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Abstract

It is estimated that more than one-third of current infrastructure maintenance expenditure is
wasted through poor decision-making. To make better decisions about maintenance, there is a
need to provide better predictions of asset deterioration, and further, to use this information to
plan inspections and appropriate repair actions. A number of statistical modelling techniques
have been proposed to predict deterioration. However, these approaches can be difficult to
apply in practice, for example when the time of deterioration is only known approximately
from periodic inspections. Also, these approaches lack an easy way to incorporate knowledge
about the deterioration process that can readily be considered when judgements are made by
experienced maintainers. Moreover, in practice, the size of available datasets on deterioration
is often limited; hence there is a need to blend data with knowledge.

This thesis presents a framework for predicting deterioration and reasoning about the ef-
fects of repair using both the available data and expert knowledge that can support inspection
and maintenance-related decisions. The framework uses Bayesian modelling, combining two
types of Bayesian approaches: Bayesian statistical models and Bayesian Networks (BNs).
Bayesian statistical models are used to estimate the parameter of statistical distributions,
modelled as continuous variables. On the other hand, BNs model causal or influential rela-
tionships between (primarily) discrete variables to make predictions and can be based on
elicited knowledge. This thesis builds on earlier work that combines these two forms of
model, with both the continuous variables from Bayesian statistical models and the discrete
variables of BNs. We refer this type of model to as a hybrid BN. The use of hybrid BNs is
possible using an already existing algorithm that dynamically discretises continuous vari-
ables in a BN. BNs within the framework can be combined to model the different aspects of
deterioration needed in different circumstances. The rate of deterioration can be learnt from
censored deterioration data inferred from inspection records and knowledge elicited from
engineers. Asset sharing similar characteristics can be grouped, and when a group contains
only a few instances in the available data, data from related groups can be used to constrain
the parameter learning. Deterioration through multiple condition states can be modelled. The
deterioration of different components of complex structures can be combined. Finally, we
model the effect of repair actions and show how to plan maintenance.
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A case study using data from the US National Bridge Inventory is used to validate
the deterioration prediction models. We show how real-world inspection records can be
integrated with engineering knowledge to predict the deterioration. Compared with other
published approaches, the proposed models show better performance, especially when the
group of similar assets is small. We then apply the models to reason about inspection and
maintenance-related decisions. We use case studies of maintenance practices in the GB and
US to show how the models can be used to assist both operational and strategic maintenance
decision making.

Many features of the proposed framework need to be adapted and combined to create a
maintenance model applicable in a particular circumstance. Examples include the number
of deterioration states, the decomposition of assets into components and the grouping of
assets. The challenge is to create a complex and large-scale asset management system to
allow a maintenance analyst to apply the framework, without needing expertise in Bayesian
modelling. By representing our framework as a set of generic models using an extended
form of BN – a probabilistic relational model – we show, with a simple prototype, how such
a system could be realised.
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Chapter 1

Introduction

As of 2017, the National Bridge Inventory (NBI) (the national database of bridges in the
United States) showed that 54,560 bridges (out of a total of 615,002) were reported as
structurally deficient. The associated expenditure for maintenance is considerable – for
instance, the Organisation for Economic Co-operation and Development (OECD) estimated
that from 2010 to 2030, the annual cost of road and rail maintenance would be approximately
220 billion and 50 billion United States Dollars respectively [134]. Furthermore, Heng et al.
[68] estimated that with current practices, more than a third of infrastructure maintenance
expenditure is wasted through poor decision-making. The need for an effective maintenance
strategy for managing such decisions is therefore paramount.

An effective maintenance strategy for maintaining infrastructure assets requires careful
planning of both inspection and maintenance activities. The inspections aim to detect
any damage and identify the asset’s underlying condition so that future inspections and
maintenance can be scheduled. Alternatively, maintenance is performed to either repair any
damage that has occurred or to improve the overall condition to help prevent any future
damage. These two activities ensure the infrastructure asset operates within an acceptable
level of safety and reliability. An effective maintenance strategy is therefore necessary
for increasing the expected life expectancy of the structure and reduce its maintenance
expenditure [51].

Inspection activity can be classified into two types: visual inspection and detail inspection.
Visual inspection looks for outward signs of damage, such as missing fasteners and cracks;
its decision can be supported by techniques like fault detection and fault pattern recognition
(see a review from Heng et al. [68]). In contrast, detail inspection seeks to determine the
conditions of the underlying parts of the infrastructure, which is often more complicated
to perform and generally more expensive. For example, for a bridge with hidden critical
elements that cannot be observed directly, we may need to use intrusive or non-intrusive
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examination methods to estimate its condition. To support detail inspection decision, we
can perform a preliminary assessment by predicting the condition of the asset from its
deterioration.

The process of deterioration is described by the decrease in asset condition over time,
such as a bridge deteriorates from a good condition to a structurally deficient condition. At
the same time, historical inspection records provide information about the asset’s previous
conditions over time. We can use these records to infer relevant data to model the deterioration
process of an asset. By doing so, we can predict the condition of an asset by estimating how
soon it is likely to deteriorate into an unacceptable level in the future. This can support the
decisions on inspection and answer questions like when to inspect the asset or which asset
we should inspect.

After we identified the damage or condition of an asset from inspection activity, we can
decide its corresponding maintenance activity. Decisions on maintenance activity mainly
comprise of the selection of repair action and the plan to perform maintenance. Repair
actions can range from no action when the asset is in an acceptable state, to replacement
when the asset on the edge of failure, with several intermediate actions to restore the asset
to a better decay level [100]. We may want to suggest repair action given an objective, for
example, minimum cost or an acceptable level of system reliability.

The choice of repair action is one of the keys to plan maintenance. Sometimes, from a life-
cycle point of view, it is more cost-effective to wait for an asset to deteriorate further rather
than taking repair action immediately. For example, we may have a longer life expectancy
to repair an asset in a worse condition using a major repair action, than repair with minor
repair action in a better state. Planning maintenance over a time horizon concerns with
multiple intervention cycles, where each cycle considers the selection of repair action and
the further deterioration after repair. As a result, the maintenance plan can support decisions
like maintenance resource allocation. Or even, together with an optimisation technique, to
provide an optimal selection of repair actions within its life cycle given an objective.

1.1 Challenges in Asset Maintenance Modelling

Managing infrastructure assets has become increasingly critical in recent years. For example,
more and more bridges are deteriorated into poor condition recently due to the increase of
structure age, traffic volume and more severe environmental status [94]. As a result, the
corresponding maintenance cost is considerable, so as the risk of asset failure. In order to
better schedule the maintenance resources, a range of different modelling techniques has
been proposed to support the inspection and maintenance-related decisions making. However,
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in many situations, these techniques do not provide sound decision tools as they are based
on impractical or simplified assumptions (see Section 2.4.4 and 3.6 below for more details).
The challenges among the current practices can be summarised as:

• Small datasets and poor-quality data : When predicting asset deterioration, most
traditional methods are data-driven (assuming to have sufficient deterioration data
to learn from). However, for infrastructure assets such as bridges, the high cost of
inspections means they are only performed once every few years and so, often, only
limited amounts of deterioration data can be inferred [138]. Furthermore, this data
usually comes with considerable uncertainty, for example, we may know deterioration
happened between two consecutive inspections but are unable to decide exactly when
it happened [101]. Currently, we lack a consistent way of incorporating this data.

• Difficult to incorporate other information: Engineers may have knowledge about
the deterioration behaviours of different assets, like that a metal bridge generally
deteriorates faster than a masonry bridge. But often, this kind of information is
neglected in the modelling process due to the difficulty of eliciting this engineering
knowledge from experts and, even when it can be elicited, incorporating that knowledge
to learn the deterioration process is hard.

Additionally, in practice, we may have many descriptive features, not only the asset
material but also characteristics such as age, loading and many others. Presently, there
lacks a way to select a list of important features that is indicative enough to represent
the deterioration behaviour, and allows us to use them to separate assets into groups
and quantify how similar the groups are. This is important because assets with similar
characteristics may deteriorate in a similar way [23].

• Reasoning within a complicated model framework: Often, decisions recommended
by many research studies rely on simplified modelling assumptions to promote model
generalisability across different assets. For instance, the models only distinguish
whether an asset is either working or has failed, while in practice, some assets may
be rated with multiple states, where the deterioration rate between each state is not
constant [60, 196]. Another example would be that the interaction between components
in an asset is often simplified, but in reality, these components could interact quite
differently [196, 99]. This is a common challenge for many traditional approaches:
they implement the simplification to prevent their models from growing exponentially
with the increase of problem complexity and becoming too complicated to manage
[196]. However, the simplifications then mean it becomes impractical to apply them in
some real-world applications.
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In contrast, in many industrial applications, detailed models with practical assumptions
have been developed. The problem is they are designed for specific assets only and
therefore cannot be applied to other assets, such as those with different modelling
configurations. Therefore, there is a discrepancy between approaches from research
and industry which needs to be closed, achieving both practical modelling assumptions
and flexibility.

1.2 Research Objectives

This thesis aims to develop a framework for asset maintenance management to address the
above challenges. It plays a role as a preliminary analysis to guide the detail inspection
activity and supports a variety of maintenance-related decisions in a manageable manner. To
fulfil the aim to support asset inspection and maintenance decisions, this thesis considers the
following research objectives:

I Develop a model that can learn asset deterioration behaviours from data and knowledge.
Show how to encode data with uncertainty inferred from inspection history and how to
derive engineering knowledge from experts that can be used in the model.

II Make use of the feature information to study the relationship between different asset
groups. Use this to leverage the learning of asset deterioration between groups, even
when there is little historical inspection record for some groups.

III Apply the deterioration model to predict the state of a given asset over time. Extend
the deterioration prediction model to support more practical modelling assumptions,
such as an extended description of asset states and the interaction between multiple
components.

IV Use the developed deterioration prediction model in a real-world context, and compare
its performance with other existing methods.

V Develop models that can reason and support a variety of inspection and maintenance-
related decisions, and demonstrate the uses of them using real-world cases.

VI Show how the modelling choices could be effectively managed for maintenance
modelling with various specifications.



1.3 Thesis Structure 5

1.3 Thesis Structure

Figure 1.1 Thesis structure.

The thesis is structured as shown in Figure 1.1, where:

Chapter 2 gives an overview of the problem domain: how to model deterioration and reason
related decisions. It describes the complexity in modelling asset deterioration and the
variety of inspection and maintenance decisions. It also reviews the current practices
for deterioration modelling and decisions support.

Chapter 3 introduces the methodology: Bayesian modelling. Three aspects of the Bayesian
modelling are emphasised: i) learning parameters in a Bayesian statistical model; ii)
Bayesian Networks (BNs) for decisions support; iii) how to extend them in the context
of complex and large-scale system modelling. At the end of the chapter, it summaries
the applications of the BNs in maintenance modelling and points out their current
limitations, which are tackled in the rest of the thesis.

Chapter 4 begins the contributions of the thesis, showing a series of BNs for maintenance
modelling. It covers how to learn parameters of a statistical distribution from data and
knowledge. In particular, it shows how to encode censored data and how we can elicit
knowledge from engineers. For assets with little deterioration data, it shows how to
learn deterioration between similar assets. It also shows how to use the deterioration
model to predict asset condition, and how to extend it with various assumptions.
Models to support repair decisions and maintenance plans are also presented. It
addresses Objectives I, II, III and partly V. This chapter leads to the validation in
Chapter 5 and application in Chapter 6. The developed models are stored in the model
library in Chapter 7.
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Chapter 5 first uses synthesis data to validate the feasibility of applying parameter learning
techniques in learning deterioration. It then uses a real case study to validate the
performance of the proposed models in learning deterioration. After a background
introduction of the case study, it shows how to select a subset of predictive features
and use these features to group similar assets, and further, to build the BNs. The per-
formance of the built models is measured and compared with other existing predictive
techniques. This chapter addresses Objective IV.

Chapter 6 demonstrates the use of proposed methods in supporting a range of decisions
raised from various maintenance-related problems. These decisions are based on
real-world case studies, including asset condition prediction, reliability analysis for
inspection decisions, repair decision evaluation, and maintenance planning. This
chapter addresses Objective V.

Chapter 7 gives the vision to organise models proposed in Chapter 4 for maintenance
problems with different specifications. A framework about how the modelling can be
effectively encoded, and later managed by a decision maker who does not necessarily
understand BNs, is presented. This chapter illustrates the advantage of the framework
by a prototype. It shows how to build BN variants for different maintenance problems
via manipulating a relational database. This chapter addresses Objective VI.

Chapter 8 summarises the contributions of the thesis toward the research objectives and
discusses the future directions of this research.

1.4 Associated Publications

Part of the work in this thesis has been presented in peer-reviewed publications, as follows:

1. Zhang, H. and Marsh, D. W. R. (2016). Bayesian Network Models for Making
Maintenance Decisions from Data and Expert Judgment. In European Safety and
Reliability Conference 2016 (ESREL 2016), pages 1056–1063. CRC Press, DOI:
10.1201/9781315374987 [This paper covers part of Chapter 4].

2. Zhang, H. and Marsh, D. W. R. (2018a). Generic Bayesian Network Models for Making
Maintenance Decisions from Available Data and Expert Knowledge. Proceedings
of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability,
232(5):505–523, DOI: 10.1177/1748006X17742765 [Extended from the conference
paper, this paper covers part of Chapter 4 and part of Chapter 6].

https://dx.doi.org/10.1201/9781315374987
https://dx.doi.org/10.1177/1748006X17742765
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3. Zhang, H. and Marsh, D. W. R. (2018b). Towards A Model-Based Asset Deterioration
Framework Represented by Probabilistic Relational Models. In European Safety and
Reliability Conference 2018 (ESREL 2018), pages 671–679. Taylor & Francis Group,
DOI: 10.1201/9781351174664-83 [This paper covers Chapter 7].

4. Zhang, H. and Marsh, D. W. R. Learning from Uncertain Data, Knowledge and Similar
Groups: Individualised Multi-State Deterioration Prediction for Infrastructure Asset.
In Submission [This paper primarily covers Chapter 5 and part of Chapter 4].

5. Zhang, H. and Marsh, D. W. R. Managing Infrastructure Asset: Bayesian-Based Models
for Inspection and Maintenance Decisions Reasoning and Planning. In Submission
[This paper primarily covers Chapter 6 and part of Chapter 4].

https://dx.doi.org/10.1201/9781351174664-83




Chapter 2

Bridge Asset Management

Figure 2.1 Partial collapse of the Morandi bridge in Genoa, Italy on 14 August 2018 (this
image is taken from [13]).

The sudden collapse of the Morandi bridge on 14 August 2018 (Figure 2.1) tragically
took away 43 lives. Accidents like this add to the concern of maintainers that many bridges
are in poor condition and they may be unaware which need most urgent attention. As a result,
there is a need for an accurate assessment to identify bridges that could transition to a critical
condition in the near future. This change of the condition of an asset, for example, from a
good condition to a critical condition, is referred to as deterioration. The Morandi bridge
deteriorated faster than was expected. Experts suspect the environmental factors played a
role in accelerating this process in this case: the bridge is close to the sea and located in
an industrial area, and sea salt, humidity and local pollutants can induce corrosion of some
bridge components accelerating deterioration. Meanwhile, other factors such as possible
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design flaws, the heavy traffic, and the rainfall that took place during that day may also have
contributed [13]. The joint influence of many factors makes the identification of assets in a
critical condition as a result of deterioration very difficult.

Commonly, regular inspections are made to monitor the condition of an asset, so that if
the asset deteriorates into an unacceptable condition, appropriate repairs are carried out to
improve its condition. Media reports have claimed that regular inspection and repair work on
the Morandi bridge was completed. However, this raises a number of questions including a)
whether the frequency of inspections was suitable for this bridge given its recent condition
and its rate of deterioration and b) were the repairs sufficient to ensure the bridge would
operate safely until its next inspection? These questions are of concern to decision-makers
in the field of maintenance. In order to reduce the risk of having accidents such as the
collapse of the Morandi bridge, we would like to be able to provide an accurate deterioration
prediction and use it to make suitable decisions about maintenance.

This chapter introduces the background to this challenge of managing bridge assets
inspection and maintenance activities. Though the focus on this thesis is bridge assets, we
believe our methodology is generic that could be applied to many types of infrastructure
assets such as roads and railways. Section 2.1 introduces the concepts and current practices
for bridge asset maintenance. Section 2.2 focuses on the data that is available to learn and
understand the rate of decay, it introduces the deterioration time data that can be inferred
from inspection records and how to manage the causes of deterioration differences between
assets. Section 2.3 focuses on the modelling of deterioration, it introduces what techniques
were used to estimate the deterioration rate, and what modelling assumptions are often made
when applying these estimations in practice. Section 2.4 focuses on decisions support, it
reviews the types of decisions and techniques usually used when making these decisions. A
summary is given in Section 2.5.

2.1 Introduction to Bridge Asset Maintenance

This section introduces the key concepts for bridge asset maintenance, including asset
compositions in Section 2.1.1, asset condition in Section 2.1.2, deterioration and factors that
may affect its rate in Section 2.1.3, and inspection and repair activities in Section 2.1.4. A
summary is given in Section 2.1.5.
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2.1.1 Bridge Components

Typically, a bridge can be considered as a large system that comprised of many components
[173]. As a result, the maintenance of a bridge often refers to the repair of an individual
component or a group of components.

Figure 2.2 Components of a typical masonry arch bridge [144].

Figure 2.2 shows an example of a masonry arch bridge and its components described in
Rafiq et al. [144]. This bridge is decomposed into six types of components. Considering
the bridge as a system, these components are organised as its two subsystems: the deck
subsystem and the support subsystem. A bridge deck refers to the surface of a bridge, it is
used to carry the loads of the bridge (e.g. pedestrians or trains), in this example, it is made
up of the parapets, the spandrel wall, the face ring and the barrel arch. In this example, the
bridge support – the structure that holds up the deck – is made up of the wing wall and the
abutments. In Great Britain (GB, the United Kingdom excluding Northern Ireland), Network
Rail describes these subsystems (deck and support in the above example) as major elements
of a bridge, and the components within each subsystem are described as minor elements
[126]. This example is later used as a case study in Section 6.2.

2.1.2 Bridge Asset Condition

A means to judge the condition of an asset or its component is needed, with the overall aim
of providing an indication of whether the asset or component is likely to fulfil its function.
A common approach is to use a grading system, which distinguishes a fixed number of
condition states. The intention is that the worse condition grades correspond to increased
deterioration and therefore a greater risk of failure. However, since the evaluation of the
condition may only look at visible defects, the relationship between the condition and the
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actual state of the asset may be complex. We describe two examples of these grading systems,
one from the GB and the other from the United States of America (USA).

For bridges managed by Network Rail in GB, the condition of a bridge component is
recorded when performing an inspection using a marking index called Structures Condition
Marking Index (SCMI)[126](recently renamed to the Bridge Condition Marking Index
(BCMI)). A BCMI score ranges from 0 to 100, where 0 represents a component in extremely
poor condition, and 100 presents the element in perfect condition. Generally, a BCMI score
above 80 is considered to be in good state and below 45 is in poor condition. For example,
Rafiq et al. [144] modelled the condition of each component of a bridge as a three-state
variable, namely, poor (BCMI range from 0 to 45), fair (BCMI range from 46 to 80) and
good (BCMI range from 81 to 100) [144].

Table 2.1 Description of the grading system for bridge component in the NBI database [182]

Rate Condition Description

9 Excellent -
8 Very good No problems noted
7 Good Some minor problems
6 Satisfactory Structural elements show some minor deterioration
5 Fair All primary structural elements are sound but may have minor

section loss, cracking, spalling or scour
4 Poor Advanced section loss, deterioration, spalling or scour
3 Serious Loss of section, deterioration, spalling or scour have seriously

affected primary structural components. Local failures are possible.
Fatigue cracks in steel or shear cracks in concrete may be present

2 Critical Advanced deterioration of primary structural elements. Fatigue
cracks in steel or shear cracks in concrete may be present or scour
may have removed substructure support. Unless closely monitored
it may be necessary to close the bridge until corrective action is
taken

1 Imminent
failure

Major deterioration or section loss present in critical structural
components or obvious vertical or horizontal movement affecting
structure stability. Bridge is closed to traffic but corrective action
may put back in light service

0 Failed Out of service - beyond corrective action
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Similarly, in the USA, the condition of a bridge component is also rated with a grading
system. The health of a bridge is monitored through periodic bridge inspection (usually every
two years) and recorded in a national database called National Bridge Inventory (NBI). Since
the NBI database is publicly available and records a standard structure inspection, we use it
in this thesis (Chapter 5 and 6). It archives unified information for over half a million bridges
and tunnels in the US following the national inspection standard since 1992. In 2018, there
are 616,096 bridges and 503 tunnels recorded in the NBI database. Recently, the Federal
Highway Administration recategorized the NBI database so that from 2018, tunnels data has
been separated out of the NBI database into a separated database called National Tunnel
Inventory. To avoid future confusion, the phase ‘NBI database’ in this thesis refers to the
bridge data only. The inspection evaluates the conditions of the bridge component deck,
superstructure, substructure and culvert on a 9 to 0 scale with a one-point interval. In the
grading system, 9 represents excellent condition and 0 represents the failed condition (see
Table 2.1 for a description). In general, a condition rating of 4 or lower quantifies a bridge as
structurally deficient. As a result, this bridge may require speed or load restriction to ensure
safety.

These two examples describe the grading systems for condition evaluation of asset
components. To evaluate the overall condition of the bridge, we can aggregate the component
conditions. For example, in Rafiq et al. [144], each minor element (component) is given
a weight representing its contribution to the overall bridge condition. This is done in two
stages: the conditions of the minor elements are aggregated, proportional to their weights, to
give the condition of major elements; these are then further aggregated proportionally to give
the overall condition of the bridge. Another example is from the NBI: a bridge is considered
as structurally deficient when any of its components are in a poor condition (condition rating
of 4 or lower). The relationship between condition of components and condition of its asset
as a whole vary between assets, this is further discussed in Section 2.3.3.

2.1.3 Deterioration Mechanisms

The deterioration process of an asset is the decrease of its functionality over time [133].
For example, the deterioration of a concrete structure can involve cracks. A crack usually
starts from a point of stress concentration and propagates across the structure. The crack
may expose the steel reinforcement to the air as shown in Figure 2.3, resulting in corrosion
of the steel reinforcement. Expansion of the corrosion products (i.e. iron oxides) of the
steel reinforcement may form further cracks in the concrete structure. Once the cracks
reach a critical size, the structure fractures and separates into parts. Damages like cracks,
with visible signs of deterioration, are usually easy to identify during a regular inspection.
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Ryan et al. [146] has provided a comprehensive list of deterioration signs to help engineers
identify the deterioration of some bridge components. But for hidden components that
cannot be observed directly, their deterioration cannot be inspected from visual inspections.
For example, to evaluate the deterioration of post-tensioning tendons, we need to perform
expensive inspection like an intrusive inspection, such as drilling holes, so that we can
determine the deterioration level inside the structure [96]. To schedule these inspection
activities, we need to predict how long an asset or a component is likely to take to deteriorate
to an unsafe condition.

Figure 2.3 Concrete structure with cracks and tensile steel reinforcement showing [146].

Since the condition of an asset is assessed using a fixed number of condition states, the
deterioration of the asset can be modelled by the rate its condition transitions from its existing
state to a worse state. To estimate this rate of deterioration, we need to understand the causes
of the differences between deterioration rates. For example, age plays an important role
in influencing the rate of deterioration: an older bridge may deteriorate more quickly than
one that is less old. Another example is the loading of the structure: a bridge with a higher
traffic volume may deteriorate more rapidly than a less loaded bridge. There are many factors
associated with an asset that potentially can impact its deterioration rate. For example, in
the NBI database, the recorded factors range from year of built, maintenance agency, deck
structure type, structure length to average daily traffic. In total, there are around a hundred
features recorded for each bridge in that database. This leaves us a question about which
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factors are more influential on the deterioration rate, and the levels of their impacts; we
address this question in Section 2.2.2.

2.1.4 Inspection Regime and Repair Policy

An on-site periodic inspection is a traditional way to collect information about asset condition,
with a fixed interval between inspections [174]. For example, the maintenance regime
operated by Network Rail has two types of bridge inspections: one is the annual visual
examination that looks for changes in the condition of the structure as a whole since the
last examination; the other one is the detailed examination, which is performed every six
years to look at all parts of the structure to determine their conditions and the extent of their
deterioration. In the US, bridge inspection is performed with a biennial regime. To reduce the
risk of having accidents like the collapse of the Morandi bridge, we either need to increase
the frequency of inspection - that means a higher cost; or predict the deterioration of the asset
over time, so that we can schedule an inspection at an appropriate time for each asset. Later
Section 2.4.1 reviews how these decisions are made.

The repair cost generally increases as an asset deteriorates, therefore, to reduce repair costs
while keeping the asset safe, it is important to implement a suitable repair policy. Preventive
maintenance performs repairs at a fixed time interval or age (time-based maintenance),
regardless of the condition of the asset. This is a common policy, but it is more suitable
for an asset that deteriorates at a constant rate, is less critical to safety and reliability, or
has a lower maintenance cost [166]. In contrast, predictive maintenance recommends repair
action based on the condition of the asset estimated from its deterioration (condition-based
maintenance). This policy is more suitable for an infrastructure asset as its deterioration is
often more uncertain, it is more safety critical, and its maintenance is often more expensive.

A maintenance policy should explain how to choose the best repair action given the
current condition of the asset. Some repair actions can only be applied to resolve specific
defects of a structure. For example, filling can only be used to structure with a sign of
cracking. But in some cases, there is more than one repair option available to improve the
performance of an asset. For example, for bridge deck with cracks, repair options include an
epoxy overlay, filling cracks and patching.

Further, the effectiveness of different actions varies. Some actions can restore the asset’s
performance to as good as new, but others can only improve it slightly. Michigan Department
of Transportation [116] give several examples: comparing an epoxy overlay, which can
restore the condition of a deck to good condition, to patching, which can only improve the
deck condition slightly. Based on their effectiveness in restoring the asset’s performance,
we can classify repair actions into minimal, imperfect and perfect maintenance. Minimal
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maintenance, such as patching, usually fixes an asset temporally to prevent it from failing,
but its effect usually does not last for a long time. Imperfect maintenance, such as an
epoxy overlay, restores an asset’s condition to a better state. Perfect maintenance, such as
replacement, returns an asset back to a state that is as good as new.

From a short-term perspective, engineers would like to know which repair action to
perform as well as the anticipated effectiveness of the repair action. This is further discussed
in Section 2.4.2. From a long-term perspective, we would like to plan maintenance activities,
considering multiple intervention cycles, that can schedule appropriate repair actions at
suitable time satisfying an overall objective, for example, minimal cost while guaranteeing a
good level of reliability. This is discussed in Section 2.4.3.

2.1.5 Summary

A bridge asset comprises many components, and its condition - an indication of the perfor-
mance of the asset - can be evaluated from the condition of its components. The information
about the condition of an asset and its component is usually used to make condition-based
decisions for both inspection and maintenance activities.

Commonly, inspection for a bridge is performed with a fixed time interval, but this regime
is often less cost-effective since it neglects the variation in the rate of deterioration between
different asset. When an asset is deteriorating faster, we should inspect it more frequently
than is necessary for an asset that deteriorates more slowly. Similarly, taking repair action
based on the condition of an asset rather than using time-based maintenance is more suited
for infrastructure asset. With the deterioration prediction, we can, therefore, suggest relevant
decisions for asset maintenance based on its condition.

We can estimate the rate of deterioration to predict the condition of an asset. The
deterioration rate between states describes how fast the transition is and it is influenced by
many factors. After a discussion of the information that can be used to learn deterioration
and how to manage the factors that have impacts on deterioration in Section 2.2, we review
the common techniques were used in the literature in Section 2.3. But applying these
techniques to predict an asset’s condition can be a complicated task - different assets may
have different modelling assumptions, for example, asset maybe rated with multiple states
while the transition probabilities between states are not constant, or asset with multiple
components where its components may interact in various ways. This complexity is also
discussed in Section 2.3. With the prediction of asset condition from deterioration, we can
therefore make relevant decisions. In Section 2.4, we further review what type of decisions
are usually analysed in this field and what techniques were used to suggest these decisions.



2.2 Data for Predicting Asset Deterioration 17

2.2 Data for Predicting Asset Deterioration

Maintainers often record their estimation of the asset’s condition during each inspection, and
an asset management database often contains information about the asset’s features. If these
inspection records and feature information are available, we can use them to infer the rate of
an asset’s deterioration. This section introduces inference from these inspection records and
explains how to select factors that may an impact on the deterioration rate.

2.2.1 Deterioration Time Data

The majority of bridge inspection records are collected from traditional on-site inspections.
These on-site inspections are often performed periodically. Generally, inferring a deteriora-
tion rate requires sufficient data derived from historical asset condition information made
from inspection or maintenance [94].

The deterioration time (also called sojourn time or occupation time in some studies)
of each state can be inferred from condition data and their corresponding inspection time.
Since most bridges are inspected periodically, the inspection data may not reveal the actual
time the structure transitioned from one condition to another: suppose, for example, that
the most recent inspection shows a structure is in state 8 but was in state 9 at the previous
inspection. This situation does not imply the deterioration time from state 9 to 8 is the time
gap between these two inspections: the deterioration may happen anytime between these
two inspections. This limitation in the information available is referred to as ‘censorship’,
introducing uncertainty to the observed deterioration [101]. We know only that the structure
deteriorated before an inspection (left censored), between two consecutive inspections
(interval censored), or after the most recent inspection (right censored), rather than a specific
time point.

Apart from the uncertainty in the actual time of condition changes, for some states, the
number of inspection records is often small. Periodic inspection policy and slow deterioration
process are two main reasons. Since an on-site inspection is conducted only every year or
every few years, this activity usually only provides us with a limited number of records. For
example, as described in Section 2.1.4, in GB, rail bridge visual inspection is every one year
and detail inspection is every six years; while in the US, bridge inspection is performed every
two years. These long inspection intervals can only infer a limited amount of deterioration
data. Besides, since many infrastructure assets, such as bridges, decay slowly, transitions
from one state to another do not occur often. For example, in the 26 years of inspections
recorded in the NBI database, some bridges have not even deteriorated once. Finally, most
of the bridges are in good or fair conditions (at state 5 or over) because maintainers often
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perform interventions to prevent further deterioration when assets are in poor condition. As
of 2017, only 7.7% of the bridges are at state 4 or less that could produce deterioration data
for lower states.

2.2.2 Features Influencing Deterioration

As discussed in Section 2.1.3, there are many features of an asset or its use that can influence
its deterioration rate. It is possible to give a more accurate prediction of the condition of
an individual asset by considering the specific values of the features that impact the rate of
deterioration [177].

Individual structures with same features may share the same deterioration characteristics,
deteriorating at a similar rate. We can use this assumption to separate the overall population
into different groups, so that the deterioration rate is estimated within each group. However,
each structure is often associated with many features. For example, each bridge has over
a hundred features recorded in the NBI database. Considering too many features can be
a disadvantage as it takes too many resources and results in slow computations. More
importantly, after reaching an optimal number of features, increasing the number of features
further causes a decrease in accuracy [80], for example, by overfitting. Therefore, to
provide individualised deterioration predictions, one of the challenges is to reduce the feature
dimension into a small subset. With a few predictive features, we can separate structures into
groups so that, within each group, structures are assumed to deteriorate similarly.

A framework to give individualised deterioration predictions in this way was developed
in Chang [23]. It first reduced the feature dimension of the dataset to select a small subset of
features as important features, and then grouped assets with the same feature values. Each
group was modelled using a Markov model to model multi-state deterioration, the transition
probabilities of the Markov model were learned using logistic regression. Individualised
deterioration prediction was then performed based on the group the asset belongs to. In
Chapter 5, we compare this approach with our methods.

To reduce the dimension, Chang [23] first conducted a covariance analysis to remove
highly correlated variables and later used a penalised regression to rank features based on
their importance in deciding the deterioration time. Feature selection has been intensively
studied in the feature engineering domain. Unlike feature extraction methods, such as
Principal Component Analysis, that synthesise new features which may not have intuitive
meaning, feature selection is more suited to the problems addressed in our work since it
finds a subset of features from the candidate pool. These features are more meaningful than
synthesised features, so can be interpreted by engineers.
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Based on the assumption that we can remove many less relevant features without losing
too much information on the response variable (e.g. the deterioration time), feature selection
aims to reduce the set of features to a manageable size that is still representative enough to
reflect the variability of behaviours. Plenty of techniques have been developed for feature
selection, of which, filter and wrapper methods are the two most developed areas.

Filter method applies a statistical measurement to evaluate the feature space. Because
of its computational efficiency, it is usually used as a preprocessing technique. Chang et al.
[24] measured the correlation between variables in the NBI database. Strongly correlated
variables (with a correlation over 0.90 or smaller than -0.90 as suggested by Ayyub and
McCuen [10]), considered to imply redundant information, were identified. Among those
highly correlated variables, they only kept the features with the highest correlations with
the response variable and eliminated the rest. This method can slightly reduce the feature
space size while maintaining the predicting power of the features. However, we still need
further dimension reduction, because, among the remaining features, many of them do not
have strong correlations with the response variable.

Wrapper methods evaluate a subset of features, where different combinations are gener-
ated, evaluated and compared with other combinations. A learning model is used to estimate
a subset of features and assign a grade to each combination based on a given model metric.
Various studies have been proposed to study the feature importance [181], of which, random
forest is one of the most popular methods. Unlike penalised regression applied in Chang [23],
random forest does not assume a linear relationship between the features and the response
variable (e.g. deterioration time). Random forest is an ensemble method used to performs
variable importance evaluation by weighting multiple decision trees independently developed
from bagged training samples.

In the random forest, each node in the decision trees is a value of a single feature that is
designed to split its descendent nodes, so eventually similar response variables end up in the
same pool. Two importance measurement functions of the features proposed by Breiman
[20] are commonly used in the random forest: Mean Decrease Impurity (MDI) and Mean
Decrease Accuracy (MDA). MDI searches to spilt which variable would give the lowest
purity (for example, Gini impurity) given the response variable. Within a tree, each feature
is evaluated by how much changing the value of the feature would decrease the weighted
impurity of the tree. The impurity decrease from each feature are thus averaged in the forest,
and the features are ranked accordingly: the lower the decrease in the impurity the better.
MDA measures the loss of accuracy. By randomly permuting the value of a single feature
that matches the distribution of the samples, this algorithm computes the accuracy of the
tree given the response variable. By repeating this process for each feature, the mean loss
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of accuracy of each feature in the whole forest is obtained and used to rank the features
accordingly.

Strobl et al. [165] made a comparison between these two measurements. It reveals that
MDI measurement is biased towards features with more categories. This bias is a challenging
problem for the NBI dataset because it involves mixed data types, where some are binary
(e.g. whether the structure is flared) and some have more than 20 categories (e.g. feature
maintenance responsibility has 29 categories). Though Strobl et al. [164] later claimed that
MDA measurement is also biased as it favours features highly correlated to other variables.
To avoid this, when applying the MDA measurement, we can first preprocess the feature
space to remove variables that are highly correlated with any of the features.

Though Chang [23] provides us with a framework to perform individualised prediction,
the challenges of uncertainty in the deterioration data and learning the deterioration rate
for those asset groups with limited data amount remain untouched. Since it is possible to
separate assets into different groups by their feature values, we could use what we have
learned about large groups to help to learn the deterioration rate of asset groups with limited
data. Later in Chapter 4 we develop a model based on this idea and validate it in Chapter 5.
Section 5.3.1 gives more details about how we perform feature engineering in our case study.

2.3 Techniques for Modelling Deterioration

With the data from Section 2.2, we can predict asset condition by estimating the rate of its de-
terioration. In this section, we first review a list of deterioration rate estimation methodologies
in Section 2.3.1. We classified these methodologies into two types: point estimation tech-
niques that predict deterioration using single-valued parameter(s), and statistical technique
that describes deterioration with a probability distribution.

As explained in Section 2.1.2, the condition of an asset is usually expressed using a
grading system of multiple states, for example describing condition of bridge component
using index from 0 to 100 in Network Rail managed bridges and condition of bridge structures
are rated from state 0 to state 9 in NBI database. The techniques described in Section 2.3.1
cover only the binary case, of working or failed. We now describe how the techniques have
been extended to the more general case of multiple condition states in Section 2.3.2.

We also consider in more detail the problem already described in Section 2.1.2 of
distinguishing between the states of components and the overall state of an asset. In Section
2.1.2, two simple configuration examples were described; here in Section 2.3.3, we cover
more explanation about how they would be modelled that draw on standard reliability
techniques for analysing systems with various configurations.
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2.3.1 Estimation of Deterioration Rate

A range of techniques has been proposed to estimate the rate of asset deterioration, in this
section, we distribute them into two types: a) point estimation techniques to produce the best
estimate of an unknown population parameter to predict deterioration and b) techniques that
describe deterioration with a statistical distribution.

