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Abstract

A dynamically substructured system (DSS) consists of both physical and numerical

components. It is used for the testings of the dynamics of some systems arising from

engineering problems to overcome the drawbacks of conventional testing methods. One

of the key issues influencing the DSS testing accuracy is from the synchronization of the

physical and numerical components. This synchronization can be achieved by a controller

(called DSS controller). To facilitate the DSS controller design, this paper develops a

sophisticated DSS framework with its variations to further enhance the analysis and design

of DSS. The main feature of the proposed DSS framework is that it has a strict separation

of numerical and physical substructures, which can enable one to explicitly identify the

relations of the substructures and signals within a DSS and thus greatly facilitate more

elegant treatments of DSS problems, such as DSS establishment, conversion of different

DSSs, as well as uncertainties and measurement noise incorporation in robust control.

The proposed framework and its variations unify many DSS problems.
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systems
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1 Introduction

Dynamically substructured system (DSS) is a testing method used in the dynamics testing

community. The uses of the DSS concept can be found in areas such as civil engineer-

ing [1, 2], robotics [3], automotive [4] and aerospace [5]. A DSS contains both physical

components (called physical substructure) and numerical components (called numerical

substructure), which are to be synchronized during a testing so that the DSS response

can be as close as possible to that of the original emulated system. This feature of DSS

makes it outperform the conventional pure physical or pure numerical testing, scaled size

testing, and pseudo-dynamic testing [6]. DSS is also distinguishable from the hardware-in-

the-loop (HiL) method, which is used traditionally to test the performance of a controller,

with a hardware interface to an embedded numerical plant. For a detailed discussion

about different testing methods see [7, 8, 4]. The performance of DSS testing is mainly

determined by the synchronization of the physical and numerical substructure. The DSS

synchronization problem has been discussed from different angles [9–14]. One way to

achieve DSS synchronization is to employ a controller, called DSS controller in this paper.

To facilitate the controller design for DSS, Stoten and Hyde propose a concise and

generic framework [8] as shown in Fig. 1, where the signals include the testing signal d,

the control signal u and the DSS outputs z1 and z2 to be synchronized; G1 contains the

components on which the testing signal d is acted; G0 and G2 contain the components

which are attached to the actuators controlled by u. The framework emphasizes the

relations of the signals of a DSS, and hence facilitates the DSS controller design. This

can be seen by transforming Fig. 1 into the equivalent representation of Fig. 2, where

we have G = G0 +G1 and Gd = G1 −GKd The DSS synchronization error is determined

by y = SGdd with the loop transfer matrix L = GKy and the sensitivity function S =

(I +L)−1. Therefore, abundant linear control theories can be directly applied to the DSS

control framework as shown in Fig. 1. Based on this framework, different DSS control

strategies have been designed and implemented in real time, such as the linear control

based on the root locus design, minimal control synthesis (MCS) [15], H∞ control [16,

17], numerical-substructure-based and output-based substructuring control [18, 19], and

neural network control [20, 21]. Moreover, to cope with the actuator saturation problems,

which can occur under some conditions, the model predictive control [22] and anti-windup

compensation [23, 17] techniques are also implemented on DSS systems. However, it is
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Figure 1: A generic DSS control framework proposed by [8]
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Figure 2: Equivalent representation of Fig. 1

noted that, although this framework is concise for the DSS controller design, it also has

some drawbacks:

1. Each block in this framework can contain both physical and numerical components,

which makes it difficult to describe the uncertainties from the physical components;

2. The transfer system is contained in the blocks G0 and G1, so that the dynamics of

the transfer system and its saturation cannot be explicitly taken into account;

3. The interface signals are not explicitly shown, so that some potential problems as-

sociated with causality analysis and measurement noise, etc., cannot be taken into

account easily in a DSS establishment.

All of the above mentioned points hinder more sophisticated DSS analysis and design.

It is noticed that the physical and numerical substructures are divided strictly in many

existing DSS establishments for specific problems; however, a generic DSS framework with

strict separation of physical and numerical substructures is absent. The main objective

of this paper is thus to further refine the framework by Stoten and Hyde [8] by proposing

a unified DSS framework with complete separation of the physical and numerical sub-

structures. This helps to gain insight into the DSS formulation and hence significantly

facilitates the development of DSS systems and their transformations. Since the inter-

face signals and the dynamics of the transfer system are explicitly signified, the causality

problems in the DSS establishment can be conveniently investigated. All these features of
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Table 1: Nomenclature
Name Description

Emulated system The system to which the DSS is emulated.
Physical substructure The substructure containing all physical components.
Numerical substructure The substructure containing all numerical components.
Physical block A subset of physical substructure.
Numerical block A subset of a numerical substructure.
Numerical signal The output of a numerical block.
Physical signal The output of a physical block.
Interface signals The signals at the interface between the physical

and numerical (or physical and physical) blocks.
Constraints signals Interface signals; the same type of signals from

different substructure satisfying some constraints.
DSS outputs Interface signals; the same type of signals from

different substructures, which are to be synchronized.
Transfer system A set of actuators or shaking tables

attached to the physical substructure.

the proposed framework pave the way for the future robust analysis and control of DSS

and DSS performance validation when uncertainties in the physical substructures and the

measurement noises from the output of the physical substructures are involved.

