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ABSTRACT Photographs taken in public places often contain faces of bystanders thus leading to a
perceived or actual violation of privacy. To address this issue, we propose to pseudo-randomly modify
the appearance of face regions in the images using a privacy filter that prevents a human or a face recogniser
from inferring the identity of people. The filter, which is applied only when the resolution is high enough for
a face to be recognisable, adaptively distorts the face appearance as a function of its resolution. Moreover,
the proposed filter locally changes the values of its parameters to counter attacks that attempt to estimate
them. The filter exploits both global adaptiveness to reduce distortion and local parameter hopping to make
their estimation difficult for an attacker. In order to evaluate the efficiency of the proposed approach, we
consider an important scenario of oblique face images: photographs taken with low altitude Micro Aerial
Vehicles (MAVs). We use a state-of-the-art face recognition algorithm and synthetically generated face data
with 3D geometric image transformations that mimic faces captured from an MAV at different heights and
pitch angles. Experimental results show that the proposed filter protects privacy while reducing distortion,
and is also robust against attacks.

INDEX TERMS Image privacy protection, hopping Gaussian blur, micro aerial vehicles

I. INTRODUCTION
Photography in public places raises privacy concerns as
bystanders who happen to be within the field of view of
a camera are captured as well. The identity of bystanders
could be protected by locating and removing (or sufficiently
distorting) key image regions, such as faces, using privacy
filters. However, in order to maintain the aesthetic value of
an image, only a minimal distortion should be introduced in
an image to preserve its content.

A privacy filter for photography should satisfy the follow-
ing properties: (a) introduce only a minimal distortion; (b) be
robust against attacks; and (c) be computationally efficient.
Minimal distortion is necessary to maintain the quality of
a protected image close to the unprotected one so that the
attention of a viewer is not diverted. Therefore blanking out
a face [1] is not a desirable option. Robustness is important to
avoid privacy violations by various attacks, e.g. brute-force,
naïve, parrot and reconstruction attacks [2–12]. A brute-
force attack tries to decipher the protected probe images
by an exhaustive search [3, 5]. Other attacks use gallery

images in addition to the protected probe images [4, 6–8].
In a naïve attack, the protected probe images are compared
against the unprotected gallery images [4, 6, 7]. In a parrot
attack, the attacker has knowledge about the privacy filter
and can transform the gallery images into the distorted do-
main [4]. In a reconstruction attack, the attacker has some
knowledge of how to (partially) reconstruct the probe image
from the protected to the unprotected domain [2]. Examples
of reconstruction methods include inverse filtering and super-
resolution techniques [2, 8]. Finally, computational efficiency
is desirable when the filter operates under limited computa-
tional and battery power, such as for example in the case of
an MAV.

Recent frameworks that support facial privacy-preservation
in airborne cameras are Generic Data Encryption [13],
Unmanned Aircraft Systems-Visual Privacy Guard [14] and
Adaptive Gaussian Blur [15]. Generic Data Encryption sends
an encrypted face region to a privacy server that Gaussian
blurs or mosaics the face and then forwards it to an end-user.
Unmanned Aircraft Systems-Visual Privacy Guard [14] and
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FIGURE 1: Block diagram of the proposed Adaptive Hopping Gaussian Mixture Model (AHGMM) filter. KEY – ρh, ρv:
number of pixels (px) per unit distance (cm) (pixel densities) of a sensitive region R; h1, θP : altitude and tilt angle of the
camera used to calculate the pixel densities; ωR: control signal generated from the pixel densities to decide when to protect
R; R: sub-regions of R; σoo , σov: standard deviations for the hopping Gaussian mixture modelM that filters R to generate the
protected sub-regions R̄; Ip: protected image.

Adaptive Gaussian Blur [15] are aimed instead at on-board
implementation with the objective to reduce latency and
discourage brute-force attacks on the server [13]. Adaptive
Gaussian Blur adaptively configures the Gaussian kernel
depending upon the face resolution in order to minimise
distortion, while Unmanned Aircraft Systems-Visual Privacy
Guard blurs faces with a fixed filter. These methods are prone
to parrot attacks [4] on the Gaussian blur.

In this paper, we present a novel privacy protection filter
to be used on-board an MAV. The proposed filter distorts
a face region with secret parameters to be robust to naïve,
parrot and reconstruction attacks. The distortion is minimal
and adaptive to the resolution of the captured face: we select
the smallest Gaussian kernel that reduces the face resolution
below a certain threshold. The selected threshold protects
the face against the naïve attack as well as maintains its
resolution at a specified level. To prevent other attacks, we
then insert supplementary Gaussian kernels in the selected
Gaussian kernel and hop their parameters locally using a
pseudorandom number generator (PRNG) so their estimation
from the filtered face image is made difficult. The block
diagram of the proposed filter is shown in Figure 1. In
summary, the main contributions of this paper are: (1) the
idea of using Gaussian hopping kernels for privacy and utility
preservation, (2) the generation of a large-scale synthetic face
image data set emulating faces captured from an MAV, and
(3) extensive experiments to validate the proposed Gaussian
hopping kernels, including reconstruction attacks.

The paper is organised as follows. Sec. II covers the state-
of-the-art in visual privacy protection filters. Sec. III defines
the problem. Sec. IV describes the proposed algorithm, and
discusses its computational complexity and security level.
Sec. V presents our face data set generation and Sec. VI
discuss the experimental results. Finally, Sec. VII concludes
the paper.

II. BACKGROUND
Visual privacy protection filters can be applied as a pre-
processing or post-processing step (Fig. 2).
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FIGURE 2: A taxonomy of visual privacy protection filters.

Pre-processing privacy filters are irreversible and operate
during image acquisition to prevent a camera from captur-
ing sensitive regions. These filters disable the software or
hardware of the camera or notify about photography prohibi-
tion [18]. Hardware based filters prevent the camera from tak-
ing images for example by bursting back an intense light for
flash photography [19, 20] or by detecting human face/body
using an infrared sensor and then obfuscating using a spatial
light modulator sensor placed in front of the Charge Coupled
Device (CCD) sensor [21, 22].

Post-processing privacy filters protect sensitive regions
after image acquisition and can be reversible or irreversible.
Reversible filters conceal sensitive regions using a private
key, which can later be used to recover the original sensitive
region. Irreversible filters deform the features of a sensitive
region permanently. Both reversible and irreversible filters
can be non-adaptive or adaptive.

Reversible non-adaptive filters are based on generic en-
cryption [3, 10, 23–25]. Reversible adaptive filters include
scrambling [5, 10–12, 26–28], warping [29] and morph-
ing [30]. While reversible adaptive filters are robust against
a parrot attack, their protected faces can be compromised by
spatial-domain [31, 32] or frequency-domain attacks [33].