Point Estimation Technique

A time-dependent stochastic process {X(t), t ≥ 0}, where X(t) is a collection of random
variables for all t ≥ 0, is one primary form when modelling deterioration [50]. The variable
X(t) gives the state of the system – for example, working or broken – at time t. Among the
stochastic processes, most studies assume deterioration to be a Markov process [12]. Markov
process is a stochastic process where the future state only depends on the present state (this
Markov property is very useful for modelling of multi-state asset deterioration, it is further
emphasised in the next section). In deterioration modelling, the transition from one state to
another state is represented by the transition probability. Followed the Markov property, the
conditional probability of moving into future state St+1 at time t +1 given the present state
St at time t is:

P(Xt+1 = St+1|Xt = St , . . . ,X1 = S1,X0 = S0) = P(Xt+1 = St+1|Xt = St) (2.1)

Extensions of the Markov process, such as Brownian motion with independent normal-
distributed increments and decrements, and the gamma process with independent gamma-
distributed increments are also widely researched in deterioration modelling. These exten-
sions are further discussed and compared in Van Noortwijk and Pandey [172], Frangopol
et al. [50] and Gorjian et al. [58].

Point estimation is often used in these studies to estimate the transition probabilities of
stochastic processes. Point estimation produces a single value that can best represent the
population parameter. A range of methods can be used to fit the transition probability, such
as maximum likelihood estimation for Markov process in Kallen and Van Noortwijk [75]
and method of moments for gamma process in Ohadi and Micic [130].

Meanwhile, with the development of machine learning techniques in recent years, several
approaches have been employed as alternatives to the stochastic process to model and predict
asset deterioration with point estimators. Instead of estimating the transition probabilities like
what stochastic processes do, these techniques describe the deterioration rate as an arbitrary
linear or nonlinear function. For example, Winn and Burgueño [184] built an Artificial
Neural Networks model for bridge deck condition prediction, which was further improved



22 Bridge Asset Management

by an Ensemble Neural Networks. Similarly, Fink et al. [49] adopted a Multilayer Feedfor-
ward Neural Networks based on Multi-Valued Neurons to provide time-series aggregated
predictions for railway turnout system’s deterioration. These two examples describe the
deterioration process in the form of a linear regression and a nonlinear regression respectively,
and output the best-estimated values of deterioration given the age of assets.

Though these studies have shown remarkable performance for aggregated prediction of
the global population - for example, how many assets will fail in the next 10 years; they also
agreed that current approaches from point estimators suffer difficulty to provide an accurate
prediction for individuals - for example, for two assets with the same age, which asset is
more likely to fail. Also, in these studies, deterioration time was assumed to be precise
(complete data, describing exactly how long does it takes for an asset to deteriorate) and the
data size was big, whereas in practice, as discussed in Section 2.2.1, data are often censored,
and for some specific type of assets, the amount of data is relatively small. Some studies
had tackled the limitation of the current approaches applied in this field when dealing with
data uncertainty. For example, Ferguson et al. [47] modelled the uncertain data as censored
survival time within a Markov model. To evaluate the transition probabilities, they employed
a non-parametric estimator called Datta-Satten estimator for hazard rate function estimation.
This methodology has been applied many fields, for example, in predicting the deterioration
of patient’s clinical states [31], but not in reliability. Later in Section 5.4.3, we compare
the performance of this method with our proposed methods. However, most other methods
are still data-driven approaches and did not take deterioration uncertainty between different
individuals into consideration.

Statistical Distribution Technique

Unlike point estimation technique, which describes the deterioration probability from one
state to another state with a single value, a parametric statistical distribution expresses its
prediction with a stochastic function that takes the uncertainty during the deterioration process
into consideration [157]. With a statistical distribution, we can describe the deterioration with,
for example, an interval estimation. An interval estimator consists of a range of plausible
values; we can represent them in the form of confidence or credible intervals. These statistical
techniques are also often applied to deterioration prediction [50]. In a lifetime distribution,
the expected lifetime of an asset is derived from its likely time to failure. A set of failure
time data is gathered and fitted to a statistical distribution, describing the failure probability
of an asset at a given time. The lifetime distribution function (denoted as F) is:

F(T ) = Pr(T ⩽ t) (2.2)
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where t is the time point, Pr denotes the probability and T is a random variable stands
for the time to failure. This means the lifetime distribution function is the probability that the
time to failure T is greater or equals to a specified time point t.

Therefore, the failure rate (denoted as λ ), representing the probability of the asset has
been working for a time t, but will fail with an additional time dt is:

λ (t) = lim
dt→0

Pr(t ⩽ T < t +dt)
dt ·Pr(T > t)

(2.3)

Various statistical distributions have been used to fit asset deterioration behaviour. For
example, He et al. [67] and Guler et al. [63] use exponential distributions to estimate the
deterioration of the railway track. Studies of bridges in Agrawal et al. [3] and railways track
in Andrews [5] provide two examples showing the use of Weibull distributions to model a
range of asset deterioration behaviours.

In Le [94], lifetime data of bridge components of the same type and material are grouped
to fit with a series of distributions. The fit of different distributions including normal,
exponential, lognormal and Weibull distributions are compared using Anderson-Darling tests.
Weibull distributions have the closest fit in most cases. Given this result and its versatility
in describing a range of deterioration behaviours, the Weibull distribution is adopted in this
thesis.

Apart from the advantage of allowing us to represent prediction in the form of an interval
estimator, another advantage of using a statistical distribution is the interpretability over its
parameters. For example, in a Weibull distribution, its probability density function (pdf) over
time t is:

f (t) =
β

η
(

t
η
)β−1e−( t

η
)β

, f (t)≥ 0,β ≥ 0,η ≥ 0 (2.4)

and is characterised by parameter shape β and parameter scale η . For example, with a
shape value that is lower than 1, we can model a failure rate that decreases with time while
a shape greater than 1 describes wear-out, giving an increasing failure rate. For a given
shape, increasing the scale increases the mean failure time [73]. The interpretability of the
parameters gives a natural way to extract knowledge from engineers, which may reduce the
need for data. A more detailed explaining about how to elicit this knowledge will be disused
in Section 4.1.3.
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2.3.2 Applying Deterioration Estimation with Multiple Conditions

The techniques described in Section 2.3.1 cover only the binary case, of working or failed.
We now describe how the techniques have been extended to the more general case of multiple
condition states. For an asset that is rated with multiple states from 1, . . . ,k, state k is the
perfect state and state 1 is the worst state. We can define the probability of structure i being in
state j at time t as pi, j(t). Since the states are mutually exclusive, the probability distribution
of the state of structure i at time t can be represented by a complete collection of its states:

k

∑
j=1

pi, j(t) = 1 (2.5)

Deterioration with multiple states can be modelled using a Markov chain by a sequence
of states representing the condition of an asset system over time (e.g. condition rating from
0 to 7 in Agrawal et al. [3]). This use of Markov models has been studied by, for example,
Cesare et al. [22] and Jiang et al. [74], who applied Markov models to predict the state
distribution of bridges, and Shafahi and Hakhamaneshi [152], who used it to predict track
condition rating with multiple states. These Markov models maintain the Markov property
(see Equation 2.1), where the probability of a state transition depends only on the current
state.

To evaluate all possible transition probabilities from one state to another state during a
transition time interval t, we can build an S×S (S represents the total number of possible
states) one-step transition matrix as shown in Equation 2.6. An m-step transition matrix,
representing the probabilities of moving from one state to another state in m transition time
interval, can be calculated by multiplying of the matrix m times with itself [50].

P =


P11 P12 P13 . . . P1S

P21 P22 P23 . . . P2S

. . . . . . . . . . . . . . . . . . . . .

PS1 PS2 PS3 . . . PSS

 (2.6)

However, the probability of a state transition in a Markov model does not relate to the
time an asset has been in the current state [94]: it implies all transitions between states occur
at a constant failure rate, leading to exponentially distributed failure rates. This assumption
is not suitable to describe a deterioration phase (e.g. the wear-out process) where we have
an increasing deterioration rate [19]. We can overcome this limitation with a semi-Markov
model that assumes the residence time in a state between transitions follows a specified
distribution. A semi-Markov process is a stochastic process follows two independent random
processes which evolves over time.
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In a n states asset, the transition time from Si to S j is denoted as Ti→ j, with a probability
density function fi→ j(t) and survival function Si→ j(t). Since asset deterioration is incremen-
tal (without intervention, asset condition gets worse over time), i ⩽ j, and i = 1,2, . . . ,n−1
and j = 2, . . . ,n, from Equation 2.1 we have:

P(Xt+1 = St+1|Xt = St) = pi→ j(t) =
fi→ j(t)

Si→ j(t)−Si−1→i(t)
(2.7)

This equation can be used to calculate the time-dependent transition probability from state
i to j, and to form the transition probability matrix for a semi-Markov process from Equation
2.6. The use of a distribution function in the form of a semi-Markov process is illustrated
in Kleiner [79]. The semi-Markov process is applied to a deterioration model, with each
transition time following a different Weibull distribution. This enables the modelling of an
asset with multiple states where each transition between states follows a different distribution.
Droguett et al. [39] gave another example of multi-state system failure, where transitions
between successive states are modelled using a semi-Markov process. They modelled several
distributions, including exponential, Weibull and lognormal distribution and discussed the
difference between their deterioration features.

2.3.3 Condition of a Multi-Component System

As well as wanting to predict the future condition of an asset as a single unit, we also wish to
estimate the condition of an asset from that of its components. We refer to the arrange of
the components of an asset with multiple components as its configuration, with various type
of configurations depending on the interaction between the components. We can classify
the configurations into a parallel system configuration, a series system configuration, and a
bridge structure (a non-parallel or series system) configuration. In Lisnianski et al. [99], such
system with multiple components where additional, the component’s performance can be
described using a scale with multiple states (as described in Section 2.3.2), is referred to as a
Multi-State System (MSS). The notations of an MSS are:

• A system S has n components: S = {E1,E2, . . . ,En}.

• All components and the corresponding system have k states {k,. . . , 1}, where k ≥ 1.
The states are ordered, where k represents the perfect condition, and 1 represents the
worst.

• Ti(u) represents the lifetime distribution of component i in the subset state {u, . . . , k}.
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A system with a parallel configuration fails only if all components failed, and system with
a series configuration fails when one of the components within the system failed. Parallel
structure assumes the capability of the component is replaceable by another component of the
same structure. Therefore, the performance of this asset depends on one available component.
A series structure suggests the system performs step by step along a line of components,
therefore, its performance depends on all components being available.

The lifetime of parallel structure Tparallel(u) and series structure Tseries(u) in the subset
state {u, . . . , k} are given by

Tparallel(u) = max
1≤i≤n

{Ti(u)},u = 1, . . . ,k

Tseries(u) = min
1≤i≤n

{Ti(u)},u = 1, . . . ,k
(2.8)

which indicates that parallel MSS stays in conditions {u, . . . , k} only if at least one of
the components is among these states, and the series MSS stays in conditions {u, . . . , k} only
if all the components are among these states. For example, in the NBI database, a bridge is
considered as in a poor condition when any of its components are in a poor condition. This
can be modelled as a series MSS, meaning the lifetime of the bridge is determined by the
minimum lifetime among its components.

Furthermore, an MSS may consist of a combination of parallel and series systems. We
can treat it as a system with subsystems, while within each subsystem, components are
arranged either in parallel or in series. Extensions to this have been proposed, for example, an
m-out-of-n MSS, where at least m out of n components are functioning, and a standby system,
where part of the parallel subsystem is not active all the time. Tillman et al. [168], Kuo and
Prasad [87] and Kolowrocki [83] have provided us a detail introduction on these extensions.

However, some assets cannot be decomposed into a parallel or a series system since their
components share the total demand or load of the system. Stoll and Garver [163] presented a
typical example, where a power system fails if the full capacity of the interconnected power
plants cannot meet the demand.

This kind of non-series or parallel configuration is called a bridge structure, where
elements of the bridge structure are arranged spatially to share the load (demand), which
implies the components are not statistically independent. Figure 2.4 shows a bridge structure
example: E1 to E4 are components with the same functionality but independent of one
another (e.g. abutments of a bridge), E5 is a critical component in determining the strength
of the structure (e.g. a deck of a bridge) that connecting the remaining components. This
represents a situation that components contribute differently to the objective function (e.g.
the strength of a bridge).
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Figure 2.4 A bridge structure system configuration.

E5 is more relevant to the system performance: changing its state without changing the
remaining components’ states can still largely change the system functionality. Component
relevancy can be therefore introduced in this type of configuration to assess the system relia-
bility. The relevancy of a component is an associated contribution to the system performance,
rather than the internal property of each component [99]. The masonry arch bridge mentioned
earlier in Figure 2.2 presented in Section 2.1.1 is a typical example of a system with bridge
structure configuration. Rafiq et al. [144] evaluated the condition of this bridge by its two
major elements: the deck and the support. And each major element was further assessed by
the conditions of its minor elements. Experts assigned weights to each element, and each
weight represents the relevancy of the element in determining the deterioration of the bridge
as a whole.

2.4 Making Maintenance Decisions from Asset Reliability

As an asset deteriorates, its condition gets worse, therefore, the reliability of this asset de-
creases. Asset reliability is defined as its ability to operate within a level of performance
within a specified time [99], it is one of the most important criteria when engineers mak-
ing maintenance decisions. This section describes decisions draw on asset reliability and
techniques for analysing asset reliability to support these decisions making.

When managing infrastructure asset, we need to make decisions such as when to inspect
which asset. We would like to use the deterioration model to predict the condition of an asset
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at a given time in the future to support this decision. Given a constraint on the acceptable
condition, that is acceptable confidence that the deterioration is not too far advance, this
prediction can guide inspection decisions such as which asset to inspect most urgently and
how often the inspection is needed. This is discussed in Section 2.4.1.

When an inspection suggests a repair is needed, we have to decide which of the different
repair actions to choose to maintain the asset in an acceptable condition. However, the
effectiveness of different actions varies, as does the cost. To select an optimal repair decision,
not only we need to consider the effect of the maintenance in restoring the condition of the
asset, but also the associated cost. This is discussed in Section 2.4.2.

By understanding the rate of deterioration of an asset and the effectiveness of the available
repair actions, we can plan an asset future maintenance work considering multiple interven-
tion cycles. The challenge of maintenance planning is to use appropriate maintenance actions
at suitable timing cost-effectively while satisfying a set of criteria. Section 2.4.3 discusses
how these maintenance plans can be made.

To end, in Section 2.4.4, we discuss the common analysis techniques used in maintenance
reliability that help engineers make these decisions.

2.4.1 Inspection Decision

The condition of an asset reflects the risk of it being at a critical state that requires intervention.
As the probability of reaching an unacceptable condition rises the risk increase; we can set a
threshold on the risk as the maximum allowable probability of an unacceptable condition.
For example, bridges in Great Britain that are in Poor condition need major repairs, and
in Very Poor condition require replacements [94] while bridges in the US at state under 5
(structurally deficient) require immediate repair [182].

After the estimation of deterioration rate, we can reason about the condition distribution
of an asset given a time; this condition can be used as an indication about how reliable the
asset will be. A reliability function is used to measure the probability the system did not fail
before moment t. For a binary-state system, the reliability function is the survival function.
T represents the time to failure; its probability density function denotes as f (t), and its
cumulative distribution function denotes as F(t):

R(t) = P(T ≥ t) =
∫

∞

t
f (x)dx = 1−F(t) (2.9)

For a repairable system, we can characterise it by the Mean Time To Failure (MTTF)
and for a non-repairable system, we can characterise it by the Mean Time Between Failure
(MTBF):
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∫
∞

0
R(t)dt =

∫
∞

0
t f (t)dt (2.10)

For example, the MTTF of a Weibull distribution µ (Equation 2.4) is:

µ =
∫

∞

0
t f (t)dt =

∫
∞

0
t
β

η
(

t
η
)β−1e−( t

η
)β

dt = ηΓ

(
1+

1
β

)
(2.11)

For an asset with multiple states rated from {k, . . . ,1}, where state k is the perfect state
and state 1 is the worst state as defined in Section 2.3.2. Let T (u) represents the time to
transit to state after u. At moment t, a structure’s reliability is its probability stays in state
{k, . . . ,u}, represented as R(t,u). Conversely, the structure’s unreliability (falling into an
unacceptable state) is its probability of staying in state {1, . . . ,u}, represented as F(t,u):

R(t,u) = P(T (u)≥ t)

F (t,u) = P(T (u)< t)
(2.12)

We can have the MTTF, representing the mean time of the system transit to the subset of
unacceptable states {1, . . . ,u}, where E· represents the expectation of the pdf: E{T(u)}

For an asset with multiple components, from Lisnianski et al. [99], we have the reliability
of asset in parallel and in series configurations:

Rparallel(t,u) = 1−F1(t,u)∩F2(t,u)∩ ...∩Fn(t,u)

Rseries(t,u) = R1(t,u)∩R2(t,u)∩ ...∩Rn(t,u)
(2.13)

In the case where each element’s reliability is mutually exclusive (each component is
independent from other components), we have the simplified version of Equation 2.13:

Rparallel(t,u) = 1−
n

∏
i=1

Fi(t,u)

Rseries(t,u) =
n

∏
i=1

Ri(t,u)
(2.14)

For a bridge structure configuration (non-parallel or series system), the relevance of an
element is its contribution to the overall system performance, rather than an intrinsic property
of each element [99]. Therefore, it is defined in terms of the reliability performance of each
element. Denoting the relevance (weight) of element i as wi, we have:

Rnon(t, u) = F(R1(t,u), ..., Rn(t,u), w1, ..., wn) (2.15)
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Given a prediction about an asset’s future condition, we can determine the reliability of
the asset. The reliability can be used to suggest inspection decisions, including finding a
suitable asset for inspection and finding a suitable time to inspect.

We can prioritise assets for inspection based on their risks of deteriorating to an un-
acceptable level. A simple way to do this is to rank the risk associated with each asset
according to the most recent inspection result. For example, a bridge in poor condition at
its latest inspection may require a more urgent intervention than a bridge showed no sign of
deterioration. However, this may not always be true since it neglects the future deterioration
of the asset, and therefore can lead to inaccurate risk ranking. For example, Stewart [161]
gave an example of a bridge that has no sign of deterioration turned out to have a higher risk
of failure in the next five years than a bridge already in a poor condition. He explained that
although the bridge shows no sign of deterioration in the most recent inspection, it had a
higher traffic volume than the other bridge, leading to a faster deterioration rate. The use of
deterioration prediction can mitigate this by considering the further deterioration of an asset.

Stewart [161] suggested using a time-dependent reliability analysis. Structural failure is
likely to occur when the statistical distribution of load exceeds the distribution of resilience
(the ability to cope with the exceeded loading). In his work, the result of the prediction is a
probability distribution rather than a point estimate from the most-possible prediction, we can
measure the risks by the reliability for a given state threshold. The threshold is not necessarily
equal to the time of a complete failure. Stewart and Rosowsky [162] have suggested that
for inspection planning purpose, it is more meaningful to calculate the reliability based on
the time to the initiation of the sign of corrosion, cracking or spalling, rather than the time
to collapse of the structure. Thus, by comparing the probabilities of different structures
reaching a defined state limit, we can adjust inspection priority accordingly.

The reliability of an asset can also be used to determine a suitable time for an asset’s
inspection. For critical infrastructure, the interval between successive of inspection can be
a fixed time or a variable time. Traditionally, inspection is performed using a fixed (static)
interval that is independent of the asset’s current state. For example, as described in Section
2.1.4, Network Rail managed bridges from GB are inspected annually or every six years
depending on the level of inspection complexity, and bridges in the NBI from the US are
inspected every two years. This policy with static inspection time interval is also easier to
execute in practice, and it is the principal policy of most current maintenance practice [174].

A dynamic inspection policy which schedules the inspection times based on the current
and predicted future states could provide a more cost-effective inspection plan. Given the
predicted states, the inspection time is determined using a predetermined failure threshold
that ensures an asset operates within an acceptable level of reliability. For example, Wang
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and Liu [176] modelled different inspection levels with varying time intervals that vary based
on the states of the components and a threshold level for each state. Hajipour and Taghipour
[65] modelled a non-periodic inspection scheme that takes the degree of deterioration and
corresponding reliability into consideration. The reliability can provide information about
the probability of an asset deteriorating to a dangerous state in the future. Hence, decision
makers can use this information to decide on inspections or repairs to reduce this probability
to an acceptably low level.

2.4.2 Repair Decision

Maintainers perform a repair action when there is an indication (from inspection or prediction)
that the asset is in a repairable condition. As described in Section 2.1.4, repair actions can be
classified into three types: minimal, imperfect and perfect. Different maintenance strategies
have been implemented considering these differences.

Nakagawa and Kowada [121] defined the reliability properties of an asset that undergoes
a minimal maintenance strategy. They explained the use of this strategy with a system that
is replaced periodically at a scheduled time, with minimal repairs between the replacement.
Executing this policy may be cost-effective, and is especially suitable for a system with
many identical components [141]. However, applying this policy may result in low system
reliability, and it is not suitable for maintaining safety-critical infrastructure, such as bridges,
where the consequence of failure is catastrophic.

Some repair models consider only perfect repair actions, such as replacement and renewal
[36], as this is simpler when analysing deterioration and life cycle cost. However, this strategy
would result in substantial repair cost and is usually only suitable for a structurally simple
system [141].

In between minimal and perfect maintenance, imperfect maintenance is often more
practical. For critical infrastructure, many repair activities do not restore the asset to a
condition which is as good as new but rather to an acceptable level of performance. The
use of a broader range of repair actions, including those that are imperfect, requires more
complex models. Pham and Wang [141], Wang [174] and Wu and Zuo [185] summarised
and discussed a comprehensive list of literature in this area.

Realistically, the repair actions available for critical infrastructure often comprise a mix-
ture of minimal, perfect and imperfect maintenance actions. The Bridge Deck Preservation
Matrix from the Michigan Department of Transportation [116] gives us an example of deck
maintenance. It shows that actions like patching, which is a minimal repair, can slightly
improve the condition of a deck top surface, while a deck replacement is a perfect repair and
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a shallow concrete overlay is an imperfect repair which can bring a deck top surface back to
good condition.

Apart from repair effectiveness, some maintenance strategies also consider other con-
straints, such as system reliability and cost. Wang [174] summaries several types of policies
for single component maintenance. Among them, age-dependent and periodic preventive
maintenance policy suggest maintenance at predefined fixed age and time interval respectively.
They describe the development of these simple policies, from assuming perfect maintenance
by replacement at each intervention [11, 15], to considering imperfect maintenance effects
[141, 175]. Despite the variations, in both age-dependent and periodic policies, maintenance
is independent of the asset’s history of deterioration and do not take the most recent condition
into account. An alternative is a failure limit maintenance strategy [174], which considers
repair when the deterioration, measured by the reliability function for an acceptable condition,
reaches a predefined level.

The failure limit policy ensures asset maintenance is performed at or above an acceptable
level of reliability. After the repair has been completed, the condition of the asset improves
based on the effectiveness of action. Given the new condition distribution, we can measure
the new reliability and its properties such as MTTF. For example, Bergman [16] proposed
an optimal replacement strategy based on a state-dependent failure rate function, and Malik
[106] measured it with its reliability. The range of maintenance policy options has been
extended beyond those based on the effectiveness of different repairs: for example, Dohi et al.
[37] suggest choosing the repair based on a repair cost limit and Dohi et al. [38] choosing the
repair based on a repair time limit. Castanier et al. [21] incorporated the failure time limit
policy and developed a sequential maintenance policy: instead of a fixed inspection interval,
the interval was evaluated using a failure threshold. With the increase in age, most assets
present a need for more frequent repairs [174] and varying the maintenance schedule interval
makes more cost-effective repair decisions possible.

2.4.3 Maintenance Plan

After we understand the deterioration behaviours of an asset and the effectiveness of the
different repair that may be relevant, we can schedule maintenance activities for some time
in the future. How to plan these activities cost-effectively, considering multiple intervention
cycles, have been studied extensively. A review of these maintenance plans can be found
in Wang [174]. These studies also inspired the development among the industry. For
example, the implementation of a bridge management system by the US state transportation
departments know as ‘AASHTOWare’ Bridge Management (formerly known as Pontis) [167].
The system uses Markov models for deterioration prediction, it recommends repair works



2.4 Making Maintenance Decisions from Asset Reliability 33

depend on the prediction, and also, it allows us to plan multiple future maintenance activities
constrained by various objectives, such as cost and reliability.

Maintenance plans can help us better allocate resources and manage asset investment.
For example, when building a new bridge, we would like to perform an asset life-cycle
cost analysis (e.g. in Seif and Rabbani [150]) to estimate the total cost of maintenance in
its expected service life. But as pointed out in Wang [174], an optimal maintenance plan
needs to consider both repair cost and reliability simultaneously. In a finite planning horizon,
for example, in the next 50 years, assets may require multiple interventions. Therefore,
maintenance decisions need to decide suitable repair actions at a suitable time that can balance
the repair cost while ensuring system reliability. This forms a Multi-Criteria Decision Making
(MCDM) problem, and it is often NP-hard [61] because of the complexity of deterioration
rates and system configuration.

MCDM requires an evaluation of multiple conflicting criteria to give optimised solutions,
for example, repair cost and reliability are two conflicting criteria: always repair an asset
can result in a high level of reliability but it also costs a lot. An exhaustive searching of all
possible decision combinations is time-consuming, in the field of asset maintenance, studies
usually apply heuristics to solve these optimisation problems as they can find a good solution
at a reasonable computational time. For example, Tabu search was applied in Higgins [69] to
find the optimal allocation of maintenance activities for rail tracks in a 4-day planning horizon.
Genetic algorithm is another popular heuristic algorithm when planning maintenance, for
example, Audley [9] used it to schedule repair actions for rail track, it helped him accomplish
less than half of the life-cycle cost of a standard (non-optimal) maintenance plan; Le [94]
used it to produce a list of optimal plans (trade-off between component conditions and
life-cycle cost) to select repair options for bridge components in a 60-year planning horizon;
Yang et al. [186] used it to find the optimal combination of pavement repair actions with
maximum remaining life and minimum maintenance cost in a 20-year planning horizon.

2.4.4 Reliability Analysis Technique

A variety of methods have been implemented to help engineers decide maintenance-related
decisions for infrastructure asset. Among them, we have traditional reliability analysis
methods such as Fault Tree Analysis (FTA) and Event Tree Analysis (ETA), as well as Petri
net, which gains more and more attention recently.

FTA and ETA are two commonly used logical representation techniques when modelling
asset systems and inferring decisions. FTA is a top-down approach. It begins with the
consequence and looks downward to search for all possible combinations of causes. ETA
is a bottom-up approach. It starts with an event and looks for all possible consequence
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events. They both are used to make basic decisions, for example, Duan and Zhou [40]
used a modified fault tree to diagnose faults, and Estes and Frangopol [43] used an event
tree to decide whether to replace the deck or not. Nivolianitou et al. [128], Arunraj and
Maiti [8], Mahboob [104] and Shang [154] compared these two traditional techniques in the
reliability area.

Both FTA and ETA assume simple asset configurations. For example, they often assume
the failures of components are independent, repairs are performed at a static time, or when
making decisions, the combination of causes is deterministic [104, 6]. But for critical
infrastructure, their failure interactions are usually complicated, and decisions must take
account of uncertainty. Failing to model complex systems and handle uncertainty restricts
the choices these techniques can suggest. Moreover, the structures of fault tree and event
tree increase exponentially with the increase in, such as the number of components or states
[77, 104], limiting the use of these techniques in maintenance modelling.

Figure 2.5 A Coloured Petri Net example.

The use of Petri nets for maintenance modelling and supporting decisions reasoning has
gained attention recently [179]. In general, a Petri net consists of four fundamental elements:
place, transition, arc and token. In a standard Petri net, tokens are indistinguishable - that
means there is only one type of token. To overcome this, we often extend it to another type
of Petri net: Coloured Petri Net (CPN) [72]. CPN allows a token to have an additional level
of information - a data value called colour. An example CPN is shown in Figure 2.5. A place
can hold tokens and connects to a transition through an arc. ‘P1’ in the figure is a place
that holds a token with colour ‘A’. A transition (e.g. ‘T1’) may fire the tokens to another
place when there are enough tokens, and the corresponding arc is satisfied (e.g. by an arc
expression called a guard function). But the tokens are randomly selected when there is
more than one possible transition, for example, in this figure, since no guard functions are
defined, both transitions ‘T1’ and ‘T2’ are possible routes for token ‘A’ to pass through. This
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non-deterministic firing procedure gives Petri net the power to model reliability problems
with a complex relationship between events [117].

Andrews [5] modelled the deterioration, inspection and maintenance processes of a track
section with Petri nets. The model predicts track condition over time. With Monte Carlo
simulations, the model can investigate the effectiveness of different maintenance strategies.
This model only considers individual track modelling, and later Rama and Andrews [145]
extended it to consider track as a multi-component system. Audley [9] continued the above
work, developing both a single-section track state model and a multi-section track state
model. Monte Carlo simulations are performed to predict the condition distribution and to
investigate the number of intervention actions needed within a specific time. It also applied a
genetic algorithm to find an optimal maintenance strategy.

For reliability modelling, the standard Petri net is often extended as CPN to reduce the
model space. For example, when modelling multiple components, using a CPN allows
multiple occurrences of a component to be analysed using a single subnet by tracking
individuals using different coloured tokens [94, 95]. It can reduce the size of Petri nets and
offer the flexibility to model multiple components. It has been applied in many maintenance
modelling problems, for example, Le and Andrews [95] modelled several bridge components
using CPNs. Each component includes the modelling of deterioration with a non-constant
failure rate and the maintenance effects. They are further combined as a complete bridge
model. Another example is its application in modelling bridge deterioration with a 2D-system
condition scale (condition of a component is rated based on the severity extent rating in
a condition matrix) in Yianni et al. [189]. These models can predict lifetime condition
of components or bridges, estimate the number of maintenance actions needed, or make
decisions like opportunistic maintenance [94, 95, 189]. To evaluate different maintenance
strategies and to perform life-cycle cost analysis, Le [94] implemented a genetic algorithm
to optimise the selection of repair actions based on different repair effectiveness and costs.

However, when combining components with different subnets into a full net, the size of
CPN may still become unmanageable, especially for a system with a complex configuration
[179] (e.g. configurations described in 2.3.3). For efficiency reason, Petri net is often
restricted within a minimum model size in most studies [6]. We need a methodology that
enables modularisation [179], for example, allows us to disassemble the model and perform
analysis in a series of manageable subsections [6].

Reliability analysis in Petri nets is often performed based on Monte Carlo simulations or
their variants. It can lead to inefficiency when coping with rare events or events with a small
number of data [179]. Apart from that, quantitative techniques such as fault tree, event tree
and Monte Carlo simulation techniques evaluate reliability using pure mathematical models,
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while their parameters themselves can be highly uncertain [104]. These techniques use point
estimators (Section 2.3.1), which give up valuable information such as the quantiles of the
parameters. We need a method that can handle this uncertainty while preserving as much
information as possible.

2.5 Summary

This chapter has introduced the background to bridge asset maintenance and reviewed existing
work on deterioration prediction and maintenance-related decision supports. It provides the
background and the motivation for the rest of the thesis.

Section 2.1 presents maintenance-related concepts and practices implemented in most
maintenance problems. Bridge asset comprises of multiple components. The condition of a
bridge or its component is often discretised into several states, where each state represents
a level of deterioration. The rate of deterioration can then be represented by the rate of
transition between states and can be influenced by many factors, such as age and loading.
This discussion leads to two reviews of deterioration prediction: one introduces the data can
be used to estimate the deterioration rate, which is in Section 2.2; the other one introduces
the techniques to model asset deterioration, which is in Section 2.3. With the deterioration
prediction, we can make relevant maintenance decisions. In most current practice, inspection
is performed at a fixed time interval, and most repair policies comprise of various repair
actions with different effectiveness. Section 2.4 describes how these decisions are made and
how they can be improved.

Section 2.2 focuses on the data that can be used to predict asset deterioration. It first
introduces how the deterioration time data can be inferred from inspection records and points
out these data are often uncertain and sometimes we only have a small amount of them. It
also describes how the factors that influence the rate of deterioration and could, therefore,
be used to give a prediction tailored to an individual asset. Since there are many different
features, we described approaches that have been used to select the subset most related to
deterioration. With these features, we can cluster assets into groups by their features, so that
within each group, assets have similar deterioration behaviours.

Afterwards, in Section 2.3 we describe the modelling of deterioration. It first reviews the
techniques for estimation of the deterioration rate, which includes point estimation techniques
and statistical distributions. The limitations of point estimation techniques are explained:
most methods cannot handle uncertainty well and often they require a large number of data
to learn the transition probability. In contrast, statistical distribution gives a framework to
express a stochastic function that considers the uncertainty of the deterioration process over
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time. Using such a function, not only gives us a choice to express prediction as an interval
estimation but also provides us with a platform to express knowledge in its interpretable
parameters. The rest of this section discusses two challenges for asset deterioration modelling.
The first is that an asset deteriorates through a number of states from new to completely
failed: some approaches assume that the transition rate is the same for all pairs of states, but
others allow the rate to vary. The second challenge is handling multi-component systems,
where we can have a range of different configurations, including parallel, series and bridge
structure configurations.

Section 2.4 focuses on the decisions support for maintenance activities. With the predic-
tion of the future condition of an asset from its past deterioration, we can make decisions
about maintenance. To plan inspections, we can either prioritise the assets for inspections
based on their risks of deteriorating to an unacceptable level or determine a suitable time for
inspection. Given estimates of different maintenance actions, we can use a failure limit policy
to decide which repair to perform. The model of deterioration and the effectiveness of repairs
together give a maintenance strategy, so that we can plan the maintenance activities over a
time horizon. Choosing the best maintenance strategy has been studied using optimisation
techniques. The final part of the section discusses the techniques usually used when reasoning
these decisions, it points out most current techniques suffer difficulty in modelling system
with a complex configuration and handling uncertainty.

The problems and challenges that exist in deterioration prediction and decisions supports
are addressed by the methodologies introduced in Chapter 3. Bayesian techniques give us
a framework to describe events with credible intervals in contrast to point estimates, as
well as allowing us to incorporate prior knowledge into models. With these features, in
Chapter 4 we show how to use the Bayesian approach to predict deterioration from data
with uncertainty. We also show how to make use of the influence factors to provide an
individual prediction, and moreover, to group similar assets so that we can learn between
groups. These prediction models are later applied in a case study using the NBI dataset in
Chapter 5, where we compare their performance with other existing methods. To support
maintenance decisions, first we show how to model multi-state and multi-component assets in
Chapter 4, applying the models in Chapter 6 using real-world case studies. We show how to
support a variety of maintenance decisions, including inspection priority and inspection time,
suggesting repair actions and evaluating repair effectiveness. These models are organised
in Chapter 7, where we show how different maintenance model can be built for different
situations in a manageable manner.





Chapter 3

Bayesian Networks and Their
Applications to Maintenance

This chapter introduces the Bayesian modelling methodology and its applications to main-
tenance. Two types of models are discussed in this chapter, one is the Bayesian Networks
(BNs) that use Bayes’ theorem to reason about the relationship between events (variables)
using both prior knowledge and evidence (data), the other is the Bayesian statistical model
that uses Bayes’ theorem to estimate the parameters of a statistical model. The development
of inference algorithms (Section 3.3 below) allows us to use hybrid BNs, which are BNs
with both continuous and discrete variables [118]. We first introduce the two types of model
mentioned above: the BN and the Bayesian statistical model. Subsequently, we use the term
‘hybrid BN’ uniformly.

Section 3.1 uses a simple example to show how to use Bayes’ theorem to reason from
evidence. BNs are introduced in Section 3.2 and used to reformulate the example. This
section also shows how to assign prior probabilities and how BNs can be used to support
different types of decisions. Section 3.3 describes the inference algorithms for Bayesian
models, pointing out the recent development in approximate algorithms that allow us to per-
form inference in a model with both continuous and discrete variables. Section 3.4 discusses
Bayesian statistical models, which represent the parameters of a statistical distribution as
variables in the model. Section 3.5 describes how to extend Bayesian models for complex
problems. Section 3.6 summaries the current applications of the Bayesian models in mainte-
nance modelling, pointing out their potential advantages, which are the focus of the rest of
the thesis.
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3.1 Bayes’ Theorem

Frequentist statistics interpret the probability of an event as its relative frequency in a large
number of samples. In contrast, Bayesian statistics interpret probability as a subjective
degree of belief under uncertainty [52], where this belief may derive from experiments or
prior knowledge (the prior). The Bayesian perspective is wider, as it includes ‘subjective’
probabilities that could not be measured by collecting samples. With this perspective,
probability can be used to reason under uncertainty coherently. When there is a new evidence
(the value of an event, also called an observation), the probability of some hypothesis
(modelled as a variable) is updated using the prior probability of the hypothesis and the
probability of the evidence given the hypothesis (the likelihood function). The new probability
that results is called the posterior probability. Bayes’ theorem therefore provides us with a
mathematical framework to combine prior beliefs with evidence to update our beliefs.

P(H|E) = P(H)P(E|H)

P(E)
(3.1)

Equation 3.1 is the Bayes’ theorem, where E is a new observable evidence and H is a
hypothesis or a model parameter that its probability is affected by E. P(H|E) is the posterior
probability of H given E. P(H) is the prior probability of H before E is observed. P(E|H) is
the likelihood function of the probability observing E given H. And P(E) is the marginal
probability of E, it serves as a normalising constant.

