predictive relation and the mechanism of the

predictive power of O-RNS. In Section 2.6.3, we show that the violation of MR (i.e.,

non-zero CFER) provides an explanation for the ability of O-RNS to predict stock

returns. This is because CFER is correlated with the bias term ∆RNS caused by the

violation of MR and thus it is correlated with O-RNS. Then, in Section 2.6.4, we argue

that our CFER-based mechanism of the predictive power of O-RNS encompasses the

limits-of-arbitrage story. Finally, in Section 2.6.5, we investigate the predictive power

of an alternative measure of the risk-neutral skewness, Xing et al.’s (2010) IV slope

measure.

2.6.1 Predictive power of O- and G-RNS: Baseline result

We examine whether O-RNS and G-RNS predicts stock returns cross-sectionally by

means of portfolio sort analysis. At the end of each month, we sort stocks into decile

portfolios based on the estimated O-RNS and G-RNS, separately. For each estimator

of RNS, we form equally-weighted and value-weighted decile portfolios and the long-

short spread portfolios, where we go long in the portfolio with the highest RNS and
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go short in the portfolio with the lowest RNS. Table 2.5 reports the average post-

ranking returns of the equally- and value-weighted decile portfolios formed based on

the estimated O-RNS and G-RNS, separately, as well as the average post-ranking

returns and the risk-adjusted returns (alpha) of the high-minus-low spread portfolios

with respect to the CAPM, the Fama and French (1993) three-factor model (FF3),

the Carhart (1997) four-factor model (FFC), the Fama and French (2018) five- and

six-factor models (FF5 and FF6), the Hou et al. (2015) q-factor model (q4), and the

Stambaugh and Yuan (2017) mispricing factor model (SY).

Regarding the results based on O-RNS, we can see a clear increasing monotonic

relation between O-RNS and both the equally- and value-weighted decile portfolio

returns. As a result, the average returns of the equally- and value-weighted long-

short portfolios are 114 bps and 79 bps per month, respectively. These values are

statistically highly significant (the t-statistics are greater than 3.5). Moreover, the

alphas of the spread portfolios are significant and positive; their t-statistics are greater

than three in most of the cases, which is the recommended threshold by Harvey et al.

(2016), with the only exception being αFF5 and αq4 of the value-weighted spread

portfolio. The positive sign of the alphas is in line with the results of recent studies

(e.g., Stilger et al., 2017; Borochin and Zhao, 2018; Chordia et al., 2019), that is,

stocks with lower RNS underperform.

[Table 2.5 about here.]

On the other hand, in the case where we sort stocks based on the G-RNS, the

evidence for the predictive power of G-RNS is much weaker. The t-statistics of the

average returns and alphas do not exceed three (with the exception of αSY of the

equally weighted portfolio), which is the threshold value for t-statistics set by Harvey

et al. (2016). Moreover, all value-weighted alphas are insignificant at a 1% level and

they are insignificant even at a 5% level except αFFC . Given the recent literature

on the data snooping concerns which recommends a high threshold t-statistics value

(e.g., Harvey et al., 2016) and a value-weighted portfolio construction (e.g., Bali et al.,

2016; Hou et al., 2018), these results suggest that the G-RNS does not predict future

stock returns.

Table 2.6 reports the factor loadings obtained from estimating various factor mod-

els on the returns of the value-weighted spread portfolios sorted by O-RNS and G-
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RNS, separately. We can see that there is no qualitative change in the economic mag-

nitude of the factor loadings between the O-RNS-sorted and G-RNS-sorted spread

portfolios. This suggests that the significant change in alphas (i.e., the intercepts)

of the long-short portfolio when switching from the O-RNS to the G-RNS sorting

criterion is not caused by the change in the exposure of the two portfolios to standard

risk-factors.

[Table 2.6 about here.]

The difference in the predictive ability of O-RNS and G-RNS may stem from two

sources: the difference in the formula used to compute RNS and/or the difference

in the IVs used at the interpolation and extrapolation stage. We disentangle the

effect from these two sources by estimating RNS in four different ways: OS-, OR-,

GS-, and GR-RNS. The first letter of the prefix stands for the type of the formula

(“Original” or “Generalized” BKM formula). The second letter of the prefix stands

for the type of the IVs (“Standard” IVs or “Robust” IVs).17 Figure 2.5 shows the

t-statistics of the average return and the t-statistics of the alphas of the long-short

spread portfolios constructed by sorting stocks into decile portfolios based on these

four alternative RNS estimates. We can see that the magnitude of t-statistics decrease

from OS-, OR-, GS-, to GR-RNS. This pattern suggests that both channels of the

modification (the formula and the IV) contribute to the decrease in the predictive

power of RNS in line with our simulation result in Section 2.4.3. These findings

suggest that the previously documented ability of O-RNS (OS-RNS) to predict stock

returns arises because the violation of MR had not been taken into account in both

the RNS formula as well as in the computation of IVs.

[Figure 2.5 about here.]

2.6.2 Predictive power of O- and G-RNS: Robustness results

Next, we conduct further robustness tests to assess whether the predictive power of

RNS ceases to exist once the violation of MR is taken into account. First, we run

the Fama and MacBeth (1973) (FM) regressions. At the end of each month, we

conduct a cross-sectional regression where we regress the stock returns during the

17Therefore, O-RNS (G-RNS) investigated above is labeled OS-RNS (GR-RNS) here.
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succeeding month on the estimated RNS and other firms’ and stocks’ characteristics.

Then, we report the time-series average of the estimated cross-sectional intercepts

and the coefficients on the characteristic variables together with their respective t-

statistics. We conduct two types of regressions for the cross-sectional regression at

any point in time: the ordinary least square (OLS) regression and the value-weighted

least square (VWLS) regressions employed by Green et al. (2017). OLS- and VWLS-

based FM regressions can be viewed as the counterparts of the equally-weighted and

value-weighted portfolio in the portfolio analysis, respectively. Therefore, given the

recent data-snooping concerns, it is desirable to examine the statistical significance of

O-RNS and G-RNS under the VWLS regression (see also a related discussion in Hou

et al., 2018).

Table 2.7 reports the results from the FM regressions. Columns (1) to (4) show the

results including O-RNS as a regressor. The results from the two univariate regres-

sions of O-RNS, Columns (1) and (2), show that O-RNS is a statistically significant

predictor of stock returns. Moreover, Columns (3) and (4) show that this predictive

power remains even after controlling for standard characteristic variables. These re-

sults corroborate our portfolio sort result based on O-RNS as well as the finding in

the previous literature (e.g., Stilger et al., 2017; Borochin and Zhao, 2018).

Next, we examine the predictive power of G-RNS in the FM setting. Columns (5)

and (6) show that G-RNS does not predict stock returns in the univariate regression

given Harvey et al.’s (2016) criterion for the t-statistic threshold, in line with our

finding from the portfolio sort analysis. The results in the multivariate regressions are

mixed; G-RNS becomes significant under the OLS regression (Column (7)), whereas

it remains insignificant under the VWLS regression (Column (8)). These results are

analogous to our portfolio sort result; we find several alphas of equally-weighted G-

RNS spread portfolio are significant, whereas those of value-weighted G-RNS spread

portfolio are not. Therefore, given the recent data snooping literature, these FM

regression results suggests that G-RNS does not predict future stock returns.

[Table 2.7 about here.]

Second, we repeat the portfolio sort analysis of Section 2.6.1 by forming quintile

portfolios instead of forming decile portfolios. Each quintile portfolio contains twice
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as many stocks as a decile portfolio, and as a result, quintile portfolios are more

diversified and hence less affected by possible outliers. Table 2.8 reports the results.

We can see that the O-RNS-sorted spread portfolios earn positive and significant

average return and alphas, whereas the G-RNS-sorted spread portfolios do not earn

significant returns just as it was in the case where decile portfolios were formed. This

suggests that our baseline result is not driven by possible outliers.

[Table 2.8 about here.]

Finally, we examine whether our treatment of dividend payments in the estimation

of RNS affects its predictability. So far, we have found that O-RNS with dividends

being taken into accounts, predicts stock returns just as the previous literature had

found using the original BKM formulae, whose derivation assumes non-dividend pay-

ing stocks. To further confirm that the (lack of the) predictability of O-RNS (G-RNS)

is robust to the treatment of dividend payments, we estimate RNS by ignoring the

dividend payment adjustment; we re-estimate the O- and G-RNS by setting D̃t,T = 0

(i.e., assuming as if all stocks pay no dividends) and repeat the portfolio sort analysis.

Even though this is a theoretically imprecise treatment, this exercise would expedite

the comparison between our results and those in the previous literature which does

not consider dividend payments in the calculation of RNS.

Table 2.9 reports the results. As we can see, there are no qualitative changes in

the predictive power of the O-RNS and G-RNS; the O-RNS predicts future returns

whereas the G-RNS does not. This result suggests that our findings on the (lack of the)

predictability of O-RNS (G-RNS) as well as the findings in the previous literature are

not affected by whether dividend payments are taken into account for the estimation

of RNS.

[Table 2.9 about here.]

We also estimate the RNS of the ex-dividend return using Proposition 2.4.2. Then,

we repeat the portfolio sorting analysis done in Section 2.6.1 by using the estimated

O- and G-RNS of the ex-dividend returns. Our untabulated result shows that the

results do not differ from the results obtained from the baseline analysis. This is

sensible because, under the deterministic dividend assumption, the distribution of
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the ex-dividend return coincides with that of the cum-dividend return shifted by a

deterministic amount, and hence the higher moments do not change.18

2.6.3 CFER and the predictive power of O-RNS

So far, we have confirmed that O-RNS predicts future returns whereas G-RNS does

not. We conjecture that O-RNS predicts future returns because its estimation error,

∆RNS, arising from the violation of MR, predicts stock returns. The rationale is that

the violation of MR and hence the estimation error occurs because of market frictions,

that is, because of a non-zero CFER. The estimation bias in O-RNS caused by the

violation of MR makes it a noisy measure of CFER, of which HS document strong

return predictive power. This conjecture is in line with the lack of the predictability in

G-RNS since G-RNS is free from the bias caused by the violation of MR and G-RNS

is uncorrelated with CFER.

We confirm our conjecture by means of three sets of empirical results. First, we

repeat the portfolio sorting analysis, where we sort stocks in decile portfolios using

∆RNS as a sorting variable. Given the almost perfect rank correlation between ∆RNS

and CFER (Table 2.4), we effectively sort stocks based on CFER, which HS document

to have strong predictive power.19 Table 2.10 shows the results. In line with the

predictive ability of CFER, we can see that ∆RNS predicts stock returns. Moreover,

its predictive power is stronger than that of O-RNS; t-statistics of the equally-weighted

spread returns and alphas reach nine and those of the value-weighted ones are about

four to five. Combined with the finding of the lack of the predictive power of G-RNS,

this result means that the predictive power of O-RNS is “condensed” in the ∆RNS

part.

[Table 2.10 about here.]

Next, we investigate the relation between the predictive power of O-RNS and

the degree of the violation of MR. If the predictive power of O-RNS stems from the

18Note that the moments of the ex-dividend and cum-dividend log returns may differ due to the
non-linearity of the logarithm function. However, this effect is negligible given a typical dividend-
to-stock price ratio.

19HS document that the alphas of the CFER-sorted value-weighted decile spread portfolio are
about 180 bps per month and their t-statistics are greater than five. This result suggests that the
return predictive power of CFER is stronger than that of O-RNS reported in Table 2.5.
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violation of MR, we expect that O-RNS does not show predictive power among stocks

which do not severely violate MR (i.e., CFER is close to zero), while we expect that the

predictive power of O-RNS will be stronger among stocks which severely violate MR.

We examine these conjectures by means of a bivariate portfolio sort using the absolute

value of CFER and O-RNS. We use the absolute value of CFER for controlling the

degree of the violation of MR. In particular, we conduct a dependent bivariate portfolio

sort, where we first sort stocks into quartile portfolios based on the absolute value

of CFER. Then, within each one of four subgroups, we form quartile portfolios by

sorting stocks based on O-RNS and we calculate the post-ranking average return of

the spread portfolios (highest O-RNS minus lowest O-RNS).

Table 2.11 reports the average returns and alphas of the highest O-RNS minus low-

est O-RNS spread portfolios. The results confirm our conjectures. The average returns

and alphas are highest for the highest |CFER| bin and lowest for the lowest |CFER|

bin. Therefore, O-RNS exhibits stronger return predictive power among stocks sub-

ject to severer violation of MR. Specifically, the results for the lowest |CFER| bin (the

first and fifth Columns) indicate that O-RNS does not predict future stock returns

among the lowest |CFER| bin; all returns and alphas but αSY of the equally-weighted

portfolio are insignificant at 5% level (αSY of the equally-weighted portfolio is insignif-

icant at a 1% level).20 In line with our conjecture, this result suggests that O-RNS

does not predict stock returns when MR is not (severely) violated.

[Table 2.11 about here.]

Finally, we provide direct evidence that the predictive power of O-RNS stems from

CFER by employing the CFER-adjusted return regression proposed by HS. They show

that their CFER-asset pricing model has the following testable implication for linear

factor models; in the case where the IMRS m∗ is described by a linear combination of

risk factors f , then the intercept α of the following regression of the CFER-adjusted

excess return on risk factors,

Rt,T −Rf
t,T − CFERt,T = α + β′fT + εT , (2.48)

should be zero. We examine this hypothesis for each one of the CFER-adjusted

20We also conduct three-by-three and five-by-five double sorting exercises and we confirm that
results do not change qualitatively.

153



returns of the O-RNS-sorted value-weighted decile portfolios and the associated long-

short spread portfolio. If we fail to reject this hypothesis, this would suggest that the

significant alphas of the CFER-non-adjusted returns of the O-RNS-sorted portfolios

stem from the presence of market frictions, that is, a non-zero CFER.

Table 2.12 shows the results, where we regress the CFER-adjusted returns of each

one of the O-RNS sorted value-weighted decile portfolios and the CFER-adjusted

return of the long-short spread portfolio on a set of factors. In line with the pos-

itive correlation between CFER and O-RNS, the first row shows that the portfolio

average CFER is monotonically increasing. However, the alphas (intercepts) of the

CFER-adjusted excess returns of decile portfolios are almost always insignificant. In

addition, the spread portfolio’s alphas are now insignificant even though the non-

CFER adjusted case (Table 2.5, Panel B) exhibits significant alphas. The fact that

the CFER-adjustment removes the significant predictive power OF O-RNS implies

that the predictive power of the O-RNS is driven by the CFER component, that is,

the effect of market frictions on the expected returns, and it is not driven by (omit-

ted) risk factors. This corroborates our previous finding that the predictability of the

O-RNS stems from its correlation with CFER.

[Table 2.12 about here.]

2.6.4 Conjectures proposed by previous studies: Discussion

In this subsection, we discuss our contributions to the ongoing debate on the mech-

anism behind the predictive power of O-RNS, especially to the two main existing

explanations reviewed in Section 2.2: the limits-of-arbitrage explanation and the in-

formed option trading explanation.

First, our findings, especially those in Section 2.6.3, support the limits-of-arbitrage

explanation as the mechanism behind the predictive ability of O-RNS. The predictive

power of O-RNS stems from its estimation bias component caused by the violation

of MR (non-zero CFER); O-RNS proxies CFER via its bias component and hence

it signals the effect of market frictions on the expected stock returns. Note that our

discussion is distinct from the existing limits-of-arbitrage explanation in the following

sense. Our theoretical and empirical results clarify that O-RNS suffers from estimation

biases when the MR is violated. This point is largely overlooked in the previous studies
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based on the limits-of-arbitrage explanation, even though this strand of studies in

effect conjecture that MR may be violated.

Second, our CFER-based story can explain both the positive (higher O-RNS pre-

dicting future outperformance) and negative (lower O-RNS predicting future under-

performance) informational contents in a unified framework. This is in contrast to

the existing literature which finds it challenging to explain the positive and negative

informational contents in a single type of market frictions. For example, the explana-

tion based on the short-sale constraints employed by Stilger et al. (2017) can explain

only the negative informational contents of O-RNS. whereas Gkionis et al.’s (2018)

explanation based on the downside risk can explain only the positive informational

contents of O-RNS. HS show that CFER subsumes the aggregate effect of any rele-

vant market frictions on the expected stock returns including short-sale constraints,

margin constraints and transaction costs among others. Consequently, the bias in the

O-RNS which is determined by CFER signals the aggregate effect of various types

of market frictions on the expected stock returns. In other words, our CFER-based

story encompasses all explanations based on limits-of-arbitrage caused by a specific

type of market frictions.

Third, we shortly document that the predictive power of O-RNS is more pertaining

to the market frictions than the informed option trading explanation. We conduct

a subsample analysis in which we divide stocks into those with option trading and

those without option trading, then we repeat the portfolio sort exercise using O-RNS

within each subsample. Under the informed option trading story, we expect that

the non-traded option prices should have inferior informational contents (i.e., lower

predictive power) compared to the traded options. This is because their prices (and

hence RNS) would not reflect any effects from informed option trading. To examine

this prediction, we obtain the daily aggregate option trading volume data from OM.

Then, for each end-of-month trading day, we group stocks into two subgroups: stocks

whose options have non-zero trading volume on that day and remaining zero option

trading stocks.21

21We use the aggregate option trading volume across all strikes and maturities of both call and
put as the trading activity indicator for several reasons. First, our option prices and IVs data come
from the interpolated volatility surfaces and hence there are no trading volume data for each option
price and IV. Second, OM estimate volatility surfaces using all strikes and maturities. Therefore,
the aggregate trading volume is a suitable characteristic to measure the overall estimation quality of
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Table 2.13 reports the results. We can see that there are qualitatively no differences

between the traded options subgroup and non-traded options subgroup; the average

return and the alphas of the O-RNS-sorted spread portfolio are generally significant,

whereas those of the G-RNS-sorted spread portfolio are generally insignificant. The

informed option trading and option trading demand stories cannot fully explain this

estimated pattern; we cannot find visible differences between the informativeness of

options with non-zero trading volume and zero trading volume. On the other hand,

the friction-based story can explain the predictive power among non-option trading

stocks, because our untabulated result indicates that these stocks tend to be smaller

stocks which face a considerable degree of market frictions. This finding is in line with

Goncalves-Pinto et al. (2019), who show that their option-based return predictor,

DOTS, does not exhibit the different level of predictability among stocks with zero

and non-zero option trading volume. Since the OM IV data is calculated based on

the option bid and ask quotes, the findings in this Chapter and Goncalves-Pinto et al.

(2019) imply that bid and ask quotes set by option market-makers contain similar

informational content regardless of the trading demand from option end-users.

[Table 2.13 about here.]

Two more remarks are in order regarding the conjectures for the mechanism of the

predictive ability of O-RNS. First, admittedly, the validity of the limits-of-arbitrage

story for the O-RNS predictive power mechanism is not accepted universally. For

example, Chordia et al. (2019) conduct depending bivariate portfolio sort exercises,

where they first control for either Amihud’s (2002) illiquidity measure or the idiosyn-

cratic volatility (IVOL) and then sorting stocks based on O-RNS. They find that

O-RNS retains predictive power even in the lowest Amihud and IVOL bins, that

is, among stocks which face low degree of the limits-of-arbitrage. From this result,

they conclude that the degree of the limits-of-arbitrage cannot fully account for the

RNS-return relation. However, our result in Table 2.11 suggests the opposite story.

Our bivariate portfolio sort analysis there resembles those in Chordia et al. (2019),

except that we use the absolute value of CFER to control for the degree of the limits-

of-arbitrage. In our analysis, we find that O-RNS does not predict stock returns in

volatility surfaces. Finally, we focus on a short-term horizon and hence the aggregate trading volume
is a good proxy of the horizon of our interest, since short-term options are relatively heavily traded.
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the lowest limits-of-arbitrage bin. We obtain a different result from Chordia et al.

(2019) and corroborate the limits-of-arbitrage story because we use a more direct and

theoretically-founded proxy of the degree of the limits-of-arbitrage.

Second, our results in Table 2.13, albeit supportive for the limits-of-arbitrage

story, do not exclude the possibility that other empirical predictive patterns are well

explained by the informed option trading. Nevertheless, the following discussion sug-

gests that the existence of market frictions is still necessary to justify the informed

option trading story. To begin with, the theoretical model of Easley et al. (1998) pre-

dicts that informed traders trade in the option market if the leverage effect of options

is large enough (implying that there is leverage and margin constraints), or the stock

market liquidity is low; their model implies that informed traders trade options only

when there are sufficiently big frictions to trade stocks (relative to trade options).

On the contrary, informed option trading activity would be quickly reflected in the

underlying price through the put-call parity relation unless there are market frictions

which prevent arbitrageurs from trading the underlying stock to exploit deviations

from put-call parity. Deviations from put-call parity is an essential element to jus-

tify the predictive power of O-RNS. This is because we estimate CFER based on the

scaled deviations from put-call parity as proposed by HS, and non-zero CFER (i.e.,

the violation of MR) drives the predictive power of O-RNS.

2.6.5 Predictive power of implied volatility slope

We have seen in Section 2.4.4 that the IV slope calculated based on the standard IV

does not correctly proxy RNS under the violation of MR. We interpret the XZZ IV

slope measure calculated based on the robust IV curve as the counterpart of G-RNS

in the sense that both the robust IV and G-RNS take the possible violation of MR by

the underlying into account. Specifically, our discussion in Section 2.4.4 shows that

the robust IV-based XZZ measure is not affected by non-zero IVS and the zero slope

of the robust IV curve implies that the underlying distribution is log-normal. In the

rest of this subsection, we document that the predictive power of the XZZ measure

vanishes once it is calculated based on the robust IVs, corresponding to our finding

that G-RNS does not have the return predictive power.

We start with reporting the summary statistics of the XZZ slope measures. Table
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2.14, Panel A, reports the summary statistics of CFER, the original and robust XZZ

measure estimated at each end of month, and their difference ∆XZZ = XZZo −

XZZr. We can see that CFER and the XZZ measures are calculated for about 2,200

stocks on average on each end-of-month trading day. The mean and median of the two

XZZ measures are both positive, implying that the IV curve exhibits a negative skew

more often than a positive skew, regardless of using the original IV or the robust IVs.

Table 2.14, Panel B, reports the pairwise Pearson and Spearman rank correlations.

Although the correlation between the original and robust XZZ measures is fairly high

(0.78 and 0.8), we will show that the outcome of the portfolio sort analysis crucially

depends on the choice of the XZZ measure. CFER and the original XZZ measure are

negatively correlated, while CFER and the robust XZZ measure do not show strong

correlation. These patterns are in line with our discussion in Section 2.4.4; the original

XZZ measure is mechanically negatively correlated with IVS and CFER (equations

(2.45) and (2.46)), whereas the robust XZZ measure is not affected by IVS because

the robust IV does not exhibit IVS.

[Table 2.14 about here.]

Next, we sort stocks in ascending order based on either XZZo and XZZr sepa-

rately, and form value-weighted decile portfolios. Then, we construct the long-short

spread portfolios where we go long in the stocks with the highest measures and short

in the stocks with the lowest measures. Table 2.15 reports the result. First, consistent

with Xing et al. (2010), the original XZZ measure negatively predicts future stock re-

turns; the decile portfolio returns are generally decreasing in the level of the XZZ

measure. The average return and alphas of the long-short spread portfolio are highly

significant; t-statistics are above 5.34 (3.89) in magnitude for the equally-weighted

portfolio (value-weighted portfolio). On the other hand, XZZr does not predict stock

returns. The average returns and alphas are all insignificant at a 5%-significance level

for the value-weighted portfolio and mostly insignificant for the equally-weighted port-

folio.

[Table 2.15 about here.]

We repeat the CFER-adjusted regression considered in Table 2.12 for the XZZ-

sorted portfolios to see whether the predictive power of XZZo stems from the CFER
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channel. Table 2.16 reports the result, where we regress the CFER-adjusted returns of

the XZZo-sorted value-weighted decile portfolios and their long-short spread portfo-

lio. First, the average portfolio CFER of decile portfolios are monotonically decreas-

ing in the level of the XZZo in line with its mechanical relation to CFER, equation

(2.45). Then, the alpha (intercept) of the CFER-adjusted excess returns are overall

insignificant even though the non-CFER adjusted case (Table 2.15, Panel B) exhibits

significant alphas. Similar to the O-RNS case, the switch from the significant alphas

to insignificant alphas implies that the predictive power of the XZZo is driven by the

CFER component.

[Table 2.16 about here.]

Two final remarks are in order to summarize our findings in this Section. First,

option-implied skewness measures lose their return predictive power once we account

for the possible violation of MR in the estimation of the option-implied measures.

This suggests that the (more) correctly measured RNS does not contain information

on the future stock returns. Second, our results suggest that O-RNS and the XZZ

slope measure do not contain additional information over CFER. In particular, the

return predictive power of O-RNS and XZZo stems from their mechanical correlation

with CFER.

2.7 Conclusions

The violation of the martingale restriction (MR), that is, the deviation of the expected

risk-neutral return from the risk-free rate, implies the presence of market frictions.

Surprisingly, the implications of the violation of MR for the computation of option-

implied qualities has not been explored.

We propose a novel way to test MR and explore the implications of the violation

of MR for the risk-neutral moments (RNMs) under a unified setting. Our approach to

test MR is based on the Hiraki and Skiadopoulos (2019) (HS) asset pricing model with

market frictions. We show that the risk-neutral expected excess asset return equals

the contribution of frictions to expected returns (CFER) and hence we can test MR

by testing whether CFER is zero (i.e., the risk-neutral expected excess return is zero).
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Since HS show that CFER can be reliably estimated from a properly scaled deviations

from put-call parity, this CFER-based approach provides a robust way to test MR.

On the other hand, we show that the implied stock price approach for testing MR

proposed by Longstaff (1995) may spuriously reject MR even the underlying satisfies

MR. We apply our testing methodology to the S&P 500 and the U.S. individual

equities and find that both the index and individual stocks frequently violate MR.

This finding validates our motivation to theoretically and empirically investigate how

the violation of MR results in biases in the estimated RNMs.

We theoretically show that, under the violation of MR, the Bakshi et al. (2003)

(BKM) formulae do not correctly estimate RNMs due to their implicit assumption

that the underlying asset satisfies MR. To remedy this drawback, we propose gener-

alized formulae to estimate RNMs which account for the possible violation of MR.

Our empirical analysis shows that the difference between the estimated RNS based

on the original BKM formula (O-RNS) and our generalized BKM formula (G-RNS) is

economically significant; O-RNS predicts the cross-section of future stock returns in

line with the literature (e.g., Stilger et al., 2017), whereas G-RNS does not. Further-

more, we document that the predictive power of O-RNS stems from its estimation

bias caused by the violation of MR.

While we focused on the estimation of RNMs, especially RNS, our theoretical

result on testing MR is relevant to any studies on the informational content of op-

tion prices which relies on the martingale assumption, including the estimation of

risk-neutral distributions, pricing kernels, risk-aversion parameters, various portfolio

allocation applications among others. These topics are best left for future research.

2.A Proofs

2.A.1 Proof of Lemma 2.3.1

By applying the change of measure formula to equation (2.8) and substituting the

definition of CFER, equation (2.10), we obtain

St =
1

Rf
t,T

EQ∗

t [ST + D̃t,T ]− St

Rf
t,T

CFERt,T . (2.A.1)

160



Multiplying Rf
t,T/St to the both sides proves equation (2.11). 2

2.A.2 Proof of Proposition 2.3.1

Let m and σ be the mean and the volatility (annualized standard deviation) parame-

ters of the true log-normal distribution, respectively, that is, ST ∼ Lognormal(m,σ2τ).

On the other hand, the BS benchmark model assumption suggests that the benchmark

model-based distribution of ST is given by

Lognormal

(
log(S∗t − e−rf τD̃t,T ) + rfτ −

(σ∗)2τ

2
, (σ∗)2τ

)
. (2.A.2)

When there are two or more observed option prices in the minimization problem,

equation (2.14), the two parameters of the true distribution, m and σ, can be correctly

identified and satisfies

m = log(S∗t − e−rf τD̃t,T ) + rfτ −
(σ∗)2τ

2
(2.A.3)

and σ = σ∗.