Irreversible non-adaptive filters blank out [1, 34] or replace
a face with a de-identified representation [4]. For example,
to maintain k-anonymity, the algorithm k-Same [4] replaces
k faces with their average face. Variants of this algorithm
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TABLE 1: Post-processing privacy filters. KEY – DCT-S: Discrete Cosine Transform Scrambling [5]; PICO: Privacy through
Invertible Cryptographic Obscuration [3]; GARP: Gender, Age and Race Preservation [16]; UAS-VPG: Unmanned Aircraft
Systems-Visual Privacy Guard [14]; Cartooning [6]; SVGB: Space Variant Gaussian Blur [17]; ODBVP: Optimal Distortion-
Based Visual Privacy [7]; AGB: Adaptive Gaussian Blur [15]. Adaptive control modulates the strength of a privacy filter.
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to parrot attack with detectors 3
without detectors 3 3 3

Computational simplicity 3 3 3 3

use additional specialised detectors to then preserve attributes
such as facial expressions, pose, gender, race and age [16,
35–37]. Neural network based filters (e.g. Generative Adver-
sarial Networks (GANs)) also preserve such attributes using
prior knowledge [38–45].

Irreversible non-adaptive filters are robust to parrot attacks.
Irreversible adaptive filters lower the resolution of a sensi-
tive region so that humans or algorithms cannot recognise
the identity. Examples include pixelation [9, 46], Gaussian
blur [47] and cartooning [6]. The kernel size of the privacy
filters can be manually selected [6, 7] or only the centre
kernel size is manually selected and then the Space Variant
Gaussian Blur (SVBG) filter [17] automatically decreases the
kernel size from the centre to the boundary of the detected
face. Adaptive Gaussian Blur (AGB) [15] exploits the dif-
ferent horizontal and vertical resolutions that are typical in
aerial photography and automatically adapts an anisotropic
kernel based on the resolution of the detected face. However,
irreversible adaptive filters are vulnerable to parrot attacks.

As a summary, Table 1 compares representative filters
for the following categories: reversible & adaptive [5], re-
versible & non-adaptive [3], and irreversible & non-adaptive
filters [16]. The remaining [6, 7, 14, 15, 17] and our proposed
approaches are irreversible & adaptive filters.

III. PROBLEM DEFINITION

Let the set D = {Rk}Kk=1 contain face data of K subjects,
where k represents the identity of a person (label). Let each
subject k appear in at most Z images, i.e.Rk = {Ri|i ≤ Z}.
LetRG ,RP ⊂ D be the gallery and probe sets, respectively.
Usually |RG | > |RP |, where |.| is the cardinality of a set,
andRG ∩RP = ∅.

A. PRIVACY FILTER
Let a privacy filter FΩj : RP → R̄P distort image features in
order to reduce the probability P for an attacker to correctly
predict labels. This operation produces a protected probe set
R̄P , whose distortion depends on Ωj , where j ∈ {h, v}
indicates the horizontal and vertical direction in an image.
Let the distortion generated by FΩj be measured by the Peak
Signal to Noise Ratio (PSNR):

PSNR = 20 log10

Rmax√
MSE

, (1)

where Rmax is the dynamic range of the pixel values. The
mean square error, MSE, between the pixel intensities of an
unprotected, R ∈ RP , and protected, R̄ ∈ R̄P , face is

MSE =
1

|RP |WH

|RP |∑
r=1

W∑
w=1

H∑
h=1

||R(w, h)− R̄(w, h)||2r,

(2)
where W and H are the width and height of R, respectively.

We relate the privacy level of a face region to the accuracy
η of a face recogniser [6, 7]. The value of η is the commu-
tative rank-n for face identification or the Equal Error rate
(EER) for face verification. We consider in this paper face
verification, thus

η =
TP + TN

|RP |
, (3)

where TP and TN are true positives and true negatives,
respectively. Our target is to force a face recogniser of an
attacker to have the accuracy of a random classifier, which
for face verification is ε = 0.5.

We therefore aim to design FΩj that irreversibly but mini-
mally distorts the appearance of R so that the identity is not
recognisable with a probability higher than a random guess.
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If E(w, h) = FΩj (R(w, h)) − R(w, h), the ideal distortion
parameter, Ωoj , should be derived as:

Ωoj = arg min
Ωj

(
1

WH

W∑
w=1

H∑
h=1

E(w, h) + (P (FΩj (R)|B)− 0.5)

)
,

(4)
where B ∈ {RG , R̄G , R̂G}. The first term aims to introduce
a minimal distortion, whereas the second term forces the
classification results to be equivalent to those of a random
classifier, irrespective of whether the filtered or reconstructed
face is compared against the unprotected, filtered or recon-
structed gallery data sets. The second term is dependent
upon the recognition capability of a face recogniser and is
heuristically calculated for a given face recogniser, i.e. the
minimum distortion at which the face recogniser starts be-
having similarly to a random classifier [48–50].

B. ATTACKS
The content ofR should be protected against naïve-T, parrot-
T and reconstruction attacks. Let an attacker have access to
B ∈ {RG , R̄G , R̂G}, where R̄G is the filtered gallery data set
and R̂G is the filtered and reconstructed gallery data set. An
attacker can modify R̄P ,RG , or both, to correctly predict K̃
of R̄P . In a naïve attack (here referred to as naïve-T attack), a
privacy filter is applied on RP to generate a protected probe
data set R̄P , while the unaltered RG is used for training [4].
A parrot attack (here referred to as parrot-T attack), learns the
privacy filter type and its parameters Ωj (e.g. Gaussian blur
of certain standard deviation used to generate R̄P ). Then, the
learned filter is applied onRG to generate a privacy protected
gallery data set R̄G . Finally, R̄G and R̄P are used for training
and testing, respectively [4]. In a reconstruction attack, the
discriminating features of R̄P are first restored (e.g. using an
inverse filter or a super-resolution algorithm) to generate a
reconstructed probe data set R̂P and then compared against
RG or a reconstructed gallery data set R̂G . An inverse filter
first estimates the parameters of a privacy filter using R̄P
and then performs an inverse operation to reconstruct the
original faces [2]. Similarly, a super-resolution algorithm
first learns embeddings (i.e. relationships) between the high-
resolution and their corresponding low-resolution faces and
then reconstructs the high-resolution faces for R̄P [8].

IV. PROPOSED APPROACH
In order to minimally distort R as well as to achieve robust-
ness against brute-force, naïve-T, parrot-T and reconstruction
attacks, we propose the Adaptive Hopping Gaussian Mix-
ture Model (AHGMM) algorithm. AHGMM consists of a
globally estimated optimal Gaussian Point Spread Function
(PSF) and supplementary Gaussian PSFs added inside the
optimal Gaussian PSF. For a single supplementary Gaussian
PSF inside an optimal Gaussian PSF, AHGMM is illustrated
in Fig. 3, while the pseudo-code is given in Algorithm 1.
(A list with the notation used in this paper is presented in
Table 4.)

  

*

****

FIGURE 3: Visualisation of local filtering in AHGMM. The
face region R is divided into N sub-regions and each sub-
region Rn is convolved (∗) with a hopping Gaussian mixture
model kernel Mn, which is made of an optimal Gaussian
function and one (or more) supplementary Gaussian function
added inside the optimal Gaussian function. While convolv-
ing with each sub-region of the face, the optimal and the
supplementary Gaussian functions change their parameters,
i.e. mean and standard deviation, which in turn change the
shape of the Gaussian mixture model based kernel.