Bayes’ theorem shows how the prior knowledge is updated when a new piece of evidence
is considered. For example, it allows us to adjust a prior belief about a bridge failure given
an observation of its characteristic. In a hypothetical world, 0.1% of bridges failed in the
last decade, and from historical incident reports, we know 30% of these failed bridges were
overloaded for 10 years. Meanwhile, we also know that 20% of all bridges in this world
are overloaded for 10 years. By using Bayes’ theorem, we can measure the probability of
a bridge failure given it is overloaded. Let H represents the event of the bridge is failed, E
represents the event of the bridge is overloaded, from Equation 3.1, we have:

P(H|E) = P(H)P(E|H)

P(E)
=

0.1%∗30%
20%

= 0.15% (3.2)

In the example, when we presented an evidence that a bridge is overloaded for 10 years,
the probability of the bridge failure rises from 0.1% to 0.15%. This process of updating the
probability of variables given information is called Bayesian inference. Here we only have
two variables (event E and H), but when we want to build a model with many variables and
complex dependencies, we can use a graphical model called a BN, which is introduced in
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Section 3.2. With an increase in the number of variables and the complexity of dependencies
between variables, the difficulty of updating probabilities between variables increases sharply.
To perform inference in a BN model, we need an effective inference algorithm and this is
discussed in Section 3.3.

3.2 Bayesian Network

Complex interrelated problems with many probabilistic variables related using Bayes’ the-
orem can be represented as a BN. A BN consists of a graphical structure and a number of
variables. The causal or influential relationships between variables are specified by a directed
graph.

Figure 3.1 A simple Bayesian Network example.

A simple BN example is presented in Figure 3.1, it models the dependencies among four
variables (n = 4): X = {X1, . . . ,X4}. X2 depends on X1 and X4 depends on variables X2 and
X3 so that we say X1 is the parent of X2, while X2 and X3 are the parents of X4; X1 and X3 have
no parents and X4 has no children. The joint probability distribution of a BN is calculated
using the following equation:

p(X) =
n

∏
i=1

p(Xi |parents(Xi)) (3.3)

Here, p(X) is the joint probability of the variables in the BN model, given by the product
of the conditional probability of each variable Xi given its parents. The joint distribution
of this example is p(X1,X2,X3,X4) = p(X4|X2,X3)p(X2|X1)p(X1)p(X3). This calculation of
joint distribution quickly becomes intractable as more variables and dependencies are added
to the BN.
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Many types of variables can be modelled in a BN, they can be classified into two types:
discrete variables and continuous variables. A discrete variable has a finite range of mutually
exclusive values, such as a Boolean variable has two states ‘True’ and ‘False’; a labelled
(categorical) variable has multiple states like ‘Green’, ‘Red’ and ‘Yellow’; a ranked variable
has multiple states with orders such as ‘Low’, ‘Medium’ and ‘High’ (this type of variable
is further discussed later in Section 3.2.2). On the other hand, a continuous variable has an
infinite range of values, for example, any values between 0 and 1. The probability distribution
for such a variable can be defined by an arithmetical function or statistical distributions, such
as those introduced in Section 2.3.1.

Early works on BN were mostly using discrete variables due to the computational
complexity of its inference. Later Section 3.3 discusses how this limitation has been addressed
by studies on inference algorithms, as a result, it allows us to build Bayesian statistical models
with continuous variables as described in Section 3.4.

In this section, BNs are described using discrete variables. We can encode the relationship
of a discrete variable with its parents in the form of Conditional Probability Tables (CPTs).
This table contains the probabilities for each state given every possible combination of the
states of its parents. For variables without any parents, the CPT is the probability distribution
of that variable itself. Section 3.2.1 introduces a simple example of a BN, describing how
its CPTs can be obtained from data or by elicitation from experts. The CPTs can become
large, containing many parameters. Techniques to simplify the number of parameters are
described in Section 3.2.2. Finally, Section 3.2.3 introduces how BNs can be used to model
causal relationships between variables.

3.2.1 An Example BN: Bridge Failure

Recall the example we presented in Section 3.1 about the relationship between bridge
overloading and bridge failure; in this subsection, we represent the same example as a BN.
Bear in mind this is a hypothetical example for illustration purpose. We assume bridge
overloading is one of the reasons for bridge failure and that this leads to an association
between failure and overloading in the data. Therefore, we can model it as a parent of the
bridge failure variable as shown in Figure 3.2. Both variables are modelled with Boolean
nodes with two possible states: True or False. From historical record as described in Section
3.1, we know that 20% of the bridges have been overloaded over the last 10 years the CPT
for the ‘Overloaded Bridge’ variable can be assigned as showed in the figure. The CPT of
bridge failure is conditional on its parent, whether the bridge is overloaded for 10 years.
Hence, there are four possible states. Since as illustrated in Section 3.1, when the bridge is
overloaded, the probability of bridge failure is 0.15%, hence, bridge survival probability is
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99.85%. To assign a probability for bridge failure given bridge is not overloaded, we can
make use of the background information provided previously. Since the state of each variable
is assumed binary, hence, P(¬H) = 1−P(H) and P(¬H|E) = 1−P(H|E). From Equation
3.1, we have:

P(H|¬E) =
P(H)P(¬E|H)

P(¬E)
=

P(H)(1−P(E|H))

1−P(E)
=

0.1%∗ (1−70%)

1−20%
= 0.0875% (3.4)

Figure 3.2 A BN example for bridge failure evaluation and its variable CPTs.

Thus, we have enough information to assign the CPT for bridge failure variable (showed
in Figure 3.2). In this example model, the CPTs are derived purely from historical records
about the events. But in practice, we may not have all the data needed to assign the CPTs.
Furthermore, estimating parameters only from historical data limits us to describe what had
happened in the past, but not things that may happen in the future. For example, if a type
of bridge is newly designed, to estimate its relationship between bridge failure and loading,
there are not enough historical records to construct appropriate CPTs. Instead, we can elicit
them from experts. For example, the engineers may believe this new type of bridge is similar
to an existing type because the two types have similar characteristics such as material and
traffic volume. In this case, the engineers may have the confidence to estimate the CPTs for
the new bridge type by adjusting the CPT of the earlier type.

A variety of studies have proposed different approaches to provide a reliable estimation
of probability in the CPT from experts. Concerns about the accuracy of the assigned
probabilities can be addressed by various probability elicitation approaches, such as verbal
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and numerical probability scale [86] and frequency formats [56]. Another concern was the
inconsistency and bias of the probability; for this, methods such as training workshops for
experts [170] and constant feedback [131] have been developed. A comprehensive guideline
describing the questioning techniques appropriate for building probability assessment from
experts is given by O’Hagan et al. [132].

However, as the number of state combinations of the parent nodes increases, the number
of probabilities in the CPT of child node will increase, making it infeasible to elicit a
probability for every possible state combination from experts or to estimate the parameters
from data. The next subsection describes techniques that can be used to simplify a BN and
reduce the number of values needed in its CPTs.

3.2.2 Simplification of Probability Estimation

Several techniques have been developed to reduce the workload when estimating the CPT
entries, this subsection introduces three of them, which are divorcing variables, using Noisy-
OR function, and using ranked node.

Divorcing Variables

A technique called divorcing [124, 127] can be applied to reduce the combinatorial explosion
of values in a CPT caused by a large number of parent nodes. The divorcing technique
introduces one or more intermediate nodes to act as the child nodes for some of the parent
nodes. These intermediate nodes are eventually aggregated with other non-divorced parent
nodes to form the target child node. By doing so, we can cut down the combinatorial space
of the target child node, thus reducing the total number of probability values need to be
estimated. Notes that this technique can be only applied to a situation where the effect of
divorced parent nodes on the child node is independent of other parent nodes [124].

For example, consider a BN with four variables, each with three states, where variables X1,
X2, X3 are the parents of X4. The resulting CPT of variable X4 representing P(X4|X1,X2,X3)

has 34 = 81 probability entries. Using divorcing, we introduce an intermediate node T as the
child of, for example, variables X1 and X2. T and X3 then become the only two parents of
X4. The original CPT breaks down into two tables representing P(T |X1,X2) and P(X4|T,X3).
The probability entry thus reduces from 81 to 33 +33 = 54. The reduction becomes larger
as the number of states and parent nodes increases. This technique is further developed
as binary factorisation for continuous variables in Neil et al. [123], which will be further
discussed and employed in this thesis later (see Section 4.3).
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Noisy-OR Expression

Another common approach to simplify the elicitation process is to avoid specifying all
probability entries directly by adding some assumptions about the form of the CPT. For
example, Pearl [136] proposed Noisy-OR expression to encode expertise in complex CPTs.
By assuming the effects of parent nodes are independent, Noisy-OR reduces the number of
parameters in the CPT. A leak probability was often added as a dummy parent in an extended
version of the Noisy-OR. This dummy parent is always true in the model, representing all
other causes that are not included in the model. The limitation is that it can only be used
for Boolean variables. Díez [34] proposed the Noisy-Max function to tackle this restriction.
Recently, Noguchi et al. [129] tackled the reasoning limitation of the Noisy-OR function by
perfect its reasoning with conditional inter-causal independence property.

Ranked Node

Fenton et al. [46] introduce the ranked nodes, which reduce the number of parameters needed
to specify a CPT and therefore simplifies the elicitation process. A ranked node has multiple
ordered states, for example, ‘Low’, ‘Medium’ and ‘High’, mapped to sub-intervals in the
range 0 to 1. Encoding knowledge in this way has two primary benefits. One is experts
would find it easier to express their opinions about an event using these states rather than
using numerical values. The other one is it allows us to express the differences between
states with orders, for example, compared to a variable that is rated as ‘Low’, a variable rated
as ‘Medium’ is closer to a variable rated as ‘High’.

See an example in Figure 3.3, which has three variables: the variables ‘Quality of Equip-
ment (C1)’ and ‘Skill of Engineer (C2)’ are the parents of ‘Maintenance Effectiveness (M)’.
Each variable has five states and can be rated from ‘Very Low’ to ‘Very High’. Traditionally,
we can encode these nodes as categorical variables (labelled nodes) where each has five
states. The resulting CPT for node M has 53 = 125 states, which would require extensive
work on evaluating the probability entries. But if we model them using ranked nodes, it
would significantly reduce the number of entries.

Fenton et al. [46] proposed mapping the state of a ranked node to a numerical ordinal
scale goes from 0 to 1 in equal intervals, for example, the state of ‘Very Low’ is mapped to
a numerical range of [0, 0.2), ‘Low’ is mapped to [0.2, 0.4) and so on so forth. Since the
states have been mapped to numerical scales, we can express the CPT of the child node with
a numerical statistical distribution, using a doubly Truncated Normal distribution (TNormal).
TNormal, a normal distribution bounded by lower and upper limits, is applied to generate
CPT of the child node. The TNormal here is denoted as TNormal (µ,σ2,0,1), where µ is
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Figure 3.3 Maintenance effectiveness modelled with ranked nodes.

the mean and, σ2 is the variance, and [0,1] is the bounded finite range. One of the advanced
usages of the ranked node with TNormal distribution is to use the weighted average of its
parent nodes as µ to manipulate the skew of the CPT. Experts can represent their knowledge
as the weights of the events and use σ2 to represent the confidence level of this knowledge.

Figure 3.3 shows an example, where the expression for node maintenance effectiveness
is:

M ∼ TNormal (wmean (0.3, C1,0.7, C2), 0.01, 0, 1)

M ∼ TNormal (·) represents M follows the TNormal distribution. wmean is a shorthand
for a weighted mean function. This function is equivalent to a linear model by averaging the
values of variables (C1 and C2) by their weights (0.3 and 0.7). This means, C2 (with a weight
of 0.7) has a higher impact on M compares to C1 (with a weight of 0.3), and the expert that
assigned these weights has a confidence level of 0.01 (as the variance of the distribution).
Figure 3.3, in which the CPT of M has been assigned in this way, shows the posterior of M
for two different scenarios. In both scenarios one of C1 and C2 is ‘Very High’ and the other
‘Very Low’: in Figure 3.3 (a) the more highly weighted C2 is ‘Very High’ and the expected
value of M is high, while in (b) the expected value of M is lower as the ‘Very High’ C1 has a
lower weight. When relying on expert judgement to form a CPT, the use of ranked nodes
requires many fewer parameters – in this case, just three (a weight of C1, a weight of C2 and
a level of confidence) compared with the 125 probability entries needed if discrete nodes had
been used. The advantage of the ranked node becomes more significant with the increase
in the number of states in each node and the increase in the number of parent nodes. This
technique is later applied in this thesis for evaluation of features’ impact on deterioration
(Section 4.2) and condition evaluation of asset assembled by multiple components (Section
4.3).
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3.2.3 Observational and Intervention BNs

One of the advantages of using BNs is the possibility of modelling causal effects between
variables. With different causal representation, the reasoning process may differ. For example,
inference on a model with a variable that is observed with a state (“seeing”) and the same
state is generated by an intervention (“doing”) is different [160, 137]. These two types of
modelling are named as an observation model and an intervention model respectively.

When performing the inference, observing a variable results in updated probabilities in
both its causes and effects. For example, assume the overloading of a bridge can cause cracks,
and cracks may lead to the bridge to fail. This can be modelled by a BN with a causal chain
structure. With the inference, if we observed that there are severe cracks in a bridge deck,
we can diagnose this bridge has a higher probability of being overloaded for over 10 years
(cause), and predict this bridge has a higher probability of failing (effect). These inferences
can be adjusted based on the causal structure of the model. Three basic causal structures are
given in Figure 3.4 (top level) in the form of observational models developed by Hagmayer
et al. [64], where their joint probabilities are modelled as:

• Causal chain: P(X ,Y,Z) = P(X)P(Y |X)P(Z|Y )

• Common effect: P(X ,Y,Z) = P(X)P(Y |X ,Z)P(Z)

• Common cause: P(X ,Y,Z) = P(X)P(Y |X)P(Z|X)

By setting the variable to the observed value (represented by shaded ovals in the figure),
we can calculate other events conditional on the observed variable in the usual way. Following
the bridge cracks example, with the causal chain structure model, where X represents whether
the bridge is overloaded for over 10 years, Y represents whether cracks exist, and Z represents
whether the bridge is going to fail. Each variable is modelled as a Boolean variable where
the state of true is represented as 1, and false is 0. The probability of the bridge is overloaded
for over 10 years P(X = 1) given an observation that cracks exists P(Y = 1), we have
P(X = 1|Y = 1) that is computed according to Bayes’s theorem from Equation 3.1:

P(X = 1|Y = 1) =
P(Y = 1|X = 1)P(X = 1)

P(Y = 1|X = 1)P(X = 1)+P(Y = 1|X = 0)P(X = 0)
(3.5)

Assume the probability of a bridge that is overloaded over the last 10 years is 0.2,
P(X = 1) = 0.2. Since in this example the variable states are all binary, thus P(X = 0) =
1− 0.2 = 0.8. Assume the probability of an overloaded bridge will cause cracks in 10
years is 0.7, P(Y = 1|X = 1) = 0.7, and the probability of having cracks even the bridge
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Figure 3.4 Examples of three basic causal models represented in observational and interven-
tion modes from Hagmayer et al. [64].

is not overloaded is 0.4, P(Y = 1|X = 0) = 0.4. From Equation 3.5, P(X = 1|Y = 1) is
therefore equals to 0.3. Given an observation that there are cracks, the probability of bridge is
overloaded for over 10 years increases from 0.2 to 0.3. Similar procedure can be performed
to infer the probability of bridge failure given that there are cracks.

In this example the variables are linked with is a causal chain structure, but the conditional
probabilities will be reasoned differently given different causal structures. Hagmayer et al.
[64] and Meder et al. [111] provided a detail explanation of the use of other structures.
These causal structures can also be extended to model a number of other structures, such as
causal chain confounder and common cause confounder structures [112, 155]. Of these, the
common cause confounder structure is later modelled in this thesis (see Section 4.4).

In an intervention BN model, the intervened variable is assigned a value in the same
way as an observation. However, we must remove all the links from its causes to prevent
backward reasoning about the causes given the value assigned by the intervention. The
corresponding intervention models (we use a square node to represent an intervention) with
the three basic causal structures are shown in Figure 3.4 (bottom level) altered from their
observational models (showed by red crosses).

Follows the same example of bridge failure, in the observational model, the evidence
of having cracks indicates a higher probability of bridge is overloaded for 10 years, and a
higher probability of bridge will fail. But if the cracks are caused by environmental issues, it
does not provide evidence about a bridge is overloaded either historically or in the future.
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Manipulating the cracks existence (e.g. by repair) independently of the causes of cracks
disconnects the cracks from their overloading cause, that is, mended the cracks does not
imply the bridge was or will be overloaded. Hence, in the intervention model, the probability
of bridge failure only depends on the existence of cracks, not on its loading.

To distinguish interventions from observations, Pearl introduced the use of do-operator
[137]. For example, instead of P(X |Y = 1) that denotes the probability of X given Y is
observed with a true state, P(X |do(Y = 1)) refers to the probability of X given that the state
of Y is fixed to be true by an intervention. This operator renders a variable independent of all
its causes when an intervention is performed. This process is also known as graph surgery.

For example, in Figure 3.4, assume in all observational causal structures, event Y is
observed as Y = 1, while in the intervention models, event Y is manipulated as do(Y = 1),
we have their joint distributions:

• Observations:

– Causal chain: P(X ,Y = 1,Z) = P(X)P(Y = 1|X)P(Z|Y = 1)

– Common effect: P(X ,Y = 1,Z) = P(X)P(Y = 1|X ,Z)P(Z)

– Common cause: P(X ,Y = 1,Z) = P(X)P(Y = 1|X)P(Z|X)

• Interventions:

– Causal chain: P(X ,do(Y = 1),Z) = P(X)P(Z|Y = 1)

– Common effect: P(X ,do(Y = 1),Z) = P(X)P(Z)

– Common cause: P(X ,do(Y = 1),Z) = P(X)P(Z|X)

With the observational BN model, we can use observation of evidence to update the
probability of other variables. For example, with the backward reasoning, given a safety or
reliability criterion as an observation, the observational model can tell you what repair action
was more likely taken in history while the intervention model can give us an estimation of
the effectiveness of different repair actions. By comparing the effectiveness of different
maintenance actions, we can prioritise the maintenance actions. These models are developed
in this thesis and presented in Section 4.4.

3.3 Bayesian Inference

When some variables have a known state, an inference algorithm can update the probability
distribution of the remaining variables, using Bayes’ theorem. This process is called Bayesian
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inference as introduced in Section 3.1. However, Cooper [30] found the computational
complexity of exact inference in a BN can be NP-hard.

Various exact inference methods are developed to tackle this challenge. For example,
the variable elimination algorithm removes the non-observed non-query variables one by
one by distributing the sum over the product [151]. The junction tree algorithm is another
commonly used exact inference algorithm developed in the late 1980s. This algorithm
performs propagation on a modified graph called a junction tree (constructed from the
triangulated graph) that computes marginal probability values for variables. However, these
algorithms work only with discrete variables, which is a barrier to maintenance modelling
where we may need both discrete and continuous variables in a hybrid BN.

Local exact inference in hybrid BN can be executed under the assumption of conditional
Gaussian distributions [153]. Early work carried out exact inference in hybrid BNs was first
proposed by Lauritzen [92] and later developed by Lauritzen and Jensen [93]: the conditional
distribution of a discrete variable is multinomial given its parents, while the conditional
distribution of a continuous variable is configured by a linear regression model given its
parents. However, this inference impose Gaussian assumption on all continuous variables
limits the domain can be modelled: it is impractical for models with a mixture of discrete
variables and non-standard distributions such as Weibull distributions.

Approximate inference algorithms have been studied to address this challenge. Murphy
[119] discussed a list of approximate inference methods. One of the widespread approaches
is Gibbs sampling, which is a Markov chain Monte Carlo (MCMC) algorithm that approxi-
mates a specified multivariate probability distribution to obtain a sequence of observations
when direct sampling is difficult. Spiegelhalter et al. [159] extended this approach to include
non-random variables computed from other variables deterministically. However, the approx-
imation may not converge to represent the actual distribution when the sample amount is not
large enough.

Another branch of approximate inference is discretisation. Static discretisation allows
approximate inference with both continuous and discrete variables. In this algorithm, states
of a continuous variable are mapped into a pre-defined finite set of discrete states. An
example of the discretisation is presented in Figure 3.5. Figure 3.5 (a) shows the actual
continuous distribution - an exponential distribution with a rate parameter of 0.5, and (b)
tried to approximate it by discretisating the distribution into several states (showed as bars in
the figure). However, the process could be tedious since the user needs to define the state
intervals (each state has a value interval of 1 in this example). In addition, discretisating
continuous variables into static states may lose lots of useful information if the interval is not
small enough. For example, in Figure 3.5 (b), the probability of being at a value between 0
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and 0.5 is much higher than the probability of being at a value between 0.5 and 1, but since
the interval in this static discretisation is 1, both situations are grouped into the range of 0 to
1 with the same probability.

Figure 3.5 Discretisation of a continuous variable: (a) the actual exponential distribution; (b)
static discretised exponential distribution; (c) dynamic discretised exponential distribution.

Inspired by the work on using non-uniform discretisation in the Bayesian model from
Kozlov and Koller [84], Marquez et al. [107] use dynamic discretisation in an exact inference
algorithm. Continuous variables are dynamically discretised, with narrower intervals where
the probability distributions are changing most. This algorithm addresses both limitations
of static discretisation: it automates the process of defining state intervals and reduces the
information loss by giving narrower intervals to states with more probability changes. A
corresponding example of Figure 3.5 (b) is presented in (c) using dynamic discretisation.
An approximate inference algorithm that combines dynamic discretisation with propagation
algorithms on junction tree is implemented in the tool AgenaRisk [2] that can deal with both
continuous and discrete variables under the same BN model.

A number of open source and commercial software are available for building BN models.
Kevin Murphy1 and Constantinou [26] summarised a list of packages for this purpose.
Salmerón et al. [147] further reviewed a range of algorithms that allow the inference in
hybrid BNs and highlighted tools supporting inference in these types of models specifically.
For example, we have:

• Conditional Gaussian assumption: gR2, Bayes Server3 and Hugin4;

• MCMC: JAGS5, Stan6 and Edward7;
1https://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
2https://cran.r-project.org/web/views/gR.html/
3https://www.bayesserver.com/
4https://www.hugin.com/
5http://mcmc-jags.sourceforge.net/
6http://mc-stan.org/
7http://edwardlib.org/

https://www.cs.ubc.ca/~murphyk/Software/bnsoft.html/
https://cran.r-project.org/web/views/gR.html/
https://www.bayesserver.com/
https://www.hugin.com/
http://mcmc-jags.sourceforge.net/
http://mc-stan.org/
http://edwardlib.org/
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• Discretisation: AgenaRisk8 and BayesiaLab9.

Models that allow both continuous and discrete variables in the same BN model enables
us to build a statistical model in a Bayesian Network, which offers us an integrated structure
to estimate the rate of deterioration and use the estimation simultaneously to reason decisions.
Thanks to the support of Agena Ltd [2], the models built within this thesis were developed
using AgenaRisk and its API for their flexibility in building BN models and capability of
inferencing hybrid BN models. The next section discusses Bayesian statistical models that
use mainly continuous variables.

3.4 Bayesian Statistical Models

As discussed in Section 2.3.1, one way to estimate how fast an asset deteriorates is to find a
parametric statistical distribution that can describe the rate of its deterioration. Maximum
Likelihood Estimation (MLE) aims to find the best estimate of the parameter values that
have the maximum likelihood of producing the evidence (data) and is a common approach
for fitting a distribution. Unlike the MLE method that determines point estimates of the
parameters of a statistical distribution, in a Bayesian statistical model, the parameters of the
distribution are treated as random variables. By doing so, the uncertainty of the parameters
is characterised, and the information from data is captured in the posterior distribution of
the parameters. Moreover, in contrast to MLE where the estimate of the parameters depends
solely on the data, Bayesian estimation integrates the data with any prior knowledge about
the parameters.

When estimating a parametric statistical distribution in a Bayesian statistical model,
Bayes’ theorem in Equation 3.1 is used as:

P(θ |D) =
P(θ)P(D|θ)

P(D)
(3.6)

where θ is a vector of parameters. For example, in an exponential distribution θ = {λ}
and a Weibull distribution θ = {β ,η}. D denotes a vector of observations that can be used
to fit the selected distribution.

To get the posterior distribution P(θ |D), we need to define P(θ), P(D|θ) and P(D). P(θ)
is a collection of the prior distribution of the parameters (details about how to define a prior
distribution will be discussed in the next subsection). The likelihood function becomes the
probability density function of the distribution parameterised by θ , for example, the pdf of a

8http://www.agenarisk.com/
9http://www.bayesia.com

http://www.agenarisk.com/
http://www.bayesia.com/
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Weibull distribution in Equation 2.4. By assuming the data are mutually independent and
sharing the same parameter θ , the likelihood P(D|θ) is the multiplication of the likelihood
function for every observation. P(D) is the marginal distribution of the observations, it
serves as a normalisation factor to ensure the posterior density integrate to 1. P(D) can be
represented as:

P(D) =
∫

P(θ)P(D|θ)dθ (3.7)

It becomes more difficult to evaluate this integral analytically especially with the increase
of parameter dimensionality. Fortunately, this can be tackled with the support of numeri-
cal approximation inference algorithm as mentioned in Section 3.3. To use the posterior
distribution for prediction purpose, we can evaluate the distribution of an unobserved data
Dpred that is conditional on the observed data D, where all data follow the distribution that is
parameterised by θ . Therefore, the posterior predictive distribution becomes:

P(Dpred|D) =
∫

P(Dpred,θ |D)dθ =
∫

P(Dpred|θ ,D)P(θ |D)dθ (3.8)

Assuming Dpred and D are all mutually independent, we have the predicted deterioration
distribution:

P(Dpred|D) =
∫

P(Dpred|θ)P(θ |D)dθ (3.9)

Sometimes, where multiple distributions belong to different groups, models can be built
hierarchically so that the parameters within each group have shared prior distribution and
can themselves be learned from the data within each subgroup. This type of modelling is
called Bayesian hierarchical modelling.

3.4.1 Bayesian Hierarchical Modelling

A Bayesian hierarchical model can extend the Bayesian parameter estimation method to
include multiple layers of information. This is achieved by creating additional parameters
(called hyperparameters) as the parents of parameters (local parameters) that measure the
uncertainty about the parameters themselves. In a hierarchical model, the distribution of
individual within each subgroup is governed by a set of parameters, and these parameters are
sampled from a set of hyperparameters that describes the characteristics of all the groups
together.

Let Di denotes individual observations from subgroup i that follow a parameter set θi, and
assume parameters {θ1, . . . ,θi, . . . ,θk} are parameters from the different subgroups. These



54 Bayesian Networks and Their Applications to Maintenance

parameters are all governed by a set of hyperparameters Θ. For a two-level hierarchical
model, we have three stages:

• Stage 1: Di|θi ∼ P(Di|θi,Θ)

• Stage 2: θi|Θ ∼ P(θi|Θ)

• Stage 3: Θ ∼ P(Θ)

where the likelihood function of individual observations from subgroup i is P(Di|θi,Θ)

with a prior distribution P(θi|Θ), and the parameters θi in each subgroup i are governed by
hyperparameters Θ with hyperpriors P(Θ). Assuming the individuals within each group
are mutually independent, and subgroups within the overall population are also mutually
independent, the posterior distribution can be expressed as proportional to:

P(θ ,Θ|D) ∝ P(Θ)
k

∏
i=1

P(Di|θi)P(θi|Θ) (3.10)

Notes that the parameters θi here represent a collection of parameters for each subgroup
i. Hence, if the likelihood function has multiple parameters, Equation in 3.10 can be further
dissembled with another multiplication about the parameters.

As a result, the overall population-level parameters are jointly guided by its subgroups’
parameters and the individual subgroup-level parameters are informed from all other sub-
groups’ parameters via the estimation of the overall-level parameters [85]. This suggests
we could leverage the feature of Bayesian hierarchical modelling to tackle the challenge
of small data amount (Objective II) via learning between one group of assets that has little
deterioration data and other groups with more deterioration data.

3.4.2 Prior Probability Distributions for Parameters

Estimating statistical distributions in a Bayesian statistical model requires us to quantify the
prior probability distributions for any unknown parameters. This gives a natural framework to
include knowledge into priors as the uncertainty specification of the parameters. These priors
for parameters are modelled as continuous variables and, in this subsection, we describe the
elicitation of them.

When the parameters have conjugate priors (see a list of family illustrated in Fink [48]),
choosing a prior from them can give a closed-form expression for the posterior, which
is advantageous in simplifying the posterior distribution calculation. However, not all
distributions’ parameters have conjugate priors. For example, there is no conjugate prior in a
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Weibull distribution when both parameters shape and scale are unknown. Another common
approach is to assign an uninformative prior when no past information is available so far. For
example, by choosing a uniform distribution with extreme bounded values as the prior. With
uniform priors for the parameters, the point estimate of the Bayesian method - Maximum A
Posteriori (MAP) probability estimation, is identical with the result from MLE [120]. But
when relevant information about the parameter is available, we can create an informative
prior.

Lunn et al. [103] and Gelman et al. [52] introduce a range of methods to define an
informative prior, including estimation based on data, a mixture of data and judgement,
and pure expert judgement. When some historical data is available, we may obtain a prior
distribution for the parameter based on an empirical estimate, for example, by matching
the prior with the mean and standard deviation from the data pool. In the case when we
believe the historical data is not fully representative, we may elicit knowledge from experts
to discount the data weight by building a power prior [71, 103], or using a bias modelling
procedure [59, 103]. Elicitation of subjective information from experts is also often used to
determine a prior distribution. But subjective prior distribution about the uncertain parameter
is often difficult to specify precisely. A simple approach is to ask experts directly about the
central tendency and variation of the parameter as the mean and standard deviation of its
prior distribution. For example, Neil et al. [125] used a triangular distribution to estimate the
prior with vague ranges: a lower bound, a medium and an upper bound. The challenge is to
explain and convince experts to assign these values since parameters in different distributions
have different meanings and impact on their posterior distributions. Tackling this challenge
is part of our objectives (Objective I) and is addressed in the next chapter.

Figure 3.6 Effects of the prior distribution and data quantity in learning distribution.

To illustrate the differences when distributions are fitted with different types of priors,
two examples are shown in Figure 3.6 with the corresponding configuration in Table 3.1.
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Table 3.1 Fitting Weibull distributions using Bayesian parameter estimation with different
priors and data amounts.

Parameter Name With Uninformative Priors With Informative Priors True Value
Shape Uniform (0.0001, 10000) Triangular (1, 2, 4) 1.5
Scale Uniform (0.0001, 10000) Triangular (100, 500, 700) 400

Simulation is used to generate a set of data from a Weibull distribution with a shape value of
1.5 and a scale value of 400. The fitted distribution in yellow is governed by uninformative
priors, in blue is governed by informative priors, and in red is the true distribution. From
Figure 3.6 (a), we can observe that even with little data (5 data), with the help of informative
priors, the posterior distribution can approximate the true distribution within a reasonable
degree. This shows the advantage of choosing informative priors over uninformative priors
when they are available. With the increase in sample amount (50 data), as shown in Figure 3.6
(b), both posteriors with uninformative and informative priors become almost identical to the
true distribution (the yellow distribution overlaps the blue distribution). With enough sample
amount (50 data in this case) to fit a distribution using the Bayesian method, the effects of
choices of the prior distribution on the posteriors become minor, this is the Bernstein–von
Mises theorem: with the increase of sample size, the posterior distribution for parameters is
asymptotically independent of the prior distribution [171]. Conversely, if the data amount is
small or only indirect information for learning the parameter is available, assigning a good
prior is essential [103, 52].

3.5 Building Complex and Large-Scale Bayesian Networks

A Bayesian statistical model can summarise information comprised in the dataset and allow us
to perform inference on these summarised (learned) statistics over a probabilistic framework.
A BN offers us a way to propose a probabilistic model on a collection of variables, without
necessarily involving data [149]. In essence, we can describe a Bayesian statistical model
as a BN: the marginal distribution of a parameter is the prior; the CPT of the data is the
likelihood function over the parameter; as a result, the posterior distribution is the conditional
distribution of the parameter given the observed data. In the rest of the thesis, we use the
term ‘hybrid BN models’ to encompass both types of models to avoid confusion.

The process of constructing a hybrid BN model structure can be demanding, especially
for complex and large networks (see Section 2.3.2 and 2.3.3). In Mahoney and Laskey [105],
the difficulty of using BN models for large and complex systems was highlighted. The
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network becomes difficult to understand when too many variables are presented in a single
model [45, 26].

Often, the complexity of the model is contributed by many similar repeated fragments
with the same causal (or influential) structures and variables but different entries. Object
Oriented (OO) design, where each object contains a set of fixed data structures and methods
interact with the data [57], gives a suitable framework to design models with many repeated
structures. Early work in Laskey and Mahoney [90] implemented the idea of OO to organise
the BN into various parts, where each part is a semantically meaningful unit called a fragment.
Each fragment consists of a range of variables and corresponding edges. A prototype was
built by arranging these fragments with a system engineering approach that follows a spiral
life cycle model in Laskey and Mahoney [91]. Similar works were developed by Neil
et al. [124]: inspired by Pearl [136]’s idea of assembling causal structures from a stock of
building blocks, Neil et al. proposed a set of so-called idioms to serve as these reusable
building blocks in a BN. These idioms represent typical types of uncertain reasoning that
can be used to construct BNs based on specific cases. Adapting the concept of OO, each
idiom was treated as an object, therefore can build a complex model using some simple
combination rules. A software safety case was also studied using these idioms, demonstrating
its capability in formulating a large-scale BN. These idioms are recurring patterns that provide
an efficient and consistent guideline; with this knowledge-based guideline, these idioms
allow the practitioners to understand the problem domain and Bayesian modelling principles
better.

Figure 3.7 An OOBN model example about bridge failure.
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At the same time, Koller and Pfeffer [82] proposed to extend the concept of OO to
structure the BN parts as reusable objects and instantiate these objects to form a complete
(ground) model. This type of BN is called an Object-Oriented Bayesian Network (OOBN).
An object in an OOBN has attributes that can be random variables. The attributes in an
object can be private and only accessible inside the object or can be inputs, or serve as
the outputs of this object and become the inputs of another object managed by an external
interface (Encapsulation). The object can be viewed as a stochastic function that outputs the
probability distribution for each value of its inputs. The concept of class is also included
in OOBN, where a model can contain multiple instances of any each class, each described
using the same probabilistic model. OOBNs gives us a framework to model a generalised
probabilistic model that can be reused in different contexts (Abstraction). Inheritance is
also supported in an OOBN. A subclass simply modifies some of the attributes or adds new
attributes from the parent class’s stochastic function. These features enable us to instantiate a
large BN in a well-defined way.

Assume bridge failure is determined by the failure of its components Deck, Support 1
and Support 2; component failure is determined by the age of the component and whether
the bridge is overloaded (factor). We can model each component’s failures using the same
probabilistic model with an internal parent variable Age and an external parent Factor
representing whether the bridge is overloaded that shared between all components; afterwards,
all Component Failure variables are aggregated to determine the state of Bridge Failure.
This example is presented in Figure 3.7 with an object class Component, which encodes
the same probabilistic model for each component and this object was reused three times.
However, pointed out in Pfeffer et al. [140], an OOBN is constrained in representing a fixed
set of related objects only. In Figure 3.7, each Component Failure variable is fixed with
two parents: its age and the factor shared between all components. While in maintenance
modelling problem, the number of objects and the relationships between them could vary, for
example, what if a factor has an impact on some components only instead all of them?

This challenge can be resolved using the Probabilistic Relational Model (PRM) formalism,
developed by Koller [81], which extends the concept of OO in modelling probabilistic
graphical models (i.e. BNs) with uncertain relations. A PRM combines probabilistic
dependencies with a relational schema that describes the entities in the problem domain. The
uncertainties represented in the model can include attribute uncertainty, structural uncertainty,
and class uncertainty. The OO paradigm also gives us advantages in model inference: we can
perform inference on specific compiled parts of the model that are queried rather than the
joint distribution of a whole model where some variables may not be used in this particular
case [140, 53, 114].
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Figure 3.8 A PRM example about bridge failure: (a) probabilistic dependencies; (b) a
relational schema; (c) the ground BN.

Additional to the same assumptions made in the last example, we also believe coastal
proximity has an impact on component failure but only to component built with metal [187].
This example is difficult to build using OOBN as you either have to develop two object
classes one for components with metal and one for others or create a dummy variable in the
component object to check whether each component is made of metal and use the result to
further adjust the function on component failure. Instead, PRM gives an elegant way to model
this problem with two parts as shown in Figure 3.8: (a) probabilistic dependencies: every
object class encodes a probabilistic model that has the same variables and dependencies; (b)
a relational schema: encodes the relational structure of the problem, its instantiation is a
relational database.

