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Abstract

In ecological communities, especially the pelagic zones of aquatic ecosystems, certain body-size

ranges are often over-represented compared to others. Community size spectra, the distributions

of community biomass over the logarithmic body-mass axis, tend to exhibit regularly spaced local

maxima, called “domes”, separated by steep troughs. Contrasting established theory, we explain

these dome patterns as manifestations of top-down trophic cascades along aquatic food chains.

Compiling high quality size spectrum data and comparing these with a size-spectrum model in-

troduced in this study, we test this theory and develop a detailed picture of the mechanisms by

which bottom-up and top-down effects interact to generate dome patterns. Results imply that

strong top-down trophic cascades are common in freshwater communities, much more than hith-

erto demonstrated, and may arise in nutrient rich marine systems as well. Transferring insights

from the general theory of non-linear pattern formation to domes patterns, we provide new inter-

pretations of past lake-manipulation experiments.
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INTRODUCTION

Size spectra and food chains belong to the many concepts ecologists have invoked in or-

der to understand structure and dynamics of complex ecological communities. The common

conceptualisation of communities as simple food chains1–4 formed by groups of organisms

assigned to discrete trophic levels predicts existence of top-down trophic cascades2–7, where

pressures on top predators propagate to lower trophic levels, leading to alternating increases

and decreases of biomass along the food chain. Such cascades are well documented8. Their

strengths, however, vary considerably between study systems6. Differences in nutrient sup-

ply might contribute to this variation, in particular in pelagic ecosystems, where nutrients

are known to play a crucial ecological role. This idea, however, has remained controversial.

A review from 2010 presented evidence in support of three competing hypotheses9: that

pelagic cascades are strongest at the highest nutrient concentrations, that they are strongest

at intermediate nutrient concentrations, and that cascade strength is largely independent of

nutrient availability and primary production. More recent reviews10,11 do not see nutrient

supply amongst the factors affecting cascade strengths. This is surprising, since increas-

ingly sophisticated food-chain models have predicted stronger cascades for more productive

systems4,12,13. Does this discrepancy indicate inherent limitations of food-chain theory?

An alternative way of looking at the structure of an ecological community is its size

spectrum, the distribution of community biomass over the logarithmic body size axis18–22,

which can span a factor > 1014 in body mass (Fig. 1a). Size-spectrum theory underlies

the use of size-based indicators in status assessments of aquatic ecosystems23. In pelagic

size spectra one often observes distinct body-size ranges of high biomass density24, known

as domes25, and depleted troughs between domes (Fig. 1a,b). The question what causes

these domes remains subject of ongoing speculation26–30, but the most common explanation

invoked in recent empirical literature15,31,32 and reviews19,21 implies that the domes represent

subsequent members of the aquatic food chain25. The dome structure arises through a

bottom-up cascade, where the position and height of each dome is controlled by that to its
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FIG. 1. Illustration of dome formation in size spectra. Empirical size spectra in panel a are,

in order of increasing nutrient enrichment (lowest to highest line), from the North Pacific14 (blue),

Lake Superior15 (orange), Lake Ontario16 (green), and Lake Müggelsee17 (red). See Methods for the

representation of size spectra used. Comparable simulation data in panel b are steady states of the

Species Size Spectrum Model (SSSM) with varying eutrophication parameter x (lowest to highest line;

blue: x = 1, orange: 100.2 = 1.58, green: 101.6 = 39.8, red: 102.4 = 251). Panel c illustrates the causal

chain generating domes in the SSSM. À At low nutrient supply, the size-spectrum forms an approximate

straight line on double-logarithmic axes (blue line). Á Increasing nutrient supply increases abundance

of primary producers, and, through bottom-up trophic amplification, induces an upward-bending of the

entire size-spectrum (orange line and arrows). Â As a result, consumers become more satiated and more

abundant relative to their resources, which both acts to amplify top-down cascades4,13. Low predation

mortality of the top predators induces such a cascade. This leads to formation of several domes along

the size spectrum (green line and arrows).

left on the size axis33,34. For the left-most dome, another explanation would be required.

Here we provide evidence for an alternative interpretation of domes, which, by combining

ideas from food-chain and size-spectrum theory, resolves open questions pertinent to both.
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We demonstrate that domes are manifestations of top-down trophic cascades, enhanced by

eutrophication (Fig. 1c). From the size-spectrum perspective, the result is a pronounced

periodic modulation of the density of community biomass (large domes, deep troughs) along

the logarithmic body size axis that becomes weaker with lower nutrient availability35 (smaller

domes, shallower troughs) and, in the oligotrophic open ocean, might disappear entirely14,18

(Fig. 1a,b). At intermediate to high nutrient concentrations, however, non-linear effects can

lead to deviations from classical food-chain theory in how size-spectra respond to pressures.

Self-organised periodic (i.e. regularly spaced) patterns, such as stripe patterns on animal

skins, are a common natural phenomenon. It has long been speculated that such structures

can arise not only in physical space but also in abstract spaces, for example when competition

generates patterns in ecological trait spaces36–43. However, any attempt to explain periodic

patterns in nature must be mindful that general mathematical principles alone already

predict periodic patterns as a common phenomenon44. Indeed, size-spectrum models can

generate modulations through a variety of mechanisms26–29,45. Echoing a similar conundrum

surrounding regularities in planetary orbits46, determination of how domes arise in nature

therefore requires more detailed agreement between data and model than the mere fact that

modulations are found. Insufficient demonstration of such agreement for existing process-

based models is the reason why the dome pattern remains enigmatic. The need for detailed

comparisons also limits what can be learned from minimal food-chain4,13 or size-spectrum26,47

models, despite their important role in illuminating basic mechanisms. Our comparison of

model and data therefore considers specific patterns in the responses of size spectra and

domes to nutrient enrichment.

Our working model, the non-linear Species Size Spectrum Model, is designed to in-

corporate crucial elements of ecological realism while preserving mathematical simplicity

and computational efficiency. This permits us to overcome limitations of earlier modelling

approaches20–22. Using this model, we identify the mechanisms controlling the dependence

of dome structure on nutrients, thus permitting us to delineate the conditions required for

these patterns to arise.
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RESULTS

The non-linear Species Size Spectrum Model

We found that a generalisation of the linear Species Size-Spectrum Model (SSSM)29 to

a full, non-linear model is capable of reproducing the observed phenomenology of domes

(Fig. 1). The SSSM belongs to a family of similar models28,48,49 going back to the Fish

Community Size-Resolved Model50–52. Structure and motivation of the SSSM are best un-

derstood in the wider context of size-spectrum theory20.

In the simplest dynamic size-spectrum models, individuals interacting in a community

are distinguished only by their body masses26,27,47. New individuals are added at a constant

rate or abundance at the lower end of the modelled size range. Individuals then grow by

feeding on each other (or on small planktonic organisms that are not explicitly modelled)

and converting the biomass of their prey into their own—at some given efficiency. These

feeding interactions lead to corresponding predation mortality. The strength of feeding

interactions is controlled by a predator-prey mass-ratio window function; it depends only

on the body masses of predator and prey. Life-history parameters and physiological rates

scale allometrically with body size. The resulting size-spectrum dynamics is described by

a flux-divergence equation for the density of individuals along the size axis, known as the

McKendrick von Foerster Equation26,53.

More advanced models20,50 distinguish indiviudals not only by body mass but also by

species identity, permitting these models to give a full account of the reproductive cycle.

Each species has an associated maturation body mass, above which indiviuals invest a

large proportion of food intake into reproduction rather than ontogenetic growth. The

reproductive investment determines the rate at which individuals of each species are added

at the lower end of the modelled size range of that species. In this model class, community

dynamics are described by a system of coupled McKendrick von Foerster Equations, one for

each species. Any species’ population biomass can grow or decline, and species experiencing

low food availability and high predation mortality throughout their life cycles can go extinct.

Indeed, when modelling feeding interactions as depending only on the body masses of

predators and prey, very few species coexist in these models54. A natural way to overcome

this limitation is to acknowledge that, while body mass is an important trait affecting feeding
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interactions, the combined influence of all other traits can be even stronger55,56. In models

this is implemented by either equipping species with abstract secondary traits56,57 (usu-

ally assigned at random) that affect the strength of feeding interactions58,59, or by directly

multiplying the size-dependent interaction strength with a non-negative factor sampled at

random for each species pair50,52. Both approaches lead to food-web models in which species

of similar size can have very different prey and predators, implying reduced competition and

a lower likelihood of competitive exclusion. While in these models many species can coexist,

the original simplicity of the size-spectrum approach is lost. Species-rich models of this type

become computationally expensive.

An important observation made studying such models is that the community size spec-

trum, obtained by adding the size spectra of all modelled species, is dominated for any given

size class by species with maturation body sizes close to this size class50—consistent with

analytic theory29,53 and field data60,61. Structure and dynamics of community size spectra

over large size ranges are therefore determined predominantly by variations in the popu-

lation biomasses of species of different sizes, rather than by variations in intraspecific size

structure61,62.

The SSSM builds on this observation. Using an analytic technique called quasi-neutral

approximation63 (QNA), the species-level McKendrick von Foerster Equations are replaced

by a system of coupled ordinary differential equations for the dynamics of the species’ pop-

ulation biomasses. The QNA is a powerful technique that permits us to retain implicitly

descriptions of individual-level processes. In particular, the SSSM captures the Type II

functional responses of individuals to food availability from the underlying size-structured

food-web model50, and so the possibility of consumer satiation.

Because the SSSM aims to describe species-rich communities in a computationally efficient

way, species are thought of as being grouped into narrow maturation body mass classes,

revealing the distribution of community biomass over the logarithmic maturation body mass

axis: the species size spectrum. The SSSM primarily models the dynamics of this species

size spectrum. From this, the community size spectrum is reconstructed following the QNA

methodology. However, as a results of lumping species into maturation body mass classes,

their differentiation by secondary traits, found to be essential for food-web models of size-

structured populations, gets lost. To counteract the resulting artificial competitive exclusion

dynamics for species of similar size, the SSSM contains a phenomenological correction term29,
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which accounts for differentiation of species by secondary traits. The structure of this term

is similar to the intraspecific competition terms included in Lotka-Volterra models for niche

differentiation along a single trait axis39, but in the SSSM it is constructed such as to avoid

unaccounted biomass losses.

Rather than explicitly distinguishing between primary producers and consumers in size

spectra, the SSSM imposes a lower boundary condition that fixes the abundances of the

smallest species modelled. Nutrient enrichment is modelled by scaling these abundances by

a eutrophication parameter x, assumed to be proportional to chlorophyll-a concentration.

Model equations are listed in Supplementary Note 1 together with a detailed discussion,

including our correction to account for secondary traits. Details of simulation methods are

described in Supplementary Note 3. The code we used to simulate the SSSM is provided as

Supplementary Software 1.

Basic model behaviour

Model simulations with an ecologically plausible parameterization (Supplementary Note 2)

demonstrate that nutrient enrichment and the resulting increases in x and overall community

biomass do indeed result in strong dome formation (Fig. 1b).

As a simple demonstration that dome formation in this model is governed by a top-down

cascading effect, we removed species from two domes at opposite ends of the size spectrum.

First, we simulated harvesting of species from the dome with the largest body sizes, by

increasing their mortality. This substantially reduced the size-spectrum modulation along

the entire body size axis (Fig. 2a), as expected for a top-down cascade. If the domes would

represent subsequent members of a food chain, the naive expectation would be that release

from predation allows the intermediate dome to rise when the right-most dome is suppressed,

but this is not what we found in simulations.

Second, we harvested species from the dome at the smallest body size. This removed

that dome, but had little effect on the modulation of rest of the size spectrum (Fig. 2b,

red dashes). The effect it had on larger-bodied individuals is explained by the overall

removal of biomass from the system; it is identical to that resulting from a reduction of the

eutrophication parameter from x = 1.58 to 1.38 (Fig. 2b, blue dots).

