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Summary 

Listening to music often evokes intense emotions [1,2]. Recent research suggests that musical 

pleasure comes from positive reward prediction errors, which arise when what is heard proves 

to be better than expected [3]. Central to this view is the engagement of the nucleus accumbens 

– a brain region that processes reward expectations – to pleasurable music and surprising 5 

musical events [4–8]. However, expectancy violations along multiple musical dimensions (e.g., 

harmony and melody) have failed to implicate the nucleus accumbens [9–11], and it is 

unknown how music reward value is assigned [12]. Whether changes in musical expectancy 

elicit pleasure has thus remained elusive [11]. Here, we demonstrate that pleasure varies 

nonlinearly as a function of the listener’s uncertainty when anticipating a musical event, and 10 

the surprise it evokes when it deviates from expectations. Taking Western tonal harmony as a 

model of musical syntax, we used a machine-learning model [13] to mathematically quantify 

the uncertainty and surprise of 80,000 chords in US Billboard pop songs. Behaviourally, we 

found that chords elicited high pleasure ratings when they deviated substantially from what the 

listener had expected (low uncertainty, high surprise), or conversely, when they conformed to 15 

expectations in an uninformative context (high uncertainty, low surprise). Neurally, we found 

using fMRI that activity in the amygdala, hippocampus, and auditory cortex reflected this 

interaction, whilst the nucleus accumbens only reflected uncertainty. These findings challenge 

current neurocognitive models of music-evoked pleasure, and highlight the synergistic 

interplay between prospective and retrospective states of expectation in the musical experience. 20 
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Results 

Humans use structured sound sequences known as music to express and evoke emotions [1]. 

Manipulating the listener’s expectations is a key mechanism through which music elicits 

pleasure [1,2,14–16]. A fundamental concept and characteristic feature of Western music is 

tonal harmony, which describes the syntactic regularities of how simultaneous pitches are 5 

combined into chords, and how chords are related to other chords in a progression [17]. In this 

study, we directly addressed whether musical pleasure depended on the expectancy of 

individual chords in a progression (Experiment 1), and how that was reflected in human brain 

activity (Experiment 2).  

 10 

Quantifying uncertainty and surprise with information theory 

As music unfolds in time, the listener continuously forms expectations on upcoming temporal 

and acoustic features [3,13,18]. This implies the presence of two temporally dissociable states 

through which the expectancy of a chord can evoke pleasure: the uncertainty when anticipating 

what the next chord could be before it occurs, and the surprise elicited when the actual chord 15 

deviates from expectations [16,19]. In contrast, the existing literature has almost exclusively 

focussed on surprising musical events [19,20] and found inconclusive effects on musical 

pleasure [6,11]. 

To mathematically quantify uncertainty and surprise, we employed an unsupervised 

statistical-learning model [13] that learnt the statistical regularities of over 80,000 chord 20 

progressions from a corpus of 745 pop songs listed in the US Billboard ‘Hot 100’ chart between 

1958 and 1991 [21]. Our model uses these learnt statistical regularities to simulate a listener’s 

prediction for novel chord sequences using Shannon’s entropy and information content (see 

Figure 1 and STAR Methods). Entropy reflects how uncertain a listener is when anticipating 

an upcoming chord given only the portion of the song heard so far. Information content, or 25 
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surprisal, reflects how surprised the listener is once actually hearing the chord. These two 

established information-theoretic measures have been extensively applied to natural language 

processing [22], but only recently to harmony [23] in music. Our data-driven approach is 

superior to traditional designs for three reasons. First, we quantify uncertainty and surprise as 

continuous variables as opposed to comparing a small number of discrete categories (e.g., 5 

violation/no-violation) predefined by the experimenter [6,9,23–27]. Second, our chord stimuli 

are taken directly from the corpus to ensure conformity to stylistic conventions, as opposed to 

artificial chord progressions used in prior studies (e.g., [9,25,26]). Third, instead of examining 

pleasure elicited by a musical piece overall (e.g., [4,5,7]), we investigate how expectancy 

differences on a chord-to-chord-level affect musical pleasure. 10 

 

Experiment 1: Joint effects of uncertainty and surprise on musical pleasure 

In Experiment 1, healthy adults (n = 39) listened to 1039 chords in 30 chord progressions (Table 

S1) selected from the 745 pop songs and rated the pleasantness of each chord using a 

mechanical slider. We only kept the chord progressions from the original songs (and removed 15 

the melody and rhythm) to ensure that our isochronous chord stimuli were not confounded by 

effects of other musical dimensions and familiarity (songs were confirmed to be unidentifiable 

by our subjects). We used a linear mixed model to analyse the extent to which uncertainty and 

surprise, and their interaction, predicted pleasantness of chords taken from the commercially 

successful pop songs. To account for temporal autocorrelations in the slider ratings, we used a 20 

first-order autoregressive covariance structure to model the relationship between successive 

chords in each stimulus. To disambiguate probabilistic processing of expectations from sensory 

processing, we controlled for low-level acoustic features (i.e., sensory dissonance, spectral 

centroid, and spectral complexity) in the model (see Table S3 for correlations with chord 

uncertainty and surprise).  25 
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We found that the pleasure rating of a chord was significantly predicted by main effects 

of uncertainty and surprise, as well as their interaction (Figure 2 and Table 1; see Table S2 for 

correlation of random effects). In other words, pleasantness depended on joint effects of the 

precision of the listener’s predictions, and the probability of the chord given the tonal harmonic 

context. Since the generation of an expectation precedes its deviation, we interpret this 5 

interaction as the modulatory effect of uncertainty on the effect of surprise on musical pleasure. 