A. PIXEL DENSITY ESTIMATION
Let an MAV capture an image I while flying at an altitude of
h1 meters. Let the principal axis P of its on-board camera be
tilted by θP from the nadir direction N (see Figure 4). We
assume that height h1 and tilt angle θP of the camera can be
estimated.

A value of θP 6= 0 generates an oblique image. Let h2 be
the height of the face above ground1. We represent the face
region in the image as R ∈ Rk ⊂ D, which is viewed at an
angle θR.

Let ρj represent the pixel density (px/cm) around the cen-
tre CR of R. If ph and pv represent the physical dimensions
of a pixel in the horizontal and vertical direction, respectively
and f is the focal length of the camera, the horizontal density
ρh for a pixel around CR [15] is

ρh =
fcos(θR)

ph(h1 − h2)
, (5)

and the vertical density ρv , by exploiting the small angle
approximation for a single pixel of the image sensor [15],
is

ρv ≈
fcos(θR)sin(θR)

pv(h1 − h2)
. (6)

Let ωR ∈ {0, 1} define whether R is naturally protected
(ωR = 0) because of a low horizontal and vertical density,
or not (ωR = 1) [15]:

ωR =

{
1 if ρh > ρoh and ρv > ρov
0 otherwise

(7)

where ρoh and ρov are pixel densities at which a state-of-the-
art machine algorithm starts recognising human faces, and

1While each image I could contain L faces, for simplicity we consider in
this paper only the case L = 1.
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FIGURE 4: Capturing an image with an airborne camera at
height h1. The principal axis P of the camera is tilted by θP
from the nadir direction N . The face region R, at height h2

above the ground, is viewed at an angle θR. The variables ρh
and ρv represent the horizontal and vertical pixel density of
R at its centreCR in the captured image. Four sample images
show a scrambled, blanked, Gaussian blurred and AHGMM
filtered image, which is captured at θP = θR = 50◦.

simply called thresholds. If ωR = 0, then the original frame
I can be transmitted without any modifications. Otherwise,R
should be protected by a privacy filter to reduce its pixel den-
sities below ρoh and ρov . When R is not inherently protected,
we assume that the corresponding bounding box is given.

B. OPTIMAL GAUSSIAN PSF
A 2D PSF g(h, v), or impulse response, is the output of
a filter when the input is a point source. In the discrete
domain [51], it is given as g(h, v) = δ(h, v) ∗ g(h, v), where
∗ is the convolution operation and

δ(h, v) =

{
1 if h = v = 0,

0 otherwise.
(8)

In the case of Gaussian blur, g(h, v) is an approximated
Gaussian function of mean µj = 0 and standard deviation
σj > 0 [7, 15, 17], and thus called a Gaussian PSF of
parameter Ωj = (µj , σj). More specifically, the parameter
σj ∈ {σjl|l ∈ N, σjl+1 > σjl} controls the distortion
strength of FΩj and provides pixel density ρj ∈ {ρjl|l ∈
N, ρjl+1 < ρjl} in R̄, respectively.

As a higher σj results in a lower ρj , we first find the
minimum value called optimal parameter σoj of σj that
makes ρj < ρoj . As a result, σoj provides the minimum
distortion in R̄ while making it robust against the naïve-
T attack (i.e. P (R̄|RG) → ε). Increasing σj beyond σoj
increases the distortion without improving the privacy level
as the recogniser performance is already at the level of a
random classifier. For a face captured from an MAV with

pixel densities ρj , we calculate Ωoj = (µoj , σ
o
j ) of an optimal

Gaussian PSF (lines 2-5 in Algorithm 1), where µoj = 0
like in traditional Gaussian blur [7, 15, 17] and σoj [15] is
estimated as described below.

A Gaussian PSF of standard deviation σoj in the spatial
domain is another Gaussian PSF of standard deviation σ́oj in
the frequency domain and both the Gaussian PSFs are related
as

σ́oj =
ρj

2πσoj
, (9)

where σ́oj is measured in cycles/cm, σoj in px and ρj in px/cm.
Let fs represent the Nyquist frequency of ρj . Let fos < fs
be the highest spatial frequency component that we want
to completely remove using a low-pass filter (i.e. Gaussian
blur). We can consider fos to be the Nyquist frequency for ρoj ,
i.e. the pixel density after filtering, and therefore

ρoj = 2fos . (10)

As we are interested in removing frequency components
beyond fos , we can select fos = 3σ́oj because the amplitude
response of a Gaussian PSF at three times of its standard de-
viation is very close to zero and multiplication (convolution
in space domain) with such a Gaussian PSF will suppress
frequencies larger than fos . Substituting fos = 3σ́oj in Eq. 10,
in the resulting relation Eq. 9 and finally rearranging gives
the optimal standard deviation of Gaussian PSF as

σoj =
3ρj
πρoj

. (11)

C. HOPPING GMM KERNELS
Filtering R with the optimal Gaussian PSF defined by Ωoj
would only protect R from a naïve-T attack but not from a
parrot-T attack and a reconstruction attack. To ensure that
the probability of correctly predicting the label of R̄ is not
increased in case of the parrot-T attack (i.e. P (R̄|R̄G) → ε)
as well as the reconstruction attack (i.e. P (R̂|RG) → ε
or P (R̂|R̂G)→ ε), we secretly modify Ωoj to Ω̄oj while
generating R̄ so that an adversary is unable to accurately
reconstruct face region R̂, or even to generate R̂G and R̄G .
For this purpose, we generate a set R which consists of N
sub-regions in such a way that each sub-region covers a small
area of R:

R =
{
Rn|n ∈ [1, N ]

}
. (12)

The size of Rn (in pixels) affects the total number of sub-
regions N per face region R, which could influence its
privacy level. Smaller values of N (larger sub-regions) result
in a reduced distortion.

After finding Ωoj = (µoj , σ
o
j ) and generating R, we make

a hopping mixture of Gaussian for each sub-region, i.e. we
pseudo-randomly change Ωoj to Ω̄oj for each Rn. Moreover,
we select supplementary Gaussian PSFs inside this optimal
Gaussian PSF and vary their parameters based on pseudo-
random weights (lines 9-17 in Algorithm 1).
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(a) (b) (c)

FIGURE 5: Minimising blocking artefacts of spatially hop-
ping Gaussian functions in the AHGMM filter by a convo-
lution with a global kernel. (a) Original image of 96 × 96
pixels from the LFW data set, (b) image after local filtering in
AHGMM showing blocking artefacts and (c) image after the
local filtering followed by the global filtering in AHGMM.