In this case, the expected stock price under the true measure can be calculated as

EQ∗

t [ST ] = exp

(
m+

σ2τ

2

)
= erf τS∗t − D̃t,T (2.A.4)

due to equation (2.A.3). Equation (2.A.4) means that S∗t = e−rf τEQ∗

t [ST + D̃t,T ] and

hence the first term in the right-hand side of equation (2.16) equals zero. This proves

equation (2.17). 2

2.A.3 Proof of Proposition 2.4.1

Recall the following result by Carr and Madan (2001) that, for an arbitrary positive

number F , any twice differentiable payoff function f(ST ) satisfies

f(ST ) = f(F ) +f ′(F )(ST −F ) +

∫ ∞
F

f ′′(K)(ST −K)+dK+

∫ F

0

f ′′(K)(K−ST )+dK.

(2.A.5)
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The power-n log return contract functions satisfy f(St − D̃t,T ) = f ′(St − D̃t,T ) = 0.

Hence, for these payoff functions, it follows that

f(ST ) =

∫ ∞
St−D̃t,T

f ′′(K)(ST −K)+dK +

∫ St−D̃t,T

0

f ′′(K)(K − ST )+dK. (2.A.6)

Under the assumption that option prices satisfy MR, we obtain the following equation

by multiplying both sides by e−rf τ and taking the risk-neutral expectation:

e−rf τEQ∗

t [f(ST )] =

∫ ∞
St−D̃t,T

f ′′(K)Ct(K,T )dK+

∫ St−D̃t,T

0

f ′′(K)Pt(K,T )dK. (2.A.7)

By calculating the second derivatives for f(ST ) = log(ST + D̃t,T/St)
n, we obtain

equations (2.26) and (2.27).

Next, note that erf τ + CFERt,T = EQ∗

t [Rt,T ] = EQ∗

t [exp(rt,T )] holds. Therefore,

by expanding the last expression by the forth-order Taylor series approximation, we

obtain

erf τ +CFERt,T = 1 +EQ∗

t [rt,T ] +
EQ∗

t [(rt,T )2]

2
+

EQ∗

t [(rt,T )3]

6
+

EQ∗

t [(rt,T )4]

24
+o((rt,T )4).

(2.A.8)

In line with BKM, we rearrange and ignore the higher-order residual term to obtain

µ̃t,T := EQ∗

t [rt,T ] = erf τ + CFERt,T − 1− erf τ

2
M(2)t,T −

erf τ

6
M(3)t,T −

erf τ

24
M(4)t,T .

(2.A.9)

This proves equation (2.25). Then, equations (2.22) to (2.24) are obvious. 2

2.A.4 Proof of Proposition 2.4.2

Since the payoff functions change to f(ST ) = log(ST/St)
n for the ex-dividend case, we

now have f(St) = f ′(St) = 0. Therefore, the boundary value for the two integrals in

equations (2.A.6) and (2.A.7) changes from St− D̃t,T to St. Moreover, by calculating

the second derivative of the ex-dividend power-n log return functions, we obtain the

expressions (2.28) and (2.29). Next, note that the following relation holds.

EQ∗

t [exp(rext,T )] = EQ∗

t

[
ST
St

]
= EQ∗

t [Rt,T ]− D̃t,T

St
= erf τ + CFERt,T −

D̃t,T

St
. (2.A.10)
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By expanding the left hand side of equation (2.A.10) by a Taylor series approximation

similar to equation (2.A.8) and rearranging, we obtain equation (2.30). 2

2.A.5 Proof of Proposition 2.4.3

First, we prove (a) for the call option case. Let c(St, K, τ, σ, rf , D̃t,T , rS) be the call

pricing function, equation (2.34), under the distribution (2.32). Our purpose is to

find the expression of IV c(K; rS) which solves

c(St, K, τ, σ, rf , D̃t,T , rS) = BScall(St, K, τ, rf , D̃t,T , IV
c(K; rS)).

In what follows, we suppress the arguments of the c function and IV c other than rS.

The first-order Taylor series approximation of the (standard) BS call function with

respect to the volatility parameter around the true volatility parameter σ yields

BScall(St, K, τ, rf , D̃t,T , IV
c(rS)) ≈ BScall(St, K, τ, rf , D̃t,T , σ) + VBS(IV c(rS)− σ),

(2.A.11)

where VBS is the BS vega evaluated at (St, K, τ, rf , D̃t,T , σ). On the other hand,

the first-order Taylor series approximation of the c function with respect to the rS-

argument around rS = rf yields

c(rS) ≈ c(rf ) +
∂c

∂rS

∣∣∣
rS=rf

(rS − rf ). (2.A.12)

The left hand side of equations (2.A.11) and (2.A.12) are the same by the definition

of the IV, c(rS) = Ct(K,T ) = BScall(St, K, τ, rf , D̃t,T , IV
c(rS)). Moreover, the first

term in the right-hand side of equations (2.A.11) and (2.A.12) are also the same

because c(rf ) = BScall(St, K, τ, rf , D̃t,T , σ) follows from equation (2.34). Therefore,

equations (2.A.11) and (2.A.12) yield

IV c(rs) ≈ σ +
rS − rf
VBS

∂c

∂rS

∣∣∣
rS=rf

. (2.A.13)
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A straightforward calculation of the partial derivative ∂c/∂rs yields

∂c

∂rS
= e(rS−rf )τ

(
τBScall(St, K, τ, rS, D̃t,T , σ) +

∂BScall(St, K, τ, r, D̃t,T , σ)

∂r

∣∣∣
r=rS

)
= e(rS−rf )ττStΦ(d1),

(2.A.14)

because the rho of the BS function with discrete dividends evaluated at r = rS is given

by τ(StΦ(d1)−BScall(St, K, τ, rS, D̃t,T , σ)). Therefore, equation (2.A.13) reduces to

IV c(rS) ≈ σ+ (rS − rf )τ
StΦ(d1)

VBS
= σ+ (rS − rf )τ

St

St − e−rf τD̃t,T

Φ(d1)√
τφ(d1)

, (2.A.15)

because the BS vega is given by VBS =
(
St − e−rf τD̃t,T

)
φ(d1)

√
τ . Since

CFERt,T/R
f
t,T = EQ

t [Rt,T ]/Rf
t,T − 1 = e(rS−rf )τ − 1 ≈ (rS − rf )τ

holds, we prove equation (2.39). A similar calculation for the put option proves

equation (2.40).

Next, we prove (b). The statement about the inequality relation between σ and

IV c or IV p is obvious because Φ(x)/φ(x) is always positive. To prove the remain-

ing claim, it suffices to show Φ(x)/φ(x) is increasing in x. Since the derivative

(Φ(x)/φ(x))′ is given by

φ2(x)− Φ(x)φ′(x)

φ2(x)
=
φ2(x) + xΦ(x)φ(x)

φ2(x)
=
φ(x) + xΦ(x)

φ(x)
, (2.A.16)

it suffices to show φ(x) + xΦ(x) > 0 for any x. This is obvious for x ≥ 0. For

x < 0, we prove x > −φ(x)/Φ(x) instead. In this case, φ(x)/Φ(x) (the inverse Mills

ratio of the standard normal distribution) is known to be equal to the negative of the

truncated mean −E[Z|Z < x], where Z is a standard normal random variable (see

e.g., Theorem 22.2 of Greene, 2003). Then, x > E[Z|Z < x] is obvious. 2
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2.A.6 Proof of Proposition 2.4.4

The observed put and call prices satisfy the following relation.

e−(rS−rf )τCt(K,T )− e−(rS−rf )τPt(K,T ) = e−(rS−rf )τe−rf τEQ
t [ST −K]

= e−rSτEQ
t [ST −K] = e−rSτStEQ

t [Rt,T ]− e−rSτD̃t,T − e−rSτK

= (St − e−rSτD̃t,T )− e−rSτK.

(2.A.17)

Therefore, it follows that IV c
rob = IV p

rob = IVrob if and only if

BScall(St, K, τ, rS, D̃t,T , IVrob)−BSput(St, K, τ, rS, D̃t,T , IVrob)

= (St − e−rSτD̃t,T )− e−rSτK.
(2.A.18)

Equation (2.A.18) holds because of the property of the BS formulae with deterministic

dividends. 2

2.A.7 Proof of Lemma 2.4.1

For simplicity, we assume that the stock pays no dividends. The weighting function

η(K;St, n) in equation (2.26) equals

η(K;St, n) =
n(log (K/St))

n−2

K2
[(n− 1)− log(K/St)] . (2.A.19)

For the strike K/St > en−1, equation (2.A.19) is negative regardless of whether n

is odd or even. This proves the respective last inequalities in equations (2.43) and

(2.44).

For the strike K/St < en−1, the square bracket term in equation (2.A.19) is pos-

itive. Therefore, the sign of the η function equals the sign of (log(K/St))
n−2. This

term is always non-negative when n is an even number, proving equation (2.44). On

the other hand, when n is an odd number, this term is non-negative for K/St ≥ 1

and negative for K/St < 1. This proves equation (2.43). 2

2.B Description of dataset and variables

In this Appendix, we provide a detailed explanation for the data sources and the

calculation procedures for the characteristic variables, CFER, and RNMs. We also
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explain how we link the three databases we use: OM, CRSP and Compustat.

2.B.1 Firms’ and stocks’ characteristic variables

Beta: In each month, we regress daily stock excess returns over past 12 months

on the daily excess market return to obtain the beta. We require there are

at least 200 non-missing observations. Stock return data are obtained from the

CRSP database. We use the excess market return provided at Kenneth French’s

website.

SIZE: Size is the natural logarithm of the market equity. The market equity is

calculated as the product of the number of outstanding share with the price of

the stock at the end of each month. Data are obtained from the CRSP database.

Book-to-Market equity (B/M): We follow Davis et al. (2000) to measure book

equity as stockholders’ book equity, plus balance sheet deferred taxes and invest-

ment tax credit (Compustat annual item TXDITC) if available, minus the book

value of preferred stock. Stockholders’ equity is the value reported by Compus-

tat (item SEQ), if it is available. If not, we measure stockholders’ equity as the

book value of common equity (item CEQ) plus the par value of preferred stock

(item PSTK), or the book value of assets (item AT) minus total liabilities (item

LT). Depending on availability, we use redemption (item PSTKRV), liquidating

(item PSTKL), or par value (item PSTK) for the book value of preferred stock.

From June of each year t to May of t + 1, the book-to-market equity (B/M) is

calculated as the ratio of the book equity for the fiscal year ending in calendar

year t− 1 to the market equity at the end of December of year t− 1. We treat

non-positive B/M data as missing.

Profitability: We follow Fama and French (2015) to measure profitability as rev-

enues (Compustat annual item REVT) minus cost of goods sold (item COGS)

if available, minus selling, general, and administrative expenses (item XSGA) if

available, minus interest expense (item XINT) if available all divided by (non-

lagged) book equity. From June of year t to May of t+ 1, we assign profitability

for the fiscal year ending in calendar year t− 1.
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Investment: We follow Fama and French (2015) to measure investment as the change

in total assets (Compustat annual item AT) from the fiscal year ending in year

t− 1 to the fiscal year ending in t, divided by t− 1 total assets. From June of

year t to May of t+1, we assign investment for the fiscal year ending in calendar

year t− 1.

2.B.2 Linking OM, CRSP, and Compustat databases

In our analysis, we use three databases, OM, CRSP, and Compustat. To link CRSP

and Compustat, we use the SAS linking macro provided by the Wharton Research

Data Services (WRDS) and match PERMNO (the CRSP identifier) and GVKEY (the

Compustat identifier). To link CRSP and OM, we link SECID (the OM identifier)

and PERMNO by the SAS linking macro provided by the WRDS. This WRDS macro

links SECID and PERMNO based on the CUSIP code, the similarity in the issuer’s

(company) name recorded in OM and CRSP, and partly the security ticker. The

macro also provides the score of the strength of the link based on a 0–6 integer scale

(0 stands for the strongest link, where the eight-digit CUSIP exactly matches as well

as the issuer’s name matches). We keep SECID-PERMNO link with the score less

than or equal to three. After linking SECID, GVKEY and PERMNO, we keep only

U.S. common stocks (SHRCD 10 or 11) traded in NYSE/Amex/NASDAQ (EXCHCD

1, 2, or 3).

2.B.3 Estimation of CFER

HS show that the underlying stocks’ CFER satisfies the following approximate rela-

tion:

CFERt,T ≈
R0
t,T

St
(S̃t,T (K)− St), (2.B.20)

where S̃t,T (K) is the synthetic stock price defined as

S̃t,T (K) = Ct(K,T )− Pt(K,T ) +
K + D̃t,T

Rf
t,T

. (2.B.21)

Their result, equation (2.B.20), shows that CFER is accurately proxied by the ob-

servable scaled deviations from put-call parity.
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In the actual estimation process of CFER, we use an alternative equivalent ex-

pression of S̃t,T − St in the right-hand side of equation (2.B.20).

S̃t,T (K)− St = BScall(St, K, τ, r, D̃t,T , IV
c
t (K))−BScall(St, K, τ, r, D̃t,T , IV

p
t (K)),

(2.B.22)

where BScall is the Black-Scholes European call option function with deterministic

dividend payment (equation (2.19)) and IV c
t (K) (IV p

t (K)) is the IV of the call (put)

option. We estimate the right-hand side of equation (2.B.20) by calculating deviations

from put-call parity based on equation (2.B.22).

We use the 30-day forward ATM call and put IVs provided by the OM SO file for

the calculation of equation (2.B.22), that is, K = Ft,T = erf τSt − D̃t,T and τ = 30

days. The underlying stock price St and the risk-free rate rf are also obtained from

the OM database. We interpolate the OM zero yield data to obtain the risk-free rate

for the specified day-to-maturity. Regarding the dividend payment D̃t,T , we back it

out from the forward price in the OM SO file as D̃t,T = erf τSt − Ft,T .

2.B.4 Estimation of risk-neutral moments

We estimate risk-neutral moments (RNMs) based on the formulae shown in Section

2.4. The option price data across a wide range of strike comes from the OM VS file.

The OM VS file contains the smoothed IVs for standardized maturities and deltas.

In particular, it contains IVs and associated option prices and strike prices at delta

equals 0.2, 0.25, . . . , 0.8 for call options and -0.8, -0.75, . . . , -0.2 for put options for the

day-to-maturity equals 30, 60, 91, 122, 152, 182, 273, 365, 547 and 730 calendar days.

We use 30-day-to-maturity data for the purpose of estimating risk-neutral moments.

Therefore, this file allows us to use call and put option data for 13 different strikes for

standardized time-to-maturities. The OM volatility surface file provides IVs, implied

strike prices, implied European option prices at each standardized delta for call and

put options, separately. We discard day-stock observations and hence do not estimate

the RNMs when either the strike prices provided by the OM of calls or puts are not

monotonic in deltas. Such a situation may occur when the interpolated volatility

surface exhibits an extremely steep skew.

We follow Stilger et al. (2017) to interpolate and extrapolate IVs as follows. We
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interpolate call IVs and put IVs separately in the strike-IV dimension based on the

cubic piecewise Hermite polynomial interpolation. Then, we extrapolate horizontally

the IV beyond the highest and the lowest strikes. For the estimation of O-RNMs,

we directly interpolate the IVs provided by OM. For the estimation of G-RNMs,

first we calculate the robust IVs from the implied option prices provided by OM and

interpolate these robust IVs. Once the continuous IV curve is obtained, we calculate

option prices at 1001 equally-spaced strike points over the moneyness from 1/3 to 3.

Finally, we estimate O-RNMs and G-RNMs by numerically calculating the integrals

in the original BKM formulae and Proposition 2.4.1, respectively.

The usage of the OM VS file has several advantageous points. First, it provides

the IVs at a standardized maturity and for a unified strike range (0.2 to 0.8 deltas in

the absolute value) for all stocks. This helps us to avoid any issues arising from mixing

estimated RNMs from different maturities and different moneyness ranges covered by

traded options. Second, this dataset has been used in the estimation of RNMs (e.g.,

DeMiguel et al., 2013; Borochin and Zhao, 2018; Chordia et al., 2019), thus making

possible the comparison of our results to theirs.
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(b) Call IVs (2): the effect of a lower σ∗
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(c) Put IVs (1): the effect of a higher S∗t
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(d) Put IVs (2): the effect of a higher σ∗

Figure 2.1. Implied stock price approach: Schematic graphs when the true
BS-IV curve is negatively skewed

These four Figures schematically illustrate how the BS model-based implied stock
price approach chooses the implied stock price S∗t and the BS volatility parameter σ∗.
The black thick line in each Figure depicts the true simulated BS-IV curve, which
is given as a function of moneyness IV (K/St) = σATM − (K/St − 1)/4. The BS
model-based implied stock price approach chooses S∗t and σ∗ so that the BS-IV curve
of the BS model-based option prices is the closest to the given true simulated BS-IV
curve. Figures (a) and (c) depict the effect of choosing a higher value for S∗t (from
the gray thin line to the blue dotted line), for the call option and put option cases,
respectively. Figures (b) and (d) depict the effect of choosing a lower (higher) value
of σ∗ (from the blue dotted line to the red dashed line) for the call (put) option case,
respectively. The x-axis is moneyness and the y-axis is the IV in percent.
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Figure 2.2. Implied volatility and the violation of MR

This Figure depicts the call and put BS-IV curves based on the equations (2.39)
and (2.40), respectively. The time-to-maturity is τ = 1/8, the risk-free rate is rf =
3%, the volatility parameter is σ = 20%, the deterministic dividend-to-stock price is
D̃t,T/St = 0.5% and the annualized CFER is CFERt,T/τ = 1%. The x-axis is the
moneyness and the y-axis is the implied volatility in percentage.
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Figure 2.3. Horizontally extrapolated standard IVs in the RNM estimation

This Figure depicts the call and put standard IV curves based on the equations (2.39)
and (2.40), respectively (dotted lines) as well as the horizontally extrapolated IV
lines. The time-to-maturity is τ = 1/12, the risk-free rate is rf = 3%, the volatility
parameter is σ = 30% and the expected stock return is rS = rf +3%. We assume that
options trade over moneyness range from 0.94 to 1.08. Out-of-the-money call and put
option IVs are interpolated separately by the cubic Hermite polynomial interpolation
and extrapolated horizontally beyond the observed moneyness range. The x-axis is
the moneyness and the y-axis is the implied volatility in percent.
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Figure 2.4. Estimated daily 30-day CFER of the S&P 500

Figure (a) depicts the daily 30-day CFER of the S&P 500 index estimated from the
30-day forward at-the-money call and put option prices recorded in the OptionMetrics
Standardized Options file. Figure (b) depicts the 21-day moving average of the ab-
solute value of the daily estimated 30-day CFER. The estimation period spans from
the beginning of January 1996 to the end of December 2017. The unit of y-axis in
the both Figures is the percentage value of CFER per year.
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(b) Value-weighted portfolios

Figure 2.5. The t-statistics of the average returns and alphas of the RNS-
sorted long-short spread portfolios based on the four alternative RNS es-
timation specifications

The x-axis stands for the estimation specification of the RNS. The first letter of the
prefix denotes the formula used to estimate the RNS (either Original or Generalized).
The second letter of the prefix denotes the IVs used for the inter-/extrapolation (either
Standard IV or Robust IV). The y-axis stands for the value of the t-statistics.
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Table 2.1. Limitations of the implied stock price approach: Simulation
results

This table reports the simulation results of the implied stock price approach using the BS model to

calculate the implied stock price. We generate simulated call and put option prices based on St = 100,

τ = 1/6, rf = 4%, D̃t,T = 0.5 for strikes K = 80, 85, . . . , 120. The true implied volatility (IV) curve

is modeled as a function of moneyness, IV (K/St) = σATM + k(K/St − 1) with σATM = 20%. We

consider five alternative values for k; k = −1/2,−1/4, 0, 1/4, 1/2. Given these assumptions, we

generate a set of simulated option prices using the Black and Scholes (1973) (BS) function with

deterministic dividend payments. Then, the two parameters S∗t and σ∗ are estimated by minimizing

the sum of squared errors between the simulated option prices and the theoretical option prices based

on the BS function BS(S∗t ,K, T, r, q, σ
∗, D̃t,T ). We use a set of call options and a set of put options,

separately, as the observed option prices. The estimation results are reported in the columns under

Call (Put) options, respectively. Given the estimate of S∗t , we calculate the corresponding annualized

estimated CFER, ĈFER = ∆te
rfτ/τ , which would prevail if the assumption of the implied stock

approach (equation (2.12)) holds.

Call options Put options

k S∗t ĈFER σ∗ S∗t ĈFER σ∗

-1/2 100.38 2.3% 17.9% 100.35 2.1% 21.1%
-1/4 100.17 1.0% 19.0% 100.21 1.2% 20.6%
0 100 0.0% 20.0% 100 0.0% 20.0%
1/4 99.86 -0.9% 21.1% 99.71 -1.7% 19.1%
1/2 99.72 -1.7% 22.2% 99.35 -4.0% 18.0%
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Table 2.2. Estimation of RNMs and the violation of MR: Simulation results

Entries report a simulation-based estimated RNMs based on four alternative estimation specifica-

tions. We generate simulated option prices based on the log-normal stock price distribution, equation

(2.32). The parameters are set to St = 100, rf = 3%, τ = 1/12 and σ = 30%. We consider three

cases of the risk-neutral expected stock return rS : rS = rf (zero CFER case), rS = rf +3% (positive

CFER case) and rS = rf − 3% (negative CFER case). Under this setup, the true MFIV, RNS, and

RNK are 30%, zero, and three, respectively, regardless of the value of rS . The first column specifies

the RNM estimation specifications. The first letter stands for the type of the formula, either the

“Original” BKM formula or the “Generalized” BKM formula. The second letter stands for the type

of the IVs used as an input to the interpolation and extrapolation, either the “Standard” IVs or the

“Robust” IVs.

Zero CFER Positive CFER Negative CFER
MFIV RNS RNK MFIV RNS RNK MFIV RNS RNK

OS 30.0% 0.00 3.00 30.0% 0.11 3.00 30.0% -0.11 3.00
OR 30.0% 0.00 3.00 30.0% 0.09 3.00 30.0% -0.09 3.00
GS 30.0% 0.00 3.00 30.0% 0.02 2.99 30.0% -0.02 3.01
GR 30.0% 0.00 3.00 30.0% 0.00 2.99 30.0% 0.00 3.00
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Table 2.3. Summary statistics of CFER and the significance of mean ab-
solute CFER value

Entries in Panels A and B report the summary statistics of the estimated CFER and its absolute

value calculated from daily and end-of-month CFER estimates, respectively. We estimate CFER for

all available U.S. common stocks traded at NYSE/Amex/NASDAQ for each trading day. P5 and P95

stands for the fifth and 95-th percentile points of the pooled stock-day observations, respectively.

The unit of CFER summary statistics is % per year. Entries in Panel C report the number of

individual stocks whose time-series mean absolute CFER is greater than zero, 1%, 2%, and 3%,

respectively. We count stocks for having a higher than the reference point mean absolute CFER if

the t-statistic is greater than three, where the null hypothesis is that the mean absolute CFER equals

the reference point. The columns labeled “Daily” are based on the all daily observations, while the

columns labeled “End-of-month” are based on the end-of-month observations only. We count stocks

over three groups of stocks. For the daily case, we consider the groups of stocks with at least 21

non-missing CFER observations, 1200 non-missing observations, and 2500 non-missing observations.

For the end-of-month exercise case, we consider the groups of stocks with at least 12 valid CFER

observations, 60 valid observations, and 120 valid observations. The first row reports the number

of stocks within each one of the groups specified by the minimum valid CFER observations. The

estimation period spans from January 1996 to December 2017.

Panel A: Summary statistics: Daily estimated CFER
Obs Mean St. dev. P5 Median P95

CFER 12,469,967 -1.1 15.9 -17.0 -0.6 14.0
|CFER| 12,469,967 6.8 14.4 0.2 2.8 24.8

Panel B: Summary statistics: End-of-month estimated CFER
Obs Mean St. dev. P5 Median P95

CFER 596,679 -0.9 16.2 -17.1 -0.4 14.4
|CFER| 596,679 7.0 14.7 0.2 2.8 25.2

Panel C: Number of stocks with significant mean absolute CFER
Daily End-of-month

Valid observations Valid observations
≥ 21 ≥ 1200 ≥ 2500 ≥ 12 ≥ 60 ≥ 120

Number of stocks 6791 3357 1836 6219 3277 1833
mean(|CFER|) > 0 6692 3337 1827 5748 3177 1797

[98.5] [99.4] [99.5] [92.4] [96.9] [98.0]
mean(|CFER|) > 1% 6631 3308 1807 5290 2986 1689

[97.6] [98.5] [98.4] [85.1] [91.1] [92.1]
mean(|CFER|) > 2% 5968 2809 1390 3989 2139 1075

[87.9] [83.7] [75.7] [64.1] [65.3] [58.6]
mean(|CFER|) > 3% 5139 2265 1019 2899 1470 668

[75.7] [67.5] [55.5] [46.6] [44.9] [36.4]
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Table 2.4. Summary statistics of the estimated RNMs

Entries in Panel A report the summary statistics of CFER, the three estimated risk-neutral moments (RNMs), model-free implied volatility (MFIV), risk-neutral

skewness (RNS), and risk-neutral kurtosis (RNK), computed by the original BKM formulae (prefix “O”) and our generalized BKM formulae (prefix “G”). We

also compute the difference between the estimated O-RNMs and the corresponding G-RNMs (with prefix “∆”). We estimate these option-implied measures at

the end of each month from January 1996 to December 2017 (264 months). P5 and P95 denote the fifth and 95th percentile point, respectively. The unit of

CFER is % per 30-days, that of MFIV is % (per year). Entries in Panel B report the Pearson and Spearman pairwise correlations between CFER and RNMs,

CFER and ∆RNM, and O-RNM and G-RNM.

CFER O-MFIV G-MFIV O-RNS G-RNS O-RNK G-RNK ∆MFIV ∆RNS ∆RNK
Panel A: Summary statistics

Mean -0.07 52.11 51.99 -0.20 -0.19 3.64 3.62 0.12 -0.01 0.02
St. dev. 1.33 26.99 26.68 0.51 0.48 1.16 1.16 1.52 0.23 0.39
P5 -1.40 21.54 21.60 -0.87 -0.80 2.88 2.88 -0.47 -0.30 -0.14
Median -0.03 45.74 45.71 -0.24 -0.21 3.28 3.26 -0.02 -0.01 0.01
P95 1.18 103.58 103.08 0.58 0.50 5.72 5.70 0.89 0.27 0.21
N 582,796 582,796 582,796 582,796 582,796 582,796 582,796 582,796 582,796 582,796

Panel B: Pairwise correlations
CFER and RNMs CFER and ∆RNM

O-MFIV G-MFIV O-RNS G-RNS O-RNK G-RNK ∆MFIV ∆RNS ∆RNK
Pearson -0.11 -0.07 0.36 -0.01 0.13 0.04 -0.72 0.82 0.29
Spearman -0.08 -0.07 0.34 -0.01 0.07 0.09 -0.78 0.97 -0.11

O-RNM and G-RNM
MFIV RNS RNK

Pearson 1.00 0.90 0.94
Spearman 1.00 0.88 0.96
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Table 2.5. Decile portfolio sort based on the estimated RNS

Entries report the average post-ranking returns of the equally- and value-weighted decide portfolios

formed based on the estimated O-RNS and G-RNS as well as the average post-ranking returns and

the risk-adjusted returns (α) of the high-minus-low (10 minus 1) spread portfolios. We estimate α’s

with respect to the CAPM, the Fama and French (1993) three-factor model (FF3), the Carhart (1997)

four-factor model (FFC), the Fama and French (2018) five- and six-factor models (FF5 and FF6), the

Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing factor model

(SY). At the end of each month t, stocks are sorted in ascending order based on the estimated O-RNS

or G-RNS and then equally- and value-weighted decile portfolios are formed. We then calculate the

post-ranking return of these portfolios and the highest minus lowest (10 minus 1) spread portfolios

in the succeeding month-(t+ 1). The post-ranking return period spans February 1996 to December

2017 (263 months). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported

in parentheses. The unit of the average returns and alphas is % per month. N in the last row of

Panel A is the average number of stocks in each decile portfolio in each month.