In this paper, we name this framework as a complete separation framework (CSF). This

CSF represents a fairly generic class of DSS. To further enlarge the class of DSS that can

be represented by the CSF, two extra frameworks are derived: one is called substructure

and signal dual CSF, which is derived by swapping the physical and numerical blocks, and

also the constraint and synchronization interface signals in the original CSF; the other one

is called signal dual CSF, and it is derived by swapping the constraint and synchronization

interface signals in the original CSF. All these CSFs represent a large class of DSS, though

it is not claimed to represent all possible DSS cases. To demonstrate the derivation of

the CSFs and their transformations, two examples are employed. The first one is a mass-

spring-damper system; the second one is a quasi-motorcycle (QM) system built at Bristol

University [15], see [15] for the DSS configuration of the QM system in a real experimental

testing environment. The nomenclature of this paper is summarized in Table 1.

The structure of this paper is as follows. A CSF is firstly proposed in Section 2. Its

corresponding two dual CSFs are derived in Section 3. In Sections 4 and 5, the mass-

spring-damper system and the QM system are used to demonstrate the establishments of

the CSFs and their transformations. The paper is concluded in Section 6.
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Figure 3: The block diagram of the generic DSS framework
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Figure 4: The block diagram of the generic emulated system framework

2 A CSF for DSS

A CSF for DSS is shown as the block diagram in Fig.3 which contains 7 blocks. For a

specific system, some of the blocks may not be present, so that its DSS block diagram

can be simplified. By defining a block as a group of components, we use P to represent

a physical block only containing physical components and N to represent a numerical

block only containing numerical components. The subindex is used to distinguish the

locations of the blocks. In Fig. 3, PA consists of the transfer functions of actuators (or

transfer systems) in a diagonal form; {PA, Pd1, Pu1, Pu3, Pu4} constitute the physical sub-

structure (ΣP ) and {Nd2, Nu2} constitute the numerical substructure (ΣN ). Furthermore,

{Pd1, Nd2} represent the components, through which the testing signal d acts on the sys-

tem. The input and output of PA are the control signal u and the actuation signal zA

respectively. zN and zP are called DSS outputs. We define the difference between zN and

zP , i.e. e := zN −zP as substructuring error and define the constraint signal z̃ := z̃P = z̃N

at the interface between Pu1 and Nu2, where z̃P is the output of Pu1 and z̃N is the input

of Nu2. In Fig. 3, the sign ‘q’ denotes the interface. Generally, the output signals of

the physical and numerical components are referred to as physical and numerical signals
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respectively.

For the framework shown in Fig.3, we have the following explanations:

1) The inteface signals (or variables) are defined as those residing at the interface

between two adjacent blocks. They are categorized into three types:

a) The interface signal between numerical block and physical block;

b) The interface signal between two physical blocks;

c) The interface signal between two numerical blocks.

In this paper, we assume that there is no synchronization problem for case c), though

sometimes it needs also to be considered (e.g., the situation when two numerical

models reside separately in two computers at different locations.). With this as-

sumption, the two numerical blocks linked to each other can be merged into one

numerical block.

2) We classify all the available interface signals in cases a) and b) into two groups ac-

cording to their physical senses: one group contains the constraint signals, denoted

by {z̃N , z̃p}, while the other group contains DSS output signals, denoted by {zN , zP }.

For example, in a mechanical system the interface signals can be forces and displace-

ments, we can choose the forces as the interaction constraint to be satisfied (i.e. the

output force of one block is equivalent to the input force of the other block), while

the displacements from the two blocks are to be minimized. We call this as DSS

force control (see e.g. the case in [24]). In [25], DSS force control and displacement

control are referred to as effort actuation and flow actuation respectively. The ap-

propriate choice of force control and displacement control is an essential factor when

considering the DSS causality problem.

3) We assume the components in the physical and numerical blocks Pd1 and Nd2 in

Fig. 3 are not directly connected, although the blocks appear to have a cascade

connection. That is, the disturbance in each channel can only go though either a

physical component in Pd1 or a numerical component in Nd2, while not being able to

go through both numerical and physical components in series. Many DSS problems

satisfy this assumption.
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Now we explore this CSF. From Fig. 3, the following relations hold:

zN = Nd2Pd1d− Pu3zA −Nu2z̃N (1)

z̃P = Pu1zA (2)

zA = PAu (3)

zP = Pu4zA (4)

If we set the constraint variables equivalent i.e. z̃N = z̃P , then the equations (1)-(3) lead

to

zN = Nd2Pd1d− (Pu3 +Nu2Pu1)zA (5)

Hence the DSS can be expressed by

zN = Nd2Pd1d− (Pu3 +Nu2Pu1)PAu (6a)

zP = Pu4PAu (6b)

which take the same form with Fig. 1, with G0 = (Pu3 +Nu2Pu1)PA, G1 = Nd2Pd1 and

G2 = Pu4PA.