When instantiating the variables related to Bridge 1, the PRM first queries table Compo-
nent in the relational database to see which component has a foreign key of Bridge 1, we
have Deck, Support 1 and Support 2; at the same time, the PRM queries table Feature follows
the same principle, we have factors about whether the bridge is overloaded and near coastal.
After the instantiation of variables, the next step is the instantiation of dependencies. The rela-
tionship between Factor overloaded and component failure depends on the bridge; therefore,
the dependencies are instantiated if Bridge 1 is instantiated, together, the loading value from
table Bridge gives the observation on Factor overloaded. The component’s material decides
the relationship between Factor near-coastal and the component failure; therefore, from table
Component we can see whether the component is made of metal, if yes, the dependency is
instantiated and the observation on Factor near-coastal is given by the coastal proximity value
from table Bridge. Variables Component Failures are later aggregated (e.g. mean, maximum
or minimum) to determine the probability for Bridge Failure.
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Figure 3.8 (c) presents an instantiated BN follows these procedures. Because all three
components belong to Bridge 1, they all depend on Factor overloaded. Also, because the
deck is made of concrete, its relationship with Factor near-coastal is not initiated, while
both supports are made of metal, they both depend on Factor near-coastal. This example
shows how we can use the PRM to instantiate non-fixed dependencies using the same object.
Later in Chapter 7 we will explain these procedures in details, including how to instantiate a
relational schema into a relational database and how to instantiate a BN follows the database
and the probabilistic dependencies.

The PRM provides a separation between probabilistic models and structure relationships,
gives a clear semantic in describing complex problems and an effective inference structure for
the underlying models. This modelling framework is adopted in this thesis, where a number
of generic BN models are developed in Chapter 4 to serve as the reusable probabilistic models
that later are used as the model library in Chapter 7. To fulfil Objective VI, Chapter7 also
show how to organise these models to create a maintenance model applicable in a particular
circumstance according to its own structural relations.

3.6 Bayesian Network Models in Maintenance Modelling

In maintenance modelling, a range of studies has been performed using the Bayesian models
for reliability modelling and analysis. In this section, we discuss the applications of BNs to
deterioration modelling, inspection and maintenance decisions support as well as the current
limitations, which will be tackled in this thesis.

3.6.1 Deterioration Modelling

As argued in Enright and Frangopol [41], deterioration prediction solely based on inspection
records is problematic since it ignores the uncertainty in the inspection data. For example,
different measurements can conclude different inspection results. But modelling with a
Bayesian framework, which can combine inspection data with prior engineering knowledge,
may provide a more realistic modelling for an asset. Several applications were presented to
show how to update parameters of various statistical distributions via data and knowledge us-
ing the Bayesian parameter estimation framework, for example in Enright and Frangopol [41]
for bridge condition prediction and in Hong and Prozzi [70] for road pavement performance
prediction.

Extended use of Bayesian parameter estimation was also developed to consider more
practical assumptions in asset deterioration. As described in Section 2.2.1, since inspections
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for critical infrastructure are often periodic, the deterioration data obtained are usually
censored. This is tackled by studies by Lu [102] and Coolen [29], who have shown how to
encode failure data with censorship for parameter estimation in a BN. Also, assets may be
rated by multiple states. Drawing on Tsuda et al. [169], who introduced a Markov chain
model to estimate multi-state failures using an MLE method, Han et al. [66] estimated the
multi-state deterioration using a Bayesian estimation method modelled in the form of a
Markov chain.

The ability to quantify uncertainty using expert judgement via the prior is another
advantage of applying a BN. Coolen [29], Siu and Kelly [156] and Zhang and Mahadevan
[195] presented examples of how to elicit priors for the parameters of statistical distributions.
However, most studies focus the prior elicitation on a simple distribution like exponential or
normal distribution. Not only because these parameters are easier to understand by engineers
and to interpret from engineering knowledge, but also because some approaches are restricted
to model simple distributions only, for example, as discussed in Section 2.3.2, a simple
Markov model for multi-state deterioration assumes constant transition probability between
states that follow an exponential distribution [19]. The exponential distribution is adequate in
describing the early life of asset deterioration where the failure rate decreases with time but
inadequate for describing the wear-out phase. In contrast, as shown by many studies such as
Le [94], the Weibull distribution showed good fit in describing the lifetime distribution and is
a better fit for the deterioration rate of infrastructure assets. The manipulation of the parameter
shape enables Weibull distribution to specify a range of life phases in asset deterioration,
including early life, useful life and wear-out life. Therefore, Weibull distribution is used in
this thesis, although different distributions can be applied in our framework if necessary.

Though some works have been proposed to help experts understand the characteristics of
a Weibull distribution (e.g. in Soliman et al. [158]), most of them only include generalised or
simplified interpretations. A more comprehensive explanation of the parameters in a Weibull
distribution for asset deterioration from various aspects is needed and is covered later in
Section 4.1.3. To fulfil Objective I, we also show how to estimate the parameters of a Weibull
distribution using a hybrid BN in Section 4.1.1 and to model the input data with censorship
in Section 4.1.2. These steps are later extended to model multi-state deterioration in the form
of a Markov model, where each transition is estimated by a unique Weibull distribution in
Section 4.3.1 and components interact variously in Section 4.3.2 to fulfil Objective III.

Some asset deterioration studies extended the Bayesian parameter estimation approach
with another level of parameters - hyperparameters, such as in Hong and Prozzi [70] and
Andrade and Teixeira [4]. In the hierarchical BNs, assets are separated into different groups.
Deterioration data within each group follows parameters of the group’s distribution, while
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all the groups’ parameters are governed by the parameters (that is, hyperparameters) of the
whole population. However, most studies lack detail quantification and explanation about
how to separate assets into groups, and how the parameters within each group are related.
Also, they have not extended the potential use of a hierarchical BN in asset deterioration
to individualise deterioration prediction by groups, which may provide a better prediction
or learn between groups when some groups have fewer deterioration data. These potentials
are addressed in Chapter 4 and validated in 5. In particular, in Section 4.2 we discuss how
to infer parameters between similar assets or different but related assets using hierarchical
BNs (Objective II). These models are further applied and validated with a real case study in
Chapter 5 (Objective IV). This shows how to separate assets into groups by their features
and how the deterioration of an individual asset can be predicted, notably in asset groups
with limited data.

3.6.2 Inspection and Maintenance Decisions Support

Some studies have been proposed the use of BNs and causal reasoning to tackle maintenance
problems. However, most early works focus on BN with only discrete variables. For
example, Kang and Golay [76] reasoned about the states of a system after a maintenance
action is selected using a discrete BN. Weber et al. [180] introduced a BN for diagnosis and
prognosis of malfunctions in the manufacturing process to aid repair decisions. de Melo and
Sanchez [33] considered factors such as the maintenance complexity and the expertise of
professionals, that could induce uncertainty during the maintenance process. They presented
a BN model to predict delays of a software maintenance project based on project features and
experts experience. Rafiq et al. [144] developed a BN to predict bridge condition assembled
from multiple components (see Section 2.3.3), but the conditions of components are given
by experts rather than learned from data and knowledge. Discrete BNs are commonly
used in an expert system for decisions making. To reason about the causal relationships
between deterioration, learned from continuous statistical distributions as described above,
and consequence of any maintenance, hybrid BNs with both discrete and continuous are
most suitable [179].

With the development of inference algorithms for hybrid BNs(as discussed in Section
3.3), applications of them to reliability have been given more attention recently. Langseth
and Portinale [89] discuss the properties of a modelling framework for Bayesian models
with both types of variables and its application to reliability analysis. Some applications
have been proposed. For example, system reliability is estimated in Marquez et al. [107]
using component failure rates learned using different distributions and assembled in different
configurations using a set of Boolean variables. In Han et al. [66] multiple exponential
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distributions were fitted in a hybrid BN for multi-state deterioration prediction and life
expectancy analysis.

Meanwhile, models applied in other fields can inspire us to support a broader range of
decisions. For example, the use of observational and intervention BNs (see Section 3.2.3)
were recently employed to support physiological decisions [64], we can potentially apply
them to support maintenance-related decisions, such as recommendation on repair action and
evaluation of repair effects.

The maintenance modelling in this thesis consists of continuous variables from Bayesian
statistical models combined with discrete variables commonly used in expert systems. This
framework is used to create a series of decisions support models in this thesis (Objective
V), including: condition prediction of multi-state assets in different system configurations
(models proposed in Section 4.3 and applied in Section 6.1); inspection decisions based on
asset condition prediction (applied in Section 6.2); suggested repair actions by reasoning
about the anticipated repair effects (models proposed in Section 4.4 and applied in Section
6.3); maintenance planning of an asset over its life cycle including its deterioration and
effects of repairs (models proposed in Section Section 4.5 and applied in Section 6.4).

3.6.3 Modelling of Complex and Large-Scale Systems

As described in Section 2.4.4, one of the challenges of maintenance modelling is the com-
plexity in building a large-scale model need, for example, when a bridge is assembled from
multiple components, and each component has its own deterioration model. As described
in Section 3.5, some extensions of BNs have been proposed with advantages for organising
complex models. For example, Weber and Jouffe [178] proposed a model of a complex
system using an OOBN. A generic BN was developed to model the asset state. To model
component with multiple states, multiple generic models were connected in the form of
Markov chain using Dynamic BN (DBN, a BN that represents the evolution of state space
model through multiple time slices). Each component was represented as an object in the
OOBN. These components were linked in the OOBN to evaluate the system failure. Several
ways to combine component failures were shown, including the logical combinations using
in Fault Trees (using the representation of FTs as BNs proposed in Bobbio et al. [18]) as well
as more complex ways where component failures propagate to a failure in the overall system.
The modelling of dynamic OOBN shows a powerful way to represent a complex system in a
compact and readable form. But, as the authors admit in their paper, further work is needed
on the parameter learning of the deterioration of components. Another limitation arises from
the inability (discussed in Section 3.5) to use an OOBN to model relations between varying
objects.
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Medina-Oliva et al. [114] tackled this limitation using a PRM and illustrated its appli-
cation in dependability analysis. Medina-Oliva et al. [113] further extended the PRM to
include the uncertainty from maintenance operations. But unfortunately, both of their works
were built on discrete variables only. Lacking the use of continuous variables limited the
functionality of the model. For example, their models cannot learn the rate of deterioration
using Bayesian statistical models [178].

In this thesis, Chapter 7 develops a PRM-based framework for maintenance modelling
in light of its advantages for modelling complex and large-scale system with varying re-
lationships between objects. To fulfil the idea of OO design, inspired by the concept of
fragments and idioms discussed in Section 3.5, Chapter 4 develops a set of generic BNs.
These models can be used repeatedly, including models for Bayesian statistical models to
learn deterioration rate and BNs for decisions support. Differing from Weber and Jouffe
[178] who used DBNs to model asset condition from a sequence of model slice, where
each slice represents a deterioration model between two consecutive states, Section 4.3.1
flattens all the deterioration models between different states in a standard BN. The presence
of different deterioration models in a single model enables us to learn deterioration between
states through the shared hyperparameters. It is useful in a situation like there are more
deterioration data for some states or groups while other states or groups have less. In addition,
Section 4.3.1 introduces the use of binary factorisation technique to resolve the inference
complexity of the space explosion caused by the flatted model. Chapter 7 uses these generic
models as a model library and describes how to use them in the framework developed as a
PRM. To further fulfil Objective VI, this chapter also shows how to manage these model
options from a non-statistician point of view to create maintenance models for different
system specifications.



Chapter 4

Generic Bayesian Network Models for
Bridge Asset Maintenance Modelling

Bridge asset maintenance modelling mainly involves the modelling of deterioration and
reasoning of decisions. As discussed in Section 2.3.1, we can evaluate the rate of deterioration
using a statistical distribution, which can be modelled in a Bayesian statistical model with
a continuous variable. While decisions support modelling often requires discrete variables
to model the relationships between events. Thanks to the development of approximate
inference algorithms (see Section 3.3), for example, by combining dynamic discretisation
with propagation algorithms on junction tree as implemented in software AgeanRisk, we can,
therefore, perform inference in a hybrid BN with both continuous and discrete variables.

This chapter develops a range of generic Bayesian network models that can be altered
or assembled to model various asset maintenance problems. It addresses Objectives I, II,
III and partly V. Section 4.1 shows how to learn deterioration distribution from both data
and knowledge. In particular, it shows how to encode various data types and how we could
interpret engineering knowledge into mathematical parameters of a Weibull distribution.
Section 4.2 presents hierarchical BNs that can be used to learn deterioration between different
groups of assets. Section 4.3 shows how to use the models to predict asset condition, including
asset with multiple states and asset condition is determined by conditions of its components.
Section 4.4 gives two models to support the process of making repair decisions. Section 4.5
shows how to plan maintenance over a finite time horizon considering multiple intervention
cycles. This chapter is further summarised in Section 4.6.
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4.1 Deterioration Modelling

The expected lifetime of an asset is derived from its likely time to failure. The time to
failure follows a statistical distribution. Based on the assumption made in Le [94], most
infrastructures’ deterioration rates (including infrastructure as a whole and its components)
can be fitted with Weibull distributions. The two-parameter Weibull distribution (see Equation
2.4) is therefore applied in this thesis. This section builds a BN with parameters determined
by a set of deterioration time data and prior knowledge of the parameters of the chosen
distribution.

4.1.1 Learning Asset Deterioration with A Weibull Distribution

Figure 4.1 Parameter learning of a Weibull distribution.

In a Bayesian deterioration learning model, prior knowledge becomes part of the model;
data on known failure times are entered, updating the distribution over the parameters. A
Bayesian statistical model developed by Marquez et al. [107] can be modelled as in Figure
4.1. This is achieved by applying the Bayes’ Theorem, which combines prior information of
the parameters with data, to perform inference about the model. The posterior pdf of this
Weibull distribution is:
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f (β ,η | Data) =
L(Data|β ,η)ϕ (β )ϕ (η)∫∫

∞

0 L(Data|β ,η)ϕ (β )ϕ (η)dβdη
(4.1)

where ϕ(β ) is the prior of the parameter shape β and ϕ(η) is the prior of parameter
scale η . By observing the deterioration characteristics, experts can justify whether a type
of asset has a decreasing, constant or increasing failure rate, leading to a range of possible
values for the shape parameter. Similarly, it is also possible to evaluate the range of the scale
parameter from the typical (mean) age of asset failure. Later Section 4.1.3 will illustrate how
to elicit this knowledge in detail.

Different distributions, such as a normal distribution or a uniform distribution, could
be used to express uncertainty over the range of each parameter as their prior distributions.
Some experts find it easier not to specify their opinions with absolute precision but providing
value intervals [148]. Following Marquez et al. [107], triangular distributions (Equation 4.2)
are used in this model for its advantage in extracting expert knowledge into value intervals:

P(x) =

{ 2(x−a)
(b−a)(c−a) ,a ≤ x ≤ c

2(b−x)
(b−a)(c−a) ,c < x ≤ b

(4.2)

where P(x) is the probability function of triangular distribution, a is its lower limit, b is
its median and c is its upper limit. Experts assign values of a, b and c for each parameter,
based on their experience.

L(β ,η) is the likelihood function based on Weibull distribution (equation 2.4) and Data
1, . . . ,n:

L(Data|β ,η) =
n

∏
i=1

f (ti| β ,η) =
n

∏
i=1

β

η

(
ti
η

)β−1

e−
(

ti
η

)β

(4.3)

Given Equation 2.4 and Equation 4.1, the posterior distribution of transition time T (node
Transition Distribution) is:

f (T | Data) =
∫∫

∞

0
f (T | β ,η) f (β ,η | Data)dβdη (4.4)

Figure 4.1 presents a BN constructed on these principles, and Table 4.1 lists its expres-
sions. The time each asset transits from a normal to a failed state (the data) follows a Weibull
distribution, and it is modelled as an observable continuous variable with an expression of
Weibull distribution. This deterioration time is inferred from past transitions of assets in the
same class. Take Asset 1 as an example: the observation 15 representing it takes 15 months
for Asset 1 to transit from a normal state to a failed state. Because assets 1 to 6 are consid-
ered the same type of assets, we assume that they deteriorate following the same Weibull
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Table 4.1 Expressions for the nodes of the BN in Figure 4.1.

Node Name Expression
Asset 1 ∼ Asset 6 Weibull (shape, scale)
shape Triangular (a1, b1, c1)
scale Triangular (a2, b2, c2)
Transition Distribution Weibull (shape, scale)

distribution, meaning that they share the same shape and scale. The posterior distribution of
transition time from one state to another state is used to describe the deterioration process
of assets in the same class. It is showed as the variable Transition Distribution in the figure,
derived from the parameters learnt from data and knowledge. In the following subsections,
we further introduce the modelling of data types and how to interpret parameters so that
engineers may understand.

4.1.2 Modelling of Available Data Types

Often, the ideal data on the failure times of assets is not available. This section explores
various uncertainty on the data likely to be available, showing how it can be used.

The transition time is the time, since the previous transition, when an asset transits from
one state to another state. However, it is often hard to obtain this data: in practice, we are
more likely to have data inferred from periodic inspections (and perhaps repairs) rather than
data on the exact transition time (see Section 2.2.1). Four types of transition time data can
be inferred from historical inspection records with uncertainty as follows. For illustration
convenience, if unspecified, the inspection interval is assumed to be 12 months, and the
transition T are between working and failed in this subsection:

• Left-censored data: the asset failed at some point before we started to inspect. For
example, asset 7 failed in its first inspection after it was built, that means the transition
time is less than 12 months: T < 12.

• Interval-censored data: failures happened sometime between two inspections. For
example, in the fourth inspection, asset 8 did not show any signs of deterioration, but
we found out it failed in the fifth inspection. Therefore, we can conclude that the asset
transitioned between 48 and 60 months: 48 < T < 60.

• Right-censored data: for those cases where the asset survived longer than the time
available for observation. Suppose we decide to terminate the use of a working asset
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(asset 9) that has been inspected sixth times and has survived for more than 72 months,
hence, T > 72.

• Exact-time data: this type of data may be available when an issue is reported. For
example, at 20 months, asset 10 failed suddenly, and inspection confirms this transition:
T = 20.

Figure 4.2 Modelling of available data types.

For exact-time data, we can directly observe the node with the failure time as shown in
Figure 4.1 (asset 10). But for censored data, a Boolean variable is introduced to express a
constraint on an asset’s transition time. Figure 4.2 shows how to model data with censorship
using the examples discussed above. To represent a left-censored data, for example, less than
12 months, the variable is expressed with a logical expression i f (T < 12, “True”, “False”),
and the True state is observed (asset 7). Similar constraints are used for right censored
data (asset 8). For interval-censored data, two Boolean nodes are built applying the same
principles (asset 9).

Furthermore, for asset rated with multiple states, there is a possibility that an asset deteri-
orates faster than our observations. For example, suppose that at the 12-month inspection, a
component remained at State 3, while in the 24-month inspection, the component was found
in State 1. To use this type of information, we can enter observations for right censored data
that its first transition time T1 is greater than 12 months, and left censored data that its second
T2 is smaller than 24 months, as well as an additional constraint that the first transition time
T1 is smaller than the second one T2, as (T1 > 12)∧ (T2 < 24)∧ (T1 < T2).
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4.1.3 Prior Knowledge Elicitation of Weibull Distribution

To use a statistical distribution to describe the rate of deterioration, prior probability distribu-
tions of parameters, such as the Weibull’s shape and scale, need to be assigned. It is difficult
for non-statisticians to evaluate the values of shape and scale directly, but can be made easier
by understanding the characteristics of the distribution and trends of the parameters. This
subsection focuses on the interpretability of the traits of parametric statistical distributions
using the example of a Weibull distribution.

Shape Parameter

Figure 4.3 pdf and failure rate function of Weibull distributions with different shapes.

Figure 4.3 shows examples of the Weibull distributions’ pdfs with different shape param-
eter β . Empirically, the shape parameter of Weibull distribution offers us great flexibility
in modelling a variety of distribution with several physical behaviours: it becomes an expo-
nential distribution when β equals to 1, a Rayleigh distribution when β equals to 2. Also,
studies have shown that the skewness of Weibull distribution has a strong relationship with
the value of β [62]. The skewness decreases with β : it has a positive skewness to the left
side of the pdf when β is smaller than 3.6, and it approximates symmetrically as a normal
distribution when β is near 3.6 with a skewness value approaching 0, and it skews to the
right with a negative skewness when it is greater than 3.6 [110].

To understand its characteristics more intuitively, we have its cumulative distribution
function (cdf), which is also known as the distribution’s unreliability:
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F (t| β ,η) =
∫

∞

0
f (t| β ,η)dt = 1− e−

(
t
η

)β

(4.5)

While the survival function (reliability) of a distribution is the complementary of its cdf,
representing the probability of the asset will survive after a given time:

S (t| β ,η) = Prob [T > t] = 1−F (t| β ,η) = e−
(

t
η

)β

(4.6)

By representing Event A a situation where the asset will fail between a small enough
interval between t and t +∆t, and Event B a situation where the asset will survive after time
t, using the law of conditional probability, the probability of Event A given Event B is:

P(A|B) = P(A∩B)
P(B)

=
f (t| β ,η)dt
S (t| β ,η)

= λ (t| β ,η)dt (4.7)

, thus, we have the instantaneous failure rate function at any time point t:

λ (t| β ,η) =
f (t| β ,η)

S (t| β ,η)
=

β

η

(
t
η

)β−1

(4.8)

As a natural extension of exponential distribution (when shape β = 1), Weibull has a
polynomial failure rate with an exponent (β − 1). The characteristics in the failure rate
function are useful to help experts define the priors of the parameters. The corresponding
failure rate functions of the distribution in Figure 4.3 (a) are showed in Figure 4.3 (b). A
β value that is between 0 and 1 describes a decreasing failure rate over time. This often
happens when an asset is in the burn-in phase that shows early degradation, which may be
caused by a problematic building process or infrastructure operation. In the case where we
believe the asset’s failure rate would not change over time, that is, it has a constant failure
rate, we can suggest β equals to 1. When describing infrastructure in a wear-out failure
phase, that is, the probability of an asset failing increases over time, we can recommend the
prior of β greater than 1 indicating an increasing failure rate.

Variance

By looking at Figure 4.3, we can also notice that with the increase in shape parameter β ,
the pdf gets narrower, which represents a smaller variance. The variance σ2 of a Weibull
distribution is:

σ
2 = η

2

[
Γ

(
1+

2
β

)
−
(

Γ

(
1+

1
β

))2
]

(4.9)
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validated in Abramowitz and Stegun [1], the difference between Γ(1+ 2
β
) and (Γ(1+ 1

β
))2

becomes smaller with the increase in β , that is, the variance σ2 decreases with the increase
in β . When β → ∞, the variance of the Weibull distribution approaches 0.

Scale Parameter

Figure 4.4 (a) pdf of Weibull distributions with different scales; (b) cdf of Weibull distribu-
tions with different shape and scale.

By holding the same shape β , increases the scale parameter η has an effect of stretching
out the pdf, this can be seen in Figure 4.4 (a): with the increase in η , the range of the pdf
gets wider with a lower crest. The quantiles of the distribution can explain this, given the cdf
in Equation 4.5, by setting F(t p) = p, we have:

tp =

{
ln
(

1
1− p

)} 1
β

η (4.10)

As shown by the red and black solid lines in Figure 4.4 (b), having the same shape β ,
it takes longer to reach the same quantile with a higher scale η . Additionally, when time
to failure t equals to η , from the cdf in Equation 4.5, we have 1− e−1 ≈ 0.632, that is, as
shown in the shaded area in Figure 4.4 (a) and (b), regardless the value of β , when time t
equals to η , 63.2% of the population will fail. Together with the skewness information of a
Weibull distribution mentioned in the shape parameter, this can give experts confidence to
estimate the scale parameter η given knowledge of the average failure time.

Also, given the mean of Weibull distribution µ is,
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µ = ηΓ

(
1+

1
β

)
(4.11)

Figure 4.5 (a) gamma function; (b) mean µ of Weibull distributions.

we have, η

µ
= 1

Γ(1+ 1
β
)
. Given β ≥ 0, we have 1+ 1

β
≥ 1. From Figure 4.5 (a), we can see

that for a gamma function Γ(x) with x ≥ 1, it has a minimum value at Γ(1.462..)≈ 0.886.
Therefore, the maximum of η

µ
≈ 1

0.886 ≈ 1.129, and from 1+ 1
β
= 1.462, we can obtain

the corresponding shape β ≈ 2.166. This can be interpreted as the maximum of scale is
1.129 times of the mean of the Weibull distribution µ . This validates the examples in Figure
4.5: given a mean of the Weibull distribution µ , with the increase in shape value β , the
scale η reaches its peak when the value of shape at around 2.166, which is about 1.129
times of its mean µ . And after that point, the value of η decreases slightly and gradually
stabilised reaching its mean µ when β → ∞. By knowing this, experts can form an idea
of the relationship between the value of scale and mean time to failure, and provide more
confidence for them to extract knowledge for the prior of scale.

Summary

Explaining the characteristics of the Weibull distribution in a way that engineers can under-
stand is a vital process in order to quantify prior knowledge from experts. Instead of asking
their opinions about the shape parameter β directly, we may interpret the question into the
form of failure rate. For example, with the increase in time, does the asset get more likely to
fail? If the answer is yes, we can define a prior for β that is greater than 1.
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Also, we assume experts are more likely to have knowledge such as the mean failure time
of this type of asset µ , which can be used to narrow down the range of β and estimate the
mean of the scale parameter η . Given the µ , in the overall population distribution of this
type of asset, whether the assets are more likely to fail before µ or after? If the answer is
before µ , we can interpret it as a left-skewed distribution, which represents the β is ranged
from 1 to 3.6. This is also validated by most studies, where most infrastructure’s failure time
follows a β between 1 to 3.6 (see examples in Le [94] and Nasrollahi and Washer [122]). To
further narrow down β , we can increase its left bound if the experts are very confident in
providing the above information. This is contributed by the information that the higher β is,
the smaller variance σ2, as discussed before.

Given the information of the µ and the skewness, and the interpretation that the value of
scale parameter η represents around two thirds (63.2%) of the failure population, we can
estimate the mean value of η is slightly higher than µ . Also, given the maximum of the scale
η is 1.129 times of its µ , we can use it to set the upper bound of η .

4.2 Individualised Deterioration Learning from Similar As-
sets

In practice, we may have several groups of assets of different types, which we believe
deteriorate with similar behaviour or different but related. Model in Section 4.1 is extended
with another layer of parameters as a hierarchical BN to learn between groups. Since the
failure times are determined by the parameters shapes and scales, we assume the distribution’s
parameters learnt for one type of asset share some similar deterioration characteristics with
differences with other types. This section introduces how to learn between groups and
individualise the deterioration learning with similar or different but a related rate of decay.

4.2.1 Assets with Similar Deterioration Rate

This subsection shows how to use the learned deterioration of a dominant group (data
rich) to infer the learning of weak groups (data poor). It is suitable for a situation where
assets deteriorate similarly, and experts are confident about the difference between groups.
For example, it can be used for a case where there are only a few influencing factors on
asset deterioration, or there is a dominant feature has been identified with a significant
impact on the rate of deterioration. We do this by assuming the parameters learned for
one group approximate those of the other similar types, with differences inferred by their
hyperparameters.
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Figure 4.6 Multiple asset groups with similar deterioration.

Assume assets in Group A (assets 1 to 8 in this example), Group B (asset 9 to 11)
and Group C (asset 12 and 13) have similar deterioration rates resulting from some shared
characteristics (such as similar designs with different materials). Group A has more failure
data (dominant group) than Group B and C (weak groups). In the case that one group has
more failure data than the other groups, we may leverage the deterioration learning from one
group to other groups. Figure 4.6 shows a hierarchical BN for these three groups of assets.
Shapes (node Group B: shape and Group C: shape) and scales (node Group B: scale and
Group C: scale) of these assets were governed by the Group A’s shape (node Group A: shape)
and Group A’s scale (node Group A: scale) variables, whose prior probability distributions
are using triangular distributions as suggested in Section 4.1.

Experienced experts may have knowledge about the typical deterioration behaviour of
assets in Group A since it has more failure data to observe. Assume assets in Group A are
concrete-based bridge decks, with the knowledge elicitation as discussed in Section 4.1.3, the
experts can express the prior knowledge for parameter shape β and scale η . For example, for
scale η in Transition 1 of a typical concrete-based bridge deck, experts estimate it follows a
triangular distribution with a lower bound of 10 years, a middle of 23 years and an upper
bound of 30 years. This knowledge becomes the prior of the hyperparameter in this model,
which is learned from all assets in Group A.

At the same time, experts may know how similar two groups of assets are. For example,
experts know about the deterioration of a concrete-based deck (Group A) is more similar to a
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stone-based deck (Group B) compares to a timber-based deck (Group C). This knowledge
leads to a higher similarity degree (lower variance) between stone-based (Group B) and
concrete-based structure (Group A). A doubly truncated normal (TNormal) distribution (its
expression can be found in Fenton and Neil [45]), a normal distribution bounded by lower
and upper limits is used to model the relationship between the local parameters and the global
parameters (hyperparameters):

Group B (C): shape (scale) ∼ TNormal(µ,σ2,L,U)

The mean µ of this distribution is the shape or scale from the rich data group, and variance
σ2 representing the degree of similarity between these two groups, which is given by experts.
The lower bound L and upper bound U of the distributions are also evaluated by experts
about extreme values.

Take node Group B: shape as an example: assumes it has a conditional probability
distribution given by TNormal (Group A: shape, 0.5, 1, 3). Its mean is given by the
distribution of node Group A: shape, which inherits the typical behaviour of the shape
between assets in Group A. Its variance is 0.5 – a smaller variance means a higher similarity,
representing a high degree of similarity between these two groups (Group A and B). The
distribution is restricted to the region between 1 and 3, indicating it has an increasing failure
rate (because the shape value is higher than 1 as discussed in Section 4.1.3) with values
between 1 and 3. Similarly, for shape in Group C, experts know that a timber-based deck
(Group C) may deteriorate faster than a concrete-based deck (Group A), we can assign the µ

of the TNormal distribution with an additional arithmetic value to indicate this behaviour.
By extracting information from experienced experts about the degree of similarity and the
differences between groups, the model offers to reason parameters of a group with only a
little data (Group B and C) using data from another group (Group A) that are judged to share
a similar deterioration rate.

4.2.2 Asset with Different but Related Deterioration Rate

As discussed in Section 2.2.2, asset feature can be used as an indication of their deterioration
characteristics. This subsection introduces the use of feature space to distinguish individual
asset into groups for individualised deterioration learning. It also shows how to aggregate the
feature values as an indication on the deterioration rate, which can be used to quantify the
different but related deterioration between groups, and further extend the model from the last
subsection to learn between groups. This model is suitable for situations when experts find it
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difficult to quantify the relationship of asset deterioration behaviour between groups directly
by themselves.

The deterioration rate may be affected jointly by different features, like heavy loading
and aggressive environment conditions (see an example in Yianni et al. [188]). Ideally,
the maintainers’ knowledge of these effects could be combined with statistical failure data
gathered from a population where the loading and environment vary. From a decision support
perspective, this will allow specific assets to be distinguished. For example, Marsh et al.
[109] outlined a Bayesian architecture to integrate multiple factors, such as loading and
environmental stress, to support decision but it did not show how failure data could be
included.

Figure 4.7 Aggregated influence on deterioration from features.

The degree of influence of each feature should be rated so that we can distinguish
individual members of assets into suitable groups. Ranked node (see Section 3.2.2) is applied
to model each feature. Its rating is ranging from low, medium to high. The higher degree it
is rated, the faster it deteriorates, therefore, the shorter the transition time is. As shown in
Figure 4.7, two features are modelled for illustration purpose (here, for example, loading as
Feature 1 and environmental condition as Feature 2). An example of how to estimate their
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states can be adopted from Yianni et al. [188]: take loading of railways bridges as an example,
track data of Equivalent Million Gross Tonnes Per Annual (EMGTPA) passes over the bridge
can be used to estimate the level of loading. For loading less than 3.5 EMGTPA, they are
rated as low, between 3.5 and 12 EMGTPA are classified as medium, and over 12 EMGTPA
are defined as high. In Figure 4.7, a medium loading is observed for Feature 1 in Group X
because the EMGTPA of the line passes over this bridge is between 3.5 EMGTPA and 12
EMGTPA. Assets with the same combination of feature values can be grouped into the same
group assuming they have the same deterioration characteristics. While for assets within
different groups, their feature values can be an indication of how similar their deterioration
is. By doing this, we can separate assets into two groups in this example: for assets with
medium rating in Feature 1 and low in Feature 2, they are grouped as Group X (asset 1 to 3);
for assets with high rating in Feature 1 and medium in Feature 2, they are grouped as Group
Y (asset 4 and 5).

At the same time, different features may have different strength in influencing the
deterioration of assets. For example, the environmental condition may have more influence
on the deterioration of a metal bridge than its service type. Experts could have knowledge
about the weights of these influence factors and assign them directly. In the case where we
lack this type of knowledge, we can assign a hyperparameter for each feature represents its
weight (node weight 1 and weight 2). It is modelled with a prior of a uniform distribution
with a lower bound of 0 and upper bound of 1. All the weights of the feature are linked
together with a node that sums the weights to 1 (node sum). The weights converged and
learned where there are many different groups of assets (with varying combinations of the
features) with failure data. However, if we do not have many groups, due to the convergence,
it is better to rate weights by experts or to give more informative priors for the weight nodes,
rather than learn them. Note that in Figure 4.7 the weight nodes are created for demonstration
purpose to show how they are built and linked. But in this case, it is better to assign weights
directly from experts since there are only two groups.

The degree of influence factors (node: Aggregated Influence) is modelled by a TNormal
distribution combined using a weighted mean (wmean, equivalent to a linear model) of the
influence factors (node Feature 1 and node Feature 2), and variances σ2 are given by experts
regarding their confidence level of the weights:

Aggregated Influence ∼ TNormal(wmean,σ2,0,1)

For example, experts can assign the weight of loading with 0.3 and environmental stress
with 0.7, with a variance of 0.2 as a slightly high uncertainty about these weights so that
the combined influence of these factors is only slightly closer to the value of environmental
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stress than the value of loading. Since there are only two groups built in the example in
Figure 4.7 with little failure data, the posterior of weights will not converge, resulting in both
features carrying approximated equal weights. In Group X, though neither features were
rated as high, there is still a 22.97% in high influence since the variance is set as 0.2 with
high uncertainty.

Developed from the model in the last subsection, here a case where both groups have
little data is presented. Therefore, instead of using the parameters of a dominant group as
hyperparameters for weak groups, hyperparameters of the overall population that govern all
the subgroups are used. These hyperparameters represent the typical deterioration behaviours
of assets, for example, the typical rate of bridge deterioration. Meanwhile, the parameters
within each group represent the deterioration behaviours of each subgroup adjusting by their
aggregated influence resulting from features. The parameter is partitioned modelled by three
TNormal distributions (since there are three states in this example: low, medium, high, each
state is modelled by a TNormal distribution), with variance and the bounds are given by
experts (same as the last subsection). The only difference is the mean, which is adjusted from
the typical hyperparameter and aggregated influence. The mean based on the states of the
aggregated influence degree: a low influence degree means a longer transition time, therefore
it has a higher probability in the high-value region of the hyperparameter; in contrast, a high
influence degree is mapped to the low-value region of the hyperparameter. The evaluation
of regions is given by experts regarding how easy the assets can be influenced by external
factors.

4.3 Asset Condition Prediction from Learned Distributions

The BNs of the previous sections cover the distribution of transition time learned about its
deterioration. We can extend it to predict the state of an asset based on a future inspection
time, allowing decisions about, for example, inspection and maintenance reasoning.

Figure 4.8 shows how the prediction works. We denote Inspection Time as T , Transition
Time from Working to Fail as TWorking→Fail , the predicted state node is modelled by a Boolean
node with a logical expression: i f (T < TWorking→Fail , “Working”, “Fail”). Assume the asset
is currently working, this example aims to predict its condition (either working or fail) 24
months later. With a transition distribution learned from failure data (models from the last
section and Equation 4.4), as shown in the figure, 43.213% of its pdf is smaller than 24
months (showed as red area). It means there is a 43.213% probability this asset will fail
(transit to another state). Hence, 56.787% will survive (does not transit).
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Figure 4.8 Condition prediction of a binary state asset after 24 months.

This model is further developed in the following subsections to predict the condition of
an asset that is rated by multiple states and to predict the condition of an asset that is affected
by its multiple components.

4.3.1 Asset with Multiple States

Distinguish ageing processes of assets directly only working from (hard) failure is not enough
for making decisions about a variety of maintenance actions. Most critical infrastructures,
their inspection data and repair decisions are made based on a grading system representing
different levels of deterioration (see Section 2.3.2). For which, to predict their conditions, we
need to model deterioration between multiple states.

To model the deterioration of assets through several states, the model in Figure 4.8 is
extended with multiple states showed in Figure 4.9. Here we model the condition of an asset
with a three-state scale using a categorical variable (named labelled node in AgenaRisk [2]),
with the transition from Good to Fair (TGood→Fair), Fair to Poor (TFair→Poor). Each transition
is modelled by a separate parameter learning model. We assume deterioration progresses with
the sequence of the rating system, that is, the transition from Good to Poor must go through
the transition of Fair. Hence, we denote Inspection Time as T , in this example, the expression
for the predicted state node becomes i f (T < TGood→Fair, “Good”, i f (T < TFair→Poor, “Fair”,
“Poor”)).