Equally-weighted Value-weighted
O-RNS G-RNS O-RNS G-RNS

Panel A: Average return of the decile portfolios
1 (lowest) 0.36 (1.12) 0.78 (2.60) 0.44 (1.58) 0.67 (2.54)
2 0.59 (1.69) 0.79 (2.28) 0.70 (2.50) 0.74 (2.65)
3 0.73 (1.93) 0.82 (2.23) 0.86 (2.98) 0.82 (2.75)
4 0.76 (1.92) 0.96 (2.40) 0.87 (2.74) 0.95 (3.14)
5 0.81 (1.97) 0.90 (2.23) 1.06 (3.38) 1.04 (3.37)
6 0.86 (2.05) 0.86 (1.98) 1.07 (3.35) 1.02 (2.93)
7 1.03 (2.33) 0.78 (1.75) 1.22 (3.71) 0.94 (2.65)
8 1.02 (2.25) 0.80 (1.69) 0.91 (2.56) 0.89 (2.48)
9 1.29 (2.67) 1.01 (2.04) 1.24 (3.43) 0.99 (2.43)
10 (highest) 1.50 (3.30) 1.25 (2.83) 1.23 (3.78) 1.07 (3.38)
N 220.8 220.8 220.8 220.8

Panel B: Average returns and alphas of the spread portfolios
Ave. Ret 1.14 (4.79) 0.48 (2.19) 0.79 (3.50) 0.40 (1.96)
αCAPM 0.90 (4.52) 0.25 (1.39) 0.74 (3.16) 0.38 (1.80)
αFF3 0.90 (4.40) 0.22 (1.32) 0.65 (3.06) 0.27 (1.49)
αFFC 1.14 (5.07) 0.47 (2.60) 0.81 (3.81) 0.41 (2.39)
αFF5 1.06 (4.10) 0.38 (1.76) 0.53 (2.36) 0.11 (0.55)
αFF6 1.21 (5.11) 0.54 (2.89) 0.65 (3.12) 0.22 (1.24)
αq4 1.37 (4.48) 0.65 (2.59) 0.73 (2.95) 0.29 (1.35)
αSY 1.46 (4.89) 0.79 (3.23) 0.78 (3.14) 0.39 (1.88)
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Table 2.6. Factor loadings obtained from regressions of the RNS-sorted value-weighted spread portfolios on factors

Entries report the factor loadings obtained from regressing the RNS-sorted value-weighted decile spread portfolios returns on factors. The factor models are the

CAPM (MKT), the Fama and French (1993) three-factor model (MKT, SMB, HML), the Carhart (1997) four-factor model (MKT, SMB, HML, UMD), the Fama

and French (2018) five-factor model (MKT, SMB(FF5), HML, RMW, CMA) and six-factor model (MKT, SMB(FF5), HML, RMW, CMA, UMD), the Hou et al.

(2015) q-factor model (MKT(q4), ME, IA, ROE) and the Stambaugh and Yuan (2017) mispricing-factor model (MKT, SMB(SY), MGMT, PERF). The columns

labeled “O” (“G”) use O-RNS (G-RNS) as a sorting variable. The post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics

are adjusted for heteroscedasticity and autocorrelation and reported in parentheses.

CAPM FF3 FFC FF5 FF6 q4 SY
O G O G O G O G O G O G O G

MKT 0.09 0.04 0.10 0.05 0.00 -0.04 0.15 0.12 0.08 0.05 0.07 0.04 0.04 -0.03
(1.30) (0.55) (1.58) (0.85) (0.04) (-0.82) (2.20) (1.81) (1.40) (0.98) (1.11) (0.66) (0.57) (-0.43)

SMB 0.13 0.17 0.17 0.20 0.19 0.25 0.24 0.29 0.16 0.20
(1.30) (1.47) (2.15) (2.19) (1.86) (2.69) (3.08) (4.26) (1.42) (1.47)

HML 0.31 0.38 0.22 0.30 0.15 0.19 -0.02 0.04
(3.00) (3.81) (2.20) (3.03) (1.20) (1.65) (-0.19) (0.35)

UMD -0.24 -0.22 -0.26 -0.24
(-3.91) (-3.76) (-4.41) (-4.51)

RMW 0.12 0.18 0.19 0.25
(0.77) (1.20) (1.67) (1.99)

CMA 0.23 0.23 0.32 0.32
(1.13) (1.51) (2.11) (2.61)

ME 0.06 0.11
(0.53) (0.74)

IA 0.47 0.56
(2.92) (3.89)

ROE -0.26 -0.21
(-1.88) (-1.97)

MGMT 0.18 0.18
(1.52) (1.42)

PERF -0.17 -0.17
(-1.90) (-1.98)

Alpha 0.74 0.38 0.65 0.27 0.81 0.41 0.53 0.11 0.65 0.22 0.73 0.29 0.78 0.39
(3.16) (1.80) (3.06) (1.49) (3.81) (2.39) (2.36) (0.55) (3.12) (1.24) (2.95) (1.35) (3.14) (1.88)

Adj. R2 0.01 -0.01 0.08 0.12 0.19 0.22 0.10 0.15 0.23 0.27 0.11 0.14 0.07 0.08
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Table 2.7. Robustness analysis: Fama-MacBeth regressions

Entries report the results from the Fama and MacBeth (1973) regression of the stock returns on the

estimated RNS, firms’ and stocks’ characteristics, and CFER. Columns (1) to (4) report the results

using O-RNS as a regressor, and Columns (5) to (8) report those using G-RNS as a regressor. We

conduct two alternative types of regressions for the cross-sectional regression at any given month: the

ordinary least square (OLS) and the value-weighted least square (VWLS). The last row indicates the

type of the cross-sectional regression. Beta is the market beta, SIZE is the log market capitalization,

log(B/M) is the log book-to-market, Profit is the operational profit, Invest is the annual growth

rate of the total asset, Momentum (MOM) is the past 11 months cumulative return Rt−12,t−1 and

Reversal is the previous month return Rt−1,t. Adj. R2 is the time-series average of the adjusted

R2 of the cross-sectional regressions. N is the time-series average of the number of stocks in the

cross-sectional regressions. The return period spans February 1996 to December 2017 (263 months).

t-statistics are adjusted for heteroscedasticity and autocorrelation and reported in parentheses.

FM regression of stock returns on RNS and characteristic variables
(1) (2) (3) (4) (5) (6) (7) (8)

O-RNS 0.73 0.71 0.70 0.43
(3.94) (3.61) (7.15) (3.16)

G-RNS 0.39 0.49 0.36 0.19
(1.86) (2.02) (3.96) (1.29)

BETA -0.07 -0.11 -0.07 -0.10
(-0.25) (-0.32) (-0.24) (-0.30)

SIZE 0.03 -0.05 0.01 -0.05
(0.46) (-0.89) (0.15) (-1.07)

log(B/M) 0.11 0.01 0.11 0.01
(1.25) (0.14) (1.28) (0.10)

Profit 0.13 0.08 0.13 0.08
(2.85) (1.92) (2.86) (1.89)

Invest -0.05 -0.03 -0.05 -0.03
(-1.44) (-0.86) (-1.48) (-0.86)

MOM 0.13 0.26 0.11 0.25
(0.48) (0.94) (0.42) (0.89)

Reversal -0.90 -1.42 -1.04 -1.54
(-1.63) (-2.08) (-1.89) (-2.27)

Intercept 1.06 1.13 0.65 1.78 0.99 1.05 0.89 1.84
(2.46) (3.49) (0.60) (1.90) (2.30) (3.21) (0.83) (1.95)

Adj. R2 0.25% -3.34% 7.16% 3.07% 0.20% -3.36% 7.11% 3.06%
N 2208 2208 2057 2057 2208 2208 2057 2057
Reg. type OLS VWLS OLS VWLS OLS VWLS OLS VWLS

181



Table 2.8. Robustness analysis: Quintile portfolios sorted by the estimated
RNS

Entries report the average post-ranking returns of the equally- and value-weighted quintile portfolios

formed based on the estimated O-RNS and G-RNS as well as the average post-ranking returns and

the risk-adjusted returns (α) of the high-minus-low (5 minus 1) spread portfolio. We estimate α’s

with respect to the CAPM, the Fama and French (1993) three-factor model (FF3), the Carhart

(1997) four-factor model (FFC), the Fama and French (2018) five- and six-factor models (FF5 and

FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY). At the end of each month t, stocks are sorted in ascending order based on the

estimated O-RNS or G-RNS and then equally- and value-weighted quintile portfolios are formed.

We then calculate the return of these portfolios and the long-short (5 minus 1) spread portfolios in

the succeeding month-(t + 1). The post-ranking return period spans February 1996 to December

2017 (263 months). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported

in parentheses. The unit of the average returns and alphas is % per month.

Equally-weighted Value-weighted
O-RNS G-RNS O-RNS G-RNS

Panel A: Average return of the quintile portfolios
1 (lowest) 0.48 (1.43) 0.78 (2.45) 0.57 (2.11) 0.71 (2.67)
2 0.74 (1.94) 0.89 (2.33) 0.86 (2.94) 0.87 (2.97)
3 0.83 (2.02) 0.88 (2.12) 1.07 (3.48) 1.03 (3.27)
4 1.03 (2.30) 0.79 (1.73) 1.08 (3.23) 0.90 (2.61)
5 (highest) 1.40 (3.00) 1.13 (2.43) 1.23 (3.66) 1.02 (2.87)
Panel B: Average returns and alphas of the spread portfolios

Ave. Ret 0.92 (4.20) 0.35 (1.66) 0.66 (3.50) 0.31 (1.48)
αCAPM 0.69 (3.75) 0.11 (0.68) 0.56 (3.08) 0.20 (1.01)
αFF3 0.68 (3.81) 0.09 (0.57) 0.48 (2.98) 0.10 (0.62)
αFFC 0.92 (4.63) 0.34 (2.04) 0.63 (3.98) 0.26 (1.60)
αFF5 0.86 (3.67) 0.28 (1.26) 0.44 (2.37) 0.07 (0.38)
αFF6 1.01 (4.82) 0.44 (2.41) 0.54 (3.32) 0.18 (1.06)
αq4 1.15 (4.08) 0.54 (2.08) 0.66 (3.14) 0.23 (1.11)
αSY 1.23 (4.48) 0.66 (2.73) 0.67 (3.56) 0.27 (1.41)
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Table 2.9. Decile portfolios sorted by the dividend non-adjusted RNS

Entries report the average post-ranking returns of the equally- and value-weighted decide portfolios

formed based on the estimated dividend non-adjusted O-RNS and G-RNS as well as the average

post-ranking returns and the risk-adjusted returns (α) of the high-minus-low (10 minus 1) spread

portfolios. The dividend non-adjusted RNS is estimated by setting D̃t,T = 0, in Proposition 2.4.1.

We estimate α’s with respect to the CAPM, the Fama and French (1993) three-factor model (FF3),

the Carhart (1997) four-factor model (FFC), the Fama and French (2018) five- and six-factor models

(FF5 and FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017)

mispricing factor model (SY). At the end of each month t, stocks are sorted in ascending order

based on the estimated O-RNS or G-RNS and then equally- and value-weighted decile portfolios are

formed. We then calculate the return of these portfolios and the long-short (10 minus 1) spread

portfolios in the succeeding month-(t + 1). The post-ranking return period spans February 1996

to December 2017 (263 months). t-statistics are adjusted for heteroscedasticity and autocorrelation

and reported in parentheses. The unit of the average returns and alphas is % per month.

Equally-weighted Value-weighted
O-RNS G-RNS O-RNS G-RNS

Panel A: Average return of the decile portfolios
1 (lowest) 0.43 (1.41) 0.75 (2.63) 0.53 (1.97) 0.74 (2.88)
2 0.57 (1.68) 0.81 (2.43) 0.71 (2.64) 0.75 (2.78)
3 0.71 (1.89) 0.90 (2.48) 0.82 (2.82) 0.84 (2.73)
4 0.78 (1.99) 0.92 (2.33) 0.88 (2.74) 0.94 (2.98)
5 0.82 (2.00) 0.87 (2.14) 1.06 (3.23) 1.07 (3.27)
6 0.83 (1.97) 0.83 (1.89) 1.05 (3.17) 0.89 (2.55)
7 0.97 (2.17) 0.81 (1.79) 1.21 (3.46) 1.12 (3.07)
8 1.05 (2.28) 0.84 (1.77) 0.97 (2.62) 0.89 (2.32)
9 1.27 (2.60) 0.99 (1.96) 1.17 (3.18) 0.90 (2.16)
10 (highest) 1.50 (3.23) 1.24 (2.72) 1.30 (4.00) 1.06 (3.25)
Panel B: Average returns and alphas of the spread portfolios

Ave. Ret 1.06 (4.16) 0.49 (2.04) 0.77 (3.73) 0.32 (1.64)
αCAPM 0.78 (3.72) 0.20 (1.04) 0.67 (3.06) 0.24 (1.24)
αFF3 0.78 (3.72) 0.18 (1.09) 0.59 (3.11) 0.14 (0.83)
αFFC 1.03 (4.56) 0.44 (2.47) 0.72 (3.83) 0.29 (1.87)
αFF5 0.97 (3.79) 0.40 (1.87) 0.52 (2.63) 0.08 (0.45)
αFF6 1.13 (4.80) 0.56 (3.07) 0.61 (3.36) 0.19 (1.18)
αq4 1.29 (4.24) 0.66 (2.64) 0.70 (3.20) 0.22 (1.11)
αSY 1.37 (4.61) 0.80 (3.29) 0.73 (3.38) 0.32 (1.68)
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Table 2.10. Decile portfolio sort based on ∆RNS

Entries report the average post-ranking returns of the equally- and value-weighted decile portfolios

formed based on the ∆RNS, which is the difference between O-RNS and G-RNS, as well as the

average post-ranking returns and the risk-adjusted returns (α) of the high-minus-low (10 minus 1)

spread portfolios. We estimate α’s with respect to the CAPM, the Fama and French (1993) three-

factor model (FF3), the Carhart (1997) four-factor model (FFC), the Fama and French (2018) five-

and six-factor models (FF5 and FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh

and Yuan (2017) mispricing factor model (SY). At the end of each month t, stocks are sorted in

ascending order based on the estimated ∆RNS and then equally- and value-weighted decile portfolios

are formed. We then calculate the return of these portfolios and the long-short (10 minus 1) spread

portfolios in the succeeding month-(t + 1). The post-ranking return period spans February 1996

to December 2017 (263 months). t-statistics are adjusted for heteroscedasticity and autocorrelation

and reported in parentheses. The unit of the average returns and alphas is % per month. N in the

last row of Panel A is the average number of stocks in each decile portfolio.

∆RNS-sorted portfolios
Equally-weighted Value-weighted

Panel A: Average return of the decile portfolios
1 (lowest) -0.02 (-0.04) 0.22 (0.66)
2 0.44 (1.10) 0.59 (2.07)
3 0.62 (1.59) 0.65 (2.07)
4 0.80 (2.01) 0.73 (2.31)
5 0.92 (2.21) 0.82 (2.62)
6 0.92 (2.20) 1.01 (3.05)
7 1.01 (2.47) 1.02 (3.22)
8 1.19 (2.90) 0.90 (2.81)
9 1.40 (3.39) 1.14 (3.70)
10 (highest) 1.66 (3.84) 1.41 (4.36)
N 220.8 220.8
Panel B: Average returns and alphas of the spread portfolios
Ave. Ret 1.68 (9.70) 1.19 (5.69)
αCAPM 1.59 (9.23) 1.11 (4.80)
αFF3 1.63 (9.56) 1.14 (4.71)
αFFC 1.71 (9.41) 1.27 (5.07)
αFF5 1.71 (8.71) 1.12 (4.62)
αFF6 1.76 (8.85) 1.21 (4.97)
αq4 1.91 (8.56) 1.35 (4.84)
αSY 1.82 (7.39) 1.33 (4.59)

184



Table 2.11. Dependent bivariate sort: First by |CFER| and then by O-RNS

Entries report the result of the bivariate dependent sort, where we first sort stocks based on the

absolute value of the estimated CFER and then by O-RNS. At the end of each month, we first sort

stocks into four subgroups based on the absolute value of the estimated CFER, and then within each

absolute CFER group, we further sort stocks into quartile portfolios by the O-RNS criterion. Each

column corresponds to the level of the first sorting variable and each row reports the average return

and alphas of the quartile spread portfolios with respect to the second sorting variable, O-RNS. The

post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics are

adjusted for heteroscedasticity and autocorrelation and reported in parentheses. The unit of the

average returns and alphas is % per month.

Equally-weighted Value-weighted
|CFER| 1 (Lo) 2 3 4 (Hi) 1 (Lo) 2 3 4 (Hi)

Highest O-RNS minus Lowest O-RNS spread portfolios
Ave. Ret 0.26 0.37 0.57 1.51 0.36 0.18 0.63 1.15

(1.43) (1.94) (2.67) (6.18) (1.85) (0.78) (2.93) (4.58)
αCAPM 0.07 0.17 0.39 1.28 0.29 0.05 0.56 1.06

(0.45) (1.00) (2.02) (5.88) (1.48) (0.22) (2.85) (4.17)
αFF3 0.02 0.16 0.41 1.33 0.23 0.04 0.53 1.07

(0.16) (1.07) (2.21) (6.00) (1.23) (0.17) (2.62) (4.25)
αFFC 0.19 0.31 0.66 1.53 0.31 0.09 0.68 1.24

(1.36) (1.88) (3.44) (6.19) (1.68) (0.44) (3.44) (4.36)
αFF5 0.11 0.31 0.59 1.53 0.18 0.06 0.50 1.17

(0.61) (1.57) (2.45) (5.56) (0.89) (0.25) (2.05) (3.98)
αFF6 0.22 0.40 0.75 1.65 0.24 0.09 0.60 1.27

(1.42) (2.22) (3.71) (6.11) (1.21) (0.43) (2.81) (4.16)
αq4 0.29 0.45 0.86 1.84 0.26 0.18 0.75 1.42

(1.59) (2.03) (3.02) (6.06) (1.25) (0.81) (3.09) (4.24)
αSY 0.36 0.56 1.02 1.85 0.27 0.17 0.71 1.38

(2.10) (2.80) (3.75) (5.73) (1.33) (0.75) (3.04) (3.73)
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Table 2.12. CFER-adjusted regressions of the O-RNS-sorted portfolios

Entries report the intercepts of the regressions of CFER-adjusted excess returns of the value-weighted decide portfolios formed based on the estimated O-RNS,

equation (2.48), on a set of risk factor(s) of the CAPM, the Fama and French (1993) three-factor model (FF3), the Carhart (1997) four-factor model (FFC), the

Fama and French (2018) five- and six-factor models (FF5 and FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY), respectively. At the end of each month t, stocks are sorted in ascending order based on the estimated O-RNS and then and value-weighted

decile portfolios are formed. We then calculate the CFER-adjusted return of these portfolios and the spread portfolio in the succeeding month-(t+ 1) and regress

it on the risk-factors. The post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics are adjusted for heteroscedasticity and

autocorrelation and reported in parentheses. The unit of CFER is % per 30 days and that of the alphas is % per month.

O-RNS-sorted value-weighted decile portfolios Spread
1 (L) 2 3 4 5 6 7 8 9 10 (H) 10-1

CFER -0.27 -0.11 -0.06 -0.04 -0.01 0.01 0.04 0.09 0.18 0.57 0.84
(-16.54) (-10.03) (-7.84) (-4.41) (-1.35) (0.74) (5.02) (8.77) (11.99) (9.86) (12.54)

αCAPM -0.04 0.02 0.06 0.02 0.19 0.16 0.27 -0.11 0.14 -0.14 -0.10
(-0.34) (0.22) (0.81) (0.20) (1.86) (1.40) (2.20) (-0.81) (0.85) (-0.74) (-0.44)

αFF3 -0.06 0.02 0.06 0.03 0.23 0.16 0.28 -0.12 0.07 -0.25 -0.19
(-0.51) (0.22) (0.83) (0.31) (2.41) (1.61) (2.31) (-0.89) (0.45) (-1.46) (-0.93)

αFFC -0.05 0.03 0.05 0.05 0.23 0.18 0.32 -0.04 0.22 -0.07 -0.02
(-0.44) (0.40) (0.60) (0.51) (2.38) (1.77) (2.60) (-0.25) (1.49) (-0.41) (-0.09)

αFF5 -0.01 0.00 0.04 0.02 0.24 0.17 0.29 -0.11 0.07 -0.31 -0.30
(-0.09) (0.01) (0.55) (0.16) (2.37) (1.65) (2.32) (-0.73) (0.41) (-1.59) (-1.36)

αFF6 -0.01 0.01 0.03 0.03 0.24 0.17 0.32 -0.06 0.17 -0.19 -0.18
(-0.06) (0.15) (0.42) (0.30) (2.34) (1.74) (2.54) (-0.37) (1.13) (-1.08) (-0.88)

αq4 -0.03 -0.04 0.03 0.06 0.29 0.24 0.38 0.07 0.24 -0.15 -0.11
(-0.27) (-0.54) (0.37) (0.50) (2.68) (2.08) (2.97) (0.48) (1.26) (-0.65) (-0.46)

αSY 0.01 -0.01 0.03 0.05 0.31 0.23 0.38 0.04 0.27 -0.03 -0.04
(0.09) (-0.18) (0.35) (0.43) (2.92) (1.97) (2.97) (0.24) (1.62) (-0.14) (-0.16)
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Table 2.13. Subsample analysis: traded versus non-traded options

Entries report the average post-ranking returns of the value-weighted decide portfolios formed based

on the estimated O-RNS and G-RNS as well as the average post-ranking returns and the risk-adjusted

returns (α) of the high-minus-low (10 minus 1) spread portfolios. We split our stock universe into

two subgroups based on the aggregate option trading volume on each sorting date. The “traded”

subgroup contains stocks whose options have non-zero trading volume, whereas the “non-traded”

subgroup contains stocks whose options have zero trading volume. We estimate α’s with respect to

the CAPM, the Fama and French (1993) three-factor model (FF3), the Carhart (1997) four-factor

model (FFC), the Fama and French (2018) five- and six-factor models (FF5 and FF6), the Hou et al.

(2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing factor model (SY). At

the end of each month t, stocks are sorted in ascending order based on the estimated O-RNS or

G-RNS within each one of the subgroups and then and value-weighted decile portfolios are formed.

We then calculate the return of these portfolios and the long-short (10 minus 1) spread portfolios

in the succeeding month-(t+ 1). The post-ranking return period spans February 1996 to December

2017 (263 months). t-statistics are adjusted for heteroscedasticity and autocorrelation and reported

in parentheses. The unit of the average returns and alphas is % per month. N in the last row of

Panel A is the average number of stocks in each decile portfolio.

O-RNS G-RNS
Traded Non-traded Traded Non-Traded

Panel A: Average return of the decile portfolios
1 (lowest) 0.53 (1.98) 0.67 (2.53) 0.72 (2.86) 0.93 (3.42)
2 0.68 (2.48) 0.97 (3.07) 0.75 (2.72) 1.08 (3.46)
3 0.87 (3.00) 0.96 (3.08) 0.84 (2.75) 1.08 (3.61)
4 0.90 (2.77) 1.10 (3.30) 0.92 (2.88) 1.10 (3.27)
5 0.99 (2.97) 1.13 (3.33) 1.02 (3.16) 0.93 (2.77)
6 1.09 (3.24) 1.12 (3.10) 0.89 (2.62) 1.10 (2.81)
7 1.11 (3.26) 1.41 (4.03) 1.13 (3.05) 1.35 (3.60)
8 0.98 (2.57) 1.29 (3.39) 0.93 (2.45) 1.14 (2.94)
9 1.24 (3.45) 1.61 (4.16) 0.73 (1.79) 1.37 (3.69)
10 (highest) 1.21 (3.45) 1.37 (4.03) 1.07 (2.99) 1.26 (3.82)
N 174.4 46.8 174.2 46.6

Panel B: Average returns and alphas of the spread portfolios
Ave. Ret 0.68 (3.11) 0.69 (3.58) 0.35 (1.61) 0.33 (2.02)
αCAPM 0.53 (2.46) 0.59 (3.14) 0.21 (1.04) 0.27 (1.48)
αFF3 0.47 (2.36) 0.54 (2.84) 0.12 (0.66) 0.22 (1.28)
αFFC 0.62 (3.16) 0.71 (3.42) 0.29 (1.68) 0.39 (2.20)
αFF5 0.44 (2.08) 0.49 (2.79) 0.12 (0.61) 0.22 (1.37)
αFF6 0.55 (2.85) 0.62 (3.61) 0.23 (1.33) 0.33 (2.16)
αq4 0.66 (2.90) 0.76 (3.34) 0.27 (1.32) 0.35 (1.71)
αSY 0.68 (2.98) 0.73 (2.88) 0.33 (1.60) 0.45 (1.99)
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Table 2.14. Summary statistics of the estimated IV skew measures

Entries in Panel A show the summary statistics of CFER, the XZZ IV slope measures calculated

based on the standard IV (XZZo) and based on the robust IV (XZZr) as well as the difference

between the two XZZ measures. P5 and P95 stand for the fifth and 95th percentile, respectively.

The unit of CFER is % per 30-day. The unit for other columns is the volatility in percentage. N

stands for the average observation per each end-of-month trading day. Entries in Panel B report

the pairwise correlations between CFER and the XZZ slope measures, and XZZo and XZZr. We

omit samples below the 0.1 percentile point and above 99.9 percentile point in the estimated XZZr

because outliers may affect the calculation of correlations. We estimate monthly end-of-month IV

slope measures from January 1996 to December 2017 (264 months).

CFER XZZo XZZr ∆XZZ
Panel A: Summary statistics

Mean -0.07 6.84 6.29 0.53
St. dev. 1.34 14.84 10.06 8.98
P5 -1.41 -6.79 -2.44 -8.09
Median -0.03 4.95 4.21 0.26
P95 1.18 27.31 23.10 9.59
N 2214 2218 2209 2213

Panel B: Pairwise correlations
CFER vs XZZ measures

XZZo XZZr ∆XZZ
Pearson -0.65 -0.07 -1.00
Spearman -0.51 -0.06 -0.99

XZZo vs XZZr

Pearson 0.78
Spearman 0.80
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Table 2.15. Decile portfolio sort based on the XZZ IV slope measures

Entries report the average post-ranking returns of the equally- and value-weighted decide portfolios

formed based on the estimated XZZo and XZZr as well as the average post-ranking returns and

the risk-adjusted returns (α) of the high-minus-low (10 minus 1) spread portfolios. We estimate

α’s with respect to the CAPM, the Fama and French (1993) three-factor model (FF3), the Carhart

(1997) four-factor model (FFC), the Fama and French (2018) five- and six-factor models (FF5 and

FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY). At the end of each month t, stocks are sorted in ascending order based on the

estimated XZZo or XZZr and then equally- and value-weighted decile portfolios are formed. We

then calculate the post-ranking return of these portfolios and the long-short (10 minus 1) spread

portfolios in the succeeding month-(t + 1). The post-ranking return period spans February 1996

to December 2017 (263 months). t-statistics are adjusted for heteroscedasticity and autocorrelation

and reported in parentheses. The unit of the average returns and alphas is % per month. N in the

last row of Panel A is the average number of stocks in each decile portfolio in each month.