Let the set X contain the parameters of the modified
optimal and supplementary Gaussian PSFs for each sub-
region. This set is represented as

X =
{

(µjm, σjm)n|n ∈ [1, N ], j ∈ {h, v},m ∈ [0,M ]
}
,

(13)
where M is the number of supplementary Gaussian PSFs.
The element m = 0 represents the modified optimal Gaus-
sian PSF given by

µj0 = ±αj0σoj , (14)

σj0 = (1± βj0)σoj , (15)

while the remaining elements (i.e. m ∈ (0,M ]) belong to the
supplementary Gaussian PSFs. These elements are calculated
as

µjm = ±αjmσojγjm, (16)

σjm = (1± βjm)σojγjm, (17)

where αjm ∈ [0, 1] and βjm ∈ [0, 1] are normalised pseudo-
randomly generated numbers and control the local distortion
in filtering. The variable γjm ∈ (0, 1] controls the relative
size of the supplementary Gaussian PSF w.r.t. the optimal
Gaussian PSF.

After generating the parameters of the Gaussian PSFs, a
set G representing 2D anisotropic-discretised Gaussian PSFs
corresponding to X is created as

G =
{
Gnm|n ∈ [1, N ],m ∈ [0,M ]

}
, (18)

where eachGnm is calculated (line 19 in Algorithm 1) as [52]

Gnm ≈ Anme
−
(

(h−µhnm)2

2σ2
hnm

+
(v−µvnm)2

2σ2vnm

)
, (19)

where

Anm = 1

/ ∑
(h,v)∈d

e
−
(

(h−µhnm)2

2(σhnm)2
+

(v−µvnm)2

2(σvnm)2

)
, (20)

(6.21, 4.63) (6.21, 4.56) (3.11, 2.17) (3.11, 2.00) (1.55, 0.89) (1.55, 0.74) (0.78, 0.29) (0.78, 0.20)
(a)

(b) ρ0
h = ρ0

v = 0.7 px/cm

(c) ρ0
h = ρ0

v = 0.5 px/cm

(d) ρ0
h = ρ0

v = 0.3 px/cm

FIGURE 6: Visual comparison between fixed Gaussian blur
(FGB), AGB [15] and AHGMM on the multi-resolution
synthetically generated face data set. (a) Original images with
pixel densities decreasing from left to right due different
height and pitch angle. (.,.) indicates the horizontal and
vertical pixel density in px/cm, respectively. (b-d) For various
thresholds (ρoh, ρov), results of FGB (first row), AGB (second
row) and AHGMM filter (third row). For each threshold,
FGB is selected w.r.t. the highest pixel density image in the
data set. FGB does not adapt its parameters and therefore
results into almost blanking out the image with smaller pixel
density. In contrast, both AGB and AHGMM maintain high
smoothness by varying their parameters depending upon the
pixel densities of an image. Comparatively, AGB produces
smoother images, while AHGMM filter creates blocking
artefacts due to spatial switching of its parameters.

and

d =
{

(h, v) ∈ Z2 :
⌈
−ψh

2

⌉
≤ h ≤

⌈
ψh
2

⌉
,
⌈
−ψv

2

⌉
≤ v ≤

⌈
ψv
2

⌉}
,

(21)
with ψj = 2

⌈
3σj

⌉
+ 1. In order to develop a mixture model

from the M discretised Gaussian PSFs of each sub-region,
a set of weights φ is required. We again utilise a PRNG to
generate φ such that

φ =
{
φnm|n ∈ [1, N ],m ∈ [0,M ],

M∑
m=0

φnm = 1
}
. (22)

Finally, a set of mixture models is generated for each sub-
region (line 22 in Algorithm 1) as

M =
{
Mn|n ∈ [1, N ]

}
, (23)

6 VOLUME X, 2019



Sarwar et al.: A privacy-preserving filter for oblique face images based on adaptive hopping Gaussian mixtures

where each element is calculated as

Mn =

M∑
m=0

φnmGnm. (24)

D. LOCAL AND GLOBAL FILTERING

We have now N discretised Gaussian mixture models inM
forN sub-regions ofR. We locally convolve each sub-region
Rn (Eq. 12) with their respective Mn to generate a protected
sub-region R̄n:

R̄ =
{
R̄n|n ∈ [1, N ]

}
, (25)

where R̄n = Rn∗Mn. Changing the convolutional kernel for
each sub-region generates blocking artefacts (see Fig. 5). To
smooth these artefacts, we apply a global convolution filter
(line 25 in Algorithm 1) with a Gaussian kernel of zero mean
and standard deviation

σ̄j =
σoj
Qj

, (26)

whereQj represents the sub-region size in pixels. As a result,
the smoothed protected face R̄ is generated to replace R
in the original image I thus leading to the protected image
Ip. Fig. 6 shows sample images filtered by AHGMM with
different thresholds.

E. COMPUTATIONAL COMPLEXITY

The generation of a convolutional kernel is more complex
in AHGMM than in the adaptive Gaussian blur filter [15].
In fact, the latter only needs to compute a single Gaussian
function, while AHGMM requires the computation of N ·M
Gaussian functions. Moreover, the adaptive Gaussian blur ex-
ploits the separability property of 2D convolutional kernels,
i.e. ψ = ψh ∗ψv , to reduce the number of multiplications and
additions from W · H · |ψh| · |ψv| to W · H · (|ψh| + |ψv|)
(W and H represent the width and height of R in pixels,
respectively). Instead, AHGMM dynamically reconfigures
the convolutional kernel after processing each sub-region and
therefore requires exactly W ·H · |ψh| · |ψv| multiplications
and additions.

Algorithm 1 AHGMM
Input: I : unprotected image

R : detected face region
ρj : pixel density, where j ∈ {h, v}

Output: Ip : protected image
1: procedure FILTERAHGMM(I, R, ρh, ρv )
2: for j = h : v do
3: µoj ← 0

4: σoj ←
3ρj
πρoj

5: end for
6: R← N sub-regions of R
7: for n = 1 : N do
8: for m = 0 : M do
9: for j = h : v do

10: if m = 0 then
11: µjm ← ±αjmσoj
12: σjm ← (1± βjm)σoj
13: else
14: µjm ← ±αjmσojγjm
15: σjm ← (1± βjm)σojγjm
16: end if
17: end for
18: Xn ← (µjm, σjm)n
19: Gnm ← compute Gaussian PSFs
20: φnm ← generate weights
21: end for
22: Mn ← Gaussian mixture model
23: R̄n ← Rn ∗Mn

24: end for
25: R̄← apply global filter on R̄
26: Ip ← replace R with R̄ in I
27: return Ip
28: end procedure

V. DATASET GENERATION
To the best of our knowledge, there exists no large publicly
available face dataset collected from an MAV. We there-
fore generate face images as if they were captured from an
MAV via geometric transformation and down-sampling of
the LFW dataset [53]. The LFW dataset was collected in an
unconstrained environment with extreme illumination con-
ditions and extreme poses. We use the standard verification
benchmark test of the LFW dataset (12000 images of 4281
subjects), divided into 10-folds for cross-validation. Each
fold contains 600 images of the same subject and 600 images
of different subjects. We use the deep funnelled version of
the LFW dataset.