7



top_down$M

lo
g 1

0(
bi

om
as

s 
de

ns
ity

) [
gC

 m
−3

]

−
6

−
3

H=0
H=12.2

a

top_down$M

lo
g 1

0(
bi

om
as

s 
de

ns
ity

) [
gC

 m
−3

]

−
6

−
3

H=0
H=2
H=0 with x=1.38

b

phase_slips$M

lo
g 1

0(
bi

om
as

s 
de

ns
ity

) [
gC

 m
−3

]

−
3

H=0
H=7

H=14
H=21 H=28

c

−9 −6 −3 0 3

lo
g 1

0(b
io

m
as

s 
de

ns
ity

) [
gC

 m
−3

]

log10(body mass) [gC]

FIG. 2. Demonstration of top-down and bottom-up effects in SSSM simulations. Species

with body mass at first maturation m∗ in the ranges indicated by the horizontal bars (panels a,c:

m∗ ≥ 10−1.9 gC; panel b: 10−7.5 gC ≤ m∗ ≤ 10−5.5 gC) are harvested at an allometrically scaled

rate (m∗/gC)−1/4H with H as given in the legend. Panels a and b show community size spectra

for moderate nutrient supply (eutrophication parameter x = 100.2 = 1.58). The dome structure can

be top-down controlled (a) but not bottom-up controlled (b). In panel c, nutrient supply is higher

(x = 10) and dome size controlled through inherent non-linear regulation64 rather than cascading

pressures. Contrasting panel a, top-down forcing H in panel c therefore barely affects the height of the

size-spectrum mode near 10−5 gC body mass; only the position of the mode shifts.

Comparison with data

In addition to generating domes in process-based simulations, our model reproduces much

of the rich phenomenology associated with nutrient enrichment in pelagic ecosystems, pro-

viding further strong support for the theory. To demonstrate this, we compiled 25 high-

quality size spectrum data sets from the empirical literature. We only included data sets

spanning at least six orders of magnitude in body mass that provided volumetric biomass

density measures and where trophic status has been quantified as total phosphorus (TP)
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or chlorophyll-a concentration (which we then expressed as TP using a published regres-

sion). To allow quantitative comparison of size spectra across studies, we expressed them in

units of gram carbon65 and as biomass densities along the ln(body mass)-axis14,29. Visual

inspection of this data (Fig. 1a, Supplementary Note 4) confirms previous reports65 that, on

double-logarithm axes, pelagic size spectra exhibit a linear relation that tends to be over-

layed with a secondary structure of uniformly spaced domes. To quantify these features, we

fitted both empirical and simulated size spectra to a combination of a linear relation and

sinusoidal modulation of the form

log10(biomass density) = S log10

(
body mass

1µgC

)
+

B0 + A sin

[
2π log10(body mass)

D
− P

]
. (1)

The parameter S, representing the overall slope of the size spectrum, indicates to what extent

community biomass is dominated by small organisms (S < 0) or large organisms (S > 0).

Sheldon’s hypothesis18, that biomass is roughly equally distributed over all logarithmic body

size classes, corresponds to S = 0. The parameter B0 is the intercept at 1µgC; it corresponds

approximately to the logarithmic biomass of organisms in the size range of herbivorous

crustaceans60. A ≥ 0 is the amplitude of modulations. For perfectly sinusoidal dome

patterns, 102A would be the ratio between the biomasses of organisms in the size classes

at the peak of domes and on the bottom of neighbouring troughs. Because of deviations

from the sinusoidal form, however the actual ratio tends to be larger. The parameter D ≥ 0

quantifies the separation of domes on the one log10 body mass axis; the body mass ratio of

organisms occupying neighbouring domes is 10D. The parameter P controls the phase of

modulations. It shifts the position of domes along the size axis. Below we do not consider

it, because its direct comparison across data sets is difficult when D is not fixed. To avoid

overparameterization, Eq. (1) does not consider the theoretical possibility of increases or

decreases of modulation amplitude along the size axis.

Both empirical and model size spectra occasionally contain gaps, i.e. body size ranges

without detectable biomass65–67 (Fig. 1a,b). We used non-linear median regression to fit

Eq. [1], which allowed us to represent these gaps by arbitrary, numerically small biomass

densities without biasing the fits. In Supplementary Note 4 we present graphs of all 25 data

sets and corresponding fits.
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FIG. 3. Dependence of community size structure on nutrient enrichment. The four panels

quantify intercept B0 (at 1µgC) and slope S of size spectra, the amplitude A of domes and their sepa-

ration D on the log10-body mass axis, as defined through Eq. [1]. Empirical data (black circles, ±s.e.)

and medians over 100 simulation snapshots (red crosses, 1st to 3rd quartile ranges are shaded in pink

when the model exhibits steady-state dynamics, see S3 for details). Model runs are for eutrophication

parameter x = 10−0.1, 100.0, 100.1, ..., 102.8, assuming chlorophyll-a concentrations 0.2xµgL−1 and

converting to TP (Methods). Lines are weighted LOESS smothers. Weighted linear regressions (S5)

reveal statistically significant (p ≤ 0.01, two-sided) dependencies on log(TP) for empirical intercepts

B0, slopes S, and dome amplitudes A, and a weak but statistically significant (p = 0.042) decreases

of dome separation D with log(TP). In cases where error bars extend across graphs, numerical s.e. are

written next to data points, thus indicating high ambiguity of the underlying data. Because we weighted

empirical data according to inverse squared s.e. in all analyses, these high s.e. data sets contribute less

to analyses than, e.g., the highly consistent and accurate measurements for Lake Superior (TP = 2.5)

or Lake Constance (TP = 52.5).

Our data comprise a wide range of ecosystems differing in respect to latitude, size and

depth, which affect phenomena not modelled in the SSSM, such as prey defence and al-

lochthonous inputs. To validate the SSSM, we therefore do not attempt a quantitative fit

to data but constraint ourselves to the objectives of Pattern-Oriented Modelling68. That
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is, we aim to reproduce qualitative patterns in the empirical responses of the size-spectrum

characteristics B0, S, A, and D to enrichment, and the order of magnitude of these effects.

As shown in Fig. 3, the SSSM reproduces well the overall increase in system biomass with

enrichment65 (Fig. 3a). Also in good agreement with observations, enrichment in the model

leads to an increasing (less negative) size-spectrum slope35 S, with the increase becoming

less pronounced at higher nutrient levels (Fig. 3b). Importantly, both data35 and model

follow our theoretical expectation (Fig. 1c) that size-spectrum modulations become stronger

with enrichment (Fig. 3c). At low nutrient concentrations and resulting small modulation

amplitudes, the separation between domes D is ill-defined for both data and model. Once

pronounced dome patterns arise, data and model agree in that the separation between domes

D is not much affected by trophic status (Fig. 3d, Supplementary Note 7). Thus, all major

patterns in the data are reproduced by the SSSM, validating it as a good description of

pelagic size spectra.
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Mechanisms

As is common in the study of self-organised periodic patterns44,69, key insights into the

mechanisms driving dome formation in size spectra can be gained from studying the linear

response of the system to small perturbations. From a previous mathematical analysis29 it

is known that pelagic size spectra exhibit a superposition of three mathematically distinct

linear responses to pressure on a single body size class (Fig. 4, Methods, Supplementary

Note 6): (i) the top-down cascade, modulating the size spectrum towards lower body size

classes26,28, i.e. leading to alternating enhancement and depletion of biomass along the size

axis; (ii) a modulated bottom-up cascade25,28,33; and (iii) the conventional, unmodulated

bottom-up effect, consistently either enhancing or depleting the biomasses of all larger bod-

ied species. Depending on system parameters, the two modulated responses can be either

amplifying or attenuating (in terms of proportional changes in abundance) as they propagate

away from the pressure on the size axis29 (Fig. 4). The conventional bottom-up effect always

increases as it travels up the size axis29, a phenomenon called trophic amplification70,71.

Dome formation in the SSSM corresponds to a transition from attenuating to amplifying

top-down cascades with increasing enrichment, as we demonstrate in a mathematical analy-

Log adult body mass

R
el

at
iv

e 
ch

an
ge pressure

(i) top−down cascade
(ii) bottom−up cascade

(iii) conventional bottom−up

FIG. 4. The three main distinct responses of size spectra to size-specific pressures. When

species of a specific body-size class are continuously removed from the community (thick arrow), theory

predicts (i) a top-down modulation of population abundances towards smaller body-size classes, which

may be either attenuating (solid red line) or amplifying (dotted red line); (ii) a bottom-up cascade in

the reverse direction (blue); and (iii) an amplifying conventional bottom-up effect (green). Depending

on the size class at which the pressure is applied, not all of these effects may unfold. The horizontal

dashed line represents the pressure-free state. We find that domes emerge when the top-down cascade

becomes amplifying towards smaller body sizes.
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sis of the mechanisms at work in Supplementary Note 7. The analysis identifies two distinct

mechanisms driving this transition. The first depends on the fact that, due to trophic ampli-

fication, the size spectrum slope S increases with enrichment (Fig. 3b). Because consumers

tend to be larger than their resources, this increases the abundance of consumers relative to

their resources in enriched systems. As a result, a given proportional change in consumer

abundance can affect a larger proportional change in resource abundances. The second

mechanism is driven by the overall increase of community biomass in enriched systems. As

detailed in S7, this leads to partial satiation of consumers and reduces their ability to con-

trol their resources, because (i) their food intake rate becomes less dependent on resource

abundance and, (ii) resources of satiated consumers experiences a safety-in-numbers effect72.

Both enhance top-down cascades, as is the case in simple mathematical models of infinite13

and finite4 food chains.

It should be noted that the top-down and bottom-up terminology above refers only to

the direction of propagation of effects in size spectra. At the food-web level, the underlying

processes can be more complicated29,73,74. This may explain why, despite providing some

indications for top-down cascades73,74, empirical studies of feeding interactions in size spectra

did not fully reveal the nature of dome formation.

Generic arguments developed in the study of self-organised periodic modulation patterns

in physics44,69 imply that, for system parameters far beyond the onset of modulations, the

phase of modulation patterns still easily responds to pressures, but not the amplitude.

Instead, the modulation amplitude is controlled by inherent non-linear regulation64,69. For

size spectra, this means that harvesting biomass from one dome does not affect the height of

other domes (relative to neighbouring troughs), only their positions along the log(body mass)

axis. This could explain why experimental manipulations of the top trophic levels in pelagic

communities sometimes do not comply with predictions from simple food-chain theory2;

often producing pronounced changes in mean zooplankton body size rather than in total

zooplankton biomass2,3. We demonstrate this effect in Fig. 2c. This sensitivity of dome

positions to pressures might also lead to a tendency for domes to form in biologically favoured

size ranges, for which there is some empirical evidence24.

13



DISCUSSION

A mechanistic explanation

Above, we have explained dome formation as a consequence of nutrient enrichment in

three complementary ways75: first, by obtaining the empirical relation between dome am-

plitude and nutrient concentration directly from observation data (Fig. 1a; black circles in

Fig. 3c); second, by simulating a process-based model, which demonstrates that individual-

level processes lead to dome formation with increasing primary production (Fig. 1b; red

crosses in Fig. 3c), and; third, through a mathematical analysis of this model, which reveals

step-by-step the causal chain leading from enhanced primary production to the onset of

dome formation in a transition from attenuating to amplifying top-down cascades (Fig. 1c;

Supplementary Note 7). The present work thus adds to the small number of cases in com-

munity ecology where an analytically tractable, process-based model semi-quantitatively

explains a rich empirical phenomenology76–78. This became possible not only by the ju-

dicious construction of our model from simple components (Supplementary Note 1), but

also by developing mathematical methods that allowed us to analyse the model despite its

complexity (Methods, Supplementary Notes 6 & 7).

The mechanistic analysis permits us to address questions regarding the generality of the

process of dome formation. For example, one might ask to what extent dome formation is

affected by life-history parameters such as the relative sizes of new offspring, individuals at

first maturation, and the largest adults of a species—especially since these proportions vary

considerably among species and along the size gradient. Our analysis suggests this depen-

dence is weak: these proportions do not enter the expressions that control the transition

to dome formation (Supplementary Note 7). The approximate analytic expression that we

derive for the distance D between domes along the logarithmic body mass axis [Eq. (17)

of Supplementary Note 7] depends only on two parameters characterising the typical range

of body-mass ratios between individual predators and their prey, and an allometric scaling

exponent.

Another implication of the mechanistic theory follows from the fact that it makes heavy

use of the assumption that predators feed on living prey smaller than themselves. The

mechanisms identified are unlikely to operate effectively in food webs that are not as
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strongly size structured as pelagic communities. In benthic communities size structure is

less pronounced79. One can therefore plausibly expect that the dome patterns found in ben-

thic size spectra80,81 are controlled by different kinds of mechanisms81,82 and thus respond

differently to enrichment than those found in pelagic communities.

Our explanation of dome formation as a transition from attenuating to amplifying top-

down cascades is consistent with the conclusion of an earlier meta-analysis that top-down

cascades tend to be attenuating in marine pelagic systems but have no such general ten-

dency in the nutrient richer lake pelagic communities6. As explained above, the general

theory of pattern formation suggests that far beyond the onset of dome formation the dome

amplitude is controlled by inherent non-linear regulation64,69, rather than by the amplitudes

of neighbouring domes. When top-down cascades are amplifying in a linear model, as we

find for nutrient rich pelagic systems, non-linear effects thus constrain the maximum height

that domes eventually attain64. This explains why, on average, trophic cascades observed in

lake pelagic communities are neither amplifying nor attenuating6.