Equally-weighted Value-weighted
XZZo XZZr XZZo XZZr

Panel A: Average return of the decile portfolios
1 (lowest) 1.53 (2.87) 1.15 (2.17) 1.75 (4.25) 1.03 (2.77)
2 1.36 (3.25) 1.07 (2.40) 1.18 (4.06) 1.25 (4.22)
3 1.14 (3.17) 0.88 (2.38) 1.10 (4.34) 0.90 (3.49)
4 1.00 (2.83) 0.90 (2.47) 0.95 (3.57) 0.82 (3.18)
5 0.91 (2.58) 0.90 (2.50) 0.75 (2.81) 0.82 (3.08)
6 0.86 (2.27) 0.83 (2.20) 0.68 (2.23) 0.79 (2.61)
7 0.66 (1.69) 0.79 (2.05) 0.70 (2.23) 0.66 (2.20)
8 0.66 (1.56) 0.80 (1.97) 0.54 (1.48) 0.88 (2.61)
9 0.61 (1.44) 0.82 (1.90) 0.60 (1.51) 0.78 (2.02)
10 (highest) 0.20 (0.44) 0.80 (1.92) 0.30 (0.64) 0.65 (1.55)
N 221.3 220.7 221.3 220.7

Panel B: Average returns and alphas of the spread portfolios
Ave. Ret -1.33 (-6.25) 0.49 (1.80) -1.45 (-4.67) -0.38 (-1.46)
αCAPM -1.18 (-5.66) 0.16 (0.72) -1.49 (-4.50) -0.44 (-1.86)
αFF3 -1.24 (-6.29) 0.14 (0.69) -1.53 (-4.69) -0.44 (-1.89)
αFFC -1.35 (-5.93) 0.41 (1.99) -1.53 (-4.37) -0.42 (-1.69)
αFF5 -1.34 (-5.76) 0.37 (1.48) -1.30 (-4.10) -0.23 (-1.04)
αFF6 -1.41 (-5.88) 0.55 (2.51) -1.31 (-3.94) -0.22 (-0.97)
αq4 -1.63 (-6.09) 0.65 (2.23) -1.58 (-4.19) -0.35 (-1.44)
αSY -1.54 (-5.34) 0.78 (2.86) -1.39 (-3.89) -0.16 (-0.66)
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Table 2.16. CFER-adjusted regression of the XZZ-sorted portfolios

Entries report the intercepts of the regressions of CFER-adjusted excess returns of the value-weighted decide portfolios formed based on the estimated XZZo,

equation (2.48), on a set of risk factor(s) of the CAPM, the Fama and French (1993) three-factor model (FF3), the Carhart (1997) four-factor model (FFC), the

Fama and French (2018) five- and six-factor models (FF5 and FF6), the Hou et al. (2015) q-factor model (q4), and the Stambaugh and Yuan (2017) mispricing

factor model (SY), respectively. At the end of each month t, stocks are sorted in ascending order based on the estimated XZZo and then and value-weighted

decile portfolios are formed. We then calculate the CFER-adjusted return of these portfolios and the long-short (10 minus 1) spread portfolio in the succeeding

month-(t+ 1) and regress it on the risk-factors. The post-ranking return period spans February 1996 to December 2017 (263 months). t-statistics are adjusted

for heteroscedasticity and autocorrelation and reported in parentheses. The unit of CFER is % per 30 days and that of the alphas is % per month.

XZZ-sorted value-weighted decile portfolios Spread
1 (Lo) 2 3 4 5 6 7 8 9 10 (Hi) 10-1

CFER 12.86 2.19 0.74 0.02 -0.52 -0.99 -1.61 -2.51 -3.60 -8.51 -21.37
(11.53) (8.09) (6.23) (0.32) (-7.57) (-14.18) (-17.20) (-18.95) (-17.52) (-13.92) (-12.96)

αCAPM -0.29 0.18 0.28 0.19 0.02 -0.07 -0.04 -0.20 -0.10 -0.01 0.28
(-1.30) (1.53) (3.13) (1.69) (0.18) (-0.81) (-0.36) (-1.68) (-0.63) (-0.02) (0.94)

αFF3 -0.33 0.17 0.27 0.19 0.01 -0.10 -0.05 -0.22 -0.17 -0.08 0.25
(-1.47) (1.38) (3.29) (1.78) (0.06) (-1.12) (-0.47) (-1.84) (-1.17) (-0.36) (0.84)

αFFC -0.11 0.20 0.25 0.11 -0.03 -0.11 -0.05 -0.19 -0.07 0.13 0.24
(-0.45) (1.56) (2.85) (1.11) (-0.32) (-1.20) (-0.49) (-1.54) (-0.42) (0.68) (0.71)

αFF5 -0.24 0.08 0.21 0.02 -0.06 -0.12 -0.03 -0.07 0.00 0.20 0.44
(-0.94) (0.60) (2.40) (0.20) (-0.79) (-1.43) (-0.25) (-0.64) (-0.02) (0.99) (1.38)

αFF6 -0.10 0.10 0.19 -0.02 -0.08 -0.13 -0.03 -0.06 0.06 0.33 0.43
(-0.40) (0.80) (2.17) (-0.19) (-1.01) (-1.45) (-0.28) (-0.50) (0.38) (1.74) (1.24)

αq4 0.06 0.17 0.19 0.06 -0.06 -0.13 -0.03 -0.10 0.03 0.26 0.20
(0.20) (1.17) (2.18) (0.57) (-0.68) (-1.38) (-0.23) (-0.74) (0.17) (1.12) (0.55)

αSY 0.14 0.19 0.19 -0.08 -0.11 -0.11 -0.01 -0.06 0.14 0.46 0.33
(0.50) (1.33) (2.12) (-0.86) (-1.38) (-1.08) (-0.12) (-0.51) (0.81) (2.30) (0.92)
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Chapter 3

Option-Implied Expected Returns

and the Construction of

Mean-Variance Portfolios

3.1 Introduction

Despite its theoretical importance and elegance, the empirical performance of the

Markowitz (1952) mean-variance portfolios using sample means and covariances has

been known to be poor. Among the two ingredients of the mean-variance portfolio

problem, the expected stock returns have been perceived as the harder one to estimate

with precision (e.g., Merton, 1980). Most notably, Jagannathan and Ma (2003) argue

that “[t]he estimation error in the sample mean is so large that nothing much is lost in

ignoring the mean altogether when no further information about the population mean”

(pp.1652–1653). In line with their argument, a large proportion of studies focus on the

estimation of the covariance matrix in the minimum variance portfolio construction.1

This leaves the research on the estimation of the expected stock returns relatively

scarce.

This study fills this gap in the literature by proposing a novel way to utilize

option-implied information on the population mean in the mean-variance portfolio

optimization. To this end, we generalize Martin and Wagner’s (2018) formula for

1Examples include the shrinkage covariance matrix estimators in Ledoit and Wolf (2003, 2004,
2017), the factor model-based estimator (e.g., Chan et al., 1999) and the imposing constraints on
the portfolio weight (e.g., Jagannathan and Ma, 2003; DeMiguel et al., 2009a; Fan et al., 2012).
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the expected stock return by allowing the existence of market frictions considered in

Hiraki and Skiadopoulos (2019) (henceforth HS).2 Roughly speaking, our generalized

formula shows that the expected excess stock return in the presence of market frictions

equals the sum of two components: the risk premium component which is expressed

by the scaled risk-neutral simple stock variance of Martin (2017) and the contribution

of frictions to expected return (CFER) component of HS. CFER represents the effect

of market frictions on the expected return; it is part of the expected stock return

distinct from the risk premium component. Since Martin (2017) and HS show that

the risk-neutral simple variance and CFER, respectively, can be estimated from option

price data, our formula allows us to obtain a real-time, forward-looking estimate of

the expected stock returns. Based on this theoretical result, we examine three mean-

variance portfolio strategies, for which we use CFER, the risk premium component

implied by the risk-neutral simple variance, and the sum of these two components,

respectively, as the estimate of the expected stock returns.

We examine the empirical performance of our option-based mean-variance port-

folio strategies as well as a number of benchmark strategies (e.g., equally-weighted

portfolio) using the U.S. individual stock data from 1996 to 2017. We find that

the mean-variance portfolio strategy for which we use the estimated CFER as the

estimate of the expected stock returns (the Q-CFER strategy; Q stands for “quan-

titative” estimate of the expected return) obtains the best performance, especially

when constraints on portfolio weights are imposed. This result brings three impor-

tant implications.

First, our findings indicate that utilizing the option-based estimate of the expected

stock returns improves the performance of the mean-variance portfolio. The Q-CFER

strategy outperforms other portfolio strategies which have been documented to have

good performance, including the equally-weighted portfolio (DeMiguel et al., 2009b),

minimum variance portfolios (e.g., Jagannathan and Ma, 2003), both before and

after considering a moderate size of transaction costs. For example, in our baseline

exercise over the member stocks of the S&P 500, the annualized (pre-transaction

costs) Sharpe ratio of the Q-CFER strategy with constraints on portfolio weights is

0.98, while that of the equally-weighted portfolio and the minimum variance portfolio

2Chapter One of this thesis is based on Hiraki and Skiadopoulos (2019).
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are 0.58 and 0.68, respectively. This may change the common perception in the

literature that it is notoriously difficult to construct a mean-variance portfolio with

good empirical performance. Moreover, the Q-CFER strategy outperforms previously

proposed option-based portfolio strategies in DeMiguel et al. (2013) (DPUV), Kempf

et al. (2015), and Martin and Wagner (2018). We shortly argue that this is because

we utilize richer informational content of option prices compared to these studies.

Second, the outperformance of the Q-CFER strategy suggests that incorporating

the effect of market frictions into the estimation of the expected return is of impor-

tance. On the other hand, we find that utilizing the option-implied estimate of the

risk premium component does not improve the portfolio performance in general. This

sharp difference between CFER and the risk premium component stems from the fact

that the latter is a compensation for risk exposures, whereas the CFER component

is not. Tilting portfolio weights toward stocks with a high CFER component is effec-

tive to improve the portfolio expected return without much increasing the portfolio

variance. On the contrary, tilting portfolio weights toward stocks with a high risk

premium component mechanically increases the portfolio variance. Therefore, it is

not a priori clear whether the trade-off between a higher mean and a higher variance

is improved.

Third, we find that imposing constraints on portfolio weights dramatically im-

proves the performance of mean-variance portfolios. This result complements the

empirically unexploited theoretical result in Jagannathan and Ma (2002, 2003) on the

mean-variance portfolio construction.3 Albeit less famous compared to their semi-

nal result on the minimum variance portfolio, they theoretically show that portfolio

weight constraints on the mean-variance portfolio problem can be interpreted to have

a shrinkage-like effect. In particular, Jagannathan and Ma (2003, p.1660) discuss that

[T]he effect of the lower bound on portfolio weights is to adjust the mean

returns upward by an amount proportional to the Lagrange multiplier [of

the weight constraints], and the effect of the upper bound on portfolio

weights is a similar downward adjustment.

Nevertheless, they document that “the sampling error in the estimated [histori-

3Jagannathan and Ma (2002) is the working paper version of Jagannathan and Ma (2003), which
provides more detailed analysis on the effect of constraints on the mean-variance portfolio construc-
tion.
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cal sample] mean returns is too large for this shrinkage to be useful” (Jagannathan

and Ma, 2002, p.24) and urge us to “bring additional information about the popu-

lation mean instead of relying on sample mean as an estimator of population mean”

(Jagannathan and Ma, 2003, p.1660). Our result shows for the first time that this

shrinkage-like effect of the weight constraints on the mean-variance portfolio prob-

lem is useful once the option-implied expected return is employed. This result also

implies that our option-based forward-looking estimate of the expected returns bring

additional information about the population mean as requested by Jagannathan and

Ma.

The study in this Chapter contributes to three strands of the literature. The first

strand is the literature on the estimation of the expected stock returns as an input

to the mean-variance portfolio problem. The previous literature proposes various

ways to reduce measurement errors in estimates of the expected stock returns such as

employing a Bayesian approach and factor-based expected stock return models (e.g.,

Black and Litterman, 1991; Garlappi et al., 2007; Lai et al., 2011, among others).

Our option-based approach differs from these approaches in two important ways.

The first difference is that our option-based expected stock return is forward-looking

and we can estimation it in a model-free manner without relying on the historical

data. The second difference is that our estimation approach incorporates the effect

of market frictions on the expected returns. These features of our approach enable

us to utilize additional information on the expected stock returns compared to the

previous approaches.

Second, our study contributes to the literature on the application of option-implied

information for asset allocations and portfolio selection. Aı̈t-Sahalia and Brandt

(2008) and Kostakis et al. (2011) use the option-implied distributional information for

asset allocations, although they do not address the portfolio selection problem over

the universe of individual stocks. Kempf et al. (2015) propose estimation approaches

for the fully forward-looking covariance matrix. However, they examine only mini-

mum variance portfolios and do not address how option-implied information can be

used to construct the expected return input.

Among this strand of studies, our study is closely related to DPUV and Martin

and Wagner (2018) in that they also document that option-implied information on
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the expected returns is useful to enhance the portfolio performance. DPUV document

that four option-based return predicting characteristic variables, the model-free im-

plied volatility (MFIV), the risk-neutral skewness (RNS), the implied volatility spread

(IVS), and the volatility risk premium (VRP), are useful to improve the Sharpe ra-

tio of portfolios.4 Specifically, they utilize the informational content of these four

variables based on the parametric portfolio approach of Brandt et al. (2009) and

the characteristic-adjusted return approach. In the parametric portfolio approach

adopted by DPUV, portfolio allocations are determined by a linear function of the

option-implied characteristics where the loading of each variable is estimated using

historical data. In the characteristic-adjusted return approach, expected stock returns

take either one of three values depending on the cross-sectional ranking of an option-

based characteristic variable. Martin and Wagner (2018) follow Asness et al. (2013)

and construct a portfolio based on the cross-sectional ranking of the estimated indi-

vidual stock risk premium components, even though their estimated stock risk premia

can be used as an input to the mean-variance portfolio problem. Our Q-CFER strat-

egy outperforms these previously proposed option-based strategies. This is because

our option-based mean-variance portfolio approach utilizes richer informational con-

tent of options; DPUV rely on the option-based characteristics variables which are

only proxies of future stock returns, while Martin and Wagner (2018) utilize only the

cross-sectional ranking information of their estimated stock risk premia.5

Third, our findings on the effect of portfolio weight constraints is pertaining to a

large number of studies which document that the mean-variance portfolio optimiza-

tion has an error maximization property, that is, small measurement errors in the

estimates of the expected returns and covariance matrix are amplified in the resulted

optimal portfolio allocation (e.g., Michaud, 1989; Best and Grauer, 1991; Chopra

and Ziemba, 1993). Even though our option-based estimate of the expected stock

4There is a voluminous amount of the literature on the return predictive power of option-based
variables. For instance, Bali and Hovakimian (2009) and Cremers and Weinbaum (2010) find that the
IVS predicts future stock returns. Bali and Hovakimian (2009) also document the return predictive
ability of VRP. Conrad et al. (2013), Stilger et al. (2017) and Borochin and Zhao (2018) among
others document the predictive ability of the risk-neutral skewness (RNS) estimated based on the
Bakshi et al. (2003) formulae. See survey studies by Giamouridis and Skiadopoulos (2011) and
Christoffersen et al. (2013) for more detail.

5DPUV also document that option-implied variance is useful to reduce the variance of minimum
variance portfolios. We find that their result does not extend to general mean-variance portfolios;
using the option-implied variance does not necessarily improve the performance of mean-variance
portfolios.
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returns is thought to be much less noisier than the historical sample mean, the wrong

constraints help to improve the mean-variance portfolio performance, analogous to Ja-

gannathan and Ma’s (2003) discussion on the minimum variance portfolio. Moreover,

this literature shows that the mean-variance weight is more sensitive to measurement

errors in the expected returns than those in the covariance matrix, implying that the

precision of the estimation of the expected returns is of first-order importance. In

line with this result, we find that the expected return specification is more pertinent

to the performance of portfolios compared to the choice of the covariance matrix

specification.

The remaining part of this Chapter is organized as follows. In Section 3.2, we

derive the option-based formula for the expected return under market frictions. Sec-

tion 3.3 explains the data and the estimation procedures for option-implied variables.

Section 3.4 explains the empirical portfolio strategies and performance measures. In

Section 3.5, we report our main empirical results and discuss their implications. Sec-

tion 3.6 concludes this study.

3.2 Theoretical model for the expected returns

3.2.1 Setup

Let us consider the market where N individual stocks and their equity index are

traded. The market price and dividend payments of individual stocks at time t are

denoted by Si,t and Di,t, respectively, and those of the market index are denoted by

SM,t and DM,t, respectively. The gross return of the stock is denoted by Ri,t,t+1 =

(Si,t+1 + Di,t+1)/Si,t, i = 1, . . . , N or i = M . We assume that there are one-period

European options (i.e., options expiring in the next period) written on individual

stocks and the market index. A call (put) option stock i with strike K is denoted by

Ci,t(K) (Pi,t(K)). The gross risk-free rate from time t to t+ 1 is denoted by Rf,t,t+1.

We follow HS and assume that there is an agent who is a marginal investor in both

the stock and the option market. The agent chooses her consumption ct and asset

allocation θt, which is a vector of allocations on traded assets, by maximizing her

lifetime utility
∑

j≥t β
j−tEP

t [u(cj)], where β is the subjective discount factor and EP
t

is the conditional expectation given the information up to time t. This maximization
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problem is subject to the following dynamics of the agent’s wealth Wt,

ct = Wt − θ0t −
N∑
i=1

(
θSi,tSi,t +

∑
K

(θci,t(K)Ci,t(K) + θpi,t(K)Pi,t(K))

)
− TCt(∆θt),

Wt+1 = θ0tRf,t,t+1 +
N∑
i=1

θSi,t(Si,t+1 +Di,t+1)

+
N∑
i=1

∑
K

[
θci,t(K) max(Si,t+1 −K, 0) + θpi,t(K) max(K − Si,t+1, 0)

]
,

where TCt is the transaction costs function with ∆θt = θt − θt−1, as well as L

constraints on the asset allocation,

glt(θt) ≥ 0, l = 1 . . . , L. (3.1)

With these constraints, the Bellman equation of the maximization problem is given

by

Vt(Wt, θ
S
1,t−1, . . . , θ

S
N,t−1) = max

ct,θt

{
u(ct) + βEP

t [Vt+1(Wt+1, θ
S
1,t, . . . , θ

S
N,t)]

}
.

The allocation on the stocks at time t − 1 is treated as state variables because it

affects the transaction costs and hence the agent’s decision making. On the other

hand, since we assume that options and the risk-free bond are one-period assets, their

past allocations do not enter as state variables. The first-order condition with respect

to the allocation on i-th stock θSi,t is given by

Si,t = EP
t [m

∗
t,t+1(Si,t+1 +Di,t+1)] +

L∑
l=1

λlt
u′(ct)

∂glt
∂θSi,t

− ∂TCt
∂θSi,t

+
β

u′(ct)
EP
t

[
∂Vt+1

∂θSi,t

]
, (3.2)

where m∗t,t+1 = β(∂Vt+1/∂Wt+1)/u
′(ct) is the agent’s intertemporal marginal rate of

substitution (IMRS) between time t and t + 1, and λlt is the Lagrange multiplier of

the constraint, equation (3.1). Throughout this Chapter, we assume that m∗t,t+1 is

almost surely positive. By transforming equation (3.2), HS derive the following asset
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pricing equation,

EP
t [Ri,t,t+1]−Rf,t,t+1 = −Rf,t,t+1Cov

P
t (m∗t,t+1, Ri,t,t+1) + CFERi,t,t+1,

CFERi,t,t+1 = −Rf,t,t+1

Si,t

(
L∑
l=1

λlt
u′(ct)

∂glt
∂θSi,t

− ∂TCt
∂θSi,t

+
β

u′(ct)
EP
t

[
∂Vt+1

∂θSi,t

])
,

(3.3)

where CFERi,t,t+1 is the contribution of frictions to the expected return of i-th stock,

which represents the wedge between the expected stock return and its covariance

risk premium term caused by constraints on the portfolio allocations (e.g., margin

constraints) and the transaction costs.

Next, we define the “risk-neutral” probability measure Q∗ by using Rf,t,t+1m
∗
t,t+1

as the Radon-Nikodým derivative of the change of measure from the physical measure

P, so that the following change of measure relation holds:

EP
t [m

∗
t,t+1Xt+1] =

1

Rf,t,t+1

EQ∗

t [Xt+1], (3.4)

where Xt+1 is any random variable measurable at time t + 1. This is a unique well-

defined probability measure because the IMRS is assumed to be positive almost surely.

Note that we do not invoke the first fundamental theorem of asset pricing (FFTAP)

to claim the existence of Q∗. On the contrary, we cannot resort to FFTAP because

we assume the market may not be frictionless. With this definition of the risk-neutral

measure, equation (3.3) can be transformed into

EQ∗

t [Ri,t,t+1]−Rf,t,t+1 = CFERi,t,t+1. (3.5)

Equation (3.5) justifies to call Q∗ the “risk-neutral” measure; equation (3.3) boils

down to (3.5) in the case where the agent is risk-neutral in the sense that her IMRS

is constant.

3.2.2 Formula for the Expected Return under market fric-

tions

Equation (3.3) shows that the expected stock return is expressed as the sum of two

terms: the covariance risk premium term and the CFER term. HS demonstrate that
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CFER can be estimated reliably using an appropriately scaled deviations from put-call

parity and the estimated CFER has a strong predictive power for the cross-section of

stock returns. However, their study is silent about the covariance risk premium term.

On the other hand, under the frictionless market assumption (hence absence of the

CFER term), Martin and Wagner (2018) derive a formula in which the covariance risk

premium term is expressed by the risk-neutral simple variance which can be estimated

from the option price data.

In this Section, we generalize the Martin and Wagner (2018) model by allowing

the presence of market frictions so that we can replace the covariance risk premium

term in equation (3.3) by option-based variables.

Let us define ξt,t+1 = 1/m∗t,t+1, that is, ξt,t+1 is the inverse of the IMRS. Since

m∗t,t+1 is almost surely positive, ξt,t+1 is well-defined and positive almost surely. With

this notation, the measure change formula, equation (3.4), yields

EP
t [Ri,t,t+1] = EP

t

[
m∗t,t+1

Ri,t,t+1

m∗t,t+1

]
=

1

Rf,t,t+1

EQ∗

t [ξt,t+1Ri,t,t+1]

=
1

Rf,t,t+1

(
EQ∗

t [ξt,t+1]EQ∗

t [Ri,t,t+1] + CovQ
∗

t (ξt,t+1, Ri,t,t+1)
)
.

Since EQ∗

t [ξt,t+1] = Rf,t,t+1EP
t [m

∗
t,t+1ξt,t+1] = Rf,t,t+1 holds, the risk premium of i-th

stock is given by

EP
t [Ri,t,t+1]− EQ∗

t [Ri,t,t+1] =
1

Rf,t,t+1

CovQ
∗

t (ξt,t+1, Ri,t,t+1). (3.6)

Substituting equation (3.5) into (3.6) yields the following expression for the expected

excess return

EP
t [Ri,t,t+1]−Rf,t,t+1 = CFERi,t,t+1 +

1

Rf,t,t+1

CovQ
∗

t (ξt,t+1, Ri,t,t+1). (3.7)

Next, let us consider the following linear projection under Q∗, that is, the projec-

tion of the random variable Ri,t,t+1 onto ξt,t+1 under Q∗:

Ri,t,s = α∗i + β∗i ξt,t+1 + u∗i . (3.8)

Then, β∗i = CovQ
∗

t (ξt,t+1, Ri,t,t+1)/V ar
Q
t (ξt,t+1) and hence equation (3.7) can be trans-
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formed further into

EP
t [Ri,t,t+1]−Rf,t,t+1 = CFERi,t,t+1 + β∗i

V arQ
∗

t (ξt,t+1)

Rf,t,t+1

. (3.9)

Since V arQ
∗

t (ξt,t+1)/Rf,t,t+1 is the same across stocks, the cross-section of expected

stock returns are determined by two elements: the CFER term and β∗i .

Next, by taking the variance of equation (3.8), it follows that

V arQ
∗

t (Ri,t,t+1) = (β∗i )
2V arQ

∗

t (ξt,t+1) + V arQ
∗

t (u∗i ). (3.10)

Martin and Wagner (2018) employ a linear approximation for the squared beta term

as (β∗i )
2 ≈ 2β∗i − 1. With this approximation, we obtain

β∗i V ar
Q∗

t (ξt,t+1) =
1

2

[
V arQ

∗

t (Ri,t,t+1)− V arQ
∗

t (u∗i ) + V arQ
∗

t (ξt,t+1)
]

+ vi,t, (3.11)

where vi,t = −(β∗i − 1)2V arQ
∗

t (ξt,t+1)/2 denotes the approximation error. Therefore,

substituting equation (3.11) into (3.9) yields

EP
t [Ri,t,t+1]−Rf,t,t+1 = CFERi,t,t+1 +

V arQ
∗

t (Ri,t,t+1)

2Rf,t,t+1

+
V arQ

∗

t (ξt,t+1)

2Rf,t,t+1

− V arQ
∗

t (u∗i )

2Rf,t,t+1

+
vi,t

Rf,t,t+1

.

(3.12)

By introducing several notations as stated below, we obtain the following expression

from equation (3.12), where we generalize Martin and Wagner’s (2018) expected re-

turn expression by incorporating the effect of market frictions in terms of HS’s CFER

model.

Proposition 3.2.1. Let ωMi,t be the value weight of i-th stock in the market index.

Moreover, let us define ut =
∑

i ω
M
i,tV ar

Q∗

t (u∗i ) and φi,t = V arQ
∗

t (u∗i ) − ut. Similarly,

let us define vt =
∑

i ω
M
i,tvi,t and ψi,t = vi,t−vt. Then, the expected excess stock return

satisfies the following equation:

EP
t [Ri,t,t+1]−Rf,t,t+1 = CFERi,t,t+1 + Vi,t,t+1 + ct + εi,t, (3.13)

where

Vi,t,t+1 =
V arQ

∗

t (Ri,t,t+1)

2Rf,t,t+1

, (3.14)
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ct is constant across individual stocks and given by

ct =
V arQ

∗

t (ξt,t+1)− ut + 2vt
2Rf,t,t+1

, (3.15)

and the idiosyncratic part εi,t,t+1 is given by

εi,t = −φi,t − 2ψi,t
2Rf,t,t+1

. (3.16)

Equation (3.13) decomposes the expected excess return into four terms. The first

CFER term represents the effect of frictions on the expected return. By comparing

equations (3.3) and (3.13), we can see that the covariance risk premium term is

expressed as the sum of the remaining three terms in equation (3.13). The first

term among them, Vi,t,t+1, is a stock-specific yet observable part of the risk premium

term. Indeed, the risk-neutral simple variance can be estimated based on the theory

developed by Martin (2017) except that the estimation formula should be slightly

modified in the presence of market frictions, as we will prove in Section 3.2.3. Next,

ct is part of the risk premium which is common across individual stocks. Finally, εi,t is

a stock-specific yet unobservable residual term; it is on average zero on value-weighted

average basis because, by definition, both φi,t and ψi,t are so (e.g.,
∑

i ω
M
i,tφi,t = 0).

Moreover, Martin and Wagner (2018) document that individual ψi,t and φi,t terms

are typically negligible. Given their findings, we ignore εi,t throughout the remaining

part of this Chapter.

Once the residual term εi,t is ignored, the risk premium component is given by

Vi,t,t+1 +ct, that is, individual stocks’ risk premium component is given by the observ-

able stock-specific term Vi,t,t+1 shifted by the constant ct. Therefore, we call Vi,t,t+1

the shifted risk premium term. Since ct is constant across stocks, equation (3.13)

shows that cross-sectional variations in the expected stock returns are determined by

variations in CFER and those in the shifted risk premium term. This means that

we can estimate variations in the cross-section of expected stock returns from option

price data in a model-free manner because both CFER and the shifted risk premium

can be estimated from option price data.

Finally, we make three remarks regarding the difference between our results and

those in Martin and Wagner (2018). First, they provide an option-based expression

for the constant term ct under an additional assumption. This enables them to express
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the level of the expected return by option-implied variables. On the other hand, we

do not estimate the level of individual expected stock returns because, as we will

show in Section 3.2.4, the information on the cross-sectional variation in the expected

returns is sufficient for the mean-variance portfolio construction. Nonetheless, for

completeness, we provide the following result which shows that Martin and Wagner’s

(2018) result on ct is generalizable to our friction model.

Proposition 3.2.2. If the inverse of the IMRS coincides with the market portfolio

return, ξt,t+1 = RM
t,t+1, then, ct is given by the following equation:

ct =
V arQ

∗

t (RM,t,t+1)

Rf,t,t+1 + CFERM,t,t+1

+ CFERM,t,t+1 −
N∑
i=1

ωMi,tCFERi,t,t+1 −
N∑
i=1

ωMi,tVi,t,t+1.