Figure 8 shows sample images of the stages of the
dataset generation pipeline. We fit a 3D Morphable Model
(3DMM) [54] on an input image to detect 68 facial land-
marks [55] and then iteratively fit a 3DMM to generate a 3D
image representation2. As there may be only a few degrees
pitch of the subject captured in the images (e.g. a person
looking slightly downward or upward), we rotate the 3D
image at 0◦ pitch by applying a geometric transformation
computed from the estimated pose of the fitted 3DMM. This

2Among the 12000 images, the landmark detector [55] was unable to
detect 68 facial landmarks on 74 images. Therefore, we were unable to fit a
3DMM and used the original 74 images in order to comply with the standard
verification test script of the LFW data set.
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(a) (b)

FIGURE 7: Sample images derived from (a) a single subject and (b) different subjects of our synthetically generated airborne
data set based on the LFW data set [53]. In each row, the pitch angle varies from 0◦ to 70◦ in 10◦ steps from left to right, while
the image resolution remains constant, i.e. first row: 96 × 96 pixels, second row: 48 × 48 pixels, third row: 24 × 24 pixels,
fourth row: 12× 12 pixels and fifth row: 6× 6 pixels.

(a) (b) (c) (d) (e)

FIGURE 8: Sample images at different stages during the data
set generation process. (a) Original image with 250 × 250
pixels, (b) image after fitting a 3D morphable model at 0◦

pitch angle, (c) image with synthetic pitch effect produced by
applying a 3D geometric transformation, (d) aligned image
with 96 × 96 pixels produced by applying an affine trans-
formation based on the detected eyes and nose locations and
(e) down-sampled image emulating an image captured at a
different height.

disturbs the image alignment of the original data set, so a
realignment is required, which we perform after generating
the pitch effect. The synthetic pitch angles vary from 0◦ to
70◦ with a step size of 10◦ and project it back to generate
a corresponding 2D image. In order to align this image so
that the eyes and nose appear at the same place among
the images belonging to the same pitch angle, we apply an
affine transformation computed by detecting eyes and nose
tip using the Dlib library [56] such that the transformed face
has a resolution of 96× 96 pixels. As the detection accuracy
of the eyes and nose decrease with increasing pitch angle, we
generate a ground truth (location of eyes and nose tip) of the
0◦ pitch angle images and use it for the higher pitch angle
images.

Finally, to introduce different height effects for the 8
synthetically generated images, we down-sample them by a
factor of 2, 4, 8 and 16 generating images of 48×48, 24×24,
12×12, 6×6 pixels, respectively. Thus, we increase the size
of the original standard verification test of the LFW data set
by 40 times, i.e. from 12000 images to 480000 images. Fig. 7
shows 40 sample images belonging to the same and different

subjects.
We manually determined the values of ρh and ρv as

ρh = Sc/Sh, (27)

ρv = Sccos(γ)/Sv, (28)

where Sc is the cropped face size in pixels, γ = 90◦ − θR is
the pitch angle of the camera, and Sh and Sv are the average
human face dimensions, i.e. the bitragion breadth of 15.45 cm
and menton-crinion length of 20.75 cm, respectively [57].

VI. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SET UP
We compare AHGMM against Space Variant Gaussian Blur
(SVGB) [17], AGB [15] and Fixed Gaussian Blur (FGB),
which uses a constant Gaussian kernel defined with respect
to the highest resolution face. Thus, we estimate the kernel
for FGB as in [15] for the face with 96 × 96 pixels at 0◦

pitch angle. For the SVGB filter, we divide the face into
four concentric circles and reduce the kernel size by 5%
while radially moving out between two consecutive regions
as in [17]. Although the kernel for the innermost region
was manually selected in the original work, we choose the
anisotropic kernel as estimated by the AGB [15] and convert
it into an isotropic kernel for a fair comparison. We use a
block size of 4× 4 and m = 1 for AHGMM.

To compare privacy filters, we measure the face verfication
accuracy using OpenFace [58], an open source implemen-
tation of Google’s face recognition algorithm FaceNet [59].
OpenFace uses a deep Convolutional Neural Network (CNN)
as a feature extractor, which is applied on the training
and test images to extract their representations (embed-
dings) for classification [59]. While the performance of other
face recognisers may be slightly better than OpenFace [58]
(e.g. SphereFace [60] or ArcFace [61]), their use is not
expected to modify the objective of our experiments, which
is the analysis of a face recognition algorithm under different
privacy attacks.
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TABLE 2: Attacks used to evaluate the privacy level of the
proposed AHGMM algorithm. Both the gallery faces and
the probe faces can be protected or unprotected (naïve-BL).
Moreover, the protected faces could be either unchanged or
reconstructed (e.g. through an inverse-filter (IF) or super-
resolution (SR)). Finally, any AHGMM attack could be fur-
ther divided into three sub-attacks corresponding to the prior-
knowledge of an attacker: optimal, pseudo and accurate.

Gallery images
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— — parrot-SR
-accurate

To measure distortion as in [6, 62], we use the PSNR, the
power ratio of the original image with respect to the filtered
image.

We perform experiments with 480000 images (consisting
of 5 different resolutions and 8 different pitch angles) to
determine the validity of the proposed AHGMM to protect
the identity information of an individual. For this purpose,
we analyse the effect of a naïve-T attack, a parrot-T attack, an
inverse filter attack and a super-resolution attack. Moreover,
we quantify the corresponding fidelity degradation caused by
AHGMM.

Although the synthetic data set include some artifacts
(especially for the high pitch angles as, shown in Fig. 7),
these do not affect the nature of the analysis, whose objective
is to study the relative robustness of privacy filters for a
given data set: we use data at the same resolution and pitch
angle, including the artifacts, to train and test OpenFace [58].
Moreover, the training set and testing set could be protected
or unprotected depending upon the attack type.

As AGB and SVGB do not use any secret key, we evaluate
them only using their accurate parameters in the parrot-T,
inverse filter and super-resolution attacks. In contrast, any of
these attacks on AHGMM can be further divided into three
sub-attacks: optimal kernel, pseudo AHGMM and accurate
AHGMM. In the optimal kernel sub-attack, we assume that
an attacker is able to estimate the parameters of the optimal
kernel and applies the optimal kernel to the entire face. In
the pseudo AHGMM sub-attack, we assume that the attacker
knows the optimal kernel and randomly modifies the filter
parameter for the N sub-regions. In the accurate AHGMM
sub-attack, we assume that the attacker has access to the
secret key and can decipher all the parameters of the filter for
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Unprotected(96x96)
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FIGURE 9: Face verification accuracy η of a naïve-BL attack
on our synthetically generated face data set. In general, η
increases when increasing the face size except at high pitch
angles of 60 and 70 degrees where it slightly fluctuates. For
6 × 6 pixels faces, η is the lowest and rather independent of
the pitch angle.

the N sub-regions. As this prior knowledge can be exploited
for both probe and gallery images, we evaluate AHGMM
under 13 different scenarios (see Table 2).

We assume that an attacker is able to determine the pitch
angle of a protected face using the background information of
an image captured from an MAV and can apply a geometric
transformation to modify the gallery images at that pitch
angle. Therefore, in all the following attacks, both the gallery
and the probe images are at the same pitch angle that can
be protected or unprotected depending upon the attack type.
Moreover, we use the same resolution for both the gallery
images and the probe images.