Our analytic calculations (Supplementary Note 7) constrain the transition point from

attenuating to amplifying cascades to the range 1 < x < 8 for the model’s eutrophication

parameter, corresponding to 0.6µgL−1 < TP < 4.4µgL−1 or chlorophyll-a concentrations in

the range 0.2-1.6µgL−1, with lower values preferred when size-spectra span longer body-size

ranges. Coastal marine waters often lie in this transition range (which is below levels where

harmful algal blooms tend to occur83,84). On this basis, we predict the occurrence of dome

patterns in nutrient rich coastal marine waters. Climate warming can increase coastal surface

nutrient concentrations further71, thus intensifying this effect, with potential implications for

marine ecosystem management. However, we caution that the transition from attenuating

to amplifying top-down cascades does not result in a sharp qualitative transition in observed

size spectra. For example, the cascade in the unperturbed model size spectrum for x = 1.58

(Fig. 2a, black line) is still attenuating (compared to neighbouring domes, the right trough

is deeper than the left), yet it already exhibits a clear dome structure.

The analytic calculations also reveal why models simpler than the SSSM would struggle

to convincingly explain dome formation. All details of the SSSM that distinguish it from

previous, simpler size-spectrum models have a role to play in reproducing and explaining

the phenomenology we report. Size-spectrum models that do not distinguish individuals

by maturation body mass26,27,47 are unable to represent in their steady state the gaps ob-
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served in size spectra65,66, because there is no biological mechanism to generate individu-

als of body sizes larger than the size class of a gap. Models without any representation

of intraspecific size structure34 would, amongst others29, overestimate the magnitude of

domes and the prevalence of gaps. Models representing communities as food chains13 rather

than as continua of species cannot represent shifts in the positions of domes in response to

pressures69, as seen in Fig. 2c. Models without representations of consumer satiation26,27

omit a model component that is essential for the transition to amplifying cascades. Models

that include non-linear stock-recruitment relationships in addition to28 (rather than implied

by52) density-dependent feeding interactions are unlikely to generate amplifying top-down

cascades or bottom-up amplification, because they tend to overestimate the strength of

inherent regulation of population size. Models that explicitly evaluate food webs of size-

structured populations without imposing artificial20 limits to recruitment50,52, i.e. the type

of models that the SSSM approximates, tend to be computationally too expensive for sim-

ulations of species-rich communities over size ranges as large as studied here. The SSSM’s

demonstrated ability to describe high-level phenomena in pelagic ecosystems over a wide

range of conditions suggests future applications in diverse areas such as the testing of eco-

logical indicators, development of management strategies, or ecological forecasting.

The significance of our results lies not only in the characterisation of dome patterns

or top-down cascades, but crucially in the identifications of the former as manifestations

of the latter. This became possible by understanding dome formation as part of a wider

scenario of community change with increasing enrichment (Fig. 3). In particular, the results

speak against the widely cited idea that domes represent bottom-up cascades25,33,34. While

bottom-up cascades have indeed been demonstrated in the SSSM and similar models28,29,

our mathematical analysis (Supplementary Notes 6 & 7) shows that these cascades get

damped by increasing enrichment, opposite to the observed pattern (Fig. 3). Based on the

classical theory, we had also expected that the flattening of the dome with smallest body

size in model simulations (Fig. 2b) would similarly reduce modulations along the entire

size-spectrum, which was not the case.
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Relation to detailed empirical accounts

When comparing our theory with detailed observations in specific ecological communities,

it must be kept in mind that any size-spectrum model is a simplified high-level description.

It relates to low-level descriptions in terms of populations and their interaction networks in

an analogous manner as a macroscopic description of sound waves in an air-filled chamber

relates to a microscopic description of the air in terms of freely moving and occasionally

colliding molecules. Concepts that are central to a high-level description (domes, sound

waves) are unnecessary or even meaningless for a full description and explanation of dynamics

at the lower level. When a detailed low-level description is available, one can, a posteriori

reconstruct the macroscopic phenomenon (modulation of community biomass along the size

axis for domes, density waves for sound), but this does not add information to that already

provided at the lower level. To the contrary, since high-level descriptions are generally

approximations, their juxtaposition with corresponding low-level descriptions will necessarily

reveal inaccuracies.

Such juxtapositions, relating the populations and interactions of species and functional

groups to the resulting size spectra, are available, for example, for Lake Constance and Lake

Müggelsee17,60,61,73,85. One particular effect that size-spectrum models cannot capture, which

was identified in these studies, are changes in the distributions of traits other than size86.

Yet, such changes must be expected as part of a re-organisation of community structure, e.g.,

in response to nutrient enrichment. For example, it has been observed that the size range

covered by carnivorous zooplankton may change17,60 and less edible phytoplankton may pile

up in certain size classes of the autotrophic size range, so reducing the flow of biomass

towards larger consumers17. Conversely, particularly efficient and competitive consumers

such as daphnids may obtain biomasses above the average zooplankton due to their ability

to exploit relatively small and thus highly productive prey60,73.

Such low-level descriptions and the higher degree of detail they provide do not, how-

ever, invalidate high-level descriptions, e.g., in terms of size-spectrum models. Low-level

descriptions tend to be system specific and would struggle, for example, to provide simple

explanations of trends seen across systems, such as those documented in Fig. 3—while the

SSSM achieves just this.
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Conclusion

Along multiple lines of evidence we have demonstrated that the dome patterns found in

pelagic size spectra of lakes are likely governed by top-down trophic cascades and mod-

erated by the availability of nutrients. The frequent observation of pronounced dome

patterns15–17,24,34,66,73, where variation in biomass often exceeds a factor 100 (Fig. 1a), there-

fore suggests that strong top-down cascades are common in freshwater communities. These

powerful trophic cascades, generating domes, are active in pelagic systems without any ma-

nipulation of top trophic levels2,3. Pelagic dome patterns might therefore be the clearest

cases yet of self-organised ecological pattern formation in trait space.

The results of this study imply that measurement of the strength of top-down cascades

in lakes does not necessarily require experimental manipulations or comparative studies.

Cascade strength can be estimated directly from the modulation amplitude of size spectra

(Fig. 3c). Application of this idea to the old question of how cascade strength depends on

nutrients provides clear evidence for an overall increase of cascade strength with increasing

nutrient concentration in both model and data (Fig. 3c) up to around 5-10µgL−1 TP. Beyond

this level there might be plateau or even a slight decline in cascade strength with TP. Thus,

several of the patterns previously considered9 appear to be combined. To further clarify the

details of this dependence, we call for systematic measurements of size spectra across nutrient

enrichment gradients, aided by the accurate automated methods now available15. Monitoring

of coastal marine size spectra might guide the interpretation of ecosystems changes when

domes form unexpectedly.

For bio-manipulation of top predators2,3, we predict that measurements of size spectra

in lakes will, depending on trophic status, reveal responses of the amplitude or the phase of

the dome pattern (Fig. 2). Responses to pressures on high-ranking predators will therefore

not always follow expectations from simple food-chain theory2,3, but transfer of pressures

to lower trophic levels should generally be expected in the light of the new theory. The

general theory of non-linear pattern formation thus provides new mechanistic insights into

the structure and dynamics of ecological communities.
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I. METHODS

Representation of size spectra

For the purpose of comparison across studies, empirical size spectra are often represented

on double-logarithmic axes in the so-called normalised form87,88: the volume (or areal)

density of biomass of organisms measured in each body mass interval considered is divided

by the linear width of this interval (of dimension Mass). In the limit in which the width

of these intervals goes to zero, this represents the density of a community’s biomass (per

unit volume) along the linear body mass axis89. A disadvantage of this representation is

that normalised spectra tend to spread over a wide numerical ranges. Superimposed “dome”

modulations are not easily visible.

To overcome this disadvantage while maintaining comparability of spectra across studies,

we computed not the density of biomass (per unit volume) along a linear but along a

logarithmic body mass axis. Specifically, the natural logarithm of body mass was used,

which permits a simple conversion of traditional normalised size spectra to this density-

along-the-log-axis form: one just needs to multiply each normalised size spectrum value by

the corresponding body mass. To obtain unbiased estimates of the continuous size spectrum

from empirical data for discrete size intervals one multiplies with the geometric mean of

upper and lower interval boundary29. This is the representation used throughout the present

study:

size spectrum at point mi =
Bimi

∆mi

, (2)

with mi denoting the geometric mean of the boundaries of body mass interval i (i.e. the mid

point on a log axis), ∆mi its linear width, and Bi the measured biomass volume density of

individuals with body mass lying in this interval. Equation [2] is formally equivalent to a

known heuristic “denormalisation” procedure for size spectra14,87,88.

Data sets

Searching for the keywords “size spectrum” and “size-spectrum” in literature databases

and following relevant citations, we identified 25 pelagic size-spectrum datasets that satis-

fied our inclusion criteria (good technical quality, coverage of a 106 body-mass range, and
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FIG. 5. Locations of study sites included in analysis

quantification of trophic status). Except for a data sets from Lake Malawi, all sampling

locations lie within the latitudinal band 28◦-54◦N (Fig. 5).

In some cases, uneven sensitivity of sampling and use of different sampling methods over

different size ranges can lead to structures in the data that resemble dome patterns. Occur-

rence of such artefacts, however, can be recognised by comparing method boundaries along

the size axis and dips or discontinuities in spectra, and usually such issues are acknowledged

by study authors. We excluded two studies because of such concerns90,91. While uneven

sampling might also have contributed to some of the unevenness in other spectra (just as

any empirical method has potential biases), the fact that we find a clear signal of increas-

ing dome amplitude A with increasing nutrient richness (Fig. 3) in accordance with earlier

observations35 would be hard to explain if sampling artefacts where generally the dominating

contribution to size-spectrum modulations.

We converted chlorophyll-a concentrations [Chl-a] to total phosphorus concentrations

TP using the relation92 [“This study (all lakes)” in the source] log10[Chl-a] = −0.455 +

1.026 log10(TP), i.e. log10(TP) = (log10[Chl-a] + 0.455)/1.026, with [Chl-a] and TP given

in µgL−1. The conversion was used mostly for marine systems, where nutrients other than

phosphorus may be (co-)limiting. The TP values so obtained have therefore purely nominal

character as expressions of overall nutrient availability.
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The following lists the systems underlying the empirical data in Figs. 1 and 3, together

with data sources for size spectra and, if different, sources for TP or [Chl-a] (expressed

in µgL−1): North Pacific Central Gyre14 with93 [Chl-a] = 0.0945 (corresponding to TP =

0.28); stations Purple 10 ([Chl-a] = 0.17, TP = 0.49), Purple 11 ([Chl-a] = 0.18, TP = 0.52),

Yakutat ([Chl-a] = 0.25, TP = 0.72), Nashville ([Chl-a] = 0.25 , TP = 0.72) and Indigo

([Chl-a] = 0.26, TP = 0.75) in the New England Seamounts Area94 and stations Sargasso 12

([Chl-a] = 0.25, TP = 0.72), Sargasso 14 ([Chl-a] = 0.29, TP = 0.83), and Sargasso 13 ([Chl-

a] = 0.33, TP = 0.94) in the Sargasso Sea94, where data points below 5 ·10−13 gC body mass

were discarded due to acknowledged methodological artefacts94; Lake Superior15 with95 TP

= 2.5 (average of years 2006 and 2011, numerical data by Peder M. Yurista, priv. comm.);

the averaged spectrum of 37 inland lakes in central Ontario24,65 with median TP = 424,65;

Lake Michigan96 with TP = 5.597; the six Irish lakes98 Loughs Maumwee (TP = 6.6), Carra

(TP = 11.2), Gara (TP = 24.7), Gur (TP = 37.9), Mullagh (TP = 72.6) and Ramor (TP

= 77.1, numerical data by Elvira de Eyto, priv. comm.); Lake Ontario16 with TP = 7.595;

Lake Malawi16 with TP = 9.399; Lake St Clair35 (average over 14 stations, TP = 10.4); Lake

Constance60 averaged over years 1987-1996 (unpublished data by U.G.) with TP = 52.5100;

Fuente de Piedra101 ([Chl-a] = 25102, TP = 64.0); Arendsee66 (TP = 106); and Müggelsee17

averaged over years 1988-1990 (numerical data by U.G., TP = 223). Size-spectrum data

were extracted from referenced published graphs if not stated otherwise. When publications

contained multiple graphs with size spectra for a given system, we selected the spectra

averaging over the longest time interval and the largest number of stations. CSV files of the

size-spectra analyzed in this study are included as Supplementary Data 1.