When the uncertainty of the harmonic context was low (e.g., towards the end of a musical 

section), chords with higher surprise (i.e., those that were less probable) were rated as more 

pleasant than those with lower surprise. Conversely, when uncertainty was high (e.g., in chord 

progressions atypical of the listener’s musical experience), subjects rated chords that were less 10 

surprising as more pleasant (Figure 2B).  

In fact, the regression surface (Figure 2C) resembled a saddle, where the multiplicative 

effect of uncertainty and surprise along the two diagonals predicted pleasantness in a parabolic 

(U/inverted-U) manner. This is reminiscent of Berlyne’s [28] influential model in empirical 

aesthetics, which postulated an inverted-U relationship between pleasure and variables such as 15 

exposure and complexity. Critically, however, our findings paint a more complicated and 

multifaceted picture of musical pleasure. Our findings imply that isolated effects of individual 

variables alone cannot fully explain the musical experience, as it is likely to be a nonlinear 

function of multiple interacting factors. 

Furthermore, consistent with prior work [29–33], the low-level acoustic features also 20 

showed significant effects on pleasure (but were controlled for in the model). The magnitude 

of standardised beta estimates in our model (see Table 1) indicated that when the uncertainty 

of the chord was at its mean, the effect of surprise was 30% larger than sensory dissonance, 

and this marginal effect became twice as large when chord uncertainty was increased to 1.5 SD 

above the mean.  25 
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Experiment 2: Neural basis of uncertainty and surprise in music-evoked pleasure 

To directly assess the underlying brain regions whose activity correlated with uncertainty and 

surprise, another group of subjects (n = 40) listened to the same isochronous chord stimuli and 

were instructed to pay attention to how the chords fitted together in the progression whilst 5 

undergoing fMRI scanning in Experiment 2. As before, we confirmed that our stimuli were 

unfamiliar to the subjects. Despite the sluggishness of the blood-oxygen-level dependent 

(BOLD) response, the long duration of each chord (2.4 s) meant that metabolic changes could 

still be measured on a chord-to-chord level. We also used multiband echo-planar imaging (EPI) 

[34,35] to allow for a sub-second temporal resolution whilst maintaining good spatial coverage. 10 

We focussed our analysis on brain regions previously shown to be implicated in music-evoked 

emotions across multiple studies [1]: the bilateral amygdala and adjacent anterior 

hippocampus, bilateral auditory cortex, right nucleus accumbens, left caudate nucleus, and the 

pre-supplementary motor area. Given that musical pleasure depends on joint effects of 

uncertainty and surprise, we hypothesised that the underlying brain regions would also show 15 

the same interaction. 

Consistent with our behavioural findings, we found in Experiment 2 (Figure 3; see 

Table S4 for parameter estimates) that the interaction between uncertainty and surprise 

significantly modulated the BOLD response in the bilateral amygdala and hippocampus (left: 

β = -0.116, corrected 95%-CI = [-0.201, -0.0445], sign test: s = 11, corrected p = 0.0450; right: 20 

β = -0.140, corrected 95%-CI = [-0.238, -0.0410], one-sample t-test: t(39) = -4.02, corrected p 

= 0.00181; see also Figure S1). This is in line with prior studies implicating the amygdala in 

surprises in tonal harmony and changes in musical tension [26,27], as well as the hippocampus 

in encoding the uncertainty of sequences [36,37], and forming memory associations during 

music listening [5].  25 
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Furthermore, this interaction modulated activity in the bilateral auditory cortex (left: β 

= -0.182, corrected 95%-CI = [-0.288, -0.0766], t(39) = -4.90, corrected p = 0.000120; right: β 

= -0.128, corrected 95%-CI = [-0.220, -0.0355], t(39) = -3.93, corrected p = 0.00234), with 

stronger effects in the left compared to the right (see Figure S2). In line with our observed 

interaction, pitch deviants in melodies [38] and timing deviants in rhythm [39] evoke reduced 5 

auditory mismatch responses for stimuli with increased uncertainty (although pleasantness was 

not investigated in those studies; see [16] for a discussion). The established role of the auditory 

cortex in processing sound, as well as the amygdala and hippocampus in processing emotions, 

suggest that the pleasure evoked by expectations in music rests on a close link between 

perceptual analysis and affective evaluation [1,3,40].  10 

Remarkably, neither a significant interaction between uncertainty and surprise, nor a 

main effect of surprise were detected in the nucleus accumbens or caudate (all corrected p > 

0.993). We instead detected a positive main effect of uncertainty in the right nucleus 

accumbens (β = 0.242, corrected 95%-CI = [0.0720, 0.412], t(39) = 4.04, corrected p = 

0.00170), and left caudate (β = 0.281, corrected 95%-CI = [0.0661, 0.496], t(39) = 3.71, 15 

corrected p = 0.00447). This means striatal activity was increased when the tonal harmonic 

context was less informative in revealing what the ensuing chord could be, and decreased when 

more informative. In a post-hoc analysis, we found comparable results in the contralateral 

nucleus accumbens and caudate with no evidence of laterality (Figure S3). Our data therefore 

suggest that striatal activity encodes the uncertainty of an expectation, irrespective of the 20 

magnitude of surprise. Finally, the pre-supplementary motor area likewise only showed a 

significant positive modulation to uncertainty (β = 0.358, corrected 95%-CI = [0.145, 0.570], 

t(39) = 4.78, corrected p = 0.000176).  
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Discussion 