B. NAÏVE-T ATTACK
First of all, we perform a naïve-BL attack which shows the
baseline face verfication accuracy when both the probe data
set and the gallery data set are unprotected. The results of
the naïve-BL attack are given in Fig. 9. Then we perform a
naïve-T attack in which the gallery images are unprotected,
while the probe images are protected using FGB, SVGB [17],
AGB [15] and AHGMM. The results of this attack are given
in Fig. 10 at different thresholds ρoj .

The naïve-BL attack shows that the accuracy η of our
synthetically generated data set decreases with the decrease
of the face resolution and with the increase in the face pitch
angle. However, this trend vanishes at high pitch angles,
i.e. 60◦ and 70◦, where it shows a slight randomness. Finally,
for the low resolution faces (6 × 6 pixels), the accuracy
does not show any effect of the pitch angle and slightly
oscillates. Therefore, we consider 6 × 6 pixels inherently
privacy protected and remove these images from the analysis
of the privacy filters.

From the naïve-T attack, we are interested in finding
the optimal threshold which defines the optimal kernel for
AGB [15] (see Section IV and Eq. 11). It is clear from
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FIGURE 10: Face verification accuracy η achieved by naïve and parrot attacks on images protected by four different privacy
protection filters at different thresholds ρoj : first row: ρoj = 0.7 px/cm, second row: ρoj = 0.6 px/cm, third row: ρoj = 0.5 px/cm,
fourth row: ρoj = 0.4 px/cm, fifth row: ρoj = 0.3 px/cm. The filled marker shows the mean and the vertical bar indicates the
standard deviation of η for the multi-resolution images (96× 96, 48× 48, 24× 24, 12× 12). Legend: — AHGMM, —
AGB [15], — SVGB [17], — FGB. Under the naïve-T attack, AHGMM posses the highest η which converges towards
η = 0.5 as the ρoj is decreased and finally at ρoj ≤ 0.5 px/cm, the difference between η of AHGMM, AGB, SVGB and FGB
becomes negligible, except unexpectedly at pitch angles 60◦ and 70◦ degrees. The parrot-T attack on AHGMM is divided into
three sub-attacks: optimal kernel parrot-T attack, pseudo AHGMM parrot-T attack and accurate AHGMM parrot-T attack. In
contrast to naïve-T attack, AHGMM provides the lowest η under any type of the three parrot-T attacks and this fact becomes
negligible at ρoj = 0.3 px/cm under accurate AHGMM parrot-T attack.

Fig. 10 that the accuracy of the naïve-T attack decreases
while decreasing the threshold. When the threshold reaches
0.5 px/cm, the difference between the accuracy achieved
by AGB [15] and a random classifier (η = 0.5) becomes
very small except, unexpectedly, at high pitch angles. This
difference further decreases at 0.4 px/cm and 0.3 px/cm.
Thus, the optimal threshold defining the optimal kernel can
be 0.5 px/cm, 0.4 px/cm and 0.3 px/cm. The last two thresh-
olds decrease the accuracy negligibly, but distort the images
severely. Therefore, we analysed the trade-off of accuracy
(under naïve, parrot attack and reconstruction attacks) and
distortion for these three thresholds.

At these three thresholds under the naïve-T attack, the

accuracy of AHGMM is higher as compared to the AGB [15].
The main reason for this slightly higher accuracy is due to
the under blurred sub-regions of the AHGMM filtered face
as it hops its kernel below and above the optimal Gaussian
kernel. In contrast, the accuracy of the Space Variant Gaus-
sian Blur [17] is always lower than AGB and AHGMM.
This is because SVGB uses an isotropic Gaussian kernel
which deteriorates a face more severely as compared to the
anisotropic kernel of the AGB and AHGMM filter. FGB has
the lowest accuracy at any threshold due to over blurring of
all images except 96× 96 pixels images at 0◦ pitch angle.
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FIGURE 11: Receiver Operating Curves (ROCs) for the accurate AHGMM parrot-T attack at threshold ρoj = 0.5 px/cm. Each
ROC is the mean of 10-curves generated by the 10-folds used for cross validation. Legend: — Unprotected, — AGB,— SVGB, — FGB, — AHGMM. In each column, the image resolution remains constant, i.e. first column: 96× 96,
second column: 48 × 48, third column: 24 × 24 and fourth column: 12 × 12 pixels, while the pitch angle varies i.e. first row:
0◦, second row: 10◦, third row: 20◦, fourth row: 30◦, fifth row: 40◦, sixth row: 50◦, seventh row: 60◦ and eighth row: 70◦. The
legend values represent the Area Under Curve (AUC).
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C. PARROT-T ATTACK
In the parrot-T attack, we filter both gallery and probe images
and then evaluate the achieved accuracy. We study the parrot-
T attack on AHGMM under three sub-attacks: optimal kernel
parrot-T sub-attack, pseudo-AHGMM parrot-T sub-attack
and accurate AHGMM parrot-T sub-attack. The accuracy
results of these sub-attacks are given in Fig. 10 at different
thresholds ρoj , while Receiver Operating Curves (ROCs) for
the accurate AHGMM parrot-T sub-attack at ρoj = 0.5 px/cm
are presented in Fig. 11.

The parrot-T attack on state-of-the-art privacy filters in-
creases the accuracy as compared to the naïve-T attack.
Under the optimal kernel parrot sub-attack, our AHGMM
shows the least accuracy improvement at any of the three
thresholds. This is because the optimal kernel Gaussian blur
is a spatially invariant blur that is not helpful in recognising
spatially varying Gaussian blurred images, e.g. the AHGMM
filtered images. Thus, our AHGMM provides the lowest
accuracy against the parrot-T attack using the optimal kernel.

The pseudo AHGMM parrot-T sub-attack slightly im-
proves the accuracy further as compared to the optimal kernel
parrot-T sub-attack. The main reason is that both the gallery
and the probe images are now filtered using spatially varying
Gaussian blur. However, under the pseudo AHGMM sub-
attack, the accuracy of AHGMM remains below the other
three state-of-the-art privacy filters. Thus, our AHGMM pro-
vides the highest privacy protection even against the pseudo
AHGMM parrot sub-attack.

Finally, the accurate AHGMM sub-attack improves the
accuracy as compared to the optimal kernel and almost eqi-
valent to the pseudo AHGMM sub-attacks. Comparatively,
even under the accurate AHGMM sub-attack, AHGMM per-
forms better than FGB, AGB [15] and SVGB [17] at these
three thresholds with the least improvement at ρoj = 0.3
px/cm.

From the accurate AHGMM sub-attack, it is apparent that
AHGMM permanently removes the sensitive information
from the face and an attacker can not recognise it with a
high accuracy even when he/she has access to the secret
key. This is in contrast to the reversible filters, e.g. en-
cryption/scrambling based filters, which can reconstruct the
original face after having the secret key. Thus, AHGMM is
robust against a brute-force attack.