Assuming the starting state of this asset is a Good condition, the query from Inspection
Time will first visit the Transition Time from Good to Fair. In the pdf of this node, only
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Figure 4.9 Condition prediction of a multi-state asset after 24 months.

27.993% of the area of this distribution is smaller than 24 months, that means, 72.007% of this
asset will still stay at Good state. For those transit to Fair, only 43.004% will further transit
to the Poor state showed in Transition Time from Fair to Poor, that is, 27.993%*43.004%
= 12.038%. Therefore, we have the deterioration prediction distribution as shown in node
Predicted State.

This is a simple example with only three states, but with the increase of the number of
states, the number of parent nodes for Predicted State node increases correspondingly. In a
BN, a node that has too many parents results in a very large Conditional Probability Table
(CPT), which leads to computational complexity for its inference. Especially for continuous
variables like transition time distribution, this complexity increases sharply since dynamic
discretisation inference algorithm will discretise each distribution into dozens of states. If,
say 30 states were discretised for each transition, if an asset is graded by a 10-point scale like
the NBI dataset (see Weseman [182]), the predicted state would have 9 transition parents that
require a CPT of 309 entries.
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Figure 4.10 Condition prediction of a multi-state asset: (a)model with aggregation; (b)binary
factorised model; (c)plate model.

To reduce the inference complexity and consequently speed up the calculation, the binary
factorisation modelling technique proposed in Neil et al. [123] is adopted in this thesis.
This technique converts the aggregation structure into a binary tree structure (for example,
from Figure 4.10 (a) to (b)) that aims to ensure all nodes in the BN have no more than two
continuous nodes as parents. Among the variables in the model, the inspection time node and
all transition distribution nodes are continuous variables. Therefore, for the first transition,
we build a temporal Boolean node (showed in dotted line) to query if the asset transits to
worse states given the inspection time (same function as the predicted state node in a binary
system as in Figure 4.8). The following temporal Boolean nodes have the same structure,
only with an additional link from the previous temporal node in the form of a Markov model.
It will transit to worse states only if the previous state is transited to the current state and
current transition is smaller than the inspection time. For example, we denote node transit to
state after Good as tGood , node Transition Fair to Poor as TFair→Poor, Intervention time as T ,
the second temporal transition node is true when (tGood = True)∧ (T > TFair→Poor). At last,
all the temporal nodes are linked to the predicted state node. By doing so, it creates a much
smaller CPT than the one with the aggregation structure: these temporal nodes are discrete
variables, and each temporal node only has two states. We denote the rating system with n
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states, the binary factorised model reduces the size of an aggregated structure from 30(n−1)

to 2(n−1). In the example in Figure 4.10, it reduces from 303 to 23, and for the NBI example,
it can reduce the space from 309 to 29.

This modelling technique is employed in the rest of the thesis. Figure 4.10 (c) gives
an example of how to represent the model in (b) using a modified plate model to make the
models more readable: a square indicates that there are multiple variables inside the square
with the same structure. The index shows the number of variables with the same structure.
The temporal nodes are omitted but represented by the dotted lines, indicating the model is
binary factorised.

4.3.2 Assets Assembled by Multiple Components

The condition of an asset with multiple components can be evaluated in various ways
depending on the type of interaction between components, including in parallel, series,
bridge structure, and their variants (see Section 2.3.3). Dynamic Fault Trees (DFTs) is one of
the most notable frameworks in modelling a flexible system configuration [108]. Here, we
represent the DFTs in the form of event-based Bayesian structure to model parallel and series
system, and bridge structure is modelled with a similar structure but with a specific function.
Each transition distribution of each elementary component of the system is represented
by a continuous random variable. Each transition of the system is connected by several
components’ corresponding transitions and characterised by an arithmetic function. The
state of the asset given a time instance is modelled with a discrete random variable using
the models we described in the last subsection. Since the resulting BN is a hybrid BN with
continuous variables, we use dynamic discretisation for its inference.

To specify the joint distribution of the BN, we need to assign the marginal (prior)
probability density functions of the basic events (transition distributions of components)
and functions of intermediate events (transition distributions of asset system). In the case
where deterioration distribution between components is statistically independent, we can
define them by their marginal probability distributions. By using the models described in
Section 4.1 and 4.2, we can learn these transition distributions from deterioration data and
knowledge. The function of an intermediate event is characterised by its parents and its fault
tree construct. These functions are illustrated with the examples showed in Figure 4.11.
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Figure 4.11 Multi-state asset system configuration: (a)asset assembled in parallel; (b)asset
assembled in series; (c)asset assembled with bridge structure.
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Consider Asset 1, 2 and 3 (A1, A2 and A3) all consisting of two components, Component
1 (C1) and Component 2 (C2), arranged in parallel, series and with a bridge structure
respectively. Transition distributions of all components are learned from the deterioration
learning models mentioned before. The system configuration models are depicted in Figure
4.11 for asset rated by multiple states (a three states example is showed: Good, Fair and
Poor).

In Figure 4.11(a), the components are assembled in parallel. AND gates are used to
describe the relationship between input and output event. AND gate is commonly used
in the parallel system, representing the event fails if all the components in the system
fail. We denote the continuous transition distribution of Component Ci as TCi , we have
TAND = max{TCi}. Each transition of A1 is constructed by an AND gate that connects the
corresponding transition from C1 and C2. We also include a categorical variable developed
from the last subsection that connects the transition distributions of A1 and the inspection
time, representing the state of A1 given an inspection time.

Similarly, in Figure 4.11(b), the components are assembled in series and can be described
by OR gates. OR gate is used to represent a situation where the event fails when at least
one of the components fails. It can be denoted as TOR = min{TCi}. Each transition of A2 is
constructed by an OR gate that connects the corresponding transition from C1 and C2 and
evaluated by a categorical variable.

Slightly differently, in Figure 4.11(c), the components are assembled with a bridge
structure and evaluated by an aggregation function of its components with weights rather than
using the fault tree gates. Each component in the bridge structure system is assumed to have a
designated weight contributing towards its failure. And further, aggregated, an example of an
aggregated weighted mean (wmean) is discussed here. We denote the weight of Component
Ci as wCi , where i = 1, . . . ,n, we have the weighted mean transition distribution T of this
system

T =
∑

n
i=1 wCiTCi

∑
n
i=1 wCi

(4.12)

Each transition of A3 is constructed by a weighted mean function that connects the
corresponding transition from C1 and C2. In this example, experts believe that contributing
to the transition between Good to Fair of A3 as a system, C1 has a weight of 0.3 and C2 has
a weight of 0.7; for the transition between Fair to Poor, C1 has a weight of 0.4 and C2 has
a weight of 0.6. These system transitions are further evaluated by a categorical variable to
predict the asset condition.

Sometimes, decision makers are more interested in evaluating the state of the system by
the state of its components, rather than the transition distributions. For example, in the US,
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one criterion in determining whether a bridge is structurally deficient is a condition rating of
4 or less for any of its structures, including deck, superstructure, substructure and culvert (if
it exists). We can model them by considering each of these structures as a subsystem, and
they are assembled in parallel.

In a simple case where assets are rated by binary states (for example, working or fail),
we can model them as traditional fault tree with a Boolean node in the BN. The Boolean
node is constructed with a comparative statement to express the logic gates and can be
used to perform static fault tree analysis. For example, for a binary-state asset that is
evaluated by the states of two components C1 and C2 in parallel, we can define: Asset ∼
i f (C1 ==“Failed” && C2 ==“Failed”, “Failed”, “Working”). Here, C1 == “Failed” means
C1 is in “Failed” state. This expression means if both events, event C1 is in “Failed” state,
and event C2 is in “Failed” state, are true, then the result is in “Failed” state, otherwise in
“Working” state. With BN tools like AgenaRisk [2], this expression for the Boolean operator
can be automatically transformed into a corresponding CPT for inference in the BN. The
joint probability distribution of the BN that has a collection of independent cause variables
Component C consists of Component Ci, where i = 1,2, . . . ,n as the parents of the asset’s
state Y:

p(C,Y ) = p(Y |C)
n

∏
i=1

p(Ci). (4.13)

Therefore, together with the prior probability of the state of components (learned from
the condition prediction discussed in the last subsection), after the inference of the BN, we
can get the probability of a binary-state asset’s states assembled in parallel, in series or with
a bridge structure. Thought we could extend the if-else statements from the Boolean nodes
in binary-state systems to form a collection of logic expressions (nested if-else statements) to
evaluate the state of a multi-state asset with components assembled in parallel or series, the
process for defining these logic expressions becomes tedious with the increase in the state
number.

Instead, for a multi-state asset that is evaluated by multi-state components, functions such
as maximum, minimum or weighted mean can be used to describe the relationships between
states of components and asset. To do that, we need to consider representing the states with
numerical scales rather than merely using categorical states. Here, their states are modelled
with a set of ordinal continuous intervals. The discrete variable (state of components and
assets) is mapped onto a continuous scale that is bounded (from 0 to 1) and monotonically
ordered. The reason for expressing them on an ordinal scale is that in most asset rating
scales, the states are ordered. For example, in the NBI, rating 9 represents a better condition
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compares to rating 8. Given the number of asset states, we can discretise the numerical scale
accordingly. Hence, the binary-state system becomes one of the special cases with an interval
of 0.5. Figure 4.12 presents a three-state scale example. Therefore, the interval for each state
is 0.333. Thus, Good state belongs to the interval of [1, 0.667) and Fair state belongs to the
interval of [0.667, 0.333) and so forth.

Figure 4.12 Multi-state asset system assembled by parallel components.

Table 4.2 CPT for an asset with two components that are assembled in parallel.

Component 1 Poor Fair Good
Component 2 Poor Fair Good Poor Fair Good Poor Fair Good

Asset 1
Poor (0 - 0.333) 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fair (0.333 - 0.667) 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0
Good (0.667 - 1) 0.0 0.0 1.0 0.0 0.0 1.0 1.0 1.0 1.0

Therefore, with these numerically scaled states, we can use maximum and minimum or
weighted mean functions. Since the states, for example, Good to Poor, are mapped to ordered
numerical bounds from high to low, and their states are mutually exclusive, the probability
of asset under maximum, minimum or weighted mean function becomes the maximum,
minimum or weighted mean state scale of their components and later re-marginalised. Figure
4.12 presents an example of two components assembled in parallel. The CPT generated from
the maximum function for Asset 4 is given in Table 4.2. The probability of the asset follows
the sequence of logic: if either component is in Good state, the asset is in Good state; or if
either component is in Fair state, the asset is in Fair state; otherwise, the asset is in Poor state.
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Additionally, for a bridge structure system configuration, the quantification of the con-
tribution of each cause to the effect (credibility of state of the component to the state of an
asset) often involves uncertainty. To consider the uncertainty, we can extend the state node
that is discretized into several ordinal continuous intervals to a state node that is characterised
by a TNormal distribution using these ordinal continuous intervals. This function is also im-
plemented in the ranked nodes developed from Fenton et al. [46] and has been implemented
in software like AgenaRisk [2] as discussed in Section 3.2.2. Therefore, we have:

Asset State ∼ TNormal(µ,σ2,0,1)

where µ is the weighted mean function of the state of components. σ2 is the variance
representing the certainty from experts about assigning the weights of components: ranging
from 0 to 1, where 0 represents entirely certain about the weights, and 1 represents utterly
uncertain about the weights. The lower bound of 0 and upper bound of 1 are applied to
avoid probability from expanding into infinity ranges but instead regularise the resulting
distribution within the finite range of 0 to 1. Hence, in order to include the uncertainty about
assigning the weights, for bridge structure, instead of using a function like wmean (0.4,
Component 1, 0.6, Component 2), we can use function TNormal (wmean (0.4, Component
1, 0.6, Component 2), 0.2, 0, 1). It not only includes the wmean function as the µ , but also
consists of the uncertainty about the weights of components as σ2, which is 0.2, a relatively
high level of uncertainty in this example.

In summary, this subsection presents two types of modelling approaches to evaluate the
state of an asset that is assembled by multiple components. Depending on the requirement of
the applications, we can either estimate the state of an asset from its components’ deterioration
distributions, or its components’ states. Especially for a bridge structure configuration,
this subsection also shows how to extend our model to include expert knowledge. This
knowledge reflects the expert’s certainty level about assigning the weights of components,
which represents the contribution of the state of each component to the state of the asset as a
system. Though only three types of system configurations are developed: parallel, series and
bridge structure, they can be combined or extended to model more complex configurations,
for example, using the AND and OR gates together to model a k-out-of-n system or extend
AND gate with a logic expression to form a Priority AND gate to model system redundancy
as suggested in Marquez et al. [108].
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4.4 Repair Decisions

When the state of an asset has been identified, either from on-site inspection or from predic-
tion, we would like to decide what repair action to perform. This section develops two types
of supports for making these repair decisions: one for suggesting maintenance actions from
the historical frequency of repair action usage, which is built upon a type of BN called an
observational model; one for evaluation of repair effectiveness, which is built upon a type of
BN called an intervention model.

Figure 4.13 Extensions of common cause observational and intervention models with con-
founders.

These models are developed using an extension from one of the three basic causal
structures introduced in Section 3.2.3: a common cause with confounder [112, 155], it
represents a situation that an event is causally affecting both the cause and the effect as shown
in Figure 4.13. It can be used to model the effectiveness of repair action given its current
condition. X represents the current state, Y represents the selection of repair action, and Z
represents the repaired state. Each variable is modelled as a discrete labelled variable with
multiple states or options. The joint probability distribution of this model can be represented
as P(X ,Y,Z) = P(X)P(Y |X)P(Z|X ,Y ).

In the observation model (Figure 4.13 (a)), the passive observation of taking a positive
repair action indicates a higher probability of the current state is in a worse state, and a higher
probability of the repaired state is in a better state. We can use this model to backwardly
reason the recommendation on repair action when given a safety or reliability criterion as an
observation.

While in the intervention model (Figure 4.13 (b)), the decision on repair action is
independent of the previous state. The decisions could base on other external reasons,
for example, financial reason or opportunistic maintenance with other assets. Thus, the
observation on repair action does not provide evidence of the previous state (hence, the link
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is removed) but only have an impact on the repaired state. So that, we can answer a question
such as: ‘Given the current state, if repair action X is taken, what is the probability of this
asset in state Y?’. By comparing the effectiveness of different actions, we can prioritise the
maintenance actions.

4.4.1 Observational Model: Historical Frequency of Repair Action

Given an observed condition of an asset, maintainers may want to know under the same
scenario, what action would other maintainers take. We can build an observational model
like Figure 4.14. In this model, an asset is rated by a 3-point scale: Good, Fair and Poor.
Three repair actions are included for illustration purpose. Repair action is the child variable
of the observed asset state since historically, the decision on repair action depends on the
state of the asset. These two nodes together become the parent nodes of the repaired state.
We also include a constraint node to evaluate if the repaired state is still in Poor condition.

Figure 4.14 Observational model for repair action suggestion from historical frequency.

The CPT of the current state variable is uniformly distributed, but in most cases, this
node is observed. In this example, it is observed with a Poor condition (100% probability
in Poor condition). The CPT of repair action depends on the observed state. Its entries
are adopted from the historical frequency of repair action usage or expert judgement. For
example, when the asset is inspected with a Fair condition, in the repair history, 30% of
maintainers took no action, 60% used minor repair, and 10% applied major repair. A similar
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procedure is applied to specify the CPT of the repaired state about maintenance effectiveness.
This example assumes the available actions are imperfect maintenance, and different actions
have different effects in restoring asset state depending on its current state. For example, in
history, assets repaired by major repair actions, 99% of them restored asset in Fair condition
to Good condition while 1% didn’t have any effect; 50% of them successfully restored asset
in Poor condition to Good condition, and 45% to Fair condition but 5% failed to improve its
current state. The constraint node is an observable Boolean node with a logical expression
i f (Repaired State == “Poor”, “True”, “False”), and its equivalent CPT is shown in the
figure. The False state is observed in this node to prevent the repaired state from being in
Poor condition.

By observing the state of the asset and the constraint to prevent asset from being in an
unreliable condition, with this observational model we can infer the repair action frequency
that is taken in history or from expert experience. In Figure 4.14, for an asset that is currently
in Poor condition, to avoid its repaired condition still in Poor condition, in history, 1.635% of
maintainers took minor repair action and 98.365% repaired with major repair.

In this example, we modelled a simplified relationship between repair actions and asset
state. The model can be extended to describe more complex maintenance assumptions, such
as some repair actions are only applicable to restore asset in a specific range of state, or repair
actions depend on the states of multiple components. We can also include more constraints,
such as costs and expected service time, to provide a reference for making repair decisions
under a more practical scenario. These complex decisions are later illustrated in Chapter 6
with real-world cases.

4.4.2 Intervention Model: Effectiveness of Maintenance

An intervention model can be used to answer questions such as what the condition distribution
of the asset is if a specific repair action was taken. The distribution implies imperfect
maintenance that not all actions can restore asset condition to a particular state, but a
collection of states probabilistically.

Figure 4.15 presents an example of how to transform an observational model (Figure
4.14) into an intervention model for repair action evaluation. Followed the suggestions from
Constantinou et al. [28], in the intervention model, the link from the cause should be removed.
In the observational model, this link is used to explain the observation for repair intervention;
while in the intervention model, we need to remove it to avoid inferring posterior probability
for cause (current state node) when performing intervention (observed). Though technically
this does not have an impact on the example in Figure 4.15 because both current state node
and repair action node are observed. It is still necessary to remove this correlation because
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the current state could be predicted instead of being observed (see an example later given in
maintenance planning), with the link the model will wrongly reason backwards and have an
impact on the current state. Furthermore, the constraint node becomes unobservable; it acts
as an indication of the intervention impact.

Figure 4.15 Converting an observational model to an intervention model for repair effective-
ness.

Most CPTs for the transformed intervention model remain the same as those in the
observation model, except for the CPT of the repair action. The repair action node becomes
independent from current state node and is observed. Hence, like the current state node, its
CPT is uniformly distributed. Both the observational model and intervention model provide
natural incorporation to express the repair history data through the CPTs, which allows us to
reason the repair effectiveness from data. Additionally, thanks to the nature of the BN, even
without these data, we can also formulate these CPTs based on expert judgement [28].

Figure 4.15 shows an example of estimating the impact of an intervention. For an asset
that is in Poor condition, performing a minor repair only has a 30% probability restoring the
asset to Fair condition yet 70% probability staying in Poor condition. Hence, in this case, we
may suggest using major repair action instead.

This subsection presents a simplified intervention model to estimate maintenance effec-
tiveness. Same as the observational model, it is also possible to extend this model to formulate
more complex repair decisions, which are illustrated in Chapter 6 with real-world examples.
Also, by considering the intervention model as a model object, we can form multiple objects
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to model multiple repair decision cycles. Together with the condition prediction model from
Section 4.3, we can plan the maintenance over some time, and further, perform analysis such
as life cycle analysis as discussed in the following section.

4.5 Maintenance Planning

Intervention model from the last section gives us a tool to evaluate the repair effectiveness but
does not explicate decisions should be taken to optimise the use of resources automatically.
An adequate approach is needed to formalise the process of making these decisions, especially
with the increase in complexity in decisions making of many problems, such as a situation
where future decisions depend on past decisions [45]. In this section, the repair decision
process is modelled as an object (fragment) that contains the intervention model together with
the condition prediction model. By modelling multiple objects that are arranged sequentially,
it allows us to model decision processes over a finite time. A life-cycle cost analysis is used
as an example to show its potential use when considering multiple sequentially organised
decisions. We also point out the possibility to plan optimal maintenance decisions when
working together with an optimisation technique.

Figure 4.16 An object for intervention process modelling.

Figure 4.16 gives an example of combining the intervention model from Section 4.4.2
with the prediction model from Section 4.3 as an object. Note that instead of evaluating
whether the repaired state is in Poor condition, in this example we measure the repair cost
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using an arithmetic function that depends on the selected repair action, which is later used
to analyse the life-cycle cost. The repaired state becomes one of the parents of predicted
state, which can be used to measure the further deterioration of the asset after maintenance.
Different from the model in Figure 4.10, where an asset is assumed to be in a specific
condition (hard evidence, for example, 100% in Good condition); the repair action cannot
guarantee perfect maintenance. Hence, the repaired state is distributed probabilistically
(soft evidence). The previous binary factorisation, therefore, becomes a special case when
the repaired state is 100% in Good condition. In fact, this special case only applies to the
situation for replacement in most cases. While for imperfect maintenance, to deal with
various probabilities about various repaired states, we need to perform multiple levels of
binary factorisations.

Assume asset can be rated among {n, . . . ,1} states, where state n is the perfect state, and
state 1 is the worst state, we have n−1 transitions. By dividing the factorisation into n−1
blocks, where each block represents a factorisation process that start with one of the possible
states. Given an intervention time, for state i, we perform a binary factorisation with the
Markov property (for example, transition to state after i−1 only depends on the transition to
state after i) that evaluate whether the asset will deteriorate to state {i, . . . ,1}. We model this
process by a collection of temporal Boolean nodes from ‘transit to state after i?’, to ‘transit
to state 1?’. In the block for state i, all temporal Boolean nodes are aggregated to form a
temporal predicted state node representing the state distribution if the repaired state is in state
i. The repaired state node contains a message about the probability distribution of each state.
Together with the temporal predicted state nodes, they are aggregated to form an ultimate
predicted state node representing the state distribution of this asset.

To define the CPT for the ultimate predicted state node, the predicted probability in
each state needs to be determined first. For repaired state and ultimate predicted state, we
have collections of state distributions represented as Prepair,i and Ppredict, j respectively, where

n
∑

i=1
Prepair,i = 1 and

n
∑
j=1

Ppredict, j = 1. For the temporal predicted state that starts with repaired

state i, its probability of deteriorate to state j is represented as pi, j , where
i

∑
j=1

pi, j = 1, and

i ≥ j. Therefore, the probability of the ultimate predicted state in state j is:

Ppredict, j =
n

∑
i= j

pi, jPrepair,i (4.14)

The prediction part from Figure 4.16 is unfolded in Figure 4.17 for an asset that is rated
by four states: Good, Fair, Poor and Fair, hence, three transitions (the index n− 1 = 3).
For the repaired state that is in Good condition, followed the procedure in Section 4.3, its
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Figure 4.17 Multiple binary factorisations for the repaired state distributed probabilistically
due to imperfect maintenance.

deterioration is binary factorised with three temporal nodes about its step-wise transitions
given the observation of intervention time. These temporal nodes are gathered together to
evaluate the further deterioration of asset under the circumstance that the repaired state is in
Good condition. Similar structures are performed to evaluate the deterioration of the asset
state in Fair state and Poor state respectively. A collection of temporal predicted states for
asset starts with various repaired states is linked, together with the probability distribution of
the repaired state to infer the ultimate predicted state. For example, to evaluate the probability
of this asset in Poor Condition, Equation 4.14 is employed, where j = 2 and n = 4. We
need to combine three situations, where each situation is multiplied by the probability of
it being in that repaired state: in 48 months, the probability of repaired state in Good state
deteriorates to Poor state, the probability of repaired state in Fair state deteriorates to Poor
state, and the probability of repaired state in Poor state stays in Poor state. Hence, we have
18.51%∗20%+29.29%∗60%+59.76%∗15% = 30.24%.
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For critical infrastructure, inspection and maintenance are often performed periodically.
Therefore, to model a lifetime maintenance process, we can model multiple intervention
processes that are either carried out with a fixed time interval of a dynamic time interval.
Each intervention process is represented as an object that consists of the decision on repair
action and its further deterioration till the next intervention. By extending the model from
Figure 4.16, these multiple intervention processes are modelled as multiple BN objects that
are arranged sequentially as shown in Figure 4.18. In each object, the posterior of predicted
state becomes the prior of the predicted state of its next object (next intervention). The
repair action includes no action, repair or replacement of the next object. It is determined by
the state of the asset’s further deterioration (for example, the most probable state or a state
is above a certain percentage) since the last intervention. The repair cost is cumulatively
calculated in the next intervention depending on its repair action. By performing multiple
cycles of this model, we can estimate the life cycle cost of this asset that considers both repair
decisions and further deterioration.

Figure 4.18 Modelling the process of multiple interventions as multiple BN objects that are
sequentially organised.
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This model can be used to estimate the life cycle of asset maintenance and identify
potential risk and expenditure. To further utilise this model, we can incorporate a maintenance
strategy to select optimal repair action and to decide intervention time interval. For example,
by setting constraints to activate repair actions (e.g. some repair actions can be only used
when the asset is in a particular state range), with objectives like minimum overall repair
cost in the whole life cycle or ensuring asset state is above a certain level for safety reason,
this forms a mathematical optimisation problem. It can be tackled by a range of techniques,
such as heuristic algorithms, to decide which repair action to select at what time. Together
with our model, we can perform analysis like optimal life cycle cost analysis to give more
valuable suggestion when planning maintenance activities.

4.6 Summary

4.6.1 Summary of Models

In this chapter, we have developed several generic BNs with both continuous and discrete
variables for asset modelling, including:

1. A BN that can learn the rate of asset deterioration from both data and expert judgement.
In particular, we show how to model deterioration data with censorship, and how to
elicit expert knowledge to assign priors for Weibull distribution’s parameters (Objective
I).

2. Two hierarchical BNs for individualised asset deterioration prediction. One can learn
from similar assets when some assets have more deterioration data, but some have
less. The other one can learn from different assets when most of the assets have little
deterioration data, but at the same time, assets can be separated into different groups
by their features. Features are chosen by their influence on the deterioration rates
(Objective II).

3. A BN that predicts an asset’s condition at a given time using the learned transition
distribution. Initially for single condition state, this model is first extended to allow an
asset to be rated with multiple conditions. A second extension of the model is to use
the deterioration of an asset’s components to assess its overall state. Different ways
to model the contribution of the states of components to the overall state are explored
(Objective III).
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4. Two repair decision BNs. One can suggest repair action based on the historical
frequency of actions being taken for assets in a similar given state, while the other
predicts the effect of a selected repair action (Objective V).

5. A model of the effect of a repair and the subsequent deterioration of an asset. This
model uses the earlier repair model as an object so that, with multiple sequential
objects, we can model the life cycle of an asset through several cycles of repair and
further deterioration (Objective V).

The models are generic in that each shows how to satisfy a particular modelling problem
and decisions support need and can be combined and adapted to a specific maintenance
situation. The models of many asset states use continuous variables to model the time of the
transition from one state to the next, and this leads to high computational demand. To reduce
this computational complexity, we adopt the binary factorisation technique developed from
Neil et al. [123]. This technique first creates a Boolean variable for each state to represent the
probability of the transition from this state at a given time, before combining these variables
into the overall probability distribution over the possible condition states. This ensures that
the models are feasible to compute.

4.6.2 Summary of the Use of Data and Knowledge

These BN models combine the available data with expert knowledge; we summarise the use
of them below:

1. Available data:

• Censored data: the exact time of an asset transitions from one state to another
state is not always available. We introduce the modelling of censored data in
Section 4.1.2 so that records from the periodic inspection can be used in place of
exact transition times.

• Deterioration data from other groups: some assets (e.g. new bridge types)
may have only a little deterioration data. Therefore, we pool deterioration data
with related asset types that are different but have related ageing processes as
shown in Section 4.2.

2. Expert knowledge:

• Deterioration characteristics: these models provide the framework to include
knowledge from experts as the priors of a statistical distribution’s parameters.
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The assignment of the priors (hyper priors) is made possible by understanding
the characteristics of each parameter. Triangular distributions are used in these
models to estimate ranges for the Weibull distribution’s shapes and scales as
shown in Sections 4.1.3 and 4.2.

• Deterioration similarity between groups: knowledge that, for example, a con-
crete structure deteriorates more slowly than a timber structure is well-known by
experts. An experienced engineer can estimate the degree to which two groups of
assets will have similar deterioration. TNormal distributions are used in Section
4.2 to adjust the ranges of the parameters according to the group similarity.

• Weighting of asset features: experts may know that loading may have a higher
impact on some assets’ deterioration than coastal proximity. This type of knowl-
edge can be used to distinguish individual assets by modelling the values of these
features and aggregating them as the influence on the deterioration rate as shown
in Section 4.2.2.

• Contribution of components’ states to bridge state: Some components are
more important in determining the condition of a bridge than others. This
knowledge is expressed as a weight associated with each component, and they
are further aggregated to represent the condition of a bridge as shown in Section
4.3.2.

• Repair effectiveness: Engineers may have experience about the effectiveness of
different repair actions on restoring asset condition. This knowledge is expressed
as a CPT about the probabilities of repaired condition conditional on the repair
actions and current condition as shown in Section 4.4.

The use of appropriate deterioration model depends on the availability of data and
knowledge. Also, how much data we need for each model varies between problems and the
quality of data itself. From personal experience, to fit a Weibull distribution with complete
data, we can approximate the true distribution with 50 observations using uniform priors or
with around 20 observations using good priors. But in reality, we may only have censored
data, as a result, the model often requires much larger data quantity for the distribution to
converge. To choose a deterioration model, we can follow the sequence of: i) when there is a
lot of deterioration data, we can use the model from Section 4.1.1 even with uniform priors,
otherwise, ii) when we have some data and the engineers are confident in assigning priors
for the parameters, we can use the same model with informative priors, otherwise, iii) when
some assets have more data while their related assets have less, meanwhile the engineers
can tell how similar the deterioration rates are between these asset groups, we can apply
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the model from Section 4.2.1 to use the learning from data-rich groups to infer the learning
of data-poor groups, otherwise, iv) when the engineers cannot tell the similarity between
groups, we can use model from Section 4.2.2 to learn the differences between groups using
feature information.

The following chapters show how we can use and extend these generic models in the
context of bridge maintenance. Chapter 5 validates the deterioration prediction models, at
first using synthetic data and then in a real case study. Finally, it assesses the performance
of the predictions in comparison to other available approaches. Chapter 6 shows how to
use the decision models to make real-world decisions. All the later chapters build on the
generic models introduced in this chapter; in particular, Chapter 7 presents a way to assemble
them for different modelling requirements in a way that does not require detailed expertise in
Bayesian modelling techniques.



Chapter 5

Deterioration Prediction Validation

Chapter 4 proposes a number of BNs, among them, the Bayesian statistical model can be
used to learn the rate of deterioration from both data and expert knowledge (Section 4.1).
This model can be extended to learn from other groups so that we can tackle a situation where
some groups have little data for deterioration learning, but others have more (Section 4.2).
We can apply this model to predict whether an asset will transit from one state to another
state given a time (Section 4.3). For asset rated by multiple states, we can assemble multiple
deterioration models in the form of a Markov model to predict multi-state deterioration
(Section 4.3.1). This chapter aims to validate the use of these models (Objective IV). It first
validates the hypothesises of these models using synthesis data in Section 5.1. National
Bridge Inventory database is later used as the case study to show how they can be used for
a real-world problem. We first introduce the background and challenge of this database in
Section 5.2, then show how to build the prediction models using this database in Section
5.3. Section 5.4 validates the prediction performance of the models from various aspects. A
summary is given in Section 5.5.

5.1 Validation Using Synthesis Data

Before building models for deterioration prediction on a real case study, we need to validate
the hypothesis that we can approximate the deterioration distribution by learning their param-
eters from data and knowledge. A set of synthesis data that follows a Weibull distribution
with a shape β equals to 2 and a scale η equals to 300 is first generated. These data are
learned to fit a Weibull distribution using the Bayesian Parameter Estimation (BPE) method
suggested in Section 4.1. We compare it with MLE, one of the most popular methods in
distribution fitting (see Section 3.4). The BPE is set with a prior of a Triangular distribution



102 Deterioration Prediction Validation

(1, 3, 20) for its shape β and a prior of a Triangular distribution (100, 350, 500) for its scale
η .

Figure 5.1 Parameter learning of a Weibull distribution with the increase in data amount: (a)
shape β parameter; (b) scale η parameter.

With the increase in the number of data, the learned parameters are shown in Figure 5.1
- (a) for shape β parameter and (b) for scale η parameter. Among them, the red lines are
the actual values, where the shape is 2, and the scale is 300. The yellow lines are the means
of the learned parameter using BPE, and blue lines are the means of the learned parameter
using MLE. The corresponding ribbons are their percentiles - from 5% lower percentiles to
95% upper percentiles.

We can see that with the increase in the amount of data, both parameters gradually
approximate their actual values with narrower percentiles in both methods. When it reaches
50 data samples, the parameters are nearly identical with the actual values. We can also see
this behaviour in Figure 5.2 (b), the posterior pdf from both methods presented a good fit
with the actual distribution. It supports the hypothesis that with enough data, it is possible to
approximate the distribution by learning parameters from the data.

Meanwhile, compared to parameters estimated by MLE, both parameters in Figure 5.1
learned using BPE show closer distances to the actual values and narrower percentiles when
the amount of data is small. Figure 5.2 (a) presents an example of the posterior pdf learned
with little data. Since MLE cannot be executed when there is too little data to form the
estimation, for the fitting of MLE we started with five samples. With five data samples, MLE
shows a different distribution compares to the actual distribution. We suspect this is because
the shape parameter from MLE was wrongly estimated with a mean smaller than 1. While
for BPE, due to the prior of shape was estimated with a lower limit of 1 by experts, it shows
a satisfactory distribution even with zero data sample. With the increase in data amount,
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Figure 5.2 Fitted distributions: (a) with little data; (b) with 50 data.

for example, five data samples, the fitted distribution from BPE is improved with a closer
distance to the actual distribution.

To quantify the distance between two distributions, Kullback–Leibler (K-L) divergence is
also measured. Let i represents a time point, p(x) and p(y) represent the learned distribution
and actual distribution respectively, we have:

DKL[p(x) ∥ p(y)] =
N

∑
i

p(xi) log
p(xi)

p(yi)
(5.1)

The smaller the K-L divergence is, the closer the fitted distribution is to the real dis-
tribution. By randomly select samples from the learned distribution and compare with its
corresponding samples from the real distribution, with a large enough sample amount, we
can approximate the K-L divergence of two continuous distributions.

Comparing with the real (synthesis) Weibull distribution, distribution fitted with five
data using MLE has a K-L divergence of over 8. It indicates the fitted distribution has a
considerable distance with the real distribution. In contrast, fitted distributions using BPE
present a satisfying performance. Even in the case where zero data is considered, by purely
learning the parameters from prior knowledge, the learned distribution only has a 0.99 K-L
divergence with the real distribution. It improves to 0.13 with five data input and 0.0075 with
50 data. Though MLE can also present a good fit when enough data is considered (with 50
data, its K-L divergence is 0.0101), this measurement agrees with the visual presentation in
Figure 5.2 - when there is not enough data to fit a distribution, BPE can give a satisfying
performance in the light of prior knowledge.

Nevertheless, in practice, it is unlikely to have this kind of ‘perfect data’ like the synthesis
data. Apart from the uncertainty among data (censorship as discussed later), the data we have
may not strictly follow a statistical distribution, but a combination of several distributions.
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Figure 5.3 gives an example of the data we may have, which distributes like the distribution
coloured in red. It is actually a mixture of data from distributions of Group 1, 2 and 3. Even
in the case where we can approximate the distribution of the mixed group, its prediction
(called aggregated prediction) from this learned distribution may not adequately represent
the situation of an individual case.

Figure 5.3 Three groups of distributions and a distribution mixed with these three groups.

For example, to predict a data point that belongs to Group 3 (coloured in green) at time
400 months, if we use the aggregated prediction from the mixed group distribution (coloured
in red), we end up with a cumulative probability of around 0.92 which is quite different from
its actual cumulative probability 0.83. This is resulting from deterioration in other groups
generally have a longer deterioration time (longer tails in the distribution) compared to Group
3.

One of the solutions to resolve this problem is to individualise the data origins into
separate groups. As discussed in Section 2.2.2, for infrastructure deterioration, by assuming
their features (e.g. loading and environment) have an impact on their deterioration rate,
it is possible to separate assets deteriorate similarly into groups. By doing so, we may
provide a more accurate prediction using the individualised group distribution rather than the
aggregated prediction. The purpose of the above discussion is to validate the hypotheses:

• We can approximate a distribution by learning their parameters from data.
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• When data is not large enough, Bayesian parameter estimation gives a better distribu-
tion fitting with the help of prior knowledge about the parameters.

• Compare to an aggregated prediction, by separating assets into groups, it is possible to
provide a better prediction by individualised their distributions into groups.

These hypotheses support the potential applicability of the methodologies. The following
sections validate the use of the methodologies with a real case study from the National Bridge
Inventory. Unfortunately, the validation metrics above cannot be applied to measure the
deterioration prediction performance of real cases: unlike synthesis data where we know
its actual distribution to compare with, we usually do not know the actual distribution of a
real-world problem. Also, it gets more difficult since, in practice, deterioration data is most
likely to be uncertain. For example, they could be censored as discussed in Section 2.2.1
and later showed in Section 5.2.1. Since in the NBI database, assets are rated by multiple
states, in the following sections we consider the predictions as a multi-class classification
problem: we validate the performance of different methods by predicting which state the
asset will deteriorate to given time. We separate deterioration data into a training set and a
testing set proportionally and apply two metrics (later discussed in Section 5.4.1) to measure
the performance in condition prediction.