Our results contribute direct evidence in support of an expectancy mechanism in evoking 

musical pleasure [2,14–16,18,41]. We showed that surprise, a retrospective response, alone 

cannot fully explain the link between expectations in music and pleasure. Our data demonstrate 

that uncertainty, a prospective state of expectation, is another crucial dimension needed to 5 

describe this relationship. Pleasantness ratings to isochronous chord progressions taken from 

commercially successful Western pop music indicated high pleasure in two situations: when a 

chord with high surprise had been predicted with low uncertainty, or conversely, when a chord 

with low surprise had been predicted with high uncertainty. This interaction effect was 

reflected by metabolic changes in the amygdala, anterior hippocampus, and auditory cortex, 10 

but not the nucleus accumbens. Uncertainty and surprise are in fact key components of an 

influential predictive-coding model of neuronal message-passing across the cortical hierarchy 

[16,20,42]. In this model, music perception is construed as an active process where the brain 

continuously updates its generative model of the environment to minimise variational free-

energy [16,20]. Music may therefore elicit pleasure by encouraging the listener to continuously 15 

generate and resolve expectations as the piece unfolds in time [16,20]. The importance of the 

temporal dimension in evoking pleasure sets music apart from the static visual objects that are 

traditionally studied in empirical aesthetics [43,44].  

Unlike prior studies [4,7,8,45] which appealed to the established role of the nucleus 

accumbens in reward expectation [46,47] as evidence supporting an expectancy mechanism of 20 

musical pleasure, we directly addressed how predictability in our stimuli modulated 

pleasantness. These studies also left unexplained which musical dimensions constituted an 

expected musical reward, and how reward value is assigned to musical events [12]. In contrast, 

our results indicate that musical pleasure comes from manipulating both the uncertainty of the 

listener’s expectations before hearing an event, and the surprise that follows when such 25 
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expectations are not met. Here, these events are chords represented on the symbolic level and 

objectively quantified using information theory. These chord expectations are likely generated, 

at least partly, in the inferior frontal gyrus, a region shown to process expectation deviations in 

musical structure [9,18,48], and passed top-down to the auditory cortex [16,20,41]. Since the 

uncertainty and surprise of a chord were derived independently from its acoustic characteristics 5 

and solely on its conditional probability of occurrence, the same chord will have a different 

level of uncertainty and surprise depending on the combination of chords prior in the 

progression. Combined with the control of low-level acoustic regressors, we can rule out that 

our results were driven by sensory-acoustic features. 

Activity in the nucleus accumbens and caudate did not show significant modulation to 10 

the effect of chord surprise and its interaction with uncertainty. Given the central role of the 

nucleus accumbens in reward prediction, this might be seen as at odds with our behavioural 

finding that pleasantness is predicted by the joint effect of uncertainty and surprise. Instead, we 

found that uncertainty positively modulated striatal activity. Our results suggest that the 

striatum performs a facilitatory, although important, role in generating musical pleasure – that 15 

of modulating incentive salience, or the motivation or ‘wanting’ of subsequent information that 

resolves uncertainty [41,46]. In addition to reward expectation, the nucleus accumbens is 

argued to play a significant role in integrating cognitive and affective information to direct 

attention and modify actions towards motivationally relevant stimuli through dopaminergic 

pathways [47]. In line with this and consistent with our findings, dopamine is assumed to 20 

encode the precision (the inverse of uncertainty) of prediction errors in the free-energy 

principle [16,20]. Indeed, causal studies on musical pleasure [45,49] do not claim that striatal 

dopaminergic neurons induce pleasurable emotions per se, but highlight their necessity in 

regulating affective responses to music. Taken together, we suggest that a role of the nucleus 

accumbens in musical pleasure is to modulate attention deployment, depending on uncertainty, 25 
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in the amygdala, hippocampus, and auditory cortex. In line with this, the nucleus accumbens 

has shown increased functional connectivity with the amygdala, hippocampus, auditory cortex, 

and the inferior frontal cortex for music that was more pleasant [4,6].  

Our study has certain limitations. First, our auditory stimuli consisted of computer-

generated isochronous chord progressions taken from original pop songs. Although this 5 

allowed us to isolate effects of harmonic expectancy by controlling for confounds such as 

rhythm, melody, familiarity, dynamics, and instrumentation, the expectancy of these other 

dimensions and the dimensions themselves are also likely to influence pleasure [2,8,15,50,51]. 

Second, the parametric values of uncertainty and surprise derived from our computational 

model are constrained by the corpus from which the statistical regularities are computed. In 10 

other words, a highly surprising chord predicted with low uncertainty here is only relative to 

other chords present in the McGill Billboard corpus of commercially successful pop songs [21]. 

Third, listeners’ experiences shape their internal model of the statistical regularities of chords 

in a progression [13]. This means that factors such as culture, genre, and style affect how 

surprising a chord is, and with how much precision it can be expected [13]. Whether our results 15 

extend to other musical styles (see e.g., [52] for a discussion on atonal music), and the extent 

to which enculturation, expertise, and individual differences shape our preferences and 

emotional responses to music thus remain open questions. 