D. INVERSE FILTER ATTACK
In the inverse-filter (IF) attack, we reconstruct the probe
images by deconvolving the protected face with an accurate
or estimated kernel. We evaluate the IF attack under four sub-
attacks: optimal kernel naïve-IF sub-attack, pseudo AHGMM
naïve-IF sub-attack, accurate AHGMM naïve-IF sub-attack
and accurate AHGMM parrot-IF sub-attack. Fig. 12 depicts
the effect of inverse filtering on selected sample images
protected with AGB, SVGB and AHGMM. Fig. 13 shows
the achieved accuracies under the different sub-attacks at
different values of ρoj , while Fig. 14 presents ROCs for the
accurate AHGMM parrot-IF sub-attack at ρoj = 0.5 px/cm.

Threshold AGB [15] SVGB [17] AHGMM
(ρoh = ρov) filtered reconstructed filtered reconstructed filtered reconstructed

optimal pseudo accurate

2.0 px/cm

1.2 px/cm

0.4 px/cm

FIGURE 12: Inverse filtering of protected faces at different
thresholds ρoj . AGB and SVGB protected faces can be recon-
structed by inverse filtering to some extent. Inverse filtering
of AHGMM protected faces is hardly possible even if the
hopping kernel parameters are known.

TABLE 3: Face verification accuracy η after a super-
resolution attack on faces protected by adaptive Gaus-
sian blur (AGB), space variant Gaussian blur (SVGB) and
AHGMM at threshold ρoj = 0.5 px/cm. The values of η are
given as µ̃(σ̃), where µ̃ indicates the mean and σ̃ the standard
deviation for the 10-fold cross validations. In the naïve-SR
attack, the reconstructed probe faces are compared against
the unprotected gallery images, while both the probe and the
gallery images are super-resolved in the parrot-SR attack.

Attack type AGB SVGB AHGMM
optimal naïve-SR 0.592 (0.012) 0.566 (0.016) 0.515 (0.014)

pseudo AHGMM naïve-SR – – 0.520 (0.006)
accurate AHGMM naïve-SR – – 0.532 (0.018)
accurate AHGMM parrot-SR 0.634 (0.015) 0.583(0.034) 0.546 (0.018)

As can be seen in Fig. 12, the face reconstruction quality
decreases when the threshold increases (increasing the filter
kernel) even if the filter parameters are known. This is true
for both space invariant Gaussian blur (i.e. AGB) and linear
space variant Gaussian blur (i.e. SVGB). The main reason
is that the boundaries of the face start propagating towards
the centre of the face as the threshold is decreased. Thus, it
becomes difficult to distinguish between reconstructed faces
at the lower thresholds (see Fig. 13).

In case of non-linear space variant blur (AHGMM), the
reconstruction becomes more challenging even when the
same hopping kernels are used as for the protection. The
main reason, in addition to the boundary propagation, is that
while deconvolving a sub-region, the IF incorrectly treats the
adjacent subregions as if they were filtered with the same
kernel, thus not enabling it to reconstruct the original face
(see Fig. 12). Consequently, it becomes difficult to accurately
predict the label of the reconstructed face.

In contrast to naïve-IF attacks, parrot-IF attack is more
severe and increases significantly the accuracy, especially for
AGB, FGB and SVGB. AHGMM also shows the accuracy
improvement but less than AGB, FGB and SVGB; and is
more robust to an inverse filter attack even when using an
accurate secret key.

E. SUPER-RESOLUTION ATTACK
In this attack, we reconstruct the filtered probe images
with SRCNN [8]. SRCNN first learns a mapping between
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FIGURE 13: Face verification accuracy η achieved by an inverse filter (IF) attack on images protected by four different privacy
protection filters at different thresholds ρoj : first row: ρoj = 0.7 px/cm, second row: ρoj = 0.6 px/cm, third row: ρoj = 0.5
px/cm. The filled marker shows the mean and the vertical bar indicates the standard deviation of η for the multi-resolution
images (96× 96, 48× 48, 24× 24, 12× 12). Legend: — AHGMM, — AGB, — SVGB, — FGB. The IF attack
is investigated under four sub-attacks: optimal kernel naïve-IF, pseudo AHGMM naïve-IF, accurate AHGMM naïve-IF and
accurate AHGMM parrot-IF attack. AHGMM achieves a slightly higher η under the naïve-IF attacks than the state-of-the-art
filters, independently of the used threshold ρoj . In contrast, AHGMM achieves the lowest η under the parrot-IF attack. As η is
close to 0.5 under the naïve-IF attack for 0.5 ≤ ρoj ≤ 0.7 px/cm, we therefore do not perform experiments for ρoj < 0.5 px/cm.

the high-resolution images and their corresponding low-
resolution version, and then applies this mapping to enhance
the details of a low-resolution image. We learn the SRCNN
mapping for 1,000,000 iterations between the protected im-
ages (i.e. the low resolution) and their corresponding unpro-
tected images (i.e. the high resolution) using the same data
sets (91-images and Set5) as used in [8]. Such a mapping
is separately learned for each privacy filter (i.e. AGB, SVGB,
and AHGMM). As learning the mapping is a time consuming
process, we investigate the super-resolution attack for a sin-
gle point of our synthetic data set: 12000 images each with
96× 96 pixels and 0◦ pitch angle.

We evaluate the super-resolution (SR) attack under four
sub-attacks: optimal kernel naïve-SR sub-attack, pseudo
AHGMM naïve-SR sub-attack, accurate AHGMM naïve-
SR sub-attack and accurate AHGMM parrot-SR sub-attack.
Tab. 3 summarises the accuracies under the different sub-
attacks, while Fig. 15 depicts a visual comparison of the
super-resolution reconstruction for three sample faces pro-
tected by AGB, SVGB and AHGMM filters. Fig. 16 presents
the ROC for the accurate AHGMM parrot-SR sub-attack.

For the space-invariant Gaussian blur (AGB), it is apparent
from Fig. 15 that the SR attack can reconstruct the faces
more effectively, even when the kernel size is quite high
(i.e. ρoj = 0.5 px/cm). Therefore, the faces protected by
AGB achieves a higher accuracy (see Tab. 3). In contrast,
faces protected by linear space variant Gaussian blur (SVGB)

are difficult to reconstruct. The main reason is that the SR
mapping becomes erroneous especially for patches which
contain parts processed by different kernels. However, SR
can effectively reconstruct patches where the Gaussian blur
is locally invariant (e.g. compare the areas around the eyes of
the SVGB restored faces in Fig. 15). The overall reconstruc-
tion is worse than for AGB and thus the achieved accuracy is
lower.

Reconstruction by super-resolution is even more challeng-
ing for AHGMM protected faces. The main reason is that
a single patch for learning the mapping contains several
sub-regions each filtered with pseudo-randomly correlated
Gaussian mixture models. Thus, the error in the learned SR
mapping increases thus resulting in the lowest accuracy as
compared to AGB and SVGB.