(3.17)

Proof. See Appendix 3.A.1. 2

Second, Martin and Wagner (2018) assume that the investor has a log utility

in addition to the frictionless market assumption, whereas we do not assume the

functional form of the IMRS. Under the log utility assumption, the inverse of the

IMRS, ξt,t+1 coincides with the gross return of the growth optimal portfolio. This

additional structure is not necessary for deriving Proposition 3.2.1 and hence for our

subsequent mean-variance portfolio analysis.

Third, Martin and Wagner (2018) express the expected stock returns using the

risk-neutral simple variance of the individual stocks as well as that of the market

index. Therefore, their formula is applicable to the member stocks of the market

index only. Our formula does not impose this constraint because the calculation of

CFERi,t,t+1+Vi,t,t+1 does not involve the option-implied variables of the market index.

From the perspective of empirical analysis, this enables us to include stocks which do

not belong to the major stock indices (e.g., the S&P 500 index) in the stock universe

for mean-variance portfolio selection.

3.2.3 Estimation of the risk-neutral variance under frictions

In the frictionless setup, Martin (2017) develops a theory for estimating the risk-

neutral simple variance or SVIX (“S” stands for “simple” indicating that it is the

variance of the simple return Ri,t,t+1 instead of the log return). In particular, he
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shows that the risk-neutral simple variance discounted by the risk-free rate can be

calculated from option prices as

V arQ
∗

t (Ri,t,t+1)

Rf,t,t+1

=
2

S2
i,t

[∫ Fi,t,t+1

0

Pi,t(K,T )dK +

∫ ∞
Fi,t,t+1

Ci,t(K,T )dK

]
, (3.18)

where Fi,t,t+1 = Rf,t,t+1Si,t − D̃i,t,t+1 is the forward price of i-th stock with D̃i,t,t+1

being the time t + 1 value of the dividend payments between t and t + 1. We follow

Martin (2017) and assume that the dividend payments between t and t+1 are known

at time t. This is a plausible assumption at least for short-term horizon options (e.g.,

one month) which we use in the subsequent empirical analysis. In the case where

market frictions are present, equation (3.18) should be modified as follows.

Proposition 3.2.3. Let Fi,t,t+1 = Rf,t,t+1Si,t − D̃i,t,t+1 be the forward price of i-th

stock. In the presence of market frictions, the risk-neutral simple variance divided by

the risk-free rate is given by the following equation

V arQ
∗

t (Ri,t,t+1)

Rf,t,t+1

=
2

S2
i,t

[∫ Fi,t,t+1

0

Pi,t(K,T )dK +

∫ ∞
Fi,t,t+1

Ci,t(K,T )dK

]
−
CFER2

i,t,t+1

Rf,t,t+1

.

(3.19)

Proof. See Appendix 3.A.2 2

Proposition 3.2.3 shows that the formula for the risk-neutral simple variance should

be modified to include the squared CFER term. This modification stems from the

fact that the mean of the Q∗-expected stock return is different from the risk-free rate;

it is now the sum of the risk-free rate and CFER (equation (3.5)). Since the mean

changes, the variance (i.e., the central second moment) should also change. Moreover,

when CFER is zero, equation (3.19) reduces to (3.18), meaning that equation (3.19) is

the generalization of equation (3.18) to accommodate the possible presence of market

frictions.

3.2.4 Shifted expected return and mean-variance optimiza-

tion

Let us consider the following mean-variance portfolio problem,

min
ω

γ

2
ω′Σω − ω′µ, s.t. ω′e = 1, (3.20)
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where Σ and µ are the covariance matrix and the expected returns of the individual

stocks, respectively, γ is the risk-aversion parameter, e is the vector of ones, and x′

denotes the transpose of a vector or matrix x.

To solve this optimization problem, equation (3.20), we wish to use the option-

based estimate of the expected stock return, CFERi,t,t+1 + Vi,t,t+1, as an estimate of

µi. The following Lemma ensures that this is approach is valid, that is, we can ignore

the constant shifting term ct in the expected return and use the shifted expected

return as an input to the mean-variance optimization problem.

Lemma 3.2.1. Let ω∗ be the solution to the minimization problem (3.20) given the

covariance matrix Σ and the expected stock returns µ. Then, the same ω∗ is the

solution to the minimization problem (3.20) given the covariance matrix Σ and the

parallel-shifted expected stock returns µ̃ = µ+ ke, where k is an arbitrary constant.

Proof. See Appendix 3.A.3. 2

Lemma 3.2.1 implies that we will obtain the same optimal mean-variance portfolio

weights regardless of using µi = CFERi,t,t+1+Vi,t,t+1+ct or µ̃i = CFERi,t,t+1+Vi,t,t+1.

In other words, Lemma 3.2.1 allows us to ignore the cross-sectional constant term ct

when we construct an estimate of the expected return input for the mean-variance

problem. Therefore, we can obtain sufficient information on the expected stock returns

from only individual stocks’ CFER and simple risk-neutral variance. This estimated

(shifted) expected returns inherit the advantageous property of SVIX and CFER;

it is a forward-looking, real-time measure of the (shifted) expected return and its

estimation does not require any parameter estimations nor historical data.

3.3 Data and estimation of option-implied mea-

sures

In this Section, we describe the data on stocks and options we use in our subsequent

empirical analysis. Then, we explain the estimation procedures for option-implied

variables.
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3.3.1 Data

We obtain the option data from the OptionMetrics Ivy DB (OM) via the Wharton

Research Data Services (WRDS). Our sample period is from January 1996 to Decem-

ber 2017. We estimate CFER and the shifted risk premium as well as the model-free

implied volatility (MFIV), risk-neutral skewness (RNS) and volatility risk premium

(VRP) from the OM option data. We explain the estimation procedures for CFER,

shifted risk premium, MFIV and RNS in Section 3.3.2. VRP is calculated as the

difference between the 30-day MFIV and the 30-day historical volatility, where we

obtain the historical volatility from the OM Historical Volatility file.

We obtain the stock data from the Center for Research in Security Prices (CRSP)

via the WRDS. We construct size, log book-to-market (logBM) and the 12-month

momentum (MOM) from the CRSP and Compustat. Size is calculated as the loga-

rithm of the market capitalization, which is the product of the close stock price and

the shares outstanding. We calculate logBM based on Davis et al. (2000) and we treat

negative book-to-market samples as missing. Regarding MOM, we follow DPUV and

calculate the MOM at time t as the cumulative return from day t− 251− 21 to day

t−21. See Appendix 3.B.1 for detailed explanations on the variable construction pro-

cedures. Appendix 3.B.2 explains how we link CRSP, Compustat and OM. Finally,

we obtain standard risk factors from Kenneth French’s data library.

Our baseline stock universe for the subsequent mean-variance portfolio analysis is

all the constituent stocks of the S&P 500 index on a particular end-of-month trading

day for which we can estimate the option-implied measures (CFER, the risk-neutral

simple variance and other option-implied measures). We obtain the information on

the constituent stocks of the S&P 500 index from Compustat. In each month, there

are on average 474 (at least 453) S&P 500 constituent stocks for which we can estimate

the option-implied measures. For the purpose of estimating historical moments, we

further restrict our universe to stocks with non-missing return data over the past 630

trading days (about 30 months). This window length is chosen in order to ensure the

positive definiteness of historical covariance matrices while minimizing the number of

stocks excluded due to missing past return data. Since the constituent stocks of the

S&P 500 index are actively traded large stocks, this additional restriction does not

have big impact; on average only 10 stocks are excluded from the S&P 500 universe
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each month due to missing past return data.

In addition, we consider an alternative stock universe of 500 randomly selected

stocks. For each year y, first we find stocks which satisfy the following two criteria:

(i) the option-implied measures are not missing for all the end-of-month trading days

in year y, and (ii) on each end-of-month day in year y, the past 630 daily returns

are not missing so that we can calculate the historical moments. Then, we randomly

select 500 stocks from the pool of eligible stocks. We fix the selected 500 stocks

throughout year y (i.e., the stock universe is updated in every January). On average,

for each year, there are about 1,700 (at least 1,411) eligible stocks which satisfies

the two screening criteria described above. This universe is constructed in the spirit

similar to the randomly selected 500 CRSP stock universe considered in Jagannathan

and Ma (2003) and DeMiguel et al. (2009a) among others, except that we impose an

additional natural eligibility condition that option-implied measures are non-missing.

3.3.2 Estimation of option-implied measures

3.3.2.1 CFER

For the estimation of CFER, HS show that it can be reliably estimated by using a

pair of call and put options at the same strike and maturity as follows:

CFERi,t,T ≈
Rf,t,T

Si,t

(
S̃i,t(K)− Si,t

)
, (3.21)

where S̃i,t(K) = Ci,t(K,T )−Pi,t(K,T )+(K+D̃i,t,T )/Rf,t,T is the price of the synthetic

stock price and D̃i,t,T is the time T value of dividend payments during the life of the

options. We estimate CFER based on the OM Standardized Option Price file, which

provides the call and put prices and respective implied volatilities (IVs) at the forward

at-the-money (ATM) strike price (i.e., K = Fi,t,T = Rf,t,TSi,t−D̃i,t,T ) for standardized

maturities such as 30, 60, 91, 182, and 365 days to maturities.6 We use the 30-day-

to-maturity forward ATM call and put option prices to calculate equation (3.21). See

Appendix 3.B.3 for more detail.

6The OM calculates the forward prices based on its zero yield curve data (available in the OM
Zero Curve File) and its projected dividend payments. Specifically, the forward prices recorded in
the OM file are not actual market transaction or quote prices.
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3.3.2.2 Risk-neutral simple variance and risk-neutral moments

For the estimation of the risk-neutral simple variance, we use equation (3.19). The

estimation of MFIV and RNS is based on the Bakshi et al. (2003) formulae corrected

for the dividend payments; as we have seen in Chapter Two, the original formulae in

Bakshi et al. (2003) are derived under the assumption that the underlying pays no

dividends. Specifically, we calculate risk-neutral moments as

MFIVt,T =

√
erf τM(2)t,T − µ2

t,T

τ
, (3.22)

RNSt,T =
erf τM(3)t,T − 3erf τµt,TM(2)t,T + 2µ3

t,T

[erf τM(2)t,T − µ2
t,T ]3/2

, (3.23)

where M(n)t,T (n = 2, 3, 4) is given by

M(n)t,T =

∫ ∞
St−D̃t,T

η(K;St, n)Ct(K,T )dK+

∫ St−D̃t,T

0

η(K;St, n)Pt(K,T )dK, (3.24)

η(K;St, n) =
n

(K + D̃t,T )2

(n− 1) log

(
K + D̃t,T

St

)n−2

− log

(
K + D̃t,T

St

)n−1
 .

(3.25)

and µt,T = Rf,t,T − 1−Rf,t,T [M(2)t,T/2 +M(3)t,T/6 +M(4)t,T/24].

To calculate the integrals in equations (3.19) and (3.24), a continuum of option

prices with respect to the strike price is required. To this end, we interpolate the

IVs provided by the OM Volatility Surface file. The Volatility Surface file provides

call and put option prices and IVs at standardized maturities (such as 30, 60, 91,

182, and 365 day-to-maturity) and standardized delta-denominated strikes (deltas

0.2, 0.25, . . . , 0.8 for call options and -0.2, -0.25, . . . , -0.8 for put options). We follow

the convention in the recent literature (e.g., Stilger et al., 2017; Borochin and Zhao,

2018) and separately interpolate the call and put IVs by the cubic Hermite polynomial

in the moneyness-IV metric. We extrapolate the IV curve horizontally beyond the

lowest and the highest moneyness to obtain 1,001 IVs at equally spaced strikes over

the moneyness range from 1/3 to 3. Then, we convert these IVs back to European

option prices and numerically calculate the integrals. The boundary value between

the put and call integrals in equation (3.19) is Fi,t,t+1 and that in equation (3.24) is

St − D̃t,T . We use the forward price recorded in the OM Standardized Option Price
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file for equation (3.19). Regarding the boundary value in equation (3.24), we back

out D̃t,T from the same OM forward price as D̃t,T = Rf,t,TSi,t − Fi,t,T . See Appendix

2.B.4 for more detail.

Two remarks are in order regarding the option dataset we employ. First, our

choice of the data source is in line with the previous literature; DPUV and Martin and

Wagner (2018) estimate MFIV and RNS, and the stock risk premium, respectively,

using the OM Volatility Surface file. Second, exchange listed individual U.S. equity

options are American options, although the theoretical formulae for CFER, the simple

variance, MFIV, and RNS are based on European option prices. Regarding this point,

we follow the convention in the literature (e.g., Martin and Wagner, 2018) and regard

IVs provided by OM as those of European options because OM calculate IVs by taking

early exercise premium into account by relying on the binomial tree model.

3.3.3 CFER and the shifted risk premium: Estimation result

We estimate CFER and the shifted risk premium term implied by the risk-neutral

simple variance, Vi,t,t+1, for each individual stock at the end of each month from

January 1996 to December 2017.

Table 3.1 Panel A reports the summary statistics of the estimated CFER, where

the unit of CFER is percent per year. It shows that the estimated CFER exhibits large

variation. For example, in the all optionable stocks universe, the standard deviation

and the inter-quartile range (IQR; the difference between 75th and 25th percentile

points) are 15.9% and 5.58%, respectively. These values are economically large and

hence the variation in the CFER component constitutes an essential element of the

variation in the expected stock returns. The variation in CFER is large in the S&P

500 stocks universe as well (e.g., the standard deviation is 4.8%), even though the

variation is milder compared to the all optionable stock universe. This pattern is

sensible because larger stocks tend to face less market frictions. Nevertheless, the

summary statistics suggest that the CFER component is of importance even for large

S&P constituent stocks. The mean and median of the estimated CFER are close

to zero yet slightly negative (-82 bps and -37 bps per year, respectively, in the all

optionable stock universe). Therefore, CFER takes positive and negative value with

roughly equal probability.
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Table 3.1 Panel B shows the summary statistics of the estimated shifted risk

premium. This term exhibits even larger variation compared to the CFER component;

in the all optionable stock universe, its standard deviation and IQR is 22.0% and

14.8%, respectively. Similar to CFER, the variation in the S&P 500 universe is smaller

compared to the all optionable stock universe yet non-negligible. In words, these

summary statistics suggest that both the two component of the expected return,

CFER and the risk premium term, exhibit large variation across individual stocks

and over time.

[Table 3.1 about here.]

Next, we investigate how the two components of the expected return, CFER and

the risk premium term, contribute to the variation in the expected returns. The cross-

sectional variation in the expected returns can be decomposed into the variation in

CFER, that in the risk premium term and their cross variation term, that is,

V ar(CFER + V ) = V ar(CFER) + V ar(V ) + 2Cov(CFER, V ).

To obtain the variance decomposition result, first for each month t, we conduct the

variance decomposition, then we take the time-series average of each component.

Table 3.1 Panel C reports the result. We can see that the CFER component

explains about one third of the total variation in the estimated expected returns

and remaining two thirds of the variation is explained by the risk premium term.

The cross variation term explains the total variation by at most a few percent points,

implying that the variations in the CFER and the risk premium component are almost

“orthogonal.” The contribution of the CFER component is slightly smaller for the

S&P 500 stock universe compared to the full optionable stock universe. This is sensible

because larger stocks are subject to less market frictions and hence the role of the

effect of market frictions is less pronounced. However, this result suggests that still

non-negligible proportion of the variation in large stocks is attributable to the effect

of market frictions.7

7This result may explain why Martin and Wagner (2018) find that their theory performs well
only for estimated risk premia for longer term horizons (6-month or longer); the effect of frictions
have non-negligible effect for short horizon expected returns.
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3.4 Mean-variance portfolio analysis: Empirical

setup

In this Section, we explain the mean-variance portfolio strategies we examine subse-

quently, as well as a number of benchmark portfolio strategies which do not rely on

the mean-variance optimization. Then, we explain performance measures we employ

for comparing the performance of various strategies.

3.4.1 Mean-variance portfolio: expected stock returns

A mean-variance portfolio strategy is specified by the combination of three elements:

the expected stock returns, covariance matrix, and the constraint on the portfolio

weights. We begin with our innovative part, the specification of the expected return

vector, µt.

Based on our theoretical model in Section 3.2, we consider three forward-looking

quantitative estimates of expected returns. For the first expected returns specification,

we set µi,t = CFERi,t,t+1 + Vi,t,t+1 based on Proposition 3.2.1 and Lemma 3.2.1.

We call this return specification Q-FULL (Q stands for “quantitative”) because this

specification utilizes both the option-implied risk premium and the effect of frictions.

We also consider two partial measures of the expected returns, µi,t = CFERi,t,t+1

and µi,t = Vi,t,t+1. We call the former specification Q-CFER and the latter Q-RP

(RP stands for “risk premium”). These two specifications would help us to better

understand the role of the two components of the expected return (CFER and the

risk premium) on the mean-variance portfolio performance by shutting down either

one of the two components.

To expedite the comparison between our results and those in the previous lit-

erature, we also examine three alternative setting for the expected returns. First,

we examine the global minimum variance portfolio (GMVP), that is, µi,t = 0. For

completeness, we also examine the historical sample mean as the second alternative

choice. The third one is the characteristic-adjusted returns considered in DPUV. They

construct characteristic-adjusted expected returns based on the following definition:

µki,t = µB,t

(
1 + δkt x

k
i,t

)
,
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where µB,t is the benchmark expected return, xki,t is an indicator variable which takes

+1 (-1) when the k-th characteristic variable (e.g., RNS) belongs to the top (bottom)

decile of time t cross-sectional values and takes zero otherwise, and δkt controls the

intensity of the effect of the characteristic k on the conditional mean. We follow

DPUV to use the time t grand mean return across all individual historical returns

as the benchmark expected return and δkt = 0.1 for any characteristic. Under this

setting, the expected returns take one of the following three values depending on the

cross-sectional rank of k-th characteristic:

µki,t =


1.1× µB,t if k-th characteristic belongs to the top decile,

0.9× µB,t if k-th characteristic belongs to the bottom decile,

1.0× µB,t otherwise.

We construct four characteristic-adjusted returns based on MFIV, RNS, VRP, and

CFER. We label these specifications CA-MFIV, CA-RNS, CA-VRP, and CA-CFER,

respectively, where CA stands for “characteristic-adjusted.” Our choice of option-

implied characteristics are largely in line with DPUV, who examine MFIV, RNS,

VRP, and IVS (implied volatility spread). We use the estimated CFER instead of

IVS because these two variables are approximately proportional and hence exhibit a

nearly perfect rank correlation.8

3.4.2 Mean-variance portfolio: covariance matrix

We examine a number of covariance matrix specifications. We estimate the variance

of stocks and the correlation separately and then form the covariance matrix Σ as

Σ = V ′ΓV , where V is the diagonal matrix of the estimated volatility and Γ is the

correlation matrix.

8HS show that their estimate of CFER, the scaled deviations from put-call parity, is approximately
equal to IV S times the Black-Scholes vega-to-stock price ratio. Since the vega-to-stock price ratio
is roughly constant when the time-to-maturity and moneyness are the same, the estimated CFER
calculated from the 30-day forward ATM call and put pair (as we do in this Chapter) and the IVS
calculated from the 30-day ATM implied volatilities (as DPUV do) are roughly proportional in each
cross-section. Note that this does not contradict the finding in HS that CFER has superior return
predicting power compared to IVS. In HS and early studies on IVS (e.g., Bali and Hovakimian,
2009; Cremers and Weinbaum, 2010), they calculate CFER or IVS by aggregating the actual option
quotes data with diverse maturities and moneyness recorded in the OM Option Price File. In this
procedure, the predictive power of CFER and IVS may differ because the vega scaling factor is not
constant across input option data with various strikes and maturities.

211



3.4.2.1 Estimation of the correlations

For the correlations, we examine the following two approaches. First, we simply use

the historically estimated correlations (HC). As explained in Section 3.3.1, we use the

past 630 trading days window for both the S&P 500 and the randomly selected 500

stock universe. Moreover, we follow DPUV and consider zero correlations (ZC) setup,

where we set all the correlation coefficients to zero. Under the ZC specification, the

resulted covariance matrix becomes a diagonal matrix of the estimated variances.9

3.4.2.2 Estimation of the variance

We examine the following three specifications for the variance of individual stocks.

First, we use the historical variance (HV). The estimation window is the same as for

the correlations (therefore, the combination HV-HC is the historical sample covariance

matrix).

Next, we follow DPUV and construct the risk-adjusted option-implied variance

(RIV). RIV is an option-implied forward-looking volatility estimate under the physical

probability measure. We follow DPUV and “risk-adjust” MFIV to obtain the RIV

as follows.10 First, we calculate the historical volatility risk premium adjustment

(HVRP) at time t for i-th stock as

HVRPi,t =

∑t
τ=t−w+1 MFIVi,τ−30,τ∑t
τ=t−w+1 HVi,τ−30,τ

,

where MFIVi,τ−30,τ (HVi,τ−30,τ ) denotes the 30-day MFIV (historical volatility) of i-th

stock, that is, the implied (historical) volatility for the 30-day period ending at time

τ . In short, we calculate the average value of 30-day implied and historical volatility

over past w trading days and then calculate HVRP as the ratio of these two average

volatility values. We follow DPUV and set w = 252. Given the estimated HVRP, we

9There are two alternative ways to estimate option-implied correlations. The first one is the
heterogeneous implied correlation matrix corrected for the risk premium considered in DPUV. We
do not examine this approach because they document that there are little gain from using this
option-implied correlations. The second approach is the option-implied dispersion in Martin and
Wagner (2018). They show that the ratio of the index SVIX to the value-weighted SVIX of the
constituent stocks of the index provides an average option-implied correlation (dispersion), that is

ρt ≈ SVIX2
t/SVIX

2

t . We do not report this result neither because using this correlation does not
improve the portfolio performances.

10We also calculate the risk-adjusted option-implied variance by using the risk-neutral simple
variance instead of MFIV. However, we do not report this result because portfolio performance do
not change qualitatively compared to those using the RIV based on MFIV.
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calculate the predicted future realized volatility, R̂Vi,t,t+30 as

R̂Vi,t,t+30 =
MFIVi,t,t+30

HVRPi,t

.

Finally, we also examine the shrinkage covariance matrix based on the Ledoit and

Wolf (2004) method:

Σ̂shrink = (1− ν)Σ̂ + νΣtarget,

where ν is the shrinkage constant. We apply the shrinkage method to the historical

covariance matrix (i.e., Σ̂ is set to the historical covariance matrix). We choose the

scaled identity matrix Σtarget = σ2I as the shrinkage target matrix, where σ2 is the

average of the individual stocks’ variances. We follow Ledoit and Wolf (2004) to

calculate the shrinkage constant ν. We label this covariance matrix “LWI.”

3.4.3 Mean-variance portfolio: constraints on portfolio

weights

We examine the effect of constraints on portfolio weights in the mean-variance port-

folio optimization. Specifically, for each stock weight ωi, we examine the following

form of constraints,

ωLB ≤ ωi ≤ ωUB, (3.26)

with either one of the following choices for the lower and upper bound:

1. (ωLB, ωUB) = (−∞,∞): unconstrained problem.

2. (ωLB, ωUB) = (0,∞): mo short-sale (NS) constraints.

3. (ωLB, ωUB) = (0, 0.1): no short-sale and 10% maximum weight constraints

(NS10).

4. (ωLB, ωUB) = (−0.1, 0.1): 10% absolute portfolio weight constraints (ABS10).

The first setup corresponds to the unconstrained problem. The second case, short-

sale constraints, are widely employed in the literature (e.g., Jagannathan and Ma,

2003; DeMiguel et al., 2013). The third specification, NS10, considers a realistic

portfolio policy of mutual funds; they are not allowed to short-sell stocks. In addition,
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they are typically subject to the restriction on the maximum weight on each single

stock, by their investment policy or law enforcement (see e.g., Hlouskova and Lee,

2001). The last setup considers a situation where short-sale is allowed, yet there is

a restriction on the maximum absolute weight on each single stock. One may regard

the last constraint as a restriction on a long-short equity fund which can take short

positions yet not allowed to take an extreme position on a single stock.

3.4.4 Mean-variance portfolio: risk-aversion parameter

To solve the mean-variance portfolio problem, equation (3.20), we need to specify the

risk-aversion parameter γ. To this end, we examine γ = 2, 5, 10. Since we obtain

qualitatively similar results regardless of the choice of γ, we report the result of

γ = 10 for brevity. Note that these risk-aversion parameter values are also examined

in DeMiguel et al. (2009a) and DeMiguel et al. (2019).

3.4.5 Other benchmark strategies

For the sake of comparison, we consider a number of benchmark strategies examined

in the literature. First, we examine the equally-weighted (EW) and the value-weighted

(VW) portfolios. These two benchmarks are of importance. DeMiguel et al. (2009b)

show that the EW portfolio has an excellent performance even though it does not

involve any optimizations. The VW portfolio is also a natural benchmark since the

VW portfolio approximately equals the market portfolio.11

Moreover, we consider the following two approaches which do not involve the

mean-variance optimization, yet determine the portfolio weight by utilizing option-

implied expected return information. The first approach is the rank-based weight

approach. Namely, the weight of i-th stock at time t is given by

ωi,t =
(rank[µi,t])

a

Σi(rank[µi,t])a
, (3.27)

where rank[µi,t] denotes the rank of the i-th stock’s expected return measure across

the cross-section of time t expected stock returns. The rank is determined in the

11For example, the VW portfolio constructed within the S&P 500 universe is approximately equal
to the S&P 500 index. This relation is approximate because there are a few S&P 500 member
stocks for which we cannot estimate option-implied measures, even though the approximation is
fairly accurate.
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increasing order so that the stock with the highest expected return commands the

largest weight. The parameter a controls the aggressiveness of the strategy; the higher

a is, the more tilted the portfolio is toward stocks with higher expected returns. On

the contrary, a = 0 corresponds to the EW portfolio. This rank-based approach is

proposed by Asness et al. (2013) and Martin and Wagner (2018) apply this approach

to utilized their option-based estimate of the stock risk premium. We follow Martin

and Wagner (2018) and set a = 2. We consider the rank-based weights based on

CFER, the shifted risk premium term, and the sum of these two. We label these

strategies, RK-CFER, RK-RP, and RK-FULL, respectively.

The second approach we consider is the parametric portfolio approach with short-

sale constraints. The parametric portfolio approach is developed by Brandt et al.

(2009) and DPUV apply this approach with short-sale constraints to exploit informa-

tion in option-based return predicting characteristics. The unconstrained parametric

portfolio approach determines the asset allocation based on the value of characteristic

variables:

ωPPi,t (ϕt) = ωB
i,t +

1

Nt

K∑
k=1

ϕkt x
k
i,t, (3.28)

where ωB
i,t is the benchmark allocation, Nt is the number of stocks in the time t

investment universe, xki,t is the k-th characteristic variable of i-th stock at time t, ϕkt is

the loading on the characteristic k at time t, and ϕt is the vector of ϕkt (k = 1, . . . , K).

The characteristic variables xki,k are standardized cross-sectionally to have zero mean

and unit variance. See Brandt et al. (2009) for more detail. To impose the short-sale

constraints, Brandt et al. (2009) proceed as follows. First, we calculate the parametric

portfolio weight given by equation (3.28). Then, we truncate the negative weight and

rescale the truncated weights so that they add up to one:

ωPPNSi,t (ϕt) =
max(0, ωPPi,t (ϕt))∑Nt
i=1 max(0, ωPPi,t (ϕt))

. (3.29)

The optimal loadings ϕt for the short-constrained parametric portfolio are chosen

by solving the following optimization problem

max
ϕ

1

w

t−1∑
j=t−w

u

 Nj∑
i=1

ωPPNSi,j (ϕ) · (Ri,j,j+1 − 1)

 , (3.30)
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where w is the length of window period and u(·) is a utility function (e.g., the mean-

variance utility and the power utility). We follow DPUV and set the benchmark

portfolio to the EW portfolio (i.e., ωB
i,t = 1/Nt), set the rolling window length w to

250 days, and set the utility function u(·) to the mean-variance utility. Regarding

the characteristic variables, we start with the same set of variables considered in

Brandt et al. (2009) and DPUV: size, logBM and MOM (FFM). Then, we follow

DPUV and examine the parametric portfolios using either one of MFIV, RNS, VRP,

or CFER in addition to the three FFM variables. We also consider the parametric

portfolio strategy which includes all four option-implied variables and the three FFM

variables. These six parametric portfolio strategies are labeled as PPNS-FFM, PPNS-

MFIV, PPNS-RNS, PPNS-VRP, PPNS-CFER, and PPNS-ALL, respectively.