5.2 National Bridge Inventory

Mandated by the Federal Highway Administration to ensure the safety of public transporta-
tion, the NBI database archives unified information of bridges in the United States. It includes
structure specifications, such as structure type; operational condition, such as Average Daily
Traffic (ADT); and inspection data, such as structural condition.

The structural health of bridge is monitored through bridge inspection, which includes
condition evaluation of deck, superstructure, substructure and culverts on an S9 to S0 scale,
where S9 represents an excellent condition, and S0 represents a failed condition. In general,
a condition rating of 4 or lower quantifies a bridge as structurally deficient. As a result, a
bridge may require speed or load limit to ensure safety.

Inspection data on the structure condition provides us with a valuable source for the
deterioration prediction model. However, the database contains only a small window of
time frame. Only in recent decades, the NBI was enforced to unify bridge inspection data
in accordance with the national bridge inspection standards. The publicly available data
contains record ranging from year 1992 to 2017 by far. Since inspection is often conducted
biennially (some higher risk bridges may require more frequent inspection), the average
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amount of inspection data generated from each bridge is very limited. Also, some records
are missing due to bridge suspension or miscoding, and some records are repair data, which
is not related to deterioration learning in our case. It leaves us a limited amount of data to
use, where most of them are also noisy and imbalanced.

5.2.1 Deterioration Time Data

Since most bridge inspections are periodic, that is, conducted with a time interval rather than
real-time inspection, the inspection time may not reveal the actual deterioration time of the
structure. For example, a structure may be rated as State 8 (S8) in this inspection but rated as
State 9 (S9) in the last inspection. We cannot directly infer the deterioration time from State
9 to 8 is the time gap between these two inspections because the deterioration may happen
anytime between these two inspections.

To encode this uncertainty so that we can use inspection dates to infer deterioration time,
we need to introduce censorship when representing the deterioration time [101]. Censored
data is commonly used to represent incomplete observations. The lack of certainty of an
event happened precisely at a time point can be measured by a value range using censorship.
Except for cases like the accidental failure of a bridge, where we can infer complete failure
data from noticeable signs, in the usual circumstances, we may have more confident in saying
the structure deteriorated between two consecutive inspections (interval censored), after the
most recent inspection (right censored), or before the first inspection (left censored), rather
than a specific time point.

Figure 5.4 Censored data of deck condition from a bridge’s inspection records.
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Figure 5.4 presents an example of censored deterioration time data for a deck condition
generated from the NBI database. In this example, represented by red squares, there are
13 inspection records, from year 1993 the deck was rated as S9 to year 2017 rated as S7.
Five deterioration time are generated representing the time length of a structure stays in one
state before it transits to another state. Four of them are interval censored, and one is right
censored.

In 1997, the inspection showed the deck was in S9 while in 1999 it became S8. We
are unsure about the exact time point of when this deterioration happened, but sure about
this deterioration occurred between these two inspections. Therefore, inferred from two
consecutive biennially inspections (from year 1993 to 1999), we can represent the length
of this deck staying at S9 before it transits to S8 T9→8 is greater than four years but less
than six years. In year 2007, the inspection result shows that the deck suddenly transit to S5.
Except for accident like a train-strike caused sudden failure, we assume natural deterioration
is decremental by one state at a time. Therefore, we can infer T8→7 is greater than six years
but less than eight years, while T7→6 and T6→5 happen between year 2005 and 2007, hence,
less than two years. After repair, the most recent inspection shows that this deck is still in S7,
we can also infer the deterioration time for T7→6 is greater than eight years (right censored).

This example also reveals another concern about the amount of usable data we can infer
from each asset. In this example, 13 inspection records only generate 5 transition time data.
This situation gets worse since most bridges do not have a complete inspection history, and
most of them have a long length of occupation time that do not generate any deterioration
data. In the next subsection, we discuss another concern about the data inferred from the
inspection records: the amount of data is imbalanced.

5.2.2 Imbalance Inspection Records

As shown in Figure 5.3, deterioration behaviours of assets may be different when they belong
to different groups. We can use asset features to decide which group the asset belongs to, here
we use feature bridge structure type as an example. The primary structure type of each bridge
in the NBI database is determined by the structure material and the predominant structural
design. A normalised heat map of the mapping between structure material and predominant
structural in the NBI database is displayed in Figure 5.5, where the darker colour represents
a higher frequency of bridge with these feature values.

The most common combinations are concrete and steel-based structures across different
structure designs. 21.45% of them is made of steel and designed as stringer or multi-beam
or girder. However, there is only 2.63% when it is designed as a stringer or multi-beam
or girder but made of concrete and 0.03% when it is made of steel but designed as a slab.
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Figure 5.5 Heat map of NBI bridge structure type.

This imbalance of bridge type distribution rises a challenge in predicting the deterioration
of those less common structure types: we may not have sufficient data to learn about their
deterioration behaviours. While simply pooling all structure types together as one group
may lead to inaccurate prediction, especially when structure type has a high influence on
deteriorate rate. For example, typically, a steel structure deteriorates significantly faster than
a masonry structure.

Another imbalance of the database is the condition distributions. Here defines S9, S8 and
S7 as Good condition, S6 and S5 as Fair condition and the rest as Structurally Deficient (SD).
Most structures in the NBI are in condition rating over 5 and few of them in condition rating
4 or lower. One of the reasons for this imbalance is that maintenance works were performed:
for structures flagged as SD, as instructed by maintenance guideline, immediate rehabilitation
work is often performed to prevent further deterioration. Hence, very few structures have
records with poor condition. The age of bridges and length of record history are another two
main reasons that may skew the distribution. For critical infrastructure like bridges, they
usually have a long life span in their deterioration. While most of the bridges in the NBI
database are relatively young - seldom of them may reach SD by far. Additionally, the NBI
database was only enforced since 1992 with a relatively small time window to represent the
statistics fully.

Figure 5.6 shows an example from Federal Highway Administration [44], the NBI bridge
condition distribution grouped by ages in year 2017. We can see most of the bridges are
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Figure 5.6 NBI bridge condition distribution by age in year 2017.

in Good or Fair condition. For older bridges, for example, aged between 78 to 87, around
20% of them are in SD, while for young bridges, for example, aged between 8 to 17 years
old, only 0.68% of them are in SD. However, even so, this does not guarantee we can infer
deterioration data from them since most of them may be repaired right after the inspection.
Learning deterioration of these states becomes a challenge.

5.3 Building Deterioration Prediction Model

The NBI database encodes over a hundred features for each bridge. Taking too many features
into consideration is inefficient and sometimes may result in overfitting [84]. Therefore,
before building a deterioration prediction model, this section first reduces the dimensionality
of the dataset to a small number of features that is representative enough in deciding the
deterioration rate. The selected features are used to classify bridges into groups. This process
is illustrated with the training data about deck structure in Wyoming in the NBI database. For
each transition, a deterioration model that can learn parameters from other groups is built.
They are further assembled to predict deck structure condition that is rated by multiple states.

5.3.1 Dimension Reduction in NBI Dataset

Apart from the features recorded in the NBI database, feature age, an indirect feature is also
generated in our study due to its popularity in predicting deterioration [122, 23]. For a bridge
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that was reconstructed, age is inferred by the reconstruction year to the inspection year, while
the rest of the bridges is inferred by the year of built to the inspection year.

Firstly, an exploratory data analysis is performed to reduce the quantity of the features.
For example, features with no association to deterioration time, such as structure number; and
features where over 95% of their population are missing, such as critical feature inspection
date, are removed.

Secondly, a preliminary correlation matrix, of which Pearson correlations are used for
continuous variables, and polychoric correlations are used for categorical variables, is devel-
oped to measure the statistical relationships between pairwise variables. This results in some
strongly correlated variables, for example, feature maintenance responsibility and feature
owner of the structure has a 0.94 correlation. One of them is considered redundant informa-
tion. The latter feature is removed from the feature candidate due to feature maintenance
responsibility has a higher correlation with the deterioration time. This process results in a
candidate pool of over 40 features.

Lastly, to further reduce the dimensionality of the dataset, feature selection is performed
using an R package called Boruta [88], which is built on a modified random forest (see
Section 2.2.2) to evaluate the feature importance. First, Boruta adds and shuffles the value of
duplicated features from the original features to remove their correlation with the response
variable deterioration time. We called these new features as shadow attributes, and they are
combined with the original feature space. A random forest classifier is then performed, and
MDA measurement is used in our case. The bias caused by MDA metric is avoided thanks
to the pre-processing procedure of removing highly correlated variables mentioned earlier.
Additional Z scores among those shadow attributes are computed by dividing the mean of
accuracy loss by its standard deviation in order to take accuracy loss fluctuation into account.
Features with significantly high Z scores are tagged as important and vice versa. This process
is repeated until all attributes are tagged. Details of this algorithm can be found in Kursa and
Rudnicki [88].

Figure 5.7 shows a boxplot example using the NBI database of the deck structure in
Wyoming. Rankings of features are separated by the Z score, which is coloured by blue
box indicated as shadow attribute. Green boxes represent accepted features that have higher
importance values, that is, are more predictive in evaluating deterioration time. Yellow boxes
are tentative features that are medium significant, which are taken into a backup plan when
needed. Red boxes are rejected or insignificant features, they are removed from the feature
candidate pool. The labels on the left side are the features from the NBI database, and the
numbers associated are their item ID. Detailed introduction of each feature can be found
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Figure 5.7 Feature selection for deck structure in Wyoming from the NBI database (lower
the more important).

in the NBI manual [182] using the item IDs. A brief introduction of each accepted feature
follows the sequence of its ranking is:

• ADT: average daily traffic, records the most recent average daily vehicles traffic
volume on the structure.

• Age: an indirect feature generated from Item 27 built year, Item 106 reconstruction
year and Item 90 inspection date, represents the current age of the structure.

• Maintenance: the maintenance agency that is responsible for the structure. Notes that
different agencies may have different inspection training and regulations.

• Design load: the designed live load of the structure.

• Functional class: the functional classification of structure, for example, whether it is
designated in a rural area or urban.

• Structure length: the length of the roadway supported by the structure.
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5.3.2 Assigning Feature Levels

After the important features are identified, the possible values of each feature are categorised
into several levels representing their indication of deterioration time. Three levels, from low,
medium to high are used here.

Figure 5.8 Assigning feature levels: (a)feature age; (b)feature maintenance.

Figure 5.8 presents two examples to assign feature levels. In the figure, the red bar
represents level low, that structure has a higher chance to deteriorate faster; the yellow bar
represents level medium; the green bar represents level high. Since feature age is a continuous
variable, it is first discretised into several bins with a 10-year interval. By plotting against
the deterioration time within the training dataset, we can see different age categories have
different deterioration time distributions. For example, for age between 0 to 10, though
several outliers having long deterioration time, most of them deteriorate within 50 months.
Therefore, it is rated as low. Feature maintenance is a categorical variable. We can see that
for example, a structure that is maintained by agency 1 - state highway agency, normally has
a longer deterioration time, it is rated as high.

5.3.3 Learning Transition Distribution Between Groups

After the level of each feature is assigned, bridges can be separated into groups by their
feature levels. For each transition, we applied the hierarchical BN developed in Section 4.2
to learn the transition distributions between different groups as shown in Figure 5.9. Notes
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that for demonstration simplicity, Figure 5.9 only shows the top two important features, ADT
and Age. Later in Section 5.4.2 we will discuss how many features we should consider.

Figure 5.9 Hierarchical BN to learn between groups.

In this model, instead of eliciting each group’s priors ϕ(β ) and ϕ(η) in Equation 4.1 from
experts, the priors of the local parameters are learned from hyperparameters together with an
indicator called Aggregated Influence resulting from each group’s features. The Aggregated
Influence is essentially a linear indicator that aggregates all the relevant features together. It
encodes the feature influence into low, medium and high three levels using a weighted mean
of the feature levels with a variance representing the certainty of the aggregation. Instead
of assigning the weights and the joint influence of each feature purely from experts, which
would require sophisticated experience from experts, they are learned as hyperparameters as
well. The weight of each feature is modelled by a uniform distribution from 0 to 1, where all
the weights are summed to 1 with a constraint node. Each parameter is partitioned by the
level of aggregated influence and its corresponding hyperparameter, where for example, a
low-level influence indicates a faster deterioration. The instruction about how to elicit priors
for a Weibull distribution introduced in Section 4.1.3 is adopted. We elicit the priors for the
hyperparameters and their differences on the deterioration rates between different levels of
influences and corresponding variances.
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Figure 5.10 Condition prediction of assets in Group 1.

After all the deterioration models for all transitions are built, we assemble them using the
model proposed in Section 4.3.1. Figure 5.10 shows an example of a deck from Group 1 that
was previously inspected with a condition of S9. The model is used to predict its condition
after 48 months since the last inspection. Several intermediate nodes are created to binary
factorised them in order to reduce the inference complexity as described in Section 4.3.1. For
each deck, we query the related transition models based on the group it belongs to. We enter
its observation of the inspection time to produce individual condition prediction. The next
section discusses the prediction performance in various aspects.

5.4 Predicting Deterioration and Its Validation

This section introduces how to measure the performance on the prediction, and investigates
the performance of our approach from different perspectives.

5.4.1 Measurement Metrics

Accuracy rate is one of the most common measurement metrics for prediction performance,
and it evaluates the fraction of the classification. For example, given a structure in year 2010
is in S7, we want to predict its condition in year 2017: if we predict it will deteriorate to S6
and it matches the actual inspection result in year 2017, we have an accuracy rate of 100%.
By repeating this process for all the test datasets, we can have an average accuracy rate of
our approach.
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Figure 5.11 Two predicted condition distributions.

However, the inspection result itself is often uncertain. In most cases, inspection is carried
out visually, though inspectors are trained with standard inspection manuals, the inspection
result is still covered with a range of noise. The noise comes from, such as the inspection
tools they used, environmental factors, or human subjectivity. An experiment was carried
out by Phares et al. [142], which shows that for the same structure, 68% of the ratings given
by different inspectors fell into a one-point interval range differences, and 95% fell into a
two-point interval range differences. Therefore, in practice, when predicting the deterioration
of an asset, other than a single estimation of the condition, we can also predict the condition
of an asset problematically with multiple states.

Given a query, the developed BN predicts and outputs a probabilistic distribution over
a discrete range of possible outcomes. Figure 5.11 presents two predictions for a deck’s
condition distribution after 45 months given its initial state is at S7. Though after 45 months,
the actual inspection result of this structure is in S6, that is, both predictions are wrong if
we only consider the accuracy rate by selecting the most likely state. However, compare to
result in Figure 5.11(a), (b) gives a better prediction with a closer distance to S6. Ranked
Probability Score (RPS) is chosen to measure this distance as it can measure the performance
of multi-state probabilistic prediction with orders.

RPS is an extension of the Brier score for multi-class classification that also takes the
distance between different possible outcomes into account. Assume there are K categorical
events, the cumulative observation Xm and prediction Ym can be defined by a vector of the
observation’s probability components and a vector of the prediction’s probability components
respectively:
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Xm =
m

∑
k=1

xk, Ym =
m

∑
k=1

yk ,m = 1, . . . , K (5.2)

the RPS is the sum of the squared difference between the components of these two vectors

RPS =
1
J

J

∑
k=1

(Xm −Y m)
2,J = K −1 (5.3)

A perfect prediction, for example, event k, would assign all the probability to xk (xk = 1),
so the difference would be 0 with an RPS = 0, while the worst score is K − 1 due to the
accumulation [183]. That is, the smaller the RPS we have, the better the prediction we made.
In the examples in Figure 5.11, (a) has an RPS of 0.052 while (b) has a score of 0.033. Hence,
(b) is a better prediction. This calculation yields the RPS for a single event. To evaluate the
performance of a prediction for a collection of events n, the average RPS can be defined as

¯RPS =
1
n

n

∑
i=1

RPSi (5.4)

5.4.2 Selection of Feature Number

If all relevant features are used to distinguish the asset into different groups, then there is
likely to be insufficient historical data to fit every transition distribution, even with ‘data
rich’ group. Therefore, groups need to be defined by the features that are most important
to the deterioration time but within a limited amount. After the feature selection in Section
5.3.1, six accepted features are considered as important. However, each feature is quantified
into three levels depending on the feature values. Considering six features would result in
36 = 243 groups, which is not only expensive for prior elicitation, but also expensive to
perform inference on it. In this subsection, we investigate how many features we should
consider in our models.

Deck condition started with State 7 (S7) between year 1992 and 2010 in Wyoming is
studied in this subsection as it has the largest amount of data. We use them to learn the
deterioration distribution for Transition 7 (T7, whether a deck in S7 will deteriorate into
another state). To mitigate the influence of prior knowledge on the prediction performance,
all the priors in this section are provided uninformatively with a uniform distribution from 0
to 20 in the shape parameter and a uniform distribution from 0 to 500 in the scale parameter.
To investigate the performance of our model with the increase in feature number (from zero
feature to six features), a set of experiments considers prediction of whether a deck in S7
will deteriorate into another state in the next four years (from 2011 to 2014) is performed.
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Figure 5.12 Accuracy rate (higher better) and RPS (lower better) performance with the
increase in feature amount.

Figure 5.12 presents the result of the experiments. The blue line measures the average
accuracy rate by the most likely state (the higher, the better) and the red line measures the
average RPS (the lower, the better). Apart from the slight decrease in the accuracy rate when
only one or two features are considered, the accuracy rate increases with the increase in the
number of features. While the RPS performance always gets better with the increase in the
number of features, that is, the prediction gets closer to the actual inspection.

After a drastic increase in the performance when three features are considered, both mea-
surement metrics exhibit steady performance afterwards. Reason for this steady performance
could be most of the assets may possess the same set of feature combinations. For example,
with six features, there are 243 possible groups with different feature combinations, only
92 of them exists in the database. Among these 92 groups, 80% of them have less than two
candidates. Therefore, it becomes unnecessary to consider too many features to form groups.
Since considering three features already gives us a reasonably good performance, to avoid the
increase in modelling and inference complexity, it is applied in the following experiments.

5.4.3 Multi-State Prediction Performance

This subsection investigates the performance of our approach compared to others in predicting
asset deterioration with multiple states. The NBI deck information from year 1992 to 2010
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in Wyoming are used to learn the deterioration distributions between different states. The
most recent states of each deck are given by the inspection condition in year 2010. Inspected
state at 2014 (accounts for two inspection-intervals in a regular regime) is used to validate
the model performance. In total, there are 2249 testing data points in this case. Since there is
no record of deck being in State 0 (S0) in the testing data set, only prediction performance
of State 9 (S9) to State 1(S1) are considered here. The models are compared with several
approaches:

• HierBN: the hierarchical BNs developed from Section 4.2 and 4.3.1 that learn between
27 groups separated by three selected features: ADT, age and maintenance, to give
individualised predictions.

• BN: the BNs developed from Section 4.1.1 and 4.3.1 that learn the parameters using
the overall population deterioration data to give aggregated predictions.

• MCLR: a Markov model, and its transition probability matrix is estimated using
logistic regression. This model was developed by Chang [23] using the same NBI
dataset to give aggregated predictions.

• MCLR_G: Developed by Chang [23] using the same NBI dataset, the bridges are
separated into 20 groups, for each group, a Markov model, and its transition proba-
bility matrix is estimated using logistic regression, was used to give individualised
predictions.

• Mssurv: a Markov model and its transition probability matrix is estimated using
the Datta-Satten estimator. It allows modelling of censored data in a multi-state
system developed by Ferguson et al. [47]. It is implemented here to give aggregated
predictions.

To measure the accuracy rate, in each prediction, the state with the highest probability
is considered as the predicted state. Therefore, we can compare the prediction against the
actual observation. As a result, confusion matrixes for different approaches are generated.
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Table 5.1 Confusion matrix: HierBN.

Observation
Prediction

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 0 0 0 0 0 0 0 0 0
S8 0 28 0 0 0 0 0 0 0
S7 0 12 612 2 0 0 0 0 0
S6 0 0 145 658 2 0 0 0 8
S5 0 0 21 131 405 0 0 0 0
S4 0 0 1 9 34 104 0 0 0
S3 0 0 0 2 3 7 44 0 0
S2 0 0 0 1 1 2 4 11 0
S1 0 0 0 0 0 0 0 0 2

Table 5.2 Confusion matrix: BN.

Observation
Prediction

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 0 0 0 0 0 0 0 0 0
S8 4 8 0 0 15 1 0 0 0
S7 1 5 616 0 5 1 0 0 0
S6 0 0 150 660 0 0 0 0 0
S5 0 0 25 130 387 0 0 0 17
S4 0 0 1 9 34 48 0 0 56
S3 0 0 0 2 3 6 36 0 9
S2 0 0 0 1 1 2 3 8 4
S1 0 0 0 0 0 0 0 0 1
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Table 5.3 Confusion matrix: MCLR.

Observation
Prediction

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 0 0 0 0 0 0 0 0 0
S8 4 8 16 0 0 0 0 0 0
S7 1 5 620 0 0 0 0 0 0
S6 0 0 153 660 0 0 0 0 0
S5 0 0 23 130 404 0 0 0 0
S4 0 0 1 9 34 101 3 0 0
S3 0 0 0 2 3 7 44 0 0
S2 0 0 0 1 1 2 4 1 10
S1 0 0 0 0 0 0 0 0 2

Table 5.4 Confusion matrix: MCLR_G.

Observation
Prediction

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 0 0 0 0 0 0 0 0 0
S8 3 13 12 0 0 0 0 0 0
S7 0 7 605 14 0 0 0 0 0
S6 0 0 153 660 0 0 0 0 0
S5 0 0 22 131 404 0 0 0 0
S4 0 0 1 9 34 102 2 0 0
S3 0 0 0 2 3 7 44 0 0
S2 0 0 0 1 1 2 3 12 0
S1 0 0 0 0 0 0 0 0 2
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Table 5.5 Confusion matrix: Mssurv.

Observation
Prediction

S9 S8 S7 S6 S5 S4 S3 S2 S1

S9 0 0 0 0 0 0 0 0 0
S8 2 26 0 0 0 0 0 0 0
S7 0 12 404 210 0 0 0 0 0
S6 0 0 134 679 0 0 0 0 0
S5 0 0 21 132 404 0 0 0 0
S4 0 0 1 9 34 104 0 0 0
S3 0 0 0 2 3 7 44 0 0
S2 0 0 0 1 1 2 4 1 10
S1 0 0 0 0 0 0 0 0 1

These matrixes give an overview of the performance of different approaches. The
number marked in bold tells how many predictions match the observations for each state.
By evaluating the performance purely from the quantity of correct prediction, the proposed
approach HierBN gives the best prediction with 1864 correct predictions, closely followed
by MCLR_G with 1842 and MCLR with 1840.

However, using a confusion matrix for a multiple states classification problem may create
confusion in deciding the accuracy rate for each transition compares to a confusion matrix for
a binary classification problem. For example, in the testing dataset, there are five decks start
with S9, four of them transited to S8, and one transited to S7 in the second inspection. But we
cannot evaluate the accuracy rate for Transition 9 (T9, the transition from S9 to other states)
from the above confusion matrixes since records that start with S8 and S7 are overlapped.
Hence, in addition to the confusion matrixes, an accuracy rate for each transition is also
provided. For example, using HierBN, we predict all five decks started with S9 deteriorated
into S8 in the second inspection, which gives us an 80% accuracy rate for T9 in HierBN. To
provide a more in-depth evaluation for each approach, we also provide the overall average
RPS as suggested in Section 5.4.1. The results are summarised in Table 5.6.
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Table 5.6 Multi-state prediction performance comparison.

Methods
Accuracy rate

RPS
T9 T8 T7 T6 T5 T4 T3 T2

HierBN 0.80 0.69 0.78 0.81 0.91 0.92 0.92 1.00 0.047
BN 0.00 0.23 0.77 0.82 0.88 0.42 0.75 0.73 0.062

MCLR 0.00 0.40 0.78 0.82 0.91 0.89 0.92 0.09 0.053
MCLR_G 0.20 0.49 0.76 0.82 0.91 0.90 0.94 1.00 0.049

Mssurv 0.40 0.69 0.53 0.82 0.91 0.92 0.92 0.09 0.071

When predicting deck deterioration from states between S7 to S3 (i.e. T7 to T3), almost
all methods have similar performance with relatively high accuracy rates. This is because
the data amount within these states is considerably rich (over 300 data in each state). Hence,
with enough data, these approaches perform similarly. Within these states, our approach
guarantees a satisfying and steadily good performance compares to others. This is contributed
by having successfully identified the small subgroups in our method and leveraged their
deterioration learning specifically based on their features. Though the accuracy rates are not
significantly higher than others, we suspect this is due to the population of the subgroup itself
is small. Hence, its impact on both measurements is consequently low.

However, for data-poor states like State 9, 8 and 2, our model gave a promising perfor-
mance compared to others. Though in these states, MCLR_G also gave decent accuracy rates
comparing to MCLR, we believe this is benefited from its policy to group similar structures
for estimating the transition probability matrix individually. But the reason that our model
outperforms MCLR_G and others in most cases is that we not only consider separating the
population into related groups but also learn from each subgroup.

Figure 5.13 presents a comparison of the distributions learned from BN and HierBN to the
real observation. These decks belong to a group that their features ADT, age and maintenance
are all rated as low-levels. The distributions showed in the figure are the pdf of Transition
8 (T8). Without grouping and learning, the learned distribution using a regular BN based
on limited available data is showed with the purple bins, while the learned distribution of a
HierBN is shown in yellow bins. The regular BN gives a relatively uninformative distribution
with a wide range, but HierBN successfully predicts with a focus on early deterioration time
that matches the pdf of the real observations (showed in red dotted line).

The last column in Table 5.6 gives the average RPS of the prediction of all the states. The
scores are not drastically different since the majority of the structure population are between
State 7 and 3 where almost all methods have good performance. The base of the other states’
data is small; hence, the average performance of HierBN in RPS only excels slightly. Notes
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Figure 5.13 Probability density functions of Transition 8 (T8) of group rated as low-levels in
all features.

that Mssurv has a decent performance in accuracy rates but poor in RPS, the reason we
suspect is its predictions are usually too extreme and did not take too much uncertainty into
consideration, which leads to a penalty in the RPS when the prediction is wrongly classified.

5.4.4 Future Prediction

This subsection investigates the prediction performance for future inspection. The training
data for this subsection is same as the previous subsection, but we use data from year 2010 to
2017 to validate the performance of different approaches in predicting deck conditions over
different future time length: from one year (year 2011) to seven years (year 2017).

The results are shown in Figure 5.14 measured by the average RPS of all states (the
accuracy rates between methods are all quite close but with the same trending as RPS, hence
not displayed). All methods have an increasing RPS over time; that is, the performance gets
worse with the increase in prediction time. Our approach HierBN prevail other methods
by having the lowest scores across these seven years. By comparing to the regular BN, we
can also see the drastic improvement bring by separating the population into groups and
learning between them. MCLR_G has a very close performance with the proposed approach.
However, compare to MCLR, the benefit of grouping in MCLR_G is not significant in short
future prediction but slowly increase over the years.

These experiments show we can provide a reasonably good prediction for a 2-year
inspection (2012) with an RPS of 0.021 and an average accuracy rate of 87.6%, and a 4-year
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Figure 5.14 RPS (lower better) of different approaches with the increase in prediction time.

inspection (2014) with an RPS of 0.047 and an average accuracy rate of 77.5% in HierBN.
This counts for one and two biennially inspections in a regular inspection scheme respectively,
which is valuable information for future inspection planning and resources scheduling.

5.5 Summary

This chapter validates the deterioration prediction models developed in Chapter 4 using
synthetic data and real-world data to fulfil Objective IV.

We first produce a synthetic dataset to show that, with enough data, it is possible to
learn the parameters of a deterioration distribution. However, when there is less data
relevant knowledge about the parameters in the form of Bayesian priors helps to improve
the performance. We also simulate data from a mix of deterioration distributions and show
that we can provide a better prediction if we can separate assets into groups, where each
group follows one of the distribution. But the challenge is to know how to classify assets into
groups in the first place.

We tackle this challenge using the features associated with each asset and explain the
processes using the NBI database case study. First, we introduce the background of the
NBI database and its challenge of having limited deterioration data in some cases. To
separate assets into groups, the features that have the most impact on the deterioration time
should be identified. We perform dimensionality reduction to identify the key features for
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predicting asset deterioration using a modified random forest. The values of features are
used to separate assets into groups. We use a hierarchical BN developed in Chapter 4 to
learn both the hyperparameters of the overall population and the local parameters within each
group. The model can also learn the weights of each feature for influencing the deterioration
rate. The transitions distributions learned in this way are further assembled to provide
individual multi-state prediction given the state of an asset observed in the latest inspection
and inspection time.

Lastly, we measure the performance of the developed deterioration prediction models
using the NBI data. We first evaluate how many features to consider in the models. The
example shows that the performance improves at a rate up to three features; after this, more
features can only improve the performance slightly. We also compare the performance of our
models with other available approaches for correctly predicting the condition of a multi-state
system. Our results show that our proposed models excel at most predictions, especially
for cases where there is little data. We also show that as the prediction time increases, the
accuracy of the prediction drops. The proposed models can provide reasonably good accuracy
over 1 or 2- biennially inspections in a regular inspection scheme, which could be useful for
inspection planning.





Chapter 6

Inspection and Maintenance Decisions
Support

The challenges in making inspection and maintenance decisions are to inspect a suitable asset
and perform an appropriate repair action at a suitable time. Understanding asset states from
its deterioration and the effectiveness of repair actions are the foundation to recommend these
decisions. A range of techniques was proposed to support these decisions, and some of them
have been implemented in industry. But as discussed in Section 2.3.1, classical deterioration
models cannot properly handle uncertainty and situation with little deterioration data. This
problem is common for critical infrastructure like bridges, where deterioration data are often
uncertain, and data are rare (Section 2.2.1). Another challenge is from the complexity of the
modelling with various assumptions (Section 2.3.2 and 2.3.3) and further, to reason inspection
and maintenance decisions (Section 2.4) from the models, where classical approaches often
lead to an unmanageable model size that becomes difficult to perform analyses.

Validated in Chapter 5, models build with a Bayesian framework offer the flexibility in
handling uncertainty and can learn deterioration from data and expert knowledge even in
the case with small data amount. Pointed out in Section 4.3, we can also use the models
to represent various system configurations and extend them for complex and large-scale
problems (later showed in Chapter 7). This study does not have access to conduct expert
knowledge elicitation. Instead, this chapter shows how these models can be built using
example knowledge from published documentation to support a variety of decisions, from
inspection decision, repair decision, to maintenance planning using real-world case studies
(Objective V).

The remainder of this chapter is as follows: Section 6.1 presents the use of deterioration
models in evaluating asset conditions. It is illustrated by a GB bridge example and a
US bridge example, where assets are assembled by multiple components with different
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system configurations. The US example is continuously studied in the following sections:
for inspection decisions in Section 6.2, repair decisions in Section 6.3 and for strategic
maintenance planning in Section 6.4. Section 6.5 concludes this chapter.

6.1 Condition Prediction and Structural Evaluation

With the deterioration prediction models from Chapter 4, we can predict the condition of
components or assets, and their performance is validated in Chapter 5. This section introduces
two applications of them, where the predicted conditions of two assets are determined by the
condition of their components but with different system configurations.

6.1.1 Bridge Condition Prediction in Great Britain

In Great Britain, the condition of each bridge component (element) can be modelled as a
three-state variable, namely, poor, fair and good (see Section 2.1.2). Two failure transitions,
from good to fair and fair to poor, are modelled for each component with an assumption
that the time to failure of each transition follows a Weibull distribution. The parameters of
the distribution are learnt from data and expert knowledge, using the models described in
Chapter 4.

Bridges can be decomposed into major elements, such as a deck, a superstructure and a
substructure, and each of them can be further subdivided into minor elements, such as an
abutment and wing walls (see Section 2.1.1). Different types of bridges have different major
and minor elements, and even when two bridges are of the same type, the number of elements
may vary. Table 6.1 shows an example of elements of a masonry arch bridge presented in
Rafiq et al. [144] (also see Figure 2.2).

Table 6.1 Elements in a typical masonry arch bridge from Rafiq et al. [144].

Bridge Major Element Minor Element Weight

Masonry arch
bridge

Support
Wing wall 5
Abutment 10

Deck

Parapets 2.5
Spandrel wall 3.5

Face rings 3.5
Barrel arch 10

This example is a typical bridge structure system configuration (see Section 2.3.3), where
each element is assigned with a weight representing its effect on bridge condition given by
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(a)

(b)

Figure 6.1 (a)Condition prediction of a typical masonry arch bridge six years later.
(b)Condition prediction of a typical masonry arch bridge six years later given abutment
is in Poor condition.
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experts. To use these weights in our models, we need to calculate the relative weight of each
element. For example, one of the major elements is the support, with minor elements wing
walls and abutment, their weights are 5 and 10 respectively, that is, we have the relative
weights of 0.33 and 0.67 when we consider the support as a subsystem. From Equation 2.15,
the condition of the major element (e.g. support) is modelled by a TNormal distribution in
a ranked node with a mean using a weighted mean function of these relative weights and
condition of components, and variance about the confidence levels of experts when assigning
these weights. The bridge condition is then further aggregated follow the same principle with
a weighted combination of its major elements’ conditions.

For this example, a complete BN is assembled from six minor elements, learnt from
two groups of assets; the resulting model has 126 variables in total , of which, 79 of
them are observations (see Figure 6.1, the deterioration learning models are omitted for
display reasons). The inference of such model took approximately less than 2 minutes using
AgenaRisk’s API. To build such a model in general, we first need to determine the elements
of the bridge (e.g. information from Table 6.1) and model each as described in Section 4.1.1.
Then, if the target group lacks sufficient deterioration data, we can look for similar groups
and pool the deterioration data using the model of Section 4.2. Finally, the model from
Section 4.3 is applied to assemble the element condition models to assess the condition of
the target bridge.

Assume all elements are currently in perfect condition, with the predicted condition of
each minor element in Figure 6.1 (a), we can estimate the condition of this bridge: it has a
62.41% in Fair condition after six years (72 months showed in the figure). Therefore, we do
not have a strong urgency for detail examination. Nevertheless, it would be a different story
if we have evidence of some element’s condition. For example, given the observation that
the abutment is in Poor condition from the latest visual inspection, if no repair is performed
on the abutment, in the next six years, the bridge would become vulnerable with a 54% in
Poor condition (see Figure 6.1 (b)). This result suggests us to intervene in the abutment to
mitigate this potential risk.

6.1.2 NBI Structural Deficiency Evaluation in the US

According to the Federal Highway Administration Bridge Preservation Guide, one of the
common failure modes for bridge deficiency is structural deficient [44]. As of 2017, 8.87%
bridges (54,560 out of total 615,002 bridges) in the NBI database are classified as SD. A
deficient bridge has a higher possibility than a normal bridge in leading to a major structural
event, such as bridge collapsion. This suggests the importance of imperative interventions.
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In this subsection, we would like to use the predicted condition of each structure to estimate
the probability of the bridge deteriorates into SD in a future time.

A highway bridge is defined as SD either (the relevant items are encoded in Weseman
[182]):

• A condition rating of 4 or less for any of its structures, including deck (Item 58),
superstructure (Item 59), substructure (Item 60) and culvert (Item 62), or

• An appraisal rating of 2 or less for structural evaluation (Item 67), or

• An appraisal rating of 2 or less for waterway adequacy (Item 71).

One of the criteria in resulting SD is any of its structures are considered as in Poor
condition. We can, therefore, consider this bridge as a system with a series of subsystems
arranged in series. Accordingly, we can model it using the OR gate from Section 4.3, where
the system fails when any of the subsystems fail.

The structural evaluation is used to evaluate if the bridge’s loading carrying capacity
is significantly below its design standards. For structures other than culverts, the rating of
structural evaluation is specified by the lowest rating between superstructure, substructure
and a comparing rating by comparing ADT (Item 29) and inventory rating (Item 66). ADT
and inventory rating are both fixed variables, where ADT encodes the average daily traffic
volume of the bridge, for example, volume 3222; inventory rating represents a load level
which can allow a structure to operate for an indefinite period of time, for example, MS
12.5 (MS is a measure for loading capacity). By using the specification table provided in
Weseman [182], we can gather the comparing rating, for example, a rating is coded as 6
given 3222 ADT and MS 12.5 inventory rating. Since the determination of the structural
evaluation rating is the lowest score among those ratings, we can also model these criteria
using an OR gate.

A highway bridge is also SD when its waterway frequently overtops the bridge. The
inspector often evaluates it from the on-site inspection. Similar to structures like a deck, we
can learn its patterns from the inspection data and predicted the condition distribution of its
adequacy in a future time.