Missing empirical values

Size-spectrum values of zero are sometimes suppressed in empirical data. In published

size-spectrum data sets, we therefore identified as a gap any occurrence of a large interval

between subsequent reported size-class midpoints. Precisely, any spacing on the log-body-

mass axis between subsequent reported size-class midpoints that was over 1.8 times wider

than both the previous and the subsequent spacing was considered a gap. Each such gap

was filled by a single size-spectrum value of zero at the centre of the gap. All reported values

of zero were retained, except for those at the upper end of reported body mass ranges, since
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these might be due to insufficient sample volumes. Before taking logarithms, size spectrum

values of zero were replaced by 10−100 times the smallest reported non-zero value. The thus

processed size spectra are included in Supplementary Data 1 as an R object.

Size range used to determine characteristics

For most empirical data sets (84%), the body size range covered does not extend beyond

0.1 gC. For comparability across empirical data sets and between data and simulations,

only size-spectrum data up to 0.1 gC were therefore used when fitting Eq. [1] to extract the

characteristics B0, S, A, and D. We stress that this restriction of the size range is a decision

about how to characterise the size spectra. It does not imply a statement about what size

range is dynamically relevant in either models or reality. The role of the distinction between

models and characterisations in the development of ecological theory is discussed in13.

Non-linear median regression

To fit Eq. [1] to size spectrum data, we used the function nlrq from the package quantreg

(v. 5.36) of the R programming language, v. 3.5.3,103, which implements an interior point

method for non-linear quantile regression104. The function requires initial parameter values

for a non-linear optimisation routine, which we set to B0 = −2.5, S = −0.1, A = 1, and all

combinations of D = 4, 6 and P = 0, 0.4π, 0.8π, 1.2π, 1.6π. When different initial values

resulted in different fits, the result best satisfying the quantitative optimisation criterion

of the fitting method was selected. However, values for dome separation were constrained

to the range D = 2 – 9, because size spectrum modulations with very small or very large

wavelengths were not phenomena of interest to the present analysis. Standard error estimates

for the empirical fitting parameters were computed using the jackknife method.

LOESS smoothes

Smoothes in Fig. 3 are first-order LOESS based on the closest 2/3 of data points (1/3

for simulations), weighted by tricubic distance and for empirical data in addition by inverse

squared estimated standard error. To improve the robustness of the smoothes, they were

22



computed using M-estimation with Tukey’s biweight using the function loess of R.

Mathematical analysis

We outline the mathematical methods used to establish the mechanisms driving the

transition from attenuating to amplifying top-down cascades in the SSSM. For details see

Supplementary Notes 6 & 7.

The standard methods44 to identify the conditions and driving mechanisms for the for-

mation of self-organised periodic patterns, i.e. spatial modulation of some system property,

relies on the computation of the linear growth rate (in time) of small, sinusoidal perturba-

tions of the unmodulated base state of the study system. When modulations grow through

time, patterns form. But this method is not applicable here. Because of allometric scaling of

physiological rates, the dynamics of small species tend to be much faster than that of large

species, so that periodic modulations do not have well-defined linear growth rates (they are

not eigenfunctions of the linearized dynamics). The method used here29 therefore considers

instead the static, equilibrium linear response of the system to small, sustained, localised

press perturbations. For this, the allometric scaling plays no essential role. Patterns form

when the equilibrium response increases with the distance from the perturbation along the

size axis. In Supplementary Note 6 we demonstrate for an exactly solvable example that in

cases where both methods are applicable they give equivalent results.

In size-spectrum models, the equilibrium response to localised pressures can be decom-

posed into a sum of sinusoidal responses that, starting from the perturbed size class, grow or

decline exponentially along the logarithmic size axis, plus unmodulated exponentially grow-

ing or declining components (as in Fig. 4). In addition to these exponential components,

the static response may have a localised core residual that declines faster than exponential

with the distance from the perturbation29. Each component of the sum has a characteristic

complex-valued wave number, the real part of which is 2π divided by the wavelength of the

sinusoidal modulation, and the imaginary part the rate of exponential growth or decay along

the logarithmic size axis.

To determine these wave numbers, one first needs to compute the effective interaction

kernel for species along the size spectrum. This function describes the dynamic linear re-

sponse of species in all size classes to changes in the abundance of species in one given size
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class. The interaction kernel thus encapsulates the underlying ecology. The wave numbers

of the linear modes of the size spectrum are give by the zeros, in the complex plane, of the

analytic continuation of the Fourier transform of this interaction kernel.

While for the SSSM this Fourier transform is a rather complicated mathematical expres-

sion, it turns out that at most points in the complex plane just a few terms of this expression

(associated with specific ecological phenomena) dominate numerically. Hence, the locations

of the zeros can be understood from the properties of just a few terms.

In our mathematical analysis, changes in the interaction kernel due to nutrient enrichment

are described by a heuristic modification of the kernel that corresponds to an overall increase

in food availability. Using this to study the effects of enrichment on the Fourier transform of

the interaction kernel, the mechanisms driving the transition from attenuating to amplifying

top-down cascades are then identified.
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[74] Cózar, A., Garćıa, C. M. & Gálvez, J. A. Analysis of plankton size spectra irregularities in

two subtropical shallow lakes (Esteros del Iberá, Argentina). Can. J. Fish. Aquat. Sci. 60,
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[101] Garćıa, C. M., Echevarŕıa, F. & Niell, F. X. Size structure of plankton in a temporary, saline

inland lake. J Plankton Res 17, 1803–1817 (1995).

31
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Supplementary Note 1: Definition of the non-linear Species Size-Spectrum Model

The non-linear SSSM builds on and generalises the linear SSSM that we presented in an earlier
study [1]; below we refer to this study as ‘CAT’, base on the first few words on the paper’s title
(“A complete analytic theory...”), and provide pointers to relevant passages and equations for
easy reference. In the present context, a ‘linear’ model means one where deviations of the size
spectrum from an ideal power law are assumed to be so small that a linear approximation for
the dynamics of these deviations is valid. By contrast, the non-linear SSSM admits arbitrary
deviations of the size spectrum from an ideal power law. Its derivation follows that of the linear
SSSM up to the point where the linearization is mathematically carried out. This derivation
(extending over 24 pages) does not need to be repeated here. It leads to Equation [59] of CAT,
an approximate formula for the momentary linear growth rate Λ(m∗) of populations of species
with maturation body mass m∗ (there written as “〈Vm∗|Lm∗Wm∗〉”):

Λ(m∗) =

∫ ∞
0

[(αf(m)h− k)mn −mµp(m)]Wm∗(m)dm. (1)

In this integral, m denotes the body mass of individuals (independent of their species identity);
f(m) denotes their feeding level (a number between 0 and 1 quantifying the degree of satia-
tion); α is the assimilation efficiency; h and k are coefficients scaling maximum intake rate and
respiration rate, respectively; the factor mn describes the allometric scaling of these rates with
body mass; µp(m) is the predation mortality at body size m; and Wm∗(m) represents the size
structure of populations with maturation body size m∗, normalised to unit population biomass
(
∫
mWm∗(m)dm = 1). Parameter values and formulae for computing the functions f(m),

µp(m), and Wm∗(m) are given in Supplementary Table 1. The computation consists of several
steps, which are illustrated in Supplementary Figure 1.

The derivation of Eq. (1) makes use of an approximation that, except for variations in mat-
uration body size m∗, all individuals of a given size m are ecologically equivalent. Further,
it takes into account (i) that an accurate unstructured model for the dynamics of a structured
populations can be obtained by tracking gains and losses in the total reproductive value [4] of
that population [5, 3], and (ii) that in simple size-structured models, such as the one underly-
ing Eq. (1), the reproductive value of individuals is proportional to their body mass [6, Section
6.4.3] and so total reproductive value proportional to population biomass. Hence, the term in
brackets in Eq. (1) evaluates biomass gains (somatic growth and reproduction) and losses (mor-
tality) by individuals of size m. These are then summed up for populations of species with a
given maturation body size m∗ and corresponding population structure Wm∗(m).

The non-linear SSSM describes the dynamics of the density B(m∗) of community biomass
along the linear m∗-axis. That is, for any maturation body mass interval [m∗,m∗+ ∆m∗] that is
not too wide (e.g. ∆m∗ � m∗), the total biomass (or spatial biomass density) of all species in
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Supplementary Figure 1: Dependencies between size-dependent quantities in the definition of
the SSSM. Arrows indicate how each quantity enters the formula for other quantities. The
dependencies enclosed by the dashed line follow the model of Ref. [2]. The other dependencies
follow from the application of the quasi-neutral approximation [3] to this model, derived in
CAT.
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a community that have maturation body mass in this interval is B(m∗)∆m∗. From B(m∗), one
can compute the density of biomass along the (lnm∗)-axis as m∗B(m∗), the density of individ-
uals along the linear m-axis N (m) (Supplementary Table 1), the density of biomass along the
linear body mass axis (the so-called normalised community size spectrum) as mN (m), and the
density of biomass along the (lnm)-axis, computed as m2N (m), which is the representation
used in the main text.

In principle, dynamics in the model are given by the simple equation

dB(m∗)

dt
= Λ(m∗)B(m∗). (2)

However, in order to suppress artefacts resulting from modelling a food-web with distinct
species by a continuum of species characterised by size alone, CAT (Section 6.4) adds a term
that damps fluctuations on small scales along the (lnm∗)-axis, resulting in the modified dynamic
equation

dB(m∗)

dt
=Λ(m∗)B(m∗)+

ρmn−1
∗


B(m∗) exp

[
σ2
r(λ− 2)2

2

]
−

∫ ∞
0

B(m′∗) exp

− log2
(
m′∗
m∗

)
2σ2

r

 dm′∗
m∗
√

2πσr


(3)

(see Supplementary Table 1 for the values of λ, σr and ρ). The added correction appears com-
plex here because we write it for a linear m∗ scale. When going over to logarithmic size
variables, it simplifies considerably, see Eq. (26) below. The role of the additional term is
to suppress a model artefact that arises from model simplifications (called coarse graining in
the literature) that amount to the assumption that the strength of feeding interactions depends
only on the body sizes of consumers and resources. When this dependence is continuous in
both resource and consumer body sizes (as it is here), this assumption implies that species of
very similar size have very similar consumers and resources and therefore compete strongly
with each other. This strong competition among species of similar sizes means that the biomass
in a narrow species size class can arbitrarily grow (or decline) while the biomass of a narrow
neighbouring species size class declines (or grows), without otherwise affecting community dy-
namics, as long as the total biomass in the two species size classes remains constant. Minute
irregular deviations from this neutral competition will lead to irregular increases and decreases
of biomasses of species of similar size, resulting in a ragged species size spectrum that is smooth
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only when averaged over sufficiently wide intervals on the log-species-size axis. In reality food
webs are more complex because traits other than body mass matter as well [7]. Two species
of similar size can therefore have very different sets of consumers and resources, and then do
not directly compete with each other. Frequent competitive exclusion of species of similar
size would only occur for (hypothetical) communities that are excessively over-saturated with
species. Competitive exclusion would then lead to extinction of species until a (near) natural
species richness is reached. Natural communities are in such a state: whenever competitive
exclusion would happen, it has (mostly) happened already. In natural communities competi-
tion between species of similar size is therefore smaller than expected from the simplifying
assumption that body-size alone controls feeding interactions.

The correction term puts this right by damping modulations of small wavelength along the
species size spectrum. It is constructed such that dynamics on scales much longer than σr along
the (lnm∗)-axis are not affected. The parameter ρ controls the strength of the suppression of ar-
tificial competitive exclusion amongst species of similar size in the model. The particular form
of the correction and constraints on the parameters were derived in CAT based on heuristic
ecological considerations. A systematic analytical derivation of the correction from first princi-
ples would require a better understanding of food-web structure and dynamic than we currently
have.

The transition from the linear to the non-linear SSSM permits introduction of a boundary
condition representing the upper cutoff of the species size spectrum, above which abundances
decline to zero. This is done by simply fixing

B(m∗) = 0 for m∗ > m∗max, (4)

with m∗max representing the maturation body mass of the largest species present in the commu-
nity.