To wrap up, Table 3.2 summarizes the portfolio strategies we examine. Panel A

shows the portfolio strategies which do not involve the mean-variance optimization,

equation (3.20). Panel B lists the three components of the mean-variance portfolio

problem, the expected return, covariance matrix, and constraints on portfolio weights,

separately.

[Table 3.2 about here.]

3.4.6 Performance measures

We employ the following measures for the evaluation of the performance of portfolios.

First, we calculate the annualized out-of-sample (OOS) excess return, volatility and

the Sharpe ratio of portfolio returns. We use the risk-free rate provided by Kenneth

French’s data library for the calculation of excess returns. Moreover, although it is

not common in the literature, we report risk-adjusted returns (alphas) of portfolios’

OOS returns with respect to the Fama and French (1993) three-factor model and the

Fama and French (2018) five-factor model.

We also report the certainty equivalent of the OOS returns,

CE = u−1

(∑T
t=1 u(1 + rt−1,t)

T

)
− 1,

where rt−1,t is the net OOS return of the portfolio. We calculate the certainty equiva-

lent based on the power utility with the relative risk aversion parameter being equal to
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five, that is, u(x) = −x1−γ/(1− γ) and γ = 5. Even though the mean-variance agent

cares about only the first two moments, the certainty equivalent is a convenient way

to incorporate the higher-order moments of the OOS returns into the performance

evaluation.

Finally, we calculate the turnover of each portfolio as follows:

TO =
1

T

T∑
t=1

N∑
i=1

|ωi,t+1 − ωi,t+|,

where ωi,t+ is the weight of i-th stock just before the rebalancing at time t+ 1. This

weight differs from ωi,t because the stock price fluctuations between t and t+ 1 affect

the dollar weight on each stock. We define TO as the average turnover rate per

rebalance. For example, TO = 1 means that an investor rebalances her portfolio by

the same amount as their total investment amount while each rebalancing.

3.5 Estimation results

3.5.1 Baseline results: Choice of the expected return speci-

fication

In this subsection, we report our baseline results of the performance of the mean-

variance portfolios. We focus on how the choice of the expected return specification

affects the portfolio performance. Specifically, we consider nine specifications for the

expected returns vector described in Section 3.4.1: the global minimum variance port-

folio (GMVP, µ = 0), the historical sample mean, three quantitative forward-looking

expected returns based on CFER (Q-CFER), the shifted risk premium (Q-RP), and

the sum of these two (Q-FULL), respectively, four characteristic adjusted returns

based on MFIV (CA-MFIV), volatility risk premium (CA-VRP), risk-neutral skew-

ness (CA-RNS), and CFER (CA-CFER). To highlight the effect of the specification

of the expected returns, we use the historical sample covariance matrix throughout

this subsection. We discuss the choice of the covariance matrix in Section 3.5.2.

Throughout this Section, the performance measures are calculated based on the

OOS portfolio returns from January 1997 to December 2017 (252 months) because the

first 12 months of our data period are dropped for the calculation of the risk-adjusted
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option-implied variance and the loadings of the parametric portfolio strategies.

3.5.1.1 Unconstrained strategies

First, we report the performance of unconstrained strategies. Table 3.3 Panel A

reports the performance measures of EW, VW, and the three rank-based strategies.

The Sharpe ratio of EW and VW strategies are 0.58 and 0.48, respectively. Moreover,

the turnover rate of these two strategies are fairly low, 0.08 for EW and 0.02 for

VW, respectively. These two strategies’ returns do not yield a significant abnormal

returns. The three rank-based strategies earn an OOS return and the Sharpe ratio

similar to the EW portfolio, yet these strategies result in a higher turnover rate.

This high turnover rates reflect the fact that both CFER and the risk premium term

exhibit large time-series variations; the ranking of the expected returns also changes

frequently over time.

[Table 3.3 about here.]

Table 3.3 Panel B reports the performance of the mean-variance portfolios based

on the nine alternative specifications of the expected return vector. The first row

of Panel B shows that GMVP during our sample period performs worse than EW

and VW. The remaining eight strategies have a large OOS portfolio volatility, a huge

negative certainty equivalent as well as an extremely high turnover rate. This is due

to the well-documented empirical properties of mean-variance portfolio strategies that

they tend to result in an extreme long-short portfolio and that the portfolio allocation

is not stable over time. Specifically, the second row of Panel B shows that the mean-

variance portfolio based on the historical mean sample performs poorly in line with

the previous literature.

Albeit the high volatility and turnover, our result suggests that the estimated

CFER is helpful to improve the OOS portfolio average return and the Sharpe ratio.

The Q-CFER strategy earns a sufficiently high OOS portfolio return so that the

Sharpe ratio comfortably surpasses that of the benchmark EW and VW portfolios,

even though the OOS portfolio volatility is extremely high. The other two strategies

which involve CFER, Q-FULL and CA-CFER, also earn the Sharpe ratio higher than

the EW portfolio. On the other hand, using the shifted risk premium, MFIV, and
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VRP do not improve the Sharpe ratio. Unfortunately, even for the Q-CFER strategy,

the extremely high volatility and turnover rate make it impossible to execute this

strategy in practice.

3.5.1.2 Constrained strategies

Next, we report the mean-variance portfolio results with constraints on portfolio

weights. We consider the three types of constraints on portfolio weights: NS, NS10,

and ABS10 (see Section 3.4.3). Table 3.4 Panel A reports the performance of the

benchmark strategies which do not rely on the mean-variance optimization (EW, VW

and the short-sale constrained parametric portfolios). The short-sale constrained

parametric portfolios earn the Sharpe ratio and the certainty equivalent higher than

the EW and VW portfolios. This result is in line with DPUV, who document that

using option-implied information in the parametric portfolio approach enhances the

portfolio performance.

Panels B to D report the performance of the mean-variance portfolios with NS,

NS10, and ABS10 constraints, respectively. We can see from Panels B and C that im-

posing the short-sale constraints (and the upper bound for Panel C) on the portfolio

weights improves the portfolio performance in various aspects. First, the OOS volatil-

ity decreases to the similar level of EW and VW portfolios except the two strategies

which involve the scaled risk premium (i.e., Q-RP and Q-FULL). Second, as a result,

the Sharpe ratio and the certainty equivalent improve drastically. Specifically, the

Q-CFER strategy with NS10 constraint earns the Sharpe ratio 0.98 and the certainty

equivalent 11.0%, which are much higher than the respective performance measures

of EW and VW strategies. Third, the turnover rate decreases dramatically compared

to the unconstrained portfolios, albeit still higher than those of EW and VW. We

revisit the high turnover and related transaction costs issues in Section 3.5.5.

In the case where ABS10 constraint is imposed (Panel D), the resulted portfolio

performance is mixed. On the one hand, the Sharpe ratio and the certainty equivalent

of some strategies become even higher compared to the case where NS10 constraint

is imposed. Specifically, the Sharpe ratio and the certainty equivalent of Q-CFER

increase to 1.22 and 16.4%, respectively. On the other hand, albeit these impressive

performance statistics, these strategies are not practically useful due to their high
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turnover.

[Table 3.4 about here.]

3.5.1.3 The best expected return specification: Discussion

We investigate whether our three mean-variance portfolio strategies based on the

option-implied expected returns, Q-CFER, Q-RP and Q-FULL, statistically outper-

form other benchmark strategies in terms of the OOS return, Sharpe ratio and cer-

tainty equivalent. We follow DPUV and estimate the bootstrapped p-values, where

the null hypothesis is that the performance metric of either one of Q-strategy is no

better than that of the competing strategy. Therefore, a low p-value suggests that

the Q-strategy outperforms competing strategies. We generate 10,000 bootstrapped

return time-series to calculate the p-values. We consider EW, VW, short-constrained

parametric portfolio strategies, and nine mean-variance portfolios constructed under

NS10 constraint and using the historical covariance matrix.

Table 3.5 reports the result. The first three columns show the horse race result

regarding the Q-CFER strategy. These results suggest that the Q-CFER strategy has

superior performance compared to any other competing strategies. Specifically, the

null hypothesis that Q-CFER has no better Sharpe ratio is rejected except only two

(three) strategies at a 10% (5%) significance level. The result on the certainty equiv-

alent is even more favorable to Q-CFER; all strategies have a p-value lower than 5%.

This confirms that the Q-CFER strategy exhibits superior performance compared to

not only the EW, VW and minimum variance portfolios but also the previously pro-

posed option-based strategies in DPUV and Martin and Wagner (2018). This suggests

that option-implied information on CFER enables us to achieve a notoriously difficult

task to obtain the mean-variance portfolio which has superior empirical performance.

[Table 3.5 about here.]

On the other hand, one may be surprised to see that the option-implied risk

premium component is not helpful for the mean-variance portfolio construction; the

two strategies which utilize the estimated risk premium component, Q-RP and Q-

FULL, do not beat other strategies in general. Why is the CFER component helpful to

improve the portfolio performance whereas the risk premium component is not? This
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difference stems from the fact that the risk premium component is a compensation for

risk exposures, whereas the CFER component is not. Equation (3.14) shows that a

higher risk premium component means a higher (risk-neutral) variance. This suggests

that tilting portfolio weights toward stocks with a high risk premium component

mechanically increases the portfolio expected variance. Therefore, it is not a priori

clear whether the trade-off between a higher mean and a higher variance is improved.

On the other hand, the CFER component is not a compensation for risk exposures. As

a consequence, tilting portfolio weights toward stocks with a high CFER component

is effective to improve the portfolio expected return without much increasing the

portfolio variance.

The alphas of the mean-variance portfolios are in line with the fact that the risk

premium is a compensation for risk exposures and the CFER is not. We can see from

Panels C and D of Table 3.4 that three strategies which involve CFER (Q-CFER,

Q-FULL, and CA-CFER), specifically Q-CFER, earn significant abnormal returns.

This result suggests that the outperformance of these strategies cannot be explained

by standard risk factors, that is, their outperformance is not attributable to the risk

premium component.12 On the other hand, other portfolio strategies including Q-RP,

EW, and VW do not earn significant alphas.

3.5.2 Choice of the covariance matrix

Now we investigate how the choice of the covariance matrix affects the performance

of mean-variance portfolio strategies. To this end, we consider five alternative co-

variance matrix specifications: HV-HC, RIV-HC, HV-ZC, RIV-ZC, and LWI. For the

first four covariance specifications, the first part of the model name denotes the spec-

ification of the volatility, either historical one (HV), or risk-adjusted option-implied

volatility (RIV). The second part of the model name denotes the specification of the

correlations, either historical one (HC) or zero correlations (ZC). LWI is the histori-

cal covariance matrix shrunk toward the scaled identity matrix based on Ledoit and

Wolf (2004). For the specifications of the expected returns, we consider GMVP, Q-

CFER, Q-FULL, and CA-CFER. We choose these four specifications because GMVP

12Note that CA-RNS also earns significant alphas under the ABS10 constraint. This is again
in line with our CFER-based interpretation; Chapter Two document that RNS is correlated with
CFER and the predictive power of RNS stems from its correlation with CFER.

221



is a natural benchmark choice which is widely employed in the literature while Q-

CFER, Q-FULL, and CA-CFER are the top three strategies in terms of the Sharpe

ratio among the unconstrained mean-variance portfolios. Therefore, we compare 20

mean-variance portfolio strategies in total to see how the specifications of the expected

return and the covariance matrix matter for the mean-variance portfolio performance.

We start with the performance of unconstrained portfolio strategies reported in

Table 3.6. The implication of the performance of GMVP reported in 3.6 Panel A is

largely the same as DPUV; using RIV reduces the portfolio volatility and increases

the Sharpe ratio. On the contrary, Panels B to D show that using RIV in conjunction

with the option-implied expected returns worsens the portfolio performance due to

a higher OOS volatility. This suggests that the benefit from incorporating better

forward-looking volatility estimate via using RIV is present only for the minimum-

variance portfolio construction. Regarding the choice of the correlation specification,

for the mean-variance portfolios (Panels B to D), the ZC strategies always have a

lower OOS portfolio volatility and a lower turnover rate than the corresponding HC

strategies with the same expected return and volatility specifications. We will discuss

the mechanism behind these findings in Section 3.5.3.

[Table 3.6 about here.]

Among 20 strategies shown in Table 3.6, the highest Sharpe ratio is obtained by

HV-ZC (historical variance and zero correlation) covariance matrix combined with the

Q-CFER expected returns vector, followed by the combination of HV-ZC covariance

matrix and CA-CFER return vector. These Sharpe ratios are almost twice as high as

those of the EW and VW, implying that option-implied expected returns are useful to

improve the portfolio performance before transaction costs. On the other hand, since

the turnover rate is extremely high for these strategies, it is not possible to exploit

these seemingly high Sharpe ratios in practice as documented in Section 3.5.1.1.

Next, we examine the performance of the same 20 mean-variance portfolios under

the NS10 constraint. Table 3.7 reports the result. We can see that the OOS Sharpe

ratio is largely the same regardless of the covariance matrix specifications within the

same expected return specifications. On the other hand, the choice of the expected

return specification is more pertaining to the performance of portfolios. In partic-

ular, the strategies using the Q-CFER expected returns generally perform the best,

222



followed by the strategies using the CA-CFER expected returns. This result has an

important implication for the mean-variance portfolio strategies, that is, the choice

of the expected return specification is of first-order importance while that of the co-

variance matrix is of second-order importance, once the constraints on the weight are

imposed. Contrary to the unconstrained case, using the ZC specification does not

necessarily reduce the OOS portfolio volatility nor the turnover rate.

[Table 3.7 about here.]

3.5.3 Mechanism behind the empirical findings: Discussion

3.5.3.1 Shrinkage-like effect of constraints on portfolio weights

Our empirical results so far show that imposing constraints on portfolio weights dras-

tically improves the performance of mean-variance portfolios. We argue that this

finding complements a theoretical result in Jagannathan and Ma (2002, 2003) regard-

ing the mean-variance portfolio problem.

A well-known result of the seminal work of Jagannathan and Ma (2003) is that

the upper bound and the lower bound constraints on portfolio weights of the form of

equation (3.26) can be interpreted to have a shrinkage-like effect on the covariance

matrix in the minimum variance portfolio problem. They show that the lower (upper)

bound on the portfolio decreases (increases) possibly overestimated (underestimated)

covariance matrix elements to mitigate measurement errors in the covariance matrix

input. Albeit less famous compared to their result on the minimum variance portfolio,

Jagannathan and Ma (2002), which is the working paper version of Jagannathan and

Ma (2003), provides a corresponding theoretical result on the mean-variance portfolio

problem. They show that portfolio weight constraints on the mean-variance portfolio

problem can be interpreted to have a shrinkage-like effect on the expected stock returns ;

Jagannathan and Ma (2003, p.1660) show that

[T]he effect of the lower bound on portfolio weights is to adjust the mean

returns upward by an amount proportional to the Lagrange multiplier [of

the weight constraints], and the effect of the upper bound on portfolio

weights is a similar downward adjustment.
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However, unlike their main result on the minimum variance problem, Jagannathan

and Ma (2002, 2003) fail to find the empirical usefulness of the shrinkage-like effect

in the mean-variance problem; they find that the constrained mean-variance portfolio

based on the historical sample moments performs worse than the global minimum

variance portfolio, even though the constrained portfolio construction is benefited

from the shrinkage-like effect. Consequently, they conclude that “the estimates of

the mean returns are so noisy that simply imposing the portfolio weight constraint is

not enough, even though the constraints still have a shrinkage effect” (Jagannathan

and Ma, 2003, p.1654) and they urge us to “bring additional information about the

population mean instead of relying on sample mean as an estimator of population

mean” (Jagannathan and Ma, 2003, p.1660).

Our result shows for the first time that this shrinkage-like effect of the weight

constraints on the mean-variance portfolio problem is useful once the option-implied

expected return is employed. This result also implies that our option-based forward-

looking estimate of the expected returns bring additional information about the pop-

ulation mean as requested by Jagannathan and Ma.

Our empirical results indicate that constraints on portfolio weights are not only

useful but also indispensable to obtain practically reasonable portfolio allocations.

This finding is closely related to the error-maximizing nature of the mean-variance

optimization discussed in Michaud (1989), Best and Grauer (1991) and Chopra and

Ziemba (1993) among others. These studies document that the unconstrained mean-

variance optimization amplifies even tiny estimation errors in the expected stock re-

turn input, leading to unstable and poorly performing portfolio allocations. Therefore,

even though our option-implied estimate of the expected stock returns are less suscep-

tible to measurement errors compared to the historical sample means, a mechanism for

mitigating the adverse effect of measurement errors is necessary. Moreover, Chopra

and Ziemba (1993) documents that the mean-variance weight is generally more sen-

sitive to measurement errors in the expected returns than those in the covariance

matrix, implying that the estimation quality of the expected return is more impor-

tant than that of the covariance matrix. In line with their argument, we find that the

choice of the expected return specification is more pertinent to the OOS constrained

mean-variance portfolio performance than the specification of the covariance matrix.
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3.5.3.2 Trade-off between better forecast and measurement errors

The error maximization property of the mean-variance portfolio gives rise to the

trade-off between better forecast and measurement errors; it is often the case that

using more informative estimates of future returns and covariance do not necessarily

improve or even do deteriorate the performance of mean-variance portfolios when

these estimates are contaminated by large measurement errors. This is because the

gain from using more informative estimate is overwhelmed by measurement errors

which are amplified in the mean-variance optimization process. The most well-known

example of this trade-off is the poor performance of the mean-variance portfolio based

on historical sample means; historical sample means are so noisy that the minimum

variance portfolio performs better, even though the minimum variance optimization

does not exploit the information on the expected returns at all.

Another example in our results is that the ZC covariance matrix specification

results in lower volatility and turnover compared to the HC specification in the un-

constrained mean-variance construction. Best and Grauer (1991) show that the sensi-

tivity of the optimal mean-variance portfolio weight to small changes in the expected

return (i.e., the degree of the error amplification) is determined by the maximum to

minimum eigenvalue ratio of the covariance matrix; when this max-to-min eigenvalue

ratio is large, the mean-variance portfolio allocation is more sensitive and suscepti-

ble to measurement errors in the expected returns. We find that the max-to-min

eigenvalue ratio of the HV-ZC covariance matrix is in the order of 101.5, whereas that

of the HV-HC matrix is in the order of 104.5, suggesting that the sensitivity of the

portfolio weight to small changes in the expected returns is about 1,000 times larger

for the HC specification than the ZC one. The finding that the HV-ZC covariance

matrix has a lower max-to-min eigenvalue ratio is sensible, because it equals the ratio

of the maximum and minimum variance of individual stocks. On the other hand,

the minimum eigenvalue of the historical covariance matrix is much smaller given

empirical findings that the covariance matrix exhibits strong factor structure (e.g.,

Chan et al., 1999), implying that few eigenvectors can explain most of the covariance

structure. In effect, using ZC helps to improve some characteristics of unconstrained

portfolios by reducing the measurement error issue, even though zero correlations are

less informative than the historical correlations.
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The discussion here is also related to our results on the option-implied risk-adjusted

variance (RIV). For general mean-variance portfolio construction, we find that RIV is

not useful to improve the portfolio performance, even though DPUV document that

RIV contains richer, forward-looking information on the future variance compared

to the sample variance. Indeed, DPUV acknowledge that using RIV improves the

portfolio performance in limited situations such as the GMVP with the ZC covariance

matrix. They argue that “implied volatility is a highly unstable estimator of future

volatility; this instability increases the error in portfolio weights and reduces the gains

from having a better predictor of RV [realized volatility]” (p.1833, footnote 20). Their

argument suggests that the gain from the better variance prediction by RIV is visible

only when the degree of measurement error amplification is low (e.g., the GMVP

with the ZC covariance matrix). Therefore their discussion is in line with our finding

that using RIV does not improve the mean-variance portfolio construction problem,

where measurement errors have relatively larger impact on the resulted optimal weight

compared to the minimum variance portfolio construction.

Finally, the discussion here may be another reason (in addition to our discussion in

Section 3.5.1.3) why using the option-implied risk premium component does not im-

prove the portfolio performance. While Martin and Wagner (2018) document that the

option-implied risk premium provides rich information on the risk premium of stocks,

its formula contains the unobservable residual term (see equation (3.13)). Even though

Martin and Wagner (2018) document that this residual term does not cause problems

for their empirical analysis, it may have large impact on the mean-variance portfolio

construction given the amplification mechanism in the mean-variance optimization.

3.5.4 Mean-variance portfolios: Alternative universe

Next, we report the mean-variance portfolio performance under the alternative 500

randomly selected optionable stocks universe. This universe contains smaller stocks

compared to the S&P 500 universe; about three quarters of the stocks do not belong

to the S&P 500 index.

Table 3.8 reports the result. Panel A shows the performance of the benchmark

EW and VW portfolios as well as those of the rank-based strategies and short-sale

constrained parametric portfolio strategies. The performance of these strategies are

226



largely unchanged compared to those obtained from the S&P 500 universe case except

that some short-sale constrained parametric portfolio strategies improve the Sharpe

ratio. Panel B shows the performance of the mean-variance portfolios using the his-

torical covariance matrix and various expected return specifications with the NS10

constraint. We can see that two quantitative option-implied expected return spec-

ifications, Q-CFER and Q-FULL, attain even better performance compared to the

S&P 500 universe. This result is plausible since CFER and (shifted) risk premium

exhibit larger variations in smaller stocks (see Section 3.3.3) and hence there are more

opportunities to improve the portfolio performance by utilizing large dispersion in the

expected stock returns.

[Table 3.8 about here.]

3.5.5 Transaction costs and portfolio performance

Our results above suggest that using the Q-CFER expected returns vector drastically

improves the mean-variance portfolio performance. However, this strategy (and other

strategies using the option-implied expected returns measure in general) exhibits a

high turnover rate, reflecting large variations in the option-implied expected stock

returns across the cross-section of stocks and over the time-series. Therefore, it is

crucial to take transaction costs into account when it comes to evaluating the practical

usefulness of the option-based mean-variance portfolio strategies.

Before examining the transaction costs issues, we briefly overview typical trans-

action cost values considered in the stock portfolio selection literature. Based on

Hasbrouck’s (2009) statistical method, Novy-Marx and Velikov (2016) calculate the

effective transaction costs for each stock in yearly basis. According to Figure 1 of

their article, which displays the average transaction costs in each decade as a function

of the firm size rank, the effective round-trip transaction costs for the top 500 largest

stocks are around 40 to 60 bps (hence the one-way transaction costs are about 20 to

30 bps). Brandt et al. (2009) employ a simplified transaction costs specification which

incorporates the decline in transaction costs in recent years and the fact that larger

stocks have lower transaction costs. Specifically, they assume that transaction costs

after 2003 are 35 bps for the largest stock and 60 bps for the smallest stock. This

setting is adopted in the following studies such as DeMiguel et al. (2019). Given these
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conventional values in the literature, we take 30 bps for large S&P 500 constituent

stocks and 60 bps for smaller stocks as indicative transaction costs values. These

values are indicative because transaction costs depend on various factors such as the

size of trade and the degree of the sophistication of traders.13

We begin with reporting the equivalent transaction costs between pairs of two

strategies. The equivalent transaction costs of the strategy i with respect to the

competing strategy j, TCi,j, is the constant transaction costs that would equate the

performance measure of the two strategies. We calculate the equivalent transaction

costs regarding the OOS mean excess returns and the Sharpe ratio, TCmean
i,j and

TCSR
i,j , defined as follows:

µi − TCmean
i,j TOi = µj − TCmean

i,j TOi,
µi − TCSR

i,j TOi

σi
=
µj − TCSR

i,j TOj

σj
,

where µi, σi, and TOi are the OOS mean excess return, volatility and turnover rate

of the strategy i.

Table 3.9 reports the equivalent transaction costs of the Q-CFER strategy with

the historical covariance matrix and the NS10 constraint against various competing

strategies. The symbol “D” indicates that the Q-CFER strategy has a lower perfor-

mance measure than the strategy in comparison before transaction costs are taken

into account. A positive equivalent transaction cost means that the Q-CFER strat-

egy’s after-transaction cost performance measure is better than that of the competing

strategy as long as the transaction cost is lower than the displayed value.

In the S&P 500 universe, the toughest rivals are EW and GMVP; the Q-CFER

strategy beats the EW (GMVP) strategy in terms of the Sharpe ratio as long as

the transaction costs are smaller than 35 bps (32 bps). The Q-CFER strategy may

beat even these two strategies given the indicative transaction costs of 30 bps. Q-

CFER comfortably outperforms other competing strategies given a moderate size of

transaction costs for trading large stocks, despite of its high turnover.

[Table 3.9 about here.]

Over the randomly selected 500 stocks universe, the equivalent transaction costs

of the Q-CFER strategy becomes larger in general. The equivalent transaction costs

13For example, based on proprietary data, Frazzini et al. (2014) document that actual stock trading
costs for stock funds are much smaller than previous studies suggest.
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about the Sharpe ratio regarding EW and GMVP are approximately doubled to about

70 bps, making the Q-CFER strategies even easier to beat the competing strategies.

Note that the transaction costs of the Q-CFER strategy against the Q-FULL strategy

is about 20 bps. This does not change the implication of our findings that the option-

implied expected returns improves the mean-variance portfolio performance, because

Q-FULL is an alternative specification of the option-based expected return.

When the Q-CFER strategy is compared with other option-based strategies exam-

ined in DPUV (i.e., short-sale constrained parametric portfolios and characteristic-

adjusted mean strategies), the equivalent transaction costs in the S&P 500 universe

range between about 50 to 100 bps and those in the randomly selected 500 stocks

universe range between about 90 to 180 bps. This corroborates our finding that the

mean-variance portfolio based on our option-implied estimate of the expected return

utilizes richer informational contents of option prices compared to the parametric

portfolio approach and the characteristic-adjusted return approach.

Novy-Marx and Velikov (2016) document that simple transaction costs reduc-

tion techniques are helpful for performance enhancement, especially for high turnover

long-short anomaly portfolio strategies. Among the techniques they examined, we

apply the staggered partial rebalancing technique to our mean-variance portfolio con-

struction. Under this technique, only a part of the portfolio is rebalanced (e.g., only

one third of the portfolio is rebalanced in each month under the quarterly staggered

rebalancing scheme) and hence the overall turnover becomes lower.14

Table 3.10 reports the performance of staggered partial rebalancing Q-CFER port-

folio with the historical covariance matrix and NS10 constraint. We consider three

alternative frequencies of rebalancing: quarterly (3m), biannual (6m), and annual

(12m) rebalancing. For the ease of comparison, we also include the performance met-

rics of selected non-staggered strategies. We can see that the turnover rate of staggered

portfolios decreases roughly proportionally to the rebalance frequency. For example,

the turnover rate of the quarterly rebalancing portfolios are about one third of the

corresponding non-staggered strategy. The Sharpe ratio of the staggered portfolios

14Novy-Marx and Velikov (2016) examine two alternative transaction costs reduction strategies,
limiting the investment universe to low transaction costs stocks and the so-called buy/hold strategy.
We do not consider the first alternative technique because our universes are already confined to
large stocks. We do not consider the second alternative technique neither because it is not directly
applicable to the mean-variance portfolio construction problem.
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also decreases, yet it is still higher than the benchmark strategies including EW, VW,

and GMVP. As a result, the equivalent transaction costs of the Q-CFER strategy

about the Sharpe ratio increase compared to the non-staggered case. For instance,

with the biannual rebalancing, the Q-CFER strategy earns a higher after transaction

costs Sharpe ratio than the three benchmark strategies as long as transaction costs

are below about 100 bps. This result suggests that simple transaction costs reduction

techniques further enhance the performance of the mean-variance portfolio strategies,

in line with Novy-Marx and Velikov (2016).

[Table 3.10 about here.]

3.5.6 Why does Q-CFER strategy improve the portfolio per-

formance?