Define the DSS error as

e = zN − zP . (7)

From (4), (5) and (7), we have

zN = Pu4[Pu3 + Pu4 +Nu2Pu1]
−1[Nd2Pd1d+ (Pu3 +Nu2Pu1)P

−1
u4 e] (8a)

zP = Pu4[Pu3 + Pu4 +Nu2Pu1]
−1(Nd2Pd1d− e) (8b)

which reflect the influence from DSS error e on DSS outputs zN and zP . Setting e = 0 in

(8) gives

zE := [I + (Pu3 +Nu2Pu1)P
−1
u4 ]−1Nd2Pd1d (9)

If Nu2 is replaced by Pu2 in (9), then the system (9) exactly represents the original system

to which the DSS of Fig. 3 is emulated. Thus we call the system (9) as an emulated

system, as shown in Fig. 4. Note that the causality requires Pu4 and Pu3 +Nu2Pd1 + Pu4

to be invertible and proper. In this paper we do not investigate the solution of the causal

problem, but refer to the method developed in [25] as a possible solution. The framework
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and the ones introduced later in this paper provide a convenient way to investigate this

problem.

If we further define the errors between the outputs of the DSS and the emulated system

as

eN = zN − zE = [I + (Pu3 +Nu2Pu1)P
−1
u4 ]−1(Pu3 +Nu2Pu1)P

−1
u4 e (10)

eP = zE − zP = [I + (Pu3 +Nu2Pu1)P
−1
u4 ]−1e (11)

then the following relation hold:

e = eN + eP = Nd2Pd1d− (Pu3 +Nu2Pu1 + Pu4)PAu (12)

which can be alternatively derived by substituting (6a) and (6b) into e = zN − zP .

From (6) and (9), we have the following proposition:

Proposition 1. For the DSS framework shown in Fig. 3 and its emulated system shown

in Fig. 4, if the DSS error e = 0, then zN = zP = zE.

Remark 1. This proposition explicitly justifies the DSS control objective, that is, the

regulation of the DSS error e guarantees that the DSS outputs, zN and zP , converge to

the output of the emulated system, zE.

3 The dual DSS systems

Based on the strict separation framework as shown in Fig. 3, we introduce two dual sys-

tems: substructure & signal dual DSS system (Sub&Sig-DSS) and signal dual DSS system

(Sig-DSS). These dual systems not only generalize the applicability of the proposed CSF

shown in Fig. 3, but also reveal insightful information for DSS establishment. Note that

the concept and motivation of the dual DSS systems are different from the dual substruc-

tured system introduced in [19, 26], which mainly focus on the relationship between the

assembled and disassembled substructured systems, though some similarities are shared.

The Sub&Sig-DSS is obtained by swapping physical and numerical blocks of the orig-

inal DSS, as well as (some or all of) the constraint signals and DSS outputs. Note that

by swapping the physical and numerical blocks, the types (i.e., physical or numerical) of

the output signals from the blocks are also changed correspondingly due to the definition
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of the numerical signal and physical signal (cf. Table 1).

To derive the Sig-DSS, only (some or all of) the constraint signals and DSS outputs are

swapped, while the block properties (i.e., physical or numerical) remain the same. This

type of dual system helps to identify which interface signals are more suitable to be DSS

outputs while the others are more suitable for the constraint signals, in terms of physical

realization (e.g. causality) and control issues. In [15], it is noted that: “In many DSSs

there is a degree of arbitrariness over the selection of these synchronized variables and

the interaction constraints. This will be a topic for future research.” The investigation of

Sig-DSS addresses this problem.

Similarly, we can also define a substructure dual DSS (Sub-DSS) by only swapping

the physical and numerical blocks. We do not give more details here, and just illustrate

its relation with other DSS transformations by examples in the next section.

3.1 Substructure & signal dual

Corresponding to the original DSS shown in Fig. 3, we consider its dual DSS by inter-

changing both the block properties and interface variables. Specifically, the physical blocks

are changed to numerical blocks (i.e. {Pd1, Pu1, Pu3} are replaced by {Nd1, Nu1, Nu3}),

while the numerical blocks are changed to physical blocks, (i.e., {Nd2, Nu2} are replaced

by {Pd2, Pu2}); the constraint signals z̃N and z̃P are used as DSS outputs; the DSS out-

puts zN and zP are used as the constraint signals. Following this rule, the equations (1)

- (4) are converted to:

zP = Pd2Nd1d−Nu3zA − Pu2z̃P (13)

z̃N = Nu1zA (14)

z̃P = PÃu (15)

zN = Nu4zA (16)

where z̃P is generated by another actuator PÃ (in many cases, this actuator can be the

same physical actuator as the original one, but with different variable to be measured as

the examples to be shown later); alternatively, the dynamics of PÃ can be estimated by

Nu1PA.

If we eliminate zA from (13) and (16), and set the constraint variables equivalent in
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Figure 5: The block diagram of the substructure & signal dual generic DSS framework.

(13), i.e. z := zN = zP , then we have

z = Nu4(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2z̃P ) (17)

and

z̃N = Nu1(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2z̃P ) (18)

Hence the dual DSS system can be represented as

z̃N = Nu1(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2PÃu) (19a)

z̃P = PÃu (19b)

and the substructuring error is

ẽ := z̃N − z̃P = Nu1(Nu3 +Nu4)
−1(Pd2Nd1d− Pu2PÃu)− PÃu

This system is illustrated in Fig. 5, where Nz := Nu1(Nu3 +Nu4)
−1.