The lower boundary condition is implemented in the model by fixing

B(m∗) = xB̃totm
1−λ
∗ for m∗ < m∗min. (5)

The constant B̃tot is chosen such that B(m∗) = B̃totm
1−λ
∗ corresponds to the ideal equilibrium

power-law species size spectrum in the so called oligotrophic regime of the model, where the
feeding level f(m) = f0 is the same for all body sizes m, with some constant 0 < f0 < 1 (CAT,
Section 2.1 and p. 457). It is given by

B̃tot =
Ñ∫∞

−∞e(λ−2)uβ̃(u)du
, (6a)
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where

Ñ =
k

√
2πγσs

{
βn−1e(n−1)

2σ2
s/2 −

(
α− k

h

)
βλ−2e(λ−2)

2σ2
s/2

} (6b)

is the corresponding power-law coefficient for the community size spectrum. The dimensionless
scale factor x in Eq. (5) can be varied to represent variations in trophic state. To achieve a
smooth transition between m∗-ranges of fixed B(m∗) for m∗ < m∗min and dynamic B(m∗) for
m∗min ≤ m∗ ≤ m∗max, a further damping term −0.5g1−nyr−1mn−1

∗ [B(m∗)− yB̃totm
1−λ
∗ ]/[1 +

(m∗β
−1m−1∗min)

1/2] is added on the right-hand side of Eq. (3), following CAT (Section 8.2). It
affects dynamics only for m∗ . βm∗min, with β representing the typical predator-prey mass
ratio.

Supplementary Note 2: Model parameterization

Because of several simplifications of empirical laws invoked in the construction of the SSSM,
one cannot expect there to be a “correct” set of values for the model’s life-history and physio-
logical parameters that could be determined through direct measurements. Instead, the question
we ask here when discussing the model’s parameterization is just whether the values we did
choose are broadly in line with the numerical ranges observed for corresponding empirical pa-
rameters. Our choices of model parameters (Supplementary Table 1) are based on those by [2]
and CAT (Section 8.1), with some modifications required to make the model more representa-
tive of pelagic communities and to reproduce the empirical characteristics of dome formation.
When there was a choice, we preferred values representative of zooplankton, as zooplankters
are intermediate within the range of characteristics relevant for pelagic size spectra.

Compared to [2], the allometric coefficient for metabolic losses was reduced by a factor 4
to 2.5g1−nyr−1. The empirical value for this parameter depends on body architecture [8]. Our
choice comes closer to that found for copepods, while the original value was rather represen-
tative of fish [8, Fig. 1b]. The parameter specifying the preferred predator-prey mass ratio was
raised to β = 500 from 100. Both values are compatible with the empirical range of values for
aquatic organisms in general [9, Fig. 3] and for planktonic predators in particular [10, Fig. 3]. In
line with the increase in β, the width of the predator-prey mass ratio window on the ln(m) scale
was increased to σs = 1.5 from 1. Assimilation efficiency was reduced from 0.6 to α = 0.3, a
typical value for zooplankton [11, Tab. 1]. The allometric exponent for search&attack rates was
increased from p = 0.8 to p = 0.9 to better reproduce observed values around −1.10 for the
slope−1−p+n of normalised size spectra at low nutrient levels [12, 13]. The coefficient γ for
search&attack rates was adjusted from 1.6× 104 g1−qm−3yr−1 [2, Eq. 16] to 105 g1−qm−3yr−1

to account for our quantification of biomass in terms of carbon rather than wet weight and to
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reproduce observed biomass density in pelagic systems (Fig. 3a). The value of the coefficient
of the damping term in Eq. (3) is constrained only by a dimensional analysis. It has the same
dimensions as the coefficients of the rates of food-intake h and metabolic losses r. Combin-
ing these, one obtains a corresponding coefficient for the maximum rate of food assimilation
minus losses, αh − r. In our parameterization, this evaluates to 23 g1−nyr−1. Our choice
ρ = 10 g1−nyr−1 is consistent with the expectation that ρ is of similar magnitude. The heuristic
argument of CAT to constrain the width of the size range of damping, σr, suggests it should be
of the magnitude of the typical distance on the (lnm∗)-axis between the main predators or prey
of a species. Assuming that a typical consumer has approximately three prey species making
a major contribution the diet [14, 6] (and fewer “main” predators), and noting that we set the
width of the predator-prey mass ratio window to σs = 1.5, our choice σr = 0.5 = σs/3 is
consistent with these considerations.

Finally, the simple approximation derived in CAT (Eq. [114]) for the distribution β̃(u) of a
species’ biomass over the logarithmic body size axis u = ln(m/m∗) was replaced by

β̃(u) =

η(1− n)

η + (1− n)ηn − ηx1−n0



0 if exp(u) < x0,

eu(1−n) if x0 ≤ exp(u) < 1,

e(2−n)u/(1−n)ηn(e−uηn − e−nuη)1/(1−n)

(ηn − η)1/(1−n)[(euη)n − euη]
if 1 ≤ exp(u) < η−1,

0 if η−1 ≤ exp(u).

(7)

This expression describes a steady-state size distribution of individuals that, after being born at
size x0m∗, utilise all assimilated food for maintenance and growth until they reach maturation
at size m∗, from where on they invest a proportion (ηm/m∗)

1−n of available energy into repro-
duction. Such a maturation schedule implies von Bertalanffy growth trajectories for m > m∗
[2]. Equation (7) above follows from a metabolic model according to formula (9) of [2] in the
limit of infinitely fast maturation. In this limit, a complicated but explicit expression for the
Fourier transformation of β̃(u) can be computed using symbolic algebra software, which is an
important step when studying the SSSM analytically. The graph of β̃(u) is shown in Supple-
mentary Figure 2. In this graph, the sudden increase of biomass density above m = m∗ reflects
the sudden slowing down of growth after maturation (as on a congested highway). The subse-
quent decline of density results from the thinning of ever-slower growing cohorts by predation.
The ratio of offspring to maturation body mass x0 was set to 0.02, consistent with results for
invertebrates of around 1µgC from an independent meta-analysis [15, Fig. 3]

The dynamic maturation body-mass range is chosen as m∗min = 20 pgC, m∗max = 10 kgC,
representing a typical size range from phytoplankton to large fish in lakes.
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Supplementary Figure 2: Assumed distribution a population’s biomass over the logarithmic
body mass axis. The value u = 0 corresponds to the body mass at first maturation. The curve
is given by Eq. (7) with x0 = 0.02, η = 1/4 and n = 3/4.

Supplementary Table 1: Details of model definition and parameters. For an illustration of the
dependencies between size-dependent quantities, see Supplementary Figure 1.

Symbol Value Interpretation
α 0.3 Assimilation efficiency
β 500 Preferred predator-prey mass ratio

β̃(u) Eq. (7) Biomass density of population on u =

ln(m/m∗) axis, scaled to
∫
β̃(u)du = 1

γ 105 g1−qm−3yr−1 Coefficient of search&attack rate
λ 2 + q − n Size-spectrum exponent in oligotrophic

regime

µp(mp)

∫ ∞
0

s

(
ln

m

mp

)
[1− f(m)]γmqN (m)dm Predation mortality of species of size mp

σr 0.5 Body size range for food-web effects
σs 1.5 Width of predator-prey size-ratio window
η 0.25 Maturation- over asymptotic body mass

φ(m)

∫ ∞
0

mpN (mp)s

(
ln

m

mp

)
dmp Food available to individuals of size m

B̃tot Eq. (6a) Coefficient of ideal oligotrophic power-law
species size spectrum

(continued on next page)
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Supplementary Table 1 (continued)

Symbol Value Interpretation

f(m)
γmqφ(m)

γmqφ(m) + hmn
Feeding level of species of size m

h 85 g1−nyr−1 Coefficient of maximal food intake
k 2.5 g1−nyr−1 Coefficient of metabolic loss rate

N (m)
∫∞
0
B(m∗)Wm∗(m)dm∗ Community size spectrum

m variable Individual body mass
mp variable Body mass of prey individual
m∗ variable Maturation body mass
m∗min 20 pg Lower cutoff of species size spectrum
m∗max 10 kg Upper cutoff of species size spectrum
n 0.75 Allometric exponent of respiration
Ñ Eq. (6b) Coefficient of ideal oligotrophic power-law

community size spectrum
q 0.9 Allometric exponent of search/attack rate
ρ 10 g1−nyr−1 Strength of food-web effects

s(x) exp [−(x− ln β)2/(2σ2
s)] Predator-prey mass-ratio window

Wm∗(m) m−2β̃(ln(m/m∗)) A population’s density of individuals on m-
axis, scaled to

∫
mWm∗(m)dm = 1

x0 0.02 Body mass of offspring relative to m∗

Supplementary Note 3: Model Simulations

For numerical simulations of size-spectrum dynamics, the log10(m∗) and log10(m)-axes were
discretized to N = 512 lattice points separated by 0.05 starting from m∗ = m∗min. Evaluation
of Λ(m∗), given by Eq. (1) and Supplementary Table 1, requires computation of several nested
integrals over m∗ and m in each simulation time step (Supplementary Figure 1). We approxi-
mated these integrals by midpoint Riemann sums over the simulation lattice, and made use of
the simplifying allometric scaling assumptions for life-history traits in Supplementary Note 1 to
convert these sums into discrete convolution operations, which were evaluated using fast Fourier
transforms. This reduced the computational cost of the model from O(N2) to O(N logN) per
simulation time step. The resulting system of ODEs was simulated using the solver CVODE
from the SUNDIALS package [16], which automatically adjusted approximation order and step
size to achieve our prescribed accuracy of 10−4 per step for lnB(m∗). In addition, upper limits
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on step size, scaling as the square-root of time since the start of simulations, were imposed to
avoid numerical instability (CAT, Sec. 8.2).

The initial condition for each simulation was taken to be x times the ideal oligotrophic
power-law size spectrum B̃totm

1−λ
∗ . Because for large x the size spectra can exhibit periodic

or irregular dynamics, simulations were first run with a burn-in of 20 years, before 100 snap-
shots taken in 1-year intervals were evaluated to compute medians and quantile ranges of the
characteristics, B0, S, A, and D in Fig. 3.

Supplementary Note 4: Empirical size spectra and fitted modulated lines

In the following, we show the graphs of all 25 empirical size spectra included in this study (open
circles), together with the linear-plus-sinusoidal fits (red lines) described in the main text. Since
only data up to 0.1gC body mass were used for the model fits (Materials Methods), the red lines
are restricted to this range. For easy comparison, all graph have identical horizontal axes and
identically scaled vertical axes. The spectra are shown in the order in which they were listed
in Materials and Methods: approximately sorted by increasing nutrient concentration, while
keeping related spectra together.
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Characteristic Scale c0 c1 c1/c0 p corr(c0, c1)

Intercept B0 log10(gCm−3) −4.25(11) 1.53(14) 9.5× 10−11 -0.42
Slope S dimensionless −0.1197(71) 0.0789(86) −0.66 3.5× 10−09 -0.4
Amplitude A log10(biomass) 0.363(36) 0.095(32) 0.26 0.0068 -0.6
Separation D log10(body mass) 5.30(19) −0.34(16) −0.064 0.042 -0.81

Supplementary Table 2: For each characteristic C = B0, S, A, D, the table gives details of
the weighted linear regression C = c0 + c1 log10(TP/µg L−1). Figures in parentheses represent
standard errors of regression coefficients, p relates to the null-hypothesis c1 = 0 (two-tailed).

Supplementary Note 5: Regressions of empirical size-spectrum characteristics vs nutri-
ent enrichment

In Supplementary Table 2, we provide details of weighted linear regressions of the four empir-
ical size-spectrum characteristics B0, S, A, and D against log10 TP. Weights were taken as the
inverse squared standard errors of data points. The weighted regressions were computed using
the lm function of the R programming language [17, version 3.4.2]. The ratio c1/c0 is tabulated
as a measure of effect strength, excluding the case of B0 where this value depends on the units
of measurement chosen. This shows that the effect of nutrient enrichment on the separation
between domes D is weak compared to the effects on slope S and dome amplitude A.

Supplementary Note 6: The linear SSSM and its responses to size-specific pressures

In Supplementary Note 7 below we present an analysis showing that domes in the SSSM are
generated by an amplifying top-down cascade resulting from nutrient enrichment. The analysis
is carried out using the linearized version of the model described above, the linear SSSM. In the
present section the linear SSSM and the linear response theory derived for it in CAT are briefly
recalled.