Conceptually, CFER measures the degree of limits-of-arbitrage each stock faces. This

implies that CFER-based portfolios load on stocks which are more difficult to trade.

Therefore, one may expect that it is difficult to profit from CFER-based strategies.

On the contrary, our empirical results so far suggest that the Q-CFER mean-variance

portfolio strategy can beat other portfolio strategies even after considering transaction

costs. We provide two caveats on these arguably puzzling empirical results.

First, we consider only transaction costs as market frictions for the evaluation of

the performance of portfolio strategies, although there may be other types of frictions

that are relevant to portfolio investing. While it is standard in the portfolio literature

to consider only transaction costs for frictions to execute portfolio strategies, our

approach may underestimate the difficulty in trading portfolio strategies (in our case,

Q-CFER strategy). Second, our empirical evaluation is critically affected by the

choice of the size of transaction costs. For investors who face transaction costs greater

than the “indicative” transaction costs we used, it is difficult for them to profit from

employing the Q-CFER strategy. Our discussion at the beginning of Section 3.5.5

suggests that the “indicative” transaction costs we used are standard in the literature.

However, given the fact that transaction costs vary across investors and also given

that they are difficult to estimate with precision, we do not conclude that the Q-CFER

strategy is always profitable for any investors.
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On the other hand, there is a possibility that the Q-CFER strategy improves the

portfolio performance via the risk premium component. If CFER is positively corre-

lated with the risk premium component, titling portfolios toward stocks with higher

CFER can earn profit through a higher risk premium component. This mechanism

might be present in the randomly selected 500 stock universe. The variance decom-

position result in Table 3.1, Panel C, shows that CFER and the shifted risk premium

component is slightly positively correlated over the all optionable stock universe. This

may contribute to the good performance of Q-CFER strategy in the randomly selected

500 stock universe. On the other hand, this mechanism seems to be absent in the

S&P 500 universe as Table 3.1, Panel C, shows almost zero correlation between the

estimated CFER and the shifted risk premium.

3.6 Conclusions

In this Chapter, we document that the option-implied measures of expected stock

returns are useful to construct the Markowitz (1952) mean-variance portfolios.

To construct estimates of the expected stock returns under a realistic market

model with frictions, we generalize Martin and Wagner’s (2018) expected return for-

mula to allow the presence of market frictions. We show that the expected stock

return can be estimated as the sum of the contribution of frictions to expected re-

turn (CFER) analyzed in Hiraki and Skiadopoulos (2019) and the scaled risk-neutral

simple variance, apart from the cross-sectionally constant term which does not affect

the mean-variance portfolio optimization outcome. Since CFER and the risk-neutral

simple variance can be estimated from option price data based on the result in Hiraki

and Skiadopoulos (2019) and Martin (2017), respectively, this allows us to construct a

real-time, forward-looking measure of expected stock returns vector solely from option

price information.

Our empirical results yields three implications worth summarizing here. First,

we document that the Q-CFER mean-variance strategy, for which we use the esti-

mated CFER as the estimate of the expected stock returns, outperforms other port-

folio strategies which have been documented to have good performance including

the equally-weighted portfolio, minimum variance portfolios, and previously proposed
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option-based portfolio strategies, both before and after considering a moderate size

of transaction costs. This may change the common perception in the literature that

it is notoriously difficult to construct a mean-variance portfolio with good empirical

performance.

Second, the outperformance of the Q-CFER strategy suggests that incorporating

the effect of market frictions into the estimation of the expected return is of im-

portance. Tilting portfolio weights toward stocks with a high CFER component is

effective to improve the portfolio expected return without much increasing the port-

folio variance, because CFER is not a compensation for risk exposures. On the other

hand, we find that utilizing the option-implied estimate of the risk premium compo-

nent does not improve the portfolio performance in general.

Finally, we find that imposing constraints on portfolio weights dramatically im-

proves the performance of mean-variance portfolios. This result complements the

empirically unexploited theoretical result in Jagannathan and Ma (2002, 2003) on the

mean-variance portfolio construction; they theoretically show that portfolio weight

constraints on the mean-variance portfolio problem can be interpreted to have a

shrinkage-like effect to mitigate measurement errors in the expected returns. Never-

theless, they document that this shrinkage-like effect is not useful empirically when

the noisy historical sample mean is employed. Our result shows for the first time

that this shrinkage-like effect of the weight constraints on the mean-variance portfolio

problem is useful once the option-implied expected return is employed.

3.A Proofs

3.A.1 Proof of Proposition 3.2.2

By taking the value-weighted average of equation (3.12), we obtain

EP
t [RM,t,t+1]−Rf,t,t+1 =

N∑
i=1

ωMi,t (CFERi,t,t+1 + Vi,t,t+1) +
V arQ

∗

t (ξt,t+1)− ut + 2vi,t
2Rf,t,t+1

.

Since the last term in the right-hand side of this equation equals ct, it follows that

ct = (EP
t [RM,t,t+1]−Rf,t,t+1)−

N∑
i=1

ωMi,tCFERi,t,t+1 −
N∑
i=1

ωMi,tVi,t,t+1.
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Therefore, it suffices to show that the expected excess market return satisfies

EP
t [RM,t,t+1]−Rf,t,t+1 =

V arQ
∗

t (RM,t,t+1)

Rf,t,t+1 + CFERM,t,t+1

+ CFERM,t,t+1. (3.A.1)

To show equation (3.A.1), first we apply the same trick in Martin (2017) to obtain

EQ∗

t [R2
M,t,t+1]

Rf,t,t+1

= EP
t [m

∗
t,t+1R

2
M,t,t+1]

= EP
t [m

∗
t,t+1RM,t,t+1]EP

t [RM,t,t+1] + CovPt (m∗t,t+1RM,t,t+1, RM,t,t+1).

The last covariance term vanishes under the assumption that the inverse of the IMRS

coincides with the market portfolio return. In this case, we obtain

EP
t [RM,t,t+1]−Rf,t,t+1 =

1

Rf,t,t+1

EQ∗

t [R2
M,t,t+1]

EP
t [m

∗
t,t+1RM,t,t+1]

−Rf,t,t+1 (3.A.2)

The numerator of the first term in the right-hand side of equation (3.A.2) can be

calculated as

EQ∗

t [R2
M,t,t+1] = V arQ

∗

t (RM,t,t+1) + EQ∗

t [RM,t,t+1]
2

= V arQ
∗

t (RM,t,t+1) + (R2
f,t,t+1 + 2Rf,t,t+1CFERM,t,t+1 + CFER2

M,t,t+1)
(3.A.3)

due to equation (3.5). On the other hand, the denominator of the same term can be

calculated as

1

Rf,t,t+1EP
t [m

∗
t,t+1RM,t,t+1]

=
1

EQ∗

t [RM,t,t+1]
=

1

Rf,t,t+1 + CFERM,t,t+1

(3.A.4)

again due to equation (3.5). Substituting equation (3.A.3) and (3.A.4) into (3.A.2)

and performing algebra prove equation (3.A.1).

Note that when the effect of market frictions on the market index is absent

(i.e., CFERM,t,t+1 = 0), equation (3.A.1) boils down to EP
t [RM,t,t+1] − Rf,t,t+1 =

V arQ
∗

t (RM,t,t+1)/Rf,t,t+1, which coincides with Martin’s (2017) frictionless result with

the assumption that the inverse of the IMRS equals the market return. Therefore,

equation (3.A.1) can be viewed as the generalization of his result to the case where

the market frictions may affect the expected market return. 2
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3.A.2 Proof of Proposition 3.2.3

For the ease of notation, we suppress the stock index i and the double time subscript

t, t+ 1. The stock return satisfies R = (St+1 + D̃)/St = (St+1 − F +RfSt)/St. Then,

the following equation holds:

V arQ
∗

t (R) = EQ∗

t [R2]− (EQ∗

t [R])2 =
EQ∗

t [(St+1 − F +RfSt)
2]

S2
t

− (EQ∗

t [R])2

=
EQ∗

t [S2
t+1]

S2
t

− 2FEQ∗

t [St+1]

S2
t

+
F 2

S2
t︸ ︷︷ ︸

Y1

+
2Rf

St
(EQ∗

t [St+1]− F ) +R2
f − (EQ∗

t [R])2︸ ︷︷ ︸
Y2

.

(3.A.5)

We separately calculate Y1 and Y2 in equation (3.A.5). First, to further transform

Y1, note that the following equation holds:

S2
t+1 = 2

∫ St+1

0

(St+1 −K)dK = 2

∫ ∞
0

(St+1 −K)+dK, (3.A.6)

where (x)+ = max(x, 0). Therefore, taking Q∗-expectation yields

EQ∗

t [S2
t+1] = 2Rf

∫ ∞
0

Ct(K)dK ⇔
EQ∗

t [S2
t+1]

S2
t

=
2Rf

S2
t

∫ ∞
0

Ct(K)dK. (3.A.7)

Due to the risk-neutral valuation formula, it follows that Ct(K)−Pt(K) = (EQ∗

t [St+1]−

K)/Rf . This further yields∫ F

0

Ct(K)dK =

∫ F

0

Pt(K)dK +
EQ∗

t [St+1]

Rf

∫ F

0

dK − 1

Rf

∫ F

0

KdK

=

∫ F

0

Pt(K)dK +
EQ∗

t [St+1]

Rf

F − F 2

2Rf

.

(3.A.8)

Therefore, combining equations (3.A.7) and (3.A.8) yield

EQ∗

t [S2
t+1]

S2
t

=
2Rf

S2
t

(∫ ∞
F

Ct(K)dK +

∫ F

0

Pt(K)dK

)
+

2FEQ∗

t [St+1]

S2
t

− F 2

S2
t

.

This shows that

Y1 =
2Rf

S2
t

(∫ ∞
F

Ct(K)dK +

∫ F

0

Pt(K)dK

)
. (3.A.9)

Next, we transform Y2. To this end, note that EQ∗

t [St+1 − F ]/St = EQ
t [R] − Rf
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holds. Therefore,

Y2 = 2Rf (EQ∗

t [R]−Rf ) +R2
f − (EQ∗

t [R])2 = −(EQ∗

t [R]−Rf )
2. (3.A.10)

Equation (3.A.10) equals −CFER2 because of equation (3.5). Finally, dividing equa-

tion (3.A.5) by Rf and using equations (3.A.9) and (3.A.10) prove equation (3.19).

2

3.A.3 Proof of Lemma 3.2.1

Under the constraint ω′e = 1, the optimization problem given Σ and µ̃ = µ+ ke is

min
ω

γ

2
ω′Σω − ω′µ− k ⇔ min

ω

γ

2
ω′Σω − ω′µ, (3.A.11)

subject to the constraint ω′e = 1. Therefore, the optimal solution ω∗ is the same for

the pair (µ,Σ) and the pair (µ̃,Σ). 2

3.B Description of dataset and variables

In this Appendix, we provide a detailed explanation for the variable construction

procedures and the estimation procedures of option-implied measures.

3.B.1 Construction of the firms’ and stocks’ characteristics

We construct the firms’ size characteristics using the CRSP database. First, we

calculate the stock market capitalization as the product of the close price (CRSP item

prc) and the shares outstanding (shrout). Then, we take the natural logarithm of the

market capitalization. For the momentum (MOM), we follow DPUV and calculate

the momentum on day t as the cumulative daily return from day t− 251− 21 to day

t− 21.

We construct the log book-to-market value logBM by following Davis et al. (2000).

Specifically, we measure book equity as stockholders’ book equity, plus balance sheet

deferred taxes and investment tax credit (Compustat annual item TXDITC) if avail-

able, minus the book value of preferred stock. Stockholders’ equity is the value re-

ported by Compustat (SEQ), if it is available. If not, we measure stockholders’ equity
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as the book value of common equity (CEQ) plus the par value of preferred stock

(PSTK), or the book value of assets (AT) minus total liabilities (LT). Depending

on availability, we use redemption (PSTKRV), liquidating (PSTKL), or par value

(PSTK) for the book value of preferred stock. From June of each year t to May of

t + 1, the book-to-market equity is calculated as the ratio of the book equity for the

fiscal year ending in calendar year t− 1 to the market equity at the end of December

of year t− 1. We treat non-positive book-to-market equity data as missing. Then, we

take the natural logarithm to calculate logBM.

3.B.2 Linking the OM, CRSP, and Compustat databases

In our analysis, we match three databases, the OM, CRSP, and Compustat. To link

the CRSP and Compustat, we use the SAS linking macro provided by the WRDS

and match PERMNO (the CRSP identifier) and GVKEY (the Compustat identifier).

To link the CRSP and OM, we link SECID (the OM identifier) and PERMNO by

the SAS linking macro provided by the WRDS. This WRDS macro links SECID

and PERMNO based on the CUSIP code, the similarity in the issuer’s (company)

name recorded in the OM and CRSP, and partly the security ticker. The macro also

provides the score of the strength of the link based on a 0–6 integer scale (0 stands for

the strongest link, where the eight-digit CUSIP exactly matches as well as the issuer’s

name matches). We keep SECID-PERMNO link with the score less than or equal

to three. After linking SECID, GVKEY and PERMNO, we keep only U.S. common

stocks (SHRCD 10 or 11) traded in NYSE/Amex/NASDAQ (EXCHCD 1, 2, or 3).

3.B.3 Estimation of CFER

HS show that the scaled deviations from put-call parity, equation (3.21), reliably

estimates the underlying stocks’ CFER. In the actual estimation procedure, we use

an alternative equivalent expression for the calculation of the deviations from put-call

parity S̃t(K)− St in equation (3.21):

S̃t(K)− St = BScall(St, K, T − t, rf , D̃t,T , IV
c
t,T (K))

−BScall(St, K, T − t, rf , D̃t,T , IV
p
t,T (K)),

(3.B.1)
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where BScall(S,K, τ, r,D, σ) is the Black-Scholes European call option function with

the deterministic dividend payment D, rf is the continuously compounded risk-free

rate, and IV c
t,T (K) (IV p

t,T (K)) is the IV of the call (put) option. See the proof of

Proposition 2.1 of HS for the proof of equation (3.B.1).

To calculate equation (3.B.1), we use the data from the OM Standardized Option

Price file, which provides the call and put option prices as well as their respective IVs

at the forward at-the-money (ATM), K = Ft,T = Rf,t,TSt − D̃t,T , for standardized

maturities such as 30, 60, 91, 182, and 365 calender days. The stock price is obtained

from the OM underlying price file. Regarding the risk-free rate, we obtain the data

from the OM zero yield file and linearly interpolate it to obtain the risk-free rate for

the option maturity. We back out the projected dividend payments D̃t,T from the

forward prices in the file as D̃t,T = Ft,T − Rf,t,TSt and we use 30-day-to-maturity

data.

3.B.4 Estimation of the risk-neutral simple variance and risk-

neutral moments

We estimate the risk-neutral simple variance (equation (3.19)) and the risk-neutral

model-free implied volatility (MFIV) and the risk-neutral skewness (RNS) (equations

(3.22) and (3.23)) relying on the OM Volatility Surface File. This file contains IVs

and associated option prices and strike prices at standardized delta equals 0.2, 0.25,

. . . , 0.8 for call options and -0.8, -0.75, . . . , -0.2 for put options for the standardized

maturities including 30, 60, 91, 182, and 365 calendar days.15 Therefore, this file

allows us to use call and put option data for 13 different strikes for standardized time-

to-maturities. We discard few day-stock IV surface data if either the strike prices

provided by the OM of calls or puts are not monotonic in deltas. Such a situation

may occur when the interpolated volatility surface exhibits an extremely steep skew.

We use 30-day-to-maturity data for the purpose of estimating the risk-neutral simple

variance and risk-neutral moments.

Before calculating the integrals, we interpolate and extrapolate the IV curves to

obtain option prices over a fine grid. To this end, we follow recent studies (e.g., Stilger

15The OM estimate the smooth volatility surface based on a kernel density method for each trading
day and for each stock if there are sufficient option data. See the OM documentation for the detail.

237



et al., 2017; Borochin and Zhao, 2018) and interpolate and extrapolate IVs as follows.

We interpolate call IVs and put IVs separately in the strike-IV metric based on the

cubic piecewise Hermite polynomial interpolation. Then, we horizontally extrapolate

the IV beyond the highest and the lowest strikes. Once the continuous IV curve is

obtained, we calculate option prices at 1,001 equally-spaced strike points over the

moneyness from 1/3 to 3. Finally, we numerically calculate the integrals in equations

(3.19) and (3.24) with these splined option prices. The boundary value between the

put and call integrals in equation (3.19) is Fi,t,t+1 and that in equation (3.24) is

St − D̃t,T . We use the forward price recorded in the OM Standardized Option Price

file for equation (3.19). For equation (3.24), we back out D̃t,T from the same forward

price as D̃t,T = Rf,t,TSi,t − Fi,t,T . See Appendix 3.B.4 for more detail.

Using the OM volatility surface file has several advantageous points. First, it

provides the IVs at a standardized maturity. This helps us to avoid any issues arising

from mixing estimated RNMs from different maturities. Second, this dataset provides

IVs as a function of delta in the unified range (0.2 to 0.8 in the absolute value) for all

stocks. This makes it more reliable to compare the estimated RNMs among different

stocks and time periods. Third, this dataset has been used in the recent studies for

the estimation of the risk-neutral simple variance (Martin and Wagner, 2018) and the

estimation of risk-neutral moments (e.g., DeMiguel et al., 2013; Borochin and Zhao,

2018), thus making possible the comparison of our results to theirs.
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Table 3.1. Summary statistics of the estimated CFER and the shifted risk premium term

Panels A and B report the summary statistics of the estimated CFER and the estimated shifted risk-premium term Vi,t,t+1 (equation (3.14)), respectively. At

the end of each month, we estimate these two option-implied measures using options with 30 day-to-maturity. The sample period ranges from January 1996

to December 2017. The unit of CFER and the shifted risk-premium is percent per year. Px denotes the x-th percentile point value and IQR stands for the

inter-quartile range (the difference between 75th and 25th percentile point values). Panel C reports the variance decomposition of the cross-section of the shifted

expected returns, CFERi,t,t+1 + Vi,t,t+1, into the variance of CFER, that of the shifted risk premium term, and their cross variation term. At the end of each

month, we conduct the variance decomposition and then we calculate the time-series average of each component. The unit is the percentage (par year) squared.

The values in the square brackets denotes the proportion of the variation attributable to respective components. The results in the rows labeled “All” are

calculated based on all optionable stocks observations, while those in the rows labeled “S&P 500” are calculated based on the observations of the constituent

stocks of the S&P 500 index.

Panel A: Summary statistics of the estimated CFER
Mean Std Skew P1 P10 Median P90 P99 IQR Obs

All -0.82 15.90 -1.05 -46.15 -9.72 -0.37 7.63 40.02 5.58 575,580
S&P 500 -0.44 5.57 -2.62 -13.43 -3.74 -0.27 2.65 11.28 2.64 124,777

Panel B: Summary statistics of the shifted risk premium term
All 16.93 21.96 5.06 1.32 3.06 10.07 37.20 104.93 14.82 575,580
S&P 500 7.18 9.48 7.08 0.99 1.83 4.54 14.20 45.75 5.19 124,777

Panel C: Variance decomposition of the variations in the expected returns
Total CFER Shifted RP Cross Var

All 684.5 [100.0] 235.5 [34.4] 422.1 [61.7] 26.9 [ 3.9]
S&P 500 94.9 [100.0] 29.9 [31.5] 65.4 [68.9] -0.4 [-0.4]
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Table 3.2. List of portfolio strategies

Entries in Panel A show the descriptions and the symbols of portfolio strategies which are not based

on the mean-variance portfolio optimization, equation (3.20). Entries in Panel B show the three

elements of the mean-variance portfolio strategies, the expected return specification, the covariance

matrix specification, and the constraints on the stock weights. A mean-variance portfolio strategy

is specified as a combination of these three elements.

Panel A: Non mean-variance portfolio strategies
Naive No short-sale Parametric portfolio

EW equally-weighted port PPNS-FFM Size, logBM, MOM
VW value-weighted port PPNS-MFIV FFM and MFIV

PPNS-RNS FFM and RNS
rank-based weights PPNS-VRP FFM and VRP

RK-CFER based on CFER PPNS-CFER FFM and CFER
RK-RP shifted risk premium PPNS-FULL FFM and all option var.
RK-FULL CFER plus RP

Panel B: Mean-variance portfolio strategies
Expected returns

GMVP global minimum variance portfolio (µi,t = 0)
Hist historical sample mean
Q-CFER quantitative: CFER
Q-RP Shifted risk premium Vi,t
Q-FULL CFER + shifted risk premium
CA-MFIV characteristic adjusted return: MFIV
CA-RNS RNS
CA-VRP VRP
CA-CFER CFER

Covariance matrix
HV-HC Historical covariance matrix
RIV-HC Risk adjusted implied variance & historical correlations
HV-ZC Historical variance & zero correlations
RIV-ZC Risk adjusted implied variance & zero correlations
LWI Historical cov. matrix with Lediot-Wolf shrinkage

toward identity matrix
Constraints

NC No constraints
NS No short-sale
NS10 No short-sale and 10% bound
ABS10 10% Absolute weight bound
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Table 3.3. Mean-variance portfolio performance: Unconstrained strategies

Entries in Panel A report the performance measures of the benchmark portfolio strategies which are not based on the mean-variance optimization. EW and VW

stand for the equally- and value-weighted portfolio strategy, respectively. RK-X stands for the rank-based strategy in which the portfolio weight is determined

by the cross-sectional ranking of the variable X, where X is either CFER, the shifted risk premium (RP), or the sum of these two (FULL). Panel B reports the

performance measures of the unconstrained mean-variance portfolios with nine alternative expected returns vector specifications. We consider the minimum-

variance portfolio (GMVP), historical mean returns (Hist), the scaled risk premium (Q-RP), CFER (Q-CFER), the sum of the scaled risk premium and CFER

(Q-FULL) and four characteristic-adjusted (CA-) returns based on MFIV, VRP, RNS and CFER. We use the historical covariance matrix. The universe of

stocks is the S&P 500 member stocks and the out-of-sample (OOS) portfolio return period is from January 1997 to December 2017. The unit of the OOS excess

return (ExRet), the volatility (Vol), the Fama and French (1993) three-factor alpha (αFF3) and the Fama and French (2018) five-factor alpha (αFF5) is percent

per year. The t-statistics of alphas are adjusted for heteroskedasticity and serial correlations and reported in the parentheses. The certainty equivalent (CE) is

calculated based on the power utility with the relative risk-aversion parameter of five. SR and TO stand for the Sharpe ratio and turnover rate, respectively.

Model ExRet Vol SR CE TO αFF3 αFF5

Panel A: Benchmark strategies
EW 9.7 16.9 0.58 4.4 0.08 1.10 (0.96) -0.17 (-0.16)
VW 7.2 14.8 0.48 3.7 0.02 0.25 (1.09) -0.23 (-0.97)
RK-CFER 9.5 17.4 0.54 3.7 0.95 0.63 (0.52) -0.50 (-0.45)
RK-RP 9.7 16.8 0.57 4.4 1.01 1.16 (0.92) -0.12 (-0.10)
RK-FULL 9.6 17.5 0.55 3.7 0.98 0.81 (0.66) -0.38 (-0.31)

Panel B: Unconstrained mean-variance strategies
GMVP 4.4 16.3 0.27 -0.8 5.92 2.63 (0.71) 0.62 (0.17)
Hist -124.9 980.8 -0.13 -1168.2 1546.03 8.50 (0.04) 62.97 (0.28)
Q-RP 120.7 604.4 0.20 -1136.1 640.23 46.63 (0.25) 108.95 (0.50)
Q-CFER 720.6 861.0 0.84 -1171.2 922.44 762.67 (2.84) 832.93 (2.87)
Q-FULL 850.0 1151.7 0.74 -1064.7 891.21 815.69 (2.30) 948.95 (2.27)
CA-MFIV 10.8 60.8 0.18 -150.0 67.74 8.01 (0.61) 10.57 (0.75)
CA-VRP -1.7 67.0 -0.03 -148.9 68.60 -0.68 (-0.04) -2.97 (-0.16)
CA-RNS 51.1 91.0 0.56 -166.7 107.12 46.22 (2.42) 47.79 (2.36)
CA-CFER 58.6 79.3 0.74 -233.5 97.73 55.95 (3.42) 55.82 (3.12)
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Table 3.4. Mean-variances portfolio performance: Constrained strategies

Entries in Panel A reports the performance measures of the benchmark portfolios strategies which

are not based on the mean-variance optimization. EW and VW stand for the equally- and value-

weighted portfolio strategy, respectively. PPNS-X stands for the parametric portfolio with no short-

sale constraints. See Table 3.2 for the set of characteristic variables for each PPNS strategy. Panels B

to D report the performance measures of the mean-variance portfolios with nine alternative expected

return vector specifications under three types of constraints on the portfolio weight: no short-sale

constraints for Panel B, no short-sale constraints and the 10% limit for Panel C and the 10% limit on

the absolute weight for Panel D. We consider the minimum-variance portfolio (GMVP), historical

mean returns (Hist), the scaled risk premium (Q-RP), CFER (Q-CFER), the sum of the scaled

risk premium and CFER (Q-FULL) and four characteristic-adjusted (CA-) returns based on MFIV,

VRP, RNS and CFER. We use the historical covariance matrix. The universe of stocks is the S&P

500 member stocks and the out-of-sample (OOS) portfolio return period is from January 1997 to

December 2017. The unit of the OOS excess return (ExRet), the volatility (Vol), the Fama and

French (1993) three-factor alpha (αFF3) and the Fama and French (2018) five-factor alpha (αFF5) is

percent per year. The t-statistics of alphas are adjusted for heteroskedasticity and serial correlations

and reported in the parentheses. The certainty equivalent (CE) is calculated based on the power

utility with the relative risk-aversion parameter of five. SR and TO stand for the Sharpe ratio and

turnover rate, respectively.