Substituting ẽ = z̃N − z̃P into (18) leads to

z̃N = (I +NzPu2)
−1Nz(Pd2Nd1d+ Pu2ẽ)

z̃P = (I +NzPu2)
−1(NzPd2Nd1d− ẽ)

This system is illustrated in Fig. 6, which is a counterpart to the Sub&Sig-DSS. When

ẽ = 0, this system becomes the emulated system of the Sub&Sig-DSS. The output of the

emulated system is

z̃E := Nu1(Nu3 +Nu4 + Pu2Nu1)
−1Pd2Nd1d (20)

10



 

2u
P

2d
P

d

P
!

1d
N

P
z 

1
z N

z 

z
N

"

 

" e

Figure 6: The block diagram of the dual generic emulated system framework.

3.2 Signal dual DSS

To derive the Sig-DSS, we need to first determine which variables can be exchanged. This

requires a strict separation of the variables from the numerical and physical components.

To achieve this, further partition of the signals and the blocks are necessary.

In the DSS system Fig. 3, suppose d ∈ Rl, u, zA, zN , zP ∈ Rn, z̃N , z̃P ∈ Rm with

m ≤ n, and Pd1 ∈ RHl×l
∞ , Nd2 ∈ RHn×l

∞ , PA ∈ RHn×n
∞ , Pu1 ∈ RHm×n

∞ , Nu2 ∈ RHn×m
∞ ,

Pu3, Pu4 ∈ RHn×n
∞ . Here RHn×m

∞ denotes the space consisting of proper real rational

n ×m transfer function matrices with no poles on the right half plane. We can arrange

Pu3 and Nu2 in such a form

Nu2 =

 0

N̄u2

 Pu3 =

P̄u3

0

 (21)

with N̄u2 ∈ RHm×m
∞ and P̄u3 ∈ RH

(n−m)×n
∞ . In this way, the sum of the outputs from

Pu3 and Nu2 is a stacked vector, whose first n−m elements are physical signals from Pu3

and last m elements are numerical signals from Nu2. Furthermore, Pd1 and Nd2 can also

be arranged in a similar way such that the output of the disturbance channel contains

the outputs from physical components in its first n − m entries and the outputs from

numerical components in its last m entries. We give an example to show how to do this.

Example 1. Consider Fig. 7, which has l = 3 input testing signals di with i = 1, . . . , 3

going through 3 components Gdi with i = 1, . . . , 3. Assume Gd1 and Gd3 are physical com-

ponents and Gd2 is a numerical component, in which case the dimension of the constraint

signal is m = 1. We further assume the dimension of the DSS output is n = 4 and the

testing signals going through channels 2, 3, 4 as d̃1 = 0, d̃2 = Gd1d1, d̃3 = Gd3d3 and
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d̃4 = Gd2d2. Then we can derive the numerical and physical blocks as

Nd2 =


0 0 0

1 0 0

0 0 1

0 1 0



1 0 0

0 Gd2 0

0 0 1

 =


0 0 0

1 0 0

0 0 1

0 Gd2 0

 , Pd1 =


Gd1 0 0

0 1 0

0 0 Gd3



so that

Gd = Nd2Pd1 =


0 0 0

Gd1 0 0

0 0 Gd3

0 Gd2 0


�

Corresponding to the above arrangement of the blocks, zN and zP can be partitioned

into two parts

zN =

z(P )
N

z
(N)
N

 zP =

z(P )
P

z
(N)
P

 (22)

so that z
(P )
N ∈ R(n−m)×1 is the difference between the outputs of the physical components

Pd1 and Pu3, and z
(N)
N ∈ Rm×m is the difference between the outputs of the numerical

components Nd2 and Nu2. The output of the actuators zP is accordingly partitioned into

z
(P )
P = P

(P )
u4 PAu (23)

z
(N)
P = P

(N)
u4 PAu (24)
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where

P
(P )
u4 =

[
In−m 0(n−m)×m

]
Pu4 (25)

P
(N)
u4 =

[
0m×(n−m) Im

]
Pu4 (26)

Now we want to use z
(N)
N and z

(N)
P as the constraint variable, and the DSS outputs

are constructed as

ẑN =

z(P )
N

z̃N

 ẑP =

z(P )
P

z̃P

 (27)

respectively. From (3) and (2), we have the synchronization signal z̃P

z̃P = Pu1PAu = PÃu (28)

where

PÃ := Pu1PA (29)

Thus, ẑP is determined by

ẑP :=

z(P )
P

z̃P

 =

P (P )
u4

Pu1

PAu (30)

Suppose Nd2 is partitioned in accordance with the partition of zN , such that

Nd2 =

N (P )
d2

N
(N)
d2


with N

(P )
d2 ∈ RH

(n−m)×l
∞ and N

(N)
d2 ∈ RHm×l

∞ . Then from the partitions of Pu3 and Nu2

in (21), (1) can be written as

zN =

z(P )
N

z
(N)
N

 =

N (P )
d2

N
(N)
d2

Pd1d−

P̄u3

0

 zA −

 0

N̄u2

 z̃N (31)