6.1 Formulation of the linear SSSM

Two variants of the linear SSSM have been analysed in CAT. They were there referred to as the
“oligotrophic” and the “eutrophic” regime. Here, we consider the oligotrophic regime, defined
in Supplementary Note 1 above. In this regime, dynamics are linearized around an idealised
equilibrium model state B(m∗) = B0(m∗) of the form

B0(m∗) = B̃totm
1−λ
∗ (for all m∗ > 0), (8)

with B̃tot given by Eq. (6).
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The linear SSSM is best formulated using instead of m∗ the logarithmic maturation body
mass variable u = ln(m∗/M), with M denoting some reference body mass, e.g. 1 gC. The
distribution of a community’s biomass over the u-axis is given by m∗B(m∗) = MeuB(Meu).
We follow CAT and denote by b(u) deviations of this distribution from that given by the base
state, that is

b(u) = MeuB(Meu)−MeuB0(Meu). (9)

The linear SSSM is an integro-differential equation for the dynamics of b(u). Absent any
external pressures, they are given by

∂b(u)

∂t
= (Meu)n−1

∫ ∞
−∞

K̃(u− v)b(v)dv. (10)

In this equation, the interaction kernel K̃(w) describes for any w = u − v the strength of the
effect of populations of species of size Mev on a focal species of size Meu. The parameter w is
thus a logarithmic size ratio w = ln[(Meu)/(Mev)]. The interaction kernel K̃(w) incorporates
all the “ecology” of the model. In the SSSM, it contains contributions due to predation mor-
tality and density-dependent growth, and a term describing damping due to food-web effects,
corresponding to that in Eq. (3) above. An explicit formula will be given in Supplementary
Note 7 below. The factor (Meu)n−1 in Eq. (10) models the size dependence of the time scale
of demographic processes: populations of smaller species tend to change faster than those of
larger species (note that n < 1, Supplementary Table 1).

6.2 Fourier transforms

Below we shall make heavy use of Fourier transforms of continuous functions. Here we specify
the particular form in which we define Fourier transforms, because conventions for this vary
in the literature. For any function f(x) defined over the real numbers, we define its Fourier
transform f̂(ξ) such that, at least formally,

f̂(ξ) =

∫ ∞
−∞

e−iξxf(x) dx, f(x) =

∫ ∞
−∞

eiξx

2π
f̂(ξ) dξ, (11)

where i is the imaginary unit (i2 = −1) and ξ is a real- or complex-valued variable. For a gentle
but mathematically rigorous discussion of Fourier transforms and related topics, see e.g. [18].

6.3 Linear response theory for the SSSM

How will the species size spectrum respond when species of a specific size are subjected to
a persistent, constant pressure, such as continuous removal, stocking, or feeding, i.e., a press
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perturbation? What is the new equilibrium reached after all ecological interactions up and down
the size axis have played out? A general analysis of equations of the form (10) suggests that the
following recipe answers this question (CAT, Sec. 8.4.3):

1. Compute from K̃(w) its Fourier transform K̂(ξ).

2. Obtain the analytic continuation of K̂(ξ) into the complex plane (if an explicit expression
for K̂(ξ) is available, this usually amounts to simply permitting ξ to attain any complex
value, up to a few values where K̂(ξ) might be singular).

3. Find the first few zeros of K̂(ξ) in the complex plane (the values of ξ where K̂(ξ) = 0)
in order of increasing |ξ|, and evaluate the derivatives K̂ ′(ξ) = dK̂(ξ)/dξ at these zeros.

4. Draw a graph of the complex plane, indicating in it each zero of K̂(ξ) by an arrow
pointing from the zero ξ into the direction ( Re[K̂ ′(ξ)], Im[K̂ ′(ξ)] ). Then draw the line
Im(ξ) = −(2− λ) = λ− 2, with λ defined as in Supplementary Table 1. An example of
such a graph is given in Supplementary Figure 3. For the representation of size spectra
used here, the value 2− λ corresponds to the slope (actually: power-law exponent) of the
ideal power-law size spectrum in the oligotrophic regime.

5. From this graph, read off the responses of the species size spectrum to a press perturba-
tions on a give size class as follows. The zeros come in pairs ±Re(ξ) + i Im(ξ), unless
Re(ξ) = 0. Each of these pairs or imaginary singletons corresponds to one type of re-
sponse. If the attached arrow points upwards, it is a top-down response, where species
smaller that those perturbed are being affected. If the attached arrow points downward, it
is a bottom-up response.

Purely imaginary zeros correspond to un-modulated size-spectrum responses. In all other
cases the response is modulated, i.e. a “cascade”. The wavelength of the modulation
along the u axis is |2π/Re(ξ)|. That is, neighbouring maxima (e.g. the domes) occur for
species with maturation body sizes differing by an approximate factor exp(|2π/Re(ξ)|).

If the attached arrow points towards the line Im(ξ) = λ − 2, the response is attenuating,
i.e. the proportional change in B(m∗) tends to become smaller the more m∗ is different
from the size of the perturbed species. Conversely, if the attached arrow points away from
the line Im(ξ) = λ− 2, the response is amplifying, i.e. the proportional change in B(m∗)

tends to become larger the more m∗ is different from the size of the perturbed species.
Quantitatively, the amplitude of the proportional change in B(m∗) for species that are by
a factor Z larger or small than those perturbed is by a factor Z | Im(ξ)−λ+2| larger or smaller
than that of the perturbed species.

21



-1 -0.5 0 0.5 1
Re ξ

-0.5

0

0.5

Im
 ξ λ-2

Zeros of K^ (ξ)

Supplementary Figure 3: Points in the complex plane corresponding to the main responses of
the SSSM to press perturbations. Corresponding size-spectrum responses are illustrated. From
the centre outwards, these are the conventional bottom-up effect, the conventional top-down
cascade, and a bottom-up cascade. Parameters as in Supplementary Table 1 with x = 1 (which
implies y = 1 below).

In Supplementary Figure 3, which corresponds the parameter set used in the main text (Sup-
plementary Table 1) with x = 1, one sees, in order of increasing distance from the origin of the
complex plane, one imaginary singleton and two complex pairs. These are the three kinds of
responses of size spectra to pressures mentioned in the main text:

1. The singleton at ξ = 0 + 0.055 i has a downward-pointing arrow attached. It there-
fore corresponds to an un-modulated bottom-up effect. Because it points away from the
dashed-dotted line, the effect is amplifying. This is the conventional bottom-up effect
with trophic amplification. [The ecological reason for trophic amplification is that more
abundant prey can not only sustain more predators, the prey is also easier to find; see 6,
Section 21.2.2.]

2. The pair of zeros at ξ = ±0.528 + 0.034 i has upward-pointing arrows attached. It there-
fore corresponds to a modulated top-down effect. Because the arrows point towards the
dashed-dotted line, the effect is attenuating. This is the conventional trophic cascade,
here with effect strengths declining towards lower trophic levels, as observed for marine
pelagic systems [19].

3. The pair at ξ = ±0.803 + 0.163 i has downward-pointing arrows attached. It therefore
corresponds to a modulated bottom-up effect, i.e. a bottom-up cascade as predicted by the
classical theory [20, 21, 22]. Because these zeros are (for the chosen parameters) located
very close to the line Im ξ = λ − 2 = 0.15 (cf. Supplementary Table 1), the cascade is
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effectively neither amplifying not attenuating. However, with increasing nutrient levels it
gets “drowned out” by trophic amplification (see below).

Zeros even farther away from the origin appear to always correspond to attenuating responses
(e.g. Supplementary Figure 6). They are less important ecologically, because with increasing
|Re ξ| the corresponding wavelength on the u-axis becomes shorter and with increasing | Im ξ|
attenuation becomes stronger, which makes them relevant only for highly size-specific pressures
and only for species of size very similar to those where pressure is applied.

6.4 Demonstration of the recipe on a simple example

The method described above has been verified numerically in CAT. In this section, we demon-
strate it for a highly simplified, exactly solvable problem as a transparent illustration of how
the method works. We will first introduce the example problem and its exact solution, and then
compare this solution with the predictions made in Sec. 6.3 above.

Consider the simple drift-diffusion-growth equation,

df(x, t)

dt
= rf(x, t)− vdf(x, t)

dx
+D

d2f(x, y)

dx2
, (12)

which specifies how the distribution of some quantify f(x, t) over the x axis how it changes
through time t. The three terms on the right-hand-side describe self-reproduction at a rate r,
drift along the x axis with velocity v and diffusion at a rate D > 0. This equation has, amongst
others, solutions of the form of drifting Gaussians

f(x, t) = fG(x, t; f0, σ0)
def
=

f0e
rt√

2π(2Dt+ σ2
0)

exp

[
− (x− vt)2

4Dt+ 2σ2
0

]
, (13)

with free parameters f0 and σ0. Now, consider a modification of Eq. (12) where for t ≥ 0

a Gaussian inhomogeneity of width σ centred at x = 0, representing a press perturbation, is
added to its right-hand side:

df(x, t)

dt
= rf(x, t)− vdf(x, t)

dx
+D

d2f(x, y)

dx2
+

e−x
2/(2σ2)

√
2πσ

(for t ≥ 0). (14)

If one assumes f(x, t) ≡ 0 for t < 0, this equation has for t ≥ 0 a unique solution that can
be represented by an integral over drifting Gaussians that originated from the inhomogeneity
during the times τ between zero and t:

f(x, t) = fI(x, t)
def
=

∫ t

0

fG(x, t− τ ; 1, σ)dτ. (15)
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Supplementary Figure 4: The two points in the complex plane corresponding to zeros of the
interaction kernel for the simple model of Sec. 6.4. Parameters v = 1, D = 1, r = 0.1. The two
zeros are given by Eq. (21); λ = 2.

In the limit σ → 0, this integral evaluates to

fI(x, t) =
e(xv−|x|

√
v2−4Dr)/(2D)

2
√
v2 − 4Dr

erfc

(
|x| − t

√
v2 − 4Dr

2
√
Dt

)
+

e(xv+|x|
√
v2−4Dr)/(2D)

2
√
v2 − 4Dr

erfc

(
|x|+ t

√
v2 − 4Dr

2
√
Dt

)
, (16)

with erfc denoting the complementary error function [23]. This solution can be verified directly
by inserting it into Eq. (14) and taking the limit σ → +∞. In the following, we concentrate
on the case 4Dr < v2, where the arguments of the error functions are real-valued. For real
arguments y, the function erfc(y) transitions smoothly from 2 to 0 as y passes from negative
to positive values. The first term in Eq. (16) therefore describes two fronts that propagate at a
speed ±

√
v2 − 4Dr away from zero. The first occurrence of erfc in Eq. (16) approaches 2 after

sufficiently long waiting times t for any fixed value of x. The second occurrence converges to
zero as t increases. The solution therefore reaches the steady state

lim
t→+∞

fI(x, t) =
e(xv−|x|

√
v2−4Dr)/(2D)

√
v2 − 4Dr

. (17)

We now show that this result is consistent with the recipe of Sec. 6.3 when adapting it to
Eq. (12). The equation can be rewritten as
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df(x, t)

dt
=

∫ +∞

−∞
K(x− y)f(y, t)dy, (18)

with an interaction kernel

K(x) = rδ(x)− vδ′(x) +Dδ′′(x), (19)

where δ(x) represents the Dirac delta function. Complications due to deviations from Sheldon’s
hypothesis [24] (λ 6= 2) are not relevant here, we therefore set λ = 2 when applying the recipe.

Step 1 of the recipe is to compute the Fourier transform of K(x). According to Eq. (11) this
is

K̂(ξ) = r − ivξ −Dξ2. (20)

Because K̂(ξ) is an entire function in ξ, its analytic continuation into the complex plane, re-
quired by Step 2, is formally identical.

Step 3 requires computation of the zeros of K̂(ξ). As for the direct solution of Eq. (14)
above, we concentrate on the case 4Dr < v2. Further, we consider only the case v > 0; the
analysis for v < 0 is analogous. Under these conditions, K̂(ξ) has two purely imaginary zeros
given by

ξ+ =
−v +

√
v2 − 4Dr

2D
i and ξ− =

−v −
√
v2 − 4Dr

2D
i, (21)

with |ξ+| < |ξ−|. If r has a value close to zero one can approximate ξ+ ≈ − r
v
i and ξ− ≈

(− v
D

+ r
v
)i to first order in r. That is, ξ+ then tends to be considerably closer to zero then ξ−

and therefore more important for responses to press perturbations according to the reasoning of
Sec. 6.3. At the zeros, the first derivative K̂ ′(ξ) = −iv − 2Dξ evaluates to

K̂ ′(ξ+) = −
√
v2 − 4Dr i and K̂ ′(ξ−) =

√
v2 − 4Dr i. (22)

Figure 4 shows the graph drawn following the instructions of Step 4 for parameters v = 1,
D = 1, r = 0.1. Interpreting this graph according to Step 5 mutatis mutandis, the arrow for
ξ+ predicts a response that propagates towards larger x (because the arrow points downwards).
It is amplifying because it points away from the semi-dashed line (here at Im ξ = 0). Corre-
spondingly, the arrow for ξ− predicts an attenuating response that propagates towards smaller
x. Because ξ− is considerably further away from zero than ξ+, the decay of the attenuating re-
sponse is comparatively fast. The corresponding perturbation response therefore does not affect
overall system behaviour much.
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Supplementary Figure 5: Exact solution of Eq. (14) for σ → 0, given by Eq. (16), at subsequent
points in time starting at t = 0.2 and separated by 2 time units. The solution converges to the
form given by Eq. (17). Parameters as in Supplementary Figure 4.