Model ExRet Vol SR CE TO αFF3 αFF5

Panel A: Benchmark strategies
EW 9.7 16.9 0.58 4.4 0.08 1.10 (0.96) -0.17 (-0.16)
VW 7.2 14.8 0.48 3.7 0.02 0.25 (1.09) -0.23 (-0.97)
PPNS

-FFM 10.3 16.7 0.62 5.1 0.50 2.65 (1.71) 1.07 (0.65)
-MFIV 9.2 15.0 0.61 5.6 0.67 2.43 (1.74) 1.64 (1.13)
-RNS 10.6 16.4 0.65 5.7 0.95 2.84 (1.87) 1.40 (0.83)
-VRP 10.2 16.1 0.63 5.6 0.70 2.72 (1.89) 1.40 (0.95)
-CFER 10.6 17.6 0.60 4.8 1.23 2.43 (1.58) 1.49 (0.84)
-ALL 10.6 16.3 0.65 5.9 1.18 3.06 (2.33) 1.91 (1.39)

Panel B: No short-sale (0 ≤ ωi)
GMVP 7.2 10.8 0.66 6.4 0.26 3.40 (1.84) 1.03 (0.57)
Hist 11.6 19.7 0.59 4.2 0.52 6.21 (2.11) 7.03 (2.07)
Q-RP -0.1 37.7 0.00 -676.5 1.24 -9.71 (-1.20) -10.3 (-1.01)
Q-CFER 14.0 19.2 0.73 4.8 1.66 8.60 (2.13) 8.63 (1.97)
Q-FULL 6.3 37.0 0.17 -676.3 1.57 -3.18 (-0.41) -1.82 (-0.19)
CA-MFIV 8.0 11.5 0.70 6.8 0.63 3.76 (2.01) 1.23 (0.69)
CA-VRP 6.9 10.6 0.65 6.2 0.51 3.20 (1.78) 0.94 (0.54)
CA-RNS 8.3 11.0 0.75 7.3 0.85 4.40 (2.36) 2.23 (1.23)
CA-CFER 8.6 11.1 0.78 7.6 0.84 4.66 (2.50) 2.26 (1.26)

Continued on next page
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Model ExRet Vol SR CE TO αFF3 αFF5

Panel C: No short-sale and 10% upper bound (0 ≤ ωi ≤ 0.1)
GMVP 7.4 10.8 0.68 6.6 0.25 3.55 (1.96) 1.21 (0.68)
Hist 9.6 17.6 0.54 3.8 0.50 4.30 (1.87) 4.95 (1.82)
Q-RP 9.4 24.9 0.38 -4.3 1.00 0.56 (0.13) 1.41 (0.30)
Q-CFER 13.9 14.2 0.98 11.0 1.43 8.89 (3.93) 7.62 (3.25)
Q-FULL 13.9 24.6 0.56 0.6 1.41 4.82 (1.24) 5.85 (1.40)
CA-MFIV 8.1 11.4 0.71 6.9 0.60 3.80 (2.06) 1.28 (0.72)
CA-VRP 7.1 10.6 0.67 6.4 0.49 3.33 (1.88) 1.09 (0.64)
CA-RNS 8.4 11.0 0.76 7.4 0.80 4.42 (2.42) 2.29 (1.30)
CA-CFER 8.8 11.0 0.80 7.9 0.79 4.87 (2.65) 2.57 (1.46)

Panel D: Constraints on the absolute size 10% (|ωi| ≤ 0.1)
GMVP 5.2 15.8 0.33 0.5 5.49 3.73 (1.01) 1.98 (0.54)
Hist -25.2 115.4 -0.22 -1100.3 33.4 0.18 (0.01) -1.07 (-0.04)
Q-RP 32.2 62.2 0.52 -58.2 22.5 16.0 (1.40) 24.4 (2.00)
Q-CFER 50.1 40.9 1.22 16.4 34.9 49.4 (5.15) 46.4 (4.67)
Q-FULL 61.0 63.3 0.96 -49.2 33.0 46.7 (3.54) 51.7 (3.54)
CA-MFIV 11.3 24.8 0.46 -3.2 17.5 7.42 (1.40) 7.52 (1.32)
CA-VRP -0.4 27.0 -0.02 -17.5 20.4 -0.44 (-0.06) -2.76 (-0.39)
CA-RNS 22.4 27.9 0.80 5.9 23.1 19.7 (3.10) 20.0 (2.99)
CA-CFER 21.2 29.1 0.73 1.7 25.0 18.9 (2.78) 15.3 (2.27)
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Table 3.5. Pairwise performance comparison: Bootstrapped p-values

Entries report the bootstrapped pairwise comparison of the three performance measures, the out-

of-sample (OOS) average excess return, Sharpe ratio (SR) and certainty equivalent (CE), for the

three mean-variance strategies based on the option-based quantitative expected return. For each

pair of two strategies, we generate 10,000 bootstrapped time-series of the OOS returns. Values in

the columns labeled “Q-CFER” report the p-value of the null hypothesis that the Q-CFER strategy

(with the historical covariance and NS10 constraint) performs no better than the competing strategy

specified in each row. Values in the columns labeled “Q-RP” and “Q-FULL” are defined similarly.

The universe of stocks is the S&P 500 member stocks and the OOS portfolio return period is from

January 1997 to December 2017.

Q-CFER Q-RP Q-FULL
ExRet SR CE ExRet SR CE ExRet SR CE

EW 0.06 0.00 0.00 0.55 0.95 0.99 0.13 0.66 0.86
VW 0.01 0.00 0.00 0.31 0.84 0.97 0.05 0.48 0.77
RK-CFER 0.06 0.00 0.00 0.52 0.92 0.98 0.12 0.57 0.80
RK-RP 0.06 0.00 0.00 0.55 0.95 0.99 0.13 0.66 0.86
RK-FULL 0.06 0.00 0.00 0.54 0.93 0.98 0.13 0.59 0.81
PPNS-FFM 0.13 0.02 0.02 0.61 0.96 0.99 0.21 0.75 0.89
PPNS-MFIV 0.00 0.00 0.00 0.33 0.92 0.98 0.05 0.63 0.85
PPNS-RNS 0.27 0.01 0.03 0.78 0.99 0.99 0.32 0.83 0.92
PPNS-VRP 0.05 0.00 0.00 0.53 0.94 0.99 0.11 0.64 0.85
PPNS-CFER 0.18 0.00 0.01 0.70 0.97 0.99 0.24 0.71 0.88
PPNS-ALL 0.06 0.01 0.01 0.61 0.98 1.00 0.16 0.82 0.93
GMVP 0.00 0.05 0.01 0.32 0.99 0.99 0.06 0.90 0.90
Hist 0.16 0.03 0.03 0.56 0.84 0.93 0.23 0.58 0.74
Q-CFER — — — 0.89 1.00 1.00 0.52 1.00 1.00
Q-RP 0.11 0.00 0.00 — — — 0.01 0.00 0.00
Q-FULL 0.48 0.00 0.00 0.99 1.00 1.00 — — —
CA-MFIV 0.00 0.06 0.01 0.38 0.99 0.99 0.08 0.91 0.92
CA-VRP 0.00 0.04 0.01 0.30 0.99 0.99 0.06 0.89 0.89
CA-RNS 0.00 0.11 0.02 0.41 1.00 0.99 0.09 0.96 0.93
CA-CFER 0.00 0.16 0.04 0.45 1.00 1.00 0.11 0.98 0.95
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Table 3.6. Choice of the covariance matrix: Unconstrained strategies

Entries report the performance measures of unconstrained mean-variance portfolio strategies. In each

Panel, the performance of the mean-variance portfolios are calculated using the expected returns

vector specified in the title of Panel and the covariance matrix specified in each row. For the first

four models of the covariance matrix, the former part of the model name represents the specification

for the variance, either historical volatility (HV), risk-adjusted option-implied volatility (RIV). The

latter part represents the specification for the correlation, either historical correlation (HC) or zero

correlation (ZC). LWI stands for the historical covariance matrix shrunk by Ledoit and Wolf (2004)

method toward the scaled identity matrix. The universe of stocks is the S&P 500 member stocks and

the out-of-sample (OOS) portfolio return period is from January 1997 to December 2017. The unit of

the OOS excess return (ExRet), the volatility (Vol), the Fama and French (1993) three-factor alpha

(αFF3) and the Fama and French (2018) five-factor alpha (αFF5) is percent per year. The t-statistics

of alphas are adjusted for heteroskedasticity and serial correlations and reported in the parentheses.

The certainty equivalent (CE) is calculated based on the power utility with the relative risk-aversion

parameter of five. SR and TO stand for the Sharpe ratio and turnover rate, respectively.

Model ExRet Vol SR CE TO αFF3 αFF5

Panel A: Global minimum Variance portfolio (GMVP)

HV-HC 4.4 16.3 0.27 -0.8 5.92 2.63 (0.71) 0.62 (0.17)
RIV-HC 8.0 9.1 0.89 8.1 3.67 5.46 (3.09) 3.81 (2.12)
HV-ZC 9.5 13.6 0.69 6.8 0.07 2.38 (2.01) -0.21 (-0.21)
RIV-ZC 8.3 10.2 0.82 8.0 0.53 3.79 (3.05) 1.37 (1.18)
LWI 5.8 12.0 0.48 4.1 2.38 4.06 (1.59) 1.78 (0.69)

Panel B: CFER-based quantitative expected returns (Q-CFER)

HV-HC 720.6 861.0 0.84 -1171.2 922.4 762.7 (2.84) 832.9 (2.87)
RIV-HC 1958.3 28067.7 0.07 -730.2 20263.0 851.9 (0.15) -506.0 (-0.09)
HV-ZC 69.8 65.2 1.07 -25.1 17.7 68.3 (3.78) 69.7 (3.83)
RIV-ZC -275.5 4490.6 -0.06 -1148.0 1023.2 -152.2 (-0.15) -149.4 (-0.14)
LWI 255.5 279.1 0.92 -678.6 174.7 263.4 (3.35) 288.3 (3.27)

Panel C: Fully estimated quantitative expected returns (Q-FULL)

HV-HC 850.0 1151.7 0.74 -1064.7 891.2 815.7 (2.30) 949.0 (2.27)
RIV-HC 3797.7 28826.6 0.13 -730.4 22047.0 2343.1 (0.39) 1056.2 (0.17)
HV-ZC 97.5 201.0 0.49 -1044.4 30.0 29.1 (0.90) 65.6 (1.81)
RIV-ZC -21.8 4737.4 0.00 -1003.5 995.3 -533.3 (-0.53) -800.7 (-0.74)
LWI 304.6 384.3 0.79 -875.1 221.5 277.4 (2.49) 320.2 (2.41)

Panel D: CFER-based characteristic-adjusted returns (CA-CFER)

HV-HC 58.6 79.3 0.74 -233.5 97.7 56.0 (3.42) 55.8 (3.12)
RIV-HC 1383.3 6173.5 0.22 -868.4 4687.2 1306.3 (1.25) 1350.6 (1.19)
HV-ZC 16.1 16.1 1.00 11.6 3.4 8.7 (4.61) 6.5 (3.26)
RIV-ZC 227.4 883.9 0.26 -1104.8 430.3 258.1 (1.24) 290.4 (1.20)
LWI 29.3 29.9 0.98 10.5 29.7 27.3 (4.41) 24.8 (3.80)
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Table 3.7. Choice of the covariance matrix: NS10 constrained strategies

Entries report the performance measures of mean-variance portfolio strategies with the NS10 weight

constraint (0 ≤ ωi,t ≤ 0.1). In each Panel, the performance of the mean-variance portfolios are

calculated using the expected returns vector specified in the title of Panel and the covariance matrix

specified in each row. For the first four models of the covariance matrix, the former part of the model

name represents the specification for the variance, either historical volatility (HV), risk-adjusted

option-implied volatility (RIV). The latter part represents the specification for the correlation, either

historical correlation (HC) or zero correlation (ZC). LWI stands for the historical covariance matrix

shrunk by Ledoit and Wolf (2004) method toward the scaled identity matrix. The universe of stocks

is the S&P 500 member stocks and the out-of-sample (OOS) portfolio return period is from January

1997 to December 2017. The unit of the OOS excess return (ExRet), the volatility (Vol), the Fama

and French (1993) three-factor alpha (αFF3) and the Fama and French (2018) five-factor alpha

(αFF5) is percent per year. The t-statistics of alphas are adjusted for heteroskedasticity and serial

correlations and reported in the parentheses. The certainty equivalent (CE) is calculated based on

the power utility with the relative risk-aversion parameter of five. SR and TO stand for the Sharpe

ratio and turnover rate, respectively.

Model ExRet Vol SR CE TO αFF3 αFF5

Panel A: Global minimum Variance portfolio (GMVP)
HV-HC 7.4 10.8 0.68 6.6 0.25 3.55 (1.96) 1.21 (0.68)
RIV-HC 6.1 9.7 0.63 5.8 0.98 3.05 (1.76) 0.67 (0.41)
HV-ZC 9.3 13.8 0.67 6.4 0.07 2.46 (2.03) -0.05 (-0.05)
RIV-ZC 8.3 11.4 0.72 7.1 0.39 2.95 (2.32) 0.15 (0.14)
LWI 7.4 10.8 0.69 6.6 0.24 3.56 (1.96) 1.17 (0.67)

Panel B: CFER-based quantitative expected returns (Q-CFER)
HV-HC 13.9 14.2 0.98 11.0 1.43 8.89 (3.93) 7.62 (3.25)
RIV-HC 13.0 15.4 0.85 9.4 1.78 7.01 (3.07) 5.08 (2.25)
HV-ZC 18.5 19.2 0.96 11.7 1.74 10.43 (3.81) 9.63 (3.29)
RIV-ZC 15.6 18.9 0.83 9.1 1.78 7.79 (2.86) 6.02 (2.23)
LWI 14.0 14.2 0.98 11.0 1.43 8.90 (3.89) 7.69 (3.27)
Panel C: Fully estimated quantitative expected returns (Q-FULL)
HV-HC 13.9 24.6 0.56 0.6 1.41 4.82 (1.24) 5.85 (1.40)
RIV-HC 15.7 22.3 0.70 5.4 1.57 6.89 (2.00) 6.60 (1.77)
HV-ZC 15.3 38.7 0.40 -20.3 1.31 0.41 (0.07) 4.99 (0.88)
RIV-ZC 16.2 34.5 0.47 -11.4 1.33 1.78 (0.37) 6.12 (1.26)
LWI 14.0 24.9 0.56 0.4 1.41 4.82 (1.23) 5.93 (1.41)
Panel D: CFER-based characteristic-adjusted returns (CA-CFER)
HV-HC 8.8 11.0 0.80 7.9 0.79 4.87 (2.65) 2.57 (1.46)
RIV-HC 10.3 12.3 0.84 8.6 1.70 5.78 (2.86) 3.24 (1.75)
HV-ZC 12.5 14.7 0.85 9.0 1.28 5.45 (3.85) 3.34 (2.28)
RIV-ZC 12.0 13.3 0.90 9.5 1.70 6.20 (3.40) 3.64 (2.10)
LWI 9.0 11.0 0.82 8.0 0.79 4.99 (2.73) 2.68 (1.54)
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Table 3.8. Mean-variance portfolios: Randomly selected 500 optionable
stocks

Entries in Panel A reports the performance measures of the benchmark portfolios strategies which

are not based on the mean-variance optimization problem. EW and VW stand for the equally-

and value-weighted portfolio strategy, respectively. RK-X stands for the rank-based strategy in

which the portfolio weight is determined by the cross-sectional ranking of the variable X, where X

is either CFER, the shifted risk premium (RP), or the sum of these two (FULL). PPNS-X stands

for the parametric portfolio with no short-sale constraints. See Table 3.2 for the set of characteristic

variables for each PPNS strategy. Panel B reports the performance measures of the mean-variance

portfolios with nine alternative expected return vector specifications under the NS10 constraint,

0 ≤ ωi,t ≤ 0.1. We consider the minimum-variance portfolio (GMVP), historical mean returns

(Hist), the scaled risk premium (Q-RP), CFER (Q-CFER), the sum of the scaled risk premium and

CFER (Q-FULL) and four characteristic-adjusted (CA-) returns based on MFIV, VRP, RNS and

CFER. We use the historical covariance matrix. The universe of stocks is the randomly selected

500 optionable stocks. In each year y, we keep stocks with non-missing option-implied data and

non-missing 630 daily historical returns on each end of month days in y. Then, we randomly choose

500 stocks from these stocks. We update the set of stocks in every January. The out-of-sample

(OOS) portfolio return period is from January 1997 to December 2017. The unit of the OOS excess

return (ExRet), the volatility (Vol), the Fama and French (1993) three-factor alpha (αFF3) and the

Fama and French (2018) five-factor alpha (αFF5) is percent per year. The t-statistics of alphas are

adjusted for heteroskedasticity and serial correlations and reported in the parentheses. The certainty

equivalent (CE) is calculated based on the power utility with the relative risk-aversion parameter of

five. SR and TO stand for the Sharpe ratio and turnover rate, respectively.

Model ExRet Vol SR CE TO αFF3 αFF5

Panel A: Benchmark strategies
EW 11.1 20.4 0.55 2.2 0.20 0.93 (0.65) 0.54 (0.41)
VW 6.6 15.9 0.42 2.2 0.13 -0.79 (-1.22) -1.46 (-2.60)
RK-CFER 11.2 21.6 0.52 1.0 0.98 0.59 (0.40) 0.64 (0.46)
RK-RP 11.5 20.3 0.56 2.7 1.05 1.39 (0.89) 0.84 (0.59)
RK-FULL 11.5 21.3 0.54 1.6 1.02 1.12 (0.77) 1.14 (0.82)
PPNS-FFM 11.2 20.7 0.54 2.3 0.59 1.95 (1.09) 2.27 (1.18)
PPNS-MFIV 10.9 20.1 0.54 3.2 0.69 2.37 (1.25) 2.30 (1.09)
PPNS-RNS 15.1 21.7 0.70 5.3 1.11 4.75 (2.94) 4.16 (2.31)
PPNS-VRP 13.4 21.4 0.62 4.0 0.76 3.84 (2.01) 3.77 (1.83)
PPNS-CFER 17.0 24.1 0.71 4.5 1.28 5.97 (2.61) 6.57 (2.66)
PPNS-ALL 15.1 22.6 0.67 4.0 1.25 4.96 (2.32) 4.74 (2.16)

Panel B: Mean-variance strategies under the NS10 constraint
GMVP 7.7 11.5 0.67 6.2 0.31 3.07 (1.72) 0.73 (0.43)
Hist 4.0 26.2 0.15 -10.7 0.54 -3.36 (-1.15) -1.40 (-0.42)
Q-RP 26.0 33.5 0.78 2.3 1.18 14.22 (2.88) 16.33 (3.20)
Q-CFER 21.1 18.9 1.12 14.5 1.56 14.15 (4.37) 11.39 (4.19)
Q-FULL 33.9 33.6 1.01 10.6 1.45 21.54 (4.16) 23.15 (4.52)
CA-MFIV 7.3 12.4 0.59 5.3 0.58 2.19 (1.16) -0.06 (-0.03)
CA-VRP 7.9 11.4 0.69 6.4 0.46 3.23 (1.86) 0.93 (0.55)
CA-RNS 9.5 11.9 0.80 7.7 0.80 4.57 (2.66) 2.24 (1.37)
CA-CFER 9.7 11.7 0.83 8.1 0.65 4.87 (2.66) 2.80 (1.69)
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Table 3.9. Equivalent transaction costs of the Q-CFER strategy

Entries report the equivalent transaction costs of the mean-variance portfolio strategy based on the

Q-CFER expected returns and the historical covariance matrix with the NS10 weight constraint. A

positive number indicate that the Q-CFER strategy has superior after-transaction costs performance

measure, either the out-of-sample (OOS) mean excess return or the Sharpe ratio, than the competing

strategy specified in each row as long as the transaction costs are lower than the displayed value. The

unit is basis points per transaction. The entries with “D” indicate that the performance statistics of

the Q-CFER strategy is lower than the competing strategy before transaction costs are taken into

account. The universe of stocks is the S&P 500 member stocks and the OOS portfolio return period

is from January 1997 to December 2017.

S&P 500 universe Random 500 universe
TCmean TCSR TCmean TCSR

EW 26.1 35.4 61.5 66.0
VW 40.0 41.8 84.8 78.9
RK-RP 78.1 79.4 145.2 136.3
RK-CFER 84.2 83.1 160.1 151.1
RK-FULL 79.3 80.1 149.3 139.5
PPNS-FFM 32.4 43.0 86.1 89.8
PPNS-MFIV 52.3 55.3 98.1 99.7
PPNS-RNS 56.9 64.6 111.6 112.2
PPNS-VRP 42.5 50.8 80.7 87.5
PPNS-CFER 139.5 102.8 123.2 117.1
PPNS-ALL 114.6 99.1 166.1 139.2
GMVP (NS10) 46.5 32.3 89.9 67.8
Hist (NS10) 39.1 50.6 140.5 130.3
Q-RP (NS10) 88.6 83.3 D 60.4
Q-FULL (NS10) 17.2 80.2 D 23.4
CA-MFIV (NS10) 59.0 47.8 117.9 123.6
CA-VRP (NS10) 60.8 48.2 101.2 85.8
CA-RNS (NS10) 73.1 64.8 129.2 182.9
CA-CFER (NS10) 66.6 51.8 105.5 90.9
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Table 3.10. Performance of staggered mean-variance portfolios

Entries report the performance measures and the equivalent transaction costs of the four selected

non-staggered strategies (EW, VW, GMVP, and Q-CFER) and the staggered rebalancing Q-CFER

strategies with three alternative rebalancing frequencies: quarterly (3m), biannual (6m), and annual

(12m) rebalancing. The GMVP and Q-CFER strategies are calculated using the historical covariance

matrix with the NS10 weight constraint, 0 ≤ ωi,t ≤ 0.1. The universe of stocks for Panel A (Panel

B) is the S&P 500 member stocks (randomly selected 500 optionable stocks) and the out-of-sample

(OOS) portfolio return period is from January 1997 to December 2017. The unit of the OOS mean

excess return and the volatility is percent per year. The certainty equivalent is calculated based

on the power utility with the relative risk-aversion parameter of five. The equivalent transaction

costs TCSRQ-CFER,X report the transaction costs which equate the after-transaction costs Sharpe ratio

of the Q-CFER strategies and the competing strategy X (either EW, VW, or GMVP). A positive

equivalent transaction cost indicates that the Q-CFER strategy has a higher after-transaction costs

Sharpe ratio compared to the competing strategy as long as the transaction costs are lower than

the displayed value. The entries with “S” indicate that the Q-CFER strategy always has a higher

after-transaction costs Sharpe ratio for any positive transaction cost value.

Non-staggered strategies Staggered Q-CFER
EW VW GMVP Q-CFER 3m 6m 12m

Panel A: S&P 500 universe
Excess return 9.69 7.17 7.36 13.92 9.55 9.20 8.69
Volatility 16.86 14.80 10.78 14.17 12.30 11.57 11.20
Sharpe ratio 0.58 0.48 0.68 0.98 0.78 0.80 0.78
Certainty Equiv. 4.40 3.67 6.55 11.01 7.79 7.91 7.57
Turnover 0.08 0.02 0.25 1.43 0.50 0.27 0.15
TCSR

Q-CFER, EW — — — 35.4 46.8 100.1 186.4
TCSR

Q-CFER, VW — — — 41.8 62.2 120.1 199.2
TCSR

Q-CFER, GMVP — — — 32.3 45.0 S S

Panel B: Randomly selected 500 stocks universe
Excess return 11.13 6.63 7.71 21.12 13.29 9.52 6.52
Volatility 20.42 15.93 11.51 18.87 15.29 13.72 10.98
Sharpe ratio 0.55 0.42 0.67 1.12 0.87 0.69 0.59
Certainty Equiv. 2.21 2.22 6.22 14.48 9.19 6.55 5.52
Turnover 0.20 0.13 0.31 1.56 0.56 0.31 0.18
TCSR

Q-CFER, EW — — — 66.0 101.2 97.2 61.4
TCSR

Q-CFER, VW — — — 78.9 132.9 160.0 177.6
TCSR

Q-CFER, GMVP — — — 67.8 175.5 S 59.7
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Conclusions

In this thesis, I have conducted theoretical and empirical studies on the contribution

of frictions to expected returns (CFER) of individual equities. CFER represents the

effect of market frictions on the expected asset returns not attributable to the conven-

tional covariance risk premium term, that is, the covariance between the asset returns

and the stochastic discount factor (agents’ marginal utility).

In Chapter One, I have developed the formal theoretical framework for my analysis

on CFER. Then, I have theoretically and empirically documented that the CFER

term can be reliably estimated by properly scaled deviations from put-call parity,

that is, the difference between the underlying stock price and the synthetic stock

price calculated from option prices. My empirical findings on U.S. common stocks

show that the estimated CFER has strong return predictive power. Moreover, I have

confirmed that this strong return predictive ability of CFER is robust to the recent

data snooping concerns and does not stem from omitted risk factors. I have also

documented that the size of market frictions is a more pertinent explanation to the

return predictability of CFER than option trading activity. The results in Chapter

One suggest that market frictions, especially transaction costs, have a non-negligible

effect even on optionable stocks, which tend to be large and liquidly traded stocks.

In particular, I have theoretically shown that the upper bound of the alpha of CFER-

sorted spread portfolios is at least twice the round-trip transaction costs. This result

accommodates the sizable alpha of the CFER-sorted spread portfolio I have found.

In Chapter Two, I have examined the implication of CFER on the risk-neutral

expected asset return and the return predictive ability of the risk-neutral skewness

(RNS). To this end, I have shown that a non-zero CFER is equivalent to the violation

of the martingale restriction (MR), that is, the deviation of the expected risk-neutral

return from the risk-free rate caused by the presence of market frictions. Then, I have
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shown that the Bakshi et al. (2003) (BKM) formulae for risk-neutral moments (RNMs)

do not correctly estimate RNMs if MR is violated, due to their implicit assumption

that the underlying asset satisfies MR. To remedy this drawback of the original BKM

formulae, I propose the generalized BKM formulae, which account for the possible

violation of MR, that is, a non-zero CFER. My empirical analysis in Chapter Two

have revealed that the violation of MR has an important implication on the return

predictive power of RNS; the estimated RNS based on the original BKM formula

(O-RNS) strongly predicts future stock returns, whereas the estimated RNS based on

my generalized BKM formula does not. Furthermore, I have provided evidence that

the predictive power of O-RNS stems from its estimation bias component caused by

the violation of MR, which is highly correlated with CFER. O-RNS predicts future

returns because it signals the effect of frictions on the expected stock returns via its

correlation with CFER.

In Chapter Three, I have applied my CFER framework to the Markowitz (1952)

mean-variance portfolio construction. To this end, I have generalized Martin and Wag-

ner’s (2018) formula for the expected stock return by allowing the existence of the

CFER-type market frictions, where the expected stock return is expressed by the sum

of CFER and the scaled risk-neutral simple stock variance of Martin (2017). Relying

on this theoretical result, I have examined mean-variance portfolio strategies which use

the option-based expected stock returns as an input to the mean-variance optimiza-

tion. My empirical analysis has shown that the mean-variance portfolio strategy, for

which I use the estimated CFER as the estimate of the expected stock returns (the Q-

CFER strategy), outperforms other portfolio strategies which have been documented

to have good performance, including minimum variance portfolios and option-based

portfolio strategies proposed by the existing literature. The outperformance of the

Q-CFER strategy suggests that incorporating the effect of market frictions into the

estimation of the expected return is of importance, because it allows us to improve

the portfolio expected return without much increasing the portfolio variance due to

the fact that CFER is not a compensation for risk exposures. Moreover, I have found

that imposing constraints on portfolio weights dramatically improves the performance

of mean-variance portfolios. This is the first empirical evidence that the shrinkage-

like effect of the weight constraints on the mean-variance portfolio problem, which is
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theoretically documented by Jagannathan and Ma (2002, 2003), is useful for portfolio

selection once the option-implied expected return is employed.

The three studies in my thesis contribute to the literature on asset pricing and the

informational content of options in four important ways. First, my empirical findings

suggest that the estimated CFER provides useful information on the expected stock

returns. Specifically, Chapter One has documented that the estimated CFER has

strong return predictive power. Moreover, my analysis in Chapter Three has shown

that the estimated CFER provides practically useful information for the portfolio

selection problem, as my CFER-based mean-variance portfolio outperforms various

other portfolio strategies.

Second, the estimated CFER provides a forward-looking, model-free estimate of

the effect of market frictions on the expected stock returns. This contributes to the

large body of the theoretical and empirical literature on the asset pricing and market

frictions, by helping us to better understand how market frictions affect the time-series

and cross-sectional variations in the expected stock returns. For instance, my analysis

in Chapter One suggests that market frictions affect the expected return of even large

optionable stocks, in contrast to the findings in Hou et al. (2018) that almost all

previously documented friction-related anomalies vanish once micro-cap stocks are

weighted less in the analysis. Utilizing the theoretically-founded, quantitative nature

of CFER, I have documented that the sizable return predictive power of CFER is

in line with the degree of market frictions, especially that of transaction costs, for

trading large stocks.

Third, my findings in this thesis shed light on the predictive mechanism of various

option-implied return predicting variables under a unified framework. In Chapter

One, I have shown that my estimate of CFER has superior properties compared to

previously proposed measures based on deviations from put-call parity such as the

implied volatility spread (e.g., Bali and Hovakimian, 2009; Cremers and Weinbaum,

2010) and the DOTS measure (Goncalves-Pinto et al., 2019). Chapter Two has

revealed that the return predictive ability of O-RNS (Rehman and Vilkov, 2012;

Stilger et al., 2017; Gkionis et al., 2018; Bali et al., 2018; Borochin and Zhao, 2018;

Chordia et al., 2019) and that of the Xing et al. (2010) implied volatility slope measure

252



stem from their mechanical correlation with CFER which arises in the presence of

market frictions (i.e., the violation of MR). My analysis in this thesis collectively

suggests that these option-implied variables can predict future stock returns because

they signal the effect of market frictions on the expected stock returns via their

correlation with CFER.

Finally, my analysis in Chapter Two would call for a revisit of the voluminous

theoretical and empirical literature which is based on the martingale assumption on

asset prices. While I have focused on the estimation of RNS in Chapter Two, my

analysis there is relevant to any studies on the informational content of option prices

which relies on the martingale assumption, including the estimation of risk-neutral

distributions, pricing kernels, risk-aversion parameters, various portfolio allocation

applications among others. These topics are best left for future research.
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