In summary, we show with the help of an unsupervised statistical-learning model that 

musical pleasure depends on the dynamic interplay between prospective and retrospective 20 

states of expectation. We demonstrate that this joint effect is reflected by metabolic changes in 

the amygdala, hippocampus, and the auditory cortex, and is likely mediated through 

dopaminergic incentive salience signals in the nucleus accumbens – which instead showed a 

positive modulation to uncertainty. Our fundamental ability to predict [16,20] is therefore an 
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important mechanism through which abstract sound sequences acquire affective meaning and 

transform into a universal cultural phenomenon that we call ‘music’ [15].  
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Figure Titles and Legends:  

Figure 1. Quantifying uncertainty and surprise of a chord.  

(A) An unsupervised statistical-learning model was trained on a corpus of 745 US Billboard 

‘Hot 100’ pop songs to derive the uncertainty (red) and surprise (blue) of chords (here: 

‘Knowing Me, Knowing You’ by ABBA, refer to Audio S1). Uncertainty is the lack of a clear 5 

expectation when anticipating an event before it is heard, whilst surprise occurs when what is 

actually heard deviates from expectations. Uncertainty of chord 𝑒𝑖  is quantified by its entropy, 

or expected negative log-probability, taken across the set of all chords 𝑆 in the corpus and 

conditional on the previous context of chords {𝑒1, … , 𝑒𝑖−1} in the progression. Surprise of chord 

𝑒𝑖  is quantified by its information content, and is the negative log-probability of the actual 10 

chord conditional on the context. Grey bars indicate points of high uncertainty but low surprise, 

and low uncertainty but high surprise. Subjects (n = 79) were asked to either rate the 

pleasantness of each chord (2.4 s) from 30 pop song chord progressions behaviourally, or to 

listen attentively and to focus on how they fitted together in the context whilst undergoing 

fMRI scanning. (B) & (C) Scatter plot and marginal densities of the uncertainty and surprise 15 

for all chords in the McGill Billboard corpus [21] (circles, n = 80,943) and in our chord stimuli 

(triangles, n = 1039; see Table S1).   

 

Figure 2. Uncertainty and surprise jointly shape the pleasure rating of a chord.  

(A) Standardised pleasure ratings to a chord progression taken from ‘Knowing Me, Knowing 20 

You’ by ABBA (Audio S1). Diamonds indicate mean pleasantness ratings for each chord. 

Filled circles indicate fitted values from a linear mixed model with chord uncertainty, surprise, 

and their interaction as predictors. Error bars indicate 95%-confidence intervals (95%-CI). 

Low-level acoustic parameters were also included as covariates to control for sensory 

confounds. (B) Contour plot demonstrating how pleasantness ratings jointly depend on 25 
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uncertainty and surprise. When the tonal harmonic context does not allow for a prediction with 

high precision (i.e., when uncertainty is high), the pleasantness of a surprising chord is low. 

However, when the uncertainty is low, surprising chords are highly pleasurable. (C) Data from 

B replotted in 3D. Although reminiscent of the characteristic inverted-U response from 

empirical aesthetics, the regression surface is in fact a saddle for which pleasantness varies 5 

nonlinearly across different levels of uncertainty and surprise.  

 

Figure 3. Neural basis of uncertainty and surprise in music-evoked pleasure. 

(A) Model-based fMRI revealed that BOLD activity in the bilateral amygdala and 

neighbouring anterior hippocampus (Amyg/Hipp), as well as the bilateral auditory cortex (AC) 10 

is significantly modulated by the interaction of chord uncertainty and surprise. (B) The right 

nucleus accumbens (NAcc), left caudate (CN), and pre-supplementary area (pre-SMA) instead 

only showed significant positive modulations to chord uncertainty. See also Figures S1-S3 and 

Table S4. Box plots show parameter estimates for the effect of uncertainty, surprise, and their 

interaction in each region of interest (n = 40; filled-circles: data points; solid line: median; 15 

diamond: mean; notches: 95%-CI of the median; hinges: IQR; whiskers: 1.5*IQR; statistical 

inferences were made using one-sample t-tests (two-tailed) or sign tests (for non-normal data) 

and Bonferroni-corrected for multiple comparisons (n.s.: p ≥ 0.05, *: p < 0.05, **: p < 0.01, 

***: p < 0.001). 

 20 
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Tables:  

 

Fixed-effect predictor Standardised β 95%-CI Deviance p 

Intercept 0.0219 [-0.0740, 0.118] 0.200 0.655 

Uncertainty -0.143 [-0.186, -0.0989] 40.2 2.33×10-10 *** 

Surprise -0.327 [-0.418, -0.236] 29.2 6.57×10-8 *** 

Uncertainty × Surprise -0.124 [-0.183, -0.0644] 13.4 0.000246 *** 

Sensory dissonance -0.251 [-0.345, -0.158] 19.3 1.41×10-5 *** 

Spectral centroid 0.0719 [0.0244, 0.119] 8.77 0.00306 ** 

Spectral complexity 0.224 [0.147, 0.300] 23.0 1.65×10-6 *** 

Overall pleasantness of sequence 0.171 [0.032, 0.309] 5.28 0.0215 * 

Overall arousal of sequence -0.0321 [-0.160, 0.0956] 0.242 0.623 

Marginal R2 = 0.476; Conditional R2 = 0.654; *: p < 0.05, **: p < 0.01, ***: p < 0.001 

 

Table 1. Parameter estimates of the linear mixed model in Experiment 1.  5 

Subjects (n = 39) continuously rated the pleasantness of 1039 chords in 30 chord sequences 

using a mechanical slider. The pleasantness of a chord depended on not only the amount of 

surprise evoked, but also the uncertainty in anticipating the chord before it was actually heard. 

Low-level acoustic effects were also introduced as covariates (see Table S3 for correlations 

with chord uncertainty and surprise) to disambiguate probabilistic processing from low-level 10 

sensory processing. Deviance here denotes twice the difference in log-likelihood between the 

full model and a restricted model with the effect omitted. Significance of individual fixed 

effects were determined using the likelihood-ratio test after a full-null model comparison 

[53,54]. Marginal and conditional R2 values for the model were estimated according to [55]. 

See Table S2 for correlation of random effects.  15 
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STAR Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Stefan Koelsch (stefan.koelsch@uib.no). This study did not 

generate new unique reagents. 5 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

A total of 83 healthy human adults took part in the study. Data from one male subject in 

Experiment 1 was excluded due to non-compliance with the experimental procedure. 

Functional MRI data from two subjects (1 female, 1 male) in Experiment 2 were excluded due 10 

to data-handling errors, and one further female subject was excluded as her overall music 

reward score (see below) was over 3 standard deviations below the population mean. Subjects 

took part in either the behavioural or fMRI experiment, but not both to ensure that the stimuli 

were novel to the subjects. 

For Experiment 1, data were analysed from 39 subjects with diverse levels of musical 15 

training (21 females, age: M = 24.1 y, SD = 3.80, general musical sophistication: M = 71.5, SD 

= 16 (corresponding to the 31st percentile of 147,633 self-selected subjects in the ‘How musical 

are you?’ test on the BBC website) from the Goldsmiths Musical Sophistication Index (Gold-

MSI) [56], musical training subscale of the Gold-MSI: M = 23.4, SD = 10.3, range = 7–41 

(corresponding to the 1st and 86th percentile), overall music reward: M = 48.6, SD = 8.53 20 

(population M = 49.98 and SD = 10.01 based on a sample of 857 young-adult subjects) from 

the Barcelona Music Reward Questionnaire (BMRQ) [57]). 

For Experiment 2, data were analysed from 40 subjects also with diverse levels of 

musical training (20 females, age: M = 25.2 y, SD = 4.16, general musical sophistication: M = 

72.2, SD = 19.9 (corresponding to the 32nd percentile), musical training: M = 23.6, SD = 11.5, 25 

mailto:stefan.koelsch@uib.no
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range = 7– 48 (corresponding to the 1st and 100th percentile), overall music reward: M = 47.9, 

SD = 10.3). 

No significant differences in age (Mann-Whitney U = 888, p = 0.290), general musical 

sophistication (Welch’s t-test t(74.38) = 0.175, p = 0.861), musical training (Mann-Whitney U 

= 779, p = 0.996), or overall music reward (Mann-Whitney U = 817, p = 0.720) were observed 5 

between subjects from the behavioural experiment (Experiment 1) and fMRI experiment 

(Experiment 2). No sex-specific analyses were conducted as we were interested in effects 

general to the population. 

All subjects were self-reported right-handed, with normal hearing, had normal or 

corrected-to-normal vision, and reported no known history of psychological or neurological 10 

disorders. Written informed consent was obtained from each subject prior to the experiment, 

and the study was approved by the Ethical Committee of the Medical Faculty at Leipzig 

University. 

 

METHOD DETAILS 15 

Information Dynamics Of Music model 

We used the Information Dynamics Of Music (IDyOM) model [13,58] to derive the surprise 

and uncertainty of every chord in the McGill Billboard Corpus [21].  This unsupervised 

statistical-learning model computes the Shannon information content and entropy [59] of a 

chord by prospectively generating a probability distribution for each chord in a song (or more 20 

generally, symbols in a sequence) conditioned on its previous context and the prior experience 

of the model.  

At the core of IDyOM is the PPM algorithm, a variable-order Markov model introduced 

by Cleary and Witten [60] and subsequently updated by Moffat [61] and Bunton [62]. The PPM 

algorithm reads a sequence one symbol at a time, and generates a probability distribution for 25 
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the symbol by blending together predictions from n-gram models of different orders. An n-

gram model of order n–1 is a Markov model that generates the probability of a symbol by 

conditioning on the previous context of n–1 symbols. Thus, given the set of all chords 𝑆 and a 

chord progression {𝑒1, … , 𝑒𝑖 , … , 𝑒𝑁}, the n-gram probability of chord 𝑒𝑖 is given by 

𝑝(𝑒𝑖 | 𝑒𝑖−(𝑛−1) , … , 𝑒𝑖−1). The information content of chord 𝑒𝑖 is defined as the negative 5 

logarithm of its conditional probability, i.e., 

𝐼(𝑒𝑖) =  − log2 𝑝(𝑒𝑖 | 𝑒𝑖−(𝑛−1) , … , 𝑒𝑖−1),  

whilst the entropy of chord 𝑒𝑖 is the expected information content of chord 𝑒𝑖. This is obtained 

by multiplying the conditional probability of all possible chords in 𝑆 by their information 

contents then summing together, giving  10 

𝐻(𝑒𝑖) = − ∑ 𝑝(𝑒𝑖 = 𝑒| 𝑒𝑖−(𝑛−1) , … , 𝑒𝑖−1)𝑒∈𝑆 log2 𝑝(𝑒𝑖 = 𝑒| 𝑒𝑖−(𝑛−1) , … , 𝑒𝑖−1). 

Previous work has demonstrated the superiority of IDyOM over fixed order n-gram models in 

modelling listeners’ probabilistic expectations of musical events [19,58]. 

IDyOM incorporates both a short-term model and a long-term model. The short-term 

model is trained incrementally on the current progression, thereby learning statistical 15 

regularities specific to the current stimulus. The long-term model is trained on all stimuli in a 

representative corpus of musical compositions, simulating the listener’s prior musical 

exposure; here we used the McGill Billboard pop music corpus as it reflects a musical style 

that is popular and widely accessed by listeners of Western tonal music, and contains the most 

common chord progressions in pop music. We also applied 10-fold cross-validation to avoid 20 

overfitting to individual songs. IDyOM combines the short- and long-term models using a 

geometric weighted mean [63], where each model is inversely weighted by the entropy of its 

predictions. This model configuration, termed ‘BOTH’ in [64], has proved to be useful both 

for modelling musical style [65] and for modelling music perception (e.g., [19,66–69]). 

Consequently, IDyOM captures both stylistic regularities (from the training corpus) and local 25 
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regularities (from the portion of the song heard so far) to improve its ability to generate 

successful predictions.  

Although previous applications of IDyOM have mostly been limited to the melodic 

domain [19,58,66–69], there is emergent interest in applying the model to harmonies [23]. In 

melodic applications, an important aspect of IDyOM is the use of viewpoints to embody 5 

different psychological and music-theoretic principles (e.g., relative pitch, tonality). 

Comparable viewpoint systems have yet to be established in the harmonic domain (although 

see [70] for initial work in this direction). We therefore used IDyOM in a single-viewpoint 

configuration, where the symbolic alphabet consisted of chord symbols present in the training 

corpus and included scale degree, chord type, and inversions. 10 

 

Stimuli 

Stimuli consisted of 30 unique auditory chord progressions (see Table S1) selected from 745 

songs listed on the US Billboard ‘Hot 100’ chart between 1958 and 1991 in the McGill 

Billboard Corpus [21], resulting in a total of 1039 chords. The duration of each chord was 2.4 15 

s, and each progression contained 30-38 chords (M = 34.6). These parameters were chosen to 

optimise signal-to-noise ratio of the data given the long rise time (~6 s until peak after stimulus 

onset) and sluggishness of the BOLD response in fMRI. Each chord progression was also 

transposed to C major to further reduce the possibility of familiarity effects. No significant 

correlations between the uncertainty and surprise of chords were detected in the stimulus set (r 20 

= -0.0218, p = 0.482; see Figure 1C and Table S3). 

Chord sequences were chosen by first generating all possible (494,807) chord 

progressions containing 30-38 chords for every song in the corpus, and imposing the criteria 

that 1) each progression must begin on the tonic root position and end on a perfect or plagal 

cadence (as in most Western tonal compositions), 2) each progression must contain at least one 25 
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chord that belongs to each quadrant of the product [high/low informational content] × [high/low 

entropy] (where high and low respectively denote the upper and lower 40th percentile of chords 

in the corpus), and occurs at least five chords after onset and before the end of each progression, 

3) each progression must contain at least unit variance in entropy and log(information content) 

(to adjust for skewness in the distribution) in each progression, and that 4) each sub-sequence 5 

of at least five chords must only repeat after a gap of at least two chords and not repeat more 

than three times (including the first presentation) consecutively. Note that the quadrant 

boundaries are constrained by the set of chords in the corpus, and may thus be conservative 

within the broader spectrum of musical styles beyond pop music. We then selected exactly one 

progression from the remaining songs that minimised the ordinal relationship between 10 

information content and 1-lagged entropy (i.e., the entropy of the subsequent chord) using 

Kendall's tau. This final step was carried out for another study with a different research 

question.  

All chords were initially generated as MIDI files using the MIDI-Toolbox [71] in 

Matlab R2013b (MathWorks, Natick, MA, USA) and rendered as wav files (44100 Hz 15 

sampling rate) with a synthetic timbre composed of a jazz guitar, an acoustic guitar, and a 

marimba using Pro Tools (Avid Technology, Burlington, MA, USA). All instruments played 

the full chords together in every stimulus. Three separate background rhythms with a synthetic 

drum-kit timbre were made using GarageBand for iOS (Apple Inc., Cupertino, CA, USA), and 

superposed on the sound waves in Matlab. Each rhythm spanned the duration of each chord, 20 

was in quadruple time (regardless of the time signature of the original song), and was repeated 

throughout each stimulus. These background rhythms were introduced to enhance the 

momentum of the stimuli given the relatively slow tempo of the chord progressions. 

Reverberation and damping were adjusted to ensure that the waveform of each chord and 
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rhythm did not spill over to the subsequent chord. The auditory stimuli were then normalised 

in loudness using ReplayGain in Audacity (https://audacityteam.org). 

 

Procedure for Experiment 1 

Subjects gave pleasantness ratings to chords in auditory chord sequences using a custom-built 5 

10 cm analogue mechanical slider in a soundproof cabin. The slider was held with the left hand 

and placed on the lap perpendicular to the body, whilst the right thumb was used to move the 

slider pot. Moving the pot away from the body indicated a higher rating, and vice versa. The 

highest rating was ‘sehr angenehm’ (very pleasant), and the lowest was ‘nicht angenehm’ (not 

pleasant). Each trial began with the subject resetting the slider to the lowest rating as the first 10 

chord was identical for all stimuli (ratings from the first chord were excluded from the 

analysis), and the stimulus was presented 2 s afterwards. Subjects rated the pleasantness of 

each chord in the auditory sequence by moving the slider pot to its corresponding position, and 

were explicitly told to give at most one rating for every chord. They were encouraged to use 

the full range of the slider, and to select extreme ratings at least 5 times throughout the entire 15 

experiment as in prior work [72]. Once the chord progression was over, subjects were given 

two 3 s time-windows to rate the overall pleasantness and arousal of the progression (order 

pseudo-randomised) on a 1-6 scale using the top number keys on a computer keyboard. 

Subjects were then prompted to begin the next trial as before.  

The 30 auditory isochronous chord progressions were presented in a pseudo-random 20 

order, with the three background rhythms evenly assigned to the stimuli and counterbalanced 

across participants. The experiment was delivered using PsychToolbox 3 [73] in Octave 4.0.0 

[74], and stimuli were presented using supra-aural headphones (Beyerdynamic DT 770 PRO) 

at a comfortable volume. The slider was connected to an Arduino Micro microcontroller that 

acted as a digital-analogue converter with a 20 Hz sampling rate. Subjects practised on three 25 

https://audacityteam.org/
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trials (with a different set of stimuli) prior to the experiment to ensure they understood the task. 

At the end of the experiment, subjects were asked whether the chord progressions in the stimuli 

were familiar to them, and if possible, to name the possible artist or song. No subjects 

mentioned the relevant artist or song featured in our stimuli, except for one subject who 

suggested the possibility of a chord progression by The Beatles without actually identifying 5 

the song.  

 

Procedure for Experiment 2 

The fMRI experiment was divided into five runs, and the procedure was similar to the 

behaviour experiment. Each trial began with the instruction asking subjects to close their eyes, 10 

then the presentation of an auditory chord progression ensued after a 10 s pause. Subjects’ task 

was to listen attentively to the chord progressions and to pay attention to how each chord fits 

in with the previous chords in the progression. A 1 s-sine wave tone (C5 = 523.25 Hz) then 

informed subjects to open their eyes 1 s after the end of stimulation. Following a 1 s pause, 

subjects were given two 3 s time-windows to rate overall pleasantness and arousal of the 15 

stimulus using a 1-6 scale (order randomised to minimise motor preparation) on an MR-

compatible button box in each hand. They were then instructed to close their eyes again and 

the next trial began.  

In each run, six auditory sequences (two of each rhythm, counterbalanced across 

subjects) were pseudo-randomly selected from the 30 stimuli and presented without 20 

replacement. The experiment was delivered using PsychToolbox 3 in Octave 4.0.0, and stimuli 

were presented using noise-isolating earphones (Sensimetrics S14) at a comfortable volume. 

Foam pads were placed around the head to minimise movement, and the scanner was stopped 

for a pause of approximately 60 s at the end of each run. Subjects practiced on three trials (with 

a different set of stimuli) outside the scanner prior to the experiment to ensure they understood 25 
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the task. At the end of the experiment, subjects were asked whether the chord progressions in 

the stimuli were familiar to them, and if possible, to name the possible artist or song. No 

subjects mentioned the relevant artist or song featured in our stimuli. 

 

fMRI data acquisition for Experiment 2 5 

Brain imaging data were acquired on a 3T Magnetom Skyra scanner (Siemens Healthcare, 

Erlangen, Germany) with a 32-channel head coil and a multiband EPI sequence [34,35] (TR = 

500 ms, TE = 24 ms, flip-angle = 45°, FoV = 204 mm, in-plane matrix = 68×68, slice thickness 

= 3.2 mm, inter-slice gap = 0.32 mm, phase-encoding = A/P, multiband acceleration factor = 

4, 7/8 partial-Fourier sampling, pre-scan normalisation enabled, 1241 volumes per run, 5 runs 10 

in total). Slices were oriented along the axial plane parallel to the AC-PC line and covered the 

whole neocortex (with partial coverage of the cerebellum and brainstem). Six dummy scans 

were acquired and discarded by the scanner for steady-state magnetisation at the start of each 

run.  

 15 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Behavioural data analysis for Experiment 1 

To obtain pleasure ratings for all chords, the pleasantness time series for every chord 

progression was first smoothed using a moving median filter with a fifth-order symmetric 

window to reduce analogue noise. The mode of the smoothed signal was then sampled in a 20 

time window from one second after each chord onset until its end to account for delays in 

moving the slider. The first chord of each progression was discarded since each trial began by 

resetting the slider. 
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Stationarity of each uncertainty and surprise sequence (derived using IDyOM) was 

examined using the Augmented Dickey-Fuller (ADF) test and Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test, and suggested that no differencing was required. 

We then fitted a linear mixed model using the package glmmTMB [75] in R 3.5.1 using 

RStudio (RStudio, Inc., Boston, MA, USA). The response variable was the pleasantness rating 5 

of each chord (averaged across subjects), and the predictors of interest were chord uncertainty, 

surprise, as well as the interaction between the two variables. This interaction is given by the 

element-wise product of uncertainty and surprise. As previous work suggested that sensory 

dissonance, spectral complexity, and spectral centroid also affect pleasure ratings in music [29–

32,76], we extracted the mean value of these low-level acoustic features for every chord using 10 

Essentia 2.1 [77] and entered them as covariates in the model. We also added overall 

pleasantness and overall arousal ratings of each excerpt as covariates. Furthermore, stimulus-

specific random effects were included for the intercept, surprise, interaction between 

uncertainty and surprise, sensory dissonance, and spectral complexity. These were selected 

following the suggestion of Barr and colleagues [78], where all fixed effects predictors were 15 

initially also entered as random effects, and then dropped as random effects until the model 

converged. A first-order autoregressive covariance structure was also used to model the 

autocorrelation between each subsequent chord rating in a given stimulus. All predictors and 

the response variable were moreover standardised before entering into the model. Parameters 

were estimated using maximum likelihood for model comparison. Model residuals were 20 

visually inspected for homoscedasticity and normality. Subject-specific random effects were 

not included as the model residuals became severely heteroscedastic.  

We further fitted a null model for a full-null model comparison to guard against inflated 

Type I errors [53,54]. This null model was formed by dropping from the full model our 

predictors of interest (i.e., uncertainty, surprise, and their interaction), and the random effect of 25 
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surprise (due to convergence issues). After establishing the overall significance of the full 

model over the null model (likelihood-ratio test: χ2(8) = 225, p < 2.20 ×10-16) using a 

significance threshold of p < 0.05, the significance of each fixed effect in the full model (see 

Table 1) was tested against reduced models (where effect is dropped) using the likelihood ratio 

test. Here, we report Wald 95%-confidence intervals. 5 

 

fMRI data preprocessing for Experiment 2 

Functional MRI images were analysed using SPM12 (Wellcome Centre for Human 

Neuroimaging, London, UK) version 7219 in Matlab 2017b. After conversion to Nifti format, 

acquired images were despiked using 3dDespike in AFNI [79], then motion-corrected, co-10 

registered to subjects’ T1-weighted structural image, normalised to MNI space and resampled 

to the native voxel resolution [80], before smoothing with a 6×6×6.4-mm (corresponding to 

twice the voxel size) FWHM Gaussian kernel. Slice-timing correction was not applied given 

the fast repetition time of the acquisition sequence. 

 15 

fMRI data analysis for Experiment 2 

We analysed our model-based fMRI [81] data using a two-stage mixed effects model [82]. A 

linear model was first fitted on the subject level with one boxcar function modelling the 

stimulation of each chord progression, and standardised parametric modulators coding 

uncertainty, surprise, interaction between uncertainty and surprise, sensory dissonance, 20 

spectral centroid, and spectral complexity of each chord, as well as valence and arousal ratings 

for each progression. These regressors were convolved with the canonical haemodynamic 

response function and its temporal derivative. Each parametric modulator was separately 

orthogonalised with respect to the task-regressor to correctly assign signal variance to the main 

stimulus regressor [83]. Six rigid-body transformation regressors were further introduced as 25 
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covariates to reduce motion-induced artefacts. Effects of temporal autocorrelation were 

modelled with a FAST-autoregressive model, and a high-pass filter with a 128-s cut-off was 

applied to remove low-frequency scanner drifts. Individual means and variances were then 

pooled into a group-level model for population inferences. As we aimed to identify the neural 

correlates of chord uncertainty and surprise in brain regions previously implicated in music-5 

evoked emotions, we took all seven significant clusters from a meta-analysis on anatomical 

regions implicated in music-evoked emotions [1]. These consisted of the bilateral amygdala 

and a restricted portion of the anterior hippocampal formation adjacent to the amygdala 

(including the hippocampal-amygdaloid transition area, hippocampus proper, and the 

subiculum), right ventral striatum (including the nucleus accumbens), left caudate nucleus, 10 

bilateral auditory cortex, and the pre-supplementary motor area. 

Population inferences (see Figure 3 and Table S4) were made on the mean parameter 

estimates obtained with MarsBar version 0.44 [84] using two-tailed one-sample and paired t-

tests (as suggested in [85]). If data deviated from normality according to the Shapiro-Wilk test, 

sign tests or Wilcoxon signed-rank tests were instead conducted with 95% bootstrap confidence 15 

intervals of the median on 10000 permutations. P-values and confidence intervals were 

Bonferroni-corrected according to the number of regions tested in a given analysis. 

 

DATA AND SOFTWARE AVAILABILITY 

Data supporting findings of this study are available from the Lead Contact upon request. Code 20 

for the IDyOM model is available at Sound Software: 

 https://code.soundsoftware.ac.uk/projects/idyom-project. The McGill Billboard corpus 

dataset is available at DDMAL: 

https://ddmal.music.mcgill.ca/research/The_McGill_Billboard_Project_(Chord_Analysis_Dat

aset)/   25 

https://code.soundsoftware.ac.uk/projects/idyom-project
https://ddmal.music.mcgill.ca/research/The_McGill_Billboard_Project_(Chord_Analysis_Dataset)/
https://ddmal.music.mcgill.ca/research/The_McGill_Billboard_Project_(Chord_Analysis_Dataset)/
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Legend for Supplemental Audio S1:  

 

Audio S1. Example stimuli. Related to Figure 1 and Figure 2. 

A chord progression taken from ‘Knowing Me, Knowing You’ by ABBA (see Figure 1 and 

Figure 2) and transposed to C major. Each chord progression stimulus had three different 5 

background rhythm versions that were counterbalanced across participants. 
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