In Supplementary Figure 5 the exact solution, Eq. (16), is evaluated for the same set of pa-
rameters. As predicted by Eq. (17), it converges to an equilibrium in which f(x) exponentially
increases for positive x and exponentially decreases at a faster rate for negative x. Thus all
predictions derived from the recipe are borne out: the behaviour of f(x, t) resulting from the
press-perturbation at x = 0 is dominated by the response amplifying towards larger x, and there
is a second response decaying towards smaller x. In passing, we note that a more detailed com-
parison with results from CAT would show that the method not only predicts the quantitative
rates of attenuation and decay along the x axis correctly for this example, but also the speed of
propagation of the fronts in Eq. (16) and the denominator in Eq. (17).

From this example problem it is not difficult to construct a corresponding problem with a
spatially modulated solution. For any fixed wave number q > 0 of the modulation, simply
go over to the new dependent variable g(x, t) = eiqxf(x, t). Expressed in terms of this new
variable, the drift-diffusion-growth equation, Eq. (12), becomes

dg(x, t)

dt
= rg(x, t)− v

(
d

dx
− iq

)
g(x, t) +D

(
d

dx
− iq

)2

g(x, y). (23)

The responses of g(x, t) to localised press perturbations, which can be computed directly from
those of f(x, t), are modulated patterns with wavelength 2π/q.

It is instructive to compare the approach used here to the linear stability analysis conven-
tionally performed in the study of pattern formation [25]. The conventional approach interprets
K̂(ξ) as specifying, for real-valued ξ, the linear growth rate of sinusoidal modulations of f(x, t)

with wave number ξ, i.e. wavelength 2π/ξ [or as a corresponding eigenvalue of the linear oper-
ator given by the right-hand-side of Eq. (18)]. The unperturbed system, Eq. (12), is considered
stable if Re[K̂(ξ)] < 0 for all real ξ, and unstable if Re[K̂(ξ)] > 0 for some ξ. In our example
Re[K̂(ξ)] = r − Dξ2. The system is therefore linearly stable for r < 0 and linearly unstable
for r > 0 (because then Re[K̂(0)] = r > 0). The transition to instability occurs at r = 0,
exactly when ξ+ ≈ −ri/v crosses the real axis, thus signalling the transition from attenuating
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to amplifying system responses to localised press perturbations. We have thus shown that, for
this example, where both approaches are applicable, the conventional stability analysis and the
approach of Sec. 6.3 are equivalent.

A limitation of the method of Sec. 6.3 is that it works by constructing stable steady-state
solutions. When responses to pulse perturbations do not drift sufficiently fast to the left or the
right on the x axis, responses to press perturbations can pile up at one location and no sta-
ble steady-state solutions exist in linear models. Such systems called absolutely unstable. By
contrast, the instability discussed in the previous paragraph is called a convective instability,
because of any fix x a steady state is eventually reached. Our simple model, Eq. (12), becomes
absolutely unstable for 4Dr ≥ v2 [26]. Unless v = 0, the transition to absolute instability
therefore always occurs after the transition to convective instability. This ordering of transitions
is generic in extended 1D systems when the symmetry between left and right along the coor-
dinate axis is broken. It permits us here to pin down transitions to convective instability while
disregarding complications due to absolute instability.

Supplementary Note 7: Analytic theory for the formation of dome patterns

Mathematically, there are two routes that lead to amplification of top-down cascades with in-
creasing primary production in the non-linear SSSM. The starting point for both is an increase
in phytoplankton due to nutrient enrichment, and the resulting conventional, un-modulated
bottom-up effect. Because this effect is amplifying towards larger body sizes, it does not only
lead to an overall increase in community biomass (Figs. 1a and 3a of the main text), but also
makes the fitted slope S of the size spectrum less steep (Fig. 3b). The response of the size
spectrum modulation to these changes is a second-order phenomenon: it is a change in how the
system responds to pressures resulting from other changes in the system. A rigorous analytic
study of this phenomenon would require an extension of the linear SSSM by terms quadratic in
b(u), to be derived from the non-linear SSSM; and then a mathematical analysis of this model.
Here a simpler, heuristic approach is chosen, where the two effects are described by modifying
the formal description of the base state of the linear model itself, followed by an analysis of the
consequences that these modifications have for linear responses.

7.1 Implications of a changing size-spectrum slope

The increase in the fitted slope S seen in simulations (Fig. 3b of the main text) is due to trophic
amplification of bottom-up effects. In the linear theory, it is represented by the imaginary
singleton zero of K̂(ξ) in Supplementary Figure 3. Mathematically, one expects that trophic
amplification leads to small deviations of size spectra form a power-law form (CAT, Section
9.6). However, for the semi-quantitative considerations here it is fair to disregard this and
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equate the fitted size-spectrum slope S with a modified power-law exponent 2 − λ. By the
same amount by which S increases in Fig. 3b, the dash-dotted line in Supplementary Figure 3
therefore effectively sinks. Applying the recipe given above for the interpretation this kind
of graph to a situation where the dash-dotted line sinks as nutrients increase, one concludes
that with increasing nutrient supply bottom-up cascades become (more) attenuating, top-down
cascades become less attenuating and conventional bottom-up effects less amplifying.

The ecological interpretation of this is straightforward. An increase in S ≈ 2 − λ means
that, in comparison with the biomass of smaller species, the biomass of larger species increases.
The effects of responses to pressures that propagate to larger species are therefore attenuated
in relative terms. Their effects get “drowned-out” in the high overall biomass of large species.
Likewise, the attenuation of the top-down cascade becomes weaker because, if large species
are relatively more abundant, changes in their biomass by a small proportion can lead to more
pronounced proportional changes in the abundances of smaller species.

The amplification of top-down effects through an increase of the size-spectrum slope S is
thus more a matter of book-keeping than of actual ecology, which results from considering rel-
ative rather than absolute changes in abundance in empirical data. Nevertheless it is important,
because for practical reasons ecologists prefer to compare relative rather than absolute changes
[19].

7.2 Implications of overall biomass increase

To understand the effect of an overall increase in community biomass on size-spectrum dynam-
ics, a closer look at the interaction kernel K̃(w) is required. In CAT (Eqs. [81], [86]), an explicit
expression for K̃(w) was derived in terms of its Fourier transform. With the minor modifica-
tions of the SSSM introduced in Supplementary Note 1 above, it reads

K̂(ξ) = B̃totκ̂0(ξ + νi) β̂(−ξ − νi)β̂(ξ) +

Food-Web︷ ︸︸ ︷
X̂(ξ), (24)

where (for the oligotrophic regime) ν = 1− q; the function κ̂0 describes individual-level inter-
actions and is given by

κ̂0(ξ + νi) =

Feeding︷ ︸︸ ︷
αh2yγ

(yγφ̃+ h)2
ŝ(ξ)−

Predation︷ ︸︸ ︷
yγh

yγφ̃+ h
ŝ(−ξ − νi) +

Release︷ ︸︸ ︷
y2γ2Ñh

(yγφ̃+ h)2
ŝ(ξ)ŝ(−ξ − νi); (25)

β̂(ξ) is the Fourier transform of the population structure β̃(u) given by Eq. (7) above, with
the two factors in Eq. (24) representing the computation of the individual-based community
size spectrum N (m) from the species size spectrum B(m∗) (Supplementary Table 1) and the
computation of species-level dynamics from individual-level interactions (Eq. (1)); and
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X̂(ξ) = ρ

[
exp

(
−σ

2
rξ

2

2

)
− exp

(
σ2
r(λ− 2)2

2

)]
. (26)

This last term describes the damping of short wavelength (i.e. large |Re ξ|) modulations of the
size spectrum due to food-web effects. It differs from the form used in CAT by having the
constant exp (σ2

r(λ− 2)2/2) (= 1.003 for parameters as in Supplementary Table 1) in place of
1.

The new parameter y in Eq. (25) equals y = 1 for the linear SSSM (but see below); Ñ is
the coefficient scaling the community size spectrum of the base state; φ̃ = Ñ ŝ

(
i(λ−2)

)
scales

food availability; and ŝ(ξ) is the Fourier transform (on a logarithmic scale) of the predator-prey
mass-ratio window s(x). For our choice of s(x) (Supplementary Table 1), this is

ŝ(ξ) = (2π)1/2σs exp

[
−σ

2
sξ

2

2

]
β−iξ. (27)

The three named terms in Eq. (25) correspond to different ecological effects. From the
derivation of these terms in CAT (Sec. 6.3), one see that Feeding describes increases in pop-
ulation growth with increasing density of food; Predation describes population decline with
increasing density of predators; and the last term, Release, describes release from predation in
situations where consumers of the focal species are (partially) satiated [27]. The focal size class
then experiences a safety-in-numbers effect that reduces its per capita predation mortality. This
release from predation increases as the focal size class and species of similar size become more
abundant, and vice versa.

We included a factor y in several places in Eq. (25) as a simple way to model the effects of
an overall increase of community biomass in the SSSM. Values y 6= 1 describe the effects of
scaling the biomass of the based state by a factor y, which formally results from multiplying
B̃tot by y. This includes the direct effect via Eq. (25), and indirect effects through the scale
factors for community size spectrum Ñ and food availability φ̃. Alternatively and perhaps
more transparently, y 6= 1 can be interpreted as describing effective re-scaling of the value of
the coefficient of search&attack rates γ: every occurrence of γ in Eq. (25) goes along with a
factor y.

Important for the following is that changes in y affect the magnitude of the three named
terms in κ̂0 in different ways. For y smaller than h/γφ̃, the main effect of increasing y is
to enhancing the role of the term named Release compared the terms Feeding and Predation,
because y enters quadratically in the numerator of Release but only linearly in the numerators
of Feeding and Predation. This makes ecological sense, because Release describes an effect
resulting from (partial) saturation of consumers. At low food abundance it plays no important
role.
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Supplementary Figure 6: Location of the zeros of K̂(ξ) in the complex plane and arrows indi-
cating arg dK̂(ξ)/dξ for increasing enrichment y. For y ≈ 8 the pair of zeros corresponding
to top-down cascades crosses the dash-dotted line, signifying a transition from attenuating to
amplifying top-down cascades.

However, as y increases in magnitude beyond h/γφ̃ and the expression yγφ̃ + h in the
denominators in Eq. (25) can be approximated as yγφ̃, further increases in y lead to a decline of
the importance of Feeding (which then scales as 1/y) relative to the terms Predation and Release
(where y effectively cancels out). Ecologically, this is the transition from density-dependent
feeding at low food abundance to effectively density-independent feeding when food is plenty.
Supporting this analysis, the expression for κ̂0 derived in CAT for the so-called eutrophic regime
is identical to that obtained by taking the limit y → +∞ in Eq. (25).

With this preparation, it is now possible to study mathematically the effects of biomass
scaling on how responses to press perturbation propagate along the size spectrum. All one
needs to do is to see how the zeros of K̂(ξ) in the complex plane respond to changes in y. For
the parameters used here (Supplementary Table 1), this is shown in Supplementary Figure 6.

Interestingly, the strongest response to changes in y in Supplementary Figure 6 is that of
the pair of zeros corresponding to the top-down cascade. It moves upward (Im ξ increases) and
crosses the line Im ξ = λ− 2 at about y = 8. After crossing the line, the arrows attached to the
zeros point away from the line, which means that, by to the rules explained above, the top-down
cascade has become amplifying!

With further increases in y, the pair of zeros climbs further, signifying stronger amplification
in the linear model (in the full model, non-linear effects set limits to this amplification), until
about y = 64, where the arrows reverse orientation. Remarkably, biomass scaling has a much
weaker effect on the positions of the other zeros, in particular those corresponding to bottom-up
cascades.