Together, we can use a logical expression to combine the information by a Boolean
node. It is true when one of the structures are rated 4 or less, or structural evaluation is
rated 2 or less, or waterway adequacy is rated 2 or less. The example bridge in Figure 6.2
is a non-culvert bridge that has an average daily traffic volume of 3222, and a permitted
loading capacity of MS 12.5. Its current conditions of deck, superstructure, substructure and
waterway are rated as 7, 6, 7 and 5 respectively. The complete model of this example contains
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Figure 6.2 Structural deficiency evaluation.

more than 1000 variables where most them are observed. The calculation of this model was
done using separate submodel for each transition, which varies in size and computation time.
For example, it took less than 1 minute to compute the transition of deck condition from S7
to S6, while it took almost 1 hour for the transition of deck condition from S5 to S4 as it
requires to learn from other groups.

This model predicts the possibility of this bridge being structural deficient in the next
48 months. The result shows that the probability is 35.92%. By setting a limit, for example,
we need to intervene if the percentage of being a structural deficient is higher than 10%,
we can, therefore, evaluate if this is a bridge with a low-risk level. Further, by reasoning
with this model, we can recommend inspection decisions, including the time to inspect, and
the priority (among other bridges) for inspection, which will be discussed in the following
section.

6.2 Inspection Decisions Reasoning from Condition Pre-
diction

This section focuses on the use of condition prediction to support inspection decisions. With
the deterioration prediction models, we can predict the condition distributions of a structure
over a finite time. This structure could be a component, or an asset assembled by multiple
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Figure 6.3 Deck condition distribution over time.

components as we showed in the last section. Figure 6.3 shows a prediction example of
a new deck’s condition distribution over the next 300 months without interventions. The
deterioration is learned from the NBI dataset. With the increase in time, it is natural to
see the trend of deterioration: the probability of S9 (perfect state) gradually decreases with
the increase of S8, and S8 decreases with the increase of S7, and so on. For example, in
around 90 months, the possibility of this deck still in S9 is nearly 0%. However, sometimes,
decision-makers are more interested in knowing how reliable this structure is over some time.
This information can be used to identify assets with higher risk and allow the decision maker
to plan accordant action to mitigate the risk.

Failure rate function f (t) is used to measure how fast a structure will deteriorate. By
taking its integral, we have its cumulative distribution function F(t) represents the failure
probability that the random variable t takes on a value less than or equal to t. Since we
are more interested in how reliable the structure is, as in Equation 2.9, we can take the
complementary cumulative distribution function to form the reliability function R(t). The
reliability function measures the probability of an asset did not fail before moment t. For
failure distributions like Weibull distribution, they are asymmetric. Therefore, reliability
measures such as MTTF or MTBF (see Section 2.4.1), are therefore less interesting in
describing its true behaviours. Instead, we are more interested in the overall reliability.



134 Inspection and Maintenance Decisions Support

For a multiple state system (for example, bridges in GB and US are both rated with
multiple states), to evaluate the reliability, first, we need to define a level of acceptable
conditions. For example, defined in Federal Highway Administration [44], in the NBI
dataset, structure states with a rating of 7, 8, or 9 are classified as Good condition, with a
rating of 5 or 6 are classified as Fair condition, and the rest are classified as Poor condition
(SD). This type of information can be used as an acceptable level for assets rated by multiple
states: to measure the reliability of staying in these conditions without failing to other levels.

With this information, we can build a Boolean node (a constraint) as a child node of the
predicted condition. The logical expression of the Boolean node is that this node is observed
as true when the predicted condition is better than the acceptable level, such as predicted
condition ≥ S7 for structure staying in Good condition, or predicted condition ≥ S5 for the
structure staying in Good or Fair condition. The predicted condition could be a condition of
a component, or a condition of an asset that is determined by its components. By entering an
observation on this constraint as True, and remove the observation on the node Inspection
Time, with the Bayesian inference, we can get the reliability R(t) of this structure from the
posterior distribution of node Inspection Time.

Figure 6.4 Reliability of decks.

Figure 6.4 shows four examples of two decks with two acceptable levels. One level has
a higher standard that requires the structure in Good condition (≥ S7), and the other one
accepts the structure in or above Fair condition (≥ S5) with lessening constraint. Naturally,
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within the same decks, the reliability of a deck in or above Fair condition is always higher
than the one in Good condition. For example, in 48 months, Deck A condition ≥ S5 has
a reliability 0.78, condition ≥ S7 has a reliability of 0.61; Deck B condition ≥ S5 has a
reliability 0.85, condition ≥ S7 has a reliability of 0.63. Suggested in Section 2.4.1, with the
reliability, we can make inspection decisions including to prioritise assets for inspection and
to determine a suitable time for inspection.

To prioritise assets for inspection based on their risks in deteriorating into an unacceptable
level, we need to set a failure limit first. An example of a failure limit is set at 0.8 in Figure 6.4,
where we want to ensure the reliability of the decks is above 0.8. To ensure deck condition
≥ S7, we can see both Deck A and B require intervention around 25 months. However, for
condition ≥ S5, we can see an apparent distinction between Deck A and B: Deck A requires
intervention at around 40 months while B at around 70 months. This distinction reveals that
Deck A has a higher risk in failing to Poor condition than Deck B. We can, therefore, to
prioritise the inspection for Deck A over Deck B.

Another decision is to evaluate the suitability of inspection time. Most bridges in the US
are inspected every 24 months, while in GB, bridges are visually inspected every 12 months
and detailed inspected every 72 months. Most inspections are performed at fixed inspection
time intervals in current practice. We can improve this situation by tailoring inspection time
for each structure using the reliability function inferred from the developed models. Using
the same example in Figure 6.4, here assumes a failure limit of reliability is set as 0.8 from
experienced engineers. To prevent deck condition from failing to Poor condition, Deck A
urges for an inspection to see if intervention is needed at around 40 months, while Deck B is
at around 70 months.

6.3 Repair Recommendation and Evaluation

Given an asset’s condition, either from inspection or prediction, we may want to recommend
repair action to satisfy a range of objectives. It is a challenge since a maintenance action may
only be suitable for a specific condition of a particular asset. Different repair actions may
also come with different restoring capability and cost. With the observational model from
Section 4.4, by extending it with a set of constraint nodes, we can reason the frequency of
each repair decision made in history. The decision maker can refer to it as what action is
usually taken historically. Another decision is to evaluate the effectiveness of maintenance,
which is enabled by the intervention model from Section 4.4. Decision maker can use this
evaluation to understand the potential repaired condition and plan ahead about what resources
are needed.
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These repair decisions are introduced aligned with the background of bridge deck main-
tenance in the US. Table 6.2 from Michigan Department of Transportation [116] is a typical
guideline for maintenance of concrete bridge deck that has epoxy coated rebar. This table is
built upon expert knowledge about deck deterioration from experienced engineers. Together
with the deck condition, this table can provide reasonable guidance for repair action selection.

Table 6.2 Bridge Deck Preservation Matrix – Decks with epoxy coated rebar [116].

Deck Condition Repair Options Potential Result Expected
Life (years)

Top Bottom Top Bottom

≥ 5 N/A Hold or Seal Cracks No Change No Change 1 to 4
> 5 Epoxy Overlay 8, 9 No Change 10 to 15
≥ 4 Deck Patch Up by 1 No Change 3 to 10

4 or 5 4 Shallow Concrete Overlay 8, 9 No Change 20 to 25
HMA Overlay with Water-
proofing Membrane

8, 9 No Change 8 to 10

2 or 3 HMA Capa 8, 9 No Change 2 to 4
≤ 3 4 or 5 Shallow Concrete Overlay 8, 9 No Change 10

HMA Overlay with Water-
proofing Membrane

8, 9 No Change 5 to 7

2 or 3 HMA Capa 8, 9 No Change 1 to 3
Replacement with Epoxy
Coated Rebar Deck

9 9 60+

a Hot Mix Asphalt (HMA) Cap for deck improvement. After HMA Cap, deck replacement
should be planned in the next five years.

Table 6.3 Repair cost for bridge deck with epoxy coated rebar [184].

Repair Options Unit Price Notes

Patching $32/ f t2 Includes hand chipping
Epoxy Overlay $3.80/ f t2

HMA Overlay/Cap $1.25/ f t2 An extra $5/ft2 if the repair includes waterproof-
ing membrane

Shallow Concrete Overlay $25/ f t2 Includes joint replacement and hydro
Deck Replacement $70/ f t2 Includes removal of the old deck and new rail-

ings
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The bridge deck condition is evaluated by the conditions of its top surface and its bottom
surface. Available maintenance actions vary from its current condition, and for example,
deck patching is only applicable when its top surface is rated not less than State 5 and bottom
surface not less than State 4. The repairing capacity also varies, for example, deck patching
can improve the condition of a deck top surface by 1 point with an expected service life of 3
to 10 years. While for shallow concrete overlay, it can improve top surface to State 9 or 8
with an expected service life of 20 to 25 years when it was rated at a State 4 or 5; 10 years
when it was rated at a state less than 3. However, most actions cannot repair the deck bottom
surface - it can only be replaced to improve its condition. Additionally, Table 6.3 shows
the related repaired costs listed in Winn and Burgueño [184], which were collected from
the authors’ personal communication with the engineers. Information about the area of an
individual deck can be retrieved from the NBI database: structure length is recorded in Item
49 and deck width is in Item 52 (see Weseman [182] for details).

6.3.1 Observational Model: Historical Frequency of Repair Action

The CPTs in the observational model from Section 4.4 can be collected from Table 6.2.
The repair action is determined by the condition of the deck top surface and the bottom
surface simultaneously, where each repair action has an equal probability if there are multiple
applicable options under the same required conditions. For example, if the condition of
deck top surface is rated 5 and the bottom surface is rated 4 in the most recent inspection,
the applicable actions include deck patching, shallow concrete overlay, and HMA overlay
with a waterproofing membrane. These three actions each has a 1/3 probability, and other
actions have 0 in the CPT. The CPT for the repaired condition is generated by columns under
potential result in the table, with a uniform distribution if there is more than one possible
result. For example, if an epoxy overlay is performed, the top surface will restore to condition
9 with a 0.5 probability and condition 8 with a 0.5 probability. However, the bottom surface
will stay as the same condition from the last inspection since this repair action does not affect
it. Similarly, the expected service life is modelled using a partitioned expression from the
repair actions and top and bottom deck surface conditions. For example, shallow concrete
overlay action on deck top surface with a condition 4 and bottom surface with a condition 4,
it has an anticipated service life that expressed by a uniform distribution with a lower bound
of 20 and upper bound of 25. While for a deck with a condition 3 on its top surface, its
anticipated life is only 10 years.

To reason repair action that is usually taken in history, three types of constraints are
modelled, showed in Figure 6.5. These constraints are all modelled using Boolean nodes with
logical expressions embedded. The structural deficiency is true when either the repaired deck
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Figure 6.5 Maintenance action recommendation.

top or bottom surface has a rating less or equal to 4. The decision makers set the expected
service life about how many years they anticipate the deck will survive. The cost of repair
action can be modelled using a partitioned expression, where each repair option is modelled
by the compound of cost per unit (see Table 6.3), and its area. Decision makers suggest the
cost constraint about how much budget is allowed.

The example in Figure 6.5 is based on a deck with a top surface that is inspected with
a rating of 6 and a bottom surface with a rating of 7. The length of this deck is 57.7 f t and
width is 31.8 f t. The decision maker does not want the repaired deck to become structurally
deficient and wishes the service time to be greater than eight years with a cost less than
$100,000. The model contains only 12 variables with 7 observations, and its inference took
seconds. After the inference of this model, in history, under the same constraints, 77.78% of
maintainers repaired with epoxy overlay and 22.22% repaired with deck patching. This model
rules out repair options that weren’t taken by other maintainers in the past automatically,
which makes the decision-making process for evaluating repair action easier. But if we want
to estimate the effectiveness of different maintenance action directly, an intervention model
is more suited.

6.3.2 Intervention Model: Effectiveness of Maintenance

Decision maker can prioritise repair actions based on the result of the intervention analysis.
In Table 6.2, interventions for deck condition are either imperfect maintenance or perfect
maintenance. For example, HMA Cap action can imperfectly restore deck top surface to
State 8 with a 0.5 probability and State 9 with a 0.5 probability while the replacement is
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a perfect maintenance action that can restore both deck top and bottom surface to as good
as new condition. To reason the effectiveness of repair actions directly, in the intervention
model, we want to manipulate intervention independently from its causes.

Figure 6.6 Intervention model for maintenance effectiveness.

To convert an observational model into an intervention model, we need to remove the
edges from causes that enter the intervention, as demonstrated in Figure 6.6. The reason is, in
the observational model, the use of repair action explains the historical frequency of actions
taken under the observed conditions [28]. The repair options become a set of maintenance
suggestions that are distributed probabilistically inferred from the posterior probabilities.
In the intervention phase, the repair action is usually observed (hard evidence): only one
action can be performed in each intervention. Only by removing the links from the parents
we can remove the implication from past decisions, and directly show the effectiveness of
repair action on manipulating structure repaired condition. At the same time, the constraints
from the observational model all become unobservable in the intervention model to show the
associated result of repair actions.

6.4 Maintenance Planning and Its Evaluation

Planning maintenance over a finite time horizon is valuable in the maintenance strategy
design phase, and this plan can be used to allocate resources, make investment decisions and
identify most cost-effectively maintenance choices. This section aims to utilise the developed
models and extend them to evaluate the effectiveness of different maintenance plans. We
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present a simplified maintenance plan and show how to use it to analyse the life-cycle cost of
the maintenance as an example.

Since inspection and maintenance activities for bridges are performed periodically with
time intervals as discussed in Section 2.2.1, to perform life cycle cost analysis over a finite
time horizon on bridges, we can discretise the time horizon into several cycles, where
each cycle models an intervention process. For simplicity, this section illustrates this idea
using a fixed interval of every two years over a hundred-year lifetime. However, notes that
it is possible to implement with a dynamic intervention schedule by integrating with an
optimisation technique.

In each cycle, we model the repair decision-making process together with its deterioration
prediction up till to its next intervention cycle. Intervention model from Section 6.3.2 is
employed to infer the effectiveness of maintenance. The choice of repair option is a decision
node that relies on the anticipated conditions post-repair. Since we cannot directly observe
the future condition of a structure as we showed in Figure 6.6, instead, we predict its
future condition by learning their deterioration. By repeatedly linking the posterior of each
cycle’s model as the prior of the next cycle’s model using the model from Section 4.5, the
maintenance whole life cycle is modelled.

We continue using the deck repair example from in the section. In general, a deck
bottom surface deteriorates slower than its top surface. Among the available repair actions,
deck replacement is the only action in Table 6.2 that can improve the condition of the deck
bottom surface, but it is also the most expensive action according to Table 6.3. Hence, in the
example maintenance plan, deck replacement is assumed to be the last resort of maintenance.
Instructed by Michigan Department of Transportation [116], its trigger is when both deck
top and bottom surface are deficient with a rating of less or equal to 3 and a rating of 2
or 3, respectively. Similarly, the use of other repair actions requires both top and bottom
surface are within the range of deck condition listed in Table 6.2. Notes that when deck top
surface is rated less or equal to 3, HMA Cap repair action shares the same trigger conditions.
As instructed from Michigan Department of Transportation [116], since HMA Cap is a
temporary repair with low expected service life, a replacement is often scheduled in the next
five years after an HMA Cap is performed.

Within an asset’s whole life cycle, a structure may be maintained by multiple actions. A
maintenance strategy is used to decide what action to take at what time. Here we use a simple
strategy as an example to show how we can evaluate the cost of different maintenance actions
over its lifetime. In this maintenance strategy, if the deck conditions fall into the trigger
condition of the repair options, a repair action from Table 6.2 will be performed; otherwise,
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Figure 6.7 Life-cycle cost analysis from multiple sequentially organised BN objects.
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Figure 6.8 Deck top and bottom surface conditions with repairs in a 100 years horizon.

if the deck conditions satisfy the trigger condition of replacement, deck replacement will be
performed; otherwise, no action will be taken.

In each cycle, depending on the number of required transitions, the model contains
observations ranging from 100 to more than 1000 with a computational time from seconds to
overnight. After the inference on the repaired condition, we can further predict its condition
up to its next intervention. To model multiple intervention cycles sequentially, we can link the
predicted condition in this intervention cycle as the input of the following intervention cycle.
This can be modelled by multiple sequentially arranged BN objects from Section 4.5, where
the predicted state at intervention i becomes the prior of previous state variable at intervention
i+1, and used to reason the repaired condition as well as to predict its further deterioration
as shown in Figure 6.7. Unlike the model in Figure 6.6, where the previous structure state is
observed as hard evidence (e.g. 100% at S6). In each object, the previous state is a future
event that cannot be observed directly but only predicted probabilistically as soft evidence
(e.g. 80% at S6 and 20% at S5). This problem is resolved by the employment of multiple
binary factorisations discussed in Section 4.5, where each state’s further deterioration is
modelled as a Markov model. The cost of all actions is recorded using a cumulative cost
function and sequentially becomes the prior of the previous repair cost node for the next
intervention.

Figure 6.8 shows an example of condition changes of the deck top and the bottom surface
(with an initial state of S7 and S6 respectively) in the next 100-year horizon. The maintenance
strategy comprised of maintenance action HMA Cap and deck replacement. If the state of
deck top surface deteriorates to a state of 4 or 5 and the bottom surface is in a state of 2 or
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3, or the deck top surface deteriorates to a state less or equal to 3, and the bottom surface
is in a state of 2 or 3, HMA Cap is triggered. Since HMA Cap is a temporal repair action
with a short expected service life of 1 to 3 years, as the footnote in Table 6.2 suggested, the
deck is scheduled for replacement in the next five years. For example, in 14 years, the top
surface is predicted with a state of 3 the same as the bottom surface. Therefore, an HMA
Cap is performed that restores the condition of the top surface to 8 while the bottom surface
remains the same. After five years, the deck is replaced with both top and bottom surface
back to state 9. In the next 100 years, implementing this maintenance strategy requires three
HMA Cap actions and three replacements. Together with the cost presented in Table 6.3, in
this example, for a 57.7 f t length and 31.8 f t width deck, we estimated it has an overall repair
cost of $ 392,201.33.

Figure 6.9 Repair cost with different maintenance strategy in the next 100 years.

Different maintenance action-based strategies are evaluated, and their cumulative costs
are presented in Figure 6.9. Epoxy Overlay and patching are the two most costly strategies
since they prefer to repair the deck top surface while they are still in fair conditions. Other
strategies share similar costs; among them, HMA Overlay with waterproofing membrane
strategy has the lowest cost. Though deck replacement strategy (only repair with replacement)
has a lower cost than some strategies, the deck stays in poor condition most of the time. In
some cases, keeping structures staying in better conditions throughout its lifetime, even in
the cost of a higher expenditure, is still desired due to safety and reliability reasons.



144 Inspection and Maintenance Decisions Support

The repair decisions in this example are simplified, only a limited type of actions are
considered in each strategy, and the repairs are triggered by the asset conditions only.
However, usually, there are more constraints in deciding repair decisions, such as repair
action availability, cost and reliability - this form a multi-criteria decision problem. Our
model gives a framework to integrate deterioration prediction with repair decisions. Together
with an optimisation technique, by providing a set of constraints, we can make optimal
decisions for maintenance. For example, along with the model shown in Figure 6.7, we
can use a Genetic Algorithm (GA) to generate a maintenance strategy that takes both asset
deterioration and maintenance effectiveness into consideration. We can therefore optimally
select different repair actions to restore an asset condition to a suitable condition at an
appropriate time with an objective of minimum cost and high level of reliability. The strategy
can be implemented in the decision node Repair Options in Figure 6.7, and further used to
estimate its life cycle cost for maintenance planning.

6.5 Conclusion

This chapter uses the BNs proposed in Chapter 4 for making inspection and repair decisions
as well as maintenance plans. Objectives V is fulfilled by the case studies of rail bridge
maintenance in GB and NBI bridge assets in the US. These models support decisions in
several cases including:

1. Multi-state condition prediction and structural evaluation for assets with components
that contribute in different ways to the overall state.

2. Prioritising the inspection of an asset to inspect by performing a reliability analysis from
the predicted condition and suggesting inspection times given a reliability threshold.

3. Choosing a repair given an inspection result, either based the repair action usually
performed for an asset in a similar state, or by evaluating the effectiveness of different
repair options.

4. Evaluating the effectiveness of different maintenance strategy over a time horizon by
combining models of repair and deterioration over several maintenance cycles.

This chapter also points out the potential to combine our models with an optimisation
technique for planning maintenance. Multi-criteria and multi-objective decision making
have been intensively studied in maintenance problems with satisfying performance (see De
Almeida et al. [32] for a review). As a future step, with constraints like cost, asset state and
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reliability, and objectives like a certain level of reliability or minimum cost, we would like to
find the optimal selection of repair over some time.





Chapter 7

Managing Large and Complex
Maintenance Modelling

Chapter 4 has shown a set of generic model options available for maintenance modelling:

• Learning deterioration with a statistical distribution from uncertain data and elicited
knowledge (Section 4.1).

• Learning deterioration from other assets (Section 4.2).
• Condition prediction of an asset with multiple states (Section 4.3.1).
• Condition prediction of an asset assembled by multiple components (Section 4.3.2).
• Repair decisions reasoning (Section 4.4) and maintenance planning (Section 4.5).

We can combine these models in various ways for different problems as shown in
Chapter 6 using real-world cases. However, the details of these models often vary when
different maintenance problems have different assumptions or specifications. Also, it becomes
more complicated when assets are rated by multiple states and assembled by multiple
components, the scope and size of the resulting model increase exponentially. To tailor a
maintenance model for a specific problem, especially when the required model is large-scaled
and complicated, it not only demands the users to understand the complex relationships but
also needs the users to have substantial knowledge about the underlying models and about
how to assemble them. These requirements limit the applicability of these models, especially
for the actual users - the maintenance engineers. Therefore, this chapter aims to tackle this
challenge (Objective VI): to show how the modelling choices could be effectively managed
for maintenance modelling with various specifications.

Applicability to Other Infrastructure Assets
Our model of bridge maintenance includes many characteristics that also apply to the

modelling of the maintenance of other critical infrastructure assets. In particular: i) the asset
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condition is rated by a set of ordinal states based on the levels of safety and reliability, and
the asset’s deterioration can be described by the transition from one state to another, and ii)
the asset can be considered as a system assembled from multiple components with various
system configurations. These characteristics are common in static infrastructure asset, for
example,

• Pavement: i) Pavement Condition Index (PCI) is an example measurement that is
used to evaluate the health of pavement. It ranged from 0 to 100, where 0 represents
the worst condition and 100 represents the perfect state. In practice, these states are
often categorised into a smaller number depending on the repair requirement, for
example, in Cheng and Remenyte-Prescott [25], PCI is divided into 5 categories. In
this example, the deterioration of pavement is also modelled in the form of Markov
process to represent the transition between these states, and each transition is assumed
to follow a Weibull distribution or an exponential distribution as in Lethanh and Adey
[97]; ii) An example pavement section was presented in Dilip et al. [35] with three
components including asphalt layer, granular layer and subgrade. The system failure of
this pavement section was modelled with a series configuration of these components.

• Railway track: i) Track condition can be measured by its vertical alignment to the
rails. In Audley [9], track quality was classified from very good to poor based on
the standard deviation of the track alignment, and each transition between two states
follows a Weibull distribution; ii) Together with components such as points operating
equipment, lineside cabinet, ballast and sleepers, railway tracks can form a track
switches system. Bemment et al. [14] studied the reliability of track switches system
based on various arrangements of components with different system configurations.

The differences between bridge maintenance modelling and other infrastructure assets’
modelling mainly lie in some of the assumptions and requirements. One example is given by
the assumed transition distribution. Some assume this follows a Weibull distribution with
two parameters while others use an exponential distribution with one parameter. However,
we have not further explored the application of our framework to other classes of assets in
this thesis.

Outline
Section 7.1 introduces the background of the model-based approach, which is later used

to resolve this problem. Section 7.2 develops a model-based maintenance framework that
extends the generic models from Chapter 4 with model assumptions and a relational database.
Section 7.3 presents a prototype to show how we can use this framework: we manage to
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build a variety of model variants using a number of relational tables. Section 7.4 gives a
summary of this chapter.

7.1 Introduction to Model-Based Approach

The emerging field of Model-Based System Engineering (MBSE) gives a framework to
define models and systematically organise them. It proposes to develop a range of generic
models to define and design a system under development with an agile modelling formalism
to meet different modelling requirements without changing the entire model [143]. These
domain models are used as the primary way to explore and exchange information between
engineers before system implementation, whilst reducing the dependence on traditional
document-based communication. By doing so, MBSE facilitates the feedback on problem
specification and modelling decisions from engineers and gives an efficient way to guide
system development [42].

The model-based formalism is implemented using a unified language (e.g. SysML
language) to provide a platform for integrating different modelling requirements to perform
various system analysis. This formalism has been extended to the safety and reliability
domain, so-called Model-Based Safety Assessment (MBSA) (see Lisagor et al. [98]). MBSA
aims to unify classical safety and reliability modelling (e.g. fault tree and Petri net as
discussed in Section 2.4.4) and to generate an integrated structure for a range of safety and
reliability analysis (e.g. fault tree analysis and system diagnosis). This concept has been
applied in maintenance assessment in recent years. For example, the AltaRica modelling
language [7], separates system specification from maintenance-related analysis with a range
of reusable modelling techniques. In project AltaRica 3.0 [143], the implementation of the
stochastic process, Markov chain and Petri net enable this language to model and compile
maintenance analysis for a complex system.

However, to our knowledge, the current practice of MBSA does not yet encompass
learning deterioration rates from inspection data and knowledge, or learning from related
assets, and lack evidential reasoning. Of which, the BNs for maintenance modelling proposed
in the previous chapters are capable of serving these purposes. They not only provide us
with the possibility to model different aspects of maintenance problems but also enable us to
include alternative data and unused expert knowledge. However, these models cannot yet be
presented to a maintenance expert easily since adapting the underlying generic models to
a particular problem context requires an engineer to comprehend the implementation and
inference of BNs. Fortunately, advances in model-based machine learning languages provide
us with a promising perspective to tackle this problem.
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In model-based machine learning (see Bishop [17] and Ghahramani [55]), models and
problem specifications are defined in a compact language as the primary mean of communi-
cation between users, while inference or machine learning algorithm codes are generated and
run automatically. Among them, probabilistic programming languages such as Figaro [139]
targets at modelling and inferencing problems probabilistically is suited in implementing BNs.
Once the generic BN models are defined by the modellers using a probabilistic programming
language, engineers can manage the use of models without a deep understanding of BNs and
their inference.

To help users manage the models, model-based approaches often use the object-oriented
paradigm to provide a library of generalised models for reuse. This is not provided by
traditional BNs where they have a fixed set of variables and relationships. This issue has
been widely researched for BNs, for example, the development of OOBN models as discussed
in Section 3.5. The use of OO in BNs not only can benefit the model representation, but
also the inference of them. However, when structuring OOBN models, the relations between
objects are described deterministically only. This limits the use of them, especially when the
modelling problem has complex relationships between objects.

Probabilistic relational models, developed by Koller [81] combines a relational structure
with OO designed probabilistic graphical models (e.g. OOBN models). A PRM combines
probabilistic dependencies with a relational schema that describes the entities in the problem
domain. This representation provides a separation between the model library and structure
relationships. This representation further eases the pain for engineers when organising the
models for large and complex maintenance problems.

Therefore, in order to assist models building for large and complex maintenance problems,
inspired by MBSA and the development of model-based machine learning languages, this
chapter develops a model-based framework for asset maintenance assessment. The framework
separates reusable low-level models from modelling choices and asset descriptions. The
framework is encoded with a PRM representation. The problem specification of the target
domain is represented by a relational database instantiated by its relational schema mapped
with the model assumptions. The ground model for a specific maintenance problem is
therefore instantiated based on the query on the database. The database recalls a range
of generic BNs (each represented by its probabilistic dependencies) for asset maintenance
modelling from different perspectives.
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7.2 Model-Based Asset Maintenance Framework

Figure 7.1 Stages of model-based asset maintenance framework.

To address the problem of many variants of maintenance-related models, we develop a frame-
work to help domain experts express problem specification and related data and knowledge.
The stages of model-based asset maintenance framework can be illustrated in Figure 7.1:

• Relational schema (Section 7.2.1) is used to organise the asset information and its
relationship with the model assumptions. It is a blueprint of how the relational database
is built.

• Model assumptions (Section 7.2.2) are used to define the specifications of the problem
domain.

• Relational database (Section 7.2.3) is the instantiation of the relational schema. It
includes the configuration between classes mapped from model assumptions and input
from historical data and expert knowledge.

• Model library (Section 7.2.4) encodes the possible dependencies of probabilistic
models in the problem domain.

• Instantiation (Section 7.2.5) is performed after a query is entered, its inference is
performed by the engines supported by the model-based language.
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• Decision support (Section 7.2.6) are made based on the queries. They can also be
evaluated to provide feedback about the selected models and knowledge in order to
refine the selected models.

The following subsections describe each aspect of the framework.

7.2.1 Relational Schema

Figure 7.2 Class diagram of the PRM’s relational schema.

Inspired by the generic models proposed in Chapter 4 about maintenance problems from
different perspectives, a relational schema is derived and represented in the form of a class
diagram shown in Figure 7.2. As one of the components of a PRM, a relational schema
allows us to exhibit domain relationships between objects. A relational model consists of
classes X = {X1,X2, ...,Xn}, where each class has a number of attributes A(X) and reference
slots R(X) to refer an object to another object. X .A is used to denote the attribute A of class X
and X .R is used to denote the reference slot R of class X . In this figure, the reference slots are
bolded and underlined. For example, class Transition has an attribute variance-of-weights:
Transition.variance-of-weights and a reference slot Component: Transition.Component.

In Figure 7.2, between classes, there are notations representing the information flow and
types of relations between them:
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• One-to-one relation (1 : 1): for example, class Prediction to class Asset has a one-to-
one relation. It represents one prediction object corresponds to one asset object only.
Its inverse relation remains the same as one-to-one relation. But in this example, there
is only one information flow: the prediction of an asset. This information flow is used
to navigate the instantiation of an asset when a query about a specific prediction is
made.

• One-to-many relation (1 : 1..*): for example, class Asset to class Component has
a one-to-many relation. It represents there are multiple component objects (n ≥ 1)
for one asset object. Its information flow can be used in cases like a prediction of
an asset’s condition that is evaluated by its components. Its inverse relation is a one-
to-one relation meaning each component object belongs to one asset object only. Its
information flow can be used to determine which asset the component belongs to, and
further to indirectly associate which group the component belongs to.

• One-to-zero-or-more relation (1 : 0..*): for example, class Asset to class Group, it
represents there are zero or more asset objects for one group object. When there is no
asset for that group, class Asset will not be instantiated; this can be further used to
model the existence uncertainty when learning the model structure (this is out of the
scope of this thesis but can refer to Koller [81] for further study). Its information flow
tells which group the asset belongs to when learning from other groups. Its inverse
relation is also a one-to-one relation meaning one asset object belongs to one group
object only. Its information flow is a critical path in deciding what assets are used to
learn deterioration.

• Many-to-many relation (1..* : 1..*): for example, class Group to class Individual-
Feature, it represents for each group object, it has multiple feature objects where
each feature object has an individual feature level object. Its inverse relation for class
Individual-Feature to class Group is also a many-to-many relation. It represents that
for each individual feature level object, it may belong to multiple group objects.

• Inheritance relation: for example, class Local-Parameter is a subclass of class Pa-
rameter. The subclass inherits the attributes from the superclass. Therefore, class
Parameter preserves the attribute prior-of-parameter from its superclass. This allows
us to specialise functions of the subclasses when modelling with hierarchy.

One of the practical uses of reference slots is to connect attributes from other classes
that are indirectly related using a slot chain. A sequence of reference slots forms a slot
chain, it allows us to define functions that compose of attributes from other objects even
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when they are indirectly connected. For example, to define the function of deterioration
time in class Data, we can assess its parameter(s) by a slot chain: Data.Transition.Local-
Parameter (see Figure 7.2). Since class Data to class Transition is an inverse relationship
of one-to-zero-or-more relation, hence, it is a one-to-one relation. And class Transition to
class Local-Parameter is a one-to-many relation. Therefore, the slot chain has a one-to-many
relation. This enables us to model the function of deterioration time with many parameters
ranging from 1 to n (e.g. a one-parameter exponential distribution or a two-parameter Weibull
distribution).

The relational schema is a structure skeleton of the relational database. Before input the
asset information, we need to establish the relationship between classes of a problem domain,
where the stage of model assumptions plays this important role.

7.2.2 Model Assumptions

The model assumptions are mapped to the relational database to configure the relationships
between classes and later used to define the expression of the variable in the model library.
The model assumptions contribute to the modelling specifications, which are fixed for a
specific problem but varies for different problems. They can be defined by industry standards,
guidelines, the nature of the system itself, the practical experience made by domain experts,
feedback from the previous models or aided by some machine learning techniques. This
subsection describes the key aspects of the assumptions considered here, but detail functions
can refer to Chapter 4:

• The number of deterioration states: Each asset is usually rated with a state repre-
senting its level of functionality. For example, a 3-point grading system shown in
Section 6.1.1 for GB bridge and 10-point grading system shown in Section 6.1.2 for US
bridges are used. Grading systems are normally adopted from industry standards and
are often used to identify the associated risk of the asset. They vary from infrastructure
type, countries, and sometimes, inspection agencies. An n states grading system results
in n−1 transitions represented in the instantiation of class Transition. For inference
benefits, they are aggregated using the binary factorisation when evaluating the state of
a component as discussed in Section 4.3.1.

• The choice of transition distribution: Different distributions can be used to estimate
transition times of deterioration, based on their goodness of fit. The goodness of fit
of the distribution is usually done by visual observation and hypothesis tests [115].
A range of study has been developed to find the best fit distribution of asset state
deterioration times. For example, the exponential distribution has been used for railway
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track [63, 67] and the Weibull distribution for bridges [3, 94] (see Section 2.3.1). The
choice of distribution defines the function of the variable transition distribution and
variable deterioration time. The number of parameters in the distribution’s pdf fixes
the number of instances of the Parameter class for each Transition (e.g. exponential
distribution with one parameter and Weibull distribution with two parameters).

• The classification of assets: Under the assumption that similar assets may deteriorate
similarly, we could use their features to quantify assets into different groups - where
each group is assumed to have the same deterioration rates as shown in Chapter 5. By
doing so, historical data can be pooled and used to learn assets deterioration parameters
between groups.

– Grouping by features: The levels of asset’s features define the asset group.
However, first, we need to consider how many features, what features to be
used to decide the grouping and their weights. This information configures the
structure of class Group and class Feature. It can be done by experts knowledge,
where they believe there are dominant features that are significantly affecting
the deterioration of assets. For example, masonry bridge is considered to decay
significantly slower than other bridge types from personal communication with a
bridge engineer. By having this information, we can consider grouping bridges by
their materials. Experts can assign the weights of features, but if this information
is unavailable, uninformative priors can be assigned. The grouping can be refined
by feedback from the previous models.

– Individual feature levels: We can use a scalar like low, medium and high influence
on deterioration rate as shown in Section 5.3.2 to quantify the level of features.
Either experts or clustering techniques can do the assignment of feature level.
For example, for feature material, experts can assign bridges built with masonry
has a low influence on accelerating its deterioration rate, while bridges built with
metal has a high influence. Clustering technique can be used to divide assets with
different feature values into different clusters using the training data. Each cluster
can be modelled with a feature level. Multiple features, where each feature has
its feature level and weight, are later aggregated using a weighted mean function
with a variance about the confidence level about their weights.

– Prior knowledge about deterioration characteristics: Once the groups are defined,
we can ask experts to assign the priors for the group parameters (see Section
4.1.3 about how to elicit priors of parameters in a Weibull distribution). This
information is mapped to class Parameter accompanied by variances in class Local
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Parameter about the differences between group parameters and local parameters.
In the case where experts choose not to group assets, the prior of the parameter
becomes the prior of the asset’s parameter itself.

• The asset’s components and their configurations: Asset could be considered as a
single component system or a multi-component system depending on its nature. These
components can be assembled with various configurations such as in parallel, series
or bridge structure as discussed in Section 2.3.3. For traditional parallel or series
configuration, we can define the aggregation from class Component to class Asset
as a maximum or minimum function as an FT gate. For bridge structure, we can
define a weighted mean function where each component is given a weight by experts
representing its importance in deciding the condition of the asset. Similarly, this can
also be extended to describe a parallel or series system with weights using functions
like weighted maximum and weighted minimum.

• The available repair actions for components and their effectiveness: Different
components may have different repair actions, and different actions may have different
effectiveness in restoring their states. Examples can be found in Section 6.3. The
configuration of its CPT can be learned from historical records, such as the frequency
of restoring the component to a particular state using a specific repair action or given
by experts.

7.2.3 Relational Database

Koller [81] introduced a way to map the class diagram of the PRM and instantiated it as
a relational database to store asset information. Each class corresponds to a table in the
database. Among the table, each column corresponds to an attribute from the class diagram,
and the reference slots become the foreign keys to link another table. An example of how
the foreign keys are connected between classes is later given in Section 7.3.1. The model
assumptions from the last subsection configure the number of relations between the classes.
For example, for a specific transition T , a two-parameter Weibull distribution is chosen.
Hence, in the relational table of class Local-Parameter, among the many rows, two of them
(two local parameters) have the same foreign key Transition T . More examples are illustrated
in Section 7.3 in order to represent different model variants.
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7.2.4 Model Library

Figure 7.3 Probabilistic dependencies of the PRM.