Suppose the inverse of N̄u2 exists. Then pre-multiplying (31) by

[
0m×(n−m) N̄−1

u2

]
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leads to

z̃N = N̄−1
u2 (N

(N)
d2 Pd1d− z

(N)
N ) (32)

Combining the above equation with

z
(P )
N = N

(P )
d2 Pd1d− P̄u3zA (33)

leads to z(P )
N

z̃N

 =

In−m 0

0 N̄−1
u2

Nd2Pd1d− Pu3zA −

0(n−m) 0

0 N̄−1
u2

 zN (34)

Since the constraint variables satisfy z
(N)
N = z

(N)
P = P

(N)
u4 PAu, the DSS output can be

represented as

ẑN :=

z(P )
N

z̃N

 =

I 0

0 N̄−1
u2

Nd2Pd1d−

Pu3 +

0(n−m)×(n−m) 0

0 N̄−1
u2

Pu4

PAu (35)

By simplifying (35) and combining it with (30), we have the Sig-DSS

ẑN = N̂z

Nd2Pd1d−

 P̄u3

P
(N)
u4

PAu

 (36a)

ẑP =

z(P )
P

z̃P

 =

P (P )
u4

Pu1

PAu (36b)

with N̂z :=

I 0

0 N̄−1
u2

. The resulting Sig-DSS is illustrated in Fig. 8.

When n = m, i.e. Pu3 does not exist, N̄u2 = Nu2, N
(N)
d2 = Nd2, N̂z = N−1

u2 and

P
(N)
A = PA, the Sig-DSS framework (36) is reduced to

ẑN = z̃N = N−1
u2 (Nd2Pd1d− Pu4PAu)

ẑP = z̃P = PÃu = Pu1PAu
(37)
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Figure 9: The block diagram of the generic DSS framework without considering substructure
internal relations.

3.3 The generic DSS framework with a strict separation of

components

In summary, the original DSS system and its two dual systems can be represented by one

generic form, as shown in Fig. 9, without considering internal relations. (Note that in

the Sub&Sig-DSS, Nd1 and Pd2 are interchangeable, but with different representations.)

In this generic framework the actuators are separated out from the physical substructure.

This generic framework without considering the internal relations may be convenient for

designing nominal DSS controllers.
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15



4 Mass split example

In this section, we consider a mass(m)-damper(c)-spring(k) system as shown in Fig. 10.

This example is extensively studied in the DSS literature (e.g. [24, 25]). We show how to

establish DSS using the frameworks proposed in this paper.

In Fig. 10, d is the testing signal (displacement); y is the displacement of the mass; f1

is the force acting on the mass from the spring and the damper. The dynamics equation

for the emulated system in Fig. 10 is

mÿ = k(d− y) + c(ḋ− ẏ) (38)

and its Laplace transform representation is

y(s) =
cs+ k

ms2 + cs+ k
d(s) (39)

Suppose the mass m is split into two parts – the top mass is m2 and the bottom

mass m1. f2 is the interaction force between m1 and m2. The system are supposed

to have two substructures: the top substructure consisting of mass m2 and the bottom

substructure consisting of m1, k and c. We can consider each substructure either as

physical or numerical, and also consider the interface signal either as force or displacement.

Thus we can derive 4 different DSS formulations. We adopt new notations to represent

them concisely. For example, we use ‘P −N : y’ to denote the DSS when the top mass is

physical, the bottom remaining parts are numerical, and the DSS outputs are displacement

signals.

4.1 Case P −N : y

Suppose the numerical substructure contains the bottom mass m1, spring k and damper c;

the physical substructure contains the top mass m2. Then we have the following relations:

m1ÿn = f1n − f2n (40)

f1n = k(d− yn) + c(ḋ− ẏn) (41)

m2ÿp = f2p (42)
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from which we have

yn =
cs+ k

m1s2 + cs+ k
d− 1

m1s2 + cs+ k
f2n (43)

yp =
1

m2s2
f2p (44)

Suppose the constraint signals are f2n = f2p and the force f2p is generated by a force

actuator such that f2p = PAfu. Then the DSS can be represented by equations

yn = Nd2d−Nu2PAfu (45)

yp = Pu4PAfu (46)

with

Nd2 =
cs+ k

m1s2 + cs+ k
Nu2 =

1

m1s2 + cs+ k
Pu4 =

1

m2s2

This is the DSS framework shown in Fig. 3, with Pd1 = I, Pu3 = 0, Pu1 = I. Using (9),

we can derive the dynamics of the emulated system as follows:

yE = Pu4(Pu4 +Nu2)
−1Nd2d =

cs+ k

(m1 +m2)s2 + cs+ k
(47)

which is consistent with (39).

In the following, we can directly derive the other three cases by employing the DSS

frameworks and transformations proposed in this paper.

4.2 Case P −N : f

Consider the case that the top mass is physical, the remaining parts are numerical, while

the constraint signals are yp = yn and the DSS output signals are f2n and f2p. This is the

Sig-DSS of the case P −N : y. Using the relations in (37), we have

f2n = N−1
u2 (Nd2d− yn) = N−1

u2 (Nd2d− yp) = N−1
u2 (Nd2d− Pu4PAfu) (48)

f2p = PAfu (49)

In this case, the block N−1
u2 is not proper and noncausal.