Figure 6 thus demonstrates that, with the parameters used here, the linear SSSM predicts a
transition from attenuating to amplifying top-down cascades when overall community biomass
increases. The analytic formulation of the SSSM now allows us to answer in addition the
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Supplementary Figure 7: Areas of dominance of terms contributing to K̂(ξ) (Eq. (24)) in the
complex ξ-plane for (a) y = 1 and (b) y = 512. Colouring is green for Feeding, red for Pre-
dation, blue for Release, and grey for the Food-Web term. For each term Term(ξ), black lines
indicate where the imaginary part of Term(ξ) is close to zero, thus providing information about
how arg Term(ξ) changes through the complex plane. The plots were generated by setting
the colour intensity for each term to (colour intensity) = exp[−7 |1 − Term(ξ)/K̂(ξ)|3]{1 −
[cos arg Term(ξ)]100} and adding intensities. The small coloured spots in both panels are arte-
facts of this method.

following two questions: what is the underlying mechanism and how generic is it?

The key to addressing these two questions is the observation that in different parts of the
complex plane, i.e. depending on ξ, the function K̂(ξ) is dominated by different terms (in the
sense that contributions by all other terms are comparatively small). Figure 7a indicates by dif-
ferent colours the areas dominated by the three terms Feeding, Predation (both times the factor
B̃totβ̂(−ξ − νi)β̂(ξ) from Eq. (24)), and Food-Web for y = 1. Their relative positions follow
from generic considerations and the formula for Fourier transforms, Eq. (11), with complex ar-
gument: Feeding dominates in the upper complex plane because it describes predominantly the
dependence on smaller (food) species; Predation dominates in the lower complex plane because
it describes the impacts of larger species; and Food-Web dominates towards the left and the right
along the real axis because all other terms decline to zero in this direction (they must when the
predator-prey size ratio window is continuous and bounded) while Food-Web contains a con-
stant contribution (here ρ exp (−σ2

r(λ− 2)2/2)), which describes reduced competition amongst
species of very similar size but with otherwise different trophic roles, as explained in Supple-
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mentary Note 1 above.
Except for the possibility of zeros due to the β̂ factors in Eq. (24), which plays no role here,

zeros of K̂(ξ) will typically arise only when two or more of the four terms Feeding, Predation,
Release, and Food-Web cancel each other. A simple example illustrating this principles is
the function sin(ξ) = 0.5 exp(iξ) − 0.5 exp(−iξ) for complex-valued arguments ξ. The term
0.5 exp(iξ) dominates sin(ξ) in the lower half plane, and 0.5 exp(−iξ) dominates in the upper
half plane. Because exp(iξ) itself has no zeros in the complex plane, sin(ξ) = 0 requires that the
two contributions have the same magnitude (specifically, the same absolute value) and cancel
each other. This is the case only along the real axis. In addition, for a zero to occur, arg[exp(iξ)]

and arg[exp(−iξ)] must be identical. Indeed, this happens at certain points along the real axis,
because arg[exp(iξ)] and arg[exp(−iξ)] depend differently on Re ξ. This is why the zeros of
sin(ξ) are lined up along the real axis. By the same reasoning, the zeros of K̂(ξ) will generally
line the boundaries between areas of dominance of terms, where contributions from different
ecological effects balance each other.

These considerations, combined with Supplementary Figure 7a, explain the positions of the
zeros in Supplementary Figures 3 and 6 for y = 1. Specifically, the zeros corresponding to the
conventional bottom-up and top-down effects result essentially form a balance of Feeding and
Predation. The zero corresponding to the bottom-up cascade is already strongly affected by the
Food-Web term; without food-web effects, the resulting perturbation response would be more
strongly amplifying. All other zeros, representing strongly damped cascades, result from either
a direct balance between Food-Web and Feeding or between Food-Web and Predation.

To understand why the conventional top-down effect responds particularly sensitively to
biomass scaling, as illustrated in Supplementary Figure 6, it is useful to consider first the situ-
ation for the very high scaling factor y = 512. The dominance of terms in the complex plane
for y = 512 is shown in Supplementary Figure 7b. As for y = 1, generic considerations are
sufficient to understand the relative positions of areas of dominance. Predation dominates over
Release in the lower complex plane, because Predation describes predominantly the impacts of
larger species, while Release describes effective interactions amongst species of similar size.
Release gradually replaces Feeding with increasing y because of the dependencies of these
terms on y discussed above. However, higher up in the complex plane Feeding holds out longer
with increasing y because it describes dependence on smaller species, rather than on species
of similar size. Finally, dominance of Release develops first in areas with small Re ξ because
this effect, involving a chain of two predator-prey interactions (prey-predator-prey), is less size
specific than Feeding and Predation. It therefore contributes over a wider range in w to K̃(w)

and, as result, over a narrow range in Re ξ to K̂(ξ). Mathematically in Eq. (25), this narrow
range results from the additional factor ŝ(−ξ−νi) compared to Feeding, which is localised near
Re ξ = 0.

32



As Release, with increasing y, breaks up the boundary between the areas dominated by
Feeding and Predation, the purely imaginary zero corresponding to the conventional bottom-
up effect gets located on the boundary between Release and Predation, while the pair of zeros
corresponding to the conventional top-down effect moves along with the boundary between
Release and Feeding (Supplementary Figure 7). This, too, can be understood from generic
considerations.

The imaginary singleton cannot be located between Release and Feeding, because the two
terms have the same sign and cannot compensate each other for un-modulated perturbation re-
sponses (i.e. Re ξ = 0). The balance must largely be between (positive) Release and (negative)
Predation.

For the pair of zeros corresponding to the conventional top-down effect, the situation is
opposite. Consider first a population located in a trough of a dome pattern for y = 1. The
population’s size is in equilibrium despite being comparatively low because of a balance of
gains (Feeding term) by enhanced food availability from the dome where species are by an
approximate factor β smaller and losses (Predation term) due to predation from the dome with
species that are approximately β times larger (for focal species located in domes the effects are
opposite). This balance is mathematically represented by the corresponding zero in the complex
plane.

With y = 512, species in troughs experience strong additional losses due to comparatively
low predation release (Release term). These losses cannot be compensated by additional losses
from predation, only by gains from feeding. Hence Feeding and Release terms must balance in
this case and the corresponding pair of zeros be located in the complex plane on the boundary
between the areas dominated by these two terms. The pair of zeros therefore moves upward
into the complex plane as the area of dominance of Release expands with increasing y.

Even before Release attains a dominating role, it skews the balance between Feeding and
Predation in such a way that, with increasing y, the pair of zeros representing the conventional
top-down cascade gradually moves upward in the complex plane. Correspondingly, top-down
cascades in size spectra gradually become less attenuating with enrichment. Eventually, they
become amplifying. This is the explanation of the amplification of top-down cascades resulting
from an overall increase in community biomass. Based on this explanation, the phenomenon
can be expected to be generic: model details did not play a role in explaining it. There is no
corresponding mechanism leading to amplification of bottom-up cascades with enrichment.

In the specific case of our model, a comparison of the Feeding and Release terms in Eq. (25)
shows that whenever arg ŝ(−ξ − νi) = ±π the arguments of the two terms differ by ±π,
implying that they can cancel each other. Using Eq. (27), this evaluates to a condition

Re ξ = ± π

ln β − σ2
s (ν + Im ξ)

. (28)
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The top-down response becomes amplifying when the corresponding zeros cross the line Im ξ =

λ− 2 (disregarding changes in the size-spectrum slope). Putting this into Eq. (28) and making
use of ν = 1 − q and λ = 2 + q − n, one can approximate the maturation body mass ratio
separating successive local maxima of the resulting size-spectrum modulation as

exp

(∣∣∣∣ 2π

Re ξ

∣∣∣∣) = β2 exp[−2σ2
s (1− n)]. (29)

With parameters as in Supplementary Table 1, this evaluates to 81163 ≈ 104.9. Equation (29)
thus provides a good approximation of the distance between domes seen in simulations of the
non-linear SSSM, reported to be in the range 104 to 105 in Fig. 3d of the main text. This
agreement further confirms the validity of the analytic theory.

It is noteworthy that, as see from Supplementary Figure 7, both the zero corresponding to
the conventional bottom-up effect and the zeros corresponding to the top-down cascade are
determined by the balance between the three terms Feeding, Predation, and Release in the ex-
pression for κ̂0 given by Eq. (25). That is, the relevant zeros of K̂(ξ) are well approximated the
by zeros of κ̂0(ξ + νi). But the function κ̂0 describes exclusively individual-level phenomena
without regard to species ID—the life history parameters x0 and η do not enter it. An impli-
cation of this observation is that details of life-history are unlikely to play an important role in
dome formation.

7.3 Changes in the direction of propagation of trophic cascades in the linear SSSM

In this section, we briefly consider a questions that arise from the analytic theory above and must
be addressed for completeness: What is the ecological meaning of the change in orientation at
large y of the arrows in Supplementary Figure 6 for the pair of the zeros corresponding to
top-down cascades?

In the linear SSSM, modified by inclusion of the parameter y in Eq. (25), the rise in the
complex plane with increasing y of the pair of zeros of K̂(ξ) corresponding to top-down cas-
cades is accompanied by a slow rotation of the attached arrow (Supplementary Figure 6). At
y ≈ 64 the arrow turns to point down, rather up, towards the line Im ξ = λ − 2. The linear
theory predicts that in this case perturbation responses will propagate towards species larger
than those perturbed and attenuate with larger size ratios.

In principle, this is ecologically plausible. Above it was explained that, for large y, this pair
of zeros results from a balance between Feeding and Release. Considering that neither term
describes an effect resulting from species that are much larger than the focal species (as Preda-
tion does), but the Feeding term depends on smaller species, a propagation of the perturbation
response towards larger species can be expected. Attenuation of this bottom-up response is a
plausible expectation, because, for nearly satiated consumers, changes in the abundance of the
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prey of a focal size class have only little effect on Feeding, so that only small changes in the
abundance of the focal size class are required to compensated this through Release (i.e. release
from even higher predation). From these considerations, one would hence expect dome patterns
to disappear with strong enrichment.

In simulations of the non-linear SSSM, however, this is not observed (Fig. 3c of the main
text). The reason is probably that, with large eutrophication parameter y, system states differ
too much from the underlying base state to approximate their dynamics by the linear SSSM.
For example, troughs in species size spectra of highly eutrophic systems might be so deep that
species with sizes located within domes experience food limitation, despite the high overall
abundance of biomass. This would undermine the chain of reasoning above. In situations as
the present, where non-linear and linear SSSM disagree in their predictions, the full, non-linear
model should be considered the more reliable. The expectation that domes might disappear
with strong enrichment thus seems to be an artefact of the linearization.

7.4 Conclusions

This concludes our mathematical analysis of the mechanisms leading to dome formation in the
SSSM. Enrichment can transform attenuating top-down cascades into amplifying cascades by
two mechanisms. Firstly, through an increase of the fitted size-spectrum slope S, which implies
a sinking of the dash-dotted line in Supplementary Figure 3. This mechanism has the opposite
(damping) effect on bottom-up cascades. Secondly, enrichment amplifies top-down cascades
by an overall increase in community biomass, which lets the pair of zeros corresponding to
top-down cascades in Supplementary Figure 3 rise. The latter is caused by (partial) satiation of
predators, which reduces their ability to control the abundance of their prey because (1) their
feeding rate becomes less dependent on prey abundance and (2) the prey of satiated consumers
experiences a safety-in-numbers effect [27]. Equilibrium prey abundances therefore respond
stronger to changes in predator abundance, which enhances top-down cascades. (There is no
corresponding effect for bottom-up cascades.)

With a sinking dash-dotted line and a rising pair of zeros for top-down cascades, the two will
eventually cross, signalling the transition to amplifying top-down cascades. While our analytic
approach is too coarse to compute for exactly what value of enrichment x this will happen, we
can give an upper bound. For any value of x > 1, the resulting increase in overall biomass is at
least x-fold (in fact, it is larger because of trophic amplification). For x > 8, the corresponding
value of y must therefore be > 8 as well. But for any y just slightly larger than 8 the relevant
pair of zeros will have crossed the dash-dotted line (Supplementary Figure 6), especially if that
line has sunken below the base-state level. Hence, amplifying top-down cascades arise in the
non-linear SSSM at some value of x between 1 and 8. This is the range within which dome
formation is seen in simulations. We conclude that amplification of top-down cascades with

35



enrichment is causing dome formation. The conclusion is supported by the observation that the
mass ratio separating consecutive domes in the nonlinear SSSM (10D, with D as in Fig. 3d) is
numerically close to the predicted mass ratio separating the maxima of top-down cascades at
the onset of amplification, given by Eq. (29).
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