The generic models from Chapter 4 are mapped to the relational schema, and stored in the
model library represented as the probabilistic dependencies of a PRM showed in Figure 7.3.
Notes that though class Group does not have any variable, it is still essential to build it as an
individual class so that we can link related objects in the relational database. Also note that
the model library is extendable, in the future we can include more generic models to satisfy
more objectives and assumptions.

In this figure, a square (called a class) defines a group of identical objects that share the
same set of variables or probabilistic models. An oval within a square defines a variable,
and the directed edge defines the dependency of variables. Aggregation is defined by a bold
arrow accompanied by a text about the type of aggregation. The dashed line represents the
relational connections between classes, which is identical to the connections in the relational
database.

To recompile the maintenance-related BNs discussed in the previous sections, dependency
classes involved in the model library (some may require more classes depending on the
requirements) can be summarised as the following table:
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Type Classes

Learning deterioration with a statisti-
cal distribution from uncertain data and
elicited knowledge (Section 4.1)

Data, Local Parameter, Transition

Learning deterioration from other assets
(Section 4.2)

Data, Parameter, Local Parameter, Transi-
tion, Individual Feature, Feature

Condition prediction of an asset with mul-
tiple states (Section 4.3.1)

Data, Local Parameter, Transition, Predic-
tion, Component

Condition prediction of asset assembled
by multiple components (Section 4.3.2)

Data, Local Parameter, Transition, Predic-
tion, Component, Asset

Repair decisions reasoning (Section 4.4)
and maintenance planning (Section 4.5)

Prediction, Component, Repair

The model probabilistic dependencies are abstract as it is the foundation (the variables
and their dependencies involved in the BNs) to represent a number of different structures.
However, the variable expressions and their observations are not defined, and class relation-
ships are not configured. These issues are resolved when communicated together with a
relational database to build a specific model based on the query.

7.2.5 Instantiation

Instantiation of a PRM allows us to build a specific ground BN from the probabilistic
dependencies in the model library and the asset information in the relational database. The
resulting ground BN is built on a set of variables X .A (attribute A from class X), each variable
depends probabilistically on its parents (defined by the probabilistic dependencies in Figure
7.3) - either directly using a reference slot or indirectly using a slot chain. Their functions or
CPTs are defined from the model assumptions. Later Section 7.3 shows how the instantiation
is done, it is illustrated by a number of BN examples with various common structures.

After the ground BN is built, many algorithms are available to provide inference based
on the query when modelling using an MBML language like probabilistic programming
language Figaro. A detail introduction about the available inference algorithms in Figaro can
be found in Pfeffer [139].

7.2.6 Decision Support

A range of inspection and maintenance decisions support as shown in Figure 7.1 can be
made using the model-based asset maintenance framework. The decisions are made based



7.3 Prototype System: Asset Maintenance Model Variants 159

on the query embedded in the relational database. For example, when provided with a
sequence of intervention time in table Prediction for assetID:X , we can reason the condition
prediction of assetID:X or its components over time. When provided with a constraint about
the anticipated component state, we can analyse its reliability to find suitable intervention
time meeting criteria set by the decision makers. Alternatively, we can also set a constraint
about the repaired state to suggest maintenance action. The variety of decisions we can make
are the same as introduced in Chapter 6. However, note that we can make more decisions if
more generic models are implemented in the model library.

The decisions made can be used to provide feedback for the model assumption and
relational database in the early implementation stage. We can evaluate the model performance
by comparing different variants, with metrics such as predictive accuracy or computational
speed. Further refinement of data sources (e.g. from other source domain), expert knowledge
(e.g. different experts or different types of expertise), and variations of assumptions (e.g.
different groupings of assets or distributions) are possible. This process repeats until a level
of acceptable performance is accepted, or it exhausts all the resource. As a future study,
with the success of automatic inference software [17], the refinement process can be made
automatically with a defined threshold in an MBML framework.

7.3 Prototype System: Asset Maintenance Model Variants

Customised instantiation of this framework for practical uses has been developed in Chapter
5 emphases on deterioration prediction and Chapter 6 emphases on decisions support. The
focus of this section is to show how the model-based asset maintenance framework encodes
different model assumptions in the relational database and how models are instantiated based
on the query from decision makers that may happen in practice.

A series of model variants is presented, including deterioration prediction, condition
predictions with various configuration, repair decisions and maintenance planning. We wish
these variants are sufficient to convey the idea of providing a straightforward use of the
prototype system for engineers: rather than letting engineers building BNs directly, instead,
this allows them to manipulate the model assumptions and a relational database to build
models of interests.

7.3.1 Variant 1: Deterioration Prediction

Before mapping the model assumptions and storing asset information to the relational
database, we need to map the classes in a class diagram to a set of relational tables. Within
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each class, the class name becomes the primary key of the table used to identify the entity
of the object. The attributes are mapped to a number of columns in the table, so as the
foreign keys. An example is shown in Figure 7.4. For example, class Data is mapped to
table Data, where DataID is the primary key when referring to a data object. It has a foreign
key TransitionID indicating which transition the data object belongs to. Three attributes are
mapped to three columns of the table respectively to model the type of each data.

Figure 7.4 Mapping a class diagram to relational tables for variant 1.

After the skeleton of the tables is defined, data and knowledge can be entered before the
query and instantiation. This example focuses on a simple parametric distribution learning
for deterioration prediction, the model assumptions are:

• TransitionID:1 is a Weibull distributed transition.
• TransitionID:1 does not need to learn from other groups.

Figure 7.4 (b) presents the inputs. Assume the engineers want to query the transition
distribution of TransitionID:1, its model is instantiated based on the relational database:

• Table Transition: Since we do not want to learn the distribution from others, the
variance of feature weights is set as null in TransitionID:1 to indicate variable
TransitionID:1.aggregated-influence is not implemented (showed as a dotted variable).

• Table Local-Parameter: The model assumes a Weibull distribution for TransitionID:1,
therefore, there is a one-to-two relation between object TransitionID:1 and its cor-
responding local parameters: Local-ParameterID:1 and 2. They are both set as null
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in variance-of-parameter to indicate each parameter is directly impacted by its own
(not shared with other groups) - hence, variable Local-ParameterID:1.parameter and
Local-ParameterID:2.parameter are not implemented. However, at the same time,
class Local-Parameter has an inheritance relation with class Parameter - each local
parameter can share the attribute(s) from its superclass. An additional foreign key of
the ParameterID is added to assess each object’s superclass table.

• Table Parameter: Each ParameterID has a prior expression for its parameter, they are
instantiated as the hyperparameter. Since variable parameter is not instantiated but vari-
able hyperparameter is, it takes over the dependency between class Local-Parameter and
other classes. For example, ParameterID:1.hyperparameter with a prior of triangular
distribution (0,1,3) becomes one of the parents of TransitionID:1.transition-distribution,
DataID:1.deterioration-time, DataID:2.deterioration-time and
DataID:3.deterioration-time.

Figure 7.5 Instantiation of Variant 1.

• Table Data: Three data objects have the same foreign key TransitionID:1 in this
table. For example, in object DataID:1, it has attributes DataID:1.greater-than with
a value of 0 and DataID:1.less-than with a value of 20 and null for DataID:1.equals-
to. In the instantiated model, only variable greater-than and variable less-than are
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instantiated, they are translated into Boolean expressions if (deterioration time > 0,
“True”, “False”) and if (deterioration time < 20, “True”, “False”) and both are observed
as “True”. This represents an interval-censored data. Apart from this data, DataID:2 is
an interval-censored data and DataID:3 is a right-censored data.

Figure 7.5 presents the instantiated BN. The posterior distribution in
TransitionID:1.transition-distribution is used to answer the query from the engineers. This
subsection shows how the probabilistic dependency of a PRM from Figure 7.3 is instantiated
guided by its relational database instantiated from the class diagram in Figure 7.4 and the
model assumptions.

7.3.2 Variant 2: Condition Prediction - Deterioration Rate Learned
from Others

This model variant focuses on the condition prediction of an asset where its component
deterioration distribution is learned from others. The model assumptions are:

• AssetID:1 has only one component ComponentID:1.
• ComponentID:1 is rated with a binary-state scale. Therefore, it has only one transition

TransitionID:2 represents its transition from Working to Fail.
• TransitionID:2 and 12 follows a Weibull distribution respectively.
• FeatureID:1 and 2 are used to separate assets into groups, each feature is quantified

into three levels representing their influence on deterioration rate from low to high.
• AssetID:1 belongs to GroupID:1 and AssetID:3 belongs to GroupID:2.
• Here assumes the scale parameter Local-ParameterID:4 in TransitionID:2 (from

GroupID:1) can learn from the scale parameter Local-ParameterID:6 in TransitionID:12
(from GroupID:2).

Figure 7.6 presents the inputs of the related database. In this example, the engineers want
to predict the condition of AssetID:1 after 24 months, the model instantiation follows the
relational database:

• Table Prediction: To predict AssetID:1’s condition after 24 months, variable
PredictionID:1.intervention-time is instantiated with an observation of 24, it becomes
one of the parents of AssetID:1’s component(s).

• Table Asset: This table is an intermediate relational table to access table Group and
table Component. It indicates that AssetID:1 belongs to GroupID:1, so its component
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Figure 7.6 Relational tables for Variant 2.

ComponentID:1 also belongs to GroupID:1; similarly, AssetID:3 belongs to GroupID:2,
so its component ComponentID:11 also belongs to GroupID:2. Since both assets only
have one component, the variance of component weight is both sets as null.

• Table Group: This table is used to encode the many-to-many relation to table
Individual-Feature. From the model assumptions, two features are used to classify
assets into groups, each of them is mapped into a column of this table. Each column
becomes a foreign key linked to table Individual-Feature. A different combination of
the individual feature levels becomes an identical group.

• Table Individual-Feature: Each feature is quantified into three levels. Additionally,
each feature level inherits the prior for its corresponds feature’s weight from its
superclass Feature.

• Table Feature: Each FeatureID has a prior expression for its weight, they are instanti-
ated as variable weight. In this example, the experts are not confident in assigning their
weights. Therefore, uninformative priors uniform distributions with lower bounds of 0
and upper bounds of 1 are assigned for FeatureID:1 and 2. The weights are together
marginalised as summed to 1 when inference is performed.

• Table Component: Since AssetID:1 only has one component. Hence there is only
one row in this table with a foreign key of AssetID:1, and that component along has a
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weight of 1 to form this asset. The entry of current-state is ‘Working’, therefore, there
is one transition for this component: from Working to Fail. Because the query of this
example is to predict the condition rather than reliability analysis, the constraint is not
instantiated, therefore, it is set as null.

• Table Transition: The variance in this table is used to represent the credibility of the
features’ weights. For example, TransitionID:2.aggregated-influence is instantiated, it
is modelled as a Ranked node with a function of TNormal distribution (µ,σ2,0,1), its
mean µ is an aggregated function from its corresponding Individual-FeatureID:1 and 4
that are weighted by the weights of its features: FeatureID:1 and 2, and its σ2 is the
variance of the weights.

• Table Local-Parameter: Transitions in this example are both assumed to be Weibull
distributed, therefore each identical TransitionID has two rows in this table. In the
column of variance-of-parameter, Local-ParameterID:3 and 5 are both set as null to
represent these two parameters are directly impacted by their own group - they inherit
attributes from their own superclasses. However, Local-ParameterID:4 and 6 have the
same ParameterID:4 with different variances - they inherit the same attribute from the
same superclass ParameterID:4.

• Table Parameter: Variable ParameterID:3.hyperparameter and
ParameterID:5.hyperparameter take over the corresponding dependencies of variables
between class Local-ParameterID:3 and 5 and other classes. ParameterID:4.hyperparameter
becomes the parent of Local-ParameterID:4.parameter and Local-ParameterID:6.parameter.

• Table Data: TransitionID:2 has 1 interval-censored data and TransitionID:12 has 1
interval-censored, 1 right-censored and 1 complete data.
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Figure 7.7 Instantiation of Variant 2.

The instantiated BN is shown in Figure 7.7. The posterior probabilities of variable
AssetID:1.asset-state can be used to answer the query about its condition prediction after 24
months.

7.3.3 Variant 3: Condition Prediction - Multiple State System

This model variant focuses on the condition prediction of an asset where the condition of its
component is rated by multiple states. The model assumptions are:

• AssetID:3 has only one component ComponentID:3.
• ComponentID:3 is rated with a 9-point scale. Therefore, it has 8 transitions: Transi-

tionID:26 represents transition from S9 to S8, ..., TransitionID:31 represents transition
from S4 to S3, TransitionID:32 represents transition from S3 to S2, and TransitionID:33
represents transition from S2 to S1.

• Each transition, from TransitionID:26 to 32, follows an exponential distribution respec-
tively, and TransitionID:33 follows a Weibull distribution.

• Transitions of AssetID:3 do not need to learn it from other groups.
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Figure 7.8 Relational tables for Variant 3.

Figure 7.8 presents the inputs of the related database. In this example, the engineers want
to predict the condition of AssetID:3 after 36 months, the model instantiation follows the
relational database:

• Table Prediction: To predict AssetID:3’s condition after 36 months, variable
PredictionID:3.intervention-time is instantiated with an observation of 36, it becomes
one of the parents of AssetID:3’s component(s).

• Table Asset: One of the model assumptions indicates transitions of AssetID:3 do not
need to learn from other groups. Therefore, the GroupID is set as null to prevent further
instantiation of classes related to table Group. Since this asset only has one component,
the variance of component weight is set as null as well.

• Table Component: AssetID:3 only has one component ComponentID:3 with a weight
of 1. The entry of current-state is ‘S3’, therefore, without repair, there are only 2
transitions available for this component: from S3 to S2 and from S2 to S1. The
constraint is set as null due to the query of this example is to predict the condition only.

• Table Transition: ComponentID:3 is rated with a 9-point scale with 8 transitions, but
since its current state is in ‘S3’, TransitionID:26 to 31 will not be instantiated. Also,
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because we do not want to learn the distributions from others, the variance-of-weight
of all transitions are set as null.

• Table Local-Parameter: The model assumes exponential distributions for Transi-
tionID:26 to 32, and a Weibull distribution for TransitionID:33, therefore, in this table,
there is one row dedicated for each transition from TransitionID:26 to 32 and two rows
dedicated for TransitionID:33. Since TransitionID:26 to 31 are not instantiated, their
corresponding Local-Parameter objects (ID from 26 to 31) are not instantiated as well.
The variance-of-parameter of Local-ParameterID:32, 33, 34 are all set as null showed
their variable parameters are not initiated. But at the same time, they can still inherit
attributes from their superclass Parameter.

• Table Parameter: Variable ParameterID:28.hyperparameter becomes the parameter λ

of an exponential distribution with a prior of a normal distribution (0.05, 0.03), it takes
over the dependencies of variable Local-ParameterID:32.parameter. Similarly, variable
ParameterID:29.hyperparameter and ParameterID:30.hyperparameter become the pa-
rameter β and η respectively of a Weibull distribution, and they take over the dependen-
cies of variable Local-ParameterID:33.parameter and Local-ParameterID:34.parameter
respectively.

• Table Data: TransitionID:32 has 1 left-censored data and 1 interval-censored data and
TransitionID:33 has 2 interval-censored data.

Figure 7.9 Instantiation of Variant 3.
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The instantiated BN is shown in Figure 7.9. The posterior probabilities of variable
AssetID:3.asset-state can be used to answer the query about its condition prediction after 36
months.

7.3.4 Variant 4: Condition Prediction - Multiple Components System

This model variant focuses on the condition prediction of an asset assembled by multiple
components. The model assumptions are:

• AssetID:4 has 3 components ComponentID:15, 16, and 17.
• Each component is rated by a binary-state scale. Therefore, each has only one transition:

the transition from Working to Fail.
• Each transition follows an exponential distribution and does not need to learn from

other groups.

Figure 7.10 Relational tables for Variant 4.

Figure 7.10 presents the inputs of the related database. In this example, the engineers
want to predict the condition of AssetID:4 after 36 months, the model instantiation follows
the relational database:
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• Table Prediction: To predict AssetID:4’s condition after 36 months, variable
PredictionID:4.intervention-time is instantiated with an observation of 36, it becomes
one of the parents of AssetID:4’s component(s).

• Table Asset: One of the model assumptions indicates transitions of AssetID:4 do
not need to learn from other groups, the GroupID is therefore set as null to prevent
further instantiation of classes related to table Group. Since this asset has multiple
components, the variance of component weight is set as 0.05 to encode the uncertainty
about the weights later assigned in table Component.

• Table Component: AssetID:4 has three components ComponentID:15, 16, and 17,
they are assigned with a weight of 0.3, 0.5 and 0.2 respectively about their contribution
to the state of AssetID:4. These weights are used to aggregate their predicted-state
variables to the asset-state variable with a variance of 0.05 given in table Asset. The
entry of current-state are all set as ‘Working’, therefore, there is one transition for each
component. The constraint is set as null due to the query of this example is to predict
the condition only.

• Table Transition: Components in this asset are rated by a binary-state scale. Hence,
each has one transition. Also, because we do not want to learn the distributions from
others, the variance-of-weight of all transitions are set as null.

• Table Local-Parameter: The model assumes exponential distributions for all transi-
tions in this example, hence, each transition has a row dedicated for its local parameter.
The variance-of-parameter of Local-ParameterID:21, 22, 23 are set as null because
we do not want to learn from other parameters. As a result, their variable parameters
are not initiated. However, at the same time, they can still inherit attributes from their
correspond superclass Parameter.

• Table Parameter: Variable hyperparameter in each ParameterID becomes the pa-
rameter λ of an exponential distribution with a prior distribution, it takes over the
dependencies of variable parameter in its correspond Local-Parameter object.

• Table Data: TransitionID:51 has 2 interval-censored data, TransitionID:52 has 1
interval-censored data and TransitionID:53 has 1 interval-censored data.
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Figure 7.11 Instantiation of Variant 4.

The instantiated BN is shown in Figure 7.9. The posterior probabilities of variable
AssetID:4.asset-state can be used to answer the query about its condition prediction after 36
months.

7.3.5 Variant 5: Inspection Decisions

This model variant focuses on making inspection decisions. The model assumptions are the
same as in Variant 3 in Section 7.3.3.

Figure 7.12 presents the inputs of the related database. In this example, the engineers
define a component is reliable by having its state greater or equal to S2. They want to find
out the reliability of ComponentID:3 over time in order to decide when to inspect it. The
model instantiation follows the same relational database as Variant 3 except table Prediction
and table Component:

• Table Prediction: Since the query is to find out the reliability of ComponentID:3 over
time, variable PredictionID:5.intervention-time is instantiated but not observed. This
variable becomes one of the parents of AssetID:3’s component(s).

• Table Component: AssetID:3 only has one component ComponentID:3 with a weight
of 1. The entry of current-state is ‘S3’, therefore, without repair, there are only two
transitions available for this component: from S3 to S2 and from S2 to S1. The
constraint is set as ≥ S2, it can be translated into a CPT where the constraint is ‘True’
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Figure 7.12 Relational tables for Variant 5.

when the predicted-state is in S9, . . ., S3 or S2, otherwise, it is set as ‘False’. The
constraint variable is observed as ‘True’ in order to reason the variable of intervention-
time.

Figure 7.13 Instantiation of Variant 5.
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The instantiated BN is shown in Figure 7.13. The posterior pdf or cdf of variable
PredictionID:5.intervention-time is used to answer the query about the reliability of Compo-
nentID:3 over time, by setting a threshold about the reliability, engineers can make decisions
about when to inspect this asset.

7.3.6 Variant 6 and 7: Repair Decisions

This subsection presents two model variants: Variant 6 is an observational model, and Variant
7 is an intervention model, both developed from Section 4.4. They both assume having
knowledge of the available repair actions and their effectiveness on restoring the state of
components.

Figure 7.14 presents the inputs of the related database. For both variants, engineers define
a constraint about the repaired state of ComponentID:3 should be better or equal to S6. For
Variant 6, the engineers want to know given the current state of ComponentID:3, in history,
what repair actions are more likely to be taken in order to satisfy the constraint. For Variant 7,
the engineers want to know if a major repair is performed, what is the condition distribution
of the repaired state given its current state. The model instantiation for Variant 6 follows the
relational database in Figure 7.14 (a), and Variant 7 follows the relational database in Figure
7.14 (b):

• Table Repair: For both variants, the repaired states are based on the current state.
Hence, the edges from predicted-state to repair-state are not implemented. The con-
straint is set as the repaired state is ≥ S6, it can be translated into a CPT where the
constraint is ‘True’ when repaired state is in S9, . . ., S7 or S6, otherwise, it is set as
‘False’.

– For Variant 6, the query from engineers refers to the use of an observational model.
Hence, the edge from ComponentID:3.current-state to RepairID:1.repair-action is
instantiated, RepairID:1.repair-action is not observed, and RepairID:1.constraint
is observed as ‘True’.

– For Variant 7, the query from engineers refers to the use of an intervention model.
Hence, the edge from ComponentID:3.current-state to RepairID:1.repair-action
is not implemented, RepairID:2.repair-action is observed as ‘major repair’, and
RepairID:2.constraint is not observed.

• Table Component: The entries of ComponentID:3’s current-state for both variants
are both ‘S3’, therefore, ComponentID:3.current-state are both observed as ‘S3’. The
constraint is set as null, hence, not instantiated.
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Figure 7.14 (a) Relational tables and its instantiation for Variant 6; (b) Relational tables and
its instantiation for Variant 7.
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The instantiated observational BN for Variant 6 is shown in Figure 7.14 (a), the posterior
probability distribution of RepairID:1.repair-action is used to suggest repair actions given
the current state and constraints. The instantiated intervention BN for Variant 7 is shown in
Figure 7.14 (b), the posterior probability distribution of RepairID:2.repaired-state is used to
answer what is the probability distribution of the component’s state if the given repair action
is performed.

7.3.7 Variant 8: Maintenance Planning

This model variant focuses on maintenance planning. The model assumptions are the same
as in Variant 3 in Section 7.3.3. Additionally, we assume having knowledge of the available
repair actions and their effectiveness on restoring the state of components.

Figure 7.15 Relational tables for Variant 8.

Figure 7.15 presents the inputs of the related database. In this example, the engineers
define a component is reliable when its state is greater or equal to S6. An intervention is
performed every 36 months, if the probability of componentID:3’s reliability is greater than
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90%, no action will be taken, otherwise, minor repair is performed. The decision makers
want to know how many repair actions are taken in the next 120 years, which can be used to
evaluate the life cycle cost for its maintenance planning. The model instantiation for each
intervention follows the same relational database as Variant 3 excepts table Repair:

• Table Repair: In this example, we want to evaluate the repaired state based on the pre-
dicted state given an intervention time, hence, the edge from ComponentID:3.predicted-
state to RepairID:3.repaired-state is instantiated instead of from ComponentID:3.current-
state. To estimate the effectiveness of repair action, intervention model is applied - the
edge from ComponentID:3.current-state to RepairID:3.repair-action is not instantiated,
instead, RepairID:3.repair-action is observed. The observation of repair action can
choose between no action and minor repair in this example. It is guided by the posterior
of RepairID:3.constraints from the previous intervention: when its probability of being
‘True’ is greater than 90%, no action is observed; otherwise minor repair is observed.

The instantiated model for each intervention is shown in Figure 7.16. Multiple inter-
ventions (40 interventions for 120 years) will be performed, where the posterior of vari-
able RepairID:3.repaired-state becomes the observation of ComponentID:3.current-state
in the next intervention, and RepairID:3.constraint is used to decide the observation of
RepairID:3.repair-action for the next intervention. The frequency of using minor repairs are
counted to answer the query from the decision makers.

Figure 7.16 Instantiation of Variant 8.

7.4 Summary

Maintenance engineers might find it challenging to use the models from Chapter 4 without
substantial knowledge of Bayesian modelling techniques. The models in Chapter 4 are
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generic and need, as we have shown in Chapters 5 and 6, to be adapted to the specific config-
uration of asset types and components. This chapter tackles this situation by providing an
effective way for engineers to manage and build specific models from the generic components
of Chapter 4.

We adopt concept from model-based approaches to use generic functional models as
the primary mean of communication with engineers facing a maintenance problem. The
generic models are represented in the form of PRM in a model-based asset maintenance
framework. In the PRM, the generic models encode the probabilistic dependencies which
are then assembled into a final BN using data (in a relational database) that describes the
assumptions of the specific maintenance problem.

Encoding the maintenance models in a model-based framework using a PRM provides
a clear separation of the stages of designing and applying the generic models for a specific
maintenance problem. The role of the maintenance decision maker, who builds the model by
manipulating the relational database without a detailed understanding of Bayesian modelling
techniques, is separated from the role of the modeller, a specialist in Bayesian modelling
techniques who encodes the probabilistic dependencies. To build a ground BN, the mainte-
nance decision maker has only to manipulate a relational database, or even a spreadsheet with
multiple tabs, containing the assumptions made about the problem and the asset information
they have.

In summary, this chapter addresses Objective VI, which is to show how to manage
maintenance modelling effectively. We show how this is done with a set of examples of the
configurations that may be seen in practice. We finally note that within this framework, the
model library is extendable, so we could include further generic models to describe a wider
variety of model types and decisions if necessary.



Chapter 8

Conclusions and Further Work

In this thesis, we address some of the challenges in modelling bridge asset deterioration and
supporting related decisions using BNs. Chapter 2 and 3 introduce the problem background
and methodology respectively. These introductions lead to the developed models in Chapter
4, we have models that can learn deterioration from data and knowledge and models that
can support the decisions making. The performance of the deterioration prediction models
are validated in Chapter 5 and decision models are applied in Chapter 6 using real bridge
case studies. In Chapter 7 we show how we can manage these models effectively to build
complex maintenance models. Though the proposed models in this thesis are illustrated with
examples of bridge assets, the models are generic and applicable to other similar maintenance
problems such as railways and roads.

The following section summaries the contributions of this thesis, and it is followed by a
discussion of further work.

8.1 Contributions

This section discusses the contributions of this thesis. It is organised according to the research
objectives defined in Section 1.2. Among the objectives, I to IV are about deterioration
prediction, V focuses on the decision support applications and VI addresses the management
of complex and large-scale modelling. We show how each objective has been fulfilled:

Objective I: Develop a model that can learn asset deterioration behaviours from data and
knowledge. Show how to encode data with uncertainty inferred from inspection history
and how to derive engineering knowledge from experts that can be used in the model.

This objective is achieved by the models in Chapter 4. Specifically:
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• The foundation is given in Section 4.1.1, where we show that the parameters of a
Weibull distribution can be learnt in a hierarchical BN.

• Section 4.1.2. shows how censored data – inevitably resulting from periodic inspection
– are included in this model using a Boolean node with a logical expression.

• Section 4.1.3 presents a set of explanations for the characteristics of the parameters of
the Weibull distribution, showing how they correspond to a maintainer’s knowledge,
such as trends (e.g. whether the rate of deterioration is getting faster or slower) and
percentages (e.g. the time for about two thirds of the assets to deteriorate to the next
state). Though this study has not worked with engineers to investigate the feasibility of
eliciting this knowledge, we believe we have proposed a straightforward way to make
this possible.

• Section 5.2.1 applies these models to give a practical example of how to derive
deterioration data from inspection records.

Objective II: Make use of the feature information to study the relationship between differ-
ent asset groups. Use this to leverage the learning of asset deterioration between groups,
even when there is little historical inspection record for some groups.

This objective is achieved in two stages. The first, based on the review of individual
deterioration prediction in Section 2.2.2, is to cluster similar assets into groups and provide
deterioration prediction on each group rather than the overall population. Since the evidence
shows that deterioration rate can be affected by asset’s features (e.g. a bridge with heavier
loading may deteriorate faster than one with less loading), we use these features to separate
assets into groups. Specifically:

• Section 4.2 extends the Bayesian parameter learning models with a further hierarchical
level including an additional level of parameters - hyperparameters. This gives us a
framework to include multiple groups of assets within the same model. Each group
has its own local parameters, and all these local parameters from different groups
are supervised by the global parameters (hyperparameters). Instead of eliciting the
priors for the local parameters directly, we first elicit the priors for the hyperparameters
that account for the general characteristics of all assets. Then we estimate the local
parameters about their deviations from the global settings by experts. With the help
of hyperparameters, we can link different groups of assets. This linkage gives an
opportunity to learn between groups, where some groups may have more data that
can strengthen the learning of the hyperparameters by their local parameters, which
consequently, leverage the learning of local parameters of other groups with little data.
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• Since experts may find it difficult to estimate the differences between groups via
their local parameters directly, we use the asset group’s feature values to quantify
the differences in deterioration. Each feature is quantified into three levels, from
low, medium to high, where a low degree represents a longer deterioration time. The
variables for each feature and combined in a linear model using AgenaRisk’s ranked
nodes.

• Section 5.3.1 and 5.3.2 present practical examples of how to select important features
and assign their levels. The feature variables of each group are aggregated using a
weighted mean function. Experts can assign the weight to each feature, or if there
are enough groups, we can learn the weight as another hyperparameter. The aggre-
gated influence is applied to the local parameters, reducing or increasing the rate of
deterioration.

Objective III: Apply the deterioration model to predict the state of a given asset over time.
Extend the deterioration prediction model to support more practical modelling assump-
tions, such as an extended description of asset states and the interaction between multiple
components.

This objective is achieved by extending the models developed in Section 4.1 and 4.2.
Specifically:

• Section 4.3 shows how to use a Boolean node to evaluate whether the given prediction
time is likely to higher than a time sampled from the transition distribution, for an asset
with only two condition states.

• Section 4.3.1 shows how to extend this for multiple condition states. To reason about
transitions between multiple states, several transition time distributions are modelled,
and the Boolean node becomes a labelled node, with one state of each asset condition
state. A logical function can express the probability of each state at a given time, but
because the transition distributions are continuous, this simple mechanism results in a
large CPT that becomes computational. The binary factorisation is used to resolve this
problem.

• Section 4.3.2 shows how to model the three basic but common system configurations
using BNs. For assets with components interact in parallel, fault tree construct AND
gate is used as the function to link components that maximise their transition distribu-
tions or states. Similarly, for interaction in a series configuration, an OR gate is used to
minimise the transition distributions or states. While for asset assembled in a bridge
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structure, a weighted function is used to connect components. It also discusses how to
include experts’ certainty level about assigning the weights of the components. The
weight represents the contribution of the state of each component to the state of the
asset as a system. The presented system configurations give the basic elements that
can be combined or extended to model more complex configurations.

Objective IV: Use the developed deterioration prediction model in a real-world context,
and compare its performance with other existing methods.

Chapter 5 presents the validation of the deterioration prediction models. Specifically:

• It first validates the proposed methods using synthesis data. This validation supports
the proposal of using Bayesian parameter learning technique to learn deterioration
distributions and the idea of individualising assets into groups when they follow
different distributions.

• A case study of deterioration of bridge decks from the US State of Wyoming using the
data from the National Bridge Inventory is then used to build the proposed models. It
shows how to use a modified random forest for feature selection and how to apply the
selected features when building the hierarchical BN models. The learned transition
distributions are assembled to provide multi-state predictions. Three approaches
are used to examine this model against the data in the NBI. First, we compare the
performance as the number of features considered in the model increases. We show
that, in this case, the models reach a reasonable performance with three features, and
adding more can only improve the performance slightly. Secondly, we compare our
model with other available approaches in predicting the state of decks and shows that
the developed model excels at most predictions, especially for cases where there is little
inspection data available. Lastly, we show that as the prediction time increases, the
performance of models drops. However, the developed model is capable of providing
short term condition prediction that can count for a 1 or 2-biennial inspections in a
regular inspection scheme, which is useful information for future inspection planning.

Objective V: Develop models that can reason and support a variety of inspection and
maintenance-related decisions, and demonstrate the uses of them using real-world cases.

This objective is achieved through further elaborations of the models, demonstrated using
case studies. Specifically:

• Section 6.1 presents case studies of structural evaluation in railway bridge in Great
Britain and NBI assets in the US. In both cases, we show how the models are applied
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given the number of condition states and the inspection data available in practice.
Bridges are decomposed into components, and the interaction of the components is
modelled appropriately for the two scenarios.

• Section 6.2 shows how to perform reliability analysis to support inspection decisions.
This analysis can help prioritise asset to inspect, or help suggests inspection time given
a reliability threshold.

• Section 4.4 introduces two modelling approaches to support decisions about repairs.
The observational model suggests repair actions based on historical repair records and
given constraints. The intervention model predicts what would happen if a specific type
of repair action is taken. These models are based on the causal structures introduced in
Section 3.2.3. These two models are applied in Section 6.3 for deck repairs in the US.

• The intervention model can be combined with the deterioration prediction model to
model the deterioration of an asset after repair. Section 4.5 shows multiple instances
of this model can be arranged sequentially to provide a framework to monitor the
behaviour of an asset throughout its life cycle. Section 6.4 presents an example
application of this idea, based on the earlier model of deck repair. It shows how
the condition of a deck changes over a time period when both repairs and further
deterioration are considered. A simple maintenance strategy - selecting no action,
a specific repair, or deck replacement - is also illustrated. It outputs the life cycle
maintenance cost over the next 100 years given different repair actions. This method
gives a framework to plan maintenance at a strategical level.

Objective VI: Show how the modelling choices could be effectively managed for mainte-
nance modelling with various specifications.

This objective is achieved in Chapter 7. Specifically:

• We develop a model-based asset maintenance framework that enables engineers to
manage the models without an in-depth understanding of BNs, even for problems
with complex specifications. The models are encoded in the form of probabilistic
dependencies within a PRM. When building a model for a specific maintenance
problem, they are assembled according to a relational database that mapped from
the model assumptions. Asset information is, therefore, organised in a relational
database, or even a spreadsheet with multiple tables, based on the model assumptions
and structure of the PRM.
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• Inference is supported by the model-based language automatically, and suggestions of
decision can be generated based on the query. This separation allows us to distinguish
the role of users - who build the models by manipulating the relational database, from
the modellers - who encodes the generic models in the early stage.

• Section 7.3 later presents a range of ground BNs generated using a prototype imple-
mentation built on these ideas. It shows how engineers can manage the modelling for
different asset configurations by simply manipulating the data in a spreadsheet.

8.2 Further Work

This thesis has achieved its objective of providing a framework that can support inspection
and maintenance decision making from available data and expert knowledge. To achieve the
potential benefits for this framework, some further validation of the knowledge elicitation
process and model performance is needed:

• Though this thesis has presented an approach to elicit parameter priors of a Weibull
distribution from the knowledge of maintenance engineers who are not Bayesian
specialists, it has not been confirmed whether this type of elicitation is deliverable in
practice. In addition, as summarised in Section 4.6.2, apart from knowledge expressed
as the priors of the parameters, there are many types of knowledge can be included in
our models. So far, the applications presented in this thesis are mostly inspired by the
literature. It would be helpful to interview maintenance decision makers to ensure that
practicality of these applications. Additionally, we need further work to investigate
the process of knowledge elicitation when there are multiple experts, for example, by
hosting a series of training workshops [170, 27].

• This thesis only compares the performance of the deterioration prediction with a
limited number of approaches as the complexity of the deterioration data prevents
many prediction techniques being used: in most cases, we only have a small amount
of data, and these data are often uncertain (censored). Recent advances in transfer
learning (see Pan et al. [135]) could have the potential to tackle the problem of the
limited data available for some asset groups. Censored data has been intensively
studied in the area of survival analysis (see Klein and Moeschberger [78]). Borrowing
ideas from this area could help understand how to better encode and reason uncertainty
from censored data.
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In addition to the improvements addressed above, we also identify some extensions that
could expand the benefits of our framework:

• The effectiveness of different repair actions given asset’s current state depends on a
CPT that needs to be elicited from experts. In Section 6.3, we resolved this by basing
the CPT on a table published in a maintenance guideline. Unfortunately, elicitation
purely from engineers may be difficult in most cases, and the results maybe bias or
inaccurate. An alternative direction would be to develop models, similar to the models
used for learning deterioration proposed in this thesis, to learn repair effectiveness
from both experts and data. The main reason this is not performed in this thesis is
that there is no publicly available data. Negotiation to acquire maintenance data from
organisations such as the US Department of Transportation and National Rail in the
UK is needed.

• Further work could be done to integrate our framework with an optimisation algorithm.
We could use it to plan maintenance activity at a strategical level: for example, to select
optimal repair actions or to perform repairs at the most cost-effective times. There is a
wide range of techniques to choose from: for example, heuristics technique such as
genetic algorithm has been employed in many studies to tackle similar maintenance
problems (see examples in Audley [9], Seif and Rabbani [150], Le [94] and Yang et al.
[186]).

• The PRM extension of Bayesian networks has been used to advantage in this thesis
to organise complex models. PRMs could have more uses. They can be extended to
reason about ‘link uncertainty’, where we are uncertain which two objects are related
(see Getoor [54]). This might be useful if part of the information is missing or uncertain
or, for example, it is uncertain to which group a newly built bridge should belong.
Similarly, PRM class hierarchies might be used to determine the grouping of assets by
evaluating the performance of different hierarchical structures.
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