17



4.3 Case N − P : f

Consider the case that the top mass is numerical, the remaining parts are physical, while

the constraint signals are yp = yn and the DSS output signals are f2n and f2p. This is

the Sub&Sig-DSS of the case P −N : y. From the relations in (19a) with Nz = N−1
u4 and

PÃ = PAf , we have

f2n = N−1
u4 (Pd2d− Pu2PAfu) (50)

f2p = PAfu (51)

Moreover, from (20) we can derive f of the emulated system as

fE = (Nu4 + Pu2)
−1Pd2d =

m2s
2(cs+ k)

ms2 + cs+ k
(52)

4.4 Case N − P : y

Consider the case that the top mass is numerical, the remaining parts are physical, while

the constraint signals are f2p = f2n and the DSS output signals yn and yp are swapped

due to the change of blocks.

In this case, the DSS is derived by changing Nd2, Nu2 and Pu4 to Pd2, Pu2 and Nu4

respectively and swap yn and yp in equations (45) and (46). f2p is generated by an actuator

f2p = PAfu, so that the DSS is described by

yp = Pd2d− Pu2PAfu (53)

yn = Nu4PAfu (54)

This DSS is a Sub&Sig-DSS of the case P −N : f and it can also be viewed as a Sub-DSS

of the case P −N : y.

Remark 2. The relations of these four DSS are shown in Fig. 11. From the above

four cases, we can see that the two cases with force as constraint signal (P − N : y and

N−P : y) are causal DSSs, while the other two cases with displacement as constraint signal

(P −N : f and N − P : f) are noncausal DSSs. For the noncausal DSSs, some methods

are available to accommodate this noncausal problem (cf. [25]). Moreover, in all the four

DSSs, the physical components and numerical components are strictly separated, that is,

there are no blocks containing mixed numerical and physical components. This feature
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Figure 11: The relations of the four DSS formulations of the mass split example
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Figure 12: Schematic representation of the QM rig.

makes it easy to identify and quantify the uncertainties and disturbances associated with

the physical components only, and thus significantly facilitates the robust stability analysis

and robust controller design for DSS testings.

5 Examples from the quasi-motorcycle (QM) DSS

In this section, we use more complicated examples to show that a variety of DSS problems

can be cast into the generic framework and its dual DSS framework proposed in Sections 2

and 3. These examples are extracted from the QM DSS testing rig developed at the Uni-

versity of Bristol as shown schematically in Fig. 12, which consists of three mechanically

separated substructures {Σ1,Σ2,Σ3}. Σ1 has one vertically mounted 2 DOF rigid body

with two suspension struts substructure and two swing arms; Σ2 and Σ3 are two hori-

zontally mounted 1 DOF wheel/tyre substructures. 4 hydraulic actuators are connected

with the two swing arms and the two wheel hubs respectively. Each of the substructure

can serve as either numerical or physical substructure. For a detailed introduction of this
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system, see [15, 27, 17, 21], etc.; here, we only present the main dynamics equations of

the system:

y1 = Gyd1d1 −Gyf1f1 (55)

y2 = Gyd2d2 −Gyf2f2 (56)

f31 = P2s
2ys31 + P3s

2ys32 (57)

f32 = P3s
2ys31 + P1s

2ys32 (58)

ys31 = G31y31 (59)

ys32 = G32y32 (60)

with P1, P2 and P3 as some fixed parameters and

Gyd1 =
c1s+ k1

m1s2 + c1s+ k1
Gyd2 =

c2s+ k2
m2s2 + c2s+ k2

Gyf1 =
1

m1s2 + c1s+ k1
Gyf2 =

1

m2s2 + c2s+ k2

G31 =
c31s+ k31

m31s2 + c31s+ k31
G32 =

c32s+ k32
m32s2 + c32s+ k32

5.1 The QM DSS

In this section, we consider the DSS examples generated from the whole QM system. These

DSS examples are all multivariable systems. Recall that the whole QM system contains

three substructures denoted by {Σ1,Σ2,Σ3}, corresponding to front wheel, rear wheel

and vehicle body together with two suspension struts plus the two swing arms. Different

combinations of the numerical and physical substructures lead to 5 types of DSSs. By

following the terminologies adopted in [15], we use {ΣN1,ΣN2,ΣP3} to denote the case

when Σ1 and Σ2 are numerical substructures, and Σ3 is a physical substructure. Since

there is only one physical mode in this DSS, we call it as a single interaction mode DSS,

concisely denoted by SiM. Another single mode DSS is represented by {ΣN1,ΣP2,ΣN3}.

The subindex N (or P ) denotes the associated substructure is numerical (or physical). To

distinguish these two single mode DSS, we denote the first one as SiM 1 and the second one

as SiM 2. In a similar way, we can derive multi-mode (MuM) {ΣP1,ΣP2,ΣN3} and mixed

mode (MiM) {ΣN1,ΣP2,ΣP3} and all physical modes (PhM) {ΣP1,ΣP2,ΣP3}. Among

these, SiM 1 and MuM are Sub& Sig-DSS to each other; SiM 2 and MiM are Sig&Sub-DSS

to each other. We do not consider the DSS consisting of all numerical substructures.
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The interface signals are the displacements and the forces at the attachment points

of the wheel hubs. The ends of the swing arms are represented by {y31, y32}, {y1, y2},

{f31, f32} and {f1, f2}.

It will be shown that SiM1 and MuM are Sub&Sig-DSS to each other, and SiM2 and

MiM are Sub&Sig-DSS to each other. Using these relations between the dual systems, we

can straightforwardly convert one DSS to its dual system.

5.1.1 SiM 1

SiM 1 has the DSS structure of {ΣN1,ΣN2,ΣP3}. The interface signals are {yn1, yp31},

{fn1, fp31}, {yn2, yp32} and {fn2, fp32}. Substituting these notations into (55) - (60) leads

to

yn1 = Gyd1d1 −Gyf1fn1 (61)

yn2 = Gyd2d2 −Gyf2fn2 (62)

fp31 = P2s
2G31yp31 + P3s

2G32yp32 (63)

fp32 = P3s
2G31yp31 + P1s

2G32yp32 (64)

yp31 = Ga31u31 (65)

yp32 = Ga32u32 (66)

where Ga31 and Ga32 are actuators. By choosing the displacements as the synchronizing

signals while the forces as the constraint signals, i.e. fp31 = fn1 and fp32 = fn2, we can

derive

yn1 = Gyd1d1 −Gyf1(P2s
2G31Ga31u31 + P3s

2G32Ga31u31) (67)

yn2 = Gyd2d2 −Gyf2(P3s
2G31Ga31u31 + P1s

2G32Ga32u32) (68)

Note that the physical parameters are only contained in G31 and G32. From (65) - (68),

the DSS framework of SiM 1 is

zN = Nd2d−Nu2Pu1PAu (69)

zP = PAu (70)
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where zN = [yn1, yn2]
T , zP = [yp31, yp32]

T , d = [d1, d2]
T , u = [u31, u32], Nd2 = diag(Gyd1, Gyd2),

Nu2 = diag(Gyf1, Gyf2), PA = diag(Gact1, Gact2), and

Pu1 =

P2s
2G31 P3s

2G32

P3s
2G31 P1s

2G32

 .

The interface constraint signals are z̃p = [fp31, fp32] and z̃N = [fn1, fn2]. The block

diagram of SiM1 can be represented by Fig. 3 with Pd1 = I, Pu3 = 0 and Pu4 = I.

Remark 3. For SiM 1, although the numerical model of the physical block Pu1 is non-

causal, the numerical model for Pu1PA is causal. This indicates that when designing a

robust controller or conducting robustness analysis, the uncertainties associated with PA

or Pu1PA can be taken into account directly; however for the uncertainties associated with

Pu1 alone, it is necessary to make the model of Pu1 causal first, e.g. by adding a filter or

by using system identification to derive this model directly.

5.1.2 MuM – Substructure & Signal Dual DSS of SiM1

The Substructure & Signal Dual DSS of SiM 1 takes the form of {ΣP1,ΣP2,ΣN3}, which is

actually MuM. The interface signals are {yp1, yn31}, {fp1, fn31}, {yp2, yn32} and {fp2, fn32}.

A straightforward application of the substructure & signal dual relationship leads to the

DSS framework for MuM

z̃N = Nu1(Pd2d− Pu2PÃu) (71)

z̃P = PÃu (72)

with z̃N = [fn31, fn32]
T , z̃P = [fp1, fp2]

T . The expressions of Nu1, Pu2 and Pd2 are exactly

equivalent to those transfer functions in SiM1 with the same subindices; z̃P are generated

by two actuators: fp1 = GAf1u1, fp2 = GAf2u2 so that PÃ = diag(GAf1, GAf2). The DSS

constraint signals are zP = [yp1, yp2], zN = [yn31, yn32]. The block diagram of MuM can

be represented by Fig. 5 with Nd1 = I, Nu3 = 0 and Nu4 = I.

Remark 4. For MuM, all the blocks are causal; this means the uncertainties associated

with Pd2, Pu2 and PÃ can be taken into account directly for robustness analysis and robust

controller design.
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5.1.3 MiM

The MiM takes the DSS substructure of {ΣP1,ΣN2,ΣP3}. The interface signal be-

tween the physical body plus suspension struts Σ3 and the front physical wheel Σ1 are

the forces {fp31, fp1} and displacements {yp31, yp1}; and the interface signal between Σ3

and Σ2 are the forces {fp32, fn2} and displacements {yp32, yn2}. We choose {fp32, fn2}

as the constraint signal so that fp32 = fn2, and synchronize the signals {fp31, fp1},

{yp31, yp1} and {yp32, yn2}. Note that in the physical interface between ΣP3 and ΣP1,

we can synchronize both pairs of displacements and forces because two actuators are em-

ployed to provide displacement and force signal respectively. Hence the DSS outputs are

zN =
[
fp31 yp1 yn2

]T
and zP =

[
fp1 yp31 yp32

]T
. From (55) - (60), zN can be derived

by

fp31 = P2s
2G31Ga31u31 + P3s

2G32Ga32u32

yp1 = Gyd1d1 −Gyf1Ga1u1

yn2 = Gyd2d2 − P3s
2Gyf2G31Ga31u31 − P1s

2Gyf2G32Ga32u32

where the physical signals contained in z2 are generated by three actuators fp1 = Ga1u1,

yp31 = Ga31u31 and yp32 = Ga32u32.

Hence the DSS framework of MiM takes the form of (6) with Pu4 = I and

Pu1 =
[
0 P3G31s

2 P1G32s
2
]

Pu3 =


0 −P2G31s

2 −P3G32s
2

Gyf1 0 0

0 0 0

 (73)

Nu2 =


0

0

Gyf2

 Nd2 =


0 0

I 0

0 Gyd2

 (74)

Pd1 = diag(Gyd1, I) PA = diag(Ga1, Ga31, Ga32) (75)

The block diagram of MiM can be represented by Fig. 3 with Pu4 = I, and the equations

are

zN = Nd2Pd1d− (Pu3 +Nu2Pu1)PAu (76)

zP = PAu (77)
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Remark 5. For MiM, both Pu1 and Pu3 contains noncausal elements; however Pu1PA

and Pu3PA; the same remark hold with Remark 3.

5.1.4 SiM2

SiM2 has the structure of {ΣN1,ΣP2,ΣN3}. The interface signals between ΣP2 and ΣN3

are {yp2, yn32} and {fp2, fn32}; the interface signals between ΣN1 and ΣN3 are {yn1, yn31}

and {fn1, fn31}, with the constraints yn1 = yn31 and fn1 = fn31. We choose {yp2, yn32} as

the constraint signal so that {yp2 = yn32} and synchronize {fp2, fn32}. It is obvious that

SiM2 is a Sub&Sig-DSS of MiM. Hence SiM 2 can be derived directly from MiM using

equations (19a) and (19b).

We first notice that SiM 2 only contains one numerical substructure, i.e., ΣP2. Further

considering that displacement signal is used as the synchronization variable in MiM, an

actuator is needed in SiM 2 to provide the force signal fp2 = G̃Af2u.

Since the dynamics expressions of Nu1, Pu2, Nu3, Nd1 and Pd2 equal to those of MiM

with the same subindices respectively, we can derive

Nz = Nu1(I +Nu3)
−1 =

[
Nz1 Nz2 Nz3

]
with

Nz1 = −P3G31s
2Gyf1(1 + P22G31s

2Gyf1)
−1

Nz2 = P3G31s
2(1 + P22G31s

2Gyf1)
−1

Nz3 = −(P3G31s
2)(P3G32s

2)Gyf1(1 + P22G31s
2Gyf1)

−1 + P1G31s
2

Hence, SiM 2 can be expressed as

z̃N = Nz(Pd2Nd1d− Pu2PÃu)

z̃P = PÃu

with PÃ = G̃Af2. Its block diagram can be represented by Fig. 5.

Remark 6. Form MiM, the only noncausal block is the numerical block Nz, whose non-

causal problem can be easily coped with by adding an extra filter.
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5.1.5 PhM

PhM has three physical substructures as {ΣP1,ΣP2,ΣP3}. Since there are no numerical

components, PhM is a special case of the DSS shown in Fig. 3. This type of DSS has

practical benefits when the physical components under testing are remote to each other

and need to be syncronized.

The DSS outputs and the synchronization variables generated by the actuators are:

zp1 =
[
fp31 fp32 yp1 yn2

]T
, zp2 =

[
fp1 fp1 yp31 yp32

]T
. We have the relations

fp31 = P2s
2G31Ga31u31 + P3s

2G32Ga32u32

fp32 = P3s
2G31Ga31u31 + P1s

2G32Ga32u32

yp1 = yp1d − yp1f = Gyd1d1 −Gyf1Ga1u1

yp2 = yp2d − yp2f = Gyd2d2 −Gyf2Ga2u2

and fp1 = Ga1u1, yp31 = Ga31u31, fp2 = Ga2u2 and yp32 = Ga32u32. Hence, the PhM can

be expressed as

zp1 = Pd1d− Pu3PAu

zp2 = PAu

with Pd2 = I, Pu1 = 0, Pu2 = 0, PA = diag(Ga1, Ga2, Ga31, Ga32) and

Pd1 =


0 0

0 0

Gyd1 0

0 Gyd2

 Pu3 =


0 0 −P2s

2G31 −P3s
2G32

0 0 −P3s
2G31 −P1s

2G32

Gyf1 0 0 0

0 Gyf2 0 0


The block diagram of PhM can be represented by Fig. 3 with Nd2 = I, Pu1 = I, nu2 = I

and Pu4 = I.

Remark 7. Form PhM, only the physical block Pu3 contains some noncausal entries. The

same remark with Remark 3 holds for PhM regarding the causality and the uncertainty

issues.
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6 Conclusion

We have proposed a DSS framework with a complete separation of physical and numerical

substructures. This framework can be transformed into other forms by using the internal

relations of the substructures and signals. This framework and its transformed ones unify

most exiting DSS formulations. The spring-mass-damper with mass split system and the

quasi-motorcycle system are used as concrete examples to demonstrate the DSS estab-

lishment and the transformations using these frameworks. These frameworks help gain

insights of the DSS, and provide a convenient way to investigate many essential problems

associated with DSS, e.g. the causality problem. Based on these frameworks, further

researches such as robust stability and DSS performance validation can be conducted.
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