Similarly to the parrot-IF attack, the accuracy improves
for the parrot-SR attack where SR-reconstruction is also
performed for the gallery images. Especially for AGB and
SVGB, the similarity between (protected and reconstructed)
gallery images and the (reconstructed) probe images in-
creases. Thus, the accuracy increases. As for the other at-
tacks, AHGMM is more robust to parrot attacks than AGB
and SVGB, and achieves the lowest accuracy.

F. DISTORTION ANALYSIS
We measure the distortion of FGB, SVGB [17], AGB [15]
and AHGMM using PSNR. For a trade-off analysis between
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FIGURE 14: Receiver Operating Curves (ROCs) for the accurate AHGMM parrot-IF attack at threshold ρoj = 0.5 px/cm. Each
ROC is the mean of 10-curves generated by the 10-folds used for cross validation. Legend: — Unprotected, — AGB,— SVGB, — FGB, — AHGMM. In each column, the image resolution remains constant, i.e. first column: 96× 96,
second column: 48 × 48, third column: 24 × 24 and fourth column: 12 × 12 pixels, while the pitch angle varies i.e. first row:
0◦, second row: 10◦, third row: 20◦, fourth row: 30◦, fifth row: 40◦, sixth row: 50◦, seventh row: 60◦ and eighth row: 70◦. The
legend values represent the Area Under Curve (AUC).
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FIGURE 15: Visual comparison of reconstructed faces with
super-resolution algorithm SRCNN [8] for threshold ρoj =
0.5 px/cm. The reconstruction performance deteriorates from
AGB [15] over SVGB [17] to AHGMM protected faces.
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FIGURE 16: Receiver Operating Curve (ROC) for the accu-
rate AHGMM parrot-SR attack at threshold ρoj = 0.5 px/cm.
Each ROC is the mean of 10-curves generated by the 10-
folds used for cross validation. Legend: — Unprotected,— AGB, — SVGB, — AHGMM. This test is
performed only for a single resolution (96 × 96 pixels) and
pitch angle (0◦). The legend values represent the Area Under
Curve (AUC).

distortion and privacy, we plot the face verification accuracy
against PSNR. The results of this trade-off analysis are
presented in Fig. 17.

AGB [15] has the highest average PSNR values followed
by SVGB [17], AHGMM and FGB. The main reason is that
AGB uses a single anisotropic kernel instead of the spatially
and linearly varying kernel used by SVGB [17]. Although
AHGMM also uses an anisotropic kernel like AGB, the
spatial hopping phenomena of the Gaussian mixture model
of AHGMM result in high distortion (PSNR values) as com-
pared to AGB and SVGB (see Fig. 6). FGB has the highest
distortion as it does not change its parameters depending
upon the resolution of the face.

VII. CONCLUSION
We presented an irreversible visual privacy protection fil-
ter that is robust against parrot, inverse-filter and super-
resolution attacks on protected image regions. The proposed
filter uses an adaptive hopping Gaussian mixture model and
adapts its parameters depending upon the resolution of sen-
sitive regions in order to minimise distortion, while locally
and pseudo-randomly hopping them to prevent an attacker
from estimating them. We evaluated AHGMM using a state-
of-the-art face recognition algorithm and a synthetic face
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FIGURE 17: Trade-off analysis between the face verifica-
tion accuracy η and the distortion provided by the different
privacy filters under the naïve-T, parrot-T and inverse filter
(IF) attacks at threshold ρoj = 0.5 px/cm. The distortion is
measured by the Peak Signal to Noise Ratio (PSNR). Legend:— AHGMM, — AGB [15], — SVGB [17], —
FGB. Under the naïve-T attack, our proposed AHGMM

possesses η almost equivalent to the state-of-the-art filter,
but lowest under the parrot-T attacks. However, AHGMM
has slightly lower PSNR as compared to AGB and SVGB,
but much higher than FGB. (a) naïve-T attack, (b) accurate
AHGMM parrot-IF attack, (c) optimal kernel naïve-IF attack,
(d) optimal kernel parrot-T attack, (e) pseudo AHGMM
naïve-IF attack, (f) pseudo AHGMM parrot-T attack, (g)
accurate AHGMM naïve-IF attack and (h) accurate AHGMM
parrot-T attack. For the last three naïve-IF and parrot-T
attacks, the results of AGB, SVGB and FGB are the same
and have been superimposed for the comparison. Please see
Section VI-B, Section VI-C and Section VI-D for the details
of the attacks.

data set with faces at different pitch angles and resolutions
that emulate faces as captured from an MAV. The proposed
algorithm provides the highest privacy protection under a
parrot, an inverse-filter and a super-resolution attack and an
almost equivalent level of privacy to state-of-the-art privacy
filters under a naïve attack. Unlike face-de-identification

VOLUME X, 2019 15



Sarwar et al.: A privacy-preserving filter for oblique face images based on adaptive hopping Gaussian mixtures

TABLE 4: Notation.

Notation Meaning
R, R̄, R̂ unprotected, protected and reconstructed face region
CR centre of R
W,H width and height of R
D data set including both gallery and probe data sets
RG , R̄G , R̂G unprotected, protected and reconstructed gallery data set
RP , R̄P , R̂P unprotected, protected and reconstructed probe data set
K, K̃ original and predicted identity labels
FΩj privacy filter of parameter Ωj
G function that an attacker exploits
D distortion introduced by FΩj
P probability of predicting the label of a face
η face verification accuracy
ε verification accuracy of a random classifier
f focal length of the camera
pj physical dimension of a pixel in j direction
h1, h2 height of a camera and face from ground level
N,P vectors representing Nadir and principal axis of a camera
θR, θP angle between N , R and N , P
N number of sub-regions of R
M number of supplementary Gaussian functions
ρj pixel density (px/cm), where j ∈ {h, v}
ρoj threshold pixel density for privacy filtering
µj , σj mean and standard deviation of a Gaussian PSF
µoj , σ

o
j mean and standard deviation of an optimal Gaussian PSF

µjm, σjm randomly modified µoj and σoj for mth Gaussian PSF
αjm, βjm randomly generated numbers for µjm and σjm
Ωj ,Ω

o
j , Ω̄

o
j tuple (µj , σj ), (µoj , σoj ) and (µjm, σjm)

fs, fos Nyquist frequency of ρj and ρoj
σ́oj frequency domain standard deviation corresponding to σoj
γjm scaling factor for σoj
X set of tuple containing the parameters of Gaussian functions
G set of Gaussian functions
Gnm element of G
φ set of weights for a Gaussian mixture model
φnm element of φ
M Gaussian mixture model
Mn element of M
Qj sub-region size in pixels
σ̄j standard deviation of a global smoothing filter

approaches ([4, 16, 35–37, 42–45, 63]), we do not depend on
an auxiliary visual detector (i.e. pose, facial expression, age,
gender, race) to counter a parrot, an inverse-filter or a super-
resolution attack. Moreover, unlike encryption/scrambling
filters ([3, 5, 10–12, 23–27, 29, 30]), we prevent the recovery
of the original values of the protected region even with access
to the seed of the PRNG.

A work that extends the proposed privacy filter to videos
and that removes the jitter introduced by the proposed filter
is presented in